WorldWideScience

Sample records for motion after-effect local

  1. Unconscious Local Motion Alters Global Image Speed

    Science.gov (United States)

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  2. Construction of exact constants of motion and effective models for many-body localized systems

    Science.gov (United States)

    Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.

    2018-04-01

    One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.

  3. Creating motion graphics with After Effects essential and advanced techniques

    CERN Document Server

    Meyer, Chris

    2010-01-01

    * 5th Edition of best-selling After Effects book by renowned authors Trish and Chris Meyer covers the important updates in After Effects CS4 and CS5 * Covers both essential and advanced techniques, from basic layer manipulation and animation through keying, motion tracking, and color management * Companion DVD is packed with project files for version CS5, source materials, and nearly 200 pages of bonus chapters Trish and Chris Meyer share over 17 years of hard-earned, real-world film and video production experience inside this critically acclaimed text. More than a step-by-step review of th

  4. Self-Intersection Local Times of Generalized Mixed Fractional Brownian Motion as White Noise Distributions

    International Nuclear Information System (INIS)

    Suryawan, Herry P.; Gunarso, Boby

    2017-01-01

    The generalized mixed fractional Brownian motion is defined by taking linear combinations of a finite number of independent fractional Brownian motions with different Hurst parameters. It is a Gaussian process with stationary increments, posseses self-similarity property, and, in general, is neither a Markov process nor a martingale. In this paper we study the generalized mixed fractional Brownian motion within white noise analysis framework. As a main result, we prove that for any spatial dimension and for arbitrary Hurst parameter the self-intersection local times of the generalized mixed fractional Brownian motions, after a suitable renormalization, are well-defined as Hida white noise distributions. The chaos expansions of the self-intersection local times in the terms of Wick powers of white noises are also presented. (paper)

  5. Robust Myocardial Motion Tracking for Echocardiography: Variational Framework Integrating Local-to-Global Deformation

    Directory of Open Access Journals (Sweden)

    Chi Young Ahn

    2013-01-01

    Full Text Available This paper proposes a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frames from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropouts, or shadowing phenomena of cardiac walls. The proposed method is designed to deal with this shape distortion problem by integrating local optical flow motion and global deformation into a variational framework. The proposed descent method controls the individual tracking points to follow the local motions of a specific speckle pattern, while their overall motions are confined to the global motion constraint being approximately an affine transform of the initial tracking points. Many real experiments show that the proposed method achieves better overall performance than conventional methods.

  6. Ground motions and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators

  7. Integrals of motion for one-dimensional Anderson localized systems

    International Nuclear Information System (INIS)

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A; Shastry, B Sriram

    2016-01-01

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction. (paper)

  8. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  9. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  10. [Restricted motion after total knee arthroplasty].

    Science.gov (United States)

    Kucera, T; Urban, K; Karpas, K; Sponer, P

    2007-10-01

    patients. In these, the average value of knee flexion increased by 17 degrees only and, in the patients suffering from excessive adhesion production, this value remained almost unchanged. Revision TKA was carried out in four patients, in whom knee joint flexion increased on average by 35 degrees to achieve an average flexion of 83 degrees. Restricted motion after TKA has been reported to range from 1.3 % to 12.0 %, but consistent criteria have not been set up. In our study it was 4.14 %. In agreement with the literature data, one of the reasons was pre-operative restricted motion, which was recorded in 16 of 32 patients. Similarly, also in our patients, biological predisposition to excessive production of fibrocartilage associated with adhesions in all knee joint compartments was the major therapeutic problem. Intra-operative fractures, ligament tears requiring post-operative fixation and unremoved dorsal osteophytes lead to the restriction of knee joint motion. By inadequate resection of articular surface, the original joint line may be at a higher level; this results in an increased tension of the posterior cruciate ligament and patella infera development, both influencing knee flexion. In our study, three patients were affected. Knee joint stiffness can also develop in patients declining physical therapy or in whom this is not correctly performed, often for insufficient analgesia. In contrast to the data reported in the literature, 17 of 32 patients in this study had no need for surgical treatment of restricted knee joint motion. Redress under general anesthesia was not effective. For markedly restricted motion of the knee joint, reimplantation can be recommended or, in less severe cases, an intervention on adjacent soft tissues. Restricted motion of the knee joint after TKA is difficult to treat and, therefore, prevention is recommended. This should include thorough conservative treatment of gonarthrosis, early indication for surgery, prevention of elevation in the

  11. Localized motion in random matrix decomposition of complex financial systems

    Science.gov (United States)

    Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian

    2017-04-01

    With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.

  12. Integrals of motion in the many-body localized phase

    Directory of Open Access Journals (Sweden)

    V. Ros

    2015-02-01

    Full Text Available We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0,1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization–delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition.

  13. Effects on ground motion related to spatial variability

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.

    1987-01-01

    Models of the spectral content and the space-time correlation structure of strong earthquake ground motion are combined with transient random vibration analysis to yield site-specific response spectra that can account for the effect of local spatial averaging of the ground motion across a rigid foundation of prescribed size. The methodology is presented with reference to sites in eastern North America, although the basic approach is applicable to other seismic regions provided the source and attenuation parameters are regionally adjusted. Parameters in the spatial correlation model are based on data from the SMART-I accelerograph array, and the sensitivity of response spectra reduction factors with respect to these parameters is examined. The starting point of the analysis is the Fourier amplitude spectrum of site displacement expresses as a function of earthquake source parameters and source-to-site distance. The bedrock acceleration spectral density function at a point, derived from the displacement spectrum, is modified to account for anelastic attenuation, and where appropriate, for local soil effects and/or local spatial averaging across a foundation. Transient random vibration analysis yields approximate analytical expressions for median ground motion amplitudes and median response spectra of an earthquake defined in terms of its spectral density function and strong motion duration. The methodology is illustrated for three events characterized by their m b magnitude and epicentral distance. The focus in this paper is on the stochastic response prediction methodology enabling explicit accounting for strong motion duration and the effect of local spatial averaging on response spectra. The numerical examples enable a preliminary assessment of the reduction of response spectral amplitudes attributable to local spatial averaging across rigid foundations of different sizes. 36 refs

  14. Local respiratory motion correction for PET/CT imaging: Application to lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [INCIA, UMR 5287, University of Bordeaux, Talence F-33400, France and Nuclear Medicine Department, University Hospital, Bordeaux 33000 (France); Fayad, H.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, Brest 29609 (France)

    2015-10-15

    Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom) and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid

  15. Effect of rolling motion on the expansion and contraction loss coefficients

    International Nuclear Information System (INIS)

    Yan, B.H.; Gu, H.Y.

    2013-01-01

    Highlights: ► The expansion and contraction loss coefficients in rolling motion are analyzed. ► Effects of rolling motion on the expansion and contraction loss coefficients are different. ► The spanwise and transverse additional forces contribute slightly to the local loss. ► The oscillations of loss coefficients increase as the strengthening of rolling motion. - Abstract: The sudden expansion and sudden contraction loss coefficients in rolling motion are investigated with CFD code FLUENT. The calculation results are validated with experimental and theoretical results in steady state. The effects of rolling motion on the expansion and contraction loss coefficients are different. The effects of spanwise and transverse additional forces on the expansion and contraction loss coefficients are weak. The effect of velocity oscillation on the contraction loss coefficient is more significant than that on the expansion loss coefficient. The oscillation of local loss coefficient also becomes more and more irregular as the strengthening of rolling motion

  16. Motion perception during tilt and translation after space flight

    Science.gov (United States)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  17. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: prospective study in lung.

    Science.gov (United States)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S

    2014-10-01

    registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2-3 weeks after simulation).

  18. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  19. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    Energy Technology Data Exchange (ETDEWEB)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S., E-mail: magerasg@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)

    2014-10-15

    registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Results: Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Conclusions: Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2–3 weeks after simulation)

  20. Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants.

    Science.gov (United States)

    Liu, Jian; Lockhart, Thurmon E; Jones, Mark; Martin, Tom

    2008-10-01

    A clear association has been demonstrated between gait stability and falls in the elderly. Integration of wearable computing and human dynamic stability measures into home automation systems may help differentiate fall-prone individuals in a residential environment. The objective of the current study was to evaluate the capability of a pair of electronic textile (e-textile) pants system to assess local dynamic stability and to differentiate motion-impaired elderly from their healthy counterparts. A pair of e-textile pants comprised of numerous e-TAGs at locations corresponding to lower extremity joints was developed to collect acceleration, angular velocity and piezoelectric data. Four motion-impaired elderly together with nine healthy individuals (both young and old) participated in treadmill walking with a motion capture system simultaneously collecting kinematic data. Local dynamic stability, characterized by maximum Lyapunov exponent, was computed based on vertical acceleration and angular velocity at lower extremity joints for the measurements from both e-textile and motion capture systems. Results indicated that the motion-impaired elderly had significantly higher maximum Lyapunov exponents (computed from vertical acceleration data) than healthy individuals at the right ankle and hip joints. In addition, maximum Lyapunov exponents assessed by the motion capture system were found to be significantly higher than those assessed by the e-textile system. Despite the difference between these measurement techniques, attaching accelerometers at the ankle and hip joints was shown to be an effective sensor configuration. It was concluded that the e-textile pants system, via dynamic stability assessment, has the potential to identify motion-impaired elderly.

  1. Evaluating the Effects of local Injections of Bupivacaine and Triamcinolone Acetate on Shoulder Joint Pain and Restricted Range of Motion Following Cerebrovascular Accidents

    Directory of Open Access Journals (Sweden)

    Asadollah Saadat Niaki M.D.

    2011-06-01

    Full Text Available Background: Shoulder pain is a common complication of cerebrovascular accidents. This study was conducted to assess the effects of local injections of bupivacaine and triamcinolone acetate on shoulder joint pain and on restricted range of motion following brain events. Methods: This single-blind clinical trial study included 35 patients with chronic shoulder pain (the controls and 35 patients with chronic shoulder pain due to brain events (the case group. The study was done at Imam Hossein Hospital & Gandhi Day Clinic during the year 2008-2010. The patients in the two groups received bupivacaine and triamcinolone acetate for subacromial bursa injection and suprascapular nerve block by following the protocol described by Dangoisse et al. The patients were followed up for 12 weeks and they were evaluated for pain and range of motion 1, 6, and 12 weeks after the injections.Results: The mean age of the patients was 60.9±9.07 years. Statistically significant improvements in pain score (P=0.001 and shoulder joint range of motion (P=0.001 were observed in patients with chronic shoulder pain versus patients with brain events 12 weeks after suprascapulare nerve block and subacromial bours injections by bupivacaine and triamcinolone acetate.Conclusion: Suprascapular nerve block and subacromial bursa injections of bupivacaine and triamcinolone acetate is a safe and efficacious treatment for the treatment of chronic shoulder pain and restricted range of motion but it is not efficacious or of significant value for the treatment of shoulder pain in patients with brain events.

  2. Many-body-localization: strong disorder perturbative approach for the local integrals of motion

    Science.gov (United States)

    Monthus, Cécile

    2018-05-01

    For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.

  3. The analgesic effect of wound infiltration with local anaesthetics after breast surgery

    DEFF Research Database (Denmark)

    Byager, N; Hansen, Mads; Mathiesen, Ole

    2014-01-01

    significant reduction in post-operative, supplemental opioid consumption that was, however, of limited clinical relevance. CONCLUSION: Wound infiltration with local anaesthetics may have a modest analgesic effect in the first few hours after surgery. Pain after breast surgery is, however, generally mild......BACKGROUND: Wound infiltration with local anaesthetics is commonly used during breast surgery in an attempt to reduce post-operative pain and opioid consumption. The aim of this review was to evaluate the effect of wound infiltration with local anaesthetics compared with a control group on post......-operative pain after breast surgery. METHODS: A systematic review was performed by searching PubMed, Google Scholar, the Cochrane database and Embase for randomised, blinded, controlled trials of wound infiltration with local anaesthetics for post-operative pain relief in female adults undergoing breast surgery...

  4. Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography.

    Science.gov (United States)

    Aarnisalo, Antti A; Cheng, Jeffrey T; Ravicz, Michael E; Furlong, Cosme; Merchant, Saumil N; Rosowski, John J

    2010-05-01

    Stroboscopic holography was used to quantify dynamic deformations of the tympanic membrane (TM) of the entire surface of the TM before and after cartilage tympanoplasty of the posterior or posterior-superior part of the TM. Cartilage is widely used in tympanoplasties to provide mechanical stability for the TM. Three human cadaveric temporal bones were used. A 6 mm x 3 mm oval cartilage graft was placed through the widely opened facial recess onto the medial surface of the posterior or posterior-superior part of the TM. The graft was either in contact with the bony tympanic rim and manubrium or not. Graft thickness was either 0.5 or 1.0mm. Stroboscopic holography produced displacement amplitude and phase maps of the TM surface in response to stimulus sound. Sound stimuli were 0.5, 1, 4 and 7 (or 8)kHz tones. Middle-ear impedance was measured from the motion of the entire TM. Cartilage placement generally produced reductions in the motion of the TM apposed to the cartilage, especially at 4 kHz and 7 or 8 kHz. Some parts of the TM showed altered motion compared to the control in all three cases. In general, middle-ear impedance was either unchanged or increased somewhat after cartilage reconstruction both at low (0.5 and 1 kHz) and high (4 and 7 kHz) frequencies. At 4 kHz, with the 1.0mm thick graft that was in contact with the bony tympanic rim, the impedance slightly decreased. While our earlier work with time-averaged holography allowed us to observe differences in the pattern of TM motion caused by application of cartilage to the TM, stroboscopic holography is more sensitive to TM motions and allowed us to quantify the magnitude and phase of motion of each point on the TM surface. Nonetheless, our results are similar to those of our earlier work: The placement of cartilage on the medial surface of TM reduces the motion of the TM that apposes the cartilage. These obvious local changes occur even though the cartilage had little effect on the sound-induced motion of

  5. Therapy monitoring using dynamic MRI: Analysis of lung motion and intrathoracic tumor mobility before and after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian [Eberhard-Karls University Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany); German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Hof, Holger; Kuhn, Sabine [University of Heidelberg, Department of Radiation Therapy, Clinic for Thoracic Diseases, Heidelberg (Germany); Puderbach, Michael; Ley, Sebastian; Biederer, Juergen; Kauczor, Hans-Ulrich [German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Claussen, Claus D.; Schaefer, Juergen [Eberhard-Karls University Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany); Huber, Peter E. [University of Heidelberg, Department of Radiation Therapy, Clinic for Thoracic Diseases, Heidelberg (Germany); German Cancer Research Center, Department of Radiation Oncology, Heidelberg (Germany); Tuengerthal, Siegfried [University of Heidelberg, Department of Radiology, Heidelberg (Germany)

    2006-09-15

    A frequent side effect after radiotherapy of lung tumors is a decrease of pulmonary function accompanied by dyspnea due to developing lung fibrosis. The aim of this study was to monitor lung motion as a correlate of pulmonary function and intrathoracic tumor mobility before and after radiotherapy (RT) using dynamic MRI (dMRI). Thirty-five patients with stage I non-small-cell lung carcinoma were examined using dMRI (trueFISP; three images/s). Tumors were divided into T1 and T2 tumors of the upper, middle and lower lung region (LR). Maximum craniocaudal (CC) lung dimensions and tumor mobility in three dimensions were monitored. Vital capacity (VC) was measured and correlated using spirometry. Before RT, the maximum CC motion of the tumor-bearing hemithorax was 5.2{+-}0.9 cm if the tumor was located in the lower LR (middle LR: 5.5{+-}0.8 cm; upper LR: 6.0{+-}0.6 cm). After RT, lung motion was significantly reduced in the lower LR (P<0.05). Before RT, the maximum CC tumor mobility was significantly higher in tumors of the lower LR 2.5{+-}0.6 vs. 2.0{+-}0.3 cm (middle LR; P<0.05) vs. 0.7{+-}0.2 cm (upper LR; P<0.01). After RT, tumor mobility was significantly reduced in the lower LR (P<0.01) and in T2 tumor patients (P<0.05). VC showed no significant changes. dMRI is capable of monitoring changes in lung motion that were not suspected from spirometry. This might make the treatment of side effects possible at a very early stage. Changes of lung motion and tumor mobility are highly dependent on the tumor localization and tumor diameter. (orig.)

  6. Therapy monitoring using dynamic MRI: Analysis of lung motion and intrathoracic tumor mobility before and after radiotherapy

    International Nuclear Information System (INIS)

    Plathow, Christian; Hof, Holger; Kuhn, Sabine; Puderbach, Michael; Ley, Sebastian; Biederer, Juergen; Kauczor, Hans-Ulrich; Claussen, Claus D.; Schaefer, Juergen; Huber, Peter E.; Tuengerthal, Siegfried

    2006-01-01

    A frequent side effect after radiotherapy of lung tumors is a decrease of pulmonary function accompanied by dyspnea due to developing lung fibrosis. The aim of this study was to monitor lung motion as a correlate of pulmonary function and intrathoracic tumor mobility before and after radiotherapy (RT) using dynamic MRI (dMRI). Thirty-five patients with stage I non-small-cell lung carcinoma were examined using dMRI (trueFISP; three images/s). Tumors were divided into T1 and T2 tumors of the upper, middle and lower lung region (LR). Maximum craniocaudal (CC) lung dimensions and tumor mobility in three dimensions were monitored. Vital capacity (VC) was measured and correlated using spirometry. Before RT, the maximum CC motion of the tumor-bearing hemithorax was 5.2±0.9 cm if the tumor was located in the lower LR (middle LR: 5.5±0.8 cm; upper LR: 6.0±0.6 cm). After RT, lung motion was significantly reduced in the lower LR (P<0.05). Before RT, the maximum CC tumor mobility was significantly higher in tumors of the lower LR 2.5±0.6 vs. 2.0±0.3 cm (middle LR; P<0.05) vs. 0.7±0.2 cm (upper LR; P<0.01). After RT, tumor mobility was significantly reduced in the lower LR (P<0.01) and in T2 tumor patients (P<0.05). VC showed no significant changes. dMRI is capable of monitoring changes in lung motion that were not suspected from spirometry. This might make the treatment of side effects possible at a very early stage. Changes of lung motion and tumor mobility are highly dependent on the tumor localization and tumor diameter. (orig.)

  7. Flow motion waves with high and low frequency in severe ischaemia before and after percutaneous transluminal angioplasty

    OpenAIRE

    Hoffmann, Ulrich; Schneider, Ernst; Bollinger, Alfred

    2017-01-01

    Study of objective - The aim was to evaluate skin flux and prevalence of low and high frequency flow motion waves in patients with severe ischaemia due to peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty (PTA) with and without local thrombolysis. Design - Flow motion was recorded by the laser Doppler technique at the dorsum of the foot before, one day, and one month after PTA. The results were separately analysed in patients with successful and unsu...

  8. Alterations to global but not local motion processing in long-term ecstasy (MDMA) users.

    Science.gov (United States)

    White, Claire; Brown, John; Edwards, Mark

    2014-07-01

    Growing evidence indicates that the main psychoactive ingredient in the illegal drug "ecstasy" (methylendioxymethamphetamine) causes reduced activity in the serotonin and gamma-aminobutyric acid (GABA) systems in humans. On the basis of substantial serotonin input to the occipital lobe, recent research investigated visual processing in long-term users and found a larger magnitude of the tilt aftereffect, interpreted to reflect broadened orientation tuning bandwidths. Further research found higher orientation discrimination thresholds and reduced long-range interactions in the primary visual area of ecstasy users. The aim of the present research was to investigate whether serotonin-mediated V1 visual processing deficits in ecstasy users extend to motion processing mechanisms. Forty-five participants (21 controls, 24 drug users) completed two psychophysical studies: A direction discrimination study directly measured local motion processing in V1, while a motion coherence task tested global motion processing in area V5/MT. "Primary" ecstasy users (n = 18), those without substantial polydrug use, had significantly lower global motion thresholds than controls [p = 0.027, Cohen's d = 0.78 (large)], indicating increased sensitivity to global motion stimuli, but no difference in local motion processing (p = 0.365). These results extend on previous research investigating the long-term effects of illicit drugs on visual processing. Two possible explanations are explored: defuse attentional processes may be facilitating spatial pooling of motion signals in users. Alternatively, it may be that a GABA-mediated disruption to V5/MT processing is reducing spatial suppression and therefore improving global motion perception in ecstasy users.

  9. Quantum algebraic representation of localization and motion of a Dirac electron

    International Nuclear Information System (INIS)

    Jaekel, Marc-Thierry; Reynaud, Serge

    2001-01-01

    Quantum algebraic observables representing localization in space-time of a Dirac electron are defined. Inertial motion of the electron is represented in the quantum algebra with electron mass acting as the generator of motion. Since transformations to uniformly accelerated frames are naturally included in this conformally invariant description, the quantum algebra is also able to deal with uniformly accelerated motion

  10. 19 CFR 210.53 - Motion filed after complaint.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Motion filed after complaint. 210.53 Section 210.53 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Temporary Relief § 210.53 Motion filed after complaint. (a) A...

  11. A comparison of tumor motion characteristics between early stage and locally advanced stage lung cancers

    International Nuclear Information System (INIS)

    Yu, Z. Henry; Lin, Steven H.; Balter, Peter; Zhang Lifei; Dong Lei

    2012-01-01

    Purpose: With the increasing use of conformal radiation therapy methods for non-small cell lung cancer (NSCLC), it is necessary to accurately determine respiratory-induced tumor motion. The purpose of this study is to analyze and compare the motion characteristics of early and locally advanced stage NSCLC tumors in a large population and correlate tumor motion with position, volume, and diaphragm motion. Methods and materials: A total of 191 (94 early stage, 97 locally advanced) non-small cell lung tumors were analyzed for this study. Each patient received a four-dimensional CT scan prior to receiving radiation treatment. A soft-tissue-based rigid registration algorithm was used to track the tumor motion. Tumor volumes were determined based on the gross tumor volume delineated by physicians in the end of expiration phase. Tumor motion characteristics were correlated with their standardized tumor locations, lobe location, and clinical staging. Diaphragm motion was calculated by subtracting the diaphragm location between the expiration and the inspiration phases. Results: Median, max, and 95th percentile of tumor motion for early stage tumors were 5.9 mm, 31.0 mm, and 20.0 mm, which were 1.2 mm, 12 mm, and 7 mm more than those in locally advanced NSCLC, respectively. The range of motion at 95th percentile is more than 50% larger in early stage lung cancer group than in the locally advanced lung cancer group. Early stage tumors in the lower lobe showed the largest motion with a median motion of 9.2 mm, while upper/mid-lobe tumors exhibited a median motion of 3.3 mm. Tumor volumes were not correlated with motion. Conclusion: The range of tumor motion differs depending on tumor location and staging of NSCLC. Early stage tumors are more mobile than locally advanced stage NSCLC. These factors should be considered for general motion management strategies when 4D simulation is not performed on individual basis.

  12. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy.

    Science.gov (United States)

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-04-13

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  13. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Mark Ostyn

    2016-04-01

    Full Text Available One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF localization system designed to track intrafraction motion (target motion during the radiation treatment. This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  14. Motions of galaxies in the neighborhood of the local group

    International Nuclear Information System (INIS)

    Faber, S.M.; Burstein, D.

    1988-01-01

    Two samples of spiral galaxies, as well as elliptical galaxies, are presently used to investigate the velocity field of galaxies relative to the cosmic microwave background to a distance of 3000 km/sec. The velocity-field models optimized include motions due to a spherically-symmetric Great Attractor, a Virgocentric flow, and a Local Anomally of which the Local Group is a part. While the spiral samples are in good agreement with the Great-Attractor-Virgo model for the motion of elliptical galaxies, new observations indicate that the Great Attractor is not spherically symmetric in its inner regions and may require modification of the model. 27 refs

  15. Functionals of Brownian motion, localization and metric graphs

    International Nuclear Information System (INIS)

    Comtet, Alain; Desbois, Jean; Texier, Christophe

    2005-01-01

    We review several results related to the problem of a quantum particle in a random environment. In an introductory part, we recall how several functionals of Brownian motion arise in the study of electronic transport in weakly disordered metals (weak localization). Two aspects of the physics of the one-dimensional strong localization are reviewed: some properties of the scattering by a random potential (time delay distribution) and a study of the spectrum of a random potential on a bounded domain (the extreme value statistics of the eigenvalues). Then we mention several results concerning the diffusion on graphs, and more generally the spectral properties of the Schroedinger operator on graphs. The interest of spectral determinants as generating functions characterizing the diffusion on graphs is illustrated. Finally, we consider a two-dimensional model of a charged particle coupled to the random magnetic field due to magnetic vortices. We recall the connection between spectral properties of this model and winding functionals of planar Brownian motion. (topical review)

  16. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  17. A blur-invariant local feature for motion blurred image matching

    Science.gov (United States)

    Tong, Qiang; Aoki, Terumasa

    2017-07-01

    Image matching between a blurred (caused by camera motion, out of focus, etc.) image and a non-blurred image is a critical task for many image/video applications. However, most of the existing local feature schemes fail to achieve this work. This paper presents a blur-invariant descriptor and a novel local feature scheme including the descriptor and the interest point detector based on moment symmetry - the authors' previous work. The descriptor is based on a new concept - center peak moment-like element (CPME) which is robust to blur and boundary effect. Then by constructing CPMEs, the descriptor is also distinctive and suitable for image matching. Experimental results show our scheme outperforms state of the art methods for blurred image matching

  18. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    Science.gov (United States)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  19. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.

    Science.gov (United States)

    Hong, S-M; Jung, B-H; Ruan, D

    2011-03-21

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively

  20. Effectiveness of prolonged use of continuous passive motion (CPM, as an adjunct to physiotherapy, after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Geesink Ruud JT

    2008-04-01

    Full Text Available Abstract Background Adequate and intensive rehabilitation is an important requirement for successful total knee arthroplasty. Although research suggests that Continuous Passive Motion (CPM should be implemented in the first rehabilitation phase after surgery, there is substantial debate about the duration of each session and the total period of CPM application. A Cochrane review on this topic concluded that short-term use of CPM leads to greater short-term range of motion. It also suggested, however, that future research should concentrate on the treatment period during which CPM should be administered. Methods In a randomised controlled trial we investigated the effectiveness of prolonged CPM use in the home situation as an adjunct to standardised PT. Efficacy was assessed in terms of faster improvements in range of motion (RoM and functional recovery, measured at the end of the active treatment period, 17 days after surgery. Sixty patients with knee osteoarthritis undergoing TKA and experiencing early postoperative flexion impairment were randomised over two treatment groups. The experimental group received CPM + PT for 17 consecutive days after surgery, whereas the usual care group received the same treatment during the in-hospital phase (i.e. about four days, followed by PT alone (usual care in the first two weeks after hospital discharge. From 18 days to three months after surgery, both groups received standardised PT. The primary focus of rehabilitation was functional recovery (e.g. ambulation and regaining RoM in the knee. Results Prolonged use of CPM slightly improved short-term RoM in patients with limited RoM at the time of discharge after total knee arthroplasty when added to a semi-standard PT programme. Assessment at 6 weeks and three months after surgery found no long-term effects of this intervention Neither did we detect functional benefits of the improved RoM at any of the outcome assessments. Conclusion Although results

  1. Effectiveness of prolonged use of continuous passive motion (CPM), as an adjunct to physiotherapy, after total knee arthroplasty

    Science.gov (United States)

    Lenssen, Ton AF; van Steyn, Mike JA; Crijns, Yvonne HF; Waltjé, Eddie MH; Roox, George M; Geesink, Ruud JT; Brandt, Piet A van den; De Bie, Rob A

    2008-01-01

    Background Adequate and intensive rehabilitation is an important requirement for successful total knee arthroplasty. Although research suggests that Continuous Passive Motion (CPM) should be implemented in the first rehabilitation phase after surgery, there is substantial debate about the duration of each session and the total period of CPM application. A Cochrane review on this topic concluded that short-term use of CPM leads to greater short-term range of motion. It also suggested, however, that future research should concentrate on the treatment period during which CPM should be administered. Methods In a randomised controlled trial we investigated the effectiveness of prolonged CPM use in the home situation as an adjunct to standardised PT. Efficacy was assessed in terms of faster improvements in range of motion (RoM) and functional recovery, measured at the end of the active treatment period, 17 days after surgery. Sixty patients with knee osteoarthritis undergoing TKA and experiencing early postoperative flexion impairment were randomised over two treatment groups. The experimental group received CPM + PT for 17 consecutive days after surgery, whereas the usual care group received the same treatment during the in-hospital phase (i.e. about four days), followed by PT alone (usual care) in the first two weeks after hospital discharge. From 18 days to three months after surgery, both groups received standardised PT. The primary focus of rehabilitation was functional recovery (e.g. ambulation) and regaining RoM in the knee. Results Prolonged use of CPM slightly improved short-term RoM in patients with limited RoM at the time of discharge after total knee arthroplasty when added to a semi-standard PT programme. Assessment at 6 weeks and three months after surgery found no long-term effects of this intervention Neither did we detect functional benefits of the improved RoM at any of the outcome assessments. Conclusion Although results indicate that prolonged CPM use

  2. Effectiveness of prolonged use of continuous passive motion (CPM), as an adjunct to physiotherapy, after total knee arthroplasty.

    Science.gov (United States)

    Lenssen, Ton A F; van Steyn, Mike J A; Crijns, Yvonne H F; Waltjé, Eddie M H; Roox, George M; Geesink, Ruud J T; van den Brandt, Piet A; De Bie, Rob A

    2008-04-29

    Adequate and intensive rehabilitation is an important requirement for successful total knee arthroplasty. Although research suggests that Continuous Passive Motion (CPM) should be implemented in the first rehabilitation phase after surgery, there is substantial debate about the duration of each session and the total period of CPM application. A Cochrane review on this topic concluded that short-term use of CPM leads to greater short-term range of motion. It also suggested, however, that future research should concentrate on the treatment period during which CPM should be administered. In a randomised controlled trial we investigated the effectiveness of prolonged CPM use in the home situation as an adjunct to standardised PT. Efficacy was assessed in terms of faster improvements in range of motion (RoM) and functional recovery, measured at the end of the active treatment period, 17 days after surgery. Sixty patients with knee osteoarthritis undergoing TKA and experiencing early postoperative flexion impairment were randomised over two treatment groups. The experimental group received CPM + PT for 17 consecutive days after surgery, whereas the usual care group received the same treatment during the in-hospital phase (i.e. about four days), followed by PT alone (usual care) in the first two weeks after hospital discharge. From 18 days to three months after surgery, both groups received standardised PT. The primary focus of rehabilitation was functional recovery (e.g. ambulation) and regaining RoM in the knee. Prolonged use of CPM slightly improved short-term RoM in patients with limited RoM at the time of discharge after total knee arthroplasty when added to a semi-standard PT programme. Assessment at 6 weeks and three months after surgery found no long-term effects of this intervention Neither did we detect functional benefits of the improved RoM at any of the outcome assessments. Although results indicate that prolonged CPM use might have a small short-term effect

  3. Feasibility of Electromagnetic Transponder Use to Monitor Inter- and Intrafractional Motion in Locally Advanced Pancreatic Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Eric T., E-mail: eric.t.shinohara@vanderbilt.edu [Department of Radiation Oncology, The Vanderbilt Clinic, Nashville, TN (United States); Kassaee, Alireza [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Mitra, Nandita [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Vapiwala, Neha; Plastaras, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Drebin, Jeff [Department of Surgery, University of Pennsylvania, Philadelphia, PA (United States); Wan, Fei [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Metz, James M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-06-01

    Purpose: The primary objective of this study was to determine the feasibility of electromagnetic transponder implantation in patients with locally advanced unresectable pancreatic cancer. Secondarily, the use of transponders to monitor inter- and intrafractional motion, and the efficacy of breath holding for limiting target motion, were examined. Methods and Materials: During routine screening laparoscopy, 5 patients without metastatic disease were implanted with transponders peri-tumorally. The Calypso System's localization and tracking modes were used to monitor inter- and intrafractional motion, respectively. Intrafractional motion, with and without breath holding, was also examined using Calypso tracking mode. Results: Transponder implantation was well tolerated in all patients, with minimal migration, aside from 1 patient who expulsed a single transponder. Interfractional motion based on mean shifts from setup using tattoos/orthogonal imaging to transponder based localization from 164 treatments was significant in all dimensions. Mean shift (in millimeters), followed by the standard deviation and p value, were as follows: X-axis: 4.5 mm (1.0, p = 0.01); Y axis: 6.4 mm (1.9, p = 0.03); and Z-axis 3.9 mm (0.6, p = 0.002). Mean intrafractional motion was also found to be significant in all directions: superior, 7.2 mm (0.9, p = 0.01); inferior, 11.9 mm (0.9, p < 0.01); anterior: 4.9 mm (0.5, p = 0.01); posterior, 2.9 mm (0.5, p = 0.02); left, 2.2 mm (0.4, p = 0.02); and right, 3.1 mm (0.6, p = 0.04). Breath holding during treatment significantly decreased tumor motion in all directions. Conclusions: Electromagnetic transponder implantation appears to be safe and effective for monitoring inter- and intrafractional motion. Based on these results a larger clinical trial is underway.

  4. Feasibility of Electromagnetic Transponder Use to Monitor Inter- and Intrafractional Motion in Locally Advanced Pancreatic Cancer Patients

    International Nuclear Information System (INIS)

    Shinohara, Eric T.; Kassaee, Alireza; Mitra, Nandita; Vapiwala, Neha; Plastaras, John P.; Drebin, Jeff; Wan, Fei; Metz, James M.

    2012-01-01

    Purpose: The primary objective of this study was to determine the feasibility of electromagnetic transponder implantation in patients with locally advanced unresectable pancreatic cancer. Secondarily, the use of transponders to monitor inter- and intrafractional motion, and the efficacy of breath holding for limiting target motion, were examined. Methods and Materials: During routine screening laparoscopy, 5 patients without metastatic disease were implanted with transponders peri-tumorally. The Calypso System’s localization and tracking modes were used to monitor inter- and intrafractional motion, respectively. Intrafractional motion, with and without breath holding, was also examined using Calypso tracking mode. Results: Transponder implantation was well tolerated in all patients, with minimal migration, aside from 1 patient who expulsed a single transponder. Interfractional motion based on mean shifts from setup using tattoos/orthogonal imaging to transponder based localization from 164 treatments was significant in all dimensions. Mean shift (in millimeters), followed by the standard deviation and p value, were as follows: X-axis: 4.5 mm (1.0, p = 0.01); Y axis: 6.4 mm (1.9, p = 0.03); and Z-axis 3.9 mm (0.6, p = 0.002). Mean intrafractional motion was also found to be significant in all directions: superior, 7.2 mm (0.9, p = 0.01); inferior, 11.9 mm (0.9, p < 0.01); anterior: 4.9 mm (0.5, p = 0.01); posterior, 2.9 mm (0.5, p = 0.02); left, 2.2 mm (0.4, p = 0.02); and right, 3.1 mm (0.6, p = 0.04). Breath holding during treatment significantly decreased tumor motion in all directions. Conclusions: Electromagnetic transponder implantation appears to be safe and effective for monitoring inter- and intrafractional motion. Based on these results a larger clinical trial is underway.

  5. Motion and time study analysis of wooden locally manufactured ...

    African Journals Online (AJOL)

    Studies were carried out on time-and-motion-economy of wooden locally manufactured duplicating machines. Two versions of the machine were used for the study, viz: standard version and semi-mechanized version. Working with both auxiliary and routine operations, the standard duplicator produced printed paper at an ...

  6. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  7. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  8. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1983-03-01

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  9. Contribution of self-motion perception to acoustic target localization.

    Science.gov (United States)

    Pettorossi, V E; Brosch, M; Panichi, R; Botti, F; Grassi, S; Troiani, D

    2005-05-01

    The findings of this study suggest that acoustic spatial perception during head movement is achieved by the vestibular system, which is responsible for the correct dynamic of acoustic target pursuit. The ability to localize sounds in space during whole-body rotation relies on the auditory localization system, which recognizes the position of sound in a head-related frame, and on the sensory systems, namely the vestibular system, which perceive head and body movement. The aim of this study was to analyse the contribution of head motion cues to the spatial representation of acoustic targets in humans. Healthy subjects standing on a rotating platform in the dark were asked to pursue with a laser pointer an acoustic target which was horizontally rotated while the body was kept stationary or maintained stationary while the whole body was rotated. The contribution of head motion to the spatial acoustic representation could be inferred by comparing the gains and phases of the pursuit in the two experimental conditions when the frequency was varied. During acoustic target rotation there was a reduction in the gain and an increase in the phase lag, while during whole-body rotations the gain tended to increase and the phase remained constant. The different contributions of the vestibular and acoustic systems were confirmed by analysing the acoustic pursuit during asymmetric body rotation. In this particular condition, in which self-motion perception gradually diminished, an increasing delay in target pursuit was observed.

  10. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods

    International Nuclear Information System (INIS)

    Beltran, Chris; Herman, Michael G.; Davis, Brian J.

    2008-01-01

    Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the four daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction

  11. Localized and Delocalized Motion of Colloidal Particles on a Magnetic Bubble Lattice

    International Nuclear Information System (INIS)

    Tierno, Pietro; Fischer, Thomas M.; Johansen, Tom H.

    2007-01-01

    We study the motion of paramagnetic colloidal particles placed above magnetic bubble domains of a uniaxial garnet film and driven through the lattice by external magnetic field modulation. An external tunable precessing field propels the particles either in localized orbits around the bubbles or in superdiffusive or ballistic motion through the bubble array. This motion results from the interplay between the driving rotating signal, the viscous drag force and the periodic magnetic energy landscape. We explain the transition in terms of the incommensurability between the transit frequency of the particle through a unit cell and the modulation frequency. Ballistic motion dynamically breaks the symmetry of the array and the phase locked particles follow one of the six crystal directions

  12. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    International Nuclear Information System (INIS)

    Wang, S.-K.; Mamontov, Eugene; Bai, M.; Hansen, F.Y.; Taub, H.; Copley, J.R.D.; Garcia Sakai, V.; Gasparovic, Goran; Jenkins, Timothy; Tyagi, M.; Herwig, Kenneth W.; Neumann, D.A.; Montfrooij, W.; Volkmann, U.G.

    2010-01-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a 'fast' motion corresponding to uniaxial rotation about the long molecular axis; and a 'slow' motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  13. Photothermally activated motion and ignition using aluminum nanoparticles

    International Nuclear Information System (INIS)

    Abboud, Jacques E.; Chong Xinyuan; Zhang Mingjun; Zhang Zhili; Jiang Naibo; Roy, Sukesh; Gord, James R.

    2013-01-01

    The aluminum nanoparticles (Al NPs) are demonstrated to serve as active photothermal media, to enhance and control local photothermal energy deposition via the photothermal effect activated by localized surface plasmon resonance (LSPR) and amplified by Al NPs oxidation. The activation source is a 2-AA-battery-powered xenon flash lamp. The extent of the photothermally activated movement of Al NPs can be ∼6 mm. Ignition delay can be ∼0.1 ms. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements of motion-only and after-ignition products confirm significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The positive-feedback effects from the local heat generation amplified by Al oxidation produce a large increase in local temperature and pressure, which enhances movement and accelerates ignition.

  14. Kinematics of Local, High-Velocity K dwarfs in the SUPERBLINK Proper Motion Catalog

    Science.gov (United States)

    Kim, Bokyoung; Lepine, Sebastien

    2018-01-01

    We present a study of the kinematics of 345,480 K stars within 2 kpc of the Sun, based on data from the SUPERBLINK catalog of stars with high proper motions (> 40 mas/yr), combined with data from the 2MASS survey and from the first GAIA release, which together yields proper motions accurate to ~2 mas/yr. All K dwarfs were selected based on their G-K colors, and photometric distances were estimated from a re-calibrated color-magnitude relationship for K dwarfs. We plot transverse velocities VT in various directions on the sky, to examine the local distribution of K dwarfs in velocity space. We have also obtained radial velocity information for a subsample of 10,128 stars, from RAVE and SDSS DR12, which we use to construct spatial velocity (U, V, W) plots. About a third (123,350) of the stars are high-velocity K dwarfs, with motions consistent with the local Galactic halo population. Our kinematic analysis suggests that their velocity-space distribution is very uniform, and we find no evidence of substructure that might arise, e.g., from local streams or moving groups.

  15. The effects of breathing motion on DCE-MRI images: Phantom studies simulating respiratory motion to compare CAIPARINHA-VIBE, radial VIBE, and conventional VIBE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; KIm, Kyung Won [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, In Seong [Siemens Healthcare Korea, Seoul (Korea, Republic of); Nickel, Dominik [MR Application Predevelopment, Siemens Healthcare, Erlangen (Germany)

    2017-04-15

    To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality.

  16. The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.

    Science.gov (United States)

    Custer, Lisa; Peer, Kimberly S; Miller, Lauren

    2017-05-01

    Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.

  17. Salvage Stereotactic Body Radiation Therapy (SBRT) for Local Failure After Primary Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Hearn, Jason W.D., E-mail: hearnj@ccf.org; Videtic, Gregory M.M.; Djemil, Toufik; Stephans, Kevin L.

    2014-10-01

    Purpose: Local failure after definitive stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (NSCLC) is uncommon. We report the safety and efficacy of SBRT for salvage of local failure after previous SBRT with a biologically effective dose (BED) of ≥100 Gy{sub 10}. Methods and Materials: Using an institutional review board–approved lung SBRT registry, we identified all patients initially treated for early-stage NSCLC between August 2004 and January 2012 who received salvage SBRT for isolated local failure. Failure was defined radiographically and confirmed histologically unless contraindicated. All patients were treated on a Novalis/BrainLAB system using ExacTrac for image guidance, and received a BED of ≥100 Gy{sub 10} for each SBRT course. Tumor motion control involved a Bodyfix vacuum system for immobilization along with abdominal compression. Results: Of 436 patients treated from August 2004 through January 2012, we identified 22 patients with isolated local failure, 10 of whom received SBRT for salvage. The median length of follow-up was 13.8 months from salvage SBRT (range 5.3-43.5 months). Median tumor size was 3.4 cm (range 1.7-4.8 cm). Two of the 10 lesions were “central” by proximity to the mediastinum, but were outside the zone of the proximal bronchial tree. Since completing salvage, 3 patients are alive and without evidence of disease. A fourth patient died of medical comorbidities without recurrence 13.0 months after salvage SBRT. Two patients developed distant disease only. Four patients had local failure. Toxicity included grade 1-2 fatigue (3 patients) and grade 1-2 chest wall pain (5 patients). There was no grade 3-5 toxicity. Conclusions: Repeat SBRT with a BED of ≥100 Gy{sub 10} after local failure in patients with early-stage medically inoperable NSCLC was well tolerated in this series and may represent a viable salvage strategy in select patients with peripheral tumors ≤5 cm.

  18. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Directory of Open Access Journals (Sweden)

    Valeriya Gritsenko

    Full Text Available To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery.Descriptive study of motion measured via 2 methods.Academic cancer center oncology clinic.20 women (mean age = 60 yrs were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery following mastectomy (n = 4 or lumpectomy (n = 16 for breast cancer.Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle.Correlation of motion capture with goniometry and detection of motion limitation.Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80, while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more.Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  19. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Science.gov (United States)

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  20. The Toggle Local Planner for sampling-based motion planning

    KAUST Repository

    Denny, Jory

    2012-05-01

    Sampling-based solutions to the motion planning problem, such as the probabilistic roadmap method (PRM), have become commonplace in robotics applications. These solutions are the norm as the dimensionality of the planning space grows, i.e., d > 5. An important primitive of these methods is the local planner, which is used for validation of simple paths between two configurations. The most common is the straight-line local planner which interpolates along the straight line between the two configurations. In this paper, we introduce a new local planner, Toggle Local Planner (Toggle LP), which extends local planning to a two-dimensional subspace of the overall planning space. If no path exists between the two configurations in the subspace, then Toggle LP is guaranteed to correctly return false. Intuitively, more connections could be found by Toggle LP than by the straight-line planner, resulting in better connected roadmaps. As shown in our results, this is the case, and additionally, the extra cost, in terms of time or storage, for Toggle LP is minimal. Additionally, our experimental analysis of the planner shows the benefit for a wide array of robots, with DOF as high as 70. © 2012 IEEE.

  1. Rocking or rolling--perception of ambiguous motion after returning from space.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Adaptive changes during spaceflight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions after return to Earth. The purpose of this study was to compare tilt and translation motion perception in astronauts before and after returning from spaceflight. We hypothesized that these stimuli would be the most ambiguous in the low-frequency range (i.e., at about 0.3 Hz where the linear acceleration can be interpreted either as a translation or as a tilt relative to gravity. Verbal reports were obtained in eleven astronauts tested using a motion-based tilt-translation device and a variable radius centrifuge before and after flying for two weeks on board the Space Shuttle. Consistent with previous studies, roll tilt perception was overestimated shortly after spaceflight and then recovered with 1-2 days. During dynamic linear acceleration (0.15-0.6 Hz, ±1.7 m/s2 perception of translation was also overestimated immediately after flight. Recovery to baseline was observed after 2 days for lateral translation and 8 days for fore-aft translation. These results suggest that there was a shift in the frequency dynamic of tilt-translation motion perception after adaptation to weightlessness. These results have implications for manual control during landing of a space vehicle after exposure to microgravity, as it will be the case for human asteroid and Mars missions.

  2. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    Science.gov (United States)

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  3. Relativistic effects in local inertial frames including PPN effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.

    1986-01-01

    In this dissertation they use the concept of a generalized Fermi frame to describe the relativistic effects on a body placed in a local inertial frame of reference due to local and distant sources of gravitation. They have considered, in particular, a model, consisted of two spherically symmetric gravitating sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done in the Parametrized-Post-Newtonian formalism using the slow motion, weak field approximation. The PPN parameters used are γ, β, zeta 1 and zeta 2 . They show that the main relativistic effect on a local satellite is described by the Schwarzchild field of the local body and the nonlinear term corresponding to the self-interaction of the local source itself. There are also much smaller terms that are proportional to the product of the potentials of local and distant bodies and distant body's self interactions. The spatial axis of the local frame undergoes Geodetic precession. Effects involving the parameters zeta 1 and zeta 2 seem to be slightly too small to be observable at the present time. In addition they have found accelerations that vanish in the general relativity limit

  4. Effect of pressure on the fast motions in ordered phase phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H

    2005-07-01

    Application of hydrostatic pressure to phospholipid bilayers increases acyl chain order and raises the main transition temperature. {sup 2}H NMR spectra and quadrupole echo decay times were obtained at ambient pressure and pressures of 85 MPa and 196.1 MPa for ordered phase bilayers of a zwitterionic phospholipid : 16:0-16:0 PC-d{sub 62} (DPPC-d{sub 62}) and an anionic phospholipid : 16:0-16:0 PG-d{sub 62} (DPPG-d{sub 62}). The extent to which deuterium magnetization following an RF pulse is refocused in the echo after a second pulse is limited by the motions that modulate the orientation-dependent quadrupole interaction. The q-CPMG pulse sequence is used to separate the contribution of slow and fast motions to the echo decay rate. This work provides insight into how chain packing affects local motion.

  5. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  6. Effects of ship's vibration and motion on plant parameters

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Kitamura, Toshikatsu; Mizushima, Toshihiko; Yamazaki, Hiroshi; Nakahara, Takeshi; Kamiya, Eisei; Kudou, Takahiro; Naitoh, Akira; Tominaga, Mineo.

    1992-03-01

    Present report was written about the study of the effects of ship's vibration and motion on reactor plant performances measured and analyzed to confirm the total balance for control systems of reactor to propulsion. On July 10, 1990, or on the first day of the first voyage for the power up test, the sea trials of MUTSU, nuclear ship made first in Japan, started from the anchoring test. The trial tests had finished through the third voyage between October 30 and November 9 to the fourth voyage between 7 and 14 of December. The trial tests had been conducted over ten items or so containing in-house tests of the measurements of ship's vibration and motion in order to research the effects on reactor performance. We here call the in-house tests the plant correlation tests. In regard to the correlation with ship's vibration, we confirmed that the inherent vibrations of hull and reactor containment arisen from ship structure had precisely been measured and that the plant correlations due to the hull and local vibrations arising from propeller revolutions are very small. Concerning the correlation with ship's motion, it was shown that her rolling motion strongly had affected on the propulsion system such as shaft power and shaft revolutions. About the correlation with reactor systems it was found that her pitching motion had given effect on the water level in pressurizer, primary coolant average temperature, ε-signal of the auto-control of reactor power and primary coolant pressure etc, particularly, most-strongly on the water level in pressurizer; her rolling and pitching motions had given effect on nuclear characteristics such as reactivity and startup rate; in addition the fluctuation of 0.06 Hz, we think the response inherent in (MUTSU) reactor systems, had been observed on her reactor parameters like reactivity and startup rate, and her propulsion systems like shaft horse power. (author)

  7. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  8. Center of Pressure Motion After Calf Vibration Is More Random in Fallers Than Non-fallers: Prospective Study of Older Individuals

    Directory of Open Access Journals (Sweden)

    Wolbert van den Hoorn

    2018-03-01

    Full Text Available Aging is associated with changes in balance control and elderly take longer to adapt to changing sensory conditions, which may increase falls risk. Low amplitude calf muscle vibration stimulates local sensory afferents/receptors and affects sense of upright when applied in stance. It has been used to assess the extent the nervous system relies on calf muscle somatosensory information and to rapidly change/perturb part of the somatosensory information causing balance unsteadiness by addition and removal of the vibratory stimulus. This study assessed the effect of addition and removal of calf vibration on balance control (in the absence of vision in elderly individuals (>65 years, n = 99 who did (n = 41 or did not prospectively report falls (n = 58, and in a group of young individuals (18–25 years, n = 23. Participants stood barefoot and blindfolded on a force plate for 135 s. Vibrators (60 Hz, 1 mm attached bilaterally over the triceps surae muscles were activated twice for 15 s; after 15 and 75 s (45 s for recovery. Balance measures were applied in a windowed (15 s epoch manner to compare center-of-pressure (CoP motion before, during and after removal of calf vibration between groups. In each epoch, CoP motion was quantified using linear measures, and non-linear measures to assess temporal structure of CoP motion [using recurrence quantification analysis (RQA and detrended fluctuation analysis]. Mean CoP displacement during and after vibration did not differ between groups, which suggests that calf proprioception and/or weighting assigned by the nervous system to calf proprioception was similar for the young and both groups of older individuals. Overall, compared to the elderly, CoP motion of young was more predictable and persistent. Balance measures were not different between fallers and non-fallers before and during vibration. However, non-linear aspects of CoP motion of fallers and non-fallers differed after removal of vibration, when

  9. Thermally activated dislocation motion including inertial effects in solid solutions

    International Nuclear Information System (INIS)

    Isaac, R.D.

    1977-01-01

    Dislocation motion through an array of obstacles is considered in terms of the potential energy of the dislocation as it moves through the array. The obstacles form a series of potential wells and barriers which can trap the dislocations. The effect of thermal fluctuations and of a viscous drag on the motion of the dislocation is investigated by analogy with Brownian motion in a field of force. The rate of escape of a trapped dislocation is found to depend on the damping coefficient only for a large viscous drag. The probability that a dislocation will be trapped by a well or barrier is found to depend on the damping coefficient for a small viscous drag. This inertial effect determines how far a dislocation will travel after breaking away from an obstacle

  10. Changes in ankle joint motion after Supramalleolar osteotomy: a cadaveric model.

    Science.gov (United States)

    Kim, Hak Jun; Yeo, Eui Dong; Rhyu, Im Joo; Lee, Soon-Hyuck; Lee, Yeon Soo; Lee, Young Koo

    2017-09-09

    Malalignment of the ankle joint has been found after trauma, by neurological disorders, genetic predisposition and other unidentified factors, and results in asymmetrical joint loading. For a medial open wedge supramalleolar osteotomy(SMO), there are some debates as to whether concurrent fibular osteotomy should be performed. We assessed the changes in motion of ankle joint and plantar pressure after supramalleolar osteotomy without fibular osteotomy. Ten lower leg specimens below the knee were prepared from fresh-frozen human cadavers. They were harvested from five males (10 ankles)whose average age was 70 years. We assessed the motion of ankle joint as well as plantar pressure for SS(supra-syndesmotic) SMO and IS(intra-syndesmotic) SMO. After the osteotomy, each specimen was subjected to axial compression from 20 N preload to 350 N representing half-body weight. For the measurement of the motion of ankle joint, the changes in gap and point, angles in ankle joint were measured. The plantar pressure were also recorded using TekScan sensors. The changes in the various gap, point, and angles movements on SS-SMO and IS-SMO showed no statistically significant differences between the two groups. Regarding the shift of plantar center of force (COF) were noted in the anterolateral direction, but not statistically significant. SS-SMO and IS-SMO with intact fibula showed similar biomechanical effect on the ankle joint. We propose that IS-SMO should be considered carefully for the treatment of osteoarthrosis when fibular osteotomy is not performed because lateral cortex fracture was less likely using the intrasyndesmosis plane because of soft tissue support.

  11. Comparison of Range of Motion After Total Knee Prosthesis According to Different Type of Prosthesis

    Directory of Open Access Journals (Sweden)

    Firat Seyfettinoglu

    2016-07-01

    Full Text Available Aim: The aim of this study is to determine the effectiveness and range of motion of different type of knee prosthesis. Material and Method: This study includes 180 of 225 patients (139 F, 41 M, average age: 65, range of age: 51-82 between April 2005 and September 2007 with the diagnosis of gonarthrosis. All patients underwent to primary total knee arthroplasty. Primary osteoartrhritis is the reason of gonarthrosis. The patients with secondary osteoartrhritis were excluded from the study. All the patients were operated by the same surgical team and rehabilitated after surgery. Patella didnt change any patient. PCL was protected in some of the patients and cut some of patients. Totally seven type prosthesis in 16 subgroup were applied to the patients. All measurement were done by the same surgeon. Average follow up period was 31 months (24-49 months. Results: Patients without subgrouping were tested according to the range of motion before and after surgery to the type of the prosthesis trademark. Range of motion was decreased with the usage of Rotaglide and LCS® type of prosthesis. Range of motion didnt change with the usage of Maxim and Kinemax type. The range of motion increased in the other trademark of prosthesis. Flexion angle was increased statistically significant with nexgen® and scorpio® prosthesis (p

  12. Before and after retrofit - response of a building during ambient and strong motions

    Science.gov (United States)

    Celebi, M.; Liu, Huaibao P.; ,

    1998-01-01

    This paper presents results obtained from ambient vibration and strong-motion responses of a thirteen-story, moment-resisting steel framed Santa Clara County Office Building (SCCOB) before being retrofitted by visco-elastic dampers and from ambient vibration response following the retrofit. Understanding the cumulative structural and site characteristics that affect the response of SCCOB before and after the retrofit is important in assessing earthquake hazards to other similar buildings and decision making in retrofitting them. The results emphasize the need to better evaluate structural and site characteristics in developing earthquake resisting designs that avoid resonating effects. Various studies of the strong-motion response records from the SCCOB during the 24 April 1984 (MHE) Morgan Hill (MS = 6.1), the 31 March 1986 (MLE) Mt. Lewis (MS = 6.1) and the 17 October 1989 (LPE) Loma Prieta (MS = 7.1) earthquakes show that the dynamic characteristics of the building are such that it (a) resonated (b) responded with a beating effect due to close-coupling of its translational and torsional frequencies, and (c) had a long-duration response due to low-damping. During each of these earthquakes, there was considerable contents damage and the occupants felt the rigorous vibration of the building. Ambient tests of SCCOB performed following LPE showed that both translational and torsional periods of the building are smaller than those derived from strong motions. Ambient tests performed following the retrofit of the building with visco-elastic dampers show that the structural fundamental mode frequency of the building has increased. The increased frequency implies a stiffer structure. Strong-motion response of the building during future earthquakes will ultimately validate the effectiveness of the retrofit method.This paper presents results obtained from ambient vibration and strong-motion responses of a thirteen-story, moment-resisting steel framed Santa Clara County

  13. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  14. Effect of air bubble localization after transfer on embryo transfer outcomes.

    Science.gov (United States)

    Tiras, Bulent; Korucuoglu, Umit; Polat, Mehtap; Saltik, Ayse; Zeyneloglu, Hulusi Bulent; Yarali, Hakan

    2012-09-01

    Our study aimed to provide information about the effects of air bubble localization after transfer on embryo transfer outcomes. Retrospective analysis of 7489 ultrasound-guided embryo transfers. Group 1 included 6631 embryo transfers in which no movement of the air bubbles was observed after transfer. Group 2 consisted of 407 embryo transfers in which the air bubbles moved towards the uterine fundus spontaneously, a little time after transfer. Group 3 included 370 embryo transfers in which the air bubbles moved towards the uterine fundus with ejection, immediately after transfer. Group 4 consisted of 81 embryo transfers in which the air bubbles moved towards the cervical canal. The four patient groups were different from one another with respect to positive pregnancy tests. Post hoc test revealed that this difference was between group 4 and other groups. An initial finding of our study was significantly decreased positive pregnancy test rates and clinical pregnancy rates with air bubbles moving towards the cervical canal after transfer. Although air bubbles moving towards the uterine fundus with ejection were associated with higher pregnancy rates, higher miscarriage rates and similar live birth rates were observed compared to air bubbles remaining stable after transfer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. On the role of memory effects for dissipation and diffusion in slow collective nuclear motion

    International Nuclear Information System (INIS)

    Cassing, W.; Noerenberg, W.

    1983-01-01

    The energy dissipation in slow collective nuclear motion is viewed as a combined effect of a diabatic production of particle-hole excitations, leading to a conservative storage of collective energy, and a subsequent equilibration due to residual two-body collisions. The effective equation of motion for the collective degree of freedom turns out to be nonlocal in time due to the large mean free path of the nucleons and allows for a simultaneous description of two different attitudes of nuclear matter. The elastic response of heavy nuclei for ''fast'' collective motion switches over to pure friction for very slow collective motion. The time development of the fluctuations in the velocities may show oscillations for times comparable to the local equilibration time and hence, is qualitatively different from the classical limit. A first application of the diabatic dynamical approach is made for the quadrupole motion within a diabatic deformed harmonic oscillator basis. (orig.)

  16. Effects on functional outcome after IORT-containing multimodality treatment for locally advanced primary and locally recurrent rectal cancer

    NARCIS (Netherlands)

    Mannaerts, GHH; Rutten, HJT; Martijn, H; Hanssens, PEJ; Wiggers, T

    2002-01-01

    Purpose: In the treatment of patients with locally advanced primary or locally recurrent rectal cancer, much attention is focused on. the oncologic outcome. Little is known about the functional outcome. In this study, the functional outcome after a multimodality treatment for locally advanced

  17. The effect of postoperative passive motion on rotator cuff healing in a rat model.

    Science.gov (United States)

    Peltz, Cathryn D; Dourte, Leann M; Kuntz, Andrew F; Sarver, Joseph J; Kim, Soung-Yon; Williams, Gerald R; Soslowsky, Louis J

    2009-10-01

    properties. In this model, immediate postoperative passive motion was found to be detrimental to passive shoulder mechanics. We speculate that passive motion results in increased scar formation in the subacromial space, thereby resulting in decreased range of motion and increased joint stiffness. Passive motion had no effect on collagen organization or tendon mechanical properties measured six weeks after surgery.

  18. Adaptive local learning in sampling based motion planning for protein folding.

    Science.gov (United States)

    Ekenna, Chinwe; Thomas, Shawna; Amato, Nancy M

    2016-08-01

    Simulating protein folding motions is an important problem in computational biology. Motion planning algorithms, such as Probabilistic Roadmap Methods, have been successful in modeling the folding landscape. Probabilistic Roadmap Methods and variants contain several phases (i.e., sampling, connection, and path extraction). Most of the time is spent in the connection phase and selecting which variant to employ is a difficult task. Global machine learning has been applied to the connection phase but is inefficient in situations with varying topology, such as those typical of folding landscapes. We develop a local learning algorithm that exploits the past performance of methods within the neighborhood of the current connection attempts as a basis for learning. It is sensitive not only to different types of landscapes but also to differing regions in the landscape itself, removing the need to explicitly partition the landscape. We perform experiments on 23 proteins of varying secondary structure makeup with 52-114 residues. We compare the success rate when using our methods and other methods. We demonstrate a clear need for learning (i.e., only learning methods were able to validate against all available experimental data) and show that local learning is superior to global learning producing, in many cases, significantly higher quality results than the other methods. We present an algorithm that uses local learning to select appropriate connection methods in the context of roadmap construction for protein folding. Our method removes the burden of deciding which method to use, leverages the strengths of the individual input methods, and it is extendable to include other future connection methods.

  19. Rapid and coordinated processing of global motion images by local clusters of retinal ganglion cells.

    Science.gov (United States)

    Matsumoto, Akihiro; Tachibana, Masao

    2017-01-01

    Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.

  20. Circuit Mechanisms Governing Local vs. Global Motion Processing in Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Rune Rasmussen

    2017-12-01

    Full Text Available A withstanding question in neuroscience is how neural circuits encode representations and perceptions of the external world. A particularly well-defined visual computation is the representation of global object motion by pattern direction-selective (PDS cells from convergence of motion of local components represented by component direction-selective (CDS cells. However, how PDS and CDS cells develop their distinct response properties is still unresolved. The visual cortex of the mouse is an attractive model for experimentally solving this issue due to the large molecular and genetic toolbox available. Although mouse visual cortex lacks the highly ordered orientation columns of primates, it is organized in functional sub-networks and contains striate- and extrastriate areas like its primate counterparts. In this Perspective article, we provide an overview of the experimental and theoretical literature on global motion processing based on works in primates and mice. Lastly, we propose what types of experiments could illuminate what circuit mechanisms are governing cortical global visual motion processing. We propose that PDS cells in mouse visual cortex appear as the perfect arena for delineating and solving how individual sensory features extracted by neural circuits in peripheral brain areas are integrated to build our rich cohesive sensory experiences.

  1. EFFECT OF CAFFEINE ON THE AMOUNT OF PERCEIVED PAIN, JOINT RANGE OF MOTION AND EDEMA AFTER DELAYED MUSCLE SORENESS

    Directory of Open Access Journals (Sweden)

    Karabalaeifar Sara

    2013-01-01

    Full Text Available Delayed onset muscle soreness usually occurs after doing a new unusual physical activity, especially when, associated with repeated eccentric contractions and then it gradually disappears. There is not an extensive agreement in the case of treatment method of soreness signs quick reduction. This research was carried out with the aim of investigation caffeine consumption effect to find a good way in order to reduce the signs of delayed onset muscle soreness. In this semi-experimental with Double-blind design, 16 female volleyball player with an age average of 22.5+2.5 in 2 homogeneous 8 subject control and experimental group were studied. In this research, the effect of caffeine existing in coffee in 5 stages (24h before exercise, 12h before, immediately before exercise, after exercise and 12h after it and 1mg per 1kg of body weight on amount of perceived pain and range of motion of the joint and edema due to delay onset muscle soreness because of 50 jumps and lands of a 1 meter stage was investigated. The results showed that caffeine consumption has a meaningful effect on reduction of all the expressed signs after eccentric contractions. So it is recommended that physio thrapysts, doctors and athletes use this method to reduce delayed onset muscle soreness consequences after the injury.

  2. Comparison of continuous interscalene block and subacromial infusion of local anesthetic for postoperative analgesia after open shoulder surgery.

    Science.gov (United States)

    Baskan, Semih; Cankaya, Deniz; Unal, Hidayet; Yoldas, Burak; Taspinar, Vildan; Deveci, Alper; Tabak, Yalcin; Baydar, Mustafa

    2017-01-01

    This study compared the efficacy of continuous interscalene block (CISB) and subacromial infusion of local anesthetic (CSIA) for postoperative analgesia after open shoulder surgery. This randomized, prospective, double-blinded, single-center study included 40 adult patients undergoing open shoulder surgery. All patients received a standardized general anesthetic. The patients were separated into group CISB and group CSIA. A loading dose of 40 mL 0.25% bupivacaine was administered and patient-controlled analgesia was applied by catheter with 0.1% bupivacaine 5 mL/h throughout 24 h basal infusion, 2 mL bolus dose, and 20 min knocked time in both groups postoperatively. Visual analog scale (VAS) scores, additional analgesia need, local anesthetic consumption, complications, and side effects were recorded during the first 24 h postoperatively. The range of motion (ROM) score was recorded preoperatively and in the first and third weeks postoperatively. A statistically significant difference was determined between the groups in respect of consumption of local anesthetic, VAS scores, additional analgesia consumption, complications, and side effects, with lower values recorded in the CISB group. There were no significant differences in ROM scoring in the preoperative and postoperative third week between the two groups but there were significant differences in ROM scoring in the postoperative first week, with higher ROM scoring values in the group CISB patients. The results of this study have shown that continuous interscalene infusion of bupivacaine is an effective and safe method of postoperative analgesia after open shoulder surgery.

  3. Effects of alcohols on the stability and low-frequency local motions that control the slow changes in structural dynamics of ferrocytochrome c.

    Science.gov (United States)

    Jain, Rishu; Sharma, Deepak; Kumar, Rajesh

    2013-10-01

    To determine the effects of alcohols on the low-frequency local motions that control slow changes in structural dynamics of native-like compact states of proteins, we have studied the effects of alcohols on structural fluctuation of M80-containing Ω-loop by measuring the rate of thermally driven CO dissociation from a natively folded carbonmonoxycytochrome c under varying concentrations of alcohols (methanol, ethanol, 1-propanol, 2-propanol, 3°-butanol, 2,2,2-trifluoroethanol). As alcohol is increased, the rate coefficient of CO dissociation (k(diss)) first decreases in subdenaturing region and then increases on going from subdenaturing to denaturing milieu. This decrease in k(diss) is more for 2,2,2-trifluroethanol and 1-propanol and least for methanol, indicating that the first phase of motional constraint is due to the hydrophobicity of alcohols and intramolecular protein cross-linking effect of alcohols, which results in conformational entropy loss of protein. The thermal denaturation midpoint for ferrocytochrome c decreases with increase in alcohol, indicating that alcohol decrease the global stability of protein. The stabilization free energy (ΔΔG) in alcohols' solution was calculated from the slope of the Wyman-Tanford plot and water activity. The m-values obtained from the slope of ΔΔG versus alcohols plot were found to be more negative for longer and linear chain alcohols, indicating destabilization of proteins by alcohols through disturbance of hydrophobic interactions and hydrogen bonding.

  4. Flow motion waves with high and low frequency in severe ischaemia before and after percutaneous transluminal angioplasty.

    Science.gov (United States)

    Hoffmann, U; Schneider, E; Bollinger, A

    1990-09-01

    STUDY OF OBJECTIVE: The aim was to evaluate skin flux and prevalence of low and high frequency flow motion waves in patients with severe ischaemia due to peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty (PTA) with and without local thrombolysis. Flow motion was recorded by the laser Doppler technique at the dorsum of the foot before, one day, and one month after PTA. The results were separately analysed in patients with successful and unsuccessful treatment. 18 patients with rest pain or incipient gangrene were included. Mean pretreatment systolic ankle pressure was 55.8(SD 25.5) mm Hg, and mean transcutaneous PO2 at 43 degrees C was 5.2(9.4) mm Hg. Arteriography revealed relevant stenoses or occlusions of the femoropopliteal and calf arteries. Before treatment two patterns of flow motion with characteristic frequency ranges were observed at the foot dorsum and at a probe temperature of 32 degrees C: low frequency (LF) waves with a mean frequency of 2.2(0.5) cycles.min-1 and a mean amplitude of 0.73(0.42) arbitrary units (AU) and high frequency (HF) waves with a mean frequency of 22.6(4.2) cycles.min-1 and a mean amplitude of 0.39(0.33) AU. PTA was successful in 11 of the 18 patients. After successful treatment, prevalence of HF waves decreased from 10/11 to 4/11 cases (p less than 0.001), but remained nearly unchanged after failed procedure. Prevalence of LF waves before and after PTA did not differ significantly. Our data support the hypothesis that HF waves represent a reaction of skin microcirculation to severe ischaemia. With reference to animal studies it is proposed that HF waves originate from terminal arterioles. They may function as a compensatory mechanism of flow regulation involved in pathophysiology of ischaemia.

  5. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    Science.gov (United States)

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  6. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  7. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  8. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    Science.gov (United States)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  9. Relativistic effects in local inertial frames including parametrized-post-Newtonian effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.; Ashby, N.

    1988-01-01

    We use the concept of a generalized Fermi frame to describe relativistic effects, due to local and distant sources of gravitation, on a body placed in a local inertial frame of reference. In particular we have considered a model of two spherically symmetric gravitating point sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done using the slow-motion, weak-field approximation and including four of the parametrized-post-Newtonian (PPN) parameters. The position of the classical center of mass must be modified when the PPN parameter zeta 2 is included. We show that the main relativistic effect on a local satellite is described by the Schwarzschild field of the local body and the nonlinear term corresponding to the self-interaction of the local source with itself. There are also much smaller terms that are proportional, respectively, to the product of the potentials of local and distant bodies and to the distant body's self-interactions. The spatial axes of the local frame undergo geodetic precession. In addition we have an acceleration of the order of 10/sup -11/ cm sec -2 that vanish in the case of general relativity, which is discussed in detail

  10. Effects of local cardiac denervation on cardiac innervation and ventricular arrhythmia after chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    Full Text Available Modulation of the autonomic nervous system (ANS has already been demonstrated to display antiarrhythmic effects in patients and animals with MI. In this study, we investigated whether local cardiac denervation has any beneficial effects on ventricular electrical stability and cardiac function in the chronic phase of MI.Twenty-one anesthetized dogs were randomly assigned into the sham-operated, MI and MI-ablation groups, respectively. Four weeks after local cardiac denervation, LSG stimulation was used to induce VPCs and VAs. The ventricular fibrillation threshold (VFT and the incidence of inducible VPCs were measured with electrophysiological protocol. Cardiac innervation was determined with immunohistochemical staining of growth associated protein-43 (GAP43 and tyrosine hydroxylase (TH. The global cardiac and regional ventricular function was evaluated with doppler echocardiography in this study.Four weeks after operation, the incidence of inducible VPC and VF in MI-ablation group were significantly reduced compared to the MI dogs (p<0.05. Moreover, local cardiac denervation significantly improved VFT in the infarcted border zone (p<0.05. The densities of GAP43 and TH-positive nerve fibers in the infarcted border zone in the MI-ablation group were lower than those in the MI group (p<0.05. However, the local cardiac denervation did not significantly improve cardiac function in the chronic phase of MI, determined by the left ventricle diameter (LV, left atrial diameter (LA, ejection fraction (EF.Summarily, in the chronic phase of MI, local cardiac denervation reduces the ventricular electrical instability, and attenuates spatial heterogeneity of sympathetic nerve reconstruction. Our study suggests that this methodology might decrease malignant ventricular arrhythmia in chronic MI, and has a great potential for clinical application.

  11. On the recovery of the local group motion from galaxy redshift surveys

    Energy Technology Data Exchange (ETDEWEB)

    Nusser, Adi [Physics Department and the Asher Space Science Institute-Technion, Haifa 32000 (Israel); Davis, Marc [Departments of Astronomy and Physics, University of California, Berkeley, CA 94720 (United States); Branchini, Enzo, E-mail: adi@physics.technion.ac.il, E-mail: mdavis@berkeley.edu, E-mail: branchin@fis.uniroma3.it [Department of Physics, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s} = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  12. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    Science.gov (United States)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  13. Motion induced interplay effects for VMAT radiotherapy

    Science.gov (United States)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-01

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin6 breathing motion in the superior–inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD98% and ΔD2%) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD98% and maximum ΔD2% being  ‑16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was

  14. Motion induced interplay effects for VMAT radiotherapy.

    Science.gov (United States)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-19

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin 6 breathing motion in the superior-inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD 98% and ΔD 2% ) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD 98% and maximum ΔD 2% being  -16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was

  15. Effects of Long-Duration Ground Motions on Liquefaction Hazards

    Science.gov (United States)

    Greenfield, Michael W.

    Soil liquefaction during past earthquakes has caused extensive damage to buildings, bridges, dam, pipelines and other elements of infrastructure. Geotechnical engineers use empirical observations from earthquake case histories in conjunction with soil mechanics to predict the behavior of liquefiable soils. However, current empirical databases are insufficient to evaluate the behavior of soils subject to long-duration earthquakes, such as a possible Mw = 9.0 Cascadia Subduction Zone earthquake. The objective of this research is to develop insight into the triggering and effects of liquefaction due to long-duration ground motions and to provide recommendations for analysis and design. Recorded ground motions from 21 case histories with surficial evidence of liquefaction showed marked differences in soil behavior before and after liquefaction was triggered. In some cases, strong shaking continued for several minutes after the soil liquefied, and a variety of behaviors were observed including dilation pulses, continued softening due to soil fabric degradation, and soil stiffening due to pore pressure dissipation and drainage. Supplemental field and laboratory investigations were performed at three sites that liquefied during the 2011 Mw = 9.0 Tohoku earthquake. The recorded ground motions and field investigation data were used in conjunction with laboratory observations, analytical models, and numerical models to evaluate the behavior of liquefiable soils subjected to long-duration ground motions. Observations from the case histories inspired a framework to predict ground deformations based on the differences in soil behavior before and after liquefaction has triggered. This framework decouples the intensity of shaking necessary to trigger liquefaction from the intensity of shaking that drives deformation by identifying the time when liquefaction triggers. The timing-based framework promises to dramatically reduce the uncertainty in deformation estimates compared to

  16. How to cheat in After Effects

    CERN Document Server

    Perkins, Chad

    2013-01-01

    Get the most from the most widely used application in the postproduction field! Gain the insider tips you need to compose eye-catching, imaginative Adobe After Effects projects quickly and effectively. In How to Cheat in After Effects, Second Edition seasoned AE expert Chad Perkins provides dozens of concise, step-by-step tutorials and lavish 4-color illustrations to get you on the fast track to producing amazing motion graphics and visual effects. Updated for CS6, this new edition has been revised to include:A brand new chapter on the most popular

  17. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  18. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  19. Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view

    NARCIS (Netherlands)

    Bos, J.E.; MacKinnon, S.N.; Patterson, A.

    2005-01-01

    Vehicle motion characteristics differ between air, road, and sea environments, both vestibularly and visually. Effects of vision on motion sickness have been studied before, though less systematically in a naval setting. It is hypothesized that appropriate visual information on self-motion is

  20. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits.

    Science.gov (United States)

    van Boxtel, Jeroen J A; Lu, Hongjing

    2013-01-01

    People with Autism Spectrum Disorder (ASD) are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  1. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits

    Directory of Open Access Journals (Sweden)

    Jeroen J A Van Boxtel

    2013-04-01

    Full Text Available People with Autism Spectrum Disorder (ASD are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  2. Wound infiltration with local anesthetic after abdominal surgery

    International Nuclear Information System (INIS)

    Shah, Z.; Ahmad, R.; Haider, S.M.

    2003-01-01

    This study was carried out to compare the effect of analgesia with local wound infiltration with 20ml of 0.5% bupivacaine in post operative wounds with the control group having no infiltration. Patients were mobilized much earlier than in the control group while the demand of analgesics was considerably delayed in the study group. No any complications was noticed during local infiltration of wounds after abdominal surgery and is, therefore, applicable in routine surgery. (author)

  3. A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2010-01-01

    We propose a new method for discretizing the time variable in integrable lattice systems while maintaining the locality of the equations of motion. The method is based on the zero-curvature (Lax pair) representation and the lowest-order 'conservation laws'. In contrast to the pioneering work of Ablowitz and Ladik, our method allows the auxiliary dependent variables appearing in the stage of time discretization to be expressed locally in terms of the original dependent variables. The time-discretized lattice systems have the same set of conserved quantities and the same structures of the solutions as the continuous-time lattice systems; only the time evolution of the parameters in the solutions that correspond to the angle variables is discretized. The effectiveness of our method is illustrated using examples such as the Toda lattice, the Volterra lattice, the modified Volterra lattice, the Ablowitz-Ladik lattice (an integrable semi-discrete nonlinear Schroedinger system) and the lattice Heisenberg ferromagnet model. For the modified Volterra lattice, we also present its ultradiscrete analogue.

  4. A uniform law for convergence to the local times of linear fractional stable motions

    OpenAIRE

    Duffy, James A.

    2016-01-01

    We provide a uniform law for the weak convergence of additive functionals of partial sum processes to the local times of linear fractional stable motions, in a setting sufficiently general for statistical applications. Our results are fundamental to the analysis of the global properties of nonparametric estimators of nonlinear statistical models that involve such processes as covariates.

  5. Magnetic field pitch angle diagnostic using the motional Stark effect (invited)

    International Nuclear Information System (INIS)

    Levinton, F.M.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Roberts, D.W.

    1990-01-01

    The Stark effect has been employed in a novel technique for obtaining the pitch angle profile and q(r) using polarimetry measurements of the Doppler shifted H α emission from a hydrogen diagnostic neutral beam. As a neutral beam propagates through a plasma, collisions of the beam particles with the background ions and electrons will excite beam atoms, leading to emission of radiation. The motional Stark effect, which arises from the electric field induced in the atom's rest frame due to the beam motion across the magnetic field (E=V beam xB), causes a wavelength splitting of several angstroms and polarization of the emitted radiation. The Δm=±1 transitions, or σ components, from the beam fluorescence are linearly polarized parallel to the direction of the local magnetic field when viewed transverse to the fields. Since the hydrogen beam provides good spatial localization and penetration, the pitch angle can be obtained anywhere in the plasma. A photoelastic modulator (PEM) is used to modulate the linearly polarized light. Depending on the orientation of the PEM, it can measure the sine or cosine of the angle of polarization. Two PEM's are used to measure both components simultaneously. Results of q(r) for both Ohmic and NBI heated discharges have been obtained in the Princeton Beta Experiment (PBX-M) tokamak, with an uncertainty of ∼6% for q(0)

  6. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  7. Evaluation of building fundamental periods and effects of local geology on ground motion parameters in the Siracusa area, Italy

    Science.gov (United States)

    Panzera, Francesco; D'Amico, Sebastiano; Lombardo, Giuseppe; Longo, Emanuela

    2016-07-01

    The Siracusa area, located in the southeastern coast of Sicily (Italy), is mainly characterized by the outcropping of a limestone formation. This lithotype, which is overlain by soft sediments such as sandy clays and detritus, can be considered as the local bedrock. Records of ambient noise, processed through spectral ratio techniques, were used to assess the dynamic properties of a sample survey of both reinforced concrete and masonry buildings. The results show that experimental periods of existing buildings are always lower than those proposed by the European seismic code. This disagreement could be related to the role played by stiff masonry infills, as well as the influence of adjacent buildings, especially in downtown Siracusa. Numerical modeling was also used to study the effect of local geology on the seismic site response of the Siracusa area. Seismic urban scenarios were simulated considering a moderate magnitude earthquake (December 13th, 1990) to assess the shaking level of the different outcropping formations. Spectral acceleration at different periods, peak ground acceleration, and velocity were obtained through a stochastic approach adopting an extended source model code. Seismic ground motion scenario highlighted that amplification mainly occurs in the sedimentary deposits that are widespread to the south of the study area as well as on some spot areas where coarse detritus and sandy clay outcrop. On the other hand, the level of shaking appears moderate in all zones with outcropping limestone and volcanics.

  8. Abnormal Motion of the Interventricular Septum after Coronary Artery Bypass Graft Surgery: Comprehensive Evaluation with MR Imaging

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Choi, Sang Il; Chun, Eun Ju; Chang, Huk Jae; Park, Kay Hyun; Lim, Cheong; Kim, Shin Jae; Kang, Joon Won; Lim, Tae Hwan

    2010-01-01

    To define the mechanism associated with abnormal septal motion (ASM) after coronary artery bypass graft surgery (CABG) using comprehensive MR imaging techniques. Eighteen patients (mean age, 58 ± 12 years; 15 males) were studied with comprehensive MR imaging using rest/stress perfusion, rest cine, and delayed enhancement (DE)-MR techniques before and after CABG. Myocardial tagging was also performed following CABG. Septal wall motion was compared in the ASM and non-ASM groups. Preoperative and postoperative results with regard to septal wall motion in the ASM group were also compared. We then analyzed circumferential strain after CABG in both the septal and lateral walls in the ASM group. All patients had normal septal wall motion and perfusion without evidence of non-viable myocardium prior to surgery. Postoperatively, ASM at rest and/or stress state was documented in 10 patients (56%). However, all of these had normal rest/stress perfusion and DE findings at the septum. Septal wall motion after CABG in the ASM group was significantly lower than that in the non- ASM group (2.1±5.3 mm vs. 14.9±4.7 mm in the non-ASM group; p < 0.001). In the ASM group, the degree of septal wall motion showed a significant decrease after CABG (preoperative vs. postoperative = 15.8±4.5 mm vs. 2.1±5.3 mm; p = 0.007). In the ASM group after CABG, circumferential shortening of the septum was even larger than that of the lateral wall (-20.89±5.41 vs. -15.41±3.7, p < 0.05) Abnormal septal motion might not be caused by ischemic insult. We suggest that ASM might occur due to an increase in anterior cardiac mobility after incision of the pericardium

  9. Realistic modelling of the effects of asynchronous motion at the base of bridge piers

    International Nuclear Information System (INIS)

    Romanelli, F.; Panza, G.F.; Vaccari, F.

    2002-11-01

    Frequently long-span bridges provide deep valley crossings, which require special consideration due to the possibility of local amplification of the ground motion as a consequence of topographical irregularities and local soil conditions. This does in fact cause locally enhanced seismic input with the possibility for the bridge piers to respond asynchronously. This introduces special design requirements so that possible out-of-phase ground displacements and the associated large relative displacements of adjacent piers can be accommodated without excessive damage. Assessment of the local variability of the ground motion due to local lateral heterogeneities and to attenuation properties is thus crucial toward the realistic definition of the asynchronous motion at the base of the bridge piers. We illustrate the work done in the framework of a large international cooperation to assess the importance of non-synchronous seismic excitation of long structures. To accomplish this task we compute complete synthetic accelerograms using as input a set of parameters that describes, to the best of our knowledge, the geological structure and seismotectonic setting of the investigated area. (author)

  10. Effective motion design applied to energy-efficient handling processes

    Energy Technology Data Exchange (ETDEWEB)

    Brett, Tobias

    2013-10-01

    Industrial robots are available in a large variety of mechanical alternatives regarding size, motor power, link length ratio or payload. The four major types of serial kinematics dominating the market are complemented by various parallel kinematics for special purpose. In contrast, few other path planning alternatives are applied in industrial robotics which are based on similar analytic solution principles. The objective of this thesis is to develop a systematic design method for artifacts in motion, to integrate motion design and mechanical design to enable new processes for production. For each design, a theoretical benchmark is developed, which cannot be attained by conventional robots in principle. A key performance indicator enables to measure the degree of goal achievement towards the benchmark during all design phases. Motion behaviors are identified on a local level by dynamic systems modeling and are integrated into new global behavior featuring a new quality, suitable for exceeding the design benchmark in industrial processes. Two exemplary handling robot designs are presented. The first concept enables motion behavior to consume less electrical power than kinetic energy transferred to and from its payload during motion. The second concept enables motion with four degrees of freedom by single motor stimulation, reducing idle power consumption on factor 4 towards conventional robots.

  11. Spontaneous local alpha oscillations predict motion-induced blindness.

    Science.gov (United States)

    Händel, Barbara F; Jensen, Ole

    2014-11-01

    Bistable visual illusions are well suited for exploring the neuronal states of the brain underlying changes in perception. In this study, we investigated oscillatory activity associated with 'motion-induced blindness' (MIB), which denotes the perceptual disappearance of salient target stimuli when a moving pattern is superimposed on them (Bonneh et al., ). We applied an MIB paradigm in which illusory target disappearances would occur independently in the left and right hemifields. Both illusory and real target disappearance were followed by an alpha lateralization with weaker contralateral than ipsilateral alpha activity (~10 Hz). However, only the illusion showed early alpha lateralization in the opposite direction, which preceded the alpha effect present for both conditions and coincided with the estimated onset of the illusion. The duration of the illusory disappearance was further predicted by the magnitude of this early lateralization when considered over subjects. In the gamma band (60-80 Hz), we found an increase in activity contralateral relative to ipsilateral only after a real disappearance. Whereas early alpha activity was predictive of onset and length of the illusory percept, gamma activity showed no modulation in relation to the illusion. Our study demonstrates that the spontaneous changes in visual alpha activity have perceptual consequences. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Sound-contingent visual motion aftereffect

    Directory of Open Access Journals (Sweden)

    Kobayashi Maori

    2011-05-01

    Full Text Available Abstract Background After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion, one of the signals (color becomes a driver for the other signal (motion. This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound. Results Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days. Conclusions These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

  13. Ground motion and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1985-07-01

    The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs

  14. Self-motion effects on hydrodynamic pressure sensing: part I. Forward–backward motion

    International Nuclear Information System (INIS)

    Akanyeti, Otar; Chambers, Lily D; Brown, Jennifer; Megill, William M; Ježov, Jaas; Kruusmaa, Maarja; Venturelli, Roberto; Fiorini, Paolo

    2013-01-01

    In underwater locomotion, extracting meaningful information from local flows is as desirable as it is challenging, due to complex fluid-structure interaction. Sensing and motion are tightly interconnected; hydrodynamic signals generated by the external stimuli are modified by the self-generated flow signals. Given that very little is known about self-generated signals, we used onboard pressure sensors to measure the pressure profiles over the head of a fusiform-shape craft while moving forward and backward harmonically. From these measurements we obtained a second-order polynomial model which incorporates the velocity and acceleration of the craft to estimate the surface pressure within the swimming range up to one body length/second (L s −1 ). The analysis of the model reveals valuable insights into the temporal and spatial changes of the pressure intensity as a function of craft's velocity. At low swimming velocities ( −1 ) the pressure signals are more sensitive to the acceleration of the craft than its velocity. However, the inertial effects gradually become less important as the velocity increases. The sensors on the front part of the craft are more sensitive to its movements than the sensors on the sides. With respect to the hydrostatic pressure measured in still water, the pressure detected by the foremost sensor reaches values up to 300 Pa at 1 L s −1 swimming velocity, whereas the pressure difference between the foremost sensor and the next one is less than 50 Pa. Our results suggest that distributed pressure sensing can be used in a bimodal sensing strategy. The first mode detects external hydrodynamic events taking place around the craft, which requires minimal sensitivity to the self-motion of the craft. This can be accomplished by moving slowly with a constant velocity and by analyzing the pressure gradient as opposed to absolute pressure recordings. The second mode monitors the self-motion of the craft. It is shown here that distributed

  15. Verification of motion induced thread effect during tomotherapy using gel dosimetry

    International Nuclear Information System (INIS)

    Edvardsson, Anneli; Ljusberg, Anna; Ceberg, Crister; Medin, Joakim; Ambolt, Lee; Nordström, Fredrik; Ceberg, Sofie

    2015-01-01

    The purpose of the study was to evaluate how breathing motion during tomotherapy (Accuray, CA, USA) treatment affects the absorbed dose distribution. The experiments were carried out using gel dosimetry and a motion device simulating respiratory-like motion (HexaMotion, ScandiDos, Uppsala, Sweden). Normoxic polyacrylamide gels (nPAG) were irradiated, both during respiratory-like motion and in a static mode. To be able to investigate interplay effects the static absorbed dose distribution was convolved with the motion function and differences between the dynamic and convolved static absorbed dose distributions were interpreted as interplay effects. The expected dose blurring was present and the interplay effects formed a spiral pattern in the lower dose volume. This was expected since the motion induced affects the preset pitch and the theoretically predicted thread effect may emerge. In this study, the motion induced thread effect was experimentally verified for the first time

  16. Two-dimensional analysis of motion artifacts, including flow effects

    International Nuclear Information System (INIS)

    Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.

    1990-01-01

    The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously

  17. DEFINITION AND ANALYSIS OF MOTION ACTIVITY AFTER-STROKE PATIENT FROM THE VIDEO STREAM

    Directory of Open Access Journals (Sweden)

    M. Yu. Katayev

    2014-01-01

    Full Text Available This article describes an approach to the assessment of motion activity of man in after-stroke period, allowing the doctor to get new information to give a more informed recommendations on rehabilitation treatment than in traditional approaches. Consider description of the hardware-software complex for determination and analysis of motion activity after-stroke patient for the video stream. The article provides a description of the complex, its algorithmic filling and the results of the work on the example of processing of the actual data. The algorithms and technology to significantly accelerate the gait analysis and improve the quality of diagnostics post-stroke patients.

  18. Localization Using Magnetic Patterns for Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Won Suk You

    2014-03-01

    Full Text Available In this paper, we present a method of localization using magnetic landmarks. With this method, it is possible to compensate the pose error (xe, ye, θe of a mobile robot correctly and localize its current position on a global coordinate system on the surface of a structured environment with magnetic landmarks. A set of four magnetic bars forms total six different patterns of landmarks and these patterns can be read by the mobile robot with magnetic hall sensors. A sequential motion strategy for a mobile robot is proposed to find the geometric center of magnetic landmarks by reading the nonlinear magnetic field. The mobile robot first moves into the center region of the landmark where it can read the magnetic pattern, after which tracking and global localization can be easily achieved by recognizing the patterns of neighboring landmarks. Experimental results show the effectiveness of the sequential motion strategy for estimating the center of the first encountered landmark as well as the performance of tracking and global localization of the proposed system.

  19. Effects of ship motions on laminar flow in tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh1986@163.co [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yu, L. [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2010-01-15

    The thermal-hydraulics of barge-mounted floating nuclear desalination plants is the incentive for this study. Laminar flow in tubes in heaving motion is modeled. The friction factor and heat transfer coefficient are obtained. All the equations of laminar flow in steady state are applicable for heeling motion. The effect of ship motions on the laminar developing region is also analyzed. The ship motions can weaken the boundary layer in the laminar developing region and strengthen the laminar frictional resistance. The effect of ship motions on the instability of laminar flow is also investigated. The ship motions do not affect the instability point, but they can shorten the distance between the instability point and the transition point, and cause the transition from laminar flow to turbulent flow to occur earlier.

  20. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    Science.gov (United States)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for induced earthquakes in the central US.

  1. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    International Nuclear Information System (INIS)

    Goethe, Martin; Rubi, J. Miguel; Fita, Ignacio

    2016-01-01

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  2. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel [Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Fita, Ignacio [Institut de Biologia Molecular de Barcelona, Baldiri Reixac 10, 08028 Barcelona (Spain)

    2016-03-15

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  3. Real-Time and Accurate Indoor Localization with Fusion Model of Wi-Fi Fingerprint and Motion Particle Filter

    Directory of Open Access Journals (Sweden)

    Xinlong Jiang

    2015-01-01

    Full Text Available As the development of Indoor Location Based Service (Indoor LBS, a timely localization and smooth tracking with high accuracy are desperately needed. Unfortunately, any single method cannot meet the requirement of both high accuracy and real-time ability at the same time. In this paper, we propose a fusion location framework with Particle Filter using Wi-Fi signals and motion sensors. In this framework, we use Extreme Learning Machine (ELM regression algorithm to predict position based on motion sensors and use Wi-Fi fingerprint location result to solve the error accumulation of motion sensors based location occasionally with Particle Filter. The experiments show that the trajectory is smoother as the real one than the traditional Wi-Fi fingerprint method.

  4. Early Versus Delayed Motion After Rotator Cuff Repair: A Systematic Review of Overlapping Meta-analyses.

    Science.gov (United States)

    Houck, Darby A; Kraeutler, Matthew J; Schuette, Hayden B; McCarty, Eric C; Bravman, Jonathan T

    2017-10-01

    Previous meta-analyses have been conducted to compare outcomes of early versus delayed motion after rotator cuff repair. To conduct a systematic review of overlapping meta-analyses comparing early versus delayed motion rehabilitation protocols after rotator cuff repair to determine which meta-analyses provide the best available evidence. Systematic review. A systematic review was performed by searching PubMed and Cochrane Library databases. Search terms included "rotator cuff repair," "early passive motion," "immobilization," "rehabilitation protocol," and "meta-analysis." Results were reviewed to determine study eligibility. Patient outcomes and structural healing were extracted from these meta-analyses. Meta-analysis quality was assessed using the Oxman-Guyatt and Quality of Reporting of Meta-analyses (QUOROM) systems. The Jadad decision algorithm was then used to determine which meta-analyses provided the best level of evidence. Seven meta-analyses containing a total of 5896 patients met the eligibility criteria (1 Level I evidence, 4 Level II evidence, 2 Level III evidence). None of these meta-analyses found immobilization to be superior to early motion; however, most studies suggested that early motion would increase range of motion (ROM), thereby reducing time of recovery. Three of these studies suggested that tear size contributed to the choice of rehabilitation to ensure proper healing of the shoulder. A study by Chan et al in 2014 received the highest QUOROM and Oxman-Guyatt scores, and therefore this meta-analysis appeared to have the highest level of evidence. Additionally, a study by Riboh and Garrigues in 2014 was selected as the highest quality study in this systematic review according to the Jadad decision algorithm. The current, best available evidence suggests that early motion improves ROM after rotator cuff repair but increases the risk of rotator cuff retear. Lower quality meta-analyses indicate that tear size may provide a better strategy in

  5. Focal spot motion of linear accelerators and its effect on portal image analysis

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Brand, Bob; Herk, Marcel van

    2003-01-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned ∼0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motion was estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spot motion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate

  6. Effects of five hindfoot arthrodeses on foot and ankle motion: Measurements in cadaver specimens

    Science.gov (United States)

    Zhang, Kun; Chen, Yanxi; Qiang, Minfei; Hao, Yini

    2016-01-01

    Single, double, and triple hindfoot arthrodeses are used to correct hindfoot deformities and relieve chronic pain. However, joint fusion may lead to dysfunction in adjacent articular surfaces. We compared range of motion in adjacent joints before and after arthrodesis to determine the effects of each procedure on joint motion. The theory of moment of couple, bending moment and balanced loading was applied to each of 16 fresh cadaver feet to induce dorsiflexion, plantarflexion, internal rotation, external rotation, inversion, and eversion. Range of motion was measured with a 3-axis coordinate measuring machine in a control foot and in feet after subtalar, talonavicular, calcaneocuboid, double, or triple arthrodesis. All arthrodeses restricted mainly internal-external rotation and inversion-eversion. The restriction in a double arthrodesis was more than that in a single arthrodesis, but that in a calcaneocuboid arthrodesis was relatively low. After triple arthrodeses, the restriction on dorsiflexion and plantarflexion movements was substantial, and internal-external rotation and inversion-eversion were almost lost. Considering that different arthrodesis procedures cause complex, three-dimensional hindfoot motion reductions, we recommend talonavicular or calcaneocuboid arthrodesis for patients with well-preserved functions of plantarflexion/dorsiflexion before operation, subtalar or calcaneocuboid arthrodesis for patients with well-preserved abduction/adduction, and talonavicular arthrodesis for patients with well-preserved eversion/inversion. PMID:27752084

  7. Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.

    Science.gov (United States)

    Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong

    2016-08-01

    The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.

  8. Evaluation of dynamic properties, local site effects and design ground motions: recent advances

    International Nuclear Information System (INIS)

    Sitharam, T.G.; Vipin, K.S.; James, Naveen

    2011-01-01

    Evidences from past earthquakes clearly shows that the damages due to an earthquake and its severity at a site are controlled mainly by three factors i.e., earthquake source and path characteristics, local geological and geotechnical characteristics, structural design and quality of the construction. Seismic ground response at a site is strongly influenced by local geological and soil conditions. The exact information of the geological, geomorphological and geotechnical data along with seismotectonic details are necessary to evaluate the ground response. The geometry of the subsoil structure, the soil type, the lateral discontinuities and the surface topography will also influence the site response at a particular location. In the case of a nuclear power plant, the details obtained from the site investigation will have multiple objectives: (i) for the effective design of the foundation (ii) assessment of site amplification (iii) for liquefaction potential evaluation. Since the seismic effects on the structure depend fully on the site conditions and assessment of site amplification. The first input required in evaluation of geotechnical aspect of seismic hazard is the rock level peak horizontal acceleration (PHA) values. The surface level acceleration values need to be calculated based on the site conditions and site amplification values. This paper discusses various methods for evaluating the site amplification values, dynamic soil properties, different field and laboratory tests required and various site classification schemes. In addition to these aspects, the evaluation of liquefaction potential of the site is also presented. The paper highlights on the latest testing methods to evaluate dynamic properties (shear modulus and damping ratio) of soils and techniques for estimating local site effects. (author)

  9. The effect of local sustained delivery of sirolimus on the vascular PAI-1 and t-PA expression after angioplasty

    International Nuclear Information System (INIS)

    E Yajun; He Nengshu; Fan Hailun

    2011-01-01

    Objective: To investigate the effect of local sustained delivery of sirolimus on the vascular inhibitor of plasminogen activator-1 (PAI-1) and tissue type plasminogen activator (t-PA) expression after angioplasty. Methods: Experimental common carotid artery injury model was established in the rats. A total of 30 male Wistar rats were divided into experimental group (n=20) and control group (n=10). Adventitial administration of drug was applied. Pluronic F-127 gel containing sirolimus was administered to the exposed adventitial surface of injured carotid artery. The experimental group was divided into high concentration (600 μg/100 μl) sub-group and low concentration (300 μg/100μl) sub-group according to the concentration of sirolimus delivered. The effect of local sustained delivery sirolimus on vascular PAI-1 and t-PA expression after percutaneous angioplasty was evaluated by immunohistochemistry. Results: Compared to control group, 15 and 30 days after injury local sustained delivery of sirolimus in both high concentration and low concentration sub-groups the expression of the PAI-1 in neointima was significantly enhanced (P 0.05). At 15 and 30 days after injury, the expression of t-PA in neointima was decreased in both high and low concentration sub-groups (P<0.05), and the expression of t-PA in media was significantly decreased in high concentration sub-group (P<0.05) while on significant difference could be detected in low concentration sub-group. Conclusion: Local sustained delivery of sirolimus can induce the high expression of PAI-1 and low expression of t-PA in neointima although it inhibits the proliferation of neointima in the same time, and the imbalanced expression of t-PA and PAI-1 may probably play an important role in the late formation of thrombosis after the placement of drug-eluting stent. (authors)

  10. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  11. Real-time motional Stark effect in jet

    International Nuclear Information System (INIS)

    Alves, D.; Stephen, A.; Hawkes, N.; Dalley, S.; Goodyear, A.; Felton, R.; Joffrin, E.; Fernandes, H.

    2004-01-01

    The increasing importance of real-time measurements and control systems in JET experiments, regarding e.g. Internal Transport Barrier (ITB) and q-profile control, has motivated the development of a real-time motional Stark effect (MSE) system. The MSE diagnostic allows the measurement of local magnetic fields in different locations along the neutral beam path providing, therefore, local measurement of the current and q-profiles. Recently in JET, an upgrade of the MSE diagnostic has been implemented, incorporating a totally new system which allows the use of this diagnostic as a real-time control tool as well as an extended data source for off-line analysis. This paper will briefly describe the technical features of the real-time diagnostic with main focus on the system architecture, which consists of a VME crate hosting three PowerPC processor boards and a fast ADC, all connected via Front Panel Data Port (FPDP). The DSP algorithm implements a lockin-amplifier required to demodulate the JET MSE signals. Some applications for the system will be covered such as: feeding the real-time equilibrium reconstruction code (EQUINOX) and allowing the full coverage analysis of the Neutral Beam time window. A brief comparison between the real-time MSE analysis and the off-line analysis will also be presented

  12. The effect of occlusion therapy on motion perception deficits in amblyopia.

    Science.gov (United States)

    Giaschi, Deborah; Chapman, Christine; Meier, Kimberly; Narasimhan, Sathyasri; Regan, David

    2015-09-01

    There is growing evidence for deficits in motion perception in amblyopia, but these are rarely assessed clinically. In this prospective study we examined the effect of occlusion therapy on motion-defined form perception and multiple-object tracking. Participants included children (3-10years old) with unilateral anisometropic and/or strabismic amblyopia who were currently undergoing occlusion therapy and age-matched control children with normal vision. At the start of the study, deficits in motion-defined form perception were present in at least one eye in 69% of the children with amblyopia. These deficits were still present at the end of the study in 55% of the amblyopia group. For multiple-object tracking, deficits were present initially in 64% and finally in 55% of the children with amblyopia, even after completion of occlusion therapy. Many of these deficits persisted in spite of an improvement in amblyopic eye visual acuity in response to occlusion therapy. The prevalence of motion perception deficits in amblyopia as well as their resistance to occlusion therapy, support the need for new approaches to amblyopia treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of gradual weight-bearing on regenerated articular cartilage after joint distraction and motion in a rabbit model.

    Science.gov (United States)

    Nishino, Tomofumi; Ishii, Tomoo; Chang, Fei; Yanai, Takaji; Watanabe, Arata; Ogawa, Takeshi; Mishima, Hajime; Nakai, Kenjiro; Ochiai, Naoyuki

    2010-05-01

    The purpose of this study was to clarify the effect of gradual weight bearing (GWB) on regenerating cartilage. We developed a novel external fixation device (EFD) with a controllable weight-bearing system and continuous passive motion (CPM). A full-thickness defect was created by resection of the entire articular surface of the tibial plateau after the EFD was fixed in the rabbit's left knee. In the GWB group (n=6), GWB was started 6 weeks after surgery. In the CPM group (n=6), CPM with EFD was applied in the same manner without GWB. The control group (n=5) received only joint distraction. All rabbits were sacrificed 9 weeks after surgery. The central one-third of the regenerated tissue was assessed and scored blindly using a grading scale modified from the International Cartilage Repair Society visual histological assessment scale. The areas stained by Safranin-O and type II collagen antibody were measured, and the percentage of each area was calculated. There was no significant difference in the histological assessment scale among the groups. The percentage of the type II collagen-positive area was significantly larger in the GWB group than in the CPM group. The present study suggests that optimal mechanical stress, such as GWB, may affect regeneration of cartilage, in vivo. Copyright (c) 2009 Orthopaedic Research Society.

  14. Illusory bending of a rigidly moving line segment: effects of image motion and smooth pursuit eye movements.

    Science.gov (United States)

    Thaler, Lore; Todd, James T; Spering, Miriam; Gegenfurtner, Karl R

    2007-04-20

    Four experiments in which observers judged the apparent "rubberiness" of a line segment undergoing different types of rigid motion are reported. The results reveal that observers perceive illusory bending when the motion involves certain combinations of translational and rotational components and that the illusion is maximized when these components are presented at a frequency of approximately 3 Hz with a relative phase angle of approximately 120 degrees . Smooth pursuit eye movements can amplify or attenuate the illusion, which is consistent with other results reported in the literature that show effects of eye movements on perceived image motion. The illusion is unaffected by background motion that is in counterphase with the motion of the line segment but is significantly attenuated by background motion that is in-phase. This is consistent with the idea that human observers integrate motion signals within a local frame of reference, and it provides strong evidence that visual persistency cannot be the sole cause of the illusion as was suggested by J. R. Pomerantz (1983). An analysis of the motion patterns suggests that the illusory bending motion may be due to an inability of observers to accurately track the motions of features whose image displacements undergo rapid simultaneous changes in both space and time. A measure of these changes is presented, which is highly correlated with observers' numerical ratings of rubberiness.

  15. The Effect of Music Listening on Pain, Heart Rate Variability, and Range of Motion in Older Adults After Total Knee Replacement.

    Science.gov (United States)

    Hsu, Chih-Chung; Chen, Su-Ru; Lee, Pi-Hsia; Lin, Pi-Chu

    2017-12-01

    The purpose of this study was to investigate the effects that listening and not listening to music had on pain relief, heart rate variability (HRV), and knee range of motion in total knee replacement (TKR) patients who underwent continuous passive motion (CPM) rehabilitation. We adopted a single-group quasi-experimental design. A sample of 49 TKR patients listened to music for 25 min during one session of CPM and no music during another session of CPM the same day for a total of 2 days. Results indicated that during CPM, patients exhibited a significant decrease in the pain level ( p listening to music compared with no music. This study demonstrated that listening to music can effectively decrease pain during CPM rehabilitation and improve the joint range of motion in patients who underwent TKR surgery.

  16. Brownian motion after Einstein and Smoluchowski: Some new applications and new experiments

    DEFF Research Database (Denmark)

    Dávid, Selmeczi; Tolic-Nørrelykke, S.F.; Schäffer, E.

    2007-01-01

    The first half of this review describes the development in mathematical models of Brownian motion after Einstein's and Smoluchowski's seminal papers and current applications to optical tweezers. This instrument of choice among single-molecule biophysicists is also an instrument of such precision ...

  17. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  18. Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area

    International Nuclear Information System (INIS)

    Radulian, R.; Kuznetsov, I.; Panza, G.F.

    2004-01-01

    Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)

  19. Latent stereopsis for motion in depth in strabismic amblyopia.

    Science.gov (United States)

    Hess, Robert F; Mansouri, Behzad; Thompson, Benjamin; Gheorghiu, Elena

    2009-10-01

    To investigate the residual stereo function of a group of 15 patients with strabismic amblyopia, by using motion-in-depth stimuli that allow discrimination of contributions from local disparity as opposed to those from local velocity mechanisms as a function of the rate of depth change. The stereo performance (percentage correct) was measured as a function of the rate of depth change for dynamic random dot stimuli that were either temporally correlated or uncorrelated. Residual stereoscopic function was demonstrated for motion in depth based on local disparity information in 2 of the 15 observers with strabismic amblyopia. The use of a neutral-density (ND) filter in front of the fixing eye enhanced motion-in-depth performance in four subjects randomly selected from the group that originally displayed only chance performance. This finding was true across temporal rate and for correlated and uncorrelated stimuli, suggesting that it was disparity based. The opposite occurred in a group of normal subjects. In a separate experiment, the hypothesis was that the beneficial effect of the ND filter is due to its contrast and/or mean luminance-reducing effects rather than any interocular time delay that it may introduce and that it is specific to motion-in-depth performance, as similar improvements were not found for static stereopsis. A small proportion of observers with strabismic amblyopia exhibit residual performance for motion in depth, and it is disparity based. Furthermore, some observers with strabismic amblyopia who do not display any significant stereo performance for motion in depth under normal binocular viewing may display above-chance stereo performance if the degree of interocular suppression is reduced. The authors term this phenomenon latent stereopsis.

  20. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients.

    Science.gov (United States)

    Li, Winnie; Purdie, Thomas G; Taremi, Mojgan; Fung, Sharon; Brade, Anthony; Cho, B C John; Hope, Andrew; Sun, Alexander; Jaffray, David A; Bezjak, Andrea; Bissonnette, Jean-Pierre

    2011-12-01

    To assess intrafractional geometric accuracy of lung stereotactic body radiation therapy (SBRT) patients treated with volumetric image guidance. Treatment setup accuracy was analyzed in 133 SBRT patients treated via research ethics board-approved protocols. For each fraction, a localization cone-beam computed tomography (CBCT) scan was acquired for soft-tissue registration to the internal target volume, followed by a couch adjustment for positional discrepancies greater than 3 mm, verified with a second CBCT scan. CBCT scans were also performed at intrafraction and end fraction. Patient positioning data from 2047 CBCT scans were recorded to determine systematic (Σ) and random (σ) uncertainties, as well as planning target volume margins. Data were further stratified and analyzed by immobilization method (evacuated cushion [n=75], evacuated cushion plus abdominal compression [n=33], or chest board [n=25]) and by patients' Eastern Cooperative Oncology Group performance status (PS): 0 (n=31), 1 (n=70), or 2 (n=32). Using CBCT internal target volume was matched within ±3 mm in 16% of all fractions at localization, 89% at verification, 72% during treatment, and 69% after treatment. Planning target volume margins required to encompass residual setup errors after couch corrections (verification CBCT scans) were 4 mm, and they increased to 5 mm with target intrafraction motion (post-treatment CBCT scans). Small differences (position were observed between the immobilization cohorts in the localization, verification, intrafraction, and post-treatment CBCT scans (pPositional drift varied according to patient PS, with the PS 1 and 2 cohorts drifting out of position by mid treatment more than the PS 0 cohort in the cranial-caudal direction (p=0.04). Image guidance ensures high geometric accuracy for lung SBRT irrespective of immobilization method or PS. A 5-mm setup margin suffices to address intrafraction motion. This setup margin may be further reduced by strategies such as

  1. Effect of Immobilization and Performance Status on Intrafraction Motion for Stereotactic Lung Radiotherapy: Analysis of 133 Patients

    International Nuclear Information System (INIS)

    Li, Winnie; Purdie, Thomas G.; Taremi, Mojgan; Fung, Sharon; Brade, Anthony; Cho, B.C. John; Hope, Andrew; Sun, Alexander; Jaffray, David A.; Bezjak, Andrea; Bissonnette, Jean-Pierre

    2011-01-01

    Purpose: To assess intrafractional geometric accuracy of lung stereotactic body radiation therapy (SBRT) patients treated with volumetric image guidance. Methods and Materials: Treatment setup accuracy was analyzed in 133 SBRT patients treated via research ethics board–approved protocols. For each fraction, a localization cone-beam computed tomography (CBCT) scan was acquired for soft-tissue registration to the internal target volume, followed by a couch adjustment for positional discrepancies greater than 3 mm, verified with a second CBCT scan. CBCT scans were also performed at intrafraction and end fraction. Patient positioning data from 2047 CBCT scans were recorded to determine systematic (Σ) and random (σ) uncertainties, as well as planning target volume margins. Data were further stratified and analyzed by immobilization method (evacuated cushion [n = 75], evacuated cushion plus abdominal compression [n = 33], or chest board [n = 25]) and by patients’ Eastern Cooperative Oncology Group performance status (PS): 0 (n = 31), 1 (n = 70), or 2 (n = 32). Results: Using CBCT internal target volume was matched within ±3 mm in 16% of all fractions at localization, 89% at verification, 72% during treatment, and 69% after treatment. Planning target volume margins required to encompass residual setup errors after couch corrections (verification CBCT scans) were 4 mm, and they increased to 5 mm with target intrafraction motion (post-treatment CBCT scans). Small differences (<1 mm) in the cranial–caudal direction of target position were observed between the immobilization cohorts in the localization, verification, intrafraction, and post-treatment CBCT scans (p < 0.01). Positional drift varied according to patient PS, with the PS 1 and 2 cohorts drifting out of position by mid treatment more than the PS 0 cohort in the cranial-caudal direction (p = 0.04). Conclusions: Image guidance ensures high geometric accuracy for lung SBRT irrespective of immobilization

  2. Vertical ground motion and historical sea-level records in Dakar (Senegal)

    International Nuclear Information System (INIS)

    Le Cozannet, Gonéri; Raucoules, Daniel; Garcin, Manuel; Lavigne, Franck; Wöppelmann, Guy; Gravelle, Médéric; Da Sylva, Sylvestre; Meyssignac, Benoit

    2015-01-01

    With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992–2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year −1 . Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions. (letter)

  3. Local recurrence of metastatic brain tumor after surgery

    International Nuclear Information System (INIS)

    Shinoura, Nobusada; Yamada, Ryoji; Okamoto, Koichiro; Nakamura, Osamu; Shitara, Nobuyuki; Karasawa, Katsuyuki

    2006-01-01

    We analyzed factors associated with the local recurrence of brain metastases after surgery. Forty-seven patients with 67 metastatic brain tumors underwent surgery between 1994 and 2001. The survival time in the ''no recurrence'' group (34.7 months) was significantly longer than that in the recurrence group (21.9 months) (p=0.0008; log rank test). The factors affecting the local recurrence of brain metastases after surgery were as follows: cyst (p=0.0156), dural invasion (p=0.0029) of tumors, failure to totally remove tumors (p=0.0040), and lack of post-surgical irradiation (p<0.0001). Sex, age, tumor histology, tumor size, pre-surgical radiation, dose (≥45 vs <45, ≥50 vs <50 Gy) and the method (local vs whole brain) of post-surgical radiation did not affect the local recurrence rate of brain metastases after surgery. To avoid early recurrences of metastatic brain tumors, the factors associated with local recurrence should be considered in providing optimal treatment of tumors by surgery. (author)

  4. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset event-related potentials.

    Science.gov (United States)

    Grzeschik, Ramona; Lewald, Jörg; Verhey, Jesko L; Hoffmann, Michael B; Getzmann, Stephan

    2016-01-01

    Adaptation to visual or auditory motion affects within-modality motion processing as reflected by visual or auditory free-field motion-onset evoked potentials (VEPs, AEPs). Here, a visual-auditory motion adaptation paradigm was used to investigate the effect of visual motion adaptation on VEPs and AEPs to leftward motion-onset test stimuli. Effects of visual adaptation to (i) scattered light flashes, and motion in the (ii) same or in the (iii) opposite direction of the test stimulus were compared. For the motion-onset VEPs, i.e. the intra-modal adaptation conditions, direction-specific adaptation was observed--the change-N2 (cN2) and change-P2 (cP2) amplitudes were significantly smaller after motion adaptation in the same than in the opposite direction. For the motion-onset AEPs, i.e. the cross-modal adaptation condition, there was an effect of motion history only in the change-P1 (cP1), and this effect was not direction-specific--cP1 was smaller after scatter than after motion adaptation to either direction. No effects were found for later components of motion-onset AEPs. While the VEP results provided clear evidence for the existence of a direction-specific effect of motion adaptation within the visual modality, the AEP findings suggested merely a motion-related, but not a direction-specific effect. In conclusion, the adaptation of veridical auditory motion detectors by visual motion is not reflected by the AEPs of the present study. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    Science.gov (United States)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  6. Magnetic interactions, bonding, and motion of positive muons in magnetite

    NARCIS (Netherlands)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local

  7. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Opp, Daniel; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir, E-mail: vladimir.feygelman@moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2014-06-15

    was 5 s, with the resulting average motion speed of 1.45 cm/s. The motion-perturbed high resolution (2 mm voxel) volumetric dose grids on the MC2 phantom were generated for each beam. From each grid, a coronal dose plane at the detector level was extracted and compared to the corresponding moving MC2 measurement, using gamma analysis with both global (G) and local (L) dose-error normalization. Results: Using the TG-119 criteria of (3%G/3 mm), per beam average gamma analysis passing rates exceeded 95% in all cases. No individual beam had a passing rate below 91%. LDVE correction eliminated systematic disagreement patterns at the beams’ aperture edges. In a representative example, application of LDVE correction improved (2%L/2 mm) gamma analysis passing rate for an IMRT beam from 74% to 98%. Conclusions: The effect of motion on the moving region-of-interest IMRT dose can be estimated with a standard, static phantom QA measurement, provided the motion characteristics are independently known from 4D CT or otherwise. The motion-perturbed absolute dose estimates were validated by the direct planar diode array measurements, and were found to reliably agree with them in a homogeneous phantom.

  8. S4-3: Spatial Processing of Visual Motion

    Directory of Open Access Journals (Sweden)

    Shin'ya Nishida

    2012-10-01

    Full Text Available Local motion signals are extracted in parallel by a bank of motion detectors, and their spatiotemporal interactions are processed in subsequent stages. In this talk, I will review our recent studies on spatial interactions in visual motion processing. First, we found two types of spatial pooling of local motion signals. Directionally ambiguous 1D local motion signals are pooled across orientation and space for solution of the aperture problem, while 2D local motion signals are pooled for estimation of global vector average (e.g., Amano et al., 2009 Journal of Vision 9(3:4 1–25. Second, when stimulus presentation is brief, coherent motion detection of dynamic random-dot kinematogram is not efficient. Nevertheless, it is significantly improved by transient and synchronous presentation of a stationary surround pattern. This suggests that centre-surround spatial interaction may help rapid perception of motion (Linares et al., submitted. Third, to know how the visual system encodes pairwise relationships between remote motion signals, we measured the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared with similar tasks with luminance or orientation signals, motion comparison was more rapid and hence efficient. This high performance was affected little by inter-element separation even when it was increased up to 100 deg. These findings indicate the existence of specialized processes to encode long-range relationships between motion signals for quick appreciation of global dynamic scene structure (Maruya et al., in preparation.

  9. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  10. Simultaneous PLK1 inhibition improves local tumour control after fractionated irradiation

    International Nuclear Information System (INIS)

    Krause, Mechthild; Kummer, Berit; Deparade, Andre; Eicheler, Wolfgang; Pfitzmann, Dorothee; Yaromina, Ala; Kunz-Schughart, Leoni A.

    2013-01-01

    Purpose: Polo-like kinase 1 (PLK1) plays an important role in mitotic progression, is frequently overexpressed and associated with a poor prognosis of cancer patients, thus providing a promising target in anticancer treatment. Aim of the current project was to evaluate the effect of the novel PLK1 inhibitor BI 6727 in combination with irradiation. Material and methods: In vitro proliferation and radiation cell survival assays as well as in vivo local tumour control assays after single treatment and combined radiation and drug application were carried out using the squamous cell carcinoma models A431 and FaDu. In addition, cell cycle phases were monitored in vitro and in vivo. Results: BI 6727 showed a dose-dependent antiproliferative effect and an increase in the mitotic fraction. BI 6727 alone reduced clonogenic cell survival, while radiosensitivity in vitro (SF2) and in vivo (single-dose TCD 50 under clamped hypoxia) was not affected. In contrast, local tumour control was significantly improved after application of BI 6727 simultaneously to fractionated irradiation (A431: TCD 50 = 60.5 Gy [95% C.I. 57; 63] after IR alone and <30 Gy after combined treatment; FaDu: 49.5 Gy [43; 56 Gy] versus 32.9 Gy [26; 40]). Conclusions: Despite the lack of direct cellular radiosensitisation, PLK1 inhibition with BI 6727 during fractionated irradiation significantly improves local tumour control when compared to irradiation alone. This result is likely explained by a considerable effect on cell cycle and an independent cytotoxic potential of BI 6727

  11. Repeat CT-scan assessment of lymph node motion in locally advanced cervical cancer patients

    International Nuclear Information System (INIS)

    Bondar, Luiza; Velema, Laura; Mens, Jan Willem; Heijmen, Ben; Hoogeman, Mischa; Zwijnenburg, Ellen

    2014-01-01

    In cervical cancer patients the nodal clinical target volume (CTV, defined using the major pelvic blood vessels and enlarged lymph nodes) is assumed to move synchronously with the bony anatomy. The aim of this study was to verify this assumption by investigating the motion of the major pelvic blood vessels and enlarged lymph nodes visible in CT scans. For 13 patients treated in prone position, four variable bladder-filling CT scans per patient, acquired at planning and after 40 Gy, were selected from an available dataset of 9-10 CT scans. The bladder, rectum, and the nodal-vessels structure containing the iliac vessels and all visible enlarged nodes were delineated in each selected CT scan. Two online patient setup correction protocols were simulated. The first corrected bony anatomy translations and the second corrected translations and rotations. The efficacy of each correction was calculated as the overlap between the nodal-vessels structure in the reference and repeat CT scans. The motion magnitude between delineated structures was quantified using nonrigid registration. Translational corrections resulted in an average overlap of 58 ± 13% and in a range of motion between 9.9 and 27.3 mm. Translational and rotational corrections significantly improved the overlap (64 ± 13%, p value = 0.007) and moderately reduced the range of motion to 7.6-23.8 mm (p value = 0.03). Bladder filling changes significantly correlated with the nodal-vessels motion (p [de

  12. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Faeh, D.; Panza, G.F.

    1994-03-01

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  13. Effects prediction guidelines for structures subjected to ground motion

    International Nuclear Information System (INIS)

    1975-07-01

    Part of the planning for an underground nuclear explosion (UNE) is determining the effects of expected ground motion on exposed structures. Because of the many types of structures and the wide variation in ground motion intensity typically encountered, no single prediction method is both adequate and feasible for a complete evaluation. Furthermore, the nature and variability of ground motion and structure damage prescribe effects predictions that are made probabilistically. Initially, prediction for a UNE involves a preliminary assessment of damage to establish overall project feasibility. Subsequent efforts require more detailed damage evaluations, based on structure inventories and analyses of specific structures, so that safety problems can be identified and safety and remedial measures can be recommended. To cover this broad range of effects prediction needs for a typical UNE project, three distinct but interrelated methods have been developed and are described. First, the fundamental practical and theoretical aspects of predicting the effects of dynamic ground motion on structures are summarized. Next, experimentally derived and theoretically determined observations of the behavior of typical structures subjected to ground motion are presented. Then, based on these fundamental considerations and on the observed behavior of structures, the formulation of the three effects prediction procedures is described, along with guidelines regarding their applicability. Example damage predictions for hypothetical UNEs demonstrate these procedures. To aid in identifying the vibration properties of complex structures, one chapter discusses alternatives in vibration testing, instrumentation, and data analysis. Finally, operational guidelines regarding data acquisition procedures, safety criteria, and remedial measures involved in conducting structure effects evaluations are discussed. (U.S.)

  14. A quantal transport theory for nuclear collective motion: the merits of a locally harmonic approximation

    International Nuclear Information System (INIS)

    Hofmann, H.

    1997-01-01

    A transport theory is developed for collective motion of systems such as an atomic nucleus, which may be considered as a typical representative of a self-bound micro-system. Albeit for pragmatic reasons, collective variables are introduced as shape parameters, self-consistency with respect to the nucleonic degrees of freedom has been implemented at various important stages. This feature leads to subsidiary conditions which are obeyed locally for both the average motion as well as for the quantized Hamiltonian constructed through a Bohm-Pines procedure. Furthermore, self-consistency governs the definition of the transport coefficients appearing in the equations for collective motion. The latter is associated to the time evolution of the density in collective phase space, for which the concept of the Wigner function is employed. Global motion is described by propagating the system in successive time laps which are macroscopically small, but microscopically large. This enables one to exploit linearization procedures and to take advantage of the benefits of linear response theory. A microscopic damping mechanism is introduced by dressing the energies of the independent particle model by complex self-energies, the parameters of which are determined from optical model considerations. Numerical evaluations of transport coefficients are described and tested for the case of fission in the light of recent experimental findings. The theory allows one to extend both Kramers' picture of this process as well as his equation for the density distribution into the quantum regime. (orig.)

  15. The Effect of Shape Memory on Red Blood Cell Motions

    Science.gov (United States)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  16. Excellent local tumor response after fractionated stereotactic radiation therapy for locally recurrent nasopharynx cancer

    International Nuclear Information System (INIS)

    Ahn, Y. C.; Lim, D. H.; Choi, D. R.; Kim, D. K.; Kim, D. Y.; Huh, S. J.; Baek, C. H.; Chu, K. C.; Yoon, S. S.; Park, K. C.

    1997-01-01

    This study is to report experience with Fractionated Stereotactic Radiation Therapy (FSRT) for locally recurrent nasopharynx cancer after curative conventional radiation therapy. Three patients with locally recurrent and symptomatic nasopharynx cancer were given FSRT as reirradiation method between the period of September of 1995 and August of 1996. For two patients, application of FSRT is their third radiation therapy directed to the nasopharynx. Two patients were given low dose chemotherapy as radiation sensitizer concurrently with FSRT. Authors used 3-dimensional coordinate system by individually made, relocatable Gill-Thomas-Cosman (GTC) stereotactic frame and multiple non-coplanar arc therapy dose planning was done using XKnife-3. Total of 45 Gy/18 fractions or 50 Gy/20 fractions were given. Authors observed satisfactory symptomatic improvement and remarkable objective tumor size decrease by follow-up MR images taken 1 month post-FSRT in all three patients, while no neurologic side effect attributable to reirradiation was noticed. Two died at 7 and 9 months with loco-regional and distant seeding outside FSRT field, while one patient is living for 4 month. Authors experienced satisfactory therapeutic effectiveness and safety of FSRT as reirradiation method for locally recurrent nasopharynx cancer. Development of more effective systemic chemotherapeutic regimen is desired for distant metastasis. (author)

  17. Impact of bulk atmospheric motion on local and global containment heat transfer

    International Nuclear Information System (INIS)

    Green, J.A.; Almenas, K.

    1995-01-01

    Local and global correlations for condensing energy transfer in the presence of noncondensable gases in a containment facility have been evaluated. The database employed stems from the E11.2 and E11.4 tests conducted at the German HDR facility. The HDR containment is a 11060-ml, 60-m-high decommissioned light water reactor. The tests simulated long-term (up to 56 h) accident conditions. Numerous instrumented structural blocks (concrete and lead) were located throughout the containment to provide detailed local heat transfer measurements. These data represent what is probably the most extensive database of integral energy transfer measurements available. It is well established that the major resistance to condensation heat transfer in the presence of noncondensable gases is a gaseous boundary layer that builds up in front of the condensing surface. Correlations that seek to model heat transfer for these conditions should depend on parameters that most strongly determine the buildup and thickness of this boundary layer. Two of the most important parameters are the vapor/noncondensable concentration ratio and the local atmospheric motion. Secondary parameters include the atmosphere-to-surface temperature difference, the pressure, and condensing surface properties. The HDR tests are unique in terms of the quantity and variety of instrumentation employed. However, one of the most important parameters, the local bulk atmospheric velocity, is inherently difficult to measure, and only fragmentary measurements are available even in the HDR data-base. A detailed analysis of these data is presented by Green. This study uses statistical methods to evaluate local and global empirical correlations that do not include the atmospheric velocity. The magnitude of the differences between the correlations emphasizes the importance of the local atmospheric velocity and serves to illustrate the accuracy limits of correlations that neglect this essential parameter

  18. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  19. The effect of oxytocin on biological motion perception in dogs (Canis familiaris).

    Science.gov (United States)

    Kovács, Krisztina; Kis, Anna; Kanizsár, Orsolya; Hernádi, Anna; Gácsi, Márta; Topál, József

    2016-05-01

    Recent studies have shown that the neuropeptide oxytocin is involved in the regulation of several complex human social behaviours. There is, however, little research on the effect of oxytocin on basic mechanisms underlying human sociality, such as the perception of biological motion. In the present study, we investigated the effect of oxytocin on biological motion perception in dogs (Canis familiaris), a species adapted to the human social environment and thus widely used to model many aspects of human social behaviour. In a within-subjects design, dogs (N = 39), after having received either oxytocin or placebo treatment, were presented with 2D projection of a moving point-light human figure and the inverted and scrambled version of the same movie. Heart rate (HR) and heart rate variability (HRV) were measured as physiological responses, and behavioural response was evaluated by observing dogs' looking time. Subjects were also rated on the personality traits of Neuroticism and Agreeableness by their owners. As expected, placebo-pretreated (control) dogs showed a spontaneous preference for the biological motion pattern; however, there was no such preference after oxytocin pretreatment. Furthermore, following the oxytocin pretreatment female subjects looked more at the moving point-light figure than males. The individual variations along the dimensions of Agreeableness and Neuroticism also modulated dogs' behaviour. Furthermore, HR and HRV measures were affected by oxytocin treatment and in turn played a role in subjects' looking behaviour. We discuss how these findings contribute to our understanding of the neurohormonal regulatory mechanisms of human (and non-human) social skills.

  20. Contextual effects on motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2008-08-15

    Smooth pursuit eye movements are continuous, slow rotations of the eyes that allow us to follow the motion of a visual object of interest. These movements are closely related to sensory inputs from the visual motion processing system. To track a moving object in the natural environment, its motion first has to be segregated from the motion signals provided by surrounding stimuli. Here, we review experiments on the effect of the visual context on motion processing with a focus on the relationship between motion perception and smooth pursuit eye movements. While perception and pursuit are closely linked, we show that they can behave quite distinctly when required by the visual context.

  1. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2004-01-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2→3.9%, CA: 57.4→14.1%, ST: 17.7→0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction

  2. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [{sup 11}C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2{yields}3.9%, CA: 57.4{yields}14.1%, ST: 17.7{yields}0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction.

  3. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    Science.gov (United States)

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  4. Effect of Pilates Exercise on Range of Motion and Edema of Upper Limb in Mastectomy Side

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2013-09-01

    Full Text Available Background & objectives : The surgery of breast cancer like any other surgeries may bring about some problems and complications, which the knowledge of these problems may be an effective way for prevention or dealing with the complications. The motor and sensory impairments in the upper limb of the surgery side necessitate the utilization of the rehabilitation methods. The main purpose of this research was to show the effect of Pilates exercise on range of motion and edema of upper limb in females suffering from breast cancer after going through surgery.   Methods: This quasi- experimental study was conducted on 25 patients randomly chosen among the patients referring to Cancer Institute. The designed exercise included five "Mat Pilates" moves which were done for 15 sessions until the patient reached fatigue borderlines. Meantime, the control group was doing routine active exercises in physiotherapy center. The range of motion and edema of upper limb was measured before and after applying the designed exercise. For describing the data, the mean and standard deviation, and for inferential analysis, the correlated T-tests and one way analysis of variance were used in level of significance of 5%, to compare the variants before and after applying the designed exercise.   Results: The results showed a significant difference between the flexion, extension, and internal, external rotation of shoulder, flexion and extension of elbow, flexion, extension, supination deviation and pronation deviation of the wrist and forearm before and after experiment in Pilates group. While in the control group, flexion, extension, internal and external rotation of shoulder, flexion and extension of elbow, and flexion of wrist showed a significant difference before and after the experiment.   Conclusion: The use of Pilates exercise after mastectomy surgery can increase the range of motion of the upper limb in the involved side of the patients, and decrease the edema

  5. Deficits and recovery in visuospatial memory during head motion after bilateral labyrinthine lesion.

    Science.gov (United States)

    Wei, Min; Li, Nuo; Newlands, Shawn D; Dickman, J David; Angelaki, Dora E

    2006-09-01

    To keep a stable internal representation of the environment as we move, extraretinal sensory or motor cues are critical for updating neural maps of visual space. Using a memory-saccade task, we studied whether visuospatial updating uses vestibular information. Specifically, we tested whether trained rhesus monkeys maintain the ability to update the conjugate and vergence components of memory-guided eye movements in response to passive translational or rotational head and body movements after bilateral labyrinthine lesion. We found that lesioned animals were acutely compromised in generating the appropriate horizontal versional responses necessary to update the directional goal of memory-guided eye movements after leftward or rightward rotation/translation. This compromised function recovered in the long term, likely using extravestibular (e.g., somatosensory) signals, such that nearly normal performance was observed 4 mo after the lesion. Animals also lost their ability to adjust memory vergence to account for relative distance changes after motion in depth. Not only were these depth deficits larger than the respective effects on version, but they also showed little recovery. We conclude that intact labyrinthine signals are functionally useful for proper visuospatial memory updating during passive head and body movements.

  6. Hotspot Motion, Before and After the Hawaiian-Emperor Bend

    Science.gov (United States)

    Tarduno, J. A.; Bono, R. K.

    2014-12-01

    Hawaiian hotspot motion of >40 mm/yr is best documented by paleomagnetic investigations of basalt cores recovered by ocean drilling of the Emperor seamounts during ODP Leg 197 (Tarduno et al., 2003). These data indicate that the trend of the Emperor Seamounts dominantly records motion of the hotspot in the mantle, further suggesting that the great Hawaiian-Emperor bend (HEB) reflects mainly a change in hotspot motion. Data used for Pacific "absolute plate motion models" for times before the age of the HEB are also internally inconsistent with a fixed hotspot assumption; at present the best way to estimate Pacific absolute plate motion prior to the HEB bend is through use of predictions derived from plate circuits (e.g. Doubrovine and Tarduno, 2008). These analyses predict much less motion for the hotspot responsible for the Louisville Seamount chain, as has been observed by paleomagnetic analyses of cores recovered by IODP Expedition 330 (Koppers et al., 2012). Together, the ocean drilling data sets favor hotspot-specific processes to explain high drift rates, such as the model whereby the Hawaiian mantle plume was captured by a ridge in the Late Cretaceous, and subsequent changes in sub-Pacific mantle flow resulted in the trend of the Emperor Seamounts (Tarduno et al., 2009). However, the question of whether there is a smaller signal of motion between groups of hotspots remains. Plate circuit analyses yield a small discrepancy between predicted and actual hotspot locations for times between ca. 47 Ma and 10 Ma that could be a signal of continued southward migration of the Hawaiian hotspot. Alternatively, this could reflect the motion of the group of Indo-Atlantic hotspots relative to Hawaii. New paleomagnetic data from Midway Atoll (ca. 27 Ma) suggests little difference with the present-day latitude of the plume, indicating that the rate of motion of either the Hawaiian hotspot, or the Indo-Atlantic hotspot group, was about 15 mm/yr between 47 and 27 Ma. This

  7. String-like cooperative motion in homogeneous melting.

    Science.gov (United States)

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  8. Seizure After Local Anesthesia for Nasopharyngeal Angiofibroma

    Directory of Open Access Journals (Sweden)

    Cheng-Jing Tsai

    2007-02-01

    Full Text Available We report a young male patient who experienced seizure after local injection of 3 mL 2% lidocaine with epinephrine 1:200,000 around a recurrent nasal angiofibroma. After receiving 100% oxygen via mask and thiamylal sodium, the patient had no residual neurologic sequelae. Seizure immediately following the injection of local anesthetics in the nasal cavity is probably due to injection into venous or arterial circulation with retrograde flow to the brain circulation. Further imaging study or angiography should be done before head and neck surgeries, especially in such highly vascular neoplasm.

  9. Mass of the Local Group from Proper Motions of Distant Dwarf Galaxies

    Science.gov (United States)

    van der Marel, Roeland

    2010-09-01

    The Local Group and its two dominant spirals, the Milky Way and M31, have become the benchmark for testing many aspects of cosmological and galaxy formation theories, due to many exciting new discoveries in the past decade. However, it is difficult to put results in a proper cosmological context, because our knowledge of the mass M of the Local Group remains uncertain by a factor 4. In units of 10^{12} solar masses, a spherical infall model for the zero-velocity surface gives M 1.3; the sum of estimates for the Milky Way and M31 masses gives M 2.6; and the Local Group Timing argument for the M31 orbit gives M 5.6. It is possible to discriminate between the proposed masses by calculating the orbits of galaxies at the edge of the Local Group, which requires knowledge of transverse velocity components. We therefore propose to use ACS/WFC to determine the proper motions of the 4 dwarf galaxies near the edge of the Local Group {Cetus, Leo A, Tucana, Sag DIG} for which deep first epoch data {with 5-7 year time baselines} already exist in the HST Archive. Our team has extensive expertise with HST astrometric science, and our past/ongoing work for, e.g., Omega Cen, LMC/SMC and M31 show that the necessary astrometric accuracy is within the reach of HST's demonstrated capabilities. We have developed, tested, and published a new technique that uses compact background galaxies as astrometric reference sources, and we have already reduced the first epoch data. The final predicted transverse velocity accuracy, 36 km/s when averaged over the sample, will be sufficient to discriminate between each of the proposed Local Group masses at 2-sigma significance {4-sigma between the most extreme values}. Our project will yield the most accurate Local Group mass determination to date, and only HST can achieve the required accuracy.

  10. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.

    1990-09-01

    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  11. The effect of mild motion sickness and sopite syndrome on multitasking cognitive performance.

    Science.gov (United States)

    Matsangas, Panagiotis; McCauley, Michael E; Becker, William

    2014-09-01

    In this study, we investigated the effects of mild motion sickness and sopite syndrome on multitasking cognitive performance. Despite knowledge on general motion sickness, little is known about the effect of motion sickness and sopite syndrome on multitasking cognitive performance. Specifically, there is a gap in existing knowledge in the gray area of mild motion sickness. Fifty-one healthy individuals performed a multitasking battery. Three independent groups of participants were exposed to two experimental sessions. Two groups received motion only in the first or the second session, whereas the control group did not receive motion. Measurements of motion sickness, sopite syndrome, alertness, and performance were collected during the experiment Only during the second session, motion sickness and sopite syndrome had a significant negative association with cognitive performance. Significant performance differences between symptomatic and asymptomatic participants in the second session were identified in composite (9.43%), memory (31.7%), and arithmetic (14.7%) task scores. The results suggest that performance retention between sessions was not affected by mild motion sickness. Multitasking cognitive performance declined even when motion sickness and soporific symptoms were mild. The results also show an order effect. We postulate that the differential effect of session on the association between symptomatology and multitasking performance may be related to the attentional resources allocated to performing the multiple tasks. Results suggest an inverse relationship between motion sickness effects on performance and the cognitive effort focused on performing a task. Even mild motion sickness has potential implications for multitasking operational performance.

  12. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  13. Local control after brachytherapy for localized prostatic carcinomas

    International Nuclear Information System (INIS)

    Wachter, T.; Peneau, M.; Sabattier, R.; Breteau, N.

    1996-01-01

    From 1991 to 1995; 31 patients (mid-age: 70 years) underwent prostatic brachytherapy for localized prostate cancers using Iridium 192 transperineal percutaneous interstitial implantation guided by transrectal ultrasonography. Initial staging included among other evaluations a bilateral staging, iliac and obturator lymph nodes dissection. Classification according to stage was : T1b=16%, T1c=36%, T2a=19%, T2b=13%, T2c=13%, T3a=3%. All patients were N (-). Gleason score was 5 for 55%. 77% of the initial PSA was < 25μg/l. Follow-up included one clinical control and psa determination at 1-3-6-12 and 18 months, bone scanning at 12 months and prostate biopsy guided by transrectal ultrasonography at 18, 24, 30 months. Up to now, mean follow-up is 32 months. At one month, psa was normal (< 2,5μg/l) in 21% of the patients, at 12 months 60% and 67% two years after brachytherapy. Biopsies at 18 months were negative for 60% of the patients and 63% at 24 months. 3 patients were metastased after 3 years. 4 patients had severe complications with colostomy and/or urinary derivation. This technic seems to be interesting for localized prostate cancers T1 and T2 with initial psa < 25μg/l. Two third of the patients had normal psa and negative biopsies after 2 years. The rate of ano-rectal and urinary morbidity is high but is explained by the technic used at the beginning of this study

  14. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  15. Specification of ground motion input for SSI analyses

    International Nuclear Information System (INIS)

    Roesset, J.M.

    1986-01-01

    The effects of local soil conditions on the characteristics of the earthquake motions to which a structure may be subjected are in part dependent upon the amplitude and frequency content of the seismic motion at the free surface of a soil deposit, before any structure is built, which are functions of the soil properties in the linear elastic and the inelastic ranges. This paper is concerned primarily with this effect, however, some discussion of kinematic interaction effects and the way to model them is presented. This effect is commonly known as soil amplification although the name may be misleading, since there is in fact amplification over certain ranges of frequencies and deamplification over others

  16. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  17. Prolonged asymmetric vestibular stimulation induces opposite, long-term effects on self-motion perception and ocular responses.

    Science.gov (United States)

    Pettorossi, V E; Panichi, R; Botti, F M; Kyriakareli, A; Ferraresi, A; Faralli, M; Schieppati, M; Bronstein, A M

    2013-04-01

    Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR.

  18. Motion sickness incidence during a round-the-world yacht race.

    Science.gov (United States)

    Turner, M; Griffin, M J

    1995-09-01

    Motion sickness experiences were obtained from participants in a 9 month, round the world yacht race. Race participants completed questionnaires on their motion sickness experience 1 week prior to the start of the race, during the race, and following the race. Yacht headings, sea states, and wind directions were recorded throughout the race. Illness and the occurrence of vomiting were related to the duration at sea and yacht encounter directions relative to the prevailing wind. Individual crewmember characteristics, the use of anti-motion sickness drugs, activity while at sea, and after-effects of yacht motion were also examined with respect to sickness occurrence. Sickness was greatest among females and younger crewmembers, and among crewmembers who used anti-motion sickness drugs. Sickness varied as a function of drug type and activity while at sea. Crewmembers who reported after-effects of yacht motion also reported greater sickness while at sea. The primary determinants of motion sickness were the duration of time spent at sea and yacht encounter direction to the prevailing wind.

  19. Effect of speed on local dynamic stability of locomotion under different task constraints in running.

    Science.gov (United States)

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2014-01-01

    A number of studies have investigated effects of speed on local dynamic stability of walking, although this relationship has been rarely investigated under changing task constraints, such as during forward and backward running. To rectify this gap in the literature, the aim of this study was to investigate the effect of running speed on local dynamic stability of forward and backward running on a treadmill. Fifteen healthy male participants took part in this study. Participants ran in forward and backward directions at speeds of 80%, 100% and 120% of their preferred running speed. The three-dimensional motion of a C7 marker was recorded using a motion capture system. Local dynamic stability of the marker was quantified using short- and long-term largest finite-time Lyapunov exponents (LyE). Results showed that short-term largest finite-time LyE values increased with participant speed meaning that local dynamic stability decreased with increasing speed. Long-term largest finite-time LyEs, however, remained unaffected as speed increased. Results of this study indicated that, as in walking, slow running is more stable than fast running. These findings improve understanding of how stability is regulated when constraints on the speed of movements is altered. Implications for the design of rehabilitation or sport practice programmes suggest how task constraints could be manipulated to facilitate adaptations in locomotion stability during athletic training.

  20. Theory of Brownian motion with the Alder-Wainwright effect

    International Nuclear Information System (INIS)

    Okabe, Y.

    1986-01-01

    The Stokes-Boussinesq-Langevin equation, which describes the time evolution of Brownian motion with the Alder-Wainwright effect, can be treated in the framework of the theory of KMO-Langevin equations which describe the time evolution of a real, stationary Gaussian process with T-positivity (reflection positivity) originating in axiomatic quantum field theory. After proving the fluctuation-dissipation theorems for KMO-Langevin equations, the authors obtain an explicit formula for the deviation from the classical Einstein relation that occurs in the Stokes-Boussinesq-Langevin equation with a white noise as its random force. The authors interested in whether or not it can be measured experimentally

  1. Unilateral Rolling of the Foot did not Affect Non-Local Range of Motion or Balance

    Directory of Open Access Journals (Sweden)

    Lena Grabow, James D. Young, Jeannette M. Byrne, Urs Granacher, David G. Behm

    2017-06-01

    Full Text Available Non-local or crossover (contralateral and non-stretched muscles increases in range-of-motion (ROM and balance have been reported following rolling of quadriceps, hamstrings and plantar flexors. Since there is limited information regarding plantar sole (foot rolling effects, the objectives of this study were to determine if unilateral foot rolling would affect ipsilateral and contralateral measures of ROM and balance in young healthy adults. A randomized within-subject design was used to examine non-local effects of unilateral foot rolling on ipsilateral and contralateral limb ankle dorsiflexion ROM and a modified sit-and-reach-test (SRT. Static balance was also tested during a 30 s single leg stance test. Twelve participants performed three bouts of 60 s unilateral plantar sole rolling using a roller on the dominant foot with 60 s rest intervals between sets. ROM and balance measures were assessed in separate sessions at pre-intervention, immediately and 10 minutes post-intervention. To evaluate repeated measures effects, two SRT pre-tests were implemented. Results demonstrated that the second pre-test SRT was 6.6% higher than the first pre-test (p = 0.009, d = 1.91. There were no statistically significant effects of foot rolling on any measures immediately or 10 min post-test. To conclude, unilateral foot rolling did not produce statistically significant increases in ipsilateral or contralateral dorsiflexion or SRT ROM nor did it affect postural sway. Our statistically non-significant findings might be attributed to a lower degree of roller-induced afferent stimulation due to the smaller volume of myofascia and muscle compared to prior studies. Furthermore, ROM results from studies utilizing a single pre-test without a sufficient warm-up should be viewed critically.

  2. Effect of cryotherapy after elbow arthrolysis: a prospective, single-blinded, randomized controlled study.

    Science.gov (United States)

    Yu, Shi-yang; Chen, Shuai; Yan, He-de; Fan, Cun-yi

    2015-01-01

    To investigate the effect of cryotherapy after elbow arthrolysis on elbow pain, blood loss, analgesic consumption, range of motion, and long-term elbow function. Prospective, single-blinded, randomized controlled study. University hospital. Patients (N=59; 27 women, 32 men) who received elbow arthrolysis. Patients were randomly assigned into a cryotherapy group (n=31, cryotherapy plus standard care) or a control group (n=28, standard care). Elbow pain at rest and in motion were measured using a visual analog scale (VAS) on postoperative day (POD) 1 to POD 7 and at 2 weeks and 3 months after surgery. Blood loss and analgesic consumption were recorded postoperatively. Elbow range of motion (ROM) was measured before surgery and on POD 1, POD 7, and 3 months after surgery. The Mayo Elbow Performance Score (MEPS) was evaluated preoperatively and 3 months postoperatively. VAS scores were significantly lower in the cryotherapy group during the first 7 PODs, both at rest and in motion (Pcryotherapy group than the control group for pain relief (P.05). Cryotherapy is effective in relieving pain and reducing analgesic consumption for patients received elbow arthrolysis. The application of cryotherapy will not affect blood loss, ROM, or elbow function. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Muon zero point motion and the hyperfine field in nickel

    International Nuclear Information System (INIS)

    Elzain, M.E.

    1984-09-01

    It is argued that the effect of zero point motion of muons in Ni is to induce local vibrations of the neighbouring Ni atoms. This local vibration reduces the Hubbard correlation and hence decreases the net spin per atom. This acts back to reduce the hyperfine field at the muon site. (author)

  4. Collective Motion in Behaviorally Heterogeneous Systems

    Science.gov (United States)

    Copenhagen, Katherine

    Collective motion is a widespread phenomenon in nature where individuals actively propel themselves, gather together and move as a group. Some examples of collective motion are bird flocks, fish schools, bacteria swarms, cell clusters, and crowds of people. Many models seek to understand the effects of activity in collective systems including things such as environmental disorder, density, and interaction details primarily at infinite size limits and with uniform populations. In this dissertation I investigate the effects of finite sizes and behavioral heterogeneity as it exists in nature. Behavioral heterogeneity can originate from several different sources. Mixed populations of individuals can have inherently different behaviors such as mutant bacteria, injured fish, or agents that prefer individualistic behavior over coordinated motion. Alternatively, agents may modify their own behavior based on some local environmental dependency, such as local substrate, or density. In cases such as mutant cheaters in bacteria or malfunctioning drones in swarms, mixed populations of behaviorally heterogeneous agents can be modelled as arising in the form of aligning and non-aligning agents. When this kind of heterogeneity is introduced, there is a critical carrying capacity of non-aligners above which the system is unable to form a cohesive ordered group. However, if the cohesion of the group is relaxed to allow for fracture, the system will actively sort out non-aligning agents the system will exist at a critical non-aligner fraction. A similar heterogeneity could result in a mixture of high and low noise individuals. In this case there is also a critical carry capacity beyond which the system is unable to reach an ordered state, however the nature of this transition depends on the model details. Agents which are part of an ordered collective may vary their behavior as the group changes environments such as a flock of birds flying into a cloud. Using a unique model of a

  5. Local recurrence risk after previous salvage mastectomy.

    Science.gov (United States)

    Tanabe, M; Iwase, T; Okumura, Y; Yoshida, A; Masuda, N; Nakatsukasa, K; Shien, T; Tanaka, S; Komoike, Y; Taguchi, T; Arima, N; Nishimura, R; Inaji, H; Ishitobi, M

    2016-07-01

    Breast-conserving surgery is a standard treatment for early breast cancer. For ipsilateral breast tumor recurrence (IBTR) after breast-conserving surgery, salvage mastectomy is the current standard surgical procedure. However, it is not rare for patients with IBTR who have received salvage mastectomy to develop local recurrence. In this study, we examined the risk factors of local recurrence after salvage mastectomy for IBTR. A total of 118 consecutive patients who had histologically confirmed IBTR without distant metastases and underwent salvage mastectomy without irradiation for IBTR between 1989 and 2008 were included from eight institutions in Japan. The risk factors of local recurrence were assessed. The median follow-up period from salvage mastectomy for IBTR was 4.6 years. Patients with pN2 or higher on diagnosis of the primary tumor showed significantly poorer local recurrence-free survival than those with pN0 or pN1 at primary tumor (p mastectomy for IBTR. Further research and validation studies are needed. (UMIN-CTR number UMIN000008136). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Motion sickness, stress and the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  7. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey

    Science.gov (United States)

    Gok, Elcin; Chávez-García, Francisco J.; Polat, Orhan

    2014-04-01

    We present a site effect study for the city of Izmir, Western Anatolia, Turkey. Local amplification was evaluated using state-of-practice tools. Ten earthquakes recorded at 16 sites were analysed using spectral ratios relative to a reference site, horizontal-to-vertical spectral ratios, and an inversion scheme of the Fourier amplitude spectra of the recorded S-waves. Seismic noise records were also used to estimate site effects. The different estimates are in good agreement among them, although a basic uncertainty of a factor of 2 seems difficult to decrease. We used our site effect estimates to predict ground motion in Izmir for a possible M6.5 earthquake close to the city using stochastic modelling. Site effects have a large impact on PSV (pseudospectral velocity), where local amplification increases amplitudes by almost a factor of 9 at 1 Hz relative to the firm ground condition. Our results allow identifying the neighbourhoods of Izmir where hazard mitigation measurements are a priority task and will also be useful for planning urban development.

  8. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    Science.gov (United States)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.

  9. Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion

    Science.gov (United States)

    Chen, Yao; Wang, Xudong; Deng, Weihua

    2017-10-01

    This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.

  10. Motion of bones and volume changes in the neurocranium after craniectomy in Crouzon's disease. A roentgen stereometric study.

    Science.gov (United States)

    Rune, B; Selvik, G; Kreiborg, S; Sarnäs, K V; Kågström, E

    1979-04-01

    Craniectomy was performed on a boy with Crouzon's disease at 22 months of age. Metallic implants (tantalum balls, 0.5 mm in diameter) were inserted in the calvaria during surgery, and the child was examined postoperatively by roentgen stereometry at intervals of about 100 days (total observation time, 309 days). The thyroid radiation dose was 250 muGy for one examination. The effect of craniectomy was recorded with a high degree of accuracy in terms of motion of bones and volume changes in the calvaria. Expansion occurred almost entirely through motion of free bone flaps in the frontal region, while a linear craniectomy in the region of the sagittal suture caused small changes. The rate of expansion decreased rapidly and stabilization was recorded about 250 days after surgery.

  11. Effects of Autonomic Conditioning on Motion Sickness Tolerance

    Science.gov (United States)

    Cowings, P. S.; Toscano, W. B.

    1994-01-01

    This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human Physiological- responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and test-only controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.

  12. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-10-01

    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  13. Effects of Age and Gender on Hand Motion Tasks

    Directory of Open Access Journals (Sweden)

    Wing Lok Au

    2015-01-01

    Full Text Available Objective. Wearable and wireless motion sensor devices have facilitated the automated computation of speed, amplitude, and rhythm of hand motion tasks. The aim of this study is to determine if there are any biological influences on these kinematic parameters. Methods. 80 healthy subjects performed hand motion tasks twice for each hand, with movements measured using a wireless motion sensor device (Kinesia, Cleveland Medical Devices Inc., Cleveland, OH. Multivariate analyses were performed with age, gender, and height added into the model. Results. Older subjects performed poorer in finger tapping (FT speed (r=0.593, p<0.001, hand-grasp (HG speed (r=0.517, p<0.001, and pronation-supination (PS speed (r=0.485, p<0.001. Men performed better in FT rhythm p<0.02, HG speed p<0.02, HG amplitude p<0.02, and HG rhythm p<0.05. Taller subjects performed better in the speed and amplitude components of FT p<0.02 and HG tasks p<0.02. After multivariate analyses, only age and gender emerged as significant independent factors influencing the speed but not the amplitude and rhythm components of hand motion tasks. Gender exerted an independent influence only on HG speed, with better performance in men p<0.05. Conclusions. Age, gender, and height are not independent factors influencing the amplitude and rhythm components of hand motion tasks. The speed component is affected by age and gender differences.

  14. Estimating the Counterparty Risk Exposure by Using the Brownian Motion Local Time

    Directory of Open Access Journals (Sweden)

    Bonollo Michele

    2017-06-01

    Full Text Available In recent years, the counterparty credit risk measure, namely the default risk in over-the-counter (OTC derivatives contracts, has received great attention by banking regulators, specifically within the frameworks of Basel II and Basel III. More explicitly, to obtain the related risk figures, one is first obliged to compute intermediate output functionals related to the mark-to-market position at a given time no exceeding a positive and finite time horizon. The latter implies an enormous amount of computational effort is needed, with related highly time consuming procedures to be carried out, turning out into significant costs. To overcome the latter issue, we propose a smart exploitation of the properties of the (local time spent by the Brownian motion close to a given value.

  15. Evaluating the influence of organ motion during photon vs. proton therapy for locally advanced prostate cancer using biological models

    DEFF Research Database (Denmark)

    Busch, Kia; G Andersen, Andreas; Casares-Magaz, Oscar

    2017-01-01

    beam angles for pelvic irradiation, we aimed to evaluate the influence of organ motion for PT using biological models, and to compare this with contemporary photon-based RT. MATERIAL AND METHODS: Eight locally advanced prostate cancer patients with a planning CT (pCT) and 8-9 repeated CT scans (r...

  16. Four Weeks of Mobility After 8 Weeks of Immobility Fails to Restore Normal Motion

    Science.gov (United States)

    Trudel, Guy; Zhou, Jian; Uhthoff, Hans K.

    2008-01-01

    Prolonged immobilization reduces passive range of motion of joints creating joint contractures. Whether and to what extent these iatrogenic contractures can be reduced is unknown. We raised three questions using an animal model: What degree of contracture remains at the end of a defined remobilization period? Do contractures in sham-operated and immobilized joints differ? What is the contribution of the posterior knee capsule in limiting knee extension? We immobilized one knee of 11 adult male rats in flexion to induce a joint contracture; 10 control animals underwent a sham operation. After 8 weeks, the internal fixation device was removed, and the animals were allowed to resume unrestricted activity for 4 weeks at the end of which the knee range of motion was measured with standardized torques. The mean flexion contracture was higher in the immobilized group (51.9° ± 2.8°) than in the sham-operated group (18.9° ± 2.1°). Eighty-eight percent of the contractures remained in the immobilized group after dividing skin and muscle, suggesting an important contribution of the posterior knee capsule in limiting knee mobility. Based on our preliminary study the range of motion of rat knees immobilized for 8 weeks remained substantially reduced after a 4-week period of unassisted remobilization. PMID:18299947

  17. The notion of the motion: the neurocognition of motion lines in visual narratives.

    Science.gov (United States)

    Cohn, Neil; Maher, Stephen

    2015-03-19

    Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the "streaks" appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the "vocabulary" of the visual language of comics. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ab initio modeling of the motional Stark effect on MAST

    International Nuclear Information System (INIS)

    De Bock, M. F. M.; Conway, N. J.; Walsh, M. J.; Carolan, P. G.; Hawkes, N. C.

    2008-01-01

    A multichord motional Stark effect (MSE) system has recently been built on the MAST tokamak. In MAST the π and σ lines of the MSE spectrum overlap due to the low magnetic field typical for present day spherical tokamaks. Also, the field curvature results in a large change in the pitch angle over the observation volume. The measured polarization angle does not relate to one local pitch angle but to an integration over all pitch angles in the observation volume. The velocity distribution of the neutral beam further complicates the measurement. To take into account volume effects and velocity distribution, an ab initio code was written that simulates the MSE spectrum on MAST. The code is modular and can easily be adjusted for other tokamaks. The code returns the intensity, polarized fraction, and polarization angle as a function of wavelength. Results of the code are presented, showing the effect on depolarization and wavelength dependence of the polarization angle. The code is used to optimize the design and calibration of the MSE diagnostic.

  19. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    Science.gov (United States)

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  20. Local Recurrence After Complete Clinical Response and Watch and Wait in Rectal Cancer After Neoadjuvant Chemoradiation: Impact of Salvage Therapy on Local Disease Control

    Energy Technology Data Exchange (ETDEWEB)

    Habr-Gama, Angelita, E-mail: gamange@uol.com.br [Angelita and Joaquim Gama Institute, São Paulo (Brazil); University of São Paulo School of Medicine, São Paulo (Brazil); Gama-Rodrigues, Joaquim [Angelita and Joaquim Gama Institute, São Paulo (Brazil); University of São Paulo School of Medicine, São Paulo (Brazil); São Julião, Guilherme P. [Angelita and Joaquim Gama Institute, São Paulo (Brazil); Colorectal Surgery Division, University of São Paulo School of Medicine, São Paulo (Brazil); Proscurshim, Igor; Sabbagh, Charles; Lynn, Patricio B. [Angelita and Joaquim Gama Institute, São Paulo (Brazil); Perez, Rodrigo O. [Angelita and Joaquim Gama Institute, São Paulo (Brazil); Ludwig Institute for Cancer Research, São Paulo Branch (Brazil)

    2014-03-15

    Purpose: To review the risk of local recurrence and impact of salvage therapy after Watch and Wait for rectal cancer with complete clinical response (cCR) after chemoradiation therapy (CRT). Methods and Materials: Patients with cT2-4N0-2M0 distal rectal cancer treated with CRT (50.4-54 Gy + 5-fluorouracil-based chemotherapy) and cCR at 8 weeks were included. Patients with cCR were enrolled in a strict follow-up program with no immediate surgery (Watch and Wait). Local recurrence-free survival was compared while taking into account Watch and Wait strategy alone and Watch and Wait plus salvage. Results: 90 of 183 patients experienced cCR at initial assessment after CRT (49%). When early tumor regrowths (up to and including the initial 12 months of follow-up) and late recurrences were considered together, 28 patients (31%) experienced local recurrence (median follow-up time, 60 months). Of those, 26 patients underwent salvage therapy, and 2 patients were not amenable to salvage. In 4 patients, local re-recurrence developed after Watch and Wait plus salvage. The overall salvage rate for local recurrence was 93%. Local recurrence-free survival at 5 years was 69% (all local recurrences) and 94% (after salvage procedures). Thirteen patients (14%) experienced systemic recurrence. The 5-year cancer-specific overall survival and disease-free survival for all patients (including all recurrences) were 91% and 68%, respectively. Conclusions: Local recurrence may develop in 31% of patients with initial cCR when early regrowths (≤12 months) and late recurrences are grouped together. More than half of these recurrences develop within 12 months of follow-up. Salvage therapy is possible in ≥90% of recurrences, leading to 94% local disease control, with 78% organ preservation.

  1. Local Recurrence After Complete Clinical Response and Watch and Wait in Rectal Cancer After Neoadjuvant Chemoradiation: Impact of Salvage Therapy on Local Disease Control

    International Nuclear Information System (INIS)

    Habr-Gama, Angelita; Gama-Rodrigues, Joaquim; São Julião, Guilherme P.; Proscurshim, Igor; Sabbagh, Charles; Lynn, Patricio B.; Perez, Rodrigo O.

    2014-01-01

    Purpose: To review the risk of local recurrence and impact of salvage therapy after Watch and Wait for rectal cancer with complete clinical response (cCR) after chemoradiation therapy (CRT). Methods and Materials: Patients with cT2-4N0-2M0 distal rectal cancer treated with CRT (50.4-54 Gy + 5-fluorouracil-based chemotherapy) and cCR at 8 weeks were included. Patients with cCR were enrolled in a strict follow-up program with no immediate surgery (Watch and Wait). Local recurrence-free survival was compared while taking into account Watch and Wait strategy alone and Watch and Wait plus salvage. Results: 90 of 183 patients experienced cCR at initial assessment after CRT (49%). When early tumor regrowths (up to and including the initial 12 months of follow-up) and late recurrences were considered together, 28 patients (31%) experienced local recurrence (median follow-up time, 60 months). Of those, 26 patients underwent salvage therapy, and 2 patients were not amenable to salvage. In 4 patients, local re-recurrence developed after Watch and Wait plus salvage. The overall salvage rate for local recurrence was 93%. Local recurrence-free survival at 5 years was 69% (all local recurrences) and 94% (after salvage procedures). Thirteen patients (14%) experienced systemic recurrence. The 5-year cancer-specific overall survival and disease-free survival for all patients (including all recurrences) were 91% and 68%, respectively. Conclusions: Local recurrence may develop in 31% of patients with initial cCR when early regrowths (≤12 months) and late recurrences are grouped together. More than half of these recurrences develop within 12 months of follow-up. Salvage therapy is possible in ≥90% of recurrences, leading to 94% local disease control, with 78% organ preservation

  2. Motion processing after sight restoration: No competition between visual recovery and auditory compensation.

    Science.gov (United States)

    Bottari, Davide; Kekunnaya, Ramesh; Hense, Marlene; Troje, Nikolaus F; Sourav, Suddha; Röder, Brigitte

    2018-02-15

    The present study tested whether or not functional adaptations following congenital blindness are maintained in humans after sight-restoration and whether they interfere with visual recovery. In permanently congenital blind individuals both intramodal plasticity (e.g. changes in auditory cortex) as well as crossmodal plasticity (e.g. an activation of visual cortex by auditory stimuli) have been observed. Both phenomena were hypothesized to contribute to improved auditory functions. For example, it has been shown that early permanently blind individuals outperform sighted controls in auditory motion processing and that auditory motion stimuli elicit activity in typical visual motion areas. Yet it is unknown what happens to these behavioral adaptations and cortical reorganizations when sight is restored, that is, whether compensatory auditory changes are lost and to which degree visual motion processing is reinstalled. Here we employed a combined behavioral-electrophysiological approach in a group of sight-recovery individuals with a history of a transient phase of congenital blindness lasting for several months to several years. They, as well as two control groups, one with visual impairments, one normally sighted, were tested in a visual and an auditory motion discrimination experiment. Task difficulty was manipulated by varying the visual motion coherence and the signal to noise ratio, respectively. The congenital cataract-reversal individuals showed lower performance in the visual global motion task than both control groups. At the same time, they outperformed both control groups in auditory motion processing suggesting that at least some compensatory behavioral adaptation as a consequence of a complete blindness from birth was maintained. Alpha oscillatory activity during the visual task was significantly lower in congenital cataract reversal individuals and they did not show ERPs modulated by visual motion coherence as observed in both control groups. In

  3. Shape representation modulating the effect of motion on visual search performance.

    Science.gov (United States)

    Yang, Lindong; Yu, Ruifeng; Lin, Xuelian; Liu, Na

    2017-11-02

    The effect of motion on visual search has been extensively investigated, but that of uniform linear motion of display on search performance for tasks with different target-distractor shape representations has been rarely explored. The present study conducted three visual search experiments. In Experiments 1 and 2, participants finished two search tasks that differed in target-distractor shape representations under static and dynamic conditions. Two tasks with clear and blurred stimuli were performed in Experiment 3. The experiments revealed that target-distractor shape representation modulated the effect of motion on visual search performance. For tasks with low target-distractor shape similarity, motion negatively affected search performance, which was consistent with previous studies. However, for tasks with high target-distractor shape similarity, if the target differed from distractors in that a gap with a linear contour was added to the target, and the corresponding part of distractors had a curved contour, motion positively influenced search performance. Motion blur contributed to the performance enhancement under dynamic conditions. The findings are useful for understanding the influence of target-distractor shape representation on dynamic visual search performance when display had uniform linear motion.

  4. Effects on functional outcome after IORT-containing multimodality treatment for locally advanced primary and locally recurrent rectal cancer

    International Nuclear Information System (INIS)

    Mannaerts, Guido H.H.; Rutten, Harm J.T.; Martijn, Hendrik; Hanssens, Patrick E.J.; Wiggers, Theo

    2002-01-01

    Purpose: In the treatment of patients with locally advanced primary or locally recurrent rectal cancer, much attention is focused on the oncologic outcome. Little is known about the functional outcome. In this study, the functional outcome after a multimodality treatment for locally advanced primary and locally recurrent rectal cancer is analyzed. Methods and Materials: Between 1994 and 1999, 55 patients with locally advanced primary and 66 patients with locally recurrent rectal cancer were treated with high-dose preoperative external beam irradiation, followed by extended surgery and intraoperative radiotherapy. To assess long-term functional outcome, all patients still alive (n = 97) were asked to complete a questionnaire regarding ongoing morbidity, as well as functional and social impairment. Seventy-six of the 79 patients (96%) returned the questionnaire. The median follow-up was 14 months (range: 4-60 months). Results: The questionnaire revealed fatigue in 44%, perineal pain in 42%, radiating pain in the leg(s) in 21%, walking difficulties in 36%, and voiding dysfunction in 42% of the patients as symptoms of ongoing morbidity. Functional impairment consisted of requiring help with basic activities in 15% and sexual inactivity in 56% of the respondents. Social handicap was demonstrated by loss of former lifestyle in 44% and loss of professional occupation in 40% of patients. Conclusions: As a result of multimodality treatment, the majority of these patients have to deal with long-term physical morbidity, the need for help with daily care, and considerable social impairment. These consequences must be weighed against the chance of cure if the patient is treated and the disability eventually caused by uncontrolled tumor progression if the patient is not treated. These potential drawbacks should be discussed with the patient preoperatively and taken into account when designing a treatment strategy

  5. The effect of spinal manipulative therapy on spinal range of motion

    DEFF Research Database (Denmark)

    Millan, Mario; Leboeuf-Yde, Charlotte; Budgell, Brian

    2012-01-01

    Spinal manipulative therapy (SMT) has been shown to have an effect on spine-related pain, both clinically and in experimentally induced pain. However, it is unclear if it has an immediate noticeable biomechanical effect on spinal motion that can be measured in terms of an increased range of motion...

  6. Local conservation laws and the structure of the many-body localized states.

    Science.gov (United States)

    Serbyn, Maksym; Papić, Z; Abanin, Dmitry A

    2013-09-20

    We construct a complete set of local integrals of motion that characterize the many-body localized (MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We describe the structure of the eigenstates in the MBL phase and discuss the implications of local conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization can be used to protect coherence in the system by suppressing relaxation between eigenstates with different local integrals of motion.

  7. From coherent motion to localization: II. Dynamics of the spin-boson model with sub-Ohmic spectral density at zero temperature

    International Nuclear Information System (INIS)

    Wang Haobin; Thoss, Michael

    2010-01-01

    Graphical abstract: □□□ - Abstract: The dynamics of the spin-boson model at zero temperature is studied for a bath characterized by a sub-Ohmic spectral density. Using the numerically exact multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method, the population dynamics of the two-level subsystem has been investigated in a broad range of parameter space. The results show the transition of the dynamics from weakly damped coherent motion to localization upon increase of the system-bath coupling strength. Comparison of the exact ML-MCTDH simulations with the non-interacting blip approximation (NIBA) shows that the latter performs rather poorly in the weak coupling regime with small Kondo parameters. However, NIBA improves significantly upon increase in the coupling strength and is quantitatively correct in the strong coupling, nonadiabatic limit. The transition from coherent motion to localization as a function of the different parameters of the model is analyzed in some detail.

  8. Modulation of orientation-selective neurons by motion: when additive, when multiplicative?

    Directory of Open Access Journals (Sweden)

    Torsten eLüdge

    2014-06-01

    Full Text Available The recurrent interaction among orientation-selective neurons in the primary visual cortex (V1 is suited to enhance contours in a noisy visual scene. Motion is known to have a strong pop-up effect in perceiving contours, but how motion-sensitive neurons in V1 support contour detection remains vastly elusive. Here we suggest how the various types of motion-sensitive neurons observed in V1 should be wired together in a micro-circuitry to optimally extract contours in the visual scene. Motion-sensitive neurons can be selective about the direction of motion occurring at some spot or respond equally to all directions (pandirectional. We show that, in the light of figure-ground segregation, direction-selective motion neurons should additively modulate the corresponding orientation-selective neurons with preferred orientation orthogonal to the motion direction. In turn, to maximally enhance contours, pandirectional motion neurons should multiplicatively modulate all orientation-selective neurons with co-localized receptive fields. This multiplicative modulation amplifies the local V1-circuitry among co-aligned orientation-selective neurons for detecting elongated contours. We suggest that the additive modulation by direction- specific motion neurons is achieved through synaptic projections to the somatic region, and the multiplicative modulation by pandirectional motion neurons through projections to the apical region of orientation-specific pyramidal neurons. For the purpose of contour detection, the V1- intrinsic integration of motion information is advantageous over a downstream integration as it exploits the recurrent V1-circuitry designed for that task.

  9. Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Jokivarsi, Kimmo; Goitein, Michael; Kung, Jong; Jiang, Steve B.

    2002-01-01

    There has been some concern that organ motion, especially intra-fraction organ motion due to breathing, can negate the potential merit of intensity-modulated radiotherapy (IMRT). We wanted to find out whether this concern is justified. Specifically, we wanted to investigate whether IMRT delivery techniques with moving parts, e.g., with a multileaf collimator (MLC), are particularly sensitive to organ motion due to the interplay between organ motion and leaf motion. We also wanted to know if, and by how much, fractionation of the treatment can reduce the effects. We performed a statistical analysis and calculated the expected dose values and dose variances for volume elements of organs that move during the delivery of the IMRT. We looked at the overall influence of organ motion during the course of a fractionated treatment. A linear-quadratic model was used to consider fractionation effects. Furthermore, we developed software to simulate motion effects for IMRT delivery with an MLC, with compensators, and with a scanning beam. For the simulation we assumed a sinusoidal motion in an isocentric plane. We found that the expected dose value is independent of the treatment technique. It is just a weighted average over the path of motion of the dose distribution without motion. If the treatment is delivered in several fractions, the distribution of the dose around the expected value is close to a Gaussian. For a typical treatment with 30 fractions, the standard deviation is generally within 1% of the expected value for MLC delivery if one assumes a typical motion amplitude of 5 mm (1 cm peak to peak). The standard deviation is generally even smaller for the compensator but bigger for scanning beam delivery. For the latter it can be reduced through multiple deliveries ('paintings') of the same field. In conclusion, the main effect of organ motion in IMRT is an averaging of the dose distribution without motion over the path of the motion. This is the same as for treatments

  10. Electrochemotherapy increases local control after incomplete ...

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    2016-11-24

    Nov 24, 2016 ... The treatment was well tolerated, and the patient is still disease free after 12 months. ECT resulted in improved local control and should be considered among the available adjuvant treatments in equines carrying soft tissue tumors. Keywords: Cisplatin, Electrochemotherapy, Equine, Fibrosarcoma.

  11. Numerical analysis of viscous effect on ship rolling motions based on CFD

    Directory of Open Access Journals (Sweden)

    LUO Tian

    2017-03-01

    Full Text Available During the ship design procedure, the analysis of ship rolling motions is of great significance because the rolling motions have extraordinary effects on the sea-keeping, maneuverability and stability of a ship. It is difficult to simulate rolling motions due to the effect of viscosity, which causes many nonlinear components in computation. As such, the potential theory used for other ship motions cannot be used for rolling motions. This paper simulates the rolling motions of the DTMB 5512 ship model and the ship transverse section of the S60 ship model with a naoe-FOAM-SJTU solver using the Reynolds Averaged Navier Stokes(RANSmethod based on the OpenFOAM. The results of rolling motions are compared with the experimental data, which confirms the reliability of the meshes and results. For the ship transverse section of the S60 ship model, the damping coefficient is divided into three parts with the Euler and RANS methods:friction, vorticity and wave parts. For the DTMB 5512 ship model, the damping coefficient is also respectively analyzed, including the friction, vorticity, wave and bilge keel parts. The results in this paper show that the vorticity part accounts for the greatest proportion, while the friction part accounts for the least, and the bilge keels reduces the damping moment to a certain extent which shows the effect of rolling parameters on rolling motions and moments.

  12. See-saw motion of thermal boundary layer under vibrations: An implication of forced piston effect

    Science.gov (United States)

    Sharma, D.; Erriguible, A.; Amiroudine, S.

    2017-12-01

    The phenomenon of piston effect is well known in supercritical fluids wherein the thermal homogenization of the bulk occurs on a very short time scale due to pressure change caused by expansion or contraction of the fluid in the thermal boundary layer. In this article, we highlight an interesting phenomenon wherein by the application of external forces (vibration) normal to the temperature gradient, see-saw motion of the thermal boundary layer is observed in weightlessness conditions. This is attributed to the thermomechanical coupling caused by the temperature change due to external forces. We term this change in the temperature field due to external forces as forced piston effect (FPE). A detailed investigation of this intriguing behavior shows that the see-saw motion is attributed to the variation of the relative thickness of the thermal boundary layer, defined on the basis of relative local bulk temperature, along the direction of vibration. This change in the temperature field, which is observed to be caused by FPE in vibration, is shown to depend on the compressibility (and thus proximity to the critical point), the imposed acceleration and the cell size. It is also found that see-saw motion persists in the presence of gravity and thus is described ubiquitous in nature for all conditions. A plot illustrating the maximum change in the temperature as a function of these parameters is further proposed.

  13. Observation of terrestrial orbital motion using the cosmic-ray Compton-Getting effect

    International Nuclear Information System (INIS)

    Cutler, D.J.; Groom, D.E.

    1986-01-01

    Using underground observations, the authors have found a small diurnal amplitude modulation of the cosmic-ray muon intensity which agrees in amplitude and phase with a first-order relativistic effect due to the Earth's motion, as discussed by Compton and Getting :1935, Phys. Rev., 47, 817:. Analysis of the arrival times of 5x10 8 muons during a period of 5.4 yr yields a fractional amplitude variation of 2.5sub(-0.6) sup(+0.7) x 10 -4 , with a maximum near dawn, at 08:18+-1.0 h local mean solar time (LT). The expected amplitude is 3.40 x 10 -4 , with the maximum at 06:00LT. (author)

  14. Tongue motion variability with changes of upper airway stimulation electrode configuration and effects on treatment outcomes.

    Science.gov (United States)

    Steffen, Armin; Kilic, Ayse; König, Inke R; Suurna, Maria V; Hofauer, Benedikt; Heiser, Clemens

    2017-12-27

    Upper airway stimulation (UAS) is an effective treatment for obstructive sleep apnea (OSA). Previous data have demonstrated a correlation between the phenotype of tongue motion and therapy response. Closed loop hypoglossal nerve stimulation implant offers five different electrode configuration settings which may result in different tongue motion. Two-center, prospective consecutive trial in a university hospital setting. Clinical outcomes of 35 patients were analyzed after at least 12 months of device use. Tongue motion was assessed at various electrode configuration settings. Correlation between the tongue motion and treatment response was evaluated. OSA severity was significantly reduced with the use of UAS therapy (P < .001). Changes in tongue motion patterns were frequently observed (58.8%) with different electrode configuration settings. Most of the patients alternated between right and bilateral protrusion (73.5%), which are considered to be the optimal phenotypes for selective UAS responses. Different voltage settings were required to achieve functional stimulation levels when changing between the electrode settings. UAS is highly effective for OSA treatment in selected patients with an apnea-hypopnea index between 15 and 65 events per hour and higher body mass index. Attention should be given to patients with shifting tongue movement in response to change of electrode configuration. The intraoperative cuff placement should be reassessed when tongue movement shifting is observed. 4 Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. A preliminary study of local administration of dexamethasone after tooth extraction: Better preservation of residual alveolar ridge?

    Directory of Open Access Journals (Sweden)

    Poštić Srđan D.

    2014-01-01

    Full Text Available Background/Aim. It is important that the height of the edentulous alveolar ridge after tooth extraction remains at a reasonable acceptable level for as long as possible. The aim of this study was to report preliminary results of the clinical effect of local oral submucous administration of dexamethasone after tooth extractions in order to prepare alveolar supporting tissues for acceptance of removable dentures. Methods. In a total of 15 patients (11 partially and 4 completely edentulous the quantity of 0.25 mL to 0.5 mL of dexamethasone was injected bucally and orally in the region of the tooth socket after complicated extractions. Results. Healing of extraction wounds was uneventful in all the patients, without pain or local inflammation. Conclusion. Dexamethasone can be locally applied to oral tissues to prevent post-extraction inflammation and extensive resorption of the residual alveolar ridge. The obtained results are promising for patients undergoing classic prosthodontic rehabilitation soon after tooth extraction, demonstrating that there are no adverse effects after local oral corticosteroids administration. [Projekat Ministarstva nauke Republike Srbije, br. 175021

  16. Estimating network effect in geocenter motion: Theory

    Science.gov (United States)

    Zannat, Umma Jamila; Tregoning, Paul

    2017-10-01

    Geophysical models and their interpretations of several processes of interest, such as sea level rise, postseismic relaxation, and glacial isostatic adjustment, are intertwined with the need to realize the International Terrestrial Reference Frame. However, this realization needs to take into account the geocenter motion, that is, the motion of the center of figure of the Earth surface, due to, for example, deformation of the surface by earthquakes or hydrological loading effects. Usually, there is also a discrepancy, known as the network effect, between the theoretically convenient center of figure and the physically accessible center of network frames, because of unavoidable factors such as uneven station distribution, lack of stations in the oceans, disparity in the coverage between the two hemispheres, and the existence of tectonically deforming zones. Here we develop a method to estimate the magnitude of the network effect, that is, the error introduced by the incomplete sampling of the Earth surface, in measuring the geocenter motion, for a network of space geodetic stations of a fixed size N. For this purpose, we use, as our proposed estimate, the standard deviations of the changes in Helmert parameters measured by a random network of the same size N. We show that our estimate scales as 1/√N and give an explicit formula for it in terms of the vector spherical harmonics expansion of the displacement field. In a complementary paper we apply this formalism to coseismic displacements and elastic deformations due to surface water movements.

  17. Motion compensation in digital subtraction angiography using graphics hardware.

    Science.gov (United States)

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  18. Manual calf massage and passive ankle motion reduce the incidence of deep vein thromboembolism after total hip arthroplasty.

    Science.gov (United States)

    Imai, Norio; Ito, Tomoyuki; Suda, Ken; Miyasaka, Dai; Endo, Naoto

    2017-07-01

    Venous thromboembolism is one of the general complications following total hip arthroplasty, wherein various preventive treatments have been recommended. Several studies reported that venous thromboembolism incidence after total hip arthroplasty was similar in patients who were administered prophylaxis with a conventional mechanical procedure alone, and those who were administered pharmacological anticoagulation therapy. Therefore, the optimum methods of prophylaxis are still controversial. The purpose of this study was to investigate whether manual calf massage and passive ankle motion could lower the risk for venous thromboembolism after total hip arthroplasty. We retrospectively reviewed the data of 126 consecutive patients undergoing elective primary unilateral total hip arthroplasty wherein manual calf massage and passive ankle motion were performed after the surgery at our hospitals between January and October 2014. The 138 patients of the control group underwent total hip arthroplasty using the same surgical approach and pre- and postoperative protocols without this mechanical prophylaxis between January and December 2013. This mechanical prophylaxis was performed simultaneously 30 times during approximately 10 s; these procedures were repeated thrice immediately after total hip arthroplasty. Duplex ultrasonography was performed to observe the veins of both legs in all the patients on postoperative day 7. The incidence of deep vein thrombosis was 6.52% and 0.79% in the control and manual calf massage and passive ankle motion groups, respectively. The odds ratio for the manual calf massage and passive ankle motion groups was 8.72. Performing this mechanical prophylaxis reduced the incidence of venous thromboembolism after total hip arthroplasty. This mechanical prophylaxis is not only simple and easy, but is also safe and inexpensive. We therefore recommend that manual calf massage and passive ankle motion be performed in patients who will undergo total hip

  19. Effects of motion correction for dynamic [11C]Raclopride brain PET data on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Kim, Yu Kyeong; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun; Choe, Yearn Seong; Kang, Eun Joo

    2005-01-01

    Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head motion correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a momentary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task:110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction

  20. Occurrence of paresthesia after dental local anesthetic administration in the United States.

    Science.gov (United States)

    Garisto, Gabriella A; Gaffen, Andrew S; Lawrence, Herenia P; Tenenbaum, Howard C; Haas, Daniel A

    2010-07-01

    Several studies have suggested that the likelihood of paresthesia may depend on the local anesthetic used. The purpose of this study was to determine if the type of local anesthetic administered had any effect on reports of paresthesia in dentistry in the United States. The authors obtained reports of paresthesia involving dental local anesthetics during the period from November 1997 through August 2008 from the U.S. Food and Drug Administration Adverse Event Reporting System. They used chi(2) analysis to compare expected frequencies, on the basis of U.S. local anesthetic sales data, with observed reports of oral paresthesia. During the study period, 248 cases of paresthesia occurring after dental procedures were reported. Most cases (94.5 percent) involved mandibular nerve block. The lingual nerve was affected in 89.0 percent of cases. Reports involving 4 percent prilocaine and 4 percent articaine were 7.3 and 3.6 times, respectively, greater than expected (chi(2), P paresthesia occurs more commonly after use of 4 percent local anesthetic formulations. These findings are consistent with those reported in a number of studies from other countries. Until further research indicates otherwise, dentists should consider these results when assessing the risks and benefits of using 4 percent local anesthetics for mandibular block anesthesia.

  1. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  2. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  3. Prediction of wall motion improvement after coronary revascularization in patients with postmyocardial infarction. Diagnostic value of dobutamine stress echocardiography and myocardial contrast echocardiography

    International Nuclear Information System (INIS)

    Waku, Sachiko; Ohkubo, Tomoyuki; Takada, Kiyoshi; Ishihara, Tadashi; Ohsawa, Nakaaki; Adachi, Itaru; Narabayashi, Isamu

    1997-01-01

    The diagnostic value of dobutamine stress echocardiography, myocardial contrast echocardiography and dipyridamole stress thallium-201 single photon emission computed tomography (SPECT) for predicting recovery of wall motion abnormality after revascularization was evaluated in 13 patients with postmyocardial infarction. Seventeen segments showed severe wall motion abnormalities before revascularization. Nine segments which had relatively good Tl uptake on delayed SPECT images despite severely abnormal wall motion were opacified during myocardial contrast echocardiography, and showed improved wall motion after revascularization. In contrast, three segments which had poor Tl uptake and severely abnormal wall motion were not opacified during myocardial contrast echocardiography, and showed no improvement in wall motion during dobutamine stress echocardiography and after revascularization. The following three findings were assumed to be signs of myocardial viability: good Tl uptake on delayed SPECT images, improved wall motion by dobutamine stress echocardiography, and positive opacification of the myocardium by myocardiai contrast echocardiography. Myocardial contrast echocardiography had the highest sensitivity (100%) and negative predictive value (100%). Delayed SPECT images had the highest specificity (100%) and positive predictive value (100%). Dobutamine stress echocardiography had a sensitivity of 83.0%, specificity of 80.0%, positive predictive value of 90.9%, and negative predictive value of 66.7%, respectively. Myocardial contrast echocardiography showed the lowest specificity (60.0%). The techniques of dobutamine stress echocardiography and SPECT, though noninvasive, may underestimate wall motion improvement after revascularization. Further examination by myocardial contrast echocardiography is recommended to assess myocardial viability for determining the indications for coronary revascularization in spite of its invasiveness. (author)

  4. Localized Models of Charged Particle Motion in Martian Crustal Magnetic Cusps

    Science.gov (United States)

    Brain, D. A.; Poppe, A. R.; Jarvinen, R.; Dong, Y.; Egan, H. L.; Fang, X.

    2017-12-01

    The induced magnetosphere of Mars is punctuated by localized but strong crustal magnetic fields that are observed to play host to a variety of phenomena typically associated with global magnetic fields, such as auroral processes and particle precipitation, field-aligned current systems, and ion outflow. Each of these phenomena occur on the night side, in small-scale magnetic `cusp' regions of vertically aligned field. Cusp regions are not yet capable of being spatially resolved in global scale models that include the ion kinetics necessary for simulating charged particle transport along cusps. Local models are therefore necessary if we are to understand how cusp processes operate at Mars. Here we present the first results of an effort to model the kinetic particle motion and electric fields in Martian cusps. We are adapting both a 1.5D Particle-in-Cell (PIC) model for lunar magnetic cusps regions to the Martian case and a hybrid model framework (used previously for the global Martian plasma interaction and for lunar magnetic anomaly regions) to cusps in 2D. By comparing the models we can asses the importance of electron kinetics in particle transport along cusp field lines. In this first stage of our study we model a moderately strong nightside cusp, with incident hot hydrogen plasma from above, and cold planetary (oxygen) plasma entering the simulation from below. We report on the spatial and temporal distribution of plasma along cusp field lines for this initial case.

  5. Motion comics: the emergence of a hybrid medium

    OpenAIRE

    Smith, Craig

    2015-01-01

    This paper examines the recent emergence of the motion comic as part of a growing relationship between comic books, animation and new forms of digital entertainment and distribution. Motion comics typically appropriate the narrative and ‘static’ artwork of a comic book, which is then manipulated by animation software such as Adobe’s After Effects to create an impression that is similar to paper-cut animation. Early examples of the motion comic form include the episodic web-based Broken Saints...

  6. Effect of site conditions on ground motion and damage

    Science.gov (United States)

    Borcherdt, R.; Glassmoyer, G.; Andrews, M.; Cranswick, E.

    1989-01-01

    Results of seismologic studies conducted by the U.S. reconnaissance team in conjunction with Soviet colleagues following the tragic earthquakes of December 7, 1988, suggest that site conditions may have been a major factor in contributing to increased damage levels in Leninakan. As the potential severity of these effects in Leninakan had not been previously identified, this chapter presents results intended to provide a preliminary quantification of these effects on both damage and levels of ground motion observed in Leninakan. The article describes the damage distribution geologic setting, ground motion amplification in Leninakan, including analog amplifications and spectral amplifications. Preliminary model estimates for site response are presented. It is concluded that ground motion amplification in the 0.5-2.5-second period range was a major contributing factor to increased damage in Leninakan as compared with Kirovakan. Leninakan is located on thick water saturated alluvial deposits.

  7. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  8. Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

    Directory of Open Access Journals (Sweden)

    Swagata Banerjee Basu

    2011-01-01

    Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.

  9. Intrafractional prostate motion during online image guided intensity-modulated radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Budiharto, Tom; Slagmolen, Pieter; Haustermans, Karin; Maes, Frederik; Junius, Sara; Verstraete, Jan; Oyen, Raymond; Hermans, Jeroen; Van den Heuvel, Frank

    2011-01-01

    Introduction: Intrafractional motion consists of two components: (1) the movement between the on-line repositioning procedure and the treatment start and (2) the movement during the treatment delivery. The goal of this study is to estimate this intrafractional movement of the prostate during prostate cancer radiotherapy. Material and methods: Twenty-seven patients with prostate cancer and implanted fiducials underwent a marker match procedure before a five-field IMRT treatment. For all fields, in-treatment images were obtained and then processed to enable automatic marker detection. Combining the subsequent projection images, five positions of each marker were determined using the shortest path approach. The residual set-up error (RSE) after kV-MV based prostate localization, the prostate position as a function of time during a radiotherapy session and the required margins to account for intrafractional motion were determined. Results: The mean RSE and standard deviation in the antero-posterior, cranio-caudal and left-right direction were 2.3 ± 1.5 mm, 0.2 ± 1.1 mm and -0.1 ± 1.1 mm, respectively. Almost all motions occurred in the posterior direction before the first treatment beam as the percentage of excursions >5 mm was reduced significantly when the RSE was not accounted for. The required margins for intrafractional motion increased with prolongation of the treatment. Application of a repositioning protocol after every beam could decrease the 1 cm margin from CTV to PTV by 2 mm. Conclusions: The RSE is the main contributor to intrafractional motion. This RSE after on-line prostate localization and patient repositioning in the posterior direction emphasizes the need to speed up the marker match procedure. Also, a prostate IMRT treatment should be administered as fast as possible, to ensure that the pre-treatment repositioning efforts are not erased by intrafractional prostate motion. This warrants an optimized workflow with the use of faster treatment

  10. SU-E-J-219: Quantitative Evaluation of Motion Effects On Accuracy of Image-Guided Radiotherapy with Fiducial Markers Using CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Oyewale, S; Ahmad, S; Algan, O [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Department of Electrical and Computer Engineering, Ada, OH (United States)

    2014-06-01

    Purpose: To investigate quantitatively patient motion effects on the localization accuracy of image-guided radiation with fiducial markers using axial CT (ACT), helical CT (HCT) and cone-beam CT (CBCT) using modeling and experimental phantom studies. Methods: Markers with different lengths (2.5 mm, 5 mm, 10 mm, and 20 mm) were inserted in a mobile thorax phantom which was imaged using ACT, HCT and CBCT. The phantom moved with sinusoidal motion with amplitudes ranging 0–20 mm and a frequency of 15 cycles-per-minute. Three parameters that include: apparent marker lengths, center position and distance between the centers of the markers were measured in the different CT images of the mobile phantom. A motion mathematical model was derived to predict the variations in the previous three parameters and their dependence on the motion in the different imaging modalities. Results: In CBCT, the measured marker lengths increased linearly with increase in motion amplitude. For example, the apparent length of the 10 mm marker was about 20 mm when phantom moved with amplitude of 5 mm. Although the markers have elongated, the center position and the distance between markers remained at the same position for different motion amplitudes in CBCT. These parameters were not affected by motion frequency and phase in CBCT. In HCT and ACT, the measured marker length, center and distance between markers varied irregularly with motion parameters. The apparent lengths of the markers varied with inverse of the phantom velocity which depends on motion frequency and phase. Similarly the center position and distance between markers varied inversely with phantom speed. Conclusion: Motion may lead to variations in maker length, center position and distance between markers using CT imaging. These effects should be considered in patient setup using image-guided radiation therapy based on fiducial markers matching using 2D-radiographs or volumetric CT imaging.

  11. SU-E-J-219: Quantitative Evaluation of Motion Effects On Accuracy of Image-Guided Radiotherapy with Fiducial Markers Using CT Imaging

    International Nuclear Information System (INIS)

    Ali, I; Oyewale, S; Ahmad, S; Algan, O; Alsbou, N

    2014-01-01

    Purpose: To investigate quantitatively patient motion effects on the localization accuracy of image-guided radiation with fiducial markers using axial CT (ACT), helical CT (HCT) and cone-beam CT (CBCT) using modeling and experimental phantom studies. Methods: Markers with different lengths (2.5 mm, 5 mm, 10 mm, and 20 mm) were inserted in a mobile thorax phantom which was imaged using ACT, HCT and CBCT. The phantom moved with sinusoidal motion with amplitudes ranging 0–20 mm and a frequency of 15 cycles-per-minute. Three parameters that include: apparent marker lengths, center position and distance between the centers of the markers were measured in the different CT images of the mobile phantom. A motion mathematical model was derived to predict the variations in the previous three parameters and their dependence on the motion in the different imaging modalities. Results: In CBCT, the measured marker lengths increased linearly with increase in motion amplitude. For example, the apparent length of the 10 mm marker was about 20 mm when phantom moved with amplitude of 5 mm. Although the markers have elongated, the center position and the distance between markers remained at the same position for different motion amplitudes in CBCT. These parameters were not affected by motion frequency and phase in CBCT. In HCT and ACT, the measured marker length, center and distance between markers varied irregularly with motion parameters. The apparent lengths of the markers varied with inverse of the phantom velocity which depends on motion frequency and phase. Similarly the center position and distance between markers varied inversely with phantom speed. Conclusion: Motion may lead to variations in maker length, center position and distance between markers using CT imaging. These effects should be considered in patient setup using image-guided radiation therapy based on fiducial markers matching using 2D-radiographs or volumetric CT imaging

  12. The effects of tumor motion on planning and delivery of respiratory-gated IMRT

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Agazaryan, Nzhde; Solberg, Timothy D.

    2003-01-01

    The purpose of this study is to investigate the effects of object motion on the planning and delivery of IMRT. Two phantoms containing objects were imaged using CT under a variety of motion conditions. The effects of object motion on axial CT acquisition with and without gating were assessed qualitatively and quantitatively. Measurements of effective slice width and position for the CT scans were made. Mutual information image fusion was adapted for use as a quantitative measure of object deformation in CT images. IMRT plans were generated on the CT scans of the moving and gated object images. These plans were delivered with motion, with and without gating, and the delivery error between the moving deliveries and a nonmoving delivery was assessed using a scalable vector-based index. Motion during CT acquisition produces motion artifact, object deformation, and object mispositioning, which can be substantially reduced with gating. Objects that vary in cross section in the direction of motion exhibit the most deformation in CT images. Mutual information provides a useful quantitative estimate of object deformation. The delivery of IMRT in the presence of target motion significantly alters the delivered dose distribution in relation to the planned distribution. The utilization of gating for IMRT treatment, including imaging, planning, and delivery, significantly reduces the errors introduced by object motion

  13. Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.

    Science.gov (United States)

    Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun

    2018-02-27

    The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.

  14. Effect of ship motion on spinal loading during manual lifting

    NARCIS (Netherlands)

    Faber, G.S.; Kingma, I.; Delleman, N.; Dieën, J. van

    2008-01-01

    This study investigated the effects of ship motion on peak spinal loading during lifting. All measurements were done on a ship at sea. In 1-min trials, which were repeated over a wide range of sailing conditions, subjects lifted an 18 kg box five times. Ship motion, whole body kinematics, ground

  15. Psilocybin impairs high-level but not low-level motion perception.

    Science.gov (United States)

    Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X

    2004-08-26

    The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.

  16. Effective action and the quantum equation of motion

    International Nuclear Information System (INIS)

    Branchina, V.; Faivre, H.; Zappala, D.

    2004-01-01

    We carefully analyze the use of the effective action in dynamical problems, in particular the conditions under which the equation (δΓ)/(δφ) = 0 can be used as a quantum equation of motion and illustrate in detail the crucial relation between the asymptotic states involved in the definition of Γ and the initial state of the system. Also, by considering the quantum-mechanical example of a double-well potential, where we can get exact results for the time evolution of the system, we show that an approximation to the effective potential in the quantum equation of motion that correctly describes the dynamical evolution of the system is obtained with the help of the wilsonian RG equation (already at the lowest order of the derivative expansion), while the commonly used one-loop effective potential fails to reproduce the exact results. (orig.)

  17. Results of external beam irradiation for rectal carcinomas locally recurrent after local excision or electrocoagulation

    International Nuclear Information System (INIS)

    Shun Wong, C.; Cummings, B.J.; Keane, T.J.; O'Sullivan, Brian; Catton, C.N.

    1991-01-01

    The outcome of 42 patients who developed locally recurrent rectal carcinoma after initial local excision or electrocoagulation was presented. Five patients received combined surgery and radiotherapy (XRT). The remaining 37 patients were managed by XRT alone. The overall 5 years actuarial survival and local control rates were 21 and 22 percent, respectively. For patients who received XRT alone, the 5 year actuarial survival and local control rates were 20 and 15 percent, resp. The corresponding figures were 35 and 40 percent for patients who received a total XRT dose of 50 Gy or more. One patient who underwent combined treatment developed rectal and bladder incontinence requiring surgery. For patients with rectal recurrence after initial conservative surgery, XRT is an alternative to abdominoperipheral resection if major resection is contraindicated. (author). 13 refs.; 2 tabs

  18. The effects of complex exercise on shoulder range of motion and pain for women with breast cancer-related lymphedema: a single-blind, randomized controlled trial.

    Science.gov (United States)

    Park, Jin-Hyuck

    2017-07-01

    This study was to investigate the effects of complex exercise on shoulder range of motion and pain for women with breast cancer-related lymphedema. 69 women participated in this study and then they were randomly allocated to complex exercise group (n = 35) or the conventional decongestive therapy group (n = 34). All subjects received 8 sessions for 4 weeks. To identify the effects on shoulder range of motion and pain, goniometer and visual analog scale were used, respectively. The outcome measurements were performed before and after the 4 week intervention. After 4 weeks, complex exercise group had greater improvements in shoulder range of motion and pain compared with the conventional decongestive therapy group (p women with breast cancer-related lymphedema. Complex exercise would be useful to improve shoulder range of motion and pain of the women with breast cancer-related lymphedema.

  19. Cardiac Toxicity after definitive Radiotherapy of locally advanced NSCLC

    DEFF Research Database (Denmark)

    Schytte, Tine; Hansen, Olfred; Stohlberg-Rohr, Thomine

    2010-01-01

        Cardiac Toxicity after definitive Radiotherapy of locally advanced NSCLC Tine Schytte, Olfred Hansen, Thomine Stolberg-Rohr* and Carsten Brink*. Dept. Oncology and Radiophysic Lab.* Odense University Hospital, Denmark   Keyword: Radiotherapy, Locally advanced NSCLC, Cardiac toxicity   Backgro......    Cardiac Toxicity after definitive Radiotherapy of locally advanced NSCLC Tine Schytte, Olfred Hansen, Thomine Stolberg-Rohr* and Carsten Brink*. Dept. Oncology and Radiophysic Lab.* Odense University Hospital, Denmark   Keyword: Radiotherapy, Locally advanced NSCLC, Cardiac toxicity......   Background: Lung and oesophageal toxicity have been regarded as main toxicity in definitive radiotherapy (RT) of non-small cell lung cancer (NSCLC), whereas cardiac toxicity has not been offered much concern. This is probably due to the poor prognosis for patients with unresectable NSCLC. In this study we...

  20. Salvage cryotherapy for local recurrence after radiotherapy for prostate cancer.

    Science.gov (United States)

    Kvorning Ternov, Klara; Krag Jakobsen, Ane; Bratt, Ola; Ahlgren, Göran

    2015-04-01

    The aim of this study was to present the outcome of patients treated with salvage cryotherapy after radiotherapy for prostate cancer at one institution. Consecutive patients treated between 2007 and 2013 with transperineal cryotherapy for biopsy-verified local recurrence after radiotherapy were investigated. An external reviewer retrieved outcome data retrospectively from medical records. Complications were graded according to the Clavien classification. One patient with less than 1 year of follow-up was excluded from the analysis of side-effects. Thirty patients were included, 29 of whom had a follow-up of at least 1 year. The median follow-up was 2.7 years (range 1-6.5 years). Eleven of the 23 patients without hormonal treatment at the time of cryotherapy reached a prostate-specific antigen (PSA) nadir of less than 0.5 ng/ml. At the end of follow-up five of these 23 patients still had a PSA below 0.5 ng/ml and 10 were free from recurrence according to the Phoenix definition. Clinical recurrence (verified with imaging or biopsies) was detected in 13 patients, six of which were local. One patient died from prostate cancer. Eleven patients had urinary incontinence grade 1-2 and three had grade 3-4, seven had pelvic pain, three had severe but transitory tissue sloughing, three developed a urethral stricture or had prolonged urinary retention, and one developed a urinary fistula 4.5 years after cryotherapy. Salvage cryotherapy should be considered as an alternative to hormonal treatment and surgery for local recurrence after radiotherapy for prostate cancer. The results compare well to those reported from centres with longer experience.

  1. Déjà vu: Motion Prediction in Static Images

    NARCIS (Netherlands)

    Pintea, S.L.; van Gemert, J.C.; Smeulders, A.W.M.; Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T.

    2014-01-01

    This paper proposes motion prediction in single still images by learning it from a set of videos. The building assumption is that similar motion is characterized by similar appearance. The proposed method learns local motion patterns given a specific appearance and adds the predicted motion in a

  2. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

    International Nuclear Information System (INIS)

    Kissick, Michael W.; Boswell, Sarah A.; Jeraj, Robert; Mackie, T. Rockwell

    2005-01-01

    The interplay between a constant scan speed and intrafraction oscillatory motion produces interesting fluence intensity modulations along the axis of motion that are sensitive to the motion function, as originally shown in a classic paper by Yu et al. [Phys. Med. Biol. 43, 91-104 (1998)]. The fluence intensity profiles are explored in this note for an intuitive understanding, then compared with Yu et al., and finally further explored for the effects of low scan speed and random components of both intrafraction and interfraction motion. At slow scan speeds typical of helical tomotherapy, these fluence intensity modulations are only a few percent. With the addition of only a small amount of cycle-to-cycle randomness in frequency and amplitude, the fluence intensity profiles change dramatically. It is further shown that after a typical 30-fraction treatment, the sensitivities displayed in the single fraction fluence intensity profiles greatly diminish

  3. CFD analysis of the effect of rolling motion on the flow distribution at the core inlet

    International Nuclear Information System (INIS)

    Yan, B.H.; Zhang, G.; Gu, H.Y.

    2012-01-01

    Highlights: ► The flow distribution at the core inlet in rolling motion is investigated. ► In rolling motion, the variation of flow distribution factor is not regular. ► The minimum flow distribution factor could be decreased by rolling motion. ► The effect of rolling motion diminishes with Reynolds number increasing. ► Effect of rolling motion in single loop operation is more significant. - Abstract: The flow distribution at the core inlet in rolling motion is investigated with software CFX12.0. The calculation results were in agreement with experimental data in steady state. As the increasing of rolling amplitude and the decreasing of rolling period, the effect of rolling motion on the flow distribution factor and the flowing behavior increases. In rolling motion, the variation of flow distribution factor is not regular. The rolling motion could decrease the minimum flow distribution factor. The effect of rolling motion on the coolant field and flow distribution diminishes with the Reynolds number increasing. The effect of rolling motion on the flow distribution in the case of single loop operation is more significant than that in the case of double loops operation.

  4. Motion and shape change when using an endorectal balloon during prostate radiation therapy

    International Nuclear Information System (INIS)

    Court, Laurence E.; D'Amico, Anthony V.; Kadam, Dnyanesh; Cormack, Robert

    2006-01-01

    Purpose: To investigate motion and shape change when using an endorectal balloon (ERB) in patients receiving radiotherapy for prostate cancer. Methods: In nine patients treated for prostate cancer using an ERB, the anterior wall of the ERB was contoured on right lateral images taken immediately before irradiation, and on left lateral images taken immediately after irradiation. Changes in the contours were used to calculate inter-fraction shape change and inter-imaging motion and shape change. Inter-imaging motion describes changes that occur after the right lateral image is taken that are seen in the left lateral image. Results: Eighty-six percent of all inter-imaging shifts of the anterior wall of the ERB were in the posterior direction (mean: 1.8 mm, 1 SD: 1.8 mm, maximum posterior shift: 2.8-7.2 mm). The inter-fraction shape change (1 SD) of the anterior wall was equivalent to a change in the angle of the balloon of 2.5-5.7 deg., with a range of 8-20 deg., depending on the patient. Inter-imaging shape changes were similar in size. Conclusions: The inter-imaging motion and shape changes may be explained by the patient relaxing some time after insertion of the ERB, indicating that it could be reduced by a waiting period after insertion before irradiation. Development of image-guided localization strategies should consider intra-fraction motion and also inter- and intra-fraction shape change

  5. Effect of Collaborative Learning in Interactive Lecture Demonstrations (ILD on Student Conceptual Understanding of Motion Graphs

    Directory of Open Access Journals (Sweden)

    Erees Queen B. Macabebe

    2017-04-01

    Full Text Available To assess effectively the influence of peer discussion in understandingconcepts, and to evaluate if the conceptual understanding through Interactive Lecture Demonstrations (ILD and collaborative learning can be translated to actual situations, ten (10 questions on human and carts in motion were presented to 151 university students comprising mostly of science majors but of different year levels. Individual and group predictions were conducted to assess the students’ pre-conceptual understanding of motion graphs. During the ILD, real-time motion graphs were obtained and analysed after each demonstration and an assessment that integrates the ten situations into two scenarios was given to evaluate the conceptual understanding of the students. Collaborative learning produced a positive effect on the prediction scores of the students and the ILD with real-time measurement allowed the students to validate their prediction. However, when the given situations were incorporated to create a scenario, it posted a challenge to the students. The results of this activity identified the area where additional instruction and emphasis is necessary.

  6. Value of gated SPECT in the analysis of regional wall motion of the interventricular septum after coronary artery bypass grafting

    International Nuclear Information System (INIS)

    Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo; Germano, Guido

    2004-01-01

    The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after 99m Tc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%±3% vs 1.9%±4.9% p=NS) and inward septal motion (3±4.9 mm vs 2.3±6.1 mm p=NS), significant differences were observed in both perfusion (74.7%±6.2% vs 63.3%±13%, p>0.0001) and regional wall thickening (17.2%±7.4% vs 12.6%±7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population. (orig.)

  7. Value of gated SPECT in the analysis of regional wall motion of the interventricular septum after coronary artery bypass grafting.

    Science.gov (United States)

    Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo; Germano, Guido

    2004-10-01

    The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after 99mTc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%+/-3% vs 1.9%+/-4.9% p=NS) and inward septal motion (3+/-4.9 mm vs 2.3+/-6.1 mm p=NS), significant differences were observed in both perfusion (74.7%+/-6.2% vs 63.3%+/-13%, p>0.0001) and regional wall thickening (17.2%+/-7.4% vs 12.6%+/-7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population.

  8. Value of gated SPECT in the analysis of regional wall motion of the interventricular septum after coronary artery bypass grafting

    Energy Technology Data Exchange (ETDEWEB)

    Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo [Spedali Civili di Brescia, Department of Nuclear Medicine, Brescia (Italy); Germano, Guido [Cedars-Sinai Medical Center, Artificial Intelligence Program, Department of Medicine, Los Angeles, CA (United States)

    2004-10-01

    The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after {sup 99m}Tc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%{+-}3% vs 1.9%{+-}4.9% p=NS) and inward septal motion (3{+-}4.9 mm vs 2.3{+-}6.1 mm p=NS), significant differences were observed in both perfusion (74.7%{+-}6.2% vs 63.3%{+-}13%, p>0.0001) and regional wall thickening (17.2%{+-}7.4% vs 12.6%{+-}7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population. (orig.)

  9. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  10. The Effect of early physiotherapy on the recovery of mandibular function after orthognathic surgery for Class III correction: part I--jaw-motion analysis.

    Science.gov (United States)

    Teng, Terry Te-Yi; Ko, Ellen Wen-Ching; Huang, Chiung Shing; Chen, Yu-Ray

    2015-01-01

    The aim of this prospective study was to compare the mandibular range of motion in Class III patients with and without early physiotherapy after orthognathic surgery (OGS). This study consisted of 63 Class III patients who underwent 2-jaw OGS. The experimental group comprised 31 patients who received early systematic physical rehabilitation. The control group consisted of 32 patients who did not have physical rehabilitation. Twelve variables of 3-dimensional (3D) jaw-motion analysis (JMA) were recorded before surgery (T1) and 6 weeks (T2) and 6 months (T3) after surgery. A 2-sample t test was conducted to compare the JMA results between the two groups at different time points. At T2, the JMA data were measured to be 77.5%-145.7% of presurgical values in the experimental group, and 60.3%-90.6% in the control group. At T3, the measurements were 112.2%-179.2% of presurgical values in the experimental group, and 77.6%-157.2% in the control group. The patients in the experimental group exhibited more favorable recovery than did those in the control group, from T1 to T2 and T1 to T3. However, after termination of physiotherapy, no significant difference in the extent of recovery was observed between groups up to 6 months after OGS. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. The effects of area postrema lesions and selective vagotomy on motion-induced conditioned taste aversion

    Science.gov (United States)

    Fox, Robert A.; Sutton, R. L.; Mckenna, Susan

    1991-01-01

    Conditioned taste aversion (CTA) is one of several behaviors which was suggested as a putative measure of motion sickness in rats. A review is made of studies which used surgical disruption of area postrema or the vagus nerve to investigate whether CTA and vomiting induced by motion may depend on common neural pathways or structures. When the chemoreceptive function of the area postrema (AP) is destroyed by complete ablation, rats develop CTA and cats and monkeys develop CTA and vomit. Thus the AP is not crucially involved in either CTA or vomiting induced by motion. However, after complete denervation of the stomach or after labyrinthectomy rats do not develop CTA when motion is used as the unconditioned stimulus. Studies of brainstem projections of the vagus nerve, the area postrema, the periaqueductal grey, and the vestibular system are used as the basis for speculation about regions which could mediate both motion-induced vomiting and behavioral food aversion.

  12. Trajectory of coronary motion and its significance in robotic motion cancellation.

    Science.gov (United States)

    Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor

    2004-05-01

    To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion cancellation for existing robotic systems. Velocity plots could also help improve gated cardiac imaging.

  13. Effects of motion correction for dynamic [{sup 11}C]Raclopride brain PET data on the evaluation of endogenous dopamine release in striatum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Kim, Yu Kyeong; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Choe, Yearn Seong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kang, Eun Joo [Kangwon University, Chunchon (Korea, Republic of)

    2005-10-15

    Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head motion correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. [{sup 11}C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a momentary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task:110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion

  14. Motion-to-Motion Gauge for the Electroweak Interaction of Leptons

    Directory of Open Access Journals (Sweden)

    Tselnik F.

    2015-01-01

    Full Text Available Comprised of rods and clocks, a reference system is a mere intermediary between the motion that is of interest in the problem and the motions of auxiliary test bodies the reference system is to be gauged with. However, a theory base d on such reference sys- tems might hide some features of this actual motion-to-motion correspondence, thus leaving these features incomprehensible. It is therefore d esirable to consider this corre- spondence explicitly, if only to substantiate a particular scheme. To this end, the very existence of a (local top-speed signal is shown to be sufficient to explain some peculiar- ities of the weak interaction using symmetrical configurations of auxiliary trajectories as a means for the gauge. In particular, the unification of the electromagnetic and weak interactions, parity violation, SU(2 L × U(1 group structure with the values of its cou- pling constants, and the intermediate vector boson are found to be a direct consequence of this gauge procedure.

  15. Indirect wrist MR arthrography: the effects of passive motion versus active exercise

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, M.E.; Natale, P.; Winalski, C.S.; Culp, R. [Thomas Jefferson University Hospital, Department of Radiology, Philadelphia, PA (United States)

    2000-01-01

    Purpose. In the wrist, to determine whether passive motion or active exercise yields a better indirect MR arthrographic effect following intravenous gadolinium administration.Design and patients. Twenty-six consecutive patients were studied by indirect wrist MR arthrography. In half active exercise and in half passive motion was performed. Four regions of interest were studied including the distal radioulnar joint, the radiocarpal joint, the midcarpal joint, and the triangular fibrocartilage. Ranges and means of signal intensity were calculated. Surgical follow-up was performed in 22 patients.Results. The joint fluid intensity was greatest in the distal radioulnar joint. Fluid signal intensity was greater and more consistent in the passive motion group although the results did not achieve statistical significance. Imaging accuracy appeared similar in the two groups and was excellent for the triangular fibrocartilage (100%) and scapholunate ligaments (96%).Conclusion. Active exercise and passive motion yield similar degrees of wrist arthrographic effect, but the effect of passive motion is somewhat more consistent. Preliminary data show good accuracy for internal derangements. (orig.)

  16. Local analgesic effect of tramadol is mediated by opioid receptors in late postoperative pain after plantar incision in rats.

    Science.gov (United States)

    de Oliveira Junior, José Oswaldo; de Freitas, Milena Fernandes; Bullara de Andrade, Carolina; Chacur, Marucia; Ashmawi, Hazem Adel

    2016-01-01

    Tramadol is a drug used to treat moderate to severe pain. It is known to present a peripheral effect, but the local mechanisms underlying its actions remain unclear. The role of peripheral opioid receptors in postoperative pain is not well understood. In the present study, we examined the peripheral opioid receptors to determine the local effect of tramadol in a plantar incision pain model. Rats were subjected to plantar incision and divided into four groups on postoperative day (POD) 1: SF_SF, 0.9% NaCl injected into the right hindpaw; SF_TraI, 0.9% NaCl and tramadol injected into the right hindpaw; SF_TraC, 0.9% NaCl and tramadol injected into the contralateral hindpaw; and Nal_Tra, naloxone and tramadol injected into the ipsilateral hindpaw. To determine the animals' nociceptive threshold, mechanical hyperalgesia was measured before incision, on POD1 before treatment and at 15, 30, 45, and 60 minutes after the incision. The same procedure was repeated on the POD2. The expression levels of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) were obtained through immunoblotting assays in the lumbar dorsal root ganglia (L3-L6) in naïve rats and 1, 2, 3, and 7 days after the incision. Our results showed that the plantar incision was able to cause an increase in mechanical hyperalgesia and that tramadol reversed this hyperalgesia on POD1 and POD2. Tramadol injections in the contralateral paw did not affect the animals' nociceptive threshold. Naloxone was able to antagonize the tramadol effect partially on POD1 and completely on POD2. The DOR expression increased on POD2, POD3, and POD7, whereas the MOR expression did not change. Together, our results show that tramadol promoted a local analgesic effect in the postoperative pain model that was antagonized by naloxone in POD2, alongside the increase of DOR expression.

  17. Transient severe respiratory motion artifacts after application of gadoxetate disodium. What we currently know

    International Nuclear Information System (INIS)

    Well, Lennart; Weinrich, Julius Matthias; Adam, Gerhard; Bannas, Peter

    2018-01-01

    Gadoxetate disodium is an intracellular contrast agent for magnetic resonance imaging (MRI) of the liver. Recent publications revealed that injection of gadoxetate disodium can lead to imaging artifacts due to transient severe motion (TSM) in the arterial phase of contrast-enhanced liver MRI. In this review we present and discuss published frequencies of TSM, contrast injection and image acquisition protocols, potential risk factors, and proposed strategies to avoid or minimize the effects of TSM. Two reviewers independently searched the PubMed search engine for ''transient severe motion artifact'' and related terms. Reference lists of retrieved articles were also searched. The two reviewers selected in consensus nine studies that reported both frequencies of TSM and potential risk factors. Study data were extracted by both reviewers, and disagreement was resolved by consensus. TSM is caused by impaired breath-hold ability after gadoxetate disodium injection and occurs in 5 -22% of patients. The dose of applied contrast agent, repeated exposure to gadoxetate disodium, high BMI and pulmonary disease have been described as potential risk factors for TSM. However, there are only few concordant results on this topic and the pathophysiology of TSM has not been identified. Proposed strategies for the prevention of TSM are slow injection rates and low doses of diluted gadoxetate disodium. Accelerated and free-breathing MRI sequence protocols and breath-hold training may minimize the effects of TSM. Further prospective studies are needed to confirm these strategies and to identify the underlying mechanism of TSM.

  18. Transient severe respiratory motion artifacts after application of gadoxetate disodium. What we currently know

    Energy Technology Data Exchange (ETDEWEB)

    Well, Lennart; Weinrich, Julius Matthias; Adam, Gerhard; Bannas, Peter [Univ. Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology and Nuclear Medicince

    2018-01-15

    Gadoxetate disodium is an intracellular contrast agent for magnetic resonance imaging (MRI) of the liver. Recent publications revealed that injection of gadoxetate disodium can lead to imaging artifacts due to transient severe motion (TSM) in the arterial phase of contrast-enhanced liver MRI. In this review we present and discuss published frequencies of TSM, contrast injection and image acquisition protocols, potential risk factors, and proposed strategies to avoid or minimize the effects of TSM. Two reviewers independently searched the PubMed search engine for ''transient severe motion artifact'' and related terms. Reference lists of retrieved articles were also searched. The two reviewers selected in consensus nine studies that reported both frequencies of TSM and potential risk factors. Study data were extracted by both reviewers, and disagreement was resolved by consensus. TSM is caused by impaired breath-hold ability after gadoxetate disodium injection and occurs in 5 -22% of patients. The dose of applied contrast agent, repeated exposure to gadoxetate disodium, high BMI and pulmonary disease have been described as potential risk factors for TSM. However, there are only few concordant results on this topic and the pathophysiology of TSM has not been identified. Proposed strategies for the prevention of TSM are slow injection rates and low doses of diluted gadoxetate disodium. Accelerated and free-breathing MRI sequence protocols and breath-hold training may minimize the effects of TSM. Further prospective studies are needed to confirm these strategies and to identify the underlying mechanism of TSM.

  19. 41 CFR 60-30.8 - Motions; disposition of motions.

    Science.gov (United States)

    2010-07-01

    ... a supporting memorandum. Within 10 days after a written motion is served, or such other time period... writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may require that they be reduced to writing and filed and served on all parties in the same manner as a formal...

  20. Pattern of local recurrence after conservative surgery and whole-breast irradiation

    International Nuclear Information System (INIS)

    Freedman, Gary M.; Anderson, Penny R.; Hanlon, Alexandra L.; Eisenberg, Debra F.; Nicolaou, Nicos

    2005-01-01

    Purpose: Most recurrences in the breast after conservative surgery and whole-breast irradiation have been reported to occur within the same quadrant as the initial primary tumor. We analyzed the long-term risk of recurrence by area of the breast after whole-breast irradiation. Materials and Methods: In all, 1,990 women with Stage 0-II breast cancer were treated with conservative surgery and whole-breast irradiation from 1970-1998. Stage was ductal carcinoma in situ in 237, T1 in 1273, and T2 in 480 patients. Of 120 local recurrences, 71 were classified as true local (confined to the original quadrant) and 49 as elsewhere (involving outside the original quadrant). Kaplan-Meier methodology was used to calculate 5-year, 10-year, and 15-year rates of recurrence (95% confidence intervals in parentheses). The median follow-up is 80 months. Results: There was no apparent difference in the 15-year rate of true local vs. elsewhere recurrence, but the time to recurrence was different. The rate of true local recurrence was 2%, 5%, and 7% (5-9%) at 5, 10, and 15 years, respectively. The recurrences elsewhere in the breast were rare at 5 (1%) and 10 (2%) years, but increased to 6 (3-9%) at 15 years. This 15-year rate of elsewhere recurrence was half the rate of contralateral breast cancers of 13% (10-16%). Conclusions: Recurrence elsewhere in the breast is rare for the first 10 years, but by 15 years is nearly equal to true local recurrence even after whole-breast irradiation. The 15-year rate of elsewhere recurrence was half the rate of contralateral breast cancers. This may indicate a therapeutic effect of whole-breast radiation for other areas of the breast. Very long follow-up will be needed for partial breast irradiation with or without tamoxifen to show that the risk of elsewhere recurrence is not significantly different than after whole-breast irradiation

  1. Local parametric instability near elliptic points in vortex flows under shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022 (Russian Federation); Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950 (Russian Federation); Ryzhov, Eugene A., E-mail: ryzhovea@gmail.com [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation)

    2016-08-15

    The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, the size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.

  2. A Preclinical Assessment of Early Continuous Passive Motion and Treadmill Therapeutic Exercises for Generating Chondroprotective Effects After Anterior Cruciate Ligament Rupture.

    Science.gov (United States)

    Chang, Nai-Jen; Lee, Kuan-Wei; Chu, Chih-Jou; Shie, Ming-You; Chou, Pei-Hsi; Lin, Chih-Chan; Liang, Peir-In

    2017-08-01

    Anterior cruciate ligament (ACL) injury is a well-known risk factor for the development of posttraumatic osteoarthritis (PTOA). However, whether using continuous passive motion (CPM) with or without additional treadmill exercise (TRE) in early ACL injury might provide chondroprotective effects and further decrease the risk of PTOA has yet to be determined. CPM may offer an enhanced chondroprotective effect, but TRE may attenuate that effect due to the mechanical stress on the joint and inflammatory cytokines in the joint. Controlled laboratory study. Thirty adult New Zealand White male rabbits were randomly allocated to sedentary (SED), CPM, TRE, or CPM+TRE groups. Each rabbit underwent an ACL transection (ACLT) on the right knee, with the contralateral knee used as an internal control (sham). The 4 joint surfaces (ie, medial and lateral femoral condyles and tibial plateaus) were evaluated 4 weeks after surgery for gross appearance, histological characteristics, and quantitative osteoarthritis (OA) scores. Overall, at the end of testing, the CPM group experienced the best protective therapeutic effects in all compartments. In gross appearance, CPM resulted in normal articular surfaces, while the TRE and SED groups exhibited surface abrasion. Histological analysis showed significant differences in articular cartilage status. The CPM group had significantly better histological OA scores ( P CPM+TRE group displayed visible pathological changes in the superficial cartilage, indicating that early loading exercise may contribute to osteoarthritis. The sham treatment showed no difference in the changes in all compartments between groups. Immediate CPM therapy produces a superior in situ microenvironment for reducing the occurrence of PTOA after ACL injury without reconstruction in rabbits. These data suggest that immediate application of CPM therapy may be necessary to create a sound microenvironment in joints and possibly to decrease the risk of PTOA without or while

  3. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    Energy Technology Data Exchange (ETDEWEB)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K. [Boston Children' s Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Roth, Noam; Roth, Amir [Robin Medical Inc., Baltimore, MD (United States)

    2016-11-15

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  4. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    International Nuclear Information System (INIS)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K.; Roth, Noam; Roth, Amir

    2016-01-01

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  5. Effects of general relativity in the motion of minor planets and comets

    International Nuclear Information System (INIS)

    Sitarski, G.

    1983-01-01

    Basing on the solution of one-body Schwarzschild problem, the relativistic terms were included to the equations of motion of a minor planet or comet. It appeared that the using of Painleve's coordinates allowed to write the equations of motion in a very simple form. Equations of motion as well as the commonly used equations based on the Schwarzschild isotropic and nonisotropic line elements were numerically integrated by the recurrent power series method. The results of integration of the motion of Mercury and of the minor planet Icarus show strictly the perihelion motion predicted by the general relativity theory. The relativistic effects in the motion of some minor planets and comets were examined too. (author)

  6. Long-lasting effects of neck muscle vibration and contraction on self-motion perception of vestibular origin.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Panichi, Roberto; Botti, Fabio Massimo; Biscarini, Andrea; Filippi, Guido Maria; Schieppati, Marco

    2015-10-01

    To show that neck proprioceptive input can induce long-term effects on vestibular-dependent self-motion perception. Motion perception was assessed by measuring the subject's error in tracking in the dark the remembered position of a fixed target during whole-body yaw asymmetric rotation of a supporting platform, consisting in a fast rightward half-cycle and a slow leftward half-cycle returning the subject to the initial position. Neck muscles were relaxed or voluntarily contracted, and/or vibrated. Whole-body rotation was administered during or at various intervals after the vibration train. The tracking position error (TPE) at the end of the platform rotation was measured during and after the muscle conditioning maneuvers. Neck input produced immediate and sustained changes in the vestibular perceptual response to whole-body rotation. Vibration of the left sterno-cleido-mastoideus (SCM) or right splenius capitis (SC) or isometric neck muscle effort to rotate the head to the right enhanced the TPE by decreasing the perception of the slow rotation. The reverse effect was observed by activating the contralateral muscle. The effects persisted after the end of SCM conditioning, and slowly vanished within several hours, as tested by late asymmetric rotations. The aftereffect increased in amplitude and persistence by extending the duration of the vibration train (from 1 to 10min), augmenting the vibration frequency (from 5 to 100Hz) or contracting the vibrated muscle. Symmetric yaw rotation elicited a negligible TPE, upon which neck muscle vibrations were ineffective. Neck proprioceptive input induces enduring changes in vestibular-dependent self-motion perception, conditional on the vestibular stimulus feature, and on the side and the characteristics of vibration and status of vibrated muscles. This shows that our perception of whole-body yaw-rotation is not only dependent on accurate vestibular information, but is modulated by proprioceptive information related to

  7. Effectiveness of Manual Therapy and Stretching for Baseball Players With Shoulder Range of Motion Deficits.

    Science.gov (United States)

    Bailey, Lane B; Thigpen, Charles A; Hawkins, Richard J; Beattie, Paul F; Shanley, Ellen

    Baseball players displaying deficits in shoulder range of motion (ROM) are at increased risk of arm injury. Currently, there is a lack of consensus regarding the best available treatment options to restore shoulder ROM. Instrumented manual therapy with self-stretching will result in clinically significant deficit reductions when compared with self-stretching alone. Controlled laboratory study. Shoulder ROM and humeral torsion were assessed in 60 active baseball players (mean age, 19 ± 2 years) with ROM deficits (nondominant - dominant, ≥15°). Athletes were randomly assigned to receive a single treatment of instrumented manual therapy plus self-stretching (n = 30) or self-stretching only (n = 30). Deficits in internal rotation, horizontal adduction, and total arc of motion were compared between groups immediately before and after a single treatment session. Treatment effectiveness was determined by mean comparison data, and a number-needed-to-treat (NNT) analysis was used for assessing the presence of ROM risk factors. Prior to intervention, players displayed significant ( P < 0.001) dominant-sided deficits in internal rotation (-26°), total arc of motion (-18°), and horizontal adduction (-17°). After the intervention, both groups displayed significant improvements in ROM, with the instrumented manual therapy plus self-stretching group displaying greater increases in internal rotation (+5°, P = 0.010), total arc of motion (+6°, P = 0.010), and horizontal adduction (+7°, P = 0.004) compared with self-stretching alone. For horizontal adduction deficits, the added use of instrumented manual therapy with self-stretching decreased the NNT to 2.2 (95% CI, 2.1-2.4; P = 0.010). Instrumented manual therapy with self-stretching significantly reduces ROM risk factors in baseball players with motion deficits when compared with stretching alone. The added benefits of manual therapy may help to reduce ROM deficits in clinical scenarios where stretching alone is

  8. Rashba spin–orbit coupling effects on a current-induced domain wall motion

    International Nuclear Information System (INIS)

    Ryu, Jisu; Seo, Soo-Man; Lee, Kyung-Jin; Lee, Hyun-Woo

    2012-01-01

    A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin–orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β. - Highlights: ► Effects of Rashba spin–orbit coupling on a domain wall motion is calculated. ► The effects depend highly on the anisotropy of a magnetic system. ► It modifies the wall velocity for the system with a perpendicular magnetic anisotropy. ► The modified velocity can be along the current direction in certain situations. ► Rashba spin–orbit coupling also hinders the onset of the Walker breakdown.

  9. Clustering Of Left Ventricular Wall Motion Patterns

    Science.gov (United States)

    Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.

    1982-11-01

    A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.

  10. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    Science.gov (United States)

    2012-01-01

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of

  11. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    Directory of Open Access Journals (Sweden)

    Frisoli Antonio

    2012-06-01

    Full Text Available Abstract This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points, Modified Ashworth scale (MA, 0–60 pts and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement and position of target to be reached (ipsilateral, central and contralateral peripersonal space. These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved

  12. The Effects of Music on Microsurgical Technique and Performance: A Motion Analysis Study.

    Science.gov (United States)

    Shakir, Afaaf; Chattopadhyay, Arhana; Paek, Laurence S; McGoldrick, Rory B; Chetta, Matthew D; Hui, Kenneth; Lee, Gordon K

    2017-05-01

    Music is commonly played in operating rooms (ORs) throughout the country. If a preferred genre of music is played, surgeons have been shown to perform surgical tasks quicker and with greater accuracy. However, there are currently no studies investigating the effects of music on microsurgical technique. Motion analysis technology has recently been validated in the objective assessment of plastic surgery trainees' performance of microanastomoses. Here, we aimed to examine the effects of music on microsurgical skills using motion analysis technology as a primary objective assessment tool. Residents and fellows in the Plastic and Reconstructive Surgery program were recruited to complete a demographic survey and participate in microsurgical tasks. Each participant completed 2 arterial microanastomoses on a chicken foot model, one with music playing, and the other without music playing. Participants were blinded to the study objectives and encouraged to perform their best. The order of music and no music was randomized. Microanastomoses were video recorded using a digitalized S-video system and deidentified. Video segments were analyzed using ProAnalyst motion analysis software for automatic noncontact markerless video tracking of the needle driver tip. Nine residents and 3 plastic surgery fellows were tested. Reported microsurgical experience ranged from 1 to 10 arterial anastomoses performed (n = 2), 11 to 100 anastomoses (n = 9), and 101 to 500 anastomoses (n = 1). Mean age was 33 years (range, 29-36 years), with 11 participants right-handed and 1 ambidextrous. Of the 12 subjects tested, 11 (92%) preferred music in the OR. Composite instrument motion analysis scores significantly improved with playing preferred music during testing versus no music (paired t test, P music was significant even after stratifying scores by order in which variables were tested (music first vs no music first), postgraduate year, and number of anastomoses (analysis of variance, P music in

  13. 7 CFR 1.327 - Motions.

    Science.gov (United States)

    2010-01-01

    ... be in writing. The ALJ may require that oral motions be reduced to writing. (c) The ALJ may require written motions to be accompanied by supporting memorandums. (d) Within 15 days after a written motion is...) The ALJ may not grant a written motion prior to expiration of the time for filing responses thereto...

  14. The Effect of Time and Fusion Length on Motion of the Unfused Lumbar Segments in Adolescent Idiopathic Scoliosis.

    Science.gov (United States)

    Marks, Michelle C; Bastrom, Tracey P; Petcharaporn, Maty; Shah, Suken A; Betz, Randal R; Samdani, Amer; Lonner, Baron; Miyanji, Firoz; Newton, Peter O

    2015-11-01

    The purpose of this study was to assess L4-S1 inter-vertebral coronal motion of the unfused distal segments of the spine in patients with adolescent idiopathic scoliosis (AIS) after instrumented fusion with regards to postoperative time and fusion length, independently. Coronal motion was assessed by standardized radiographs acquired in maximum right and left bending positions. The intervertebral angles were measured via digital radiographic measuring software and the motion from the levels of L4-S1 was summed. The entire cohort was included to evaluate the effect of follow-up time on residual motion. Patients were grouped into early (10 years) follow-up groups. A subset of patients (n = 35) with a primary thoracic curve and a nonstructural modifier type "C" lumbar curve were grouped as either selective fusion (lowest instrumented vertebra [LIV] of L1 and above) or longer fusion (LIV of L2 and below) and effect on motion was evaluated. The data for 259 patients are included. The distal residual unfused motion (from L4 to S1) remained unchanged across early, midterm, to long-term follow-up. In the selective fusion subset of patients, a significant increase in motion from L4 to S1 was seen in the patients who were fused long versus the selectively fused patients, irrespective of length of follow-up time. Motion in the unfused distal lumbar segments did not vary within the >10-year follow-up period. However, in patients with a primary thoracic curve and a nonstructural lumbar curve, the choice to fuse longer versus shorter may have significant consequences. The summed motion from L4 to S1 is 50% greater in patients fused longer compared with those patients with a selective fusion, in which postoperative motion is shared by more unfused segments. The implications of this focal increased motion are unknown, and further research is warranted but can be surmised. Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  15. Quantum dissipative effects in moving imperfect mirrors: Sidewise and normal motions

    International Nuclear Information System (INIS)

    Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2011-01-01

    We extend our previous work on the functional approach to the dynamical Casimir effect, to compute dissipative effects due to the relative motion of two flat, parallel, imperfect mirrors in vacuum. The interaction between the internal degrees of freedom of the mirrors and the vacuum field is modeled with a nonlocal term in the vacuum field action. We consider two different situations: either the motion is 'normal', i.e., the mirrors advance or recede changing the distance a(t) between them; or it is 'parallel', namely, a remains constant, but there is a relative sliding motion of the mirrors' planes. For the latter, we show explicitly that there is a nonvanishing frictional force, even for a constant shifting speed.

  16. Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients.

    Science.gov (United States)

    Huang, Xianwei; Naghdy, Fazel; Naghdy, Golshah; Du, Haiping

    2017-07-01

    Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive rehabilitation training in restoring motor skills after a stroke. This study focuses on the rehabilitation of fine hand motion skills due to their vital role in performing delicate activities of daily living (ADL) tasks. The proposed rehabilitation system combines an adaptive assist-as-needed (AAN) control algorithm and a Virtual Reality (VR) based rehabilitation gaming system (RGS). The developed system is described and its effectiveness is validated through clinical trials on a group of eight subacute stroke patients for a period of six weeks. The impact of the training is verified through standard clinical evaluation methods and measuring key kinematic parameters. A comparison of the pre- and post-training results indicates that the method proposed in this study can improve fine hand motion rehabilitation training effectiveness.

  17. Local control of T3 carcinomas after accelerated fractionation: a look at the 'gap'

    International Nuclear Information System (INIS)

    Wang, C.C.; Efird, Jimmy; Nakfoor, Bruce; Martins, Patricia

    1996-01-01

    Purpose: To study the effects of midcourse treatment break or gaps related to the local control of T3 carcinoma of the oropharynx and larynx following accelerated hyperfractionated radiation therapy. Methods and Materials: All patients were treated at the Massachusetts General Hospital from 1979 through 1994 with treatment consisting of 1.6 Gy per fraction, two fractions a day for the treatment of T3 carcinoma of the oropharynx and larynx. They were entered in the head and neck data base. Their treatment dates, treatment breaks, and doses vs. local control were analyzed and compared. A p-value of 0.05 was considered statistically significant. Results: A total of 162 patients were available for review. Due to the acute severe mucosal effects, most of the patients required a midcourse pause or 'break' after a dose of 38.4-48 Gy before treatment could be resumed and completed. The data indicate that (a) prolongation of the treatment gap for more than 14 days, (b) total treatment course longer than 45 days, (c) total dose less than 67 Gy, and (d) male gender adversely affected local control. In spite of the gaps, the female patients with advanced carcinomas enjoyed the benefits of improved local control after the accelerated hyperfractionated radiation therapy. Conclusions: Accelerated hyperfractionation radiation therapy using 1.6 Gy per fraction/twice-a-day (b.i.d.) for a total dose of 70.4 Gy in 6 weeks is effective in achieving high local control of T3 squamous cell carcinoma of the oropharynx and larynx. The midcourse treatment gap should be as short as possible with the projected total dose and time. Should the gaps be unduly prolonged due to various circumstances, further increase in the total dose, for example, 72-75 Gy, and/or increase of the fraction sizes, for example, 1.8-2.0 Gy/f b.i.d. after the gap may be necessary to compensate for the adverse effects of the tumor regeneration from the prolonged gap

  18. Prediction of seismic motion from contained and excavation nuclear detonations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R A [Environmental Research Corp., Alexandria, VA (United States)

    1970-05-15

    Capability to predict ground motions from nuclear events is developed on empirical and theoretical bases. Analyses of the experimental data provide basic predictions of peak particle motions and spectra which follow a (yield){sup m} times (distance){sup -n} relationship. The exponents on yield and distance are frequency dependent and derived from experiment and theory. Theory provides a physical understanding of the phenomena which allows extrapolation to off-NTS and atypical events. For example, yield scaling theory predicts significantly higher frequency motions and consequently larger ground accelerations for overburied events such as Gasbuggy, Rulison, Wasp and Wagon Wheel. These conclusions are observed from Gasbuggy (26 kt) which generated ground accelerations comparable to a normal buried event of 200 kt. This result is important in avoiding personal injury and assessing the probability of property damage. Conversely, theory predicts lower ground accelerations and seismic efficiencies for excavation events; these effects are observed from the Cabriolet and Schooner events and consequently predicted for the Sturtevant and Yawl events. With regard to the distance exponent, scattering theory determines a distance exponent which predicts greater attenuation effects on higher frequency motions. This trend is verified experimentally by regression analyses on a large number of data points which determine the distance exponent to range from -1.1 at low frequencies to -1.6 at high frequencies. Results indicate that cube root similarity scaling is not appropriate in the far field except possibly for peak particle displacements at the low frequency end of the spectrum. In addition to the source and transmission factors, current ground motion prediction techniques, on and off-NTS, take into account local site characteristics. Experimental evidence and theoretical models--layered media elastic theory, finite element modeling, and building response modeling

  19. Local forearm and whole-body respiratory quotient in humans after an oral glucose load

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Madsen, J

    1993-01-01

    the glucose load and had not returned to baseline level at the end of the experiment. Whole-body respiratory quotient (RQ) was, on average, 0.80 (SD 0.05) in the baseline condition and increased to a maximum of 0.91 (0.03) and then decreased to baseline level at the end of the experiment. The local forearm.......17) to 0.63 (0.17) 30 min after the glucose load (P glucose load RQ increased to a maximum level at 0.95 (0.22) and decreased then gradually to baseline level. The experiments emphasize several methodological problems in the measurement of local forearm RQ. The whole-body RQ......The effects of an oral glucose load of 75 g on the local forearm and whole-body energy thermogenesis were measured in normal subjects during the 4 h after the glucose intake. Simultaneous assessment of substrate metabolism in the forearm was performed. Energy expenditure (EE) increased after...

  20. Langevin theory of anomalous Brownian motion made simple

    International Nuclear Information System (INIS)

    Tothova, Jana; Vasziova, Gabriela; Lisy, VladimIr; Glod, Lukas

    2011-01-01

    During the century from the publication of the work by Einstein (1905 Ann. Phys. 17 549) Brownian motion has become an important paradigm in many fields of modern science. An essential impulse for the development of Brownian motion theory was given by the work of Langevin (1908 C. R. Acad. Sci., Paris 146 530), in which he proposed an 'infinitely more simple' description of Brownian motion than that by Einstein. The original Langevin approach has however strong limitations, which were rigorously stated after the creation of the hydrodynamic theory of Brownian motion (1945). Hydrodynamic Brownian motion is a special case of 'anomalous Brownian motion', now intensively studied both theoretically and in experiments. We show how some general properties of anomalous Brownian motion can be easily derived using an effective method that allows one to convert the stochastic generalized Langevin equation into a deterministic Volterra-type integro-differential equation for the mean square displacement of the particle. Within the Gibbs statistics, the method is applicable to linear equations of motion with any kind of memory during the evolution of the system. We apply it to memoryless Brownian motion in a harmonic potential well and to Brownian motion in fluids, taking into account the effects of hydrodynamic memory. Exploring the mathematical analogy between Brownian motion and electric circuits, which are at nanoscales also described by the generalized Langevin equation, we calculate the fluctuations of charge and current in RLC circuits that are in contact with the thermal bath. Due to the simplicity of our approach it could be incorporated into graduate courses of statistical physics. Once the method is established, it allows bringing to the attention of students and effectively solving a number of attractive problems related to Brownian motion.

  1. Effects of local geology on ground motion in the San Francisco Bay region, California—A continued study

    Science.gov (United States)

    Gibbs, James F.; Borcherdt, Roger D.

    1974-01-01

    Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The seismograms, Fourier amplitude spectra, spectral amplification curves for the signal, and the Fourier amplitude spectra of the seismic noise are presented for 60 locations. Analog amplifications, based on the maximum signal amplitude, are computed for an additional 39 locations. The recordings of the nuclear explosions show marked amplitude variations which are consistently related to the local geologic conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1, 1) for granite, (1.5, 1.6) for the Franciscan Formation, (2.3, 2.3), for other pre-Tertiary and Tertiary rocks, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for older bay sediments, and (3.7, 11.3) for younger bay mud. Spectral amplification curves define predominant ground frequencies for younger bay mud sites and for some older bay sediment sites. The predominant frequencies for most sites were not clearly defined by the amplitude spectra computed from the seismic background noise. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2.69 - 1.90 log (Distance Km). For sites on other geologic units, intensity increments, derived from this empirical rela.tion, correlate strongly with the Average Horizontal Spectral Amplifications (MISA) according to the empirical relation Intensity Increment= 0.27 + 2.70 log(AHSA). Average

  2. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  3. Randomized clinical trial of prevention of seroma formation after mastectomy by local methylprednisolone injection

    DEFF Research Database (Denmark)

    Qvamme, G; Axelsson, C. K.; Lanng, C

    2015-01-01

    : This was a double-blind randomized placebo-controlled intervention study of a single dose of 80 mg methylprednisolone versus saline on seroma formation after mastectomy. Patients were further classified according to the surgical axillary procedure: mastectomy with sentinel lymph node biopsy (M + SLNB) or mastectomy......BACKGROUND: Seroma formation, the most prevalent postoperative complication after mastectomy, is an inflammatory process that is potentially preventable via local steroid administration. This study investigated the effect of local steroid administration on seroma formation. METHODS...... with level I-II axillary lymph node dissection (M + ALND). Treatments were administered into the wound cavity via the drain orifice following removal of the drain on the first day after surgery. The primary endpoint was seroma formation; secondary endpoints included the frequency of side...

  4. Comparison of treatment strategies for Space Motion Sickness

    Science.gov (United States)

    Davis, J. R.; Jennings, R. T.; Beck, B. G.

    1992-01-01

    Treatment strategies for Space Motion Sickness were compared using the results of postflight oral debriefings. Standardized questionnaires were administered to all crewmembers immediately following Space Shuttle flights by NASA flight surgeons. Cases of Space Motion Sickness were graded as mild, moderate or severe based on published criteria, and medication effectiveness was judged based on subjective reports of symptom relief. Since October 1989, medication effectiveness is reported inflight through Private Medical Conferences with the crew. A symptom matrix was analyzed for 19 crewmembers treated with an oral combination of scopolamine and dextroamphetamine (scopdex) and 15 crewmembers treated with promethazine delivered by intramuscular (IM) or suppository routes. Scopdex has been given preflight as prophaxis for Space Motion Sickness but analysis showed delayed symptom presentation in 9 crewmembers or failed to prevent symptoms in 7. Only three crewmembers who took scopdex had no symptoms inflight. Fourteen out of 15 crewmembers treated with IM promethazine and 6 of 8 treated with promethazine suppositories after symptom development had immediate (within 12 h) symptom relief and required no additional medication. There were no cases of delayed symptom presentation in the crewmembers treated with promethazine. This response is in contrast to untreated crewmembers who typically have slow symptom resolution over 72-96 h. We conclude that promethazine is an effective treatment of Space Motion Sickness symptoms inflight. NASA policy currently recommends treating crewmembers with Space Motion Sickness after symptom development, and no longer recommends prophylaxis with scopdex due to delayed symptom development and apparent variable absorption of oral medications during early flight days.

  5. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    Science.gov (United States)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  6. LOCAL AND GENERAL MONITORING OF FORNI GLACIER (ITALIAN ALPS USING MULTI-PLATFORM STRUCTURE-FROM-MOTION PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2017-09-01

    Full Text Available Experts from the University of Milan have been investigating Forni Glacier in the Italian alps for decades, resulting in the archive of a cumbersome mass of observed data. While the analysis of archive maps, medium resolution satellite images and DEM’s may provide an overview of the long-term processes, the application of close-range sensing techniques offers the unprecedented opportunity to operate a 4D reconstruction of the glacier geometry at both global and local levels. In the latest years the availability of high-resolution DEM's from stereo-photogrammetry (2007 and UAV-photogrammetry (2014 and 2016 has allowed an improved analysis of the glacier ice-mass balance within time. During summer 2016 a methodology to record the local disruption processes has been investigated. The presence of vertical and sub-vertical surfaces has motivated the use of Structure-from-Motion Photogrammetry from ground-based stations, which yielded results comparable to the ones achieved using a long-range terrestrial laser scanner. This technique may be assumed as benchmarking for accuracy assessment, but is more difficult to be operated in high-mountain areas. Nevertheless, the measurement of GCP’s for the terrestrial photogrammetric project has revealed to be a complex task, involving the need of a total station a GNSS. The effect of network geometry on the final output has also been investigated for SfM-Photogrammetry, considering the severe limitations implied in the Alpine environment.

  7. Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites

    International Nuclear Information System (INIS)

    1975-06-01

    According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)

  8. Intraventricular flow alterations due to dyssynchronous wall motion

    Science.gov (United States)

    Pope, Audrey M.; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind

    2015-11-01

    Roughly 30% of patients with systolic heart failure suffer from left ventricular dyssynchrony (LVD), in which mechanical discoordination of the ventricle walls leads to poor hemodynamics and suboptimal cardiac function. There is currently no clear mechanistic understanding of how abnormalities in septal-lateral (SL) wall motion affects left ventricle (LV) function, which is needed to improve the treatment of LVD using cardiac resynchronization therapy. We use an experimental flow phantom with an LV physical model to study mechanistic effects of SL wall motion delay on LV function. To simulate mechanical LVD, two rigid shafts were coupled to two segments (apical and mid sections) along the septal wall of the LV model. Flow through the LV model was driven using a piston pump, and stepper motors coupled to the above shafts were used to locally perturb the septal wall segments relative to the pump motion. 2D PIV was used to examine the intraventricular flow through the LV physical model. Alterations to SL delay results in a reduction in the kinetic energy (KE) of the flow field compared to synchronous SL motion. The effect of varying SL motion delay from 0% (synchronous) to 100% (out-of-phase) on KE and viscous dissipation will be presented. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  9. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    Science.gov (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  10. Effects of aging on perception of motion

    Science.gov (United States)

    Kaur, Manpreet; Wilder, Joseph; Hung, George; Julesz, Bela

    1997-09-01

    Driving requires two basic visual components: 'visual sensory function' and 'higher order skills.' Among the elderly, it has been observed that when attention must be divided in the presence of multiple objects, their attentional skills and relational processes, along with impairment of basic visual sensory function, are markedly impaired. A high frame rate imaging system was developed to assess the elderly driver's ability to locate and distinguish computer generated images of vehicles and to determine their direction of motion in a simulated intersection. Preliminary experiments were performed at varying target speeds and angular displacements to study the effect of these parameters on motion perception. Results for subjects in four different age groups, ranging from mid- twenties to mid-sixties, show significantly better performance for the younger subjects as compared to the older ones.

  11. The effect of high-frequency ground motion on the MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Bhan, S.; Dunbar, S.

    1989-06-01

    The effect of high-frequency ground motion on structures and equipment in nuclear reactors is examined by subjecting simple linear models to selected recorded ground motions which exhibit low and high frequencies. Computed damage measures indicate that high-frequency short-duration ground motion, such as that observed in eastern North America, have a minimal effect on structures with low natural frequencies. Response spectra of high-frequency ground motion indicate that higher forces are induced in structures with high natural frequencies as compared to those induced by low-frequency ground motion. However, reported observations of earthquake damage in eastern North America suggest that high-frequency ground motion causes little of no damage to structures. This may be due to the energy absorption capability of structures. It is concluded that the response spectrum representative of ground motion observed in eastern North America may give an over-conservative measure of the response of structures with high natural frequencies, since it does not account for the typically observed short duration of high-frequency ground motion and for the energy absorption capability of structures. Detailed nonlinear analysis of specific structures with high natural frequencies should be performed to better predict the actual response. Recommendations for a nonlinear analysis of typical structures with high natural frequencies are made

  12. Comment on “Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation” [Phys. Fluids 25, 085101 (2013)

    International Nuclear Information System (INIS)

    Hietala, Niklas; Hänninen, Risto

    2014-01-01

    We comment on the paper by Van Gorder [“Motion of a helical vortex filament in superfluid 4 He under the extrinsic form of the local induction approximation,” Phys. Fluids 25, 085101 (2013)]. We point out that the flow of the normal fluid component parallel to the vortex will often lead into the Donnelly–Glaberson instability, which will cause the amplification of the Kelvin wave. We explain why the comparison to local nonlinear equation is unreasonable, and remark that neglecting the motion in the x-direction is not reasonable for a Kelvin wave with an arbitrary wavelength and amplitude. The correct equations in the general case are also derived

  13. Inhibitory Control of Feature Selectivity in an Object Motion Sensitive Circuit of the Retina

    Directory of Open Access Journals (Sweden)

    Tahnbee Kim

    2017-05-01

    Full Text Available Object motion sensitive (OMS W3-retinal ganglion cells (W3-RGCs in mice respond to local movements in a visual scene but remain silent during self-generated global image motion. The excitatory inputs that drive responses of W3-RGCs to local motion were recently characterized, but which inhibitory neurons suppress W3-RGCs’ responses to global motion, how these neurons encode motion information, and how their connections are organized along the excitatory circuit axis remains unknown. Here, we find that a genetically identified amacrine cell (AC type, TH2-AC, exhibits fast responses to global motion and slow responses to local motion. Optogenetic stimulation shows that TH2-ACs provide strong GABAA receptor-mediated input to W3-RGCs but only weak input to upstream excitatory neurons. Cell-type-specific silencing reveals that temporally coded inhibition from TH2-ACs cancels W3-RGC spike responses to global but not local motion stimuli and, thus, controls the feature selectivity of OMS signals sent to the brain.

  14. The Toggle Local Planner for sampling-based motion planning

    KAUST Repository

    Denny, Jory; Amato, Nancy M.

    2012-01-01

    Sampling-based solutions to the motion planning problem, such as the probabilistic roadmap method (PRM), have become commonplace in robotics applications. These solutions are the norm as the dimensionality of the planning space grows, i.e., d > 5

  15. Climate change and local pollution effects. An integrated approach

    International Nuclear Information System (INIS)

    Aaheim, H.A.; Kristin, A.; Seip, H.M.

    1999-01-01

    Few studies on measures for mitigation of damage caused by man-made emissions to the environment have tried to consider all major effects. We illustrate the importance of an integrated approach by estimating costs and benefits of a proposed energy saving program for Hungary, originally designed to reduce CO 2 emissions. The dominant benefit of implementing the program is likely to be reduced health damage from local pollutants. Also reduced costs of material damage and to a lesser extent vegetation damage contribute to make the net benefit considerable. Compared to the reduction in these local and regional effects, the benefits from reducing greenhouse gases are likely to be minor. Since local effects in general occur much earlier after measures have been implemented than effects of increased emissions of greenhouse gases, inclusion of local effects makes evaluation of climate policy less dependent on the choice of discount rate. In our opinion, similar results are likely for many measures originally designed to reduce emissions of greenhouse gases particularly in some areas in developing countries with high local pollution levels. Main uncertainties in the analysis, e.g. in the relationships between damage and pollution level, are discussed. 72 refs

  16. Endoscopic submucosal dissection for locally recurrent colorectal lesions after previous endoscopic mucosal resection.

    Science.gov (United States)

    Zhou, Pinghong; Yao, Liqing; Qin, Xinyu; Xu, Meidong; Zhong, Yunshi; Chen, Weifeng

    2009-02-01

    The objective of this study was to determine the efficacy and safety of endoscopic submucosal dissection for locally recurrent colorectal cancer after previous endoscopic mucosal resection. A total of 16 patients with locally recurrent colorectal lesions were enrolled. A needle knife, an insulated-tip knife and a hook knife were used to resect the lesion along the submucosa. The rate of the curative resection, procedure time, and incidence of complications were evaluated. Of 16 lesions, 15 were completely resected with endoscopic submucosal dissection, yielding an en bloc resection rate of 93.8 percent. Histologic examination confirmed that lateral and basal margins were cancer-free in 14 patients (87.5 percent). The average procedure time was 87.2 +/- 60.7 minutes. None of the patients had immediate or delayed bleeding during or after endoscopic submucosal dissection. Perforation in one patient (6.3 percent) was the only complication and was managed conservatively. The mean follow-up period was 15.5 +/- 6.8 months; none of the patients experienced lesion residue or recurrence. Endoscopic submucosal dissection appears to be effective for locally recurrent colorectal cancer after previous endoscopic mucosal resection, making it possible to resect whole lesions and provide precise histologic information.

  17. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    International Nuclear Information System (INIS)

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-01-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV max ) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV max up to 25% and reduce the diameter of the 50% SUV max volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions

  18. Predicting Posttraumatic Stress Symptom Prevalence and Local Distribution after an Earthquake with Scarce Data.

    Science.gov (United States)

    Dussaillant, Francisca; Apablaza, Mauricio

    2017-08-01

    After a major earthquake, the assignment of scarce mental health emergency personnel to different geographic areas is crucial to the effective management of the crisis. The scarce information that is available in the aftermath of a disaster may be valuable in helping predict where are the populations that are in most need. The objectives of this study were to derive algorithms to predict posttraumatic stress (PTS) symptom prevalence and local distribution after an earthquake and to test whether there are algorithms that require few input data and are still reasonably predictive. A rich database of PTS symptoms, informed after Chile's 2010 earthquake and tsunami, was used. Several model specifications for the mean and centiles of the distribution of PTS symptoms, together with posttraumatic stress disorder (PTSD) prevalence, were estimated via linear and quantile regressions. The models varied in the set of covariates included. Adjusted R2 for the most liberal specifications (in terms of numbers of covariates included) ranged from 0.62 to 0.74, depending on the outcome. When only including peak ground acceleration (PGA), poverty rate, and household damage in linear and quadratic form, predictive capacity was still good (adjusted R2 from 0.59 to 0.67 were obtained). Information about local poverty, household damage, and PGA can be used as an aid to predict PTS symptom prevalence and local distribution after an earthquake. This can be of help to improve the assignment of mental health personnel to the affected localities. Dussaillant F , Apablaza M . Predicting posttraumatic stress symptom prevalence and local distribution after an earthquake with scarce data. Prehosp Disaster Med. 2017;32(4):357-367.

  19. Effect of Intrafraction Prostate Motion on Proton Pencil Beam Scanning Delivery: A Quantitative Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shikui, E-mail: TangS@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Deville, Curtiland; McDonough, James; Tochner, Zelig [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wang, Ken Kang-Hsin [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland (United States); Vapiwala, Neha; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-10-01

    Purpose: To assess the dosimetric impact caused by the interplay between intrafraction prostate motion and the intermittent delivery of proton pencil beam scanning (PBS). Methods and Materials: A cohort of 10 prostate patients was treated with PBS using a bilateral single-field uniform dose (SFUD) modality. Bilateral intensity-modulated proton therapy (IMPT) plans were generated for comparison. Because beam-on time in PBS was intermittent, the actual beam-on time was determined from treatment logs. Prostate motion was generalized according to real-time Calypso tracking data from our previously reported prospective photon trial. We investigated potential dose deviations by considering the interplay effect resulting from the worst-case scenario motion and the PBS delivery sequence. Results: For both bilateral-field SFUD and IMPT plans, clinical target volume (CTV) D{sub 99}% coverage was degraded <2% owing to prostate intrafraction motion when averaged over the course of treatment, but was >10% for the worst fraction. The standard deviation of CTV D{sub 99}% distribution was approximately 1.2%. The CTV coverage of individual fields in SFUD plans degraded as time elapsed after the initial alignment, owing to prostate drift. Intensity-modulated proton therapy and SFUD demonstrated comparable results when bilateral opposed fields were used. Single-field SFUD plans that were repainted twice, which could reduce half of the treatment time, resulted in similar CTV coverage as bilateral-field plans. Conclusions: Intrafraction prostate motion affects the actual delivered dose to CTV; however, when averaged over the course of treatment, CTV D{sub 99}% coverage degraded only approximately 2% even for the worst-case scenario. The IMPT plan results are comparable to those of the SFUD plan, and similar coverage can be achieved if treated by SFUD 1 lateral field per day when rescanning the field twice to shorten the treatment time and mitigate intrafraction motion.

  20. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  1. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data: a study in healthy subjects and stroke patients.

    Science.gov (United States)

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Vangel, Mark; Ashina, Messoud; Boas, David A

    2015-05-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which is at the basis of functional connectivity and autoregulation studies. We use as our metric of interest the interhemispheric correlation (IHC), the correlation coefficient between symmetrical time series of oxyhemoglobin oscillations. We show that increased motion content results in a decreased IHC. Using a set of motion-free data on which we add real MAs, we find that the best motion correction approach consists of discarding the segments of MAs following a careful approach to minimize the contamination due to band-pass filtering of data from "bad" segments spreading into adjacent "good" segments. Finally, we compare the IHC in a stroke group and in a healthy group that we artificially contaminated with the MA content of the stroke group, in order to avoid the confounding effect of increased motion incidence in the stroke patients. After motion correction, the IHC remains lower in the stroke group in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies.

  2. Artificial horizon effects on motion sickness and performance.

    Science.gov (United States)

    Tal, Dror; Gonen, Adi; Wiener, Guy; Bar, Ronen; Gil, Amnon; Nachum, Zohar; Shupak, Avi

    2012-07-01

    To investigate whether the projection of Earth-referenced scenes during provocative motion can alleviate motion sickness severity and prevent motion sickness-induced degradation of performance. Exposure to unfamiliar motion patterns commonly results in motion sickness and decreased performance. Thirty subjects with moderate-to-severe motion sickness susceptibility were exposed to the recorded motion profile of a missile boat under moderate sea conditions in a 3-degrees-of-freedom ship motion simulator. During a 120-minute simulated voyage, the study participants were repeatedly put through a performance test battery and completed a motion sickness susceptibility questionnaire, while self-referenced and Earth-referenced visual scenes were projected inside the closed simulator cabin. A significant decrease was found in the maximal motion sickness severity score, from 9.83 ± 9.77 (mean ± standard deviation) to 7.23 ± 7.14 (p pitch, and heave movements of the simulator. Although there was a significant decrease in sickness severity, substantial symptoms still persisted. Decision making, vision, concentration, memory, simple reasoning, and psychomotor skills all deteriorated under the motion conditions. However, no significant differences between the projection conditions could be found in the scores of any of the performance tests. Visual information regarding the vessel's movement provided by an artificial horizon device might decrease motion sickness symptoms. However, although this device might be suitable for passive transportation, the continued deterioration in performance measures indicates that it provides no significant advantage for personnel engaged in the active operation of modern vessels.

  3. The Flash-Lag Effect as a Motion-Based Predictive Shift.

    Directory of Open Access Journals (Sweden)

    Mina A Khoei

    2017-01-01

    Full Text Available Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object's motion but it is still unclear how these two representations interact. For instance, the so-called flash-lag effect supports the idea of a differential processing of position between moving and static objects. Although elucidating such mechanisms is crucial in our understanding of the dynamics of visual processing, a theory is still missing to explain the different facets of this visual illusion. Here, we reconsider several of the key aspects of the flash-lag effect in order to explore the role of motion upon neural coding of objects' position. First, we formalize the problem using a Bayesian modeling framework which includes a graded representation of the degree of belief about visual motion. We introduce a motion-based prediction model as a candidate explanation for the perception of coherent motion. By including the knowledge of a fixed delay, we can model the dynamics of sensory information integration by extrapolating the information acquired at previous instants in time. Next, we simulate the optimal estimation of object position with and without delay compensation and compared it with human perception under a broad range of different psychophysical conditions. Our computational study suggests that the explicit, probabilistic representation of velocity information is crucial in explaining position coding, and therefore the flash-lag effect. We discuss these theoretical results in light of the putative corrective mechanisms that can be used to cancel out the detrimental effects of neural

  4. Motion correction options in PET/MRI.

    Science.gov (United States)

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  6. Perceptual learning of motion direction discrimination with suppressed and unsuppressed MT in humans: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Benjamin Thompson

    Full Text Available The middle temporal area of the extrastriate visual cortex (area MT is integral to motion perception and is thought to play a key role in the perceptual learning of motion tasks. We have previously found, however, that perceptual learning of a motion discrimination task is possible even when the training stimulus contains locally balanced, motion opponent signals that putatively suppress the response of MT. Assuming at least partial suppression of MT, possible explanations for this learning are that 1 training made MT more responsive by reducing motion opponency, 2 MT remained suppressed and alternative visual areas such as V1 enabled learning and/or 3 suppression of MT increased with training, possibly to reduce noise. Here we used fMRI to test these possibilities. We first confirmed that the motion opponent stimulus did indeed suppress the BOLD response within hMT+ compared to an almost identical stimulus without locally balanced motion signals. We then trained participants on motion opponent or non-opponent stimuli. Training with the motion opponent stimulus reduced the BOLD response within hMT+ and greater reductions in BOLD response were correlated with greater amounts of learning. The opposite relationship between BOLD and behaviour was found at V1 for the group trained on the motion-opponent stimulus and at both V1 and hMT+ for the group trained on the non-opponent motion stimulus. As the average response of many cells within MT to motion opponent stimuli is the same as their response to non-directional flickering noise, the reduced activation of hMT+ after training may reflect noise reduction.

  7. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  8. A hybrid method for the estimation of ground motion in sedimentary basins: Quantitative modelling for Mexico City

    International Nuclear Information System (INIS)

    Faeh, D.; Suhadolc, P.; Mueller, S.; Panza, G.F.

    1994-04-01

    To estimate the ground motion in two-dimensional, laterally heterogeneous, anelastic media, a hybrid technique has been developed which combines modal summation and the finite difference method. In the calculation of the local wavefield due to a seismic event, both for small and large epicentral distances, it is possible to take into account the sources, path and local soil effects. As practical application we have simulated the ground motion in Mexico City caused by the Michoacan earthquake of September 19, 1985. By studying the one-dimensional response of the two sedimentary layers present in Mexico City, it is possible to explain the difference in amplitudes observed between records for receivers inside and outside the lake-bed zone. These simple models show that the sedimentary cover produces the concentration of high-frequency waves (0.2-0.5 Hz) on the horizontal components of motion. The large amplitude coda of ground motion observed inside the lake-bed zone, and the spectral ratios between signals observed inside and outside the lake-bed zone, can only be explained by two-dimensional models of the sedimentary basin. In such models, the ground motion is mainly controlled by the response of the uppermost clay layer. The synthetic signals explain the major characteristics (relative amplitudes, spectral ratios, and frequency content) of the observed ground motion. The large amplitude coda of the ground motion observed in the lake-bed zone can be explained as resonance effects and the excitation of local surface waves in the laterally heterogeneous clay layer. Also, for the 1985 Michoacan event, the energy contributions of the three subevents are important to explain the observed durations. (author). 39 refs, 15 figs, 1 tab

  9. Diffusion of intrinsic localized modes by attractor hopping

    International Nuclear Information System (INIS)

    Meister, Matthias; Vazquez, Luis

    2003-01-01

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability θ and a delay time τ A . The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, θ and τ A being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in θ, a decrease in τ A and reduces the average distance a mode travels during the transition period

  10. Diffusion of intrinsic localized modes by attractor hopping

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Matthias [Dpto FIsica de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Biocomputacion y FIsica de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza (Spain); Vazquez, Luis [Dpto Matematica Aplicada, Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de AstrobiologIa (CSIC-INTA), 28850 Torrejon de Ardoz (Spain)

    2003-11-28

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability {theta} and a delay time {tau}{sub A}. The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, {theta} and {tau}{sub A} being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in {theta}, a decrease in {tau}{sub A} and reduces the average distance a mode travels during the transition period.

  11. Effects of Accretionary Prisms on 3-D Long-Period Ground Motion Simulations

    Science.gov (United States)

    Guo, Y.; Koketsu, K.; Miyake, H.

    2014-12-01

    The accretionary prism along the subduction zones such as the Middle America trench or the Nankai trough is considered as an important factor affecting the generation and propagation of long-period ground motions. In Japan, the great earthquake along the Nankai subduction zone which is expected to occur in the near future can generate large long-period ground motions in the metropolitan areas such as Osaka, Nagoya and Tokyo. To investigate the effect of accretionary prism on long-period ground motions, we performed simulations of long-period ground motions for the event (Mw 7.1) that occurred off the Kii peninsula, Japan, at 10:07 on 5 September 2004 (UTC). Our simulation model ranged from the Kinki region to the Kanto region, and included the Osaka, Nobi and Kanto basin. We calculated long-period ground motions for four types of 3-D velocity structure models: (a) model with the accretionary prism (reference model), (b) model where accretionary prism has different 3-D geometry from the reference model, (c) model with the accretionary prism whose velocity, density and Q-value are shifted, (d) model without the accretionary prism. We compared the waveforms calculated for these models and concluded that the accretionary prism along the Nankai subduction zone plays roles in reducing the amplitude of direct waves and extending the duration of coda waves. This is attributed to the trap effect of accretionary prism. Our simulation also suggested that, the edge geometry along the landward side of accretionary prism has major effects on the processes of generation and propagation of long-period ground motions.

  12. The effect of local tramadol injection in post appendectomy pain

    OpenAIRE

    Alireza Khazaei; Farshid Arbabi-Kalati; Soheil Borumand; Reza Rooshanravan

    2012-01-01

    Background: It has been demonstrated that tramadol, asemisynthetic opioid, is an effective analgesic with systemic (central) and local (peripheral) anesthetic effects. The aim of this study was to compare the post-operative anesthetic effect of subcutaneous wound infiltration of tramadol with normal saline as placebo in the incision wounds after appendectomy and measuring the average need to petidine during the next 24 hours after the appendectomy. Materials and Method: This double blind stud...

  13. IMMEDIATE EFFECT OF CERVICAL MANIPULATION ON PAIN AND RANGE OF MOTION IN PATIENTS WITH CHRONIC MECHANICAL NECK PAIN

    Directory of Open Access Journals (Sweden)

    Kabir Isah Mayana

    2017-06-01

    Full Text Available Background: Neck pain has been reported as a prevalent musculoskeletal disorder globally with more than half of the general population being affected once or more within their life span. Methods: A randomized clinical trial research design was used which investigated the immediate effect of cervical manipulation on neck pain and cervical range of motion among patients with chronic mechanical neck pain. 20 male and female participants between the ages of 26 to 60 years with chronic mechanical neck pain attending physiotherapy clinics were recruited. They were randomly assigned into two groups (A and B of 10 patients each. Group A received soft tissue massage, and cervical manipulation and group B served as the control group, and they received only soft tissue massage. There were two outcomes measured; Pain intensity was rated using visual analog scale (VAS before and immediately after the intervention. Pre and Post intervention measurements of cervical spine range of motion using Goniometer were also taken. Results: Findings of the study revealed significant immediate improvement of pain and Cervical Range of Motions (p<0.05 in all dimensions in the experimental group while Pain, flexion and right side Cervical flexion significantly improved in the control group. It was also found out after comparing the outcomes between the two groups that, the experimental group had significantly (p<0.05 better improvement than the control group in post-intervention pain, cervical flexion, cervical extension and cervical (right and left lateral rotations. Conclusion: Cervical manipulation is effective in immediate pain relief and improvement in cervical range of motion in patients with mechanical neck pain

  14. Evaluation of tumor motion effect in canine model for diagnostic and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sangkeun; Nam, Taewon; Kim, Kyeongmin [Molecular Imaging Research Center, Seoul (Korea, Republic of); Park, Seungwoo; Han, Suchul; Ji, Younghoon [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Nohwon; Eom, Kidong [Konkuk Univ., Seoul (Korea, Republic of)

    2013-05-15

    The internal organs move up to 35mm maximum and it provides information and uncertainty that has been distorted in the diagnosis and treatment. Previous most studies for the effect of respiration have been performed with external monitoring systems but it cannot represent internal organ motion such as liver, pancreas, and lung. Positron emission tomography (PET) is more influenced by motion than computed tomography (CT) and magnetic resonance imaging (MRI) since measurement time for image acquisition is longer than CT and MRI. Thus, count of tumor is to be underestimated and region of tumor is to be overestimated. The first aim of this study was developing the artificial pulmonary nodule which can be performed non-invasive transplant into thorax of dogs and second is to assess the effect of respiratory motion on PET image with evaluating the applicability of the artificial model using dogs for diagnosis and treatment. The developed artificial pulmonary nodule showed reproducibility and motion effect as respiratory cycle and it was verified in PET images. Radiation dose estimated was not changed and was reduced slightly of 10 rpm and 15 rpm, respectively, in both of glass dosimeter and ion chamber. The developed artificial pulmonary nodule will be useful tool for evaluating respiratory motion and better research performance for diagnosis and treatment will be expected with performing simulated experiment using the nodule conducted in this study.

  15. Results of external beam irradiation for rectal carcinomas locally recurrent after local excision or electrocoagulation; Short communication

    Energy Technology Data Exchange (ETDEWEB)

    Shun Wong, C.; Cummings, B.J.; Keane, T.J.; O' Sullivan, Brian; Catton, C.N. (Princess Margaret Hospital, Toronto, ON (Canada))

    1991-10-01

    The outcome of 42 patients who developed locally recurrent rectal carcinoma after initial local excision or electrocoagulation was presented. Five patients received combined surgery and radiotherapy (XRT). The remaining 37 patients were managed by XRT alone. The overall 5 years actuarial survival and local control rates were 21 and 22 percent, respectively. For patients who received XRT alone, the 5 year actuarial survival and local control rates were 20 and 15 percent, resp. The corresponding figures were 35 and 40 percent for patients who received a total XRT dose of 50 Gy or more. One patient who underwent combined treatment developed rectal and bladder incontinence requiring surgery. For patients with rectal recurrence after initial conservative surgery, XRT is an alternative to abdominoperipheral resection if major resection is contraindicated. (author). 13 refs.; 2 tabs.

  16. Effects of Wii balance board exercises on balance after posterior cruciate ligament reconstruction.

    Science.gov (United States)

    Puh, Urška; Majcen, Nia; Hlebš, Sonja; Rugelj, Darja

    2014-05-01

    To establish the effects of training on Wii balance board (WBB) after posterior cruciate ligament (PCL) reconstruction on balance. Included patient injured her posterior cruciate ligament 22 months prior to the study. Training on WBB was performed 4 weeks, 6 times per week, 30-45 min per day. Center of pressure (CoP) sway during parallel and one-leg stance, and body weight distribution in parallel stance were measured. Additionally, measurements of joint range of motion and limb circumferences were taken before and after training. After training, the body weight was almost equally distributed on both legs. Decrease in CoP sway was most significant for one-leg stance with each leg on compliant surface with eyes open and closed. The knee joint range of motion increased and limb circumferences decreased. According to the results of this single case report, we might recommend the use of WBB for balance training after PCL reconstruction. Case series with no comparison group, Level IV.

  17. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  18. Clinical Implementation of an Online Adaptive Plan-of-the-Day Protocol for Nonrigid Motion Management in Locally Advanced Cervical Cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Heijkoop, Sabrina T., E-mail: s.heijkoop@erasmusmc.nl; Langerak, Thomas R.; Quint, Sandra; Bondar, Luiza; Mens, Jan Willem M.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2014-11-01

    Purpose: To evaluate the clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid target motion management in locally advanced cervical cancer intensity modulated radiation therapy (IMRT). Methods and Materials: Each of the 64 patients had four markers implanted in the vaginal fornix to verify the position of the cervix during treatment. Full and empty bladder computed tomography (CT) scans were acquired prior to treatment to build a bladder volume-dependent cervix-uterus motion model for establishment of the plan library. In the first phase of clinical implementation, the library consisted of one IMRT plan based on a single model-predicted internal target volume (mpITV), covering the target for the whole pretreatment observed bladder volume range, and a 3D conformal radiation therapy (3DCRT) motion-robust backup plan based on the same mpITV. The planning target volume (PTV) combined the ITV and nodal clinical target volume (CTV), expanded with a 1-cm margin. In the second phase, for patients showing >2.5-cm bladder-induced cervix-uterus motion during planning, two IMRT plans were constructed, based on mpITVs for empty-to-half-full and half-full-to-full bladder. In both phases, a daily cone beam CT (CBCT) scan was acquired to first position the patient based on bony anatomy and nodal targets and then select the appropriate plan. Daily post-treatment CBCT was used to verify plan selection. Results: Twenty-four and 40 patients were included in the first and second phase, respectively. In the second phase, 11 patients had two IMRT plans. Overall, an IMRT plan was used in 82.4% of fractions. The main reasons for selecting the motion-robust backup plan were uterus outside the PTV (27.5%) and markers outside their margin (21.3%). In patients with two IMRT plans, the half-full-to-full bladder plan was selected on average in 45% of the first 12 fractions, which was reduced to 35% in the last treatment fractions. Conclusions: The implemented

  19. Changes in spinal range of motion after a flexibility training program in elderly women

    Directory of Open Access Journals (Sweden)

    Battaglia G

    2014-04-01

    Full Text Available Giuseppe Battaglia,1,2 Marianna Bellafiore,1,2 Giovanni Caramazza,2 Antonio Paoli,3 Antonino Bianco,1,2 Antonio Palma1,2 1Department of Law, Society, and Sport Sciences, University of Palermo, Palermo, Italy; 2Sicilian Regional Sports School of Italian National Olympic Committee (CONI, Sicily, Italy; 3Department of Biomedical Sciences, University of Padova, Padova, Italy Background: Aging-related reduced spinal mobility can interfere with the execution of important functional skills and activities in elderly women. Although several studies have shown positive outcomes in response to spinal flexibility training programs, little is known about the management of sets and repetitions in training protocols. The purpose of this study was to investigate the effects of an 8-week specific and standardized flexibility training program on the range of spinal motion in elderly women. Methods: Participants were recruited in a senior center of Palermo and randomly assigned in two groups: trained group (TG and control group (CG, which included 19 and 18 women, respectively. TG was trained for 8 weeks at two sessions/week. In particular, every session included three phases: warm up (~10 minutes, central period (~50 minutes, and cool down (~10 minutes. CG did not perform any physical activity during the experimental period. Spinal ranges of motion (ROM were measured from neutral standing position to maximum bending position and from neutral standing position to maximum extension position before and after the experimental period, using a SpinalMouse® device (Idiag, Volkerswill, Switzerland. Results: After the training period, TG showed an increase in spinal inclination by 16.4% (P<0.05, in sacral/hip ROM by 29.2% (P<0.05, and in thoracic ROM by 22.5% (P>0.05 compared with CG from maximum extension position to maximum bending position. We did not observe any significant difference in TG's lumbar ROM compared with CG after the training period (P>0.05. Conclusion

  20. Comparing the Immediate Effects of a Total Motion Release Warm-up and a Dynamic Warm-up Protocol on the Dominant Shoulder in Baseball Athletes.

    Science.gov (United States)

    Gamma, Stephen C; Baker, Russell; May, James; Seegmiller, Jeff G; Nasypany, Alan; Iorio, Steven M

    2018-04-10

    Gamma, SC, Baker, R, May, J, Seegmiller, JG, Nasypany, A, and Iorio, SM. Comparing the immediate effects of a total motion release warm-up and a dynamic warm-up protocol on the dominant shoulder in baseball athletes. J Strength Cond Res XX(X): 000-000, 2017-A decrease in total range of motion (ROM) of the dominant shoulder may predispose baseball athletes to increased shoulder injury risk; the most effective technique for improving ROM is unknown. The purpose of this study was to compare the immediate effects of Total Motion Release (TMR) to a generic dynamic warm-up program in baseball athletes. Baseball athletes (n = 20) were randomly assigned to an intervention group: TMR group (TMRG; n = 10) or traditional warm-up group (TWG; n = 10). Shoulder ROM measurements were recorded for internal rotation (IR) and external rotation (ER), the intervention was applied, and postmeasurements were recorded. Each group then received the other intervention and postmeasurements were again recorded. The time main effect (p ≤ 0.001) and the time × group interaction effect were significant (p ≤ 0.001) for IR and ER. Post hoc analysis revealed that TMR produced significant increases in mean IR (p ≤ 0.005, d = 1.52) and ER (p ≤ 0.018, d = 1.22) of the dominant shoulder initially. When groups crossed-over, the TMRG experienced a decrease in mean IR and ER after the dynamic warm-up, whereas the TWG experienced a significant increase in mean IR (p ≤ 0.001, d = 3.08) and ER (p ≤ 0.001, d = 2.56) after TMR intervention. Total Motion Release increased IR and ER of the dominant shoulder more than a dynamic warm-up. Dynamic warm-up after TMR also resulted in decreased IR and ER; however, TMR after dynamic warm-up significantly improved IR and ER. Based on these results, TMR is more effective than a generic dynamic warm-up for improving dominant shoulder ROM in baseball players.

  1. Effectiveness of external respiratory surrogates for in vivo liver motion estimation

    International Nuclear Information System (INIS)

    Chang, Kai-Hsiang; Ho, Ming-Chih; Yeh, Chi-Chuan; Chen, Yu-Chien; Lian, Feng-Li; Lin, Win-Li; Yen, Jia-Yush; Chen, Yung-Yaw

    2012-01-01

    Purpose: Due to low frame rate of MRI and high radiation damage from fluoroscopy and CT, liver motion estimation using external respiratory surrogate signals seems to be a better approach to track liver motion in real-time for liver tumor treatments in radiotherapy and thermotherapy. This work proposes a liver motion estimation method based on external respiratory surrogate signals. Animal experiments are also conducted to investigate related issues, such as the sensor arrangement, multisensor fusion, and the effective time period. Methods: Liver motion and abdominal motion are both induced by respiration and are proved to be highly correlated. Contrary to the difficult direct measurement of the liver motion, the abdominal motion can be easily accessed. Based on this idea, our study is split into the model-fitting stage and the motion estimation stage. In the first stage, the correlation between the surrogates and the liver motion is studied and established via linear regression method. In the second stage, the liver motion is estimated by the surrogate signals with the correlation model. Animal experiments on cases of single surrogate signal, multisurrogate signals, and long-term surrogate signals are conducted and discussed to verify the practical use of this approach. Results: The results show that the best single sensor location is at the middle of the upper abdomen, while multisurrogate models are generally better than the single ones. The estimation error is reduced from 0.6 mm for the single surrogate models to 0.4 mm for the multisurrogate models. The long-term validity of the estimation models is quite satisfactory within the period of 10 min with the estimation error less than 1.4 mm. Conclusions: External respiratory surrogate signals from the abdomen motion produces good performance for liver motion estimation in real-time. Multisurrogate signals enhance estimation accuracy, and the estimation model can maintain its accuracy for at least 10 min. This

  2. Deriving motion from megavoltage localization cone beam computed tomography scans

    International Nuclear Information System (INIS)

    Alfredo C Siochi, R

    2009-01-01

    Cone beam computed tomography (CBCT) projection data consist of views of a moving point (e.g. diaphragm apex). The point is selected in identification views of extreme motion (two inhale, two exhale). The room coordinates of the extreme points are determined by source-to-view ray tracing intersections. Projected to other views, these points become opposite corners of a motion-bounding box. The view coordinates of the point, relative to the box, are used to interpolate between extreme room coordinates. Along with the views' time stamps, this provides the point's room coordinates as a function of time. CBCT-derived trajectories of a tungsten pin, moving 3 cm cranio-caudally and 1 cm elsewhere, deviate from expected ones by at most 1.06 mm. When deviations from the ideal imaging geometry are considered, mean errors are less than 0.2 mm. While CBCT-derived cranio-caudal positions are insensitive to the choice of identification views, the bounding box determination requires view separations between 15 and 163 deg. Inhale views with the two largest amplitudes should be used, though corrections can account for different amplitudes. The information could be used to calibrate motion surrogates, adaptively define phase triggers immediately before gated radiotherapy and provide phase and amplitude sorting for 4D CBCT.

  3. Independent and additive repetition priming of motion direction and color in visual search.

    Science.gov (United States)

    Kristjánsson, Arni

    2009-03-01

    Priming of visual search for Gabor patch stimuli, varying in color and local drift direction, was investigated. The task relevance of each feature varied between the different experimental conditions compared. When the target defining dimension was color, a large effect of color repetition was seen as well as a smaller effect of the repetition of motion direction. The opposite priming pattern was seen when motion direction defined the target--the effect of motion direction repetition was this time larger than for color repetition. Finally, when neither was task relevant, and the target defining dimension was the spatial frequency of the Gabor patch, priming was seen for repetition of both color and motion direction, but the effects were smaller than in the previous two conditions. These results show that features do not necessarily have to be task relevant for priming to occur. There is little interaction between priming following repetition of color and motion, these two features show independent and additive priming effects, most likely reflecting that the two features are processed at separate processing sites in the nervous system, consistent with previous findings from neuropsychology & neurophysiology. The implications of the findings for theoretical accounts of priming in visual search are discussed.

  4. Local recurrences after laparoscopic resections for renal parenchymal cancer

    Directory of Open Access Journals (Sweden)

    Yu. G. Alyaev

    2017-01-01

    Full Text Available Introduction. Renal cancer constitutes 2–3 % of all tumors of the human body. Annually worldwide renal cancer morbidity increases by 2 %, about 90 % of cases are localized in the parenchyma.  Currently, treatment of localized forms of kidney cancer increasingly  incorporates kidney-preserving technologies.The objective is to evaluate the rate and causes of local renal cancer recurrence after laparoscopic resections of the organ for treatment of localized renal parenchymal cancer.Materials and methods. Retrospective analysis of 459 laparoscopic resections performed between June of 2011 to May of 2017 at the R. M. Fronstein Urology Clinic of the I. M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia was performed.Results. Of 459 patients who underwent endoscopic surgical kidney resections with video, 399 patients were diagnosed with renal cancer during planned histological examination, among them 3 (0.75 %  patients had local recurrence. All patients were operated on with  laparoscopic access, in 1 case the surgery was complicated by  intraoperative bleeding which required conversion to nephrectomy. At the time of primary surgery, all patients with cancer recurrence were diagnosed with stage Т1b. Clear cell renal cell  carcinoma was verified in all patients by morphological examination,  and malignancy grade (nuclear differentiation per the Furman  grading system was 2 (in 2 patients and 3 (in 1 patient. In 2  patients, local recurrence was diagnosed 6 months after the surgery, in 1 patient – 12 months after the surgery. One case of local  recurrence in the area of previous resection was detected, in 1 case  dissemination of the process through paranephric tissue (apart from local recurrence was observed, and 1 case of recurrence in the bed of the removed kidney was diagnosed. All patients underwent repeat surgery in the clinic: 2 patients were operated on laparoscopically, 1  patient

  5. Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake

    International Nuclear Information System (INIS)

    Borcherdt, R.D.; Gibbs, J.F.

    1976-01-01

    Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The recordings show marked amplitude variations in the frequency band 0.25 to 3.0 Hz that are consistently related to the local geological conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1,1) for granite, (1.5, 1.6) for the Franciscan Formation, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for alluvium, and (3.7, 11.3) for bay mud. Spectral amplification curves define predominant ground frequencies in the band 0.25 to 3.0 H for bay mud sites and for some alluvial sites. Amplitude spectra computed from recordings of seismic background noise at 50 sites do not generally define predominant ground frequencies. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2.69 -- 1.90 log (Distance in kilometers). For sites on other geological units, intensity increments, derived from this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) according to the empirical relation Intensity Increment = 0.27 + 2.70 log (AHSA). Average intensity increments predicted for the various geological units are --0.3 for granite, 0.2 for the Franciscan Formation, 0.6 for the Great Valley sequence, 0.8 for the Santa Clara Formation, 1.3 for alluvium, and 2.4 for bay mud

  6. Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Borcherdt, R.D.; Gibbs, J.F.

    1976-04-01

    Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The recordings show marked amplitude variations in the frequency band 0.25 to 3.0 Hz that are consistently related to the local geological conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1,1) for granite, (1.5, 1.6) for the Franciscan Formation, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for alluvium, and (3.7, 11.3) for bay mud. Spectral amplification curves define predominant ground frequencies in the band 0.25 to 3.0 H for bay mud sites and for some alluvial sites. Amplitude spectra computed from recordings of seismic background noise at 50 sites do not generally define predominant ground frequencies. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2.69 -- 1.90 log (Distance in kilometers). For sites on other geological units, intensity increments, derived from this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) according to the empirical relation Intensity Increment = 0.27 + 2.70 log (AHSA). Average intensity increments predicted for the various geological units are --0.3 for granite, 0.2 for the Franciscan Formation, 0.6 for the Great Valley sequence, 0.8 for the Santa Clara Formation, 1.3 for alluvium, and 2.4 for bay mud.

  7. Preliminary study of tissue concentrations of penicillin after local administration into the guttural pouches in four healthy horses.

    Science.gov (United States)

    Kendall, A; Mayhew, I G; Petrovski, K

    2016-08-01

    Treatment of subclinical carriers of Streptococcus equi subsp. equi with a gelatine-penicillin formulation deposited in the guttural pouch has been empirically proposed, but data on local tissue penicillin concentrations after treatment are lacking. We analysed tissue levels of penicillin after administration into the guttural pouches of four healthy horses. Two horses received local treatment with gelatine-penicillin and two horses received local treatment with an intramammary formulation of penicillin. Tissues were harvested for analysis either 12 or 24 h later. Results indicate that local treatment may be effective, but more research on optimal drug formulations in a larger sample size is warranted. © 2016 Australian Veterinary Association.

  8. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Chad R. R. N.; Kemp, Robert A. de, E-mail: RAdeKemp@ottawaheart.ca [Physics Department, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada and Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada); Klein, Ran [Department of Nuclear Medicine, Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario K1Y 4E9 (Canada); Beanlands, Rob S. [Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada)

    2016-04-15

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations

  9. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    International Nuclear Information System (INIS)

    Hunter, Chad R. R. N.; Kemp, Robert A. de; Klein, Ran; Beanlands, Rob S.

    2016-01-01

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations

  10. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging.

    Science.gov (United States)

    Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A

    2016-04-01

    Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the

  11. Magnetic interactions, bonding, and motion of positive muons in magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local magnetic field is observed to be 4.02 kOe directed along the axis, the easy axis of magnetization. Possible origins of this field are discussed in terms which include local muon diffusion and a supertransfer hyperfine interaction resulting from muon-oxygen bonding. An anomaly in the muon hyperfine interactions is observed at 247 K

  12. The Effectiveness of Using Interactive Multimedia Based on Motion Graphic in Concept Mastering Enhancement and Fashion Designing Skill in Digital Format

    Directory of Open Access Journals (Sweden)

    Winwin Wiana

    2018-02-01

    Full Text Available This research is related to the effort to design a more representative learning system to improve the learning result of digital fashion design, through the development of interactive multimedia based on motion graphic. This research is aimed to know the effect of interactive multimedia application based on motion graphic to increase the mastery of the concept and skill of the students to making fashion designing in digital format. The research method used is quasi experiment with research design of Nonequivalent Control Group Design. The lectures are conducted in two different classes, namely class A as the Experimental Class and class B as the Control Class. From the calculation result after interpreted using Normalize Gain, there is an increase of higher learning result in student with interactive learning based on motion graphic, compared with student achievement on conventional learning. In this research, interactive multimedia learning based on motion graphic is effective toward the improvement of student learning in concept mastering indicator and on the aspect of making fashion design in digital format.

  13. Ground Motion Models for Future Linear Colliders

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2000-01-01

    Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed

  14. Effects of a home-exercise therapy programme on cervical and lumbar range of motion among nurses with neck and lower back pain: a quasi-experimental study.

    Science.gov (United States)

    Freimann, Tiina; Merisalu, Eda; Pääsuke, Mati

    2015-01-01

    Cervical and lumbar range of motion limitations are usually associated with musculoskeletal pain in the neck and lower back, and are a major health problem among nurses. Physical exercise has been evaluated as an effective intervention method for improving cervical and lumbar range of motion, and for preventing and reducing musculoskeletal pain. The purpose of this study was to investigate the effects of a home-exercise therapy programme on cervical and lumbar range of motion among intensive care unit nurses who had experienced mild to moderate musculoskeletal pain in the neck and or lower back during the previous six months. A quasi-experimental study was conducted among intensive care unit nurses at Tartu University Hospital (Estonia) between May and July 2011. Thirteen nurses who had suffered musculoskeletal pain episodes in the neck and or lower back during the previous six months underwent an 8-week home-exercise therapy programme. Eleven nurses without musculoskeletal pain formed a control group. Questions from the Nordic Musculoskeletal Questionnaire and the 11-point Visual Analogue Scale were used to select potential participants for the experimental group via an assessment of the prevalence and intensity of musculoskeletal pain. Cervical range of motion and lumbar range of motion in flexion, extension, lateral flexion and (cervical range of motion only) rotation were measured with a digital goniometer. A paired t-test was used to compare the measured parameters before and after the home-exercise therapy programme. A Student's t-test was used to analyse any differences between the experimental and control groups. After the home-exercise therapy, there was a significant increase (p cervical range of motion in flexion, extension, lateral flexion and rotation, and in lumbar range of motion in lateral flexion. Cervical range of motion in flexion was significantly higher (p cervical and lumbar range of motion among intensive care nurses. Further studies are

  15. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters.

    Science.gov (United States)

    Nie, Wenjie; Chen, Aixi; Lan, Yueheng

    2015-11-30

    We design a hybrid optomechanical setup, in which an ensemble of quantum emitters is coupled with a movable mirror through vacuum interaction. The optical cavity is driven along with the quantum emitters and therefore the coupling between the cavity field and the ensemble determines the dynamics of the coupled system. In particular, we investigated the influence of the vacuum coupling strength on the effective frequency and the effective damping rate of the movable mirror, which shows that the vacuum interaction enhances greatly the effective damping rate. Further, the cooling characteristics of the mechanical resonator is analyzed in detail by counting the effective phonon number in the mirror's motion. It is found that the ground-state cooling of the mechanical motion can be approached in the bad cavity limit when the vacuum coupling is included. The dependence of the cooling of the mechanical motion on the parameters of the cavity and the quantum emitter is investigated in detail numerically.

  16. Various anti-motion sickness drugs and core body temperature changes.

    Science.gov (United States)

    Cheung, Bob; Nakashima, Ann M; Hofer, Kevin D

    2011-04-01

    Blood flow changes and inactivity associated with motion sickness appear to exacerbate the rate of core temperature decrease during subsequent body cooling. We investigated the effects of various classes of anti-motion sickness drugs on core temperature changes. There were 12 healthy male and female subjects (20-35 yr old) who were given selected classes of anti-motion sickness drugs prior to vestibular Coriolis cross coupling induced by graded yaw rotation and periodic pitch-forward head movements in the sagittal plane. All subjects were then immersed in water at 18 degrees C for a maximum of 90 min or until their core temperature reached 35 degrees C. Double-blind randomized trials were administered, including a placebo, a non-immersion control with no drug, and six anti-motion sickness drugs: meclizine, dimenhydrinate, chlorpheniramine, promethazine + dexamphetamine, promethazine + caffeine, and scopolamine + dexamphetamine. A 7-d washout period was observed between trials. Core temperature and the severity of sickness were monitored throughout each trial. A repeated measures design was performed on the severity of sickness and core temperature changes prior to motion provocation, immediately after the motion sickness end point, and throughout the period of cold-water immersion. The most effective anti-motion sickness drugs, promethazine + dexamphetamine (with a sickness score/duration of 0.65 +/- 0.17) and scopolamine + dexamphetamine (with a sickness score/duration of 0.79 +/- 0.17), significantly attenuated the decrease in core temperature. The effect of this attenuation was lower in less effective drugs. Our results suggest that the two most effective anti-motion sickness drugs are also the most effective in attenuating the rate of core temperature decrease.

  17. Unusual motions due to nonlinear effects in a driven vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2005-09-01

    Usual nonlinear effects observed in a sinusoidally driven vibrating string include generation of motion perpendicular to the driving plane, sudden jumps of amplitude and associated hysteresis, and generation of higher harmonics. In addition, under some conditions, there can be a rich variety of unusual, very complex motions of a point on the string, the pattern of which, together with associated harmonic (and sometimes subharmonic) content, can change dramatically with a slight change in driving frequency or sometimes with constant driving frequency and force. Intrinsic string asymmetries can also have a profound effect on the behavior. In a brass harpsichord string (wire) such asymmetries can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%, strongly dependent on tension.) The two frequency components are associated, respectively, with the transverse motion along two orthogonal characteristic wire axes. Emphasis will be on display of optically detected unusual motion patterns of a point on the string, including an example of a pattern period of 10 s when driving at 50 Hz. See R. J. Hanson et al., J. Acoust. Soc. Am. 117, 400-412 (2005) for a more complete treatment.

  18. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    Science.gov (United States)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  19. Evidence for Excitation of Polar Motion by Fortnightly Ocean Tides

    Science.gov (United States)

    Gross, Richard S.; Hamdan, Kamal H.; Boggs, Dale H.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported. Spectra of the SPACE94 polar motion excitation series exhibit peaks at the prograde and retrograde fortnightly tidal periods. After removing effects of atmospheric wind and pressure changes, an empirical model for the effect of the fortnightly ocean tides upon polar motion excitation is obtained by least-squares fitting periodic terms at the Mf and Mf' tidal frequencies to the residual polar motion excitation series. The resulting empirical model is then compared with the predictions of two hydrodynamic ocean tide models.

  20. Molecular motions in sucrose-PVP and sucrose-sorbitol dispersions-II. Implications of annealing on secondary relaxations.

    Science.gov (United States)

    Bhattacharya, Sisir; Bhardwaj, Sunny P; Suryanarayanan, Raj

    2014-10-01

    To determine the effect of annealing on the two secondary relaxations in amorphous sucrose and in sucrose solid dispersions. Sucrose was co-lyophilized with either PVP or sorbitol, annealed for different time periods and analyzed by dielectric spectroscopy. In an earlier investigation, we had documented the effect of PVP and sorbitol on the primary and the two secondary relaxations in amorphous sucrose solid dispersions (1). Here we investigated the effect of annealing on local motions, both in amorphous sucrose and in the dispersions. The average relaxation time of the local motion (irrespective of origin) in sucrose, decreased upon annealing. However, the heterogeneity in relaxation time distribution as well as the dielectric strength decreased only for β1- (the slower relaxation) but not for β2-relaxations. The effect of annealing on β2-relaxation times was neutralized by sorbitol while PVP negated the effect of annealing on both β1- and β2-relaxations. An increase in local mobility of sucrose brought about by annealing could be negated with an additive.

  1. Reirradiation of Prostate Cancer Local Failures After Previous Curative Radiation Therapy: Long-Term Outcome and Tolerance

    International Nuclear Information System (INIS)

    Zilli, Thomas; Benz, Eileen; Dipasquale, Giovanna; Rouzaud, Michel; Miralbell, Raymond

    2016-01-01

    Purpose: To evaluate the safety, feasibility, side-effect profile, and proof of concept of external beam radiation therapy (EBRT) with or without a brachytherapy (BT) boost for salvage of exclusive local failure after primary EBRT for prostate cancer. Methods and Materials: Fourteen patients with presumed exclusive local recurrence after primary EBRT with or without BT were considered eligible for reirradiation. The median normalized total dose in 2-Gy fractions (NTD_2_G_y, α/β ratio = 1.5 Gy) was 74 Gy (range, 66-98.4 Gy) at first irradiation. Median time between the first irradiation and the reirradiation was 6.1 years (range, 4.7-10.2 years). Results: Between 2003 and 2008 salvage treatment was delivered with a median NTD_2_G_y of 85.1 Gy (range, 70-93.4) to the prostate with EBRT with (n=10) or without (n=4) BT. Androgen deprivation was given to 12 patients (median time of 12 months). No grade ≥3 toxicity was observed during and within 6 weeks after RT. After a median follow-up of 94 months (range, 48-172 months) after salvage RT, 5-year grade ≥3 genitourinary and gastrointestinal toxicity-free survival figures were 77.9% ± 11.3% and 57.1% ± 13.2%, respectively. Four patients presented with combined grade 4 genitourinary/gastrointestinal toxicity. The 5-year biochemical relapse-free, local relapse-free, distant metastasis-free, and cancer-specific survival rates were 35.7% ± 12.8%, 50.0% ± 13.4%, 85.7% ± 9.4%, and 100%, respectively. Conclusion: Salvage whole-gland reirradiation for patients with a suspicion of exclusive local recurrence after initial RT may be associated with a high rate of severe radiation-induced side effects and poor long-term biochemical and local control.

  2. Patterns of Failure and Local Control After Intraoperative Electron Boost Radiotherapy to the Presacral Space in Combination with Total Mesorectal Excision in Patients with Locally Advanced Rectal Cancer

    International Nuclear Information System (INIS)

    Roeder, Falk; Treiber, Martina; Oertel, Susanne; Dinkel, Julien; Timke, Carmen; Funk, Angela; Garcia-Huttenlocher, Helena; Bischof, Marc; Weitz, Juergen; Harms, Wolfgang; Hensley, Frank W.; Buchler, Markus W.; Debus, Juergen; Krempien, Robert

    2007-01-01

    Purpose: To evaluate local control and patterns of failure in patients treated with intraoperative electron beam radiotherapy (IOERT) after total mesorectal excision (TME), to appraise the effectiveness of intraoperative target definition. Methods and Materials: We analyzed the outcome of 243 patients with rectal cancer treated with IOERT (median dose, 10 Gy) after TME. Eighty-eight patients received neoadjuvant and 122 patients adjuvant external beam radiotherapy (EBRT) (median dose, 41.4 Gy), and in 88% simultaneous chemotherapy was applied. Median follow-up was 59 months. Results: Local failure was observed in 17 patients (7%), resulting in a 5-year local control rate of 92%. Only complete resection and absence of nodal involvement correlated positively with local control. Considering IOERT fields, seven infield recurrences were seen in the presacral space, resulting in a 5-year local control rate of 97%. The remaining local relapses were located as follows: retrovesical/retroprostatic (5), anastomotic site (2), promontorium (1), ileocecal (1), and perineal (1). Conclusion: Intraoperative electron beam radiotherapy as part of a multimodal treatment approach including TME is a highly effective regimen to prevent local failure. The presacral space remains the site of highest risk for local failure, but IOERT can decrease the percentage of relapses in this area

  3. Lagrangian speckle model and tissue-motion estimation--theory.

    Science.gov (United States)

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  4. Optimizing monoscopic kV fluoro acquisition for prostate intrafraction motion evaluation

    International Nuclear Information System (INIS)

    Adamson, Justus; Wu Qiuwen

    2009-01-01

    Monoscopic kV imaging during radiotherapy has been recently implemented for prostate intrafraction motion evaluation. However, the accuracy of 3D localization techniques from monoscopic imaging of prostate and the effect of acquisition parameters on the 3D accuracy have not been studied in detail, with imaging dose remaining a concern. In this paper, we investigate methods to optimize the kV acquisition parameters and imaging protocol to achieve improved 3D localization and 2D image registration accuracy for minimal imaging dose. Prostate motion during radiotherapy was simulated using existing cine-MRI measurements, and was used to investigate the accuracy of various 3D localization techniques and the effect of the kV acquisition protocol. We also investigated the relationship between mAs and the accuracy of the 2D image registration for localization of fiducial markers and we measured imaging dose for a 30 cm diameter phantom to evaluate the necessary dose to achieve acceptable image registration accuracy. Simulations showed that the error in assuming the shortest path to localize the prostate in 3D using monoscopic imaging during a typical IMRT fraction will be less than ∼1.5 mm for 95% of localizations, and will also depend on prostate motion distribution, treatment duration and image acquisition and treatment protocol. Most uncertainty cannot be reduced from higher imaging frequency or acquiring during gantry rotation between beams. Measured maximum surface dose to the cylindrical phantom from monoscopic kV intrafraction acquisitions varied between 0.4 and 5.5 mGy, depending on the acquisition protocol, and was lower than the required dose for CBCT (21.1 mGy). Imaging dose can be lowered by ∼15-40% when mAs is optimized with acquisition angle. Images acquired during MV beam delivery require increased mAs to obtain the same level of registration accuracy, with mAs/registration increasing roughly linearly with field size and dose rate.

  5. Correspondence model-based 4D VMAT dose simulation for analysis of local metastasis recurrence after extracranial SBRT

    Science.gov (United States)

    Sothmann, T.; Gauer, T.; Wilms, M.; Werner, R.

    2017-12-01

    The purpose of this study is to introduce a novel approach to incorporate patient-specific breathing variability information into 4D dose simulation of volumetric arc therapy (VMAT)-based stereotactic body radiotherapy (SBRT) of extracranial metastases. Feasibility of the approach is illustrated by application to treatment planning and motion data of lung and liver metastasis patients. The novel 4D dose simulation approach makes use of a regression-based correspondence model that allows representing patient motion variability by breathing signal-steered interpolation and extrapolation of deformable image registration motion fields. To predict the internal patient motion during treatment with only external breathing signal measurements being available, the patients’ internal motion information and external breathing signals acquired during 4D CT imaging were correlated. Combining the correspondence model, patient-specific breathing signal measurements during treatment and time-resolved information about dose delivery, reconstruction of a motion variability-affected dose becomes possible. As a proof of concept, the proposed approach is illustrated by a retrospective 4D simulation of VMAT-based SBRT treatment of ten patients with 15 treated lung and liver metastases and known clinical endpoints for the individual metastases (local metastasis recurrence yes/no). Resulting 4D-simulated dose distributions were compared to motion-affected dose distributions estimated by standard 4D CT-only dose accumulation and the originally (i.e. statically) planned dose distributions by means of GTV D98 indices (dose to 98% of the GTV volume). A potential linkage of metastasis-specific endpoints to differences between GTV D98 indices of planned and 4D-simulated dose distributions was analyzed.

  6. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    Science.gov (United States)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  7. Effects of the Earth’ s triaxiality on the polar motion excitations

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2012-05-01

    Full Text Available his study aims to evaluate the significance of the Earth’s triaxiality to the polar motion theory. First of all, we compare the polar motion theories for both the triaxial and rotationally-symmetric Earth models, which is established on the basis of the EGM2008 global gravity model and the MHB2000 Earth model. Then, we use the atmospheric and oceanic data (the NCEP/NCAR reanalyses and the ECCO assimulation products to quantify the triaxiality effect on polar motion excitations. Numerical results imply that triaxiality only cause a small correction (about 0. 1–0.2 mas to the geophysical excitations for the rotationally-symmetric case. The triaxiality correction is much smaller than the errors in the atmospheric and oceanic data, and thus can be neglected for recent studies on polar motion excitations.

  8. Effect of range of motion in heavy load squatting on muscle and tendon adaptations

    DEFF Research Database (Denmark)

    Bloomquist, K; Langberg, Henning; Karlsen, Stine

    2013-01-01

    Manipulating joint range of motion during squat training may have differential effects on adaptations to strength training with implications for sports and rehabilitation. Consequently, the purpose of this study was to compare the effects of squat training with a short vs. a long range of motion...

  9. Motion control, motion sickness, and the postural dynamics of mobile devices.

    Science.gov (United States)

    Stoffregen, Thomas A; Chen, Yi-Chou; Koslucher, Frank C

    2014-04-01

    Drivers are less likely than passengers to experience motion sickness, an effect that is important for any theoretical account of motion sickness etiology. We asked whether different types of control would affect the incidence of motion sickness, and whether any such effects would be related to participants' control of their own bodies. Participants played a video game on a tablet computer. In the Touch condition, the device was stationary and participants controlled the game exclusively through fingertip inputs via the device's touch screen. In the Tilt condition, participants held the device in their hands and moved the device to control some game functions. Results revealed that the incidence of motion sickness was greater in the Touch condition than in the Tilt condition. During game play, movement of the head and torso differed as a function of the type of game control. Before the onset of subjective symptoms of motion sickness, movement of the head and torso differed between participants who later reported motion sickness and those that did not. We discuss implications of these results for theories of motion sickness etiology.

  10. Spatially localized motion aftereffect disappears faster from awareness when selectively attended to according to its direction.

    Science.gov (United States)

    Murd, Carolina; Bachmann, Talis

    2011-05-25

    In searching for the target-afterimage patch among spatially separate alternatives of color-afterimages the target fades from awareness before its competitors (Bachmann, T., & Murd, C. (2010). Covert spatial attention in search for the location of a color-afterimage patch speeds up its decay from awareness: Introducing a method useful for the study of neural correlates of visual awareness. Vision Research 50, 1048-1053). In an analogous study presented here we show that a similar effect is obtained when a target spatial location specified according to the direction of motion aftereffect within it is searched by covert top-down attention. The adverse effect of selective attention on the duration of awareness of sensory qualiae known earlier to be present for color and periodic spatial contrast is extended also to sensory channels carrying motion information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The efficacy of local anesthetics in reducing post operative pain after appendectomy

    Directory of Open Access Journals (Sweden)

    Masood Baghaee vaji

    2004-09-01

    Full Text Available Reducing post operative pain is a common issue in surgeries. This study was to evaluate the efficacy of wound infiltration with local anesthetics in reducing postoperative pain after appendectomy. This is a double-blind, placebo-controlled, randomized clinical trial on 40 patients with non-complicated acute appendicitis. Cases received a combination of lidocaine hydrochloride and bupivacaine hydrochloride after appendectomy and before closing the wound. Controls received the same volume of saline solution. Injections were done both under the fascia of external oblique muscle and intradermal. Pain assessment was done by two pain measuring scales, VAS and NRS, in 4, 8, 12 and 24 hours after the operation. Cases and controls were the same in age, sex, and history of opium addiction. Pain peaked in the 8th hour after operation in both groups and reduced afterwards. Pain assessments showed the same pattern using the NRS and VAS measuring scales. T-test showed the pain to be significantly less in cases comparing with the controls in all time points. No significant difference was seen in the time of receiving the first analgesic after the operation but the frequency of analgesic consumption was significantly lower in controls. This study showed local anesthetic infiltration to be effective in reducing the postoperative pain in patients undergoing appendectomy which is in contrast with the previous studies. This may be due to a different infiltration technique or pain assessment in the first 24 hours after the operation.

  12. General-relativistic celestial mechanics. II. Translational equations of motion

    International Nuclear Information System (INIS)

    Damour, T.; Soffel, M.; Xu, C.

    1992-01-01

    The translational laws of motion for gravitationally interacting systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation [i.e., neglecting terms of order (v/c) 4 in the equations of motion], our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies

  13. Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.

    Science.gov (United States)

    Ben Zion, Yossi; Horwitz, Lawrence

    2010-04-01

    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.

  14. Pain intensity and cervical range of motion in women with myofascial pain treated with acupuncture and electroacupuncture: a double-blinded, randomized clinical trial

    Science.gov (United States)

    Aranha, Maria F. M.; Müller, Cristina E. E.; Gavião, Maria B. D.

    2015-01-01

    BACKGROUND: Acupuncture stimulates points on the body, influencing the perception of myofascial pain or altering physiologic functions. OBJECTIVE: The aim was to evaluate the effect of electroacupuncture (EAC) and acupuncture (AC) for myofascial pain of the upper trapezius and cervical range of motion, using SHAM acupuncture as control. METHOD: Sixty women presenting at least one trigger point at the upper trapezius and local or referred pain for more than six months were randomized into EAC, AC, and SHAM groups. Eight sessions were scheduled and a follow-up was conducted after 28 days. The Visual Analog Scale assessed the intensity of local and general pain. A fleximeter assessed cervical movements. Data were analyzed using paired t or Wilcoxon's tests, ANOVA or Friedman or Kruskal-Wallis tests and Pearson's correlation (α=0.05). RESULTS: There was reduction in general pain in the EAC and AC groups after eight sessions (P<0.001). A significant decrease in pain intensity occurred for the right trapezius in all groups and for the left trapezius in the EAC and AC groups. Intergroup comparisons showed improvement in general pain in the EAC and AC groups and in local pain intensity in the EAC group (P<0.05), which showed an increase in left rotation (P=0.049). The AC group showed increases in inclination (P=0.005) sustained until follow-up and rotation to the right (P=0.032). CONCLUSION : EAC and AC were effective in reducing the pain intensity compared with SHAM. EAC was better than AC for local pain relief. These treatments can assist in increasing cervical range of motion, albeit subtly. PMID:25714602

  15. Effects of Spine Motion on Foot Slip in Quadruped Bounding

    Directory of Open Access Journals (Sweden)

    Dongliang Chen

    2018-01-01

    Full Text Available Translation and bend of the spine in the sagittal plane during high-speed quadruped running were investigated. The effect of the two spine motions on slip between the foot and the ground was also explored. First, three simplified sagittal plane models of quadruped mammals were studied in symmetric bounding. The first model’s trunk allowed no relative motion, the second model allowed only trunk bend, and the third model allowed both bend and translation. Next, torque was introduced to equivalently replace spine motion and the possibility of foot slip of the three models was analyzed theoretically. The results indicate that the third model has the least possibility of slip. This conclusion was further confirmed by simulation experiments. Finally, the conclusion was verified by the reductive model crawling robot.

  16. The application of biofluid mechanics boundary effects on phoretic motions of colloidal spheres

    CERN Document Server

    Chen, Po-Yuan

    2014-01-01

    "The Application of Biofluid Mechanics: Boundary Effects on Phoretic Motions of Colloidal Spheres" focuses on the phoretic motion behavior of various micron- to nanometer-size particles. The content of this book is divided into two parts: one on the concentration gradient-driven diffusiophoresis and osmophoresis, and one on thermocapillary motion and thermophoretic motion driven by temperature gradient. Diffusiophoresis and osmophoresis are mainly used in biomedical engineering applications, such as drug delivery, purification, and the description of the behavior of the immune system; thermocapillary motion and thermophoretic motion are applied in the field of semiconductors, as well as in suspended impurities removal. The book also provides a variety of computer programming source codes compiled using Fortran for researchers' future applications. This book is intended for chemical engineers, biomedical engineers and scientists, biophysicists, and fundamental chemotaxis researchers. Dr. Po-Yuan Chen is an Ass...

  17. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.

    Science.gov (United States)

    Altmann, Christian F; Ueda, Ryuhei; Bucher, Benoit; Furukawa, Shigeto; Ono, Kentaro; Kashino, Makio; Mima, Tatsuya; Fukuyama, Hidenao

    2017-10-01

    Interaural time (ITD) and level differences (ILD) constitute the two main cues for sound localization in the horizontal plane. Despite extensive research in animal models and humans, the mechanism of how these two cues are integrated into a unified percept is still far from clear. In this study, our aim was to test with human electroencephalography (EEG) whether integration of dynamic ITD and ILD cues is reflected in the so-called motion-onset response (MOR), an evoked potential elicited by moving sound sources. To this end, ITD and ILD trajectories were determined individually by cue trading psychophysics. We then measured EEG while subjects were presented with either static click-trains or click-trains that contained a dynamic portion at the end. The dynamic part was created by combining ITD with ILD either congruently to elicit the percept of a right/leftward moving sound, or incongruently to elicit the percept of a static sound. In two experiments that differed in the method to derive individual dynamic cue trading stimuli, we observed an MOR with at least a change-N1 (cN1) component for both the congruent and incongruent conditions at about 160-190 ms after motion-onset. A significant change-P2 (cP2) component for both the congruent and incongruent ITD/ILD combination was found only in the second experiment peaking at about 250 ms after motion onset. In sum, this study shows that a sound which - by a combination of counter-balanced ITD and ILD cues - induces a static percept can still elicit a motion-onset response, indicative of independent ITD and ILD processing at the level of the MOR - a component that has been proposed to be, at least partly, generated in non-primary auditory cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of respiratory motion on internal radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  19. Effects of Non-Steroidal Anti-Inflammatory Drugs onFlexor Tendon Rehabilitation after Repair

    Directory of Open Access Journals (Sweden)

    Alireza Rouhani

    2013-09-01

    Full Text Available   Background: Peritendinous adhesions after repairing an injury to the digital flexor tendons are a major problem in hand surgery. Non-steroidal anti-inflammatory drug therapy may affect tendon healing and the development of peritendinous adhesions. The aim of this study was to evaluate ibuprofen effect in patients function after flexor tendon surgical repair.   Method: Thirty-five patients, who had sharp-edge lacerations of hand-zone II requiring flexor tendons repair, participated in this randomized double-blind clinical trial study. The patients were randomly classified into two parallel and matched groups (21 patients in the intervention group and 14 patients in the control group. The groups were matched considering age, gender, and laceration size. The control group received a placebo with the same appearance and dosage. In the intervention group, ibuprofen was prescribed at a high dosage (2400 mg/day. The range of motion improvement rate of the involved fingers and the patients’ performance after their follow-up period were compared. Results: There was a statistically significant difference between the two groups for range of motion of the involved finger joints (P=0.03. According to the DASH score, there was a statistically significant difference between the final performance of the patients, such that it was 11±2.4 and 18.4±6.3 in the intervention and control groups, respectively (P=0.01. There was not any case of re-tear or need to re-operate in the intervention and control groups. Conclusion: Our findings reveal that ibuprofen with an anti-inflammatory dose was effective in improving the range of motion of the involved fingers joints after flexor tendon injury.

  20. Effects of Non-Steroidal Anti-Inflammatory Drugs onFlexor Tendon Rehabilitation after Repair

    Directory of Open Access Journals (Sweden)

    Alireza Rouhani

    2013-09-01

    Full Text Available Background: Peritendinous adhesions after repairing an injury to the digital flexor tendons are a major problem in hand surgery. Non-steroidal anti-inflammatory drug therapy may affect tendon healing and the development of peritendinous adhesions. The aim of this study was to evaluate ibuprofen effect in patients function after flexor tendon surgical repair.   Method: Thirty-five patients, who had sharp-edge lacerations of hand-zone II requiring flexor tendons repair, participated in this randomized double-blind clinical trial study. The patients were randomly classified into two parallel and matched groups (21 patients in the intervention group and 14 patients in the control group. The groups were matched considering age, gender, and laceration size. The control group received a placebo with the same appearance and dosage. In the intervention group, ibuprofen was prescribed at a high dosage (2400 mg/day. The range of motion improvement rate of the involved fingers and the patients’ performance after their follow-up period were compared. Results: There was a statistically significant difference between the two groups for range of motion of the involved finger joints (P=0.03. According to the DASH score, there was a statistically significant difference between the final performance of the patients, such that it was 11±2.4 and 18.4±6.3 in the intervention and control groups, respectively (P=0.01. There was not any case of re-tear or need to re-operate in the intervention and control groups. Conclusion: Our findings reveal that ibuprofen with an anti-inflammatory dose was effective in improving the range of motion of the involved fingers joints after flexor tendon injury.

  1. Astrometric detectability of systems with unseen companions: effects of the Earth orbital motion

    Science.gov (United States)

    Butkevich, Alexey G.

    2018-06-01

    The astrometric detection of an unseen companion is based on an analysis of the apparent motion of its host star around the system's barycentre. Systems with an orbital period close to 1 yr may escape detection if the orbital motion of their host stars is observationally indistinguishable from the effects of parallax. Additionally, an astrometric solution may produce a biased parallax estimation for such systems. We examine the effects of the orbital motion of the Earth on astrometric detectability in terms of a correlation between the Earth's orbital position and the position of the star relative to its system barycentre. The χ2 statistic for parallax estimation is calculated analytically, leading to expressions that relate the decrease in detectability and accompanying parallax bias to the position correlation function. The impact of the Earth's motion critically depends on the exoplanet's orbital period, diminishing rapidly as the period deviates from 1 yr. Selection effects against 1-yr-period systems is, therefore, expected. Statistical estimation shows that the corresponding loss of sensitivity results in a typical 10 per cent increase in the detection threshold. Consideration of eccentric orbits shows that the Earth's motion has no effect on detectability for e≳ 0.5. The dependence of the detectability on other parameters, such as orbital phases and inclination of the orbital plane to the ecliptic, are smooth and monotonic because they are described by simple trigonometric functions.

  2. Regression and local control rates after radiotherapy for jugulotympanic paragangliomas: Systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Hulsteijn, Leonie T. van; Corssmit, Eleonora P.M.; Coremans, Ida E.M.; Smit, Johannes W.A.; Jansen, Jeroen C.; Dekkers, Olaf M.

    2013-01-01

    The primary treatment goal of radiotherapy for paragangliomas of the head and neck region (HNPGLs) is local control of the tumor, i.e. stabilization of tumor volume. Interestingly, regression of tumor volume has also been reported. Up to the present, no meta-analysis has been performed giving an overview of regression rates after radiotherapy in HNPGLs. The main objective was to perform a systematic review and meta-analysis to assess regression of tumor volume in HNPGL-patients after radiotherapy. A second outcome was local tumor control. Design of the study is systematic review and meta-analysis. PubMed, EMBASE, Web of Science, COCHRANE and Academic Search Premier and references of key articles were searched in March 2012 to identify potentially relevant studies. Considering the indolent course of HNPGLs, only studies with ⩾12 months follow-up were eligible. Main outcomes were the pooled proportions of regression and local control after radiotherapy as initial, combined (i.e. directly post-operatively or post-embolization) or salvage treatment (i.e. after initial treatment has failed) for HNPGLs. A meta-analysis was performed with an exact likelihood approach using a logistic regression with a random effect at the study level. Pooled proportions with 95% confidence intervals (CI) were reported. Fifteen studies were included, concerning a total of 283 jugulotympanic HNPGLs in 276 patients. Pooled regression proportions for initial, combined and salvage treatment were respectively 21%, 33% and 52% in radiosurgery studies and 4%, 0% and 64% in external beam radiotherapy studies. Pooled local control proportions for radiotherapy as initial, combined and salvage treatment ranged from 79% to 100%. Radiotherapy for jugulotympanic paragangliomas results in excellent local tumor control and therefore is a valuable treatment for these types of tumors. The effects of radiotherapy on regression of tumor volume remain ambiguous, although the data suggest that regression can

  3. Evaluation of site effects on ground motions based on equivalent linear site response analysis and liquefaction potential in Chennai, south India

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Trupti, S.; Prabhakar Prasad, P.; Seshunarayana, T.

    2018-05-01

    We study local site effects with detailed geotechnical and geophysical site characterization to evaluate the site-specific seismic hazard for the seismic microzonation of the Chennai city in South India. A Maximum Credible Earthquake (MCE) of magnitude 6.0 is considered based on the available seismotectonic and geological information of the study area. We synthesized strong ground motion records for this target event using stochastic finite-fault technique, based on a dynamic corner frequency approach, at different sites in the city, with the model parameters for the source, site, and path (attenuation) most appropriately selected for this region. We tested the influence of several model parameters on the characteristics of ground motion through simulations and found that stress drop largely influences both the amplitude and frequency of ground motion. To minimize its influence, we estimated stress drop after finite bandwidth correction, as expected from an M6 earthquake in Indian peninsula shield for accurately predicting the level of ground motion. Estimates of shear wave velocity averaged over the top 30 m of soil (V S30) are obtained from multichannel analysis of surface wave (MASW) at 210 sites at depths of 30 to 60 m below the ground surface. Using these V S30 values, along with the available geotechnical information and synthetic ground motion database obtained, equivalent linear one-dimensional site response analysis that approximates the nonlinear soil behavior within the linear analysis framework was performed using the computer program SHAKE2000. Fundamental natural frequency, Peak Ground Acceleration (PGA) at surface and rock levels, response spectrum at surface level for different damping coefficients, and amplification factors are presented at different sites of the city. Liquefaction study was done based on the V S30 and PGA values obtained. The major findings suggest show that the northeast part of the city is characterized by (i) low V S30 values

  4. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2018-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  5. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2017-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  6. Evaluation of high frequency ground motion effects on the seismic capacity of NPP equipments

    International Nuclear Information System (INIS)

    Choi, In Kil; Seo, Jeong Moon; Choun, Young Sun

    2003-04-01

    In this study, the uniform hazard spectrum for the example Korean nuclear power plants sites were developed and compared with various response spectra used in past seismic PRA and SMA. It shows that the high frequency ground motion effects should be considered in seismic safety evaluations. The floor response spectra were developed using the direct generation method that can develop the floor response spectra from the input response spectrum directly with only the dynamic properties of structures obtained from the design calculation. Most attachment of the equipments to the structure has a minimum distortion capacity. This makes it possible to drop the effective frequency of equipment to low frequency before it is severely damaged. The results of this study show that the high frequency ground motion effects on the floor response spectra were significant, and the effects should be considered in the SPRA and SMA for the equipments installed in a building. The high frequency ground motion effects are more important for the seismic capacity evaluation of functional failure modes. The high frequency ground motion effects on the structural failure of equipments that attached to the floor by welding can be reduced by the distortion capacity of welded anchorage

  7. Body mass index and active range of motion exercise treatment after intra-articular injection in adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Hsi-Hsien Lin

    2013-04-01

    Conclusion: Active range of motion exercise after an intra-articular injection of corticosteroid and lidocaine improved pain and functional outcome at 8 weeks in normal-weight (BMI < 25 kg/m2 patients with primary adhesive capsulitis. Manipulation under anesthesia may be considered a priority in overweight patients.

  8. Short-term changes in neck pain, widespread pressure pain sensitivity, and cervical range of motion after the application of trigger point dry needling in patients with acute mechanical neck pain: a randomized clinical trial.

    Science.gov (United States)

    Mejuto-Vázquez, María J; Salom-Moreno, Jaime; Ortega-Santiago, Ricardo; Truyols-Domínguez, Sebastián; Fernández-de-Las-Peñas, César

    2014-04-01

    Randomized clinical trial. To determine the effects of trigger point dry needling (TrPDN) on neck pain, widespread pressure pain sensitivity, and cervical range of motion in patients with acute mechanical neck pain and active trigger points in the upper trapezius muscle. TrPDN seems to be effective for decreasing pain in individuals with upper-quadrant pain syndromes. Potential effects of TrPDN for decreasing pain and sensitization in individuals with acute mechanical neck pain are needed. Methods Seventeen patients (53% female) were randomly assigned to 1 of 2 groups: a single session of TrPDN or no intervention (waiting list). Pressure pain thresholds over the C5-6 zygapophyseal joint, second metacarpal, and tibialis anterior muscle; neck pain intensity; and cervical spine range-of-motion data were collected at baseline (pretreatment) and 10 minutes and 1 week after the intervention by an assessor blinded to the treatment allocation of the patient. Mixed-model analyses of variance were used to examine the effects of treatment on each outcome variable. Patients treated with 1 session of TrPDN experienced greater decreases in neck pain, greater increases in pressure pain threshold, and higher increases in cervical range of motion than those who did not receive an intervention at both 10 minutes and 1 week after the intervention (Ppain intensity and widespread pressure pain sensitivity, and also increase active cervical range of motion, in patients with acute mechanical neck pain. Changes in pain, pressure pain threshold, and cervical range of motion surpassed their respective minimal detectable change values, supporting clinically relevant treatment effects. Level of Evidence Therapy, level 1b-.

  9. Dosimetric Impact of Intrafractional Patient Motion in Pediatric Brain Tumor Patients

    International Nuclear Information System (INIS)

    Beltran, Chris; Trussell, John; Merchant, Thomas E.

    2010-01-01

    The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 ± 1.5 treatment fractions; motion data were acquired for a mean of 26 ± 6.2 fractions. The mean age was 15.6 ± 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment.

  10. Temporomandibular joint motion

    International Nuclear Information System (INIS)

    Maeda, M.; Kawamura, Y.; Matsuda, T.; Itou, S.; Odori, T.; Ishii, Y.; Torizuka, K.

    1990-01-01

    This paper evaluates MR imaging with the therapeutic effect after splint therapy in internal derangement of the temporomandibular joint (TMJ). Fifteen patients (19 TMJs) with internal derangement of the TMJ and five normal volunteers (10 TMJs) were examined with sagittal T1-weighted spin-echo and gradient recalled acquisition in a steady state (GRASS) MR imaging. MR studies of the patients undergoing splint therapy were performed with an without splints. Pseudodynamic images of TMJ motion provide information that was not available from spin-echo T1-weighted images

  11. Estimation of Pulmonary Motion in Healthy Subjects and Patients with Intrathoracic Tumors Using 3D-Dynamic MRI: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian; Schoebinger, Max; Meinzer, Heinz Peter [German Cancer Research Center, Heidelberg (Germany); Herth, Felix; Tuengerthal, Siegfried [Clinic of Thoracic Disease, Heidelberg (Germany); Kauczor, Hans Ulrich [University of Heidelberg, Heidelberg (Germany)

    2009-12-15

    To estimate a new technique for quantifying regional lung motion using 3D-MRI in healthy volunteers and to apply the technique in patients with intra- or extrapulmonary tumors. Intraparenchymal lung motion during a whole breathing cycle was quantified in 30 healthy volunteers using 3D-dynamic MRI (FLASH [fast low angle shot] 3D, TRICKS [time-resolved interpolated contrast kinetics]). Qualitative and quantitative vector color maps and cumulative histograms were performed using an introduced semiautomatic algorithm. An analysis of lung motion was performed and correlated with an established 2D-MRI technique for verification. As a proof of concept, the technique was applied in five patients with non-small cell lung cancer (NSCLC) and 5 patients with malignant pleural mesothelioma (MPM). The correlation between intraparenchymal lung motion of the basal lung parts and the 2D-MRI technique was significant (r = 0.89, p < 0.05). Also, the vector color maps quantitatively illustrated regional lung motion in all healthy volunteers. No differences were observed between both hemithoraces, which was verified by cumulative histograms. The patients with NSCLC showed a local lack of lung motion in the area of the tumor. In the patients with MPM, there was global diminished motion of the tumor bearing hemithorax, which improved significantly after chemotherapy (CHT) (assessed by the 2D- and 3D-techniques) (p < 0.01). Using global spirometry, an improvement could also be shown (vital capacity 2.9 {+-} 0.5 versus 3.4 L {+-} 0.6, FEV1 0.9 {+-} 0.2 versus 1.4 {+-} 0.2 L) after CHT, but this improvement was not significant. A 3D-dynamic MRI is able to quantify intraparenchymal lung motion. Local and global parenchymal pathologies can be precisely located and might be a new tool used to quantify even slight changes in lung motion (e.g. in therapy monitoring, follow-up studies or even benign lung diseases)

  12. Counting is easier while experiencing a congruent motion.

    Directory of Open Access Journals (Sweden)

    Luisa Lugli

    Full Text Available Several studies suggest that numerical and spatial representations are intrinsically linked. Recent findings demonstrate that also motor actions interact with number magnitude processing, showing a motor-to-semantic effect. The current study assesses whether calculation processes can be modulated by motions performed with the whole body. Participants were required to make additions or subtractions while performing (on-line condition or after having experienced (off-line condition an ascending or descending motion through a passive (i.e., taking the elevator or an active (i.e., taking the stairs mode. Results show a congruency effect between the type of calculation and the direction of the motion depending on: a the off-line or on-line condition, b the passive or active mode and c the real or imagined task. Implications of the results for an embodied and grounded perspective view will be discussed.

  13. A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U

    2014-01-01

    In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose and validate a 4D dose computation method, which enables estimation of effective dose delivered to the prostate by scanning ion beams in presence of intrafraction motion, as well as facilitates investigation of various motion interplay countermeasures. (note)

  14. Psychophysical scaling of circular vection (CV) produced by optokinetic (OKN) motion: individual differences and effects of practice.

    Science.gov (United States)

    Kennedy, R S; Hettinger, L J; Harm, D L; Ordy, J M; Dunlap, W P

    1996-01-01

    Vection (V) refers to the compelling visual illusion of self-motion experienced by stationary individuals when viewing moving visual surrounds. The phenomenon is of theoretical interest because of its relevance for understanding the neural basis of ordinary self-motion perception, and of practical importance because it is the experience that makes simulation, virtual reality displays, and entertainment devices more vicarious. This experiment was performed to address whether an optokinetically induced vection illusion exhibits monotonic and stable psychometric properties and whether individuals differ reliably in these (V) perceptions. Subjects were exposed to varying velocities of the circular vection (CV) display in an optokinetic (OKN) drum 2 meters in diameter in 5 one-hour daily sessions extending over a 1 week period. For grouped data, psychophysical scalings of velocity estimates showed that exponents in a Stevens' type power function were essentially linear (slope = 0.95) and largely stable over sessions. Latencies were slightly longer for the slowest and fastest induction stimuli, and the trend over sessions for average latency was longer as a function of practice implying time course adaptation effects. Test-retest reliabilities for individual slope and intercept measures were moderately strong (r = 0.45) and showed no evidence of superdiagonal form. This implies stability of the individual circularvection (CV) sensitivities. Because the individual CV scores were stable, reliabilities were improved by averaging 4 sessions in order to provide a stronger retest reliability (r = 0.80). Individual latency responses were highly reliable (r = 0.80). Mean CV latency and motion sickness symptoms were greater in males than in females. These individual differences in CV could be predictive of other outcomes, such as susceptibility to disorientation or motion sickness, and for CNS localization of visual-vestibular interactions in the experience of self-motion.

  15. Semiempirical theory of level spacing distribution beyond the Berry-Robnik regime: modeling the localization and the tunneling effects

    International Nuclear Information System (INIS)

    Batistic, Benjamin; Robnik, Marko

    2010-01-01

    In this work we study the level spacing distribution in the classically mixed-type quantum systems (which are generic), exhibiting regular motion on invariant tori for some initial conditions and chaotic motion for the complementary initial conditions. In the asymptotic regime of the sufficiently deep semiclassical limit (sufficiently small effective Planck constant) the Berry and Robnik (1984 J. Phys. A: Math. Gen. 17 2413) picture applies, which is very well established. We present a new quasi-universal semiempirical theory of the level spacing distribution in a regime away from the Berry-Robnik regime (the near semiclassical limit), by describing both the dynamical localization effects of chaotic eigenstates, and the tunneling effects which couple regular and chaotic eigenstates. The theory works extremely well in the 2D mixed-type billiard system introduced by Robnik (1983 J. Phys. A: Math. Gen. 16 3971) and is also tested in other systems (mushroom billiard and Prosen billiard).

  16. Predictive values of early rest/24 hour delay Tl-201 perfusion SPECT for wall motion improvement in patients with acute myocardial infarction after reperfusion

    International Nuclear Information System (INIS)

    Hyun, In Young; Kwan, June

    1998-01-01

    We studied early rest/24 hour delay Tl-201 perfusion SPECT for prediction of wall motion improvement after reperfusion in patients with acute myocardial infarction. Among 17 patients (male/female=11/6, age: 59±13) with acute myocardial infarction, 15 patients were treated with percutaneous transcoronary angioplasty (direct:2, delay:11) and intravenous urokinase (2). Spontaneous resolution occurred in infarct related arteries of 2 patients. We confirmed TIMI 3 flow of infarct-related artery after reperfusion in all patients with coronary angiography. We performed rest Tl-201 perfusion SPECT less then 6 hours after reperfusion and delay Tl-201 perfusion SPECT next day. Tl-201 uptake was visually graded as 4 point score from normal (0) to severe defect (3). Rest Tl-201 uptake ≤2 or combination of rest Tl-201 uptake ≤2 or late reversibility were considered to be viable. Myocardial wall motion was graded as 5 point score from normal (1) to dyskinesia (5). Myocardial wall motion was considered to be improved when a segment showed an improvement ≥1 grade in follow up echo compared with the baseline values. Among 98 segments with wall motion abnormality, the severity of myocardial wall motion decrease was as follow: mild hypokinesia: 18/98 (18%), severe hypokinesia: 28/98 (29%), akinesia: 51/98 (52%), dyskinesia: 1/98 (1%). The wall motion improved in 85%. Redistribution (13%), and reverse redistribution (4%) were observed in 24 hour delay SPECT. Positive predictive value (PPV) and negative predictive value (NPV) of combination of late reversibility and rest Tl-201uptake were 99%, and 54%.PPV and NPV of rest Tl-201 uptake were 100% and 52% respectively. Predictive values of comibination of rest Tl-201 uptake and late reversibility were not significantly different compared with predictive values of rest Tl-201 uptake only. We conclude that early Tl-201 perfusion SPECT predict myocardial wall motion improvement with excellent positive but relatively low negative

  17. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Tanderup, Kari; Fokdal, Lars Ulrik; Sturdza, Alina

    2016-01-01

    -center patient series (retroEMBRACE). Materials and methods This study analyzed 488 locally advanced cervical cancer patients treated with external beam radiotherapy ± chemotherapy combined with IGABT. Brachytherapy contouring and reporting was according to ICRU/GEC-ESTRO recommendations. The Cox Proportional...... Hazards model was applied to analyze the effect on local control of dose-volume metrics as well as overall treatment time (OTT), dose rate, chemotherapy, and tumor histology. Results With a median follow up of 46 months, 43 local failures were observed. Dose (D90) to the High Risk Clinical Target Volume...

  18. Effects of organ motion on IMRT treatments with segments of few monitor units

    International Nuclear Information System (INIS)

    Seco, J.; Sharp, G. C.; Turcotte, J.; Gierga, D.; Bortfeld, T.; Paganetti, H.

    2007-01-01

    Interplay between organ (breathing) motion and leaf motion has been shown in the literature to have a small dosimetric impact for clinical conditions (over a 30 fraction treatment). However, previous studies did not consider the case of treatment beams made up of many few-monitor-unit (MU) segments, where the segment delivery time (1-2 s) is of the order of the breathing period (3-5 s). In this study we assess if breathing compromises the radiotherapy treatment with IMRT segments of low number of MUs. We assess (i) how delivered dose varies, from patient to patient, with the number of MU per segment, (ii) if this delivered dose is identical to the average dose calculated without motion over the path of the motion, and (iii) the impact of the daily variation of the delivered dose as a function of MU per segment. The organ motion was studied along two orthogonal directions, representing the left-right and cranial-caudal directions of organ movement for a patient setup in the supine position. Breathing motion was modeled as sin(x), sin 4 (x), and sin 6 (x), based on functions used in the literature to represent organ motion. Measurements were performed with an ionization chamber and films. For a systematic study of motion effects, a MATLAB simulation was written to model organ movement and dose delivery. In the case of a single beam made up of one single segment, the dose delivered to point in a moving target over 30 fractions can vary up to 20% and 10% for segments of 10 MU and 20 MU, respectively. This dose error occurs because the tumor spends most of the time near the edges of the radiation beam. In the case of a single beam made of multiple segments with low MU, we observed 2.4%, 3.3%, and 4.3% differences, respectively, for sin(x), sin 4 (x), and sin 6 (x) motion, between delivered dose and motion-averaged dose for points in the penumbra region of the beam and over 30 fractions. In approximately 5-10% of the cases, differences between the motion-averaged dose

  19. Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles

    Science.gov (United States)

    Cowlagi, Raghvendra V.

    concerning the vehicle kinematical model. We propose a hierarchical motion planning framework based on a novel mode of interaction between these two levels of planning. This interaction rests on the solution of a special shortest-path problem on graphs, namely, one using costs defined on multiple edge transitions in the path instead of the usual single edge transition costs. These costs are provided by a local trajectory generation algorithm, which we implement using model predictive control and the concept of effective target sets for simplifying the non-convex constraints involved in the problem. The proposed motion planner ensures "consistency" between the two levels of planning, i.e., a guarantee that the higher level geometric path is always associated with a kinematically and dynamically feasible trajectory. The main contributions of this thesis are: 1. A motion planning framework based on history-dependent costs (H-costs) in cell decomposition graphs for incorporating vehicle dynamical constraints: this framework offers distinct advantages in comparison with the competing approaches of discretization of the state space, of randomized sampling-based motion planning, and of local feedback-based, decoupled hierarchical motion planning, 2. An efficient and flexible algorithm for finding optimal H-cost paths, 3. A precise and general formulation of a local trajectory problem (the tile motion planning problem) that allows independent development of the discrete planner and the trajectory planner, while maintaining "compatibility" between the two planners, 4. A local trajectory generation algorithm using mpc, and the application of the concept of effective target sets for a significant simplification of the local trajectory generation problem, 5. The geometric analysis of curvature-bounded traversal of rectangular channels, leading to less conservative results in comparison with a result reported in the literature, and also to the efficient construction of effective target

  20. Unified theory of dislocation motion including thermal activation and inertial effects

    International Nuclear Information System (INIS)

    Isaac, R.D.; Granato, A.V.

    1979-01-01

    Transition-state rate theory has generally been used to explain the temperature dependence of the flow stress of a crystal. However, the existence of a change in the flow stress during the superconducting transition indicates the presence of inertial effects in which dislocations overcome obstacles mechanically rather than thermally. It is shown here that the thermally activated and the inertial overcoming of obstacles are not unrelated but can both be derived from principles of stochastic motion. This leads to a theory of dislocation motion that includes both thermal activation and inertial effects. It is also shown that a distribution of activation energies must be considered to account for the experimental data

  1. Kinematic analysis of mandibular motion before and after orthognathic surgery for skeletal Class III malocclusion: A pilot study.

    Science.gov (United States)

    Ugolini, Alessandro; Mapelli, Andrea; Segù, Marzia; Galante, Domenico; Sidequersky, Fernanda V; Sforza, Chiarella

    2017-03-01

    The aim of the study was to detect the changes in 3D mandibular motion after orthognathic surgery for skeletal Class III malocclusion. Using a 3D motion analyzer, free mandibular border movements were recorded in nine patients successfully treated for skeletal Class III malocclusion and in nine patients scheduled for orthognathic surgery. Data were compared using Mann-Whitney non-parametric U-test. The results showed no differences between the groups in the total amount of mouth opening, protrusion, and in lateral excursions, but the percentage of mandibular movement explained by condylar translation was significantly increased after surgery (20% vs. 23.6%). During opening, the post-surgery patients showed a more symmetrical mandibular interincisal point and condylar path than pre-surgery patients (p < 0.01). Patients treated with orthognathic surgery for skeletal Class III malocclusion recover a good and symmetric temporomandibular joint function.

  2. A multistage motion vector processing method for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  3. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    Science.gov (United States)

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced

  4. The moving minimum audible angle is smaller during self motion than during source motion.

    Directory of Open Access Journals (Sweden)

    W. Owen eBrimijoin

    2014-09-01

    Full Text Available We are rarely perfectly still: our heads rotate in three axes and move in three dimensions, constantly varying the spectral and binaural cues at the ear drums. In spite of this motion, static sound sources in the world are typically perceived as stable objects. This argues that the auditory system – in a manner not unlike the vestibulo-ocular reflex – works to compensate for self motion and stabilize our sensory representation of the world. We tested a prediction arising from this postulate: that self motion should be processed more accurately than source motion.We used an infrared motion tracking system to measure head angle, and real-time interpolation of head related impulse responses to create head-stabilized signals that appeared to remain fixed in space as the head turned. After being presented with pairs of simultaneous signals consisting of a man and a woman speaking a snippet of speech, normal and hearing impaired listeners were asked to report whether the female voice was to the left or the right of the male voice. In this way we measured the moving minimum audible angle (MMAA. This measurement was made while listeners were asked to turn their heads back and forth between ± 15° and the signals were stabilized in space. After this self-motion condition we measured MMAA in a second source-motion condition when listeners remained still and the virtual locations of the signals were moved using the trajectories from the first condition.For both normal and hearing impaired listeners, we found that the MMAA for signals moving relative to the head was ~1-2° smaller when the movement was the result of self motion than when it was the result of source motion, even though the motion with respect to the head was identical. These results as well as the results of past experiments suggest that spatial processing involves an ongoing and highly accurate comparison of spatial acoustic cues with self-motion cues.

  5. Effects of spatial attention on motion discrimination are greater in the left than right visual field.

    Science.gov (United States)

    Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the dorsal and ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the dorsal stream. Published by Elsevier Ltd.

  6. Floor response spectra of WWER-1000, NPP Kozloduy generated from local seismic excitation

    International Nuclear Information System (INIS)

    Bojadziev, Z.; Kostov, M.

    1996-01-01

    The seismic review level characteristics for the Kozloduy NPP site were set to 0.2 g and a respective free field acceleration response spectra were derived after a profound site conformation project. Accordingly a separate investigation is recommended for local seismic excitation. The goals of the analyses are: to define the seismic motion characteristics from local seismic sources; to perform structural analyses and in-structure spectra generation for local seismic excitation; and to compare the forces (spectra) from local events with those generated as seismic design review basis

  7. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  8. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity.

    Science.gov (United States)

    Dubois, Sara; Fraser, David

    2013-09-12

    The "pot bears" received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  9. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity

    Directory of Open Access Journals (Sweden)

    David Fraser

    2013-09-01

    Full Text Available The “pot bears” received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  10. The effects of local government investment on economic growth and employment: evidence from transitional China

    Institute of Scientific and Technical Information of China (English)

    Zhang Weiguo; Hou Yongjian

    2009-01-01

    Based on the panel data of 28 provinces in the year of 1987-2001,this paper examines the effects of the local government investment on economic growth and employment.The empirical result shows that the local government investment plays a significant positive role in economic growth and emplovment.However,while the proportion of local government investment to GDP had a remarkable rise after 1998.the elasticity of local government investment on economic growth declined,which shows that there is a hig room for raising the efficiency of local government mvestment.Moreover,the empirical examination shows that although local government investment had positive effect on employment,the elasticity had a decrease after 1994 when the tax-sharing system reform was put into practice.This shows that the positive role of local government investment on emplovment is also limited.This paper argues that the role of local governments as investors must be weakened,and local governments of different levels should lessen direct economic intervention and concentrate on public regulation.

  11. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images.

    Science.gov (United States)

    Serag, Ahmed; Macnaught, Gillian; Denison, Fiona C; Reynolds, Rebecca M; Semple, Scott I; Boardman, James P

    2017-01-01

    Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  12. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Ahmed Serag

    2017-01-01

    Full Text Available Fetal brain magnetic resonance imaging (MRI is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  13. Mercury in Retrograde: Shaking Up the Study of Orbital Motion with Kinesthetic Learning

    Science.gov (United States)

    DeStefano, Paul; Allen, Thomas; Widenhorn, Ralf

    2018-06-01

    We are investigating the use of kinesthetic activities to teach the orbital motion of planets at the introductory astronomy level. In addition to breaking the monotony of traditional classroom settings, kinesthetic activities can allow novel connections to form between the student and the material, as established in a recent study. In our example active learning activity, two students walk along predetermined paths in the classroom, simulating the dynamics of any two real or fictional bodies in orbital motion about a common object. Each student carries a short-range, local positioning device that records its 2D position, continuously. The position data from both devices are collected on a single computer. After acquisition, the data can be used to highlight interesting features of orbital dynamics. For example, we demonstrate a particular transformation of the data that shows apparent retrograde motion arising directly from the relative motion of two bodies orbiting a common object. This activity provides students with the opportunity to observe interesting orbital dynamics on a human scale.

  14. Simvastatin Ameliorates Radiation Enteropathy Development After Localized, Fractionated Irradiation by a Protein C-Independent Mechanism

    International Nuclear Information System (INIS)

    Wang Junru; Boerma, Marjan; Fu Qiang; Kulkarni, Ashwini; Fink, Louis M.; Hauer-Jensen, Martin

    2007-01-01

    Purpose: Microvascular injury plays a key role in normal tissue radiation responses. Statins, in addition to their lipid-lowering effects, have vasculoprotective properties that may counteract some effects of radiation on normal tissues. We examined whether administration of simvastatin ameliorates intestinal radiation injury, and whether the effect depends on protein C activation. Methods and Materials: Rats received localized, fractionated small bowel irradiation. The animals were fed either regular chow or chow containing simvastatin from 2 weeks before irradiation until termination of the experiment. Groups of rats were euthanized at 2 weeks and 26 weeks for assessment of early and delayed radiation injury by quantitative histology, morphometry, and quantitative immunohistochemistry. Dependency on protein C activation was examined in thrombomodulin (TM) mutant mice with deficient ability to activate protein C. Results: Simvastatin administration was associated with lower radiation injury scores (p < 0.0001), improved mucosal preservation (p = 0.0009), and reduced thickening of the intestinal wall and subserosa (p = 0.008 and p = 0.004), neutrophil infiltration (p = 0.04), and accumulation of collagen I (p = 0.0003). The effect of simvastatin was consistently more pronounced for delayed than for early injury. Surprisingly, simvastatin reduced intestinal radiation injury in TM mutant mice, indicating that the enteroprotective effect of simvastatin after localized irradiation is unrelated to protein C activation. Conclusions: Simvastatin ameliorates the intestinal radiation response. The radioprotective effect of simvastatin after localized small bowel irradiation does not appear to be related to protein C activation. Statins should undergo clinical testing as a strategy to minimize side effects of radiation on the intestine and other normal tissues

  15. Local changes after intramuscular administration of gammaphos (WR-2721) in rats

    International Nuclear Information System (INIS)

    Resl, M.; Kuna, P.

    1985-01-01

    Local changes were investigated after i.m. injection of WR-2721, dissolved in saline or in aqua pro injectionem (ApI), and of ApI or saline alone. First muscle changes were found in the all the experimental groups after 6 h. Their development was most intensive after i.m. injection of ApI alone (granular degeneration up to complete necrosis of muscle fibers). The local changes after i.m. injection of WR-2721 in saline did not reach the intensity of changes of WR-2721 in ApI. The first reparative or regenerative changes were observed 72 hours after application. In the late phase (14th to 21st day) the normal tissue state was reached. The i.m. injection of WR-2721 in saline may be one of the possible routes of administration of this radioprotective substance. (author)

  16. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  17. Averaging, not internal noise, limits the development of coherent motion processing

    Directory of Open Access Journals (Sweden)

    Catherine Manning

    2014-10-01

    Full Text Available The development of motion processing is a critical part of visual development, allowing children to interact with moving objects and navigate within a dynamic environment. However, global motion processing, which requires pooling motion information across space, develops late, reaching adult-like levels only by mid-to-late childhood. The reasons underlying this protracted development are not yet fully understood. In this study, we sought to determine whether the development of motion coherence sensitivity is limited by internal noise (i.e., imprecision in estimating the directions of individual elements and/or global pooling across local estimates. To this end, we presented equivalent noise direction discrimination tasks and motion coherence tasks at both slow (1.5°/s and fast (6°/s speeds to children aged 5, 7, 9 and 11 years, and adults. We show that, as children get older, their levels of internal noise reduce, and they are able to average across more local motion estimates. Regression analyses indicated, however, that age-related improvements in coherent motion perception are driven solely by improvements in averaging and not by reductions in internal noise. Our results suggest that the development of coherent motion sensitivity is primarily limited by developmental changes within brain regions involved in integrating motion signals (e.g., MT/V5.

  18. Stochastic motion of particles in tandem mirror devices

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Kamimura, T.

    1982-01-01

    Stochastic motion of particles in tandem mirror devices is examined on basis of a nonlinear mapping of particle positions on the equatorial plane. Local stability analysis provides detailed informations on particle trajectories. The rate of stochastic plasma diffusion is estimated from numerical observations of motions of particles over a large number of time steps. (author)

  19. ShakeMapple : tapping laptop motion sensors to map the felt extents of an earthquake

    Science.gov (United States)

    Bossu, Remy; McGilvary, Gary; Kamb, Linus

    2010-05-01

    There is a significant pool of untapped sensor resources available in portable computer embedded motion sensors. Included primarily to detect sudden strong motion in order to park the disk heads to prevent damage to the disks in the event of a fall or other severe motion, these sensors may also be tapped for other uses as well. We have developed a system that takes advantage of the Apple Macintosh laptops' embedded Sudden Motion Sensors to record earthquake strong motion data to rapidly build maps of where and to what extent an earthquake has been felt. After an earthquake, it is vital to understand the damage caused especially in urban environments as this is often the scene for large amounts of damage caused by earthquakes. Gathering as much information from these impacts to determine where the areas that are likely to be most effected, can aid in distributing emergency services effectively. The ShakeMapple system operates in the background, continuously saving the most recent data from the motion sensors. After an earthquake has occurred, the ShakeMapple system calculates the peak acceleration within a time window around the expected arrival and sends that to servers at the EMSC. A map plotting the felt responses is then generated and presented on the web. Because large-scale testing of such an application is inherently difficult, we propose to organize a broadly distributed "simulated event" test. The software will be available for download in April, after which we plan to organize a large-scale test by the summer. At a specified time, participating testers will be asked to create their own strong motion to be registered and submitted by the ShakeMapple client. From these responses, a felt map will be produced representing the broadly-felt effects of the simulated event.

  20. Fate of thymic radioactivity after local labeling with 125Iododeoxyuridine

    International Nuclear Information System (INIS)

    Laissue, J.A.; Chanana, A.D.; Cottier, H.; Cronkite, E.P.; Joel, D.D.

    1976-01-01

    The thymic cortex was locally labeled with 125 Iododeoxyuridine ( 125 IUdR) in young adult mice in an attempt to provide a simple quantitative assessment of the fate of cortical thymocytes. Similarly operated and nonoperated mice given 125 IUdR intravenously were used for comparison. Analogous experiments were performed in adrenalectomized animals. More than 90 percent of thymic activity present 1 day after labeling had been lost by day 8. That proportion of radioactivity contributed to a given organ by accumulation of labeled thymic migrants was estimated by comparison of values obtained after local labeling with those acquired after systemic labeling. Thymic cell accumulation was apparent in the intestine, spleen, mesenteric lymph node, and femurs of locally labeled mice; however, only a few percent of the total activity lost from the thymus was accounted for in these lymphoid organs. The pattern of fecal and urinary elimination of 125 I did not markedly differ in the various experimental groups, the bulk of the activity being recovered in the urine. The intestine could not be ruled out as a major site of thymocyte loss. Since significant radiation or pharmacologic toxicity was unlikely with the doses of 125 IUdR used, the data indicated that the vast majority of newly formed thymocytes dies after a short life and only a small fraction of thymic migrants is longer lived

  1. Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC

    International Nuclear Information System (INIS)

    Green, M.A.; Majer, E.I.; More, V.D.; O'Connell, D.R.; Shilling, R.C.

    1986-12-01

    This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different

  2. Effects of virtual speaker density and room reverberation on spatiotemporal thresholds of audio-visual motion coherence.

    Directory of Open Access Journals (Sweden)

    Narayan Sankaran

    Full Text Available The present study examined the effects of spatial sound-source density and reverberation on the spatiotemporal window for audio-visual motion coherence. Three different acoustic stimuli were generated in Virtual Auditory Space: two acoustically "dry" stimuli via the measurement of anechoic head-related impulse responses recorded at either 1° or 5° spatial intervals (Experiment 1, and a reverberant stimulus rendered from binaural room impulse responses recorded at 5° intervals in situ in order to capture reverberant acoustics in addition to head-related cues (Experiment 2. A moving visual stimulus with invariant localization cues was generated by sequentially activating LED's along the same radial path as the virtual auditory motion. Stimuli were presented at 25°/s, 50°/s and 100°/s with a random spatial offset between audition and vision. In a 2AFC task, subjects made a judgment of the leading modality (auditory or visual. No significant differences were observed in the spatial threshold based on the point of subjective equivalence (PSE or the slope of psychometric functions (β across all three acoustic conditions. Additionally, both the PSE and β did not significantly differ across velocity, suggesting a fixed spatial window of audio-visual separation. Findings suggest that there was no loss in spatial information accompanying the reduction in spatial cues and reverberation levels tested, and establish a perceptual measure for assessing the veracity of motion generated from discrete locations and in echoic environments.

  3. Effect of stopover on motion of two competing elevators in peak traffic

    Science.gov (United States)

    Nagatani, Takashi

    2016-02-01

    We study the dynamic motion of two competing elevators when elevators stop over at some floors. We present the dynamic model of elevators to take into account the stopover effect. The dynamics of the elevator traffic system is described by a pair of deterministic nonlinear maps. The motion of two elevators is determined by the five parameters: the numbers of stopovers at two elevators, the fraction of passengers choosing the first elevator, the fraction of passengers choosing the second elevator, and the inflow rate. The dynamics of two elevators depends highly on these parameters. The motion of two elevators displays a complex behavior by a neck-and-neck race between two elevators. We explore the dependence of elevator motion on the fractions of two kinds of passengers, the numbers of stopover floors, and the inflow rate.

  4. An Observability Metric for Underwater Vehicle Localization Using Range Measurements

    Directory of Open Access Journals (Sweden)

    Filippo Arrichiello

    2013-11-01

    Full Text Available The paper addresses observability issues related to the general problem of single and multiple Autonomous Underwater Vehicle (AUV localization using only range measurements. While an AUV is submerged, localization devices, such as Global Navigation Satellite Systems, are ineffective, due to the attenuation of electromagnetic waves. AUV localization based on dead reckoning techniques and the use of affordable motion sensor units is also not practical, due to divergence caused by sensor bias and drift. For these reasons, localization systems often build on trilateration algorithms that rely on the measurements of the ranges between an AUV and a set of fixed transponders using acoustic devices. Still, such solutions are often expensive, require cumbersome calibration procedures and only allow for AUV localization in an area that is defined by the geometrical arrangement of the transponders. A viable alternative for AUV localization that has recently come to the fore exploits the use of complementary information on the distance from the AUV to a single transponder, together with information provided by on-board resident motion sensors, such as, for example, depth, velocity and acceleration measurements. This concept can be extended to address the problem of relative localization between two AUVs equipped with acoustic sensors for inter-vehicle range measurements. Motivated by these developments, in this paper, we show that both the problems of absolute localization of a single vehicle and the relative localization of multiple vehicles can be treated using the same mathematical framework, and tailoring concepts of observability derived for nonlinear systems, we analyze how the performance in localization depends on the types of motion imparted to the AUVs. For this effect, we propose a well-defined observability metric and validate its usefulness, both in simulation and by carrying out experimental tests with a real marine vehicle during which the

  5. The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task

    Science.gov (United States)

    Miller, G. K., Jr.; Riley, D. R.

    1977-01-01

    An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.

  6. Coupled large eddy simulation and discrete element model of bedload motion

    Science.gov (United States)

    Furbish, D.; Schmeeckle, M. W.

    2011-12-01

    We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including

  7. High-resolution simulations of unstable cylindrical gravity currents undergoing wandering and splitting motions in a rotating system

    Science.gov (United States)

    Dai, Albert; Wu, Ching-Sen

    2018-02-01

    High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting motions occur in a rotating system are reported. In this study, our attention is focused on the situation of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously by the authors. The simulations reproduce the major features of the unstable rotating cylindrical gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the contraction-relaxation motion, and good agreement is found when compared with the experimental results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the simulations provide energy budget information which could not be attained in the laboratory. After the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for approximately 2-3 revolutions of the system. During the contraction-relaxation motion of the heavy fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state, vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces. The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic energy increases at the expense of decreasing potential energy in the system. The completion of vortex-splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent upwelling and downwelling motions, which are observed for both the

  8. Effects of Rotational Motion in Robotic Needle Insertion

    Science.gov (United States)

    Ramezanpour, H.; Yousefi, H.; Rezaei, M.; Rostami, M.

    2015-01-01

    Background Robotic needle insertion in biological tissues has been known as one the most applicable procedures in sampling, robotic injection and different medical therapies and operations. Objective In this paper, we would like to investigate the effects of angular velocity in soft tissue insertion procedure by considering force-displacement diagram. Non-homogenous camel liver can be exploited as a tissue sample under standard compression test with Zwick/Roell device employing 1-D axial load-cell. Methods Effects of rotational motion were studied by running needle insertion experiments in 5, 50 and 200 mm/min in two types of with or without rotational velocity of 50, 150 and 300 rpm. On further steps with deeper penetrations, friction force of the insertion procedure in needle shaft was acquired by a definite thickness of the tissue. Results Designed mechanism of fixture for providing different frequencies of rotational motion is available in this work. Results for comparison of different force graphs were also provided. Conclusion Derived force-displacement graphs showed a significant difference between two procedures; however, tissue bleeding and disorganized micro-structure would be among unavoidable results. PMID:26688800

  9. Management of Biochemical Recurrence after Primary Localized Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Darwish, Oussama M.; Raj, Ganesh V.

    2012-01-01

    Clinically localized prostate cancer is typically managed by well established therapies like radical prostatectomy, brachytherapy, and external beam radiation therapy. While many patients can be cured with definitive local therapy, some will have biochemical recurrence (BCR) of disease detected by a rising serum prostate-specific antigen (PSA). Management of these patients is nuanced and controversial. The natural history indicates that a majority of patients with BCR will not die from prostate cancer but from other causes. Despite this, a vast majority of patients with BCR are empirically treated with non-curable systemic androgen deprivation therapy (ADT), with its myriad of real and potential side effects. In this review article, we examined the very definition of BCR after definitive local therapy, the current status of imaging studies in its evaluation, the need for additional therapies, and the factors involved in the decision making in the choice of additional therapies. This review aims to help clinicians with the management of patients with BCR. The assessment of prognostic factors including absolute PSA level, time to recurrence, PSA kinetics, multivariable nomograms, imaging, and biopsy of the prostatic bed may help stratify the patients into localized or systemic recurrence. Patients with low-risk of systemic disease may be cured by a salvage local therapy, while those with higher risk of systemic disease may be offered the option of ADT or a clinical trial. An algorithm incorporating these factors is presented.

  10. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  11. Spatial charge motion on an uniform density matrix-general equations in opened and closed circuits

    International Nuclear Information System (INIS)

    Aguiar Monsanto, S. de.

    1983-01-01

    The motion of a space charge cloud embedded in a matrix of constant immobile charge density is studied in open as well as in closed circuit. In the first case, open circuit, the solution is almost trivial as compared as the other one in which, after some work, the problem is reduced to an ordinary differential equation. The method of solution is parallel to that employed in the study of monopolar free space charge motion. The voltage and the current produced by a system with no net charge but with unbalanced local charge density were calculated using the general equations derived in the first part of the work. (Author) [pt

  12. 10 CFR 820.39 - Motions.

    Science.gov (United States)

    2010-01-01

    ... an enforcement adjudication except those made orally, shall be in writing, state the grounds therefor..., certificate, other evidence, or legal memorandum relied upon. (b) Answer to motions. Except as otherwise... to file a written answer to the motion of another party within 10 days after the filing of such...

  13. The acoustic Doppler effect applied to the study of linear motions

    International Nuclear Information System (INIS)

    Gómez-Tejedor, José A; Castro-Palacio, Juan C; Monsoriu, Juan A

    2014-01-01

    In this work, the change of frequency of a sound wave due to the Doppler effect has been measured using a smartphone. For this purpose, a speaker at rest and a smartphone placed on a cart on an air track were used. The change in frequency was measured by using an application for Android™, ‘Frequency Analyzer’, which was developed by us specifically for this work. This made it possible to analyze four types of mechanical motions: uniform linear motion, uniform accelerated linear motion, harmonic oscillations and damped harmonic oscillations. These experiments are suitable for undergraduate students. The main novelty of this work was the possibility of measuring the instantaneous frequency as a function of time with high precision. The results were compared with alternative measurements yielding good agreement. (paper)

  14. A kinematic approach for efficient and robust simulation of the cardiac beating motion.

    Directory of Open Access Journals (Sweden)

    Takashi Ijiri

    Full Text Available Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications.

  15. Action Localization by Tubelets from Motion

    NARCIS (Netherlands)

    Jain, M.; van Gemert, J.; Jégou, H.; Bouthemy, P.; Snoek, C.G.M.

    2014-01-01

    This paper considers the problem of action localization, where the objective is to determine when and where certain actions appear. We introduce a sampling strategy to produce 2D+t sequences of bounding boxes, called tubelets. Compared to state-of-the-art alternatives, this drastically reduces the

  16. Circuit Mechanisms Governing Local vs. Global Motion Processing in Mouse Visual Cortex

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Yonehara, Keisuke

    2017-01-01

    components represented by component direction-selective (CDS) cells. However, how PDS and CDS cells develop their distinct response properties is still unresolved. The visual cortex of the mouse is an attractive model for experimentally solving this issue due to the large molecular and genetic toolbox...... literature on global motion processing based on works in primates and mice. Lastly, we propose what types of experiments could illuminate what circuit mechanisms are governing cortical global visual motion processing. We propose that PDS cells in mouse visual cortex appear as the perfect arena...

  17. Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study

    Science.gov (United States)

    Werner, René; Gauer, Tobias

    2015-03-01

    Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.

  18. Sound frequency and aural selectivity in sound-contingent visual motion aftereffect.

    Directory of Open Access Journals (Sweden)

    Maori Kobayashi

    Full Text Available BACKGROUND: One possible strategy to evaluate whether signals in different modalities originate from a common external event or object is to form associations between inputs from different senses. This strategy would be quite effective because signals in different modalities from a common external event would then be aligned spatially and temporally. Indeed, it has been demonstrated that after adaptation to visual apparent motion paired with alternating auditory tones, the tones begin to trigger illusory motion perception to a static visual stimulus, where the perceived direction of visual lateral motion depends on the order in which the tones are replayed. The mechanisms underlying this phenomenon remain unclear. One important approach to understanding the mechanisms is to examine whether the effect has some selectivity in auditory processing. However, it has not yet been determined whether this aftereffect can be transferred across sound frequencies and between ears. METHODOLOGY/PRINCIPAL FINDINGS: Two circles placed side by side were presented in alternation, producing apparent motion perception, and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. However, the aftereffect was observed only when the adapter and test tones were presented at the same frequency and to the same ear. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the auditory processing underlying the establishment of novel audiovisual associations is selective, potentially but not necessarily indicating that this processing occurs at an early stage.

  19. Preoperative localization of parathyroid adenomas is cost-effective

    International Nuclear Information System (INIS)

    Wilson, M.A.; Mack, E.; Rowe, B.; Perlman, S.B.

    1986-01-01

    The preoperative localization of parathyroid adenomas is cost-effective because it reduces anesthesia and surgery times. The technique is sensitive in single and double adenomas (90%), and some surgeons have modified their operative technique because of its introduction. The practical experience of one surgeon is presented, with similar patient subsets (n = 22) compared before and after use of a localization scan was instituted. The average operative time fell by 94%, from 2 hours 35 minutes to 1 hour 19 minutes. The reduction in operative time was possible because the surgeon did not seek to identify the remaining normal parathyroids when the scanned lesion was excised and proved to be the adenoma

  20. Local control and functional results after twice-daily radiotherapy for Ewing's sarcoma of the extremities

    International Nuclear Information System (INIS)

    Bolek, Timothy W.; Marcus, Robert B.; Mendenhall, Nancy Price; Scarborough, Mark T.; Graham-Pole, John

    1996-01-01

    Purpose: Radiotherapy (RT) has been the predominant local treatment for Ewing's sarcoma of bone at the University of Florida. Twice-daily hyperfractionated RT was initiated in 1982 to improve local control and functional outcome. This retrospective review compares the results of once-daily vs. twice-daily RT in patients with primary Ewing's sarcoma of an extremity, with emphasis on functional outcome. Methods and Materials: Between June 1971 and January 1990, 37 patients were treated at the University of Florida for nonmetastatic Ewing's sarcoma of bone with a primary lesion in an extremity. Three patients underwent amputation. Of 34 patients treated with RT, 31 had RT alone and 3 had a combination of RT and local excision. Before 1982, 14 patients received once-daily RT; since 1982, 17 patients have received twice-daily RT. Doses of once-daily RT varied from 47 to 61 Gy at 1.8-2 Gy per fraction. Doses of twice-daily RT varied, depending on the response of the soft-tissue component of the tumor to chemotherapy, and ranged from 50.4 to 60 Gy at 1.2 Gy per fraction. Some patients in the twice-daily RT group also received total body irradiation 1-3 months after local RT as part of a conditioning regimen before marrow-ablative therapy with stem cell rescue. They received either 8 Gy in two once-daily fractions or 12 Gy in six twice-daily fractions. The six patients who received surgery were excluded from local control analysis. Local control rates were calculated using the Kaplan-Meier (actuarial) method. Fifteen patients had a formal functional evaluation. Results: In the 31 patients treated with RT alone, the actuarial local control rate at 5 years was 81% for patients treated twice daily and 77% for those treated once daily (p = NS). No posttreatment pathologic fractures occurred in patients treated twice daily, whereas five fractures occurred in those treated once daily (p = 0.01). On functional evaluation, less loss in range of motion (15 deg. vs. 28 deg. of loss

  1. Effect of personalized external aortic root support on aortic root motion and distension in Marfan syndrome patients.

    Science.gov (United States)

    Izgi, Cemil; Nyktari, Evangelia; Alpendurada, Francisco; Bruengger, Annina Studer; Pepper, John; Treasure, Tom; Mohiaddin, Raad

    2015-10-15

    Personalized external aortic root support (PEARS) is a novel surgical approach with the aim of stabilizing the aortic root size and decreasing risk of dissection in Marfan syndrome patients. A bespoke polymer mesh tailored to each patient's individual aorta shape is produced by modeling and then surgically implanted. The aim of this study is to assess the mechanical effects of PEARS on the aortic root systolic downward motion (an important determinant of aortic wall stress), aortic root distension and on the left ventricle (LV). A cohort of 27 Marfan patients had a prophylactic PEARS surgery between 2004 and 2012 with 24 having preoperative and follow-up cardiovascular magnetic resonance imaging studies. Systolic downward aortic root motion, aortic root distension, LV volumes/mass and mitral annular systolic excursion before the operation and in the latest follow-up were measured randomly and blinded. After a median follow-up of 50.5 (IQR 25.5-72) months following implantation of PEARS, systolic downward motion of aortic root was significantly decreased (12.6±3.6mm pre-operation vs 7.9±2.9mm latest follow-up, p<0.00001). There was a tendency for a decrease in systolic aortic root distension but this was not significant (median 4.5% vs 2%, p=0.35). There was no significant change in LV volumes, ejection fraction, mass and mitral annular systolic excursion in follow-up. PEARS surgery decreases systolic downward aortic root motion which is an important determinant of longitudinal aortic wall stress. Aortic wall distension and Windkessel function are not significantly impaired in the follow-up after implantation of the mesh which is also supported by the lack of deterioration of LV volumes or mass. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  3. Influence of rheology on realignment of mantle convective structure with plate motion after a plate reorganization

    Science.gov (United States)

    van Hunen, J.; Zhong, S.

    2006-08-01

    Small-scale convection (SSC) rolls below the oceanic lithosphere have the tendency to align with the large-scale shearing direction and thus with the plate motion direction relative to the deep mantle. Understanding the timescales of and processes responsible for realignment would contribute significantly to our understanding of the unresolved phenomena in the Pacific such as gravity lineations, small-scale seismic velocity variations, and intraplate volcanism that cannot be explained by hot spots. In this study we examine the evolution of those convection rolls when this relative plate motion direction is suddenly changed, as suggested by the kink in the Hawaii-Emperor seamount chain. Using three-dimensional numerical flow models, we investigate the realignment of SSC rolls after a change in plate motion direction. From the nature of the SSC, it is expected that rheological parameters dominate the characteristics of this realignment. Our results show that this is indeed the case. We find that (1) using constraints from onset timing of SSC, realignment of rolls can occur as fast as within 20 Ma, but might also take much longer, dependent on the rheology; (2) the realignment period is strongly correlated to the sum of large-scale shear stress induced by plate motion and small-scale shear stress from the SSC itself; (3) in a mantle deforming by dislocation creep, realignment occurs faster than by diffusion creep, because dislocation creep SSC is more vigorous; and (4) activation energy has little influence on the realignment time. Possible evidence for the realignment period might come from precise age determination of intraplate volcanism or azimuthal seismic anisotropy.

  4. Dosimetric consequences of tumour motion due to respiration for a scanned proton beam

    International Nuclear Information System (INIS)

    Kraus, K M; Oelfke, U; Heath, E

    2011-01-01

    A method for simulating spot-scanned delivery to a moving tumour was developed which uses patient-specific image and plan data. The magnitude of interplay effects was investigated for two patient cases under different fractionation and respiratory motion variation scenarios. The use of volumetric rescanning for motion mitigation was also investigated. For different beam arrangements, interplay effects lead to severely distorted dose distributions for a single fraction delivery. Baseline shift variations for single fraction delivery reduced the dose to the clinical target volume (CTV) by up to 14.1 Gy. Fractionated delivery significantly reduced interplay effects; however, local overdosage of 12.3% compared to the statically delivered dose remained for breathing period variations. Variations of the tumour baseline position and respiratory period were found to have the largest influence on target inhomogeneity; these effects were reduced with fractionation. Volumetric rescanning improved the dose homogeneity. For the CTV, underdosage was improved by up to 34% in the CTV and overdosage to the lung was reduced by 6%. Our results confirm that rescanning potentially increases the dose homogeneity; however, it might not sufficiently compensate motion-induced dose distortions. Other motion mitigation techniques may be required to additionally treat lung tumours with scanned proton beams.

  5. Effect of Continuous Motion Parameter Feedback on Laparoscopic Simulation Training: A Prospective Randomized Controlled Trial on Skill Acquisition and Retention.

    Science.gov (United States)

    Buescher, Julian Frederik; Mehdorn, Anne-Sophie; Neumann, Philipp-Alexander; Becker, Felix; Eichelmann, Ann-Kathrin; Pankratius, Ulrich; Bahde, Ralf; Foell, Daniel; Senninger, Norbert; Rijcken, Emile

    To investigate the effect of motion parameter feedback on laparoscopic basic skill acquisition and retention during a standardized box training curriculum. A Lap-X Hybrid laparoscopic simulator was designed to provide individual and continuous motion parameter feedback in a dry box trainer setting. In a prospective controlled trial, surgical novices were randomized into 2 groups (regular box group, n = 18, and Hybrid group, n = 18) to undergo an identical 5-day training program. In each group, 7 standardized tasks on laparoscopic basic skills were completed twice a day on 4 consecutive days in fixed pairs. Additionally, each participant performed a simulated standard laparoscopic cholecystectomy before (day 1) and after training (day 5) on a LAP Mentor II virtual reality (VR) trainer, allowing an independent control of skill progress in both groups. A follow-up assessment of skill retention was performed after 6 weeks with repetition of both the box tasks and VR cholecystectomy. Muenster University Hospital Training Center, Muenster, Germany. Medical students without previous surgical experience. Laparoscopic skills in both groups improved significantly during the training period, measured by the overall task performance time. The 6 week follow-up showed comparable skill retention in both groups. Evaluation of the VR cholecystectomies demonstrated significant decrease of operation time (p Simulation training on both trainers enables reliable acquisition of laparoscopic basic skills. Furthermore, individual and continuous motion feedback improves laparoscopic skill enhancement significantly in several aspects. Thus, training systems with feedback of motion parameters should be considered to achieve long-term improvement of motion economy among surgical trainees. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Space-dependent effects of motion on the standard deviation of fMRI signals : a simulation study.

    NARCIS (Netherlands)

    Renken, R; Muresan, L; Duifhuis, H; Roerdink, JBTM; Yaffe, MK; Antonuk, LE

    2003-01-01

    In fMRI, any fluctuation of signal intensity, not recognized as a result of a specific task, is treated as noise. One source for "noise" is subject motion. Normally, motion effects are reduced by applying realignment. We investigate how apt a realignment procedure is in removing motion-related

  7. Cooperative Localization for Mobile Networks

    DEFF Research Database (Denmark)

    Cakmak, Burak; Urup, Daniel Nygaard; Meyer, Florian

    2016-01-01

    We propose a hybrid message passing method for distributed cooperative localization and tracking of mobile agents. Belief propagation and mean field message passing are employed for, respectively, the motion-related and measurementrelated part of the factor graph. Using a Gaussian belief approxim......We propose a hybrid message passing method for distributed cooperative localization and tracking of mobile agents. Belief propagation and mean field message passing are employed for, respectively, the motion-related and measurementrelated part of the factor graph. Using a Gaussian belief...

  8. Is adjuvant hysterectomy an option after radio-chemotherapy for locally advanced cervical cancer? A review

    Directory of Open Access Journals (Sweden)

    Cornelia Nitipir

    2018-05-01

    Full Text Available Objective. The purpose of this paper is to review the current concepts in the literature regarding the beneficial effects of adjuvant surgery after concurrent radio-chemotherapy for locally advanced cervical cancer. Method. Research of the literature was performed using PubMed databases in order to find articles relevant to the central topic. The PICOS criteria were used to filter the results. The paper was then structured according to the PRISMA guideline. Results. 50 individual papers were analyzed and sorted according to their relevance for the topic. 18 were classified as relevant. There was little agreement as to how beneficial adjuvant hysterectomy is in locally advanced cervical cancer after chemoradiotherapy. Some articles concluded that patients with a total clinical response after initial treatment might have superior progression-free survival and overall survival after surgery. 2 articles underlined the importance of accurate restaging after primary treatment. The lack of benefit for surgery in patients with bulky disease or persistent adenopathies was agreed upon in all cases. Conclusions. The decision for adjuvant hysterectomy with or without lymphadenectomy is a controversial one and has to be personalized and taken in a multidisciplinary team.

  9. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    International Nuclear Information System (INIS)

    Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan

    2012-01-01

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  10. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    International Nuclear Information System (INIS)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil

    1985-01-01

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  11. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1985-03-15

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  12. Wearable sensor system for human localization and motion capture

    OpenAIRE

    Zihajehzadeh, Shaghayegh

    2017-01-01

    Recent advances in MEMS wearable inertial/magnetic sensors and mobile computing have fostered a dramatic growth of interest for ambulatory human motion capture (MoCap). Compared to traditional optical MoCap systems such as the optical systems, inertial (i.e. accelerometer and gyroscope) and magnetic sensors do not require external fixtures such as cameras. Hence, they do not have in-the-lab measurement limitations and thus are ideal for ambulatory applications. However, due to the manufacturi...

  13. Advanced Demonstration of Motion Correction for Ship-to-Ship Passive Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boehnen, Chris Bensing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ernst, Joseph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-30

    Passive radiation detection is a key tool for detecting illicit nuclear materials. In maritime applications it is most effective against small vessels where attenuation is of less concern. Passive imaging provides: discrimination between localized (threat) and distributed (non-threat) sources, removal of background fluctuations due to nearby shorelines and structures, source localization to an individual craft in crowded waters, and background subtracted spectra. Unfortunately, imaging methods cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing sensitivity. This is particularly true for the smaller water craft where passive inspections are most valuable. In this project we performed tests and improved the performance of an instrument (developed earlier under, “Motion Correction for Ship-to-Ship Passive Inspections”) that uses automated tracking of a target vessel in visible-light images to generate a 3D radiation map of the target vessel from data obtained using a gamma-ray imager.

  14. Earthquake strong ground motion studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, Ivan; Silva, W.; Darragh, R.; Stark, C.; Wright, D.; Jackson, S.; Carpenter, G.; Smith, R.; Anderson, D.; Gilbert, H.; Scott, D.

    1989-01-01

    Site-specific strong earthquake ground motions have been estimated for the Idaho National Engineering Laboratory assuming that an event similar to the 1983 M s 7.3 Borah Peak earthquake occurs at epicentral distances of 10 to 28 km. The strong ground motion parameters have been estimated based on a methodology incorporating the Band-Limited-White-Noise ground motion model coupled with Random Vibration Theory. A 16-station seismic attenuation and site response survey utilizing three-component portable digital seismographs was also performed for a five-month period in 1989. Based on the recordings of regional earthquakes, the effects of seismic attenuation in the shallow crust and along the propagation path and local site response were evaluated. This data combined with a detailed geologic profile developed for each site based principally on borehole data, was used in the estimation of the strong ground motion parameters. The preliminary peak horizontal ground accelerations for individual sites range from approximately 0.15 to 0.35 g. Based on the authors analysis, the thick sedimentary interbeds (greater than 20 m) in the basalt section attenuate ground motions as speculated upon in a number of previous studies

  15. Attention and apparent motion.

    Science.gov (United States)

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  16. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Directory of Open Access Journals (Sweden)

    Gyungho Khim

    2015-01-01

    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  17. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Science.gov (United States)

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  18. Repeat CT-scan assessment of lymph node motion in locally advanced cervical cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Bondar, Luiza; Velema, Laura; Mens, Jan Willem; Heijmen, Ben; Hoogeman, Mischa [Erasmus Medical Center Cancer Institute, Department of Radiation Oncology, 3008 AE, Rotterdam (Netherlands); Zwijnenburg, Ellen [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands)

    2014-12-15

    In cervical cancer patients the nodal clinical target volume (CTV, defined using the major pelvic blood vessels and enlarged lymph nodes) is assumed to move synchronously with the bony anatomy. The aim of this study was to verify this assumption by investigating the motion of the major pelvic blood vessels and enlarged lymph nodes visible in CT scans. For 13 patients treated in prone position, four variable bladder-filling CT scans per patient, acquired at planning and after 40 Gy, were selected from an available dataset of 9-10 CT scans. The bladder, rectum, and the nodal-vessels structure containing the iliac vessels and all visible enlarged nodes were delineated in each selected CT scan. Two online patient setup correction protocols were simulated. The first corrected bony anatomy translations and the second corrected translations and rotations. The efficacy of each correction was calculated as the overlap between the nodal-vessels structure in the reference and repeat CT scans. The motion magnitude between delineated structures was quantified using nonrigid registration. Translational corrections resulted in an average overlap of 58 ± 13% and in a range of motion between 9.9 and 27.3 mm. Translational and rotational corrections significantly improved the overlap (64 ± 13%, p value = 0.007) and moderately reduced the range of motion to 7.6-23.8 mm (p value = 0.03). Bladder filling changes significantly correlated with the nodal-vessels motion (p < 0.001). The motion of the nodal-vessels was large, nonrigid, patient-specific, and only moderately synchronous with the bony anatomy. This study highlights the need for caution when reducing the CTV-to-PTV (PTV planning target volume) margin of the nodal CTV for highly conformal radiation techniques. (orig.) [German] Bei Zervixkarzinompatientinnen wird davon ausgegangen, dass das nodale klinische Zielvolumen (CTV, definiert anhand der grossen Blutgefaesse des Beckens und vergroesserter Lymphknoten) sich synchron mit

  19. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  20. Contribution of vertical land motions to coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge and GPS measurements

    Science.gov (United States)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    Coastal sea level variations result from a complex mix of climatic, oceanic and geodynamical processes driven by natural and anthropogenic constraints. Combining data from multiple sources is one solution to identify particular processes and progress towards a better understanding of the sea level variations and the assessment of their impacts at coast. Here, we present a global database merging multisatellite altimetry with tide gauges and Global Positioning System (GPS) measurements. Vertical land motions and sea level variations are estimated simultaneously for a network of 886 ground stations with median errors lower than 1 mm/yr. The contribution of vertical land motions to relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Worldwide, vertical land motions dominate 30 % of observed coastal trends. The role of the crust is highly heterogeneous: it can amplify, restrict or counter the effects of climate-induced sea level change. A set of 182 potential vulnerable localities are identified by large coastal subsidence which increases by several times the effects of sea level rise. Though regional behaviours exist, principally caused by GIA (Glacial Isostatic Adjustment), the local variability in vertical land motion prevails. An accurate determination of the vertical motions observed at the coast is fundamental to understand the local processes which contribute to sea level rise, to appraise its impacts on coastal populations and make future predictions.

  1. Simulation of ball motion and energy transfer in a planetary ball mill

    International Nuclear Information System (INIS)

    Lu Sheng-Yong; Mao Qiong-Jing; Li Xiao-Dong; Yan Jian-Hua; Peng Zheng

    2012-01-01

    A kinetic model is proposed for simulating the trajectory of a single milling ball in a planetary ball mill, and a model is also proposed for simulating the local energy transfer during the ball milling process under no-slip conditions. Based on the kinematics of ball motion, the collision frequency and power are described, and the normal impact forces and effective power are derived from analyses of collision geometry. The Hertzian impact theory is applied to formulate these models after having established some relationships among the geometric, dynamic, and thermophysical parameters. Simulation is carried out based on two models, and the effects of the rotation velocity of the planetary disk Ω and the vial-to-disk speed ratio ω/Ω on other kinetic parameters is investigated. As a result, the optimal ratio ω/Ω to obtain high impact energy in the standard operating condition at Ω = 800 rpm is estimated, and is equal to 1.15. (interdisciplinary physics and related areas of science and technology)

  2. On Drift Effects in Velocity and Displacement of Greek Uncorrected Digital Strong Motion Data

    Science.gov (United States)

    Skarlatoudis, A.; Margaris, B.

    2005-12-01

    Fifty years after the first installation of analog accelerographs, digital instruments recording the strong-motion came in operation. Their advantages comparing to the analog ones are obvious and they have been described in detail in several works. Nevertheless it has been pointed out that velocity and displacement values derived from several accelerograms, recorded in various strong earthquakes worldwide (e.g. 1999 Chi-Chi, Taiwan, Hector Mine, 2002 Denali) by digital instruments, are plagued by drifts when only a simple baseline correction derived from the pre-event portion of the record is removed. In Greece a significant number of accelerographic networks and arrays have been deployed covering the whole area. Digital accelerographs now constitute a significant part of the National Strong Motion network of the country. Detailed analyses of the data processing of accelerograms recorded by digital instruments exhibited that the same drifts exist in the Greek strong motion database. In this work, a methodology proposed and described in various articles (Boore, 2001; 2003; 2005) for removing the aforementioned drifts of the accelerograms is applied. It is also attempted a careful look of the nature of the drifts for understanding the noise characteristics relative to the signal. The intrinsic behaviour of signal to noise ratio is crucial for the adequacy of baseline corrections applied on digital uncorrected accelerograms. Velocities and displacements of the uncorrected and corrected accelerograms are compared and the drift effects in the Fourier and response spectra are presented.

  3. Both semiquantitative degree of rest Tl-201 uptake and reversibility at 24 hour-delay were needed to predict wall motion improvement after bypass surgery

    International Nuclear Information System (INIS)

    Lee, D. S.; Yoon, S. N.; Kim, K. B.; Jeong, Z. K.; Lee, M. C.; Ko, C. S.

    1997-01-01

    Controversy still exists about how to use the uptake at rest and 24 hour delay in rest redistribution Tl-201 SPECT to predict improvement of wall motion abnormality after bypass surgery. To find the best way to combine diagnostic efficacy of Tl-201 SPECT to predict myocardial viability, we studied the predictive values (positive: PPV, negative: NPV) of rest and 24 hour-delay Tl-201 SPECT in 21 patients. Wall motion was assessed comparing preoperative post-stress gated Tc-99m-MIBI SPECT with that of 3 months after surgery. Four point scoring system was used for 17 myocardial segments to asses uptakes ( 0 to 3 for normal to defect) at rest and 24 hour-delay and wall motion ( 0 to 3 for normal to dyskinesia). Ejection fraction improved after surgery (5011% vs 4313%). Intra-observer and inter-observer reproducibility of EF was 7 and 9% respectively when we used 3D Perfusion-Motion Map. Sixty seven segments showed wall motion abnormality before surgery. Predictive values of rest Tl-201 uptake decrease were as follows: 0: 15/15(100%), 1: 30/34(88%), 2: 6/11 (55%), 3: 3/7(43%). So PPV of mild decrease was 88%, and NPV of severe decrease was 50%. Delayed reversibility was evaluated in 37 segments (15 patients). Twenty seven segment had persistence or aggravation, but the other 10 segments improved at 24 hour delay. PPV of reversible 10 segments was 80%, and NPV of reversibility was only 46%. PPV of combination of rest Tl-201 uptake of mild degree and 24 hour reversibility was 86% (38/44) and NPV of neither one was 88%. We concluded that both semi-quantitative degree of Tl-201 uptake at rest and reversibility at 24 hour delay was the best to warrant or abandon postoperative improvement of abnormal wall motion found at preoperative post-stress gated myocardial SPECT

  4. Mitigation of ground motion effects in linear accelerators via feed-forward control

    Directory of Open Access Journals (Sweden)

    J. Pfingstner

    2014-12-01

    Full Text Available Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders. Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2, ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  5. Hippotherapy effects on trunk, pelvic, and hip motion during ambulation in children with neurological impairments.

    Science.gov (United States)

    Encheff, Jenna L; Armstrong, Charles; Masterson, Michelle; Fox, Christine; Gribble, Phillip

    2012-01-01

    This study investigated the effects of a 10-week hippotherapy program on trunk, pelvis, and hip joint positioning during the stance phase of gait. Eleven children (6 boys and 5 girls; 7.9 ± 2.7 years) with neurological disorders and impaired ambulation participated. Joint range of motion data were collected via 3-dimensional computerized gait analysis before and after the program. Paired t tests were performed on kinematic data for each joint. Significant improvements (P ≤ .008) and large effect sizes (ESs) for sagittal plane hip positions at initial contact and toe-off were found. No differences in pelvic or trunk positioning were determined, although sagittal plane pelvic positioning displayed a trend toward improvement with large ESs. Several trunk variables displayed moderate ESs with a trend toward more upright positioning. Improvements in pelvic and hip joint positioning and more normalized vertical trunk position may indicate increased postural control during gait after 10 sessions of hippotherapy.

  6. Effect of interactions on the localization of a Bose-Einstein condensate in a quasi-periodic lattice

    OpenAIRE

    Lye, J. E.; Fallani, L.; Fort, C.; Guarrera, V.; Modugno, M.; Wiersma, D. S.; Inguscio, M.

    2006-01-01

    The transport properties of a Bose-Einstein condensate in a 1D incommensurate bichromatic lattice are investigated both theoretically and experimentally. We observe a blockage of the center of mass motion with low atom number, and a return of motion when the atom number is increased. Solutions of the Gross-Pitaevskii equation show how the localization due to the quasi-disorder introduced by the incommensurate bichromatic lattice is affected by the interactions.

  7. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    International Nuclear Information System (INIS)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-01-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  8. Communication: Mode bifurcation of droplet motion under stationary laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takabatake, Fumi [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Ichikawa, Masatoshi, E-mail: ichi@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2014-08-07

    The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

  9. Study of vibrational and rapid local motions of hydrogen in the storage compound Ti0.8 Zr0.2 CrMnH3 by slow neutron scattering

    International Nuclear Information System (INIS)

    Mestnik Filho, J.

    1987-01-01

    The vibrational and the rapid local motions of hydrogen in the storage compound Ti 0,8 Zr 0,2 CrMnH 3 have been studied by slow neutron scattering with the beryllium-filter-time-of-flight spectrometer. The form of the density of states of the normal modes of vibrations in host metal does no appear to change on hydrogenation, but a shift of 25% towards lower frequencies has been observed. Debye temperatures for the metal and corresponding hydride have been estimated to be respectively (522 +- 15)K and (311 +- 10)K. An energy distribution consisting of three peeks ∼ 50mev (FWHM) wide corresponding to the energy transfer of 85, 115 and 141mev has been observed and were attributed to hydrogen local vibrations in three types of interstices wich differs in composition of Ti and Zr atoms. In the quasielastic scattering, a broadening of 15μev has been detected for the momentum transfer Q = 2,1(angstrom) -1 and for temperature T= 125 0 C. The broadening has been attributed to rapid local motions of hydrogen in a dumb-bell of lenght equal to the jump lenght for diffusion, l approx. 3(angstrom). (author) [pt

  10. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  11. The local community and the nuclear waste

    International Nuclear Information System (INIS)

    Lidskog, R.

    1998-01-01

    In this book social and political scientists discuss different aspects of the selection of a site for disposal of the Swedish nuclear waste. Special attention is given to the preliminary studies that have been performed at a few localities. The authors study the chain of events after a community is proposed for a site study. What powers are set in motion? How do different groups act in order to support or stop the study? Which is the role played by political parties, local environmentalist movements, media and experts? Why is there a forceful opposition in one community and not in another? Why does one local government invite the nuclear waste company to perform the study, while another refuses? The role of the local government has become crucial, since the nuclear waste company have chosen to perform studies only in municipalities that show a positive interest

  12. A study on the characteristics of strong ground motions in southern Korea

    International Nuclear Information System (INIS)

    Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob

    2001-12-01

    Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets

  13. A study on the characteristics of strong ground motions in southern Korea

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob [Seoul National Univ., Seoul (Korea, Republic of)

    2001-12-15

    Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets.

  14. Effects of administration of a local anaesthetic and/or an NSAID and of docking length on the behaviour of piglets during 5 h after tail docking

    DEFF Research Database (Denmark)

    Herskin, Mette S.; Di Giminiani, Pierpaolo; Thodberg, Karen

    2016-01-01

    cautery 2–4 days after birth and based on behaviour during docking as well as the following 5 h. The study involved three main factors: local anaesthetic (Lidocain), NSAID (Meloxicam) and docking length. Either 100%, 75%, 50% or 25% of the tails were left on the body of the piglets. Irrespective...... that effects of this management routine are more persistent than earlier suggested, and suggesting that docking length may influence the post-surgical behaviour of piglets. By use of the present sites of injection and dosages, neither local anaesthetic nor NSAID had marked effects on post-surgical behavioural......In many countries, piglets are tail docked to prevent tail biting. The aim of this study was 1) to evaluate the efficacy of a local anaesthetic and/or NSAID to reduce pain caused by tail docking; and 2) to examine interactions with docking length. This was examined in 295 piglets docked by hot iron...

  15. Intrasite motions and monument instabilities at Medicina ITRF co-location site

    Science.gov (United States)

    Sarti, Pierguido; Abbondanza, Claudio; Legrand, Juliette; Bruyninx, Carine; Vittuari, Luca; Ray, Jim

    2013-03-01

    We process the total-station surveys performed at the ITRF co-location site Medicina (Northern Italy) over the decade (2001-2010) with the purpose of determining the extent of local intrasite motions and relating them to local geophysical processes, the geological setting and the design of the ground pillars. In addition, continuous observations acquired by two co-located GPS stations (MEDI and MSEL separated by ≈27 m) are analysed and their relative motion is cross-checked with the total-station results. The local ground control network extends over a small area (<100 × 100 m) but the results demonstrate significant anisotropic deformations with rates up to 1.6 mm a-1, primarily horizontal, a value comparable to intraplate tectonic deformations. The results derived from GPS and total-station observations are consistent and point to the presence of horizontal intrasite motions over very short distances possibly associated with varying environmental conditions in a very unfavourable local geological setting and unsuitable monument design, these latter being crucial aspects of the realization and maintenance of global permanent geodetic networks and the global terrestrial reference frame.

  16. Local analgesic effect of tramadol is not mediated by opioid receptors in early postoperative pain in rats

    Directory of Open Access Journals (Sweden)

    Angela Maria Sousa

    2015-06-01

    Full Text Available BACKGROUND AND OBJECTIVES: Tramadol is known as a central acting analgesic drug, used for the treatment of moderate to severe pain. Local analgesic effect has been demonstrated, in part due to local anesthetic-like effect, but other mechanisms remain unclear. The role of peripheral opioid receptors in the local analgesic effect is not known. In this study, we examined role of peripheral opioid receptors in the local analgesic effect of tramadol in the plantar incision model. METHODS: Young male Wistar rats were divided into seven groups: control, intraplantar tramadol, intravenous tramadol, intravenous naloxone-intraplantar tramadol, intraplantar naloxone-intraplantar tramadol, intravenous naloxone-intravenous tramadol, and intravenous naloxone. After receiving the assigned drugs (tramadol 5 mg, naloxone 200 µg or 0.9% NaCl, rats were submitted to plantar incision, and withdrawal thresholds after mechanical stimuli with von Frey filaments were assessed at baseline, 10, 15, 30, 45 and 60 min after incision. RESULTS: Plantar incision led to marked mechanical hyperalgesia during the whole period of observation in the control group, no mechanical hyperalgesia were observed in intraplantar tramadol group, intraplantar naloxone-intraplantar tramadol group and intravenous naloxone-intraplantar tramadol. In the intravenous tramadol group a late increase in withdrawal thresholds (after 45 min was observed, the intravenous naloxone-intravenous tramadol group and intravenous naloxone remained hyperalgesic during the whole period. CONCLUSIONS: Tramadol presented an early local analgesic effect decreasing mechanical hyperalgesia induced by plantar incision. This analgesic effect was not mediated by peripheral opioid receptors.

  17. CT evaluation of local leakage of bone cement after percutaneous kyphoplasty and vertebroplasty

    International Nuclear Information System (INIS)

    Lee, In Jae; Choi, A. Lam; Yie, Mi-Yeon; Yoon, Ji Young; Jeon, Eui Yong; Koh, Sung Hye; Yoon, Dae Young; Lim, Kyung Ja; Im, Hyoung June

    2010-01-01

    Background: Percutaneous injection of bone cement (acrylic cement) during percutaneous kyphoplasty and vertebroplasty can cause symptomatic or asymptomatic complications due to leakage, extravasation or vascular migration of cement. Purpose: To investigate and to compare the incidence and site of local leakage or complications of bone cement after percutaneous kyphoplasty and vertebroplasty using bone cement. Material and Methods: We retrospectively reviewed 473 cases of percutaneous kyphoplasty or vertebroplasty performed under fluoroscopic guidance. Of the 473 cases, follow-up CT scans that covered the treated bones were available for 83 cases (59 kyphoplasty and 24 vertebroplasty). Results: The rate of local leakage of bone cement was 87.5% (21/24) for percutaneous vertebroplasty and 49.2% (29/59) for kyphoplasty. The most common site of local leakage was perivertebral soft tissue (n=8, 38.1%) for vertebroplasty. The most common site of local leakage was a perivertebral vein (n=7, 24.1%) for kyphoplasty. Two cases of pulmonary cement embolism developed: one case after kyphoplasty and one case after vertebroplasty. Conclusion: Local leakage of bone cement was more common for percutaneous vertebroplasty compared with kyphoplasty (P<0.005). The most common sites of local leakage were perivertebral soft tissue and perivertebral vein.

  18. Post-Newtonian Reference Frames For Advanced Theory Of The Lunar Motion And For A New Generation Of Lunar Laser Ranging

    International Nuclear Information System (INIS)

    Xie, Y.; Kopeikon, S.

    2010-01-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable

  19. Post-Newtonian reference frames for advanced theory of the lunar motion and for a new generation of Lunar laser ranging

    International Nuclear Information System (INIS)

    Xie, Yi.; Kopeikin, S.

    2010-01-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging. We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter and spatial axes stretching up to infinity. The solar-system barycenter frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame. The secondary reference frame has its origin at the Earth-Moon barycenter. The Earth-Moon barycenter frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the Earth-Moon barycenter frame, does not contain the Coriolis and centripetal forces. Two other local frames-geocentric and seleno centric-have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the International Celestial Reference Frame because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of International Celestial Reference Frame after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion

  20. Simulation of spatially varying ground motions including incoherence, wave‐passage and differential site‐response effects

    DEFF Research Database (Denmark)

    Konakli, Katerina; Der Kiureghian, Armen

    2012-01-01

    A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....

  1. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do; Yu, Jiawei; Qiu, Xuepeng; Wang, Yi; Awano, Hiroyuki; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  2. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do

    2016-05-23

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  3. Correlated motions are a fundamental property of β-sheets

    Science.gov (United States)

    Fenwick, R. Bryn; Orellana, Laura; Esteban-Martín, Santi; Orozco, Modesto; Salvatella, Xavier

    2014-06-01

    Correlated motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. The mechanisms that underlie these processes remain largely unknown due mainly to limitations in their direct detection. Here, based on a detailed analysis of protein structures deposited in the protein data bank, as well as on state-of-the art molecular simulations, we provide general evidence for the transfer of structural information by correlated backbone motions, mediated by hydrogen bonds, across β-sheets. We also show that the observed local and long-range correlated motions are mediated by the collective motions of β-sheets and investigate their role in large-scale conformational changes. Correlated motions represent a fundamental property of β-sheets that contributes to protein function.

  4. Improved motion description for action classification

    Directory of Open Access Journals (Sweden)

    Mihir eJain

    2016-01-01

    Full Text Available Even though the importance of explicitly integrating motion characteristics in video descriptions has been demonstrated by several recent papers on action classification, our current work concludes that adequately decomposing visual motion into dominant and residual motions, i.e.: camera and scene motion, significantly improves action recognition algorithms. This holds true both for the extraction of the space-time trajectories and for computation of descriptors.We designed a new motion descriptor – the DCS descriptor – that captures additional information on local motion patterns enhancing results based on differential motion scalar quantities, divergence, curl and shear features. Finally, applying the recent VLAD coding technique proposed in image retrieval provides a substantial improvement for action recognition. These findings are complementary to each other and they outperformed all previously reported results by a significant margin on three challenging datasets: Hollywood 2, HMDB51 and Olympic Sports as reported in (Jain et al. (2013. These results were further improved by (Oneata et al. (2013; Wang and Schmid (2013; Zhu et al. (2013 through the use of the Fisher vector encoding. We therefore also employ Fisher vector in this paper and we further enhance our approach by combining trajectories from both optical flow and compensated flow. We as well provide additional details of DCS descriptors, including visualization. For extending the evaluation, a novel dataset with 101 action classes, UCF101, was added.

  5. On the motion of matter in the geometrical gauge field theory

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2005-01-01

    In the geometrical gauge field theory, the motion equations of matter (elementary particles) are connected with the field equations. The problems arising from this connection are discussed. For the first time, such problems arose in Einstein's General Relativity. Einstein hoped that solution of these problems will allow explanation of elementary particles nature without making use of quantum mechanics. But, as it turned out, the situation is more difficult. Here the corresponding problems are formulated for the connection of equations of particle motion and field equations in the geometrical gauge field theory. It is shown that appearance of the problems under discussion is an inevitable effect of passage to relativism and local symmetries

  6. On the Motion of Matter in the Geometrical Gauge Field Theory

    CERN Document Server

    Konopleva, N P

    2005-01-01

    In the geometrical gauge field theory, the motion equations of matter (elementary particles) are connected with the field equations. In the talk, the problems arising from this connection are discussed. For the first time, such problems arose in Einstein's General Relativity. Einstein hoped that solution of these problems will allow explanation of elementary particles nature without making use of quantum mechanics. But, as it turned out, the situation is more difficult. Here the corresponding problems are formulated for the connection of equations of particle motion and field equations in the geometrical gauge field theory. It is shown that appearance of the problems under discussion is an inevitable effect of passage to relativism and local symmetries.

  7. Numerical simulation of spin motion in circular accelerators using spinor formulation

    International Nuclear Information System (INIS)

    Nghiem, P.; Tkatchenko, A.

    1992-07-01

    A simple method is presented based on spinor algebra formalism for tracking the spin motion in circular accelerators. Using an analytical expression of the one-turn transformation matrix including the effects of perturbating fields or of siberian snakes, a simple and very fast numerical code has been written for studying spin motion in various circumstances. In particular, effects of synchrotron oscillations on final polarization after one isolated resonance crossing are simulated. Results of these calculations agree very well with those which have been obtained previously from analytical approaches or from other numerical-simulation programs. (author) 8 refs.; 14 figs

  8. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  9. Salvage HIFU after radiotherapy and salvage radiotherapy after HIFU in locally recurrent prostate cancer: Retrospective analysis of morbidity

    International Nuclear Information System (INIS)

    Lee, J.-W.; Hannoun-Leviac, J.-M.; Chevallier, D.; Rouscoff, Y.; Durand, M.; Amiel, J.; Gal, J.; Natale, R.; Chand, M.-E.; Raffaelli, C.; Ambrosetti, D.

    2012-01-01

    To evaluate the toxicity of therapeutic sequences High Intensity Focused Ultrasound (HIFU)-salvage radiotherapy (HIFU-RT) or radiotherapy-salvage HIFU (RT-HIFU) in case of locally recurrent prostate cancer. Nineteen patients had a local recurrence of prostate cancer. Among them, 10 patients were treated by HIFU-RT and 9 patients by RT- HIFU (4 by external beam radiotherapy [EBR] and 5 by brachytherapy [BRACHY]). Urinary side effects were assessed using CTCAE v4. At the time of the initial management, the median age was 66.5 years (53 72), the median PSA was 10.8 ng/mL (3.4 50) and the median initial Gleason score was 6.3 (5 8). Median follow-up after salvage treatment was 46.3 months (2 108). Thirty percent of the patients in the HIFU-RT group and 33.3 % of the patients in the RT-HIFU group, all belonging to the sub-group BRACHY-HIFU, had urinary complication greater than or equal to grade 2. Among all the patients, only 1 had grade 1 gastrointestinal toxicity. BRACHY-HIFU sequence seems to be purveyor of many significant urinary side effects. A larger database is needed to confirm this conclusion. (authors)

  10. An externally and internally deformable, programmable lung motion phantom

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yam; Sawant, Amit, E-mail: amit.sawant@utsouthwestern.edu [UT Southwestern Medical Center, University of Texas, Dallas, Texas 75390 (United States)

    2015-05-15

    Purpose: Most clinically deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating and tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are based on a rigid exterior and a rigid or a deformable-interior. Such designs do not adequately represent respiration because the thoracic anatomy deforms internally as well as externally. In order to create a closer approximation of respiratory motion, the authors describe the construction and experimental testing of an externally as well as internally deformable, programmable lung phantom. Methods: The outer shell of a commercially available lung phantom (RS-1500, RSD, Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cage and sternum. A custom-made insert was designed using a piece of natural latex foam block. A motion platform was programmed with sinusoidal and ten patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam “diaphragm” that compressed/decompressed the phantom interior. Experimental characterization comprised of determining the reproducibility and the external–internal correlation of external and internal marker trajectories extracted from kV x-ray fluoroscopy. Experiments were conducted to illustrate three example applications of the phantom—(i) validating the geometric accuracy of the VisionRT surface photogrammetry system; (ii) validating an image registration tool, NiftyReg; and (iii) quantifying the geometric error due to irregular motion in four-dimensional computed tomography (4DCT). Results: The phantom correctly reproduced sinusoidal and patient-derived motion, as well as realistic respiratory motion-related effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0

  11. EFFECTS OF SMALL THRUST ON THE MOTION OF AN ARTIFICIAL EARTH SATELLITE

    OpenAIRE

    TAKEUCHI, Sumio; 武内, 澄夫

    1982-01-01

    Perturbative effects of small thrust on the motion of an artificial earth satellite are investigated. The Lagrange planetary equations in Gaussian form are applied to determine the variations of the orbital elements. Also, equations of motion expressed in terms of different components of the thrust acceleration are used. It is assumed that the small thrust acceleration is a function of time and expressible as a linear combination of a polynomial and a composite set of all sines and cosines. B...

  12. Evaluation of the effect of locally administered amitriptyline gel as adjunct to local anesthetics in irreversible pulpitis pain

    Directory of Open Access Journals (Sweden)

    Moghadamnia A

    2009-01-01

    Full Text Available Background: Amitriptyline is one of the most common tricyclic antidepressants, which binds to pain sensory nerve fibers close to the sodium channel; hence, it could interact to some degree with receptors of local anesthetics. This study was designed to assess the additional analgesic effects of 2% Amitriptyline local gel administration in irreversible pulpitis pain of the molars. Materials and Methods: This study was a randomized, double-blind clinical trial that was performed on 56 consented adult patients who did not receive enough analgesia after a lidocaine nerve block for their tooth pulpitis pain. Patients were treated with 0.2 ml of either 2% amitriptyline or placebo, which was directly injected into their mandibular molar pulp chamber after they had received two routine lidocaine injections. Patients were asked to score their pain as a mark on a 10-cm Visual Analogue Scale (VAS at different timepoints: 0 (just before gel administration, 1, 3, 5, 7, and 9 minutes after the treatments. Results: There was a 92.5% decrease in VAS scores of patients 9 minutes after amitriptyline administration compared to Time 0, while in the placebo group this difference was only 13.5%. Further, in the amitriptyline group, the VAS score at all timepoints was statistically different from Time 0 ( P < 0.01. The overall pain reduction and its trend was significantly higher in the amitriptyline group compared with the placebo group ( P < 0.001. Conclusion: Inter-pulp space administration of amitriptyline 2% gel for completing analgesia in irreversible pulpitis pain could be effective and useful as a conjunctive therapy to injections of local anesthetics.

  13. Motion-induced dose artifacts in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas [Peter MacCallum Cancer Center, Melbourne (Australia)], E-mail: bryan.kim@lhsc.on.ca

    2009-10-07

    Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose rounding, (2) dose rippling and (3) IMRT leaf opening asynchronization effect. Dose rounding and dose rippling effects have been previously described, while the IMRT leaf opening asynchronization effect is a newly discovered motion-induced dose artifact. Dose rounding is the penumbral widening of a delivered dose distribution near the edges of a target volume along the direction of tumor motion. Dose rippling is a series of periodic dose peaks and valleys observed within the target region along the direction of couch motion, due to an asynchronous interplay between the couch motion and the longitudinal component of tumor motion. The IMRT leaf opening asynchronization effect is caused by an asynchronous interplay between the temporal patterns of leaf openings and tumor motion. The characteristics of each dose artifact were investigated individually as functions of target motion amplitude and period for both non-IMRT and IMRT helical tomotherapy cases, through computer simulation modeling and experimental verification. The longitudinal dose profiles generated by the simulation program agreed with the experimental data within {+-}0.5% and {+-}1.5% inside the PTV region for the non-IMRT and IMRT cases, respectively. The dose rounding effect produced a penumbral increase up to 20.5 mm for peak-to-peak target motion amplitudes ranging from 1.0 cm to 5.0 cm. Maximum dose rippling magnitude of 25% was calculated, when the target motion period approached an unusually high value of 10 s. The IMRT leaf opening asynchronization effect produced dose differences ranging from -29% to 7% inside the PTV region. This information

  14. Effects of physical exercise on articular range of motion of the lower limb in the Parkinson's disease individuals

    OpenAIRE

    Barbieri, Fabio Augusto; Batistela, Rosangela Alice; Rinaldi, Natália Madalena; Teixeira-Arroyo, Claudia; Stella, Florindo; Gobbi, Lilian Teresa Bucken

    2014-01-01

    The aim of this study was to investigate the effect of eight months of a multimodal program of physical exercise on articular range of motion of the lower limb of patients with Parkinson disease (PD), considering gender and disease stage. Seventeen individuals with PD participated in this study. Participants were assessed before of multimodal program of the physical exercise and after four and eight months of physical exercise. In these periods were evaluated the clinical aspects and articula...

  15. A new method for the realistic estimation of seismic ground motion in megacities: The case of Rome

    International Nuclear Information System (INIS)

    Faeh, D.; Iodice, C.; Suhadole, P.; Panza, G.F.

    1994-04-01

    A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by the January 13, 1915, Fucino (Italy) earthquake (M=6.9). The technique allows us to take into consideration source, path, and local soil effects. The results of the numerical simulations are used for a comparison between the observed distribution of damage in Rome, and certain quantities related to the computed ground motion. These quantities are those commonly used for engineering purposes, e.g. the peak ground acceleration, the maximum response of a simple oscillator, and the so-called ''total energy of ground motion'' which is related to the Arias Intensity. Integral quantities of the computed time-series, such as the total energy of ground motion, are in good agreement with the observed distribution of damage and turn out to give a good representation of the ground motion. From the computation of spectral ratios, it has been recognised that the presence of a near-surface layer of rigid material is not sufficient to classify a location as a ''hard-rock site'' when the rigid material has a sedimentary complex below it. This is because the underlying sedimentary complex causes amplifications due to resonances. Within sedimentary basins, incident energy in certain frequency bands can also be shifted from the vertical, into the radial component of motion. This phenomenon is very localized, both in frequency and space, and closely neighboring sites can be characterized by very large differences in the seismic response, even if the lateral variations of local soil conditions are relatively smooth. (author). Refs, 12 figs, 1 tab

  16. The anatomy of a distributed motion planning roadmap

    KAUST Repository

    Jacobs, Sam Ade

    2014-09-01

    © 2014 IEEE. In this paper, we evaluate and compare the quality and structure of roadmaps constructed from parallelizing sampling-based motion planning algorithms against that of roadmaps constructed using sequential planner. Also, we make an argument and provide experimental results that show that motion planning problems involving heterogenous environments (common in most realistic and large-scale motion planning) is a natural fit for spatial subdivision-based parallel processing. Spatial subdivision-based parallel processing approach is suited for heterogeneous environments because it allows for local adaption in solving a global problem while taking advantage of scalability that is possible with parallel processing.

  17. The anatomy of a distributed motion planning roadmap

    KAUST Repository

    Jacobs, Sam Ade; Amato, Nancy M.

    2014-01-01

    © 2014 IEEE. In this paper, we evaluate and compare the quality and structure of roadmaps constructed from parallelizing sampling-based motion planning algorithms against that of roadmaps constructed using sequential planner. Also, we make an argument and provide experimental results that show that motion planning problems involving heterogenous environments (common in most realistic and large-scale motion planning) is a natural fit for spatial subdivision-based parallel processing. Spatial subdivision-based parallel processing approach is suited for heterogeneous environments because it allows for local adaption in solving a global problem while taking advantage of scalability that is possible with parallel processing.

  18. Bubble Driven Quasioscillatory Translational Motion of Catalytic Micromotors

    Science.gov (United States)

    Manjare, Manoj; Yang, Bo; Zhao, Y.-P.

    2012-09-01

    A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.

  19. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    Science.gov (United States)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-09-01

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  20. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  1. Effects of surface roughness on plastic strain localization in polycrystalline aggregates

    Directory of Open Access Journals (Sweden)

    Guilhem Yoann

    2014-06-01

    Full Text Available The surface state of mechanical components differs according to applied loadings. Industrial processes may produce specific features at the surface, such as roughness, local hardening, residual stresses or recrystallization. Under fatigue loading, all these parameters will affect the component lifetime, but in different manner. A better understanding of each surface state parameter, separately first and then all combined, will provide a better prediction of fatigue life. The study focuses on the effect of surface roughness. Crystal plasticity finite element computations have been carried out on three-dimensional polycrystalline aggregates with different roughness levels. Local mechanical fields have been analyzed both at the surface and inside the bulk to highlight the competition between crystallography and roughness to impose localization patterns. As soon as surface roughness is strong enough, classical localization bands driven by grains orientation are replaced by localizations patterns driven by the local roughness topology. Nevertheless, this effect tends to decrease gradually under the surface, and it becomes usually negligible after the first layer of grains. The discussion allows us to characterize the influence of the surface state on the local mechanical fields.

  2. Effects of local-scale decontamination in a secondary forest contaminated after the Fukushima nuclear power plant accident.

    Science.gov (United States)

    Ayabe, Yoshiko; Hijii, Naoki; Takenaka, Chisato

    2017-09-01

    We investigated whether local-scale decontamination (removal of the litter layer, superficial soil layer, and understory) in a secondary forest contaminated by the Fukushima nuclear power plant accident reduced 137 Cs contamination of the soil and litter. We also measured 137 Cs concentrations in plants and in the web-building spider Nephila clavata (Nephilidae: Arachnida), as an indicator species, to examine 137 Cs contamination in arthropods. One month after decontamination, the total 137 Cs contamination (soil + litter) was reduced by 20% (100 kBq·m -2 ) relative to that in an adjacent untreated (i.e., contaminated) area, which was however not statistically significant. Four months after decontamination, 137 Cs in the decontaminated area had increased to a level similar to those in the untreated area, and the air radiation dose in the decontaminated area was about 2.1 μSv·h -1 , significantly higher than that in the untreated area (1.9 μSv·h -1 ). This may have been attributed to a torrential rain event. Although no statistically significant reduction was observed, most spiders had a lower 137 Cs contamination than that before the decontamination. This implied that the decontamination may have reduced 137 Cs transfer from soil via litter to N. clavata through the detrital food chains, but may not have reduced the amount of 137 Cs transfer through grazing food chains because the concentration of 137 Cs in living tree leaves was not reduced by the decontamination. In autumn, about 2 kBq·m -2 of 137 Cs was supplied from foliage to the ground by litterfall. The results suggested that removal of the litter and superficial soil layers in a contaminated forest may be ineffective. The present study suggests that the local-scale decontamination in a secondary forest had no effect on the reduction of 137 Cs contamination in the treated area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Self-consistent hole motion and spin excitations in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu, L.; Li, Y.M.; Lai, W.Y.

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes and spin excitations in a quantum antiferromagnet within the generalized t-J model. On the one hand, the effects of local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing to obtain the hole wave function and its spectrum, as well as the effective mass for a propagating hole. On the other hand, the change of the spin excitation spectrum and the spin correlations due to the presence of dynamical holes are studied within the same adiabatic approximation. The stability of the hole states with respect to such changes justifies the self-consistency of the proposed formalism. (author). 25 refs, 6 figs, 1 tab

  4. Hand motion modeling for psychology analysis in job interview using optical flow-history motion image: OF-HMI

    Science.gov (United States)

    Khalifa, Intissar; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    To survive the competition, companies always think about having the best employees. The selection is depended on the answers to the questions of the interviewer and the behavior of the candidate during the interview session. The study of this behavior is always based on a psychological analysis of the movements accompanying the answers and discussions. Few techniques are proposed until today to analyze automatically candidate's non verbal behavior. This paper is a part of a work psychology recognition system; it concentrates in spontaneous hand gesture which is very significant in interviews according to psychologists. We propose motion history representation of hand based on an hybrid approach that merges optical flow and history motion images. The optical flow technique is used firstly to detect hand motions in each frame of a video sequence. Secondly, we use the history motion images (HMI) to accumulate the output of the optical flow in order to have finally a good representation of the hand`s local movement in a global temporal template.

  5. Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma

    Science.gov (United States)

    Stemkens, Bjorn; Glitzner, Markus; Kontaxis, Charis; de Senneville, Baudouin Denis; Prins, Fieke M.; Crijns, Sjoerd P. M.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.; Tijssen, Rob H. N.

    2017-09-01

    Stereotactic body radiation therapy (SBRT) has shown great promise in increasing local control rates for renal-cell carcinoma (RCC). Characterized by steep dose gradients and high fraction doses, these hypo-fractionated treatments are, however, prone to dosimetric errors as a result of variations in intra-fraction respiratory-induced motion, such as drifts and amplitude alterations. This may lead to significant variations in the deposited dose. This study aims to develop a method for calculating the accumulated dose for MRI-guided SBRT of RCC in the presence of intra-fraction respiratory variations and determine the effect of such variations on the deposited dose. For this, RCC SBRT treatments were simulated while the underlying anatomy was moving, based on motion information from three motion models with increasing complexity: (1) STATIC, in which static anatomy was assumed, (2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, and (3) PCA, a method that generates 3D volumes with sufficient spatio-temporal resolution to capture respiration and intra-fraction variations. Five RCC patients and two volunteers were included and treatments delivery was simulated, using motion derived from subject-specific MR imaging. Motion was most accurately estimated using the PCA method with root-mean-squared errors of 2.7, 2.4, 1.0 mm for STATIC, AVG-RESP and PCA, respectively. The heterogeneous patient group demonstrated relatively large dosimetric differences between the STATIC and AVG-RESP, and the PCA reconstructed dose maps, with hotspots up to 40% of the D99 and an underdosed GTV in three out of the five patients. This shows the potential importance of including intra-fraction motion variations in dose calculations.

  6. A Comparison of Cervical Spine Motion After Immobilization With a Traditional Spine Board and Full-Body Vacuum-Mattress Splint.

    Science.gov (United States)

    Etier, Brian E; Norte, Grant E; Gleason, Megan M; Richter, Dustin L; Pugh, Kelli F; Thomson, Keith B; Slater, Lindsay V; Hart, Joe M; Brockmeier, Stephen F; Diduch, David R

    2017-12-01

    The National Athletic Trainers' Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulder pads, and (3) evaluate the effect of body mass on cervical spine motion. Controlled laboratory study. Twenty healthy male participants volunteered for this study to examine the influence of immobilization type and presence of equipment on triplanar angular cervical spine motion. Three-dimensional cervical spine kinematics was measured using an electromagnetic motion analysis system. Independent variables included testing condition (static lift and hold, 30° tilt, transfer, equipment removal), immobilization type (rigid, vacuum-mattress), and equipment (on, off). Peak sagittal-, frontal-, and transverse-plane angular motions were the primary outcome measures of interest. Subjective ratings of comfort and security did not differ between immobilization types ( P > .05). Motion between the rigid board and vacuum splint did not differ by more than 2° under any testing condition, either with or without equipment. In removing equipment, the mean peak motion ranged from 12.5° to 14.0° for the rigid spine board and from 11.4° to 15.4° for the vacuum-mattress splint, and more transverse-plane motion occurred when using the vacuum-mattress splint compared with the rigid spine board (mean difference, 0.14 deg/s [95% CI, 0.05-0.23 deg/s]; P = .002). In patients weighing more than 250 lb, the rigid board provided less motion in the frontal plane ( P = .027) and sagittal plane ( P = .030) during the tilt condition and transfer condition, respectively. The current study confirms similar motion in the

  7. Fatigue resistance of rotary ProTaper Universal instruments after use with and without lateral pressure motion

    OpenAIRE

    Vieira, Evandro Pires; Pereira, Érika Sales Joviano; Peixoto, Isabella Faria da Cunha; Buono, Vicente Tadeu Lopes; Bahia, Maria Guiomar de Azevedo

    2016-01-01

    Aim: To evaluate the fatigue resistance of rotary ProTaper Universal instruments after multiple clinical uses with and without lateral pressure motion. Methods: Thirty sets of ProTaper Universal (PTU) instruments (Dentsply-Maillefer, Ballaigues, Switzerland), types S1, S2, F1 and F2, totaling 120 files, were analyzed and divided into three groups, as follows: Control Group (CG), with 10 sets of new instruments, which were fatigue tested until rupture to determine their fatigue resistance; Lat...

  8. Example-based human motion denoising.

    Science.gov (United States)

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  9. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  10. The First Time Ever I Saw Your Feet: Inversion Effect in Newborns' Sensitivity to Biological Motion

    Science.gov (United States)

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2014-01-01

    Inversion effect in biological motion perception has been recently attributed to an innate sensitivity of the visual system to the gravity-dependent dynamic of the motion. However, the specific cues that determine the inversion effect in naïve subjects were never investigated. In the present study, we have assessed the contribution of the local…

  11. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness

    Directory of Open Access Journals (Sweden)

    Hervé Pournot, Jérémy Tindel, Rodolphe Testa, Laure Mathevon, Thomas Lapole

    2016-03-01

    Full Text Available Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude. Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE, immediately after exercise (POST-EX and 5 min after the recovery period (POST-REC. Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001 and POST-REC (+31 ± 46%; p = 0.025 when compared to PRE. No differences were found between passive and LV recovery (p = 0.210. LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations.

  12. Computed tomography-guided cryoablation of local recurrence after primary resection of pancreatic adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Claudio Pusceddu

    2015-06-01

    Full Text Available The optimal management of local recurrences after primary resection of pancreatic cancer still remains to be clarified. A 58-yearold woman developed an isolated recurrence of pancreatic cancer six year after distal pancreatectomy. Re-resection was attempted but the lesion was deemed unresectable at surgery. Then chemotherapy was administrated without obtaining a reduction of the tumor size nor an improvement of the patient’s symptoms. Thus the patient underwent percutaneous cryoablation under computed tomography (CT-guidance obtaining tumor necrosis and a significant improvement in the quality of life. A CT scan one month later showed a stable lesion with no contrast enhancement. While the use of percutaneous cryoblation has widened its applications in patients with unresectable pancreatic cancer, it has never been described for the treatment of local pancreatic cancer recurrence after primary resection. Percutaneous cryoablation deserves further studies in the multimodality treatment of local recurrence after primary pancreatic surgery.

  13. Effect of local anaesthesia and/or analgesia on pain responses induced by piglet castration

    Directory of Open Access Journals (Sweden)

    Nyman Görel

    2011-05-01

    Full Text Available Abstract Background Surgical castration in male piglets is painful and methods that reduce this pain are requested. This study evaluated the effect of local anaesthesia and analgesia on vocal, physiological and behavioural responses during and after castration. A second purpose was to evaluate if herdsmen can effectively administer anaesthesia. Methods Four male piglets in each of 141 litters in five herds were randomly assigned to one of four treatments: castration without local anaesthesia or analgesia (C, controls, analgesia (M, meloxicam, local anaesthesia (L, lidocaine, or both local anaesthesia and analgesia (LM. Lidocaine (L, LM was injected at least three minutes before castration and meloxicam (M, LM was injected after castration. During castration, vocalisation was measured and resistance movements judged. Behaviour observations were carried out on the castration day and the following day. The day after castration, castration wounds were ranked, ear and skin temperature was measured, and blood samples were collected for analysis of acute phase protein Serum Amyloid A concentration (SAA. Piglets were weighed on the castration day and at three weeks of age. Sickness treatments and mortality were recorded until three weeks of age. Results Piglets castrated with lidocaine produced calls with lower intensity (p p p = 0.06, n.s. and the following day (p = 0.02. Controls had less swollen wounds compared to piglets assigned to treatments M, L and LM (p p = 0.005; p = 0.05 for C + L compared to M + LM. Ear temperature was higher (p Conclusions The study concludes that lidocaine reduced pain during castration and that meloxicam reduced pain after castration. The study also concludes that the herdsmen were able to administer local anaesthesia effectively.

  14. Target motion measurement without implanted markers and its validation by comparison with manually obtained data

    International Nuclear Information System (INIS)

    Vences, Lucia; Wulf, Joern; Vordermark, Dirk; Sauer, Otto; Berlinger, Kajetan; Roth, Michael

    2005-01-01

    For an effective radiotherapy the exact tumor location must be determined. The localization has to take into account patient's setup position as well as internal organ motion. Among the different localization methods, the use of a computer tomography (CT) scanner in the therapy room has been proposed recently. Achieving a CT with the patient on the therapy couch, a patient's treatment position is captured. We present a method to locate tumor considering internal organ motion and displacements due to respiration. We tested the method with prostate and lung patients. The method found the most probable tumor position as well as, for high-mobility tumors located in the lung, its trajectory during the respiratory cycle. The results of this novel method were validated by comparison with manually determined target position

  15. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  16. Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion

    Science.gov (United States)

    Indriani, A.; Dimas, S.; Hendra

    2018-02-01

    The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25

  17. Biofeedback relaxation for pain associated with continuous passive motion in Taiwanese patients after total knee arthroplasty.

    Science.gov (United States)

    Wang, Tsae-Jyy; Chang, Ching-Fen; Lou, Meei-Fang; Ao, Man-Kuan; Liu, Chiung-Chen; Liang, Shu-Yuan; Wu, Shu-Fang Vivienne; Tung, Heng-Hsing

    2015-02-01

    Effective pain management is crucial for patient recovery after total knee arthroplasty (TKA). Biofeedback therapy, which encourages relaxation and helps alleviate various conditions associated with stress, may help to decrease postoperative pain in patients undergoing TKA. A quasi- experimental design was used to investigate the efficacy of a biofeedback relaxation intervention in reducing pain associated with postoperative continuous passive motion (CPM) therapy. Sixty-six patients admitted to a general hospital in Taiwan for TKA were recruited and randomly assigned to the intervention or control group. The intervention group received biofeedback training twice daily for 5 days, concurrent with CPM therapy, whereas the control group did not receive the biofeedback intervention. Pain was measured using a numeric rating scale before and after each CPM therapy session on postoperative days 1 through 5. The CPM-elicited pain score was calculated by subtracting the pre-CPM pain score from the post-CPM pain score. Results of repeated-measures analysis of variance showed intervention group reported significantly less pain caused by CPM than did the control group (f = 29.70, p biofeedback relaxation, a non-invasive and non-pharmacological intervention, as a complementary treatment option for pain management in this population. © 2014 Wiley Periodicals, Inc.

  18. The Relationship Between Low-Frequency Motions and Community Structure of Residue Network in Protein Molecules.

    Science.gov (United States)

    Sun, Weitao

    2018-01-01

    The global shape of a protein molecule is believed to be dominant in determining low-frequency deformational motions. However, how structure dynamics relies on residue interactions remains largely unknown. The global residue community structure and the local residue interactions are two important coexisting factors imposing significant effects on low-frequency normal modes. In this work, an algorithm for community structure partition is proposed by integrating Miyazawa-Jernigan empirical potential energy as edge weight. A sensitivity parameter is defined to measure the effect of local residue interaction on low-frequency movement. We show that community structure is a more fundamental feature of residue contact networks. Moreover, we surprisingly find that low-frequency normal mode eigenvectors are sensitive to some local critical residue interaction pairs (CRIPs). A fair amount of CRIPs act as bridges and hold distributed structure components into a unified tertiary structure by bonding nearby communities. Community structure analysis and CRIP detection of 116 catalytic proteins reveal that breaking up of a CRIP can cause low-frequency allosteric movement of a residue at the far side of protein structure. The results imply that community structure and CRIP may be the structural basis for low-frequency motions.

  19. Ion motion in the current sheet with sheared magnetic field – Part 2: Non-adiabatic effects

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-10-01

    Full Text Available We investigate dynamics of charged particles in current sheets with the sheared magnetic field. In our previouspaper (Artemyev et al., 2013 we studied the particle motion in such magnetic field configurations on the basis of the quasi-adiabatic theory and conservation of the quasi-adiabatic invariant. In this paper we concentrate on violation of the adiabaticity due to jumps of this invariant and the corresponding effects of stochastization of a particle motion. We compare effects of geometrical and dynamical jumps, which occur due to the presence of the separatrix in the phase plane of charged particle motion. We show that due to the presence of the magnetic field shear, the average value of dynamical jumps is not equal to zero. This effect results in the decrease of the time interval necessary for stochastization of trapped particle motion. We investigate also the effect of the magnetic field shear on transient trajectories, which cross the current sheet boundaries. Presence of the magnetic field shear leads to the asymmetry of reflection and transition of particles in the current sheet. We discuss the possible influence of single-particle effects revealed in this paper on the current sheet structure and dynamics.

  20. Correction of patient motion in cone-beam CT using 3D-2D registration

    Science.gov (United States)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-12-01

    Cone-beam CT (CBCT) is increasingly common in guidance of interventional procedures, but can be subject to artifacts arising from patient motion during fairly long (~5-60 s) scan times. We present a fiducial-free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in the intrinsic and extrinsic parameters of geometric calibration. The 3D-2D registration process registers each projection to a prior 3D image by maximizing gradient orientation using the covariance matrix adaptation-evolution strategy optimizer. The resulting rigid transforms are applied to the system projection matrices, and a 3D image is reconstructed via model-based iterative reconstruction. Phantom experiments were conducted using a Zeego robotic C-arm to image a head phantom undergoing 5-15 cm translations and 5-15° rotations. To further test the algorithm, clinical images were acquired with a CBCT head scanner in which long scan times were susceptible to significant patient motion. CBCT images were reconstructed using a penalized likelihood objective function. For phantom studies the structural similarity (SSIM) between motion-free and motion-corrected images was  >0.995, with significant improvement (p  values of uncorrected images. Additionally, motion-corrected images exhibited a point-spread function with full-width at half maximum comparable to that of the motion-free reference image. Qualitative comparison of the motion-corrupted and motion-corrected clinical images demonstrated a significant improvement in image quality after motion correction. This indicates that the 3D-2D registration method could provide a useful approach to motion artifact correction under assumptions of local rigidity, as in the head, pelvis, and extremities. The method is highly parallelizable, and the automatic correction of residual geometric calibration errors provides added benefit that could be valuable in routine use.