WorldWideScience

Sample records for mosquito-borne disease transmission

  1. Simulating the spread of malaria using a generic transmission model for mosquito-borne infectious diseases

    Science.gov (United States)

    Kon, Cynthia Mui Lian; Labadin, Jane

    2016-06-01

    Malaria is a critical infection caused by parasites which are spread to humans through mosquito bites. Approximately half of the world's population is in peril of getting infected by malaria. Mosquito-borne diseases have a standard behavior where they are transmitted in the same manner, only through vector mosquito. Taking this into account, a generic spatial-temporal model for transmission of multiple mosquito-borne diseases had been formulated. Our interest is to reproduce the actual cases of different mosquito-borne diseases using the generic model and then predict future cases so as to improve control and target measures competently. In this paper, we utilize notified weekly malaria cases in four districts in Sarawak, Malaysia, namely Kapit, Song, Belaga and Marudi. The actual cases for 36 weeks, which is from week 39 in 2012 to week 22 in 2013, are compared with simulations of the generic spatial-temporal transmission mosquito-borne diseases model. We observe that the simulation results display corresponding result to the actual malaria cases in the four districts.

  2. Recasting the theory of mosquito-borne pathogen transmission dynamics and control

    Science.gov (United States)

    Smith, David L.; Perkins, T. Alex; Reiner, Robert C.; Barker, Christopher M.; Niu, Tianchan; Chaves, Luis Fernando; Ellis, Alicia M.; George, Dylan B.; Le Menach, Arnaud; Pulliam, Juliet R. C.; Bisanzio, Donal; Buckee, Caroline; Chiyaka, Christinah; Cummings, Derek A. T.; Garcia, Andres J.; Gatton, Michelle L.; Gething, Peter W.; Hartley, David M.; Johnston, Geoffrey; Klein, Eili Y.; Michael, Edwin; Lloyd, Alun L.; Pigott, David M.; Reisen, William K.; Ruktanonchai, Nick; Singh, Brajendra K.; Stoller, Jeremy; Tatem, Andrew J.; Kitron, Uriel; Godfray, H. Charles J.; Cohen, Justin M.; Hay, Simon I.; Scott, Thomas W.

    2014-01-01

    Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of the world. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are now used to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context for mosquito blood feeding, the movement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control. PMID:24591453

  3. Recasting the theory of mosquito-borne pathogen transmission dynamics and control.

    Science.gov (United States)

    Smith, David L; Perkins, T Alex; Reiner, Robert C; Barker, Christopher M; Niu, Tianchan; Chaves, Luis Fernando; Ellis, Alicia M; George, Dylan B; Le Menach, Arnaud; Pulliam, Juliet R C; Bisanzio, Donal; Buckee, Caroline; Chiyaka, Christinah; Cummings, Derek A T; Garcia, Andres J; Gatton, Michelle L; Gething, Peter W; Hartley, David M; Johnston, Geoffrey; Klein, Eili Y; Michael, Edwin; Lloyd, Alun L; Pigott, David M; Reisen, William K; Ruktanonchai, Nick; Singh, Brajendra K; Stoller, Jeremy; Tatem, Andrew J; Kitron, Uriel; Godfray, H Charles J; Cohen, Justin M; Hay, Simon I; Scott, Thomas W

    2014-04-01

    Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of the world. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are now used to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context for mosquito blood feeding, the movement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.

  4. Schools as Potential Risk Sites for Vector-Borne Disease Transmission: Mosquito Vectors in Rural Schools in Two Municipalities in Colombia.

    Science.gov (United States)

    Olano, Víctor Alberto; Matiz, María Inés; Lenhart, Audrey; Cabezas, Laura; Vargas, Sandra Lucía; Jaramillo, Juan Felipe; Sarmiento, Diana; Alexander, Neal; Stenström, Thor Axel; Overgaard, Hans J

    2015-09-01

    Dengue and other vector-borne diseases are of great public health importance in Colombia. Vector surveillance and control activities are often focused at the household level. Little is known about the importance of nonhousehold sites, including schools, in maintaining vector-borne disease transmission. The objectives of this paper were to determine the mosquito species composition in rural schools in 2 municipalities in Colombia and to assess the potential risk of vector-borne disease transmission in school settings. Entomological surveys were carried out in rural schools during the dry and rainy seasons of 2011. A total of 12 mosquito species were found: Aedes aegypti, Anopheles pseudopunctipennis, Culex coronator, Cx. quinquefasciatus, and Limatus durhamii in both immature and adult forms; Ae. fluviatilis, Cx. nigripalpus, Cx. corniger, and Psorophora ferox in immature forms only; and Ae. angustivittatus, Haemagogus equinus, and Trichoprosopon lampropus in adult forms only. The most common mosquito species was Cx. quinquefasciatus. Classrooms contained the greatest abundance of adult female Ae. aegypti and Cx. quinquefasciatus. The most common Ae. aegypti breeding sites were containers classified as "others" (e.g., cans), followed by containers used for water storage. A high level of Ae. aegypti infestation was found during the wet season. Our results suggest that rural schools are potentially important foci for the transmission of dengue and other mosquito-borne diseases. We propose that public health programs should be implemented in rural schools to prevent vector-borne diseases.

  5. The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control.

    Directory of Open Access Journals (Sweden)

    Steve E Bellan

    2010-04-01

    Full Text Available Nearly all mathematical models of vector-borne diseases have assumed that vectors die at constant rates. However, recent empirical research suggests that mosquito mortality rates are frequently age dependent. This work develops a simple mathematical model to assess how relaxing the classical assumption of constant mortality affects the predicted effectiveness of anti-vectorial interventions. The effectiveness of mosquito control when mosquitoes die at age dependent rates was also compared across different extrinsic incubation periods. Compared to a more realistic age dependent model, constant mortality models overestimated the sensitivity of disease transmission to interventions that reduce mosquito survival. Interventions that reduce mosquito survival were also found to be slightly less effective when implemented in systems with shorter EIPs. Future transmission models that examine anti-vectorial interventions should incorporate realistic age dependent mortality rates.

  6. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease.

    Science.gov (United States)

    Foley, Desmond H; Wilkerson, Richard C; Birney, Ian; Harrison, Stanley; Christensen, Jamie; Rueda, Leopoldo M

    2010-02-18

    Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

  7. Towards a Hybrid Agent-based Model for Mosquito Borne Disease.

    Science.gov (United States)

    Mniszewski, S M; Manore, C A; Bryan, C; Del Valle, S Y; Roberts, D

    2014-07-01

    Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.

  8. Does mosquito control have an effect on mosquito-borne disease? The case of Ross River virus disease and mosquito management in Queensland, Australia.

    Science.gov (United States)

    Tomerini, Deanna M; Dale, Pat E; Sipe, Neil

    2011-03-01

    We examined the relationship between types of mosquito control programs and the mosquito-borne Ross River virus (RRV) disease in Queensland, Australia. Mosquito control information was collected through a survey of the responsible agencies (local governments), and RRV disease notification data were provided by the Queensland state health authority. The study developed a typology of mosquito control programs, based on the approaches used. Based on the analysis of data on RRV disease rates between mosquito control types within 4 climatic regions, each region had different combinations of mosquito control strategies in their programs; there were also general similarities in the relationship between program types and RRV rates between the regions. The long-term RRV disease rates were lower in areas where the mosquito control program included pre-emptive (rather than reactive) surveillance based on an extensive (rather than incomplete) knowledge of mosquito habitats, and where treatment of both saltwater and freshwater habitats (compared to only saltwater habitats, in coastal areas) occurred. The data indicate that mosquito control is an effective public health intervention to reduce mosquito-borne disease; hence, climate change adaptation strategies should ensure that adequate resources are available for effective vector control so as to manage the risk of mosquito-borne diseases.

  9. Research Contributing to Improvements in Controlling Florida's Mosquitoes and Mosquito-borne Diseases.

    Science.gov (United States)

    Tabachnick, Walter J

    2016-09-28

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state's mosquito control capabilities. Research with Florida's mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida's east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being.

  10. Climate change and mosquito-borne diseases in China: a review.

    Science.gov (United States)

    Bai, Li; Morton, Lindsay Carol; Liu, Qiyong

    2013-03-09

    China has experienced noticeable changes in climate over the past 100 years and the potential impact climate change has on transmission of mosquito-borne infectious diseases poses a risk to Chinese populations. The aims of this paper are to summarize what is known about the impact of climate change on the incidence and prevalence of malaria, dengue fever and Japanese encephalitis in China and to provide important information and direction for adaptation policy making. Fifty-five papers met the inclusion criteria for this study. Examination of these studies indicates that variability in temperature, precipitation, wind, and extreme weather events is linked to transmission of mosquito-borne diseases in some regions of China. However, study findings are inconsistent across geographical locations and this requires strengthening current evidence for timely development of adaptive options. After synthesis of available information we make several key adaptation recommendations including: improving current surveillance and monitoring systems; concentrating adaptation strategies and policies on vulnerable communities; strengthening adaptive capacity of public health systems; developing multidisciplinary approaches sustained by an new mechanism of inter-sectional coordination; and increasing awareness and mobilization of the general public.

  11. Climate change and mosquito-borne diseases in China: a review

    Science.gov (United States)

    2013-01-01

    China has experienced noticeable changes in climate over the past 100 years and the potential impact climate change has on transmission of mosquito-borne infectious diseases poses a risk to Chinese populations. The aims of this paper are to summarize what is known about the impact of climate change on the incidence and prevalence of malaria, dengue fever and Japanese encephalitis in China and to provide important information and direction for adaptation policy making. Fifty-five papers met the inclusion criteria for this study. Examination of these studies indicates that variability in temperature, precipitation, wind, and extreme weather events is linked to transmission of mosquito-borne diseases in some regions of China. However, study findings are inconsistent across geographical locations and this requires strengthening current evidence for timely development of adaptive options. After synthesis of available information we make several key adaptation recommendations including: improving current surveillance and monitoring systems; concentrating adaptation strategies and policies on vulnerable communities; strengthening adaptive capacity of public health systems; developing multidisciplinary approaches sustained by an new mechanism of inter-sectional coordination; and increasing awareness and mobilization of the general public. PMID:23497420

  12. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-Borne Diseases

    Science.gov (United States)

    Tabachnick, Walter J.

    2016-01-01

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being. PMID:27690112

  13. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-borne Diseases

    Directory of Open Access Journals (Sweden)

    Walter J. Tabachnick

    2016-09-01

    Full Text Available Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM, has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being.

  14. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-borne Diseases

    OpenAIRE

    Walter J. Tabachnick

    2016-01-01

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state?s mosquito control capabilities. Research with Florida?s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida?s east coast. This strategy, called Rotational Impoundment Management (RIM...

  15. Analysis of population structure and insecticide resistance in mosquitoes of the genus Culex, Anopheles and Aedes from different environments of Greece with a history of mosquito borne disease transmission.

    Science.gov (United States)

    Fotakis, Emmanouil A; Chaskopoulou, Alexandra; Grigoraki, Linda; Tsiamantas, Alexandros; Kounadi, Stella; Georgiou, Loukas; Vontas, John

    2017-10-01

    Greece has been recently affected by several mosquito borne diseases with the West Nile Virus (WNV) outbreak in 2010 being one of the largest reported in Europe. Currently at the epicenter of an economic and refugee crisis and visited by over 16 million tourists a year the integrated management of diseases transmitted by mosquitoes is a public health and economic priority. Vector control programs rely mainly on insecticides, however data on insecticide resistance and the mosquito fauna is essential for successful applications. We determined the mosquito species composition and population dynamics in areas of increased vulnerability to vector borne disease transmission, as well as investigated the resistance status of major nuisance and disease vectors to insecticides. High mosquito densities were recorded in Thessaloniki and Evros, with Aedes caspius, a nuisance species, Culex pipiens, a known vector of WNV and Anopheles hyrcanus a potential vector of malaria being among the most prevalent species. Both vector species populations reached their peak in late summer. Aedes albopictus was recorded at high densities in Thessaloniki, but not in Evros. Notably, Cx. pipiens hybrids, which show an opportunistic biting behavior and are suspected to be involved in the transmission of the WNV, were recorded in considerable numbers in Thessaloniki and Attica. Culex pipiens and An. hyrcanus, but not Ae. caspius mosquitoes, showed moderate levels of resistance to deltamethrin. The presence of resistance in areas not exposed to vector control indicates that other factors could be selecting for resistance, i.e. pesticide applications for agriculture. Both L1014F and L101C kdr mutations were detected in Cx. pipiens populations. Anopheles hyrcanus resistance was not associated with mutations at the L1014 site. The Ace-1 mutations conferring insensitivity to organophosphates and carbamates were detected at low frequencies in all Cx. pipiens populations. Increased activity of P450s and

  16. Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector Borne Diseases: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Berlin L. Londono-Renteria

    2016-09-01

    Full Text Available Chronic exposure to antigens may favor the production of IgG4 antibodies over other antibody types. Recent studies have shown that up to a 30% of normal human IgG4 is bi-specific and is able to recognize two antigens of different nature. A requirement for this specificity is the presence of both eliciting antigens in the same time and at the same place where the immune response is induced. During transmission of most vector-borne diseases, the pathogen is delivered to the vertebrate host along with the arthropod saliva during blood feeding and previous studies have shown the existence of IgG4 antibodies against mosquito salivary allergens. However, there is very little ongoing research or information available regarding IgG4 bi-specificity with regards to infectious disease, particularly during immune responses to vector-borne diseases such as malaria, filariasis or dengue virus infection. Here, we provide background information and present our hypothesis that IgG4 may not only be a useful tool to measure exposure to infected mosquito bites, but that these bi-specific antibodies may also play an important role in modulation of the immune response against malaria and other vector-borne diseases in endemic settings.

  17. Newer Vaccines against Mosquito-borne Diseases.

    Science.gov (United States)

    Aggarwal, Anju; Garg, Neha

    2018-02-01

    Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.

  18. Can Horton hear the whos? The importance of scale in mosquito-borne disease.

    Science.gov (United States)

    Lord, C C; Alto, B W; Anderson, S L; Connelly, C R; Day, J F; Richards, S L; Smartt, C T; Tabachnick, W J

    2014-03-01

    The epidemiology of vector-borne pathogens is determined by mechanisms and interactions at different scales of biological organization, from individual-level cellular processes to community interactions between species and with the environment. Most research, however, focuses on one scale or level with little integration between scales or levels within scales. Understanding the interactions between levels and how they influence our perception of vector-borne pathogens is critical. Here two examples of biological scales (pathogen transmission and mosquito mortality) are presented to illustrate some of the issues of scale and to explore how processes on different levels may interact to influence mosquito-borne pathogen transmission cycles. Individual variation in survival, vector competence, and other traits affect population abundance, transmission potential, and community structure. Community structure affects interactions between individuals such as competition and predation, and thus influences the individual-level dynamics and transmission potential. Modeling is a valuable tool to assess interactions between scales and how processes at different levels can affect transmission dynamics. We expand an existing model to illustrate the types of studies needed, showing that individual-level variation in viral dose acquired or needed for infection can influence the number of infectious vectors. It is critical that interactions within and among biological scales and levels of biological organization are understood for greater understanding of pathogen transmission with the ultimate goal of improving control of vector-borne pathogens.

  19. A survey of basic reproductive ratios in vector-borne disease transmission modeling

    Science.gov (United States)

    Soewono, E.; Aldila, D.

    2015-03-01

    Vector-borne diseases are commonly known in tropical and subtropical countries. These diseases have contributed to more than 10% of world infectious disease cases. Among the vectors responsible for transmitting the diseases are mosquitoes, ticks, fleas, flies, bugs and worms. Several of the diseases are known to contribute to the increasing threat to human health such as malaria, dengue, filariasis, chikungunya, west nile fever, yellow fever, encephalistis, and anthrax. It is necessary to understand the real process of infection, factors which contribute to the complication of the transmission in order to come up with a good and sound mathematical model. Although it is not easy to simulate the real transmission process of the infection, we could say that almost all models have been developed from the already long known Host-Vector model. It constitutes the main transmission processes i.e. birth, death, infection and recovery. From this simple model, the basic concepts of Disease Free and Endemic Equilibria and Basic Reproductive Ratio can be well explained and understood. Theoretical, modeling, control and treatment aspects of disease transmission problems have then been developed for various related diseases. General construction as well as specific forms of basic reproductive ratios for vector-borne diseases are discusses here.

  20. Ecological effects on arbovirus-mosquito cycles of transmission.

    Science.gov (United States)

    Tabachnick, Walter J

    2016-12-01

    Mosquitoes transmit many viruses to a variety of hosts. Cycles of mosquito borne arbovirus transmission are the result of complex interactions between the mosquito, the arbovirus and the host that are influenced by genetic variations in a variety of traits in each that are all influenced by many environmental factors. R 0 , the basic reproduction number or mean number of individuals infected from a single infected individual, is a measure of mosquito borne arbovirus transmission. Understanding the causes for the distribution of R 0 in any transmission cycle is a daunting challenge due to the lack of information on the genetic and environmental variances that influence R 0 . Information about the major factors influencing R 0 for specific transmission cycles is essential to develop efficient and effective strategies to reduce transmission in different cycles and locations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Prevention and Control of Zika as a Mosquito-Borne and Sexually Transmitted Disease: A Mathematical Modeling Analysis

    Science.gov (United States)

    Gao, Daozhou; Lou, Yijun; He, Daihai; Porco, Travis C.; Kuang, Yang; Chowell, Gerardo; Ruan, Shigui

    2016-06-01

    The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina, Canada, Chile, France, Italy, New Zealand, Peru, Portugal, and the USA. Yet, the role of sexual transmission on the spread and control of ZIKV infection is not well-understood. We introduce a mathematical model to investigate the impact of mosquito-borne and sexual transmission on the spread and control of ZIKV and calibrate the model to ZIKV epidemic data from Brazil, Colombia, and El Salvador. Parameter estimates yielded a basic reproduction number 0 = 2.055 (95% CI: 0.523-6.300), in which the percentage contribution of sexual transmission is 3.044% (95% CI: 0.123-45.73). Our sensitivity analyses indicate that 0 is most sensitive to the biting rate and mortality rate of mosquitoes while sexual transmission increases the risk of infection and epidemic size and prolongs the outbreak. Prevention and control efforts against ZIKV should target both the mosquito-borne and sexual transmission routes.

  2. An analysis of community perceptions of mosquito-borne disease control and prevention in Sint Eustatius, Caribbean Netherlands.

    NARCIS (Netherlands)

    Leslie, Teresa E; Carson, Marianne; Coeverden, Els van; De Klein, Kirsten; Braks, Marieta; Krumeich, Anja

    2017-01-01

    In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti

  3. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence.

    Science.gov (United States)

    Tabachnick, Walter J

    2013-01-11

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  4. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Directory of Open Access Journals (Sweden)

    Walter J. Tabachnick

    2013-01-01

    Full Text Available Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses. Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature and environmental (nurture factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  5. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Science.gov (United States)

    Tabachnick, Walter J.

    2013-01-01

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission. PMID:23343982

  6. Parameterization and Sensitivity Analysis of a Complex Simulation Model for Mosquito Population Dynamics, Dengue Transmission, and Their Control

    Science.gov (United States)

    Ellis, Alicia M.; Garcia, Andres J.; Focks, Dana A.; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Models can be useful tools for understanding the dynamics and control of mosquito-borne disease. More detailed models may be more realistic and better suited for understanding local disease dynamics; however, evaluating model suitability, accuracy, and performance becomes increasingly difficult with greater model complexity. Sensitivity analysis is a technique that permits exploration of complex models by evaluating the sensitivity of the model to changes in parameters. Here, we present results of sensitivity analyses of two interrelated complex simulation models of mosquito population dynamics and dengue transmission. We found that dengue transmission may be influenced most by survival in each life stage of the mosquito, mosquito biting behavior, and duration of the infectious period in humans. The importance of these biological processes for vector-borne disease models and the overwhelming lack of knowledge about them make acquisition of relevant field data on these biological processes a top research priority. PMID:21813844

  7. Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings.

    Science.gov (United States)

    Pando-Robles, Victoria; Batista, Cesar V

    2017-06-01

    Aedes-borne viruses are responsible for high-impact neglected tropical diseases and unpredictable outbreaks such as the ongoing Zika epidemics. Aedes mosquitoes spread different arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus, among others, and are responsible for the continuous emergence and reemergence of these pathogens. These viruses have complex transmission cycles that include two hosts, namely the Aedes mosquito as a vector and susceptible vertebrate hosts. Human infection with arboviruses causes diseases that range from subclinical or mild to febrile diseases, encephalitis, and hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The infection of the Aedes mosquito by viruses involves a molecular crosstalk between cell and viral proteins. An understanding of how mosquito vectors and viruses interact is of fundamental interest, and it also offers novel perspectives for disease control. In recent years, mass spectrometry (MS)-based strategies in combination with bioinformatics have been successfully applied to identify and quantify global changes in cellular proteins, lipids, peptides, and metabolites in response to viral infection. Although the information about proteomics in the Aedes mosquito is limited, the information that has been reported can set up the basis for future studies. This review reflects how MS-based approaches have extended our understanding of Aedes mosquito biology and the development of DENV and CHIKV infection in the vector. Finally, this review discusses future challenges in the field.

  8. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    Science.gov (United States)

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  9. Vector borne diseases

    OpenAIRE

    Melillo Fenech, Tanya

    2010-01-01

    A vector-borne disease is one in which the pathogenic microorganism is transmitted from an infected individual to another individual by an arthropod or other agent. The transmission depends upon the attributes and requirements of at least three different Iiving organisms : the pathologic agent which is either a virus, protozoa, bacteria or helminth (worm); the vector, which is commonly an arthropod such as ticks or mosquitoes; and the human host.

  10. Community diversity of mosquitoes and their microbes across different habitats endemic for West Nile Virus and other arthropod-borne diseases

    Science.gov (United States)

    Liu, R.; Bennett, S. N.; Thongsripong, P.; Chandler, J. S.

    2013-12-01

    Mosquitoes have long been vectors for disease, and humans, birds, and other vertebrates have served their role as hosts in the transmission cycle of arthropod-borne viruses. In California, there are several mosquito species that act as vectors, transmitting such disease agents as Western equine and St. Louis encephalitis viruses, filarial nematodes, Plasmodium (which causes malaria), and West Nile virus (WNV). Last year (2012-2013), California had over 450 reported cases of West Nile Virus in humans (http://westnile.ca.gov/). To begin to understand mosquitoes and their role in the bay area as vectors of diseases, including West Nile Virus, we trapped mosquitoes from various sites and examined their microbiomes, including bacteria, fungi, viruses, and eukaryotes. Study sites were in Marin, San Mateo, and San Francisco counties, in areas that represented, respectively, rural, suburban, and urban habitats. The mosquitoes were identified through morphological characteristics, and verified molecularly by sequencing of the cytochrome oxidase I (COI) gene extracted from a leg. Most mosquitoes were collected from San Mateo and Mill Valley and were identified as Culiseta incidens. Data from traditional culture-based and next-generation 454 sequencing methods applied to mosquito whole bodies, representing their microbiomes, will be discussed, to determine how mosquito and microbial diversity varies across sites sampled in the San Francisco Bay area.

  11. Distribution of mosquitoes and mosquito-borne arboviruses in Yunnan Province near the China-Myanmar-Laos border.

    Science.gov (United States)

    Wang, Jinglin; Zhang, Hailin; Sun, Xiaohong; Fu, Shihong; Wang, Huanqin; Feng, Yun; Wang, Huanyu; Tang, Qing; Liang, Guo-Dong

    2011-05-01

    Economic development and increased tourism in the southern region of Yunnan Province in China, adjacent to several countries in Southeast Asia, has increased the likelihood of import and export of vectors and vector-borne diseases. We report the results of surveillance of mosquitoes and mosquito-borne arboviruses along the border of China-Myanmar-Laos in 2005 and 2006, and information associating several arboviruses with infections and possibly disease in local human populations. Seventeen mosquito species representing four genera were obtained, and 14 strains of mosquito-borne viruses representing six viruses in five genera were isolated from Culex tritaeniorhynchus. In addition, IgM against Japanese encephalitis virus, Sindbis virus, Yunnan orbivirus and novel Banna virus was detected in acute-phase serum samples obtained from hospitalized patients with fever and encephalitis near the areas where the viruses were isolated. This investigation suggests that Japanese encephalitis virus, Sindbis virus, and lesser-known arboviruses circulate and may be infecting humans in the China-Myanmar-Laos border region.

  12. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    Directory of Open Access Journals (Sweden)

    Lindsay M Beck-Johnson

    Full Text Available The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases.

  13. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.

  14. Behaviors Related to Mosquito-Borne Diseases among Different Ethnic Minority Groups along the China-Laos Border Areas.

    Science.gov (United States)

    Wu, Chao; Guo, Xiaofang; Zhao, Jun; Lv, Quan; Li, Hongbin; McNeil, Edward B; Chongsuvivatwong, Virasakdi; Zhou, Hongning

    2017-10-15

    Background : In China, mosquito-borne diseases are most common in the sub-tropical area of Yunnan province. The objective of this study was to examine behaviors related to mosquito-borne diseases in different ethnic minority groups and different socioeconomic groups of people living in this region. Methods : A stratified two-stage cluster sampling technique with probability proportional to size was used in Mengla County, Xishuangbanna Prefecture, Yunnan. Twelve villages were used to recruit adult (≥18 years old) and eight schools were used for children (related to mosquito-borne diseases was devised. Results : Multiple correspondence analysis (MCA) grouped 20 behaviors into three domains, namely, environmental condition, bed net use behaviors, and repellent use behaviors, respectively. The Han ethnicity had the lowest odds of rearing pigs, their odds being significantly lower than those of Yi and Yao. For bed net use, Dai and other ethnic minority groups were less likely to use bed nets compared to Yi and Yao. The odds of repellent use in the Han ethnicity was lower than in Yi, but higher than in Dai. The Dai group was the most likely ethnicity to use repellents. Farmers were at a higher risk for pig rearing and not using repellents. Education of less than primary school held the lowest odds of pig rearing. Those with low income were at a higher risk for not using bed nets and repellent except in pig rearing. Those with a small family size were at a lower risk for pig rearing. Conclusion : Different ethnic and socioeconomic groups in the study areas require different specific emphases for the prevention of mosquito-borne diseases.

  15. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control.

    Science.gov (United States)

    Lefevre, Thierry; Ohm, Johanna; Dabiré, Kounbobr R; Cohuet, Anna; Choisy, Marc; Thomas, Matthew B; Cator, Lauren

    2018-04-01

    Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown. This important gap in our knowledge needs to be bridged in order to obtain an integrative view of the ecology and evolution of malaria transmission strategies. Associations between transmission traits also need to be characterized, as they trade-offs and constraints could have important implications for understanding the evolution of parasite transmission. Finally, theoretical studies are required to evaluate how genetic and environmental influences on parasite transmission traits can shape malaria dynamics and evolution in response to disease control.

  16. Altered vector competence in an experimental mosquito-mouse transmission model of Zika infection.

    Directory of Open Access Journals (Sweden)

    Ryuta Uraki

    2018-03-01

    Full Text Available Few animal models of Zika virus (ZIKV infection have incorporated arthropod-borne transmission. Here, we establish an Aedes aegypti mosquito model of ZIKV infection of mice, and demonstrate altered vector competency among three strains, (Orlando, ORL, Ho Chi Minh, HCM, and Patilas, PAT. All strains acquired ZIKV in their midguts after a blood meal from infected mice, but ZIKV transmission only occurred in mice fed upon by HCM, and to a lesser extent PAT, but not ORL, mosquitoes. This defect in transmission from ORL or PAT mosquitoes was overcome by intrathoracic injection of ZIKV into mosquito. Genetic analysis revealed significant diversity among these strains, suggesting a genetic basis for differences in ability for mosquito strains to transmit ZIKV. The intrathoracic injection mosquito-mouse transmission model is critical to understanding the influence of mosquitoes on ZIKV transmission, infectivity and pathogenesis in the vertebrate host, and represents a natural transmission route for testing vaccines and therapeutics.

  17. Behaviors Related to Mosquito-Borne Diseases among Different Ethnic Minority Groups along the China-Laos Border Areas

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2017-10-01

    Full Text Available Background: In China, mosquito-borne diseases are most common in the sub-tropical area of Yunnan province. The objective of this study was to examine behaviors related to mosquito-borne diseases in different ethnic minority groups and different socioeconomic groups of people living in this region. Methods: A stratified two-stage cluster sampling technique with probability proportional to size was used in Mengla County, Xishuangbanna Prefecture, Yunnan. Twelve villages were used to recruit adult (≥18 years old and eight schools were used for children (<18 years old. A questionnaire on behaviors and environment variables related to mosquito-borne diseases was devised. Results: Multiple correspondence analysis (MCA grouped 20 behaviors into three domains, namely, environmental condition, bed net use behaviors, and repellent use behaviors, respectively. The Han ethnicity had the lowest odds of rearing pigs, their odds being significantly lower than those of Yi and Yao. For bed net use, Dai and other ethnic minority groups were less likely to use bed nets compared to Yi and Yao. The odds of repellent use in the Han ethnicity was lower than in Yi, but higher than in Dai. The Dai group was the most likely ethnicity to use repellents. Farmers were at a higher risk for pig rearing and not using repellents. Education of less than primary school held the lowest odds of pig rearing. Those with low income were at a higher risk for not using bed nets and repellent except in pig rearing. Those with a small family size were at a lower risk for pig rearing. Conclusion: Different ethnic and socioeconomic groups in the study areas require different specific emphases for the prevention of mosquito-borne diseases.

  18. Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases?

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-04-01

    Full Text Available Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance. Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap, rapid and eco-friendly method to control mosquito vector populations, with special reference to young instars. Furthermore, plant-fabricated nanoparticles have been successfully employed as dengue virus growth inhibitors. In this Editorial, parasitologists, entomologists and researchers in drug nanosynthesis are encouraged to deal with a number of crucial challenges of public health importance.

  19. Possible impact of rising sea levels on vector-borne infectious diseases

    Directory of Open Access Journals (Sweden)

    Surendran Sinnathamby N

    2011-01-01

    Full Text Available Abstract Background Vector-borne infectious diseases are a significant cause of human and animal mortality and morbidity. Modeling studies predict that changes in climate that accompany global warming will alter the transmission risk of many vector-borne infectious diseases in different parts of the world. Global warming will also raise sea levels, which will lead to an increase in saline and brackish water bodies in coastal areas. The potential impact of rising sea levels, as opposed to climate change, on the prevalence of vector-borne infectious diseases has hitherto been unrecognised. Presentation of the hypothesis Mosquito species possessing salinity-tolerant larvae and pupae, and capable of transmitting arboviruses and parasites are found in many parts of the world. An expansion of brackish and saline water bodies in coastal areas, associated with rising sea levels, can increase densities of salinity-tolerant vector mosquitoes and lead to the adaptation of freshwater vectors to breed in brackish and saline waters. The breeding of non-mosquito vectors may also be influenced by salinity changes in coastal habitats. Higher vector densities can increase transmission of vector-borne infectious diseases in coastal localities, which can then spread to other areas. Testing the hypothesis The demonstration of increases in vector populations and disease prevalence that is related to an expansion of brackish/saline water bodies in coastal areas will provide the necessary supportive evidence. However the implementation of specific vector and disease control measures to counter the threat will confound the expected findings. Implications of the hypothesis Rising sea levels can act synergistically with climate change and then interact in a complex manner with other environmental and socio-economic factors to generate a greater potential for the transmission of vector-borne infectious diseases. The resulting health impacts are likely to be particularly

  20. The importance of being urgent: The impact of surveillance target and scale on mosquito-borne disease control

    Directory of Open Access Journals (Sweden)

    Samantha R. Schwab

    2018-06-01

    Full Text Available With the emergence or re-emergence of numerous mosquito-borne diseases in recent years, effective methods for emergency vector control responses are necessary to reduce human infections. Current vector control practices often vary significantly between different jurisdictions, and are executed independently and at different spatial scales. Various types of surveillance information (e.g. number of human infections or adult mosquitoes trigger the implementation of control measures, though the target and scale of surveillance vary locally. This patchy implementation of control measures likely alters the efficacy of control.We modeled six different scenarios, with larval mosquito control occurring in response to surveillance data of different types and at different scales (e.g. across the landscape or in each patch. Our results indicate that: earlier application of larvicide after an escalation of disease risk achieves much greater reductions in human infections than later control implementation; uniform control across the landscape provides better outbreak mitigation than patchy control application; and different types of surveillance data require different levels of sensitivity in their collection to effectively inform control measures. Our simulations also demonstrate a potential logical fallacy of reactive, surveillance-driven vector control: measures stop being implemented as soon as they are deemed effective. This false sense of security leads to patchier control efforts that will do little to curb the size of future vector-borne disease outbreaks. More investment should be placed in collecting high quality information that can trigger early and uniform implementation, while researchers work to discover more informative metrics of human risk to trigger more effective control. Keywords: Zika control, Epidemiological surveillance, Disease surveillance, Mosquito control, Vector-borne disease control, Epidemiological modeling

  1. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes

    Directory of Open Access Journals (Sweden)

    Silvina Goenaga

    2015-11-01

    Full Text Available Nhumirim virus (NHUV is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV. This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUVandWNV, or solely withWNVas a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi, while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease.

  2. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer-a brief review.

    Science.gov (United States)

    Benelli, Giovanni

    2016-12-01

    Nanobiomedicine and parasitology are facing a number of key challenges, which mostly deal with the paucity of effective preventive and curative tools against mosquito-borne diseases and cancer. In this scenario, the employ of botanical and invertebrate extracts as reducing, stabilizing and capping agents for the synthesis of nanoparticles is advantageous over chemical and physical methods, since it is one-pot, cheap, and does not require high pressure, energy, temperature, or the use of highly toxic chemicals. Considering the overlooked connection between mosquito vector activity and the spread of cancer in USA, this review focused on the current knowledge available about green synthesized nanoparticles with efficacy against mosquito-borne diseases and cancer. Green fabricated metal nanoparticles showed antiplasmodial activity that often encompasses the efficacy of currently marked drugs for malaria treatment. They have been also reported as growth inhibitors against dengue virus (serotype DEN-2), with moderate cytotoxicity on mammalian cells. However, this feature is strongly dependent to the botanical agents employed during nanosynthesis. In addition, green nanoparticles have been successfully used to reduce mosquito young instar populations in the field. The final section focuses on some issues for future research, with special reference to the chemical standardization of the botanical extracts used for nanosynthesis and the potential effects on green fabricated nanoparticles on non-target organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Deterministic and stochastic CTMC models from Zika disease transmission

    Science.gov (United States)

    Zevika, Mona; Soewono, Edy

    2018-03-01

    Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.

  4. Seven challenges for modelling indirect transmission: Vector-borne diseases, macroparasites and neglected tropical diseases

    Directory of Open Access Journals (Sweden)

    T. Déirdre Hollingsworth

    2015-03-01

    Full Text Available Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease.

  5. Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases.

    Science.gov (United States)

    Hollingsworth, T Déirdre; Pulliam, Juliet R C; Funk, Sebastian; Truscott, James E; Isham, Valerie; Lloyd, Alun L

    2015-03-01

    Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. On the analysis of effectiveness in mass application of mosquito repellent for dengue disease prevention

    Science.gov (United States)

    Aldila, D.; Soewono, E.; Nuraini, N.

    2012-05-01

    Dengue disease has been known as one of dangerous vector-borne diseases and become serious threat in many tropical countries. With no vaccine and antiviral available until nowadays, and frequent appearance of extraordinary dengue outbreaks, many governments are forced to declare national problem for dengue. At this moment, the only method available to prevent dengue disease transmission is to combat the disease-carrying mosquitoes as well as to reduce the contact between human and mosquitoes. The fast growing dengue transmission in many countries in recent years indicates that the mosquito control programs are far from successful. The use of mosquito repellent is one possible instrument which could be used as an effective mass treatment to prevent the dengue outbreak during endemic period. Here in this paper a Susceptible-Infectious-Recovered (S-I-R) dengue transmission model with repellent mass treatment is being applied to portions of children and adult compartments. Analysis of the basic reproductive ratio (Ro) of the model is done. It is shown, with reasonable choices of portions of treated children and adults, in combination with reduction of mosquito population, the basic reproductive ratio can be significantly reduced and occurrence of endemic can be avoided. Numerical simulations are shown for various treatment scenarios.

  7. Mosquitoes as vectors of human disease in South Africa | Jupp ...

    African Journals Online (AJOL)

    While malaria is the most important mosquito-borne disease in South Africa, there are also several mosquito-borne viruses that also cause human disease. The most significant are chikungunya, West Nile, Sindbis and Rift Valley fever viruses. In this review these are compared with malaria, mainly in regard to their ecology ...

  8. The ecological foundations of transmission potential and vector-borne disease in urban landscapes.

    Science.gov (United States)

    LaDeau, Shannon L; Allan, Brian F; Leisnham, Paul T; Levy, Michael Z

    2015-07-01

    Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain

  9. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases.

    Science.gov (United States)

    Tabachnick, Walter J

    2003-09-01

    The completion of the Anopheles gambiae Giles genome sequencing project is a milestone toward developing more effective strategies in reducing the impact of malaria and other vector borne diseases. The successes in developing transgenic approaches using mosquitoes have provided another essential new tool for further progress in basic vector genetics and the goal of disease control. The use of transgenic approaches to develop refractory mosquitoes is also possible. The ability to use genome sequence to identify genes, and transgenic approaches to construct refractory mosquitoes, has provided the opportunity that with the future development of an appropriate genetic drive system, refractory transgenes can be released into vector populations leading to nontransmitting mosquitoes. An. gambiae populations incapable of transmitting malaria. This compelling strategy will be very difficult to achieve and will require a broad substantial research program for success. The fundamental information that is required on genome structure, gene function and environmental effects on genetic expression are largely unknown. The ability to predict gene effects on phenotype is rudimentary, particularly in natural populations. As a result, the release of a refractory transgene into natural mosquito populations is imprecise and there is little ability to predict unintended consequences. The new genetic tools at hand provide opportunities to address an array of important issues, many of which can have immediate impact on the effectiveness of a host of strategies to control vector borne disease. Transgenic release approaches represent only one strategy that should be pursued. A balanced research program is required.

  10. Mitochondrial markers for molecular identification of Aedes mosquitoes (Diptera: Culicidae) involved in transmission of arboviral disease in West Africa.

    Science.gov (United States)

    Cook, Shelley; Diallo, Mawlouth; Sall, Amadou A; Cooper, Alan; Holmes, Edward C

    2005-01-01

    Correct classification of the insect vector is central to the study of arboviral disease. A simple molecular method for identification of the main vectors of the mosquito-borne viruses, dengue, yellow fever, and Rift Valley fever in Senegal, West Africa, was developed. We present a system in which the five mosquito species (Diptera: Culicidae) responsible for the majority of flaviviral disease transmission in Senegal can be reliably identified using small amounts of DNA coextracted during flaviviral screening procedures, via an easy amplification of the mitochondrial gene cytochrome oxidase c subunit I or II (COI or COII, respectively). We observed that despite very similar morphology, the two cryptic disease vector species Aedes furcifer Edwards and Aedes taylori Edwards are highly divergent at the molecular level. This sequence variation was used as a basis for the development of a polymerase chain reaction-restriction fragment-length polymorphism system for the differentiation of the two species. We also present the first investigation of the phylogeny of the culicine mosquitoes based on all COI and COII sequences currently available. There seems to be very low intraspecific variation in both genes, whereas interspecific variation is high. As a consequence, COI and COII are ideal candidates for the molecular identification of disease vectors to species level, whereas deeper divergences remain equivocal by using these genes. This system provides a new technique for the accurate identification of culicine disease vectors in West Africa and provides a basis for the expansion of such methods into the study of a range of diseases.

  11. Human to human transmission of arthropod-borne pathogens

    NARCIS (Netherlands)

    Martina, B.E.; Barzon, L.; Pijlman, G.P.; Fuente, J. de la; Rizzoli, A.; Wammes, L.J.; Takken, W.; Rij, R.P. van; Papa, A.

    2017-01-01

    Human-to-human (H2H) transmitted arthropod-borne pathogens are a growing burden worldwide, with malaria and dengue being the most common mosquito-borne H2H transmitted diseases. The ability of vectors to get infected by humans during a blood meal to further propel an epidemic depends on complex

  12. Transmission scenarios of major vector-borne diseases in Colombia, 1990-2016

    Directory of Open Access Journals (Sweden)

    Julio César Padilla

    2017-03-01

    Conclusions: Persistent epidemic and endemic transmission of vector-borne diseases in urban and rural settings in Colombia was observed mainly in the case of malaria, dengue, leishmaniasis and Chagas disease. Such transmission was focused and had variable intensity patterns. On the other hand, the conditions that have favored the emergence of new arboviruses persist.

  13. Analysis of a malaria model with mosquito-dependent transmission ...

    Indian Academy of Sciences (India)

    model for the spread of malaria in human and mosquito population. ... tures, high humidity and water bodies allow mosquito and parasites to reproduce. The ... understand the main parameters in the transmission of the disease and to develop ...

  14. Human to human transmission of arthropod-borne pathogens

    NARCIS (Netherlands)

    Martina, Byron E.; Barzon, Luisa; Pijlman, Gorben P.; Fuente, de la José; Rizzoli, Annapaola; Wammes, Linda J.; Takken, Willem; Rij, van Ronald P.; Papa, Anna

    2017-01-01

    Human-to-human (H2H) transmitted arthropod-borne pathogens are a growing burden worldwide, with malaria and dengue being the most common mosquito-borne H2H transmitted diseases. The ability of vectors to get infected by humans during a blood meal to further propel an epidemic depends on complex

  15. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes.

    Directory of Open Access Journals (Sweden)

    Rianka P M Vloet

    2017-12-01

    Full Text Available Rift Valley fever virus (RVFV is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx. pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied.Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells.We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both

  16. Surveillance should be strengthened to improve epidemiological understandings of mosquito-borne Barmah Forest virus infection

    Directory of Open Access Journals (Sweden)

    David Durrheim

    2012-08-01

    Full Text Available Introduction: Barmah Forest virus (BFV is a mosquito-borne virus causing epidemic polyarthritis in Australia. This study used case follow-up of cases from the surveillance system to demonstrate that routinely collected BFV notification data were an unreliable indicator of the true location of exposure.Methods: BFV notifications from June 2001 to May 2011 were extracted from the New South Wales (NSW Notifiable Conditions Information Management System to study case distribution. Disease cluster analysis was performed using spatial scan statistics. Exposure history data were collected from cases notified in 2010 and 2011 to accurately determine travel to high-risk areas.Results: Cluster analysis using address data identified an area of increased BFV disease incidence in the mid-north coast of NSW contiguous with estuarine wetlands. When travel to this area was investigated, 96.7% (29/30 cases reported having visited coastal regions within four weeks of developing symptoms.Discussion: Along the central NSW coastline, extensive wetlands occur in close proximity to populated areas. These wetlands provide ideal breeding habitats for a range of mosquito species implicated in the transmission of BFV. This is the first study to fully assess case exposure with findings suggesting that sporadic cases of BFV in people living further away from the coast do not reflect alternative exposure sites but are likely to result from travel to coastal regions. Spatial analysis by case address alone may lead to inaccurate understandings of the true distribution of arboviral diseases. Subsequently, this information has important implications for the collection of mosquito-borne disease surveillance information and public health response strategies.

  17. Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era: a review

    Directory of Open Access Journals (Sweden)

    Márcia Aparecida Sperança

    2007-06-01

    Full Text Available Arthropod-borne diseases caused by a variety of microorganisms such as dengue virus and malaria parasites afflict billions of people worldwide imposing major economic and social burdens. Despite many efforts, vaccines against diseases transmitted by mosquitoes, with the exception of yellow fever, are not available. Control of such infectious pathogens is mainly performed by vector management and treatment of affected individuals with drugs. However, the numbers of insecticide-resistant insects and drug-resistant parasites are increasing. Therefore, inspired in recent years by a lot of new data produced by genomics and post-genomics research, several scientific groups have been working on different strategies to control infectious arthropod-borne diseases. This review focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to malaria parasites and dengue virus transmission.

  18. Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era--a review.

    Science.gov (United States)

    Sperança, Márcia Aparecida; Capurro, Margareth Lara

    2007-06-01

    Arthropod-borne diseases caused by a variety of microorganisms such as dengue virus and malaria parasites afflict billions of people worldwide imposing major economic and social burdens. Despite many efforts, vaccines against diseases transmitted by mosquitoes, with the exception of yellow fever, are not available. Control of such infectious pathogens is mainly performed by vector management and treatment of affected individuals with drugs. However, the numbers of insecticide-resistant insects and drug-resistant parasites are increasing. Therefore, inspired in recent years by a lot of new data produced by genomics and post-genomics research, several scientific groups have been working on different strategies to control infectious arthropod-borne diseases. This review focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to malaria parasites and dengue virus transmission.

  19. Ocular Manifestations of Mosquito-Transmitted Diseases.

    Science.gov (United States)

    Karesh, James W; Mazzoli, Robert A; Heintz, Shannon K

    2018-03-01

    Of the 3,548 known mosquito species, about 100 transmit human diseases. Mosquitoes are distributed globally throughout tropical and temperate regions where standing water sources are available for egg laying and the maturation of larva. Female mosquitoes require blood meals for egg production. This is the main pathway for disease transmission. Mosquitoes carry several pathogenic organisms responsible for significant ocular pathology and vision loss including West Nile, Rift Valley, chikungunya, dengue viruses, various encephalitis viruses, malarial parasites, Francisella tularensis, microfilarial parasites, including Dirofilaria, Wuchereria, and Brugia spp., and human botfly larvae. Health care providers may not be familiar with many of these mosquito-transmitted diseases or their associated ocular findings delaying diagnosis, treatment, and recovery of visual function. This article aims to provide an overview of the ocular manifestations associated with mosquito-transmitted diseases.

  20. Canine vector-borne diseases in Brazil

    Science.gov (United States)

    Dantas-Torres, Filipe

    2008-01-01

    Canine vector-borne diseases (CVBDs) are highly prevalent in Brazil and represent a challenge to veterinarians and public health workers, since some diseases are of great zoonotic potential. Dogs are affected by many protozoa (e.g., Babesia vogeli, Leishmania infantum, and Trypanosoma cruzi), bacteria (e.g., Anaplasma platys and Ehrlichia canis), and helminths (e.g., Dirofilaria immitis and Dipylidium caninum) that are transmitted by a diverse range of arthropod vectors, including ticks, fleas, lice, triatomines, mosquitoes, tabanids, and phlebotomine sand flies. This article focuses on several aspects (etiology, transmission, distribution, prevalence, risk factors, diagnosis, control, prevention, and public health significance) of CVBDs in Brazil and discusses research gaps to be addressed in future studies. PMID:18691408

  1. Canine vector-borne diseases in Brazil

    Directory of Open Access Journals (Sweden)

    Dantas-Torres Filipe

    2008-08-01

    Full Text Available Abstract Canine vector-borne diseases (CVBDs are highly prevalent in Brazil and represent a challenge to veterinarians and public health workers, since some diseases are of great zoonotic potential. Dogs are affected by many protozoa (e.g., Babesia vogeli, Leishmania infantum, and Trypanosoma cruzi, bacteria (e.g., Anaplasma platys and Ehrlichia canis, and helminths (e.g., Dirofilaria immitis and Dipylidium caninum that are transmitted by a diverse range of arthropod vectors, including ticks, fleas, lice, triatomines, mosquitoes, tabanids, and phlebotomine sand flies. This article focuses on several aspects (etiology, transmission, distribution, prevalence, risk factors, diagnosis, control, prevention, and public health significance of CVBDs in Brazil and discusses research gaps to be addressed in future studies.

  2. Mosquitoes (Diptera: Culicidae) and their relevance as disease vectors in the city of Vienna, Austria.

    Science.gov (United States)

    Lebl, Karin; Zittra, Carina; Silbermayr, Katja; Obwaller, Adelheid; Berer, Dominik; Brugger, Katharina; Walter, Melanie; Pinior, Beate; Fuehrer, Hans-Peter; Rubel, Franz

    2015-02-01

    Mosquitoes (Diptera: Culicidae) are important vectors for a wide range of pathogenic organisms. As large parts of the human population in developed countries live in cities, the occurrence of vector-borne diseases in urban areas is of particular interest for epidemiologists and public health authorities. In this study, we investigated the mosquito occurrence in the city of Vienna, Austria, in order to estimate the risk of transmission of mosquito-borne diseases. Mosquitoes were captured using different sampling techniques at 17 sites in the city of Vienna. Species belonging to the Culex pipiens complex (78.8 %) were most abundant, followed by Coquillettidia richiardii (10.2 %), Anopheles plumbeus (5.4 %), Aedes vexans (3.8 %), and Ochlerotatus sticticus (0.7 %). Individuals of the Cx. pipiens complex were found at 80.2 % of the trap sites, while 58.8 % of the trap sites were positive for Cq. richiardii and Ae. vexans. Oc. sticticus was captured at 35.3 % of the sites, and An. plumbeus only at 23.5 % of the trap sites. Cx. pipiens complex is known to be a potent vector and pathogens like West Nile virus (WNV), Usutu virus (USUV), Tahyna virus (TAHV), Sindbis virus (SINV), Plasmodium sp., and Dirofilaria repens can be transmitted by this species. Cq. richiardii is a known vector species for Batai virus (BATV), SINV, TAHV, and WNV, while Ae. vexans can transmit TAHV, USUV, WNV, and Dirofilaria repens. An. plumbeus and Oc. sticticus seem to play only a minor role in the transmission of vector-borne diseases in Vienna. WNV, which is already wide-spread in Europe, is likely to be the highest threat in Vienna as it can be transmitted by several of the most common species, has already been shown to pose a higher risk in cities, and has the possibility to cause severe illness.

  3. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans.

    Science.gov (United States)

    Dantas-Torres, Filipe; Otranto, Domenico

    2016-01-01

    Vector-borne diseases constitute a diversified group of illnesses, which are caused by a multitude of pathogens transmitted by arthropod vectors, such as mosquitoes, fleas, ticks, and sand flies. Proper management of these diseases is important from both human and veterinary medicine standpoints, given that many of these pathogens are transmissible to humans and dogs, which often live in close contact. In this review, we summarize the most important vector-borne diseases of dogs and humans and the best practices for their prevention. The control of these diseases would ultimately improve animal and human health and wellbeing, particularly in developing countries in the tropics, where the risk of these diseases is high and access to health care is poor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Infestation status Aedes albopictus and related mosquito-borne infectious disease risk in central urban area in Shanghai].

    Science.gov (United States)

    Gao, Q; Xiong, C L; Zhou, Y B; Cao, H; Jiang, Q W

    2016-05-01

    To evaluate Aedes albopictus infestation status in the central urban area of Shanghai, and analyze the related epidemic risk of mosquito-borne infectious disease. Consecutive mosquito surveillance was conducted in the green lands and residential areas in the central urban area of Shanghai during 2012-2014, the Aedes albopictus density and its seasonal fluctuation were observed; the sequence of Aedes albopictus in Shanghai was aligned with that in other epidemic area abroad, and the susceptibility of Aedes albopictus to mosquito-borne virus and endemic risk were analyzed. No Aedes aegypti was found in the central urban area of Shanghai. As predominant species in both the residential area and the green lands, the proportion of Aedes albopictus in the residential area was significantly higher than that in the green lands(78.53% vs. 19.99%, χ(2) =15 525.168, PAedes albopictus in Shanghai and Aedes albopictus in Africa was quite far. No Aedes aegypti was found in Shanghai and its surrounding areas, while Aedes albopictus infestation in the central urban area of Shanghai was serious. Strict measures should be taken to reduce the Aedes albopictus density for the effective control Zika virus spread.

  5. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.

    Science.gov (United States)

    Göertz, G P; Fros, J J; Miesen, P; Vogels, C B F; van der Bent, M L; Geertsema, C; Koenraadt, C J M; van Rij, R P; van Oers, M M; Pijlman, G P

    2016-11-15

    Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5'-3' exoribonuclease XRN1/Pacman on conserved RNA structures in the 3' untranslated region (UTR) of the viral genomic RNA. sfRNA production is conserved in insect-specific, mosquito-borne, and tick-borne flaviviruses and flaviviruses with no known vector, suggesting a pivotal role for sfRNA in the flavivirus life cycle. Here, we investigated the function of sfRNA during WNV infection of Culex pipiens mosquitoes and evaluated its role in determining vector competence. An sfRNA1-deficient WNV was generated that displayed growth kinetics similar to those of wild-type WNV in both RNA interference (RNAi)-competent and -compromised mosquito cell lines. Small-RNA deep sequencing of WNV-infected mosquitoes indicated an active small interfering RNA (siRNA)-based antiviral response for both the wild-type and sfRNA1-deficient viruses. Additionally, we provide the first evidence that sfRNA is an RNAi substrate in vivo Two reproducible small-RNA hot spots within the 3' UTR/sfRNA of the wild-type virus mapped to RNA stem-loops SL-III and 3' SL, which stick out of the three-dimensional (3D) sfRNA structure model. Importantly, we demonstrate that sfRNA-deficient WNV displays significantly decreased infection and transmission rates in vivo when administered via the blood meal. Finally, we show that transmission and infection rates are not affected by sfRNA after intrathoracic injection, thereby identifying sfRNA as a key driver to overcome the mosquito midgut infection barrier. This is the first report to describe a key biological function of sfRNA for flavivirus infection of the arthropod vector, providing an explanation for the strict conservation of sfRNA production. Understanding the flavivirus transmission

  6. Predictive modeling of mosquito abundance and dengue transmission in Kenya

    Science.gov (United States)

    Caldwell, J.; Krystosik, A.; Mutuku, F.; Ndenga, B.; LaBeaud, D.; Mordecai, E.

    2017-12-01

    Approximately 390 million people are exposed to dengue virus every year, and with no widely available treatments or vaccines, predictive models of disease risk are valuable tools for vector control and disease prevention. The aim of this study was to modify and improve climate-driven predictive models of dengue vector abundance (Aedes spp. mosquitoes) and viral transmission to people in Kenya. We simulated disease transmission using a temperature-driven mechanistic model and compared model predictions with vector trap data for larvae, pupae, and adult mosquitoes collected between 2014 and 2017 at four sites across urban and rural villages in Kenya. We tested predictive capacity of our models using four temperature measurements (minimum, maximum, range, and anomalies) across daily, weekly, and monthly time scales. Our results indicate seasonal temperature variation is a key driving factor of Aedes mosquito abundance and disease transmission. These models can help vector control programs target specific locations and times when vectors are likely to be present, and can be modified for other Aedes-transmitted diseases and arboviral endemic regions around the world.

  7. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens.

    Science.gov (United States)

    Smith, David L; Battle, Katherine E; Hay, Simon I; Barker, Christopher M; Scott, Thomas W; McKenzie, F Ellis

    2012-01-01

    Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various "Ross-Macdonald" mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955-1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention.

  8. Assessing the impacts of truck based ultra-low volume applications of mosquito adulticides on honey bees (Apis mellifera)

    Science.gov (United States)

    Mosquito control reduces populations of mosquitoes to minimize the risk of mosquito-borne diseases. As part of an integrated approach to mosquito control, application of adulticides can be effective in rapidly reducing mosquito populations during times of high arbovirus transmission. However, impact...

  9. Sentinel site-enhanced near-real time surveillance documenting West Nile virus circulation in two Culex mosquito species indicating different transmission characteristics, Djibouti City, Djibouti.

    Science.gov (United States)

    Faulde, Michael K; Spiesberger, Michael; Abbas, Babiker

    2012-08-01

    The Horn of Africa represents a region formerly known to be highly susceptible to mosquito-borne infectious diseases. In order to investigate whether autochthonous WNV transmission occurs in the Djibouti City area, in how far, and which of, the endemic Culex mosquito species are involved in WNV circulation activity,and whether sentinel site-enhanced near-real time surveillance (SSE-NRTS) may increase WNV detection sensitivity, mosquito vector monitoring was conducted from January 2010 to June 2012. Six monitoring locations, including two identified sentinel sites, considered most probable for potential anthroponotic and zoonotic virus circulation activity, have been continuously employed. Among the 20431 mosquitoes collected, 19069 (93.4%) were Cx. quinquefasciatus, and 1345 (6.6%) Cx. pipiens ssp. torridus. WNV lineage 2 circulation activity was detected between December 20th, 2010 and January 7th, 2011. Overall, 19 WNV RNA-positive mosquito pools were detected. Generally, urban environment-specific WNV-RNA circulation took place in Cx. pipiens ssp. torridus, whereas periurban and rural area-linked circulation was detected only in Cx. quinquefasciatus. Serological investigation data from 10 volunteers employed at the dislocated zoonotic WNV transmission sentinel site suggest that six persons (60%) had an acute, or recent, WNV infection. Results show that WNV should be considered endemic for Djibouti and sentinel site-enhanced near-real time surveillance is an elegant and highly effective epidemiological tool. In Djibouti, the endemicity level, public health impact and transmission modes of vector-borne diseases in concordance with locally optimized monitoring and control regimen deserve further investigation.

  10. Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes.

    Science.gov (United States)

    Campbell, Karen M; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V; Halsey, Eric S; Laguna-Torres, V Alberto; Yagui, Martín; Morrison, Amy C; Lin, Chii-Dean; Scott, Thomas W

    2015-01-01

    % resolution. Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning.

  11. Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Karen M Campbell

    -100% at 1°C x 2% resolution.Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning.

  12. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes.

    Science.gov (United States)

    Lumley, Sarah; Horton, Daniel L; Hernandez-Triana, Luis L M; Johnson, Nicholas; Fooks, Anthony R; Hewson, Roger

    2017-05-01

    Rift Valley fever virus (RVFV) is a mosquito-borne arbovirus causing severe disease in humans and ruminants. Spread of RVFV out of Africa has raised concerns that it could emerge in Europe or the USA. Virus persistence is dependent on successful infection of, replication in, and transmission to susceptible vertebrate and invertebrate hosts, modulated by virus-host and vector-virus interactions. The principal accepted theory for the long-term maintenance of RVFV involves vertical transmission (VT) of virus to mosquito progeny, with the virus surviving long inter-epizootic periods within the egg. This VT hypothesis, however, is yet to be comprehensively proven. Here, evidence for and against the VT of RVFV is reviewed along with the identification of factors limiting its detection in natural and experimental data. The observations of VT for other arboviruses in the genera Alphavirus, Flavivirus and Orthobunyavirus are discussed within the context of RVFV. The review concludes that VT of RVFV is likely but that current data are insufficient to irrefutably prove this hypothesis.

  13. Towards the genetic manipulation of mosquito disease vectors

    International Nuclear Information System (INIS)

    Crampton, J.M.; Lycett, G.J.; Warren, A.

    1998-01-01

    Our research is aimed at developing the technologies necessary to undertake the genetic manipulation of insect vector genomes. In the longer term, we wish to explore the potential that this technology may have for developing novel strategies for the control of vector-borne diseases. The focus of our current research has been to: i) identify and characterise endogenous transposable elements in the genomes of mosquito vectors -research has focussed on identifying both Class I and Class 11 elements and determining their structure and distribution within mosquito genomes; ii) develop and use transfection systems for mosquito cells in culture as a test bed for transformation vectors and promoters - transfection techniques, vector constructs and different promoters driving reporter genes have been utilised to optimise the transformation of both Aedes aegypti and Anopheles gambiae cells in culture; iii) identify putative promoter sequences which are induced in the female mosquito midgut when it takes a blood meal - the Anopheles gambiae trypsin gene locus has been cloned and sequenced and the intergenic regions assessed for their ability to induce reporter gene expression in mosquito gut cells. The progress we have made in each of these areas will be described and discussed in the context of our longer term aim which is to introduce genes coding for antiparasitic agents into mosquito genomes in such a way that they are expressed in the mosquito midgut and disrupt transmission of the malaria parasite. (author)

  14. Towards the genetic manipulation of mosquito disease vectors

    Energy Technology Data Exchange (ETDEWEB)

    Crampton, J M; Lycett, G J; Warren, A [Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, Liverpool (United Kingdom)

    1998-01-01

    Our research is aimed at developing the technologies necessary to undertake the genetic manipulation of insect vector genomes. In the longer term, we wish to explore the potential that this technology may have for developing novel strategies for the control of vector-borne diseases. The focus of our current research has been to: i) identify and characterise endogenous transposable elements in the genomes of mosquito vectors -research has focussed on identifying both Class I and Class 11 elements and determining their structure and distribution within mosquito genomes; ii) develop and use transfection systems for mosquito cells in culture as a test bed for transformation vectors and promoters - transfection techniques, vector constructs and different promoters driving reporter genes have been utilised to optimise the transformation of both Aedes aegypti and Anopheles gambiae cells in culture; iii) identify putative promoter sequences which are induced in the female mosquito midgut when it takes a blood meal - the Anopheles gambiae trypsin gene locus has been cloned and sequenced and the intergenic regions assessed for their ability to induce reporter gene expression in mosquito gut cells. The progress we have made in each of these areas will be described and discussed in the context of our longer term aim which is to introduce genes coding for antiparasitic agents into mosquito genomes in such a way that they are expressed in the mosquito midgut and disrupt transmission of the malaria parasite. (author). 41 refs, 2 figs.

  15. Impact of rapid urbanization on mosquitoes and their disease transmission potential in Accra and Tema, Ghana.

    Science.gov (United States)

    Chinery, W A

    1995-06-01

    The total of 75 mosquito species recorded in Accra have declined to 28 species. Contributing factors to this decline and the reduction in prevalence of malaria and bancroftian filariasis in Accra presently include extensive water pollution and a fairly high daily mosquito mortality due to several factors including loss of natural adult resting places, use of mosquito repellents and the probable increase of Anopheles arabiensis population. Presently low yellow fever incidence is due inter alia to loss of its feral vectors and reduced intradomiciliary breeding of Aedes aegypti (L) although more common species like A. gambiae s.l., A. aegypti and C. p. quinquefasciatus could between them transmit many other arboviruses. However because of ready availability of human blood, spill-over of viruses from reservoir hosts to man will be rare. Ipso factor, malaria is the most common mosquito-borne disease with centripetal distribution of prevalence.

  16. Dynamical behavior of an epidemic model for a vector-borne disease with direct transmission

    International Nuclear Information System (INIS)

    Cai Liming; Li Xuezhi; Li Zhaoqiang

    2013-01-01

    An epidemic model of a vector-borne disease with direct transmission is investigated. The reproduction number (R 0 ) of the model is obtained. Rigorous qualitative analysis of the model reveals the presence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium (DFE) coexists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in the standard incidence model. The phenomenon shows that the classical epidemiological requirement of having the reproduction number less than unity is no longer sufficient, although necessary, for effectively controlling the spread of some vector-borne diseases in a community. The backward bifurcation phenomenon can be removed by substituting the standard incidence with a bilinear mass action incidence. By using Lyapunov function theory and LaSalle invariance principle, it is shown that the unique endemic equilibrium for the model with a mass action incidence is globally stable if the reproduction number R mass is greater than one in feasible region. This suggests that the use of standard incidence in modelling some vector-borne diseases with direct transmission results in the presence of backward bifurcation. Numerical simulations analyze the effect of the direct transmission and the disease-induced death rate on dynamics of the disease transmission, and also verify our analyzed results.

  17. "Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology.

    Science.gov (United States)

    Farajollahi, Ary; Fonseca, Dina M; Kramer, Laura D; Marm Kilpatrick, A

    2011-10-01

    The transmission of vector-borne pathogens is greatly influenced by the ecology of their vector, which is in turn shaped by genetic ancestry, the environment, and the hosts that are fed on. One group of vectors, the mosquitoes in the Culex pipiens complex, play key roles in the transmission of a range of pathogens including several viruses such as West Nile and St. Louis encephalitis viruses, avian malaria (Plasmodium spp.), and filarial worms. The Cx. pipiens complex includes Culex pipiens pipiens with two forms, pipiens and molestus, Culex pipiens pallens, Culex quinquefasciatus, Culex australicus, and Culex globocoxitus. While several members of the complex have limited geographic distributions, Cx. pipienspipiens and Cx. quinquefasciatus are found in all known urban and sub-urban temperate and tropical regions, respectively, across the world, where they are often principal disease vectors. In addition, hybrids are common in areas of overlap. Although gaps in our knowledge still remain, the advent of genetic tools has greatly enhanced our understanding of the history of speciation, domestication, dispersal, and hybridization. We review the taxonomy, genetics, evolution, behavior, and ecology of members of the Cx. pipiens complex and their role in the transmission of medically important pathogens. The adaptation of Cx. pipiens complex mosquitoes to human-altered environments led to their global distribution through dispersal via humans and, combined with their mixed feeding patterns on birds and mammals (including humans), increased the transmission of several avian pathogens to humans. We highlight several unanswered questions that will increase our ability to control diseases transmitted by these mosquitoes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Musings on Sketches, Artists, and Mosquito Nets

    Centers for Disease Control (CDC) Podcasts

    2014-09-23

    Byron Breedlove reads his essay Musings on Sketches, Artists, and Mosquito Nets about the art of James Whistler and the transmission of vector borne diseases.  Created: 9/23/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/20/2014.

  19. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Directory of Open Access Journals (Sweden)

    Mary B Crabtree

    Full Text Available BACKGROUND: Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. METHODOLOGY AND PRINCIPAL FINDINGS: Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. CONCLUSIONS/SIGNIFICANCE: In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  20. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Science.gov (United States)

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  1. [Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].

    Science.gov (United States)

    Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K

    2014-05-01

    Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

  2. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    OpenAIRE

    Tabachnick, Walter J.

    2013-01-01

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that compris...

  3. Molecular Identification of Vertebrate and Hemoparasite DNA Within Mosquito Blood Meals From Eastern North Dakota

    Science.gov (United States)

    Vaughan, Jefferson A.

    2013-01-01

    Abstract To understand local transmission of vector-borne diseases, it is important to identify potential vectors, characterize their host feeding patterns, and determine if vector-borne pathogens are circulating within the region. This study simultaneously investigated these aspects of disease transmission by collecting engorged mosquitoes within two rural study sites in the central Red River Valley of North Dakota. Mosquitoes were identified, midguts were excised, and the blood was expelled from the midguts. DNA was extracted from blood meals and subjected to PCR and direct sequencing to identify the vertebrate origin of the blood. Using different primer sets, PCR was used to screen for two types of vector-borne pathogens, filarioid nematodes and hemosporidian parasites. White-tailed deer were the primary source of blood meals for the eight aedine mosquito species collected. None of the 288 deer-derived blood meals contained filarioid or hemosporidian DNA. In contrast, 18 of 32 Culex tarsalis and three of three Cx. pipiens blood meals contained avian blood, representing eight different species of birds. Of 24 avian-derived blood meals examined, 12 contained Plasmodium DNA, three of which also contained Leucocytozoon DNA (i.e., dual infection). Potential confounding effects resulting from parasite acquisition and development from previous blood meals (e.g., oocysts) were eliminated because host blood had been removed from the midguts prior to DNA extraction. Thus, specific parasite lineages/species could be unequivocally linked to specific vertebrate species. By combining mosquito identification with molecular techniques for identifying blood meal source and pathogens, a relatively small sample of engorged mosquitoes yielded important new information about mosquito feeding patterns and hemosporidia infections in birds. Thorough analyses of wild-caught engorged mosquitoes and other arthropods represent a powerful tool in understanding the local transmission of

  4. Molecular identification of vertebrate and hemoparasite DNA within mosquito blood meals from eastern North Dakota.

    Science.gov (United States)

    Mehus, Joseph O; Vaughan, Jefferson A

    2013-11-01

    To understand local transmission of vector-borne diseases, it is important to identify potential vectors, characterize their host feeding patterns, and determine if vector-borne pathogens are circulating within the region. This study simultaneously investigated these aspects of disease transmission by collecting engorged mosquitoes within two rural study sites in the central Red River Valley of North Dakota. Mosquitoes were identified, midguts were excised, and the blood was expelled from the midguts. DNA was extracted from blood meals and subjected to PCR and direct sequencing to identify the vertebrate origin of the blood. Using different primer sets, PCR was used to screen for two types of vector-borne pathogens, filarioid nematodes and hemosporidian parasites. White-tailed deer were the primary source of blood meals for the eight aedine mosquito species collected. None of the 288 deer-derived blood meals contained filarioid or hemosporidian DNA. In contrast, 18 of 32 Culex tarsalis and three of three Cx. pipiens blood meals contained avian blood, representing eight different species of birds. Of 24 avian-derived blood meals examined, 12 contained Plasmodium DNA, three of which also contained Leucocytozoon DNA (i.e., dual infection). Potential confounding effects resulting from parasite acquisition and development from previous blood meals (e.g., oocysts) were eliminated because host blood had been removed from the midguts prior to DNA extraction. Thus, specific parasite lineages/species could be unequivocally linked to specific vertebrate species. By combining mosquito identification with molecular techniques for identifying blood meal source and pathogens, a relatively small sample of engorged mosquitoes yielded important new information about mosquito feeding patterns and hemosporidia infections in birds. Thorough analyses of wild-caught engorged mosquitoes and other arthropods represent a powerful tool in understanding the local transmission of vector-borne

  5. Insect repellents and sunscreen: implications for personal protection strategies against mosquito-borne disease.

    Science.gov (United States)

    Webb, Cameron E; Russell, Richard C

    2009-10-01

    To determine the protection times provided by insect repellent and sunscreen in combined formulations against biting mosquitoes. To determine if concurrent use of repellent and sunscreen influenced protection times. Insect repellent containing comparable concentrations of N, N-diethyl-3-methylbenzamide (DEET) with and without sunscreen were tested on human skin to determine the mean protection time (MPT) against Aedes aegypti (L.) in the laboratory. Further trials were undertaken to determine the effect on MPT of sunscreen reapplication over repellent every two hours. There was no significant difference in the MPT provided by 80% DEET with (MPT+/-SE=770+/-54.8 minutes) and without (MPT+/-SE=830+/-20.2 minutes) sunscreen or 7.14% DEET with (MPT+/-SE =240+/-15.5 minutes) and 6.98% DEET without (MPT+/-SE =230+/-18.4 minutes) sunscreen. Reapplication of sunscreen resulted in a significantly lower MPT of a 17.0% DEET formulation when sunscreen was reapplied concurrently (MPT+/-SE=330+/-25.2 minutes), compared with DEET alone (MPT+/-SE =400+/-12.7 minutes). When combined in a single formulation with sunscreen, the MPT provided by both high and low concentrations of DEET is not reduced. However, if sunscreen is reapplied over insect repellent, protection times can be reduced significantly. In areas of endemic mosquito-borne disease, the reapplication of a low concentration repellent and sunscreen formulation may provide the most effective protection from biting mosquitoes while minimising the risk of overexposure to DEET.

  6. Assessing Seasonal Risks for the Introduction and Mosquito-borne Spread of Zika Virus in Europe

    Directory of Open Access Journals (Sweden)

    Joacim Rocklöv

    2016-07-01

    Full Text Available The explosive Zika virus epidemic in the Americas is amplifying spread of this emerging pathogen into previously unaffected regions of the world, including Europe (Gulland, 2016, where local populations are immunologically naïve. As summertime approaches in the northern hemisphere, Aedes mosquitoes in Europe may find suitable climatic conditions to acquire and subsequently transmit Zika virus from viremic travellers to local populations. While Aedes albopictus has proven to be a vector for the transmission of dengue and chikungunya viruses in Europe (Delisle et al., 2015; ECDC, n.d. there is growing experimental and ecological evidence to suggest that it may also be competent for Zika virus(Chouin-Carneiro et al., 2016; Grard et al., 2014; Li et al., 2012; Wong et al., 2013. Here we analyze and overlay the monthly flows of airline travellers arriving into European cities from Zika affected areas across the Americas, the predicted monthly estimates of the basic reproduction number of Zika virus in areas where Aedes mosquito populations reside in Europe (Aedes aegypti in Madeira, Portugal and Ae. albopictus in continental Europe, and human populations living within areas where mosquito-borne transmission of Zika virus may be possible. We highlight specific geographic areas and timing of risk for Zika virus introduction and possible spread within Europe to inform the efficient use of human disease surveillance, vector surveillance and control, and public education resources.

  7. Assessing Seasonal Risks for the Introduction and Mosquito-borne Spread of Zika Virus in Europe.

    Science.gov (United States)

    Rocklöv, Joacim; Quam, Mikkel Brandon; Sudre, Bertrand; German, Matthew; Kraemer, Moritz U G; Brady, Oliver; Bogoch, Isaac I; Liu-Helmersson, Jing; Wilder-Smith, Annelies; Semenza, Jan C; Ong, Mark; Aaslav, Kaja Kaasik; Khan, Kamran

    2016-07-01

    The explosive Zika virus epidemic in the Americas is amplifying spread of this emerging pathogen into previously unaffected regions of the world, including Europe (Gulland, 2016), where local populations are immunologically naïve. As summertime approaches in the northern hemisphere, Aedes mosquitoes in Europe may find suitable climatic conditions to acquire and subsequently transmit Zika virus from viremic travellers to local populations. While Aedes albopictus has proven to be a vector for the transmission of dengue and chikungunya viruses in Europe (Delisle et al., 2015; ECDC, n.d.) there is growing experimental and ecological evidence to suggest that it may also be competent for Zika virus(Chouin-Carneiro et al., 2016; Grard et al., 2014; Li et al., 2012; Wong et al., 2013). Here we analyze and overlay the monthly flows of airline travellers arriving into European cities from Zika affected areas across the Americas, the predicted monthly estimates of the basic reproduction number of Zika virus in areas where Aedes mosquito populations reside in Europe (Aedes aegypti in Madeira, Portugal and Ae. albopictus in continental Europe), and human populations living within areas where mosquito-borne transmission of Zika virus may be possible. We highlight specific geographic areas and timing of risk for Zika virus introduction and possible spread within Europe to inform the efficient use of human disease surveillance, vector surveillance and control, and public education resources. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Leidos Biomed Supports Clinical Trials for Vaccine Against Mosquito-borne Chikungunya | FNLCR Staging

    Science.gov (United States)

    An experimental vaccine for mosquito-borne chikungunya is being tested at sites in the Caribbean as part of a phase II clinical trial being managed by the Frederick National Lab. No vaccine or treatment currently exists for the viral disease, which c

  9. Environmental management of mosquito-borne viruses in Rhode Island

    Science.gov (United States)

    Ginsberg, Howard S.; Gettman, Alan; Becker, Elisabeth; Bandyopadhyay, Ananda S.; LeBrun, Roger A.

    2013-01-01

    West Nile Virus (WNV) and Eastern Equine Encephalitis Virus (EEEV) are both primarily bird viruses, which can be transmitted by several mosquito species. Differences in larval habitats, flight, and biting patterns of the primary vector species result in substantial differences in epidemiology, with WNV more common, primarily occurring in urban areas, and EEEV relatively rare, typically occurring near swamp habitats. The complex transmission ecology of these viruses complicates prediction of disease outbreaks. The Rhode Island Department of Environmental Management (DEM) and Department of Health (DoH) provide prevention assistance to towns and maintain a mosquito surveillance program to identify potential disease risk. Responses to potential outbreaks follow a protocol based on surveillance results, assessment of human risk, and technical consultation.

  10. Assessment of Climate Change and Vector-borne Diseases in the United States

    Science.gov (United States)

    Monaghan, A. J.; Beard, C. B.; Eisen, R. J.; Barker, C. M.; Garofalo, J.; Hahn, M.; Hayden, M.; Ogden, N.; Schramm, P.

    2016-12-01

    Vector-borne diseases are illnesses that are transmitted by vectors, which include mosquitoes, ticks, and fleas. The seasonality, distribution, and prevalence of vector-borne diseases are influenced significantly by climate factors, primarily high and low temperature extremes and precipitation patterns. In this presentation we summarize key findings from Chapter 5 ("Vector-borne Diseases") of the recently published USGCRP Scientific Assessment of the Impacts of Climate Change on Human Health in the United States. Climate change is expected to alter geographic and seasonal distributions of vectors and vector-borne diseases, leading to earlier activity and northward range expansion of ticks capable of carrying the bacteria that cause Lyme disease and other pathogens, and influencing the distribution, abundance and prevalence of infection in mosquitoes that transmit West Nile virus and other pathogens. The emergence or reemergence of vector-borne pathogens is also likely.

  11. Viral Interference and Persistence in Mosquito-Borne Flaviviruses

    Directory of Open Access Journals (Sweden)

    Juan Santiago Salas-Benito

    2015-01-01

    Full Text Available Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.

  12. International Network for Capacity Building for the Control of Emerging Viral Vector-Borne Zoonotic Diseases: Arbo-Zoonet

    NARCIS (Netherlands)

    Ahmed, J.; Bouloy, M.; Ergonul, O.; Fooks, A.R.; Paweska, J.; Chevalier, V.; Drosten, C.; Moormann, R.J.M.; Tordo, N.; Vatansever, Z.; Calistri, P.; Estrada-Pena, A.; Mirazimi, A.; Unger, H.; Yin, H.; Seitzer, U.

    2009-01-01

    Arboviruses are arthropod-borne viruses, which include West Nile fever virus (WNFV), a mosquito-borne virus, Rift Valley fever virus (RVFV), a mosquito-borne virus, and Crimean-Congo haemorrhagic fever virus (CCHFV), a tick-borne virus. These arthropod-borne viruses can cause disease in different

  13. Adult vector control, mosquito ecology and malaria transmission.

    Science.gov (United States)

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Alex Perkins, T; Reiner, Robert C; Tusting, Lucy S; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2015-03-01

    Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  14. Emerging Vector-Borne Diseases.

    Science.gov (United States)

    Huntington, Mark K; Allison, Jay; Nair, Dilip

    2016-10-01

    Several mosquito-borne viral infections have recently emerged in North America; West Nile virus is the most common in the United States. Although West Nile virus generally causes a self-limited, flulike febrile illness, a serious neuroinvasive form may occur. Dengue is the most common vector-borne viral disease worldwide, and it has been a significant public health threat in the United States since 2009. Known as breakbone fever for its severe myalgias and arthralgias, dengue may cause a hemorrhagic syndrome. Chikungunya also causes flulike febrile illness and disabling arthralgias. Although meningoencephalitis may occur with chikungunya, bleeding is uncommon. Symptoms of Zika virus infection are similar to those of dengue, but milder. Zika virus increases the risk of fetal brain abnormalities, including microcephaly, if a pregnant woman is infected. Zika virus is spread through Aedes albopictus mosquito bites, is transmitted sexually, and may rarely spread nonsexually from person to person. Diagnosis of these vectorborne infections is clinical and serologic, and treatment is supportive. Other, well-established vector-borne diseases are also important. Ehrlichiosis is a tick-borne bacterial disease that presents as a nonspecific syndrome of fever, headache, malaise, and myalgias. It is diagnosed via blood smear testing, with confirmatory serology. Ehrlichiosis is treated with doxycycline. Rickettsial infections are transmitted by fleas, mites, and ticks, and severity ranges from mild to life threatening. Rocky Mountain spotted fever, the most significant rickettsial infection, is primarily a clinical diagnosis that presents as fever, headache, myalgias, petechial rash, and tick exposure. Doxycycline is effective for rickettsial infections if administered promptly. Vector avoidance strategies are critical to the prevention of all of these infections.

  15. Detection and molecular characterization of the mosquito-borne filarial nematode Setaria tundra in Danish roe deer (Capreolus capreolus)

    DEFF Research Database (Denmark)

    Enemark, Heidi Larsen; Oksanen, Antti; Chriél, Mariann

    2017-01-01

    Setaria tundra is a mosquito-borne filarial nematode of cervids in Europe. It has recently been associated with an emerging epidemic disease causing severe morbidity and mortality in reindeer and moose in Finland. Here, we present the first report of S. tundra in six roe deer (Capreolus capreolus...... Europe. Roe deer are generally considered as asymptomatic carriers and their numbers in Denmark have increased significantly in recent decades. In light of climatic changes which result in warmer, more humid weather in Scandinavia greater numbers of mosquitoes and, especially, improved conditions...... for development of parasite larvae in the mosquito vectors are expected, which may lead to increasing prevalence of S. tundra. Monitoring of this vector-borne parasite may thus be needed in order to enhance the knowledge of factors promoting its expansion and prevalence as well as predicting disease outbreaks. (C...

  16. VECTOR BORNE TRANSMISSIBLE ZOONOSES IN MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Gordana Mijovic

    2012-02-01

    Full Text Available Vector borne transmissible zoonoses are becoming more and more important in the group of emerging and re-emerging infections. We present the characteristics and actuality of this group of infectious diseases in Montenegro for the period 1998 - 2011. In examinations, standard epidemiological, clinical, serological, pathohistological diagnostic methods are employed. Natural conditions in Montenegro make it an important endemic area for more vector borne transmissible zoonoses. The changes of ecological characteristics, the vectors and infective agents, present the accidence for expansion and increasing importance of these infections in national pathology. According to the fact that it is an international port of nautical, continental and air traffic, Montenegro has responsibility for control and management of diseases belonging to the group of the travel and tropical diseases.

  17. Mapping clusters of chikungunya and dengue transmission in ...

    African Journals Online (AJOL)

    Background: Dengue and chikungunya are mosquito-borne viral diseases that are of public health importance throughout the tropical and subtropical regions of the world. Seasonal variations in transmission of these viruses have been suggested owing to the ecology of their mosquito vectors. However, little is known about ...

  18. A delay differential equation model for dengue transmission with regular visits to a mosquito breeding site

    Science.gov (United States)

    Yaacob, Y.; Yeak, S. H.; Lim, R. S.; Soewono, E.

    2015-03-01

    Dengue disease has been known as one of widely transmitted vector-borne diseases which potentially affects millions of people throughout the world especially in tropical and sub-tropical countries. One of the main factors contributing in the complication of the transmission process is the mobility of people in which people may get infection in the places far from their home. Here we construct a delay differential equation model for dengue transmission in a closed population where regular visits of people to a mosquito breeding site out of their residency such as traditional market take place daily. Basic reproductive ratio of the system is obtained and depends on the ratio between the outgoing rates of susceptible human and infective human. It is shown that the increase of mobility with different variation of mobility rates may contribute to different level of basic reproductive ratio as well as different level of outbreaks.

  19. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process.

    Science.gov (United States)

    Secundino, Nagila Francinete Costa; Chaves, Barbara Aparecida; Orfano, Alessandra Silva; Silveira, Karine Renata Dias; Rodrigues, Nilton Barnabe; Campolina, Thais Bonifácio; Nacif-Pimenta, Rafael; Villegas, Luiz Eduardo Martinez; Silva, Breno Melo; Lacerda, Marcus Vinícius Guimarães; Norris, Douglas Eric; Pimenta, Paulo Filemon Paolucci

    2017-07-20

    Zika disease has transformed into a serious global health problem due to the rapid spread of the arbovirus and alarming severity including congenital complications, microcephaly and Guillain-Barré syndrome. Zika virus (ZIKV) is primarily transmitted to humans through the bite of an infective mosquito, with Aedes aegypti being the main vector. We successfully developed a ZIKV experimental transmission model by single infectious Ae. aegypti bite to a laboratory mouse using circulating Brazilian strains of both arbovirus and vector. Mosquitoes were orally infected and single Ae. aegypti were allowed to feed on mouse ears 14 days post-infection. Additionally, salivary gland (SG) homogenates from infected mosquitoes were intrathoracically inoculated into naïve Ae. aegypti. Mosquito and mouse tissue samples were cultured in C6/36 cells and processed by quantitative real-time PCR. A total of 26 Ae. aegypti were allowed to feed individually on mouse ears. Of these, 17 mosquitoes fed, all to full engorgement. The transmission rate of ZIKV by bite from these engorged mosquitoes to mouse ears was 100%. The amount of virus inoculated into the ears by bites ranged from 2 × 10 2 -2.1 × 10 10 ZIKV cDNA copies and was positively correlated with ZIKV cDNA quantified from SGs dissected from mosquitoes post-feeding. Replicating ZIKV was confirmed in macerated SGs (2.45 × 10 7 cDNA copies), mouse ear tissue (1.15 × 10 3 cDNA copies, and mosquitoes 14 days post-intrathoracic inoculation (1.49 × 10 7 cDNA copies) by cytopathic effect in C6/36 cell culture and qPCR. Our model illustrates successful transmission of ZIKV by an infectious mosquito bite to a live vertebrate host. This approach offers a comprehensive tool for evaluating the development of infection in and transmission from mosquitoes, and the vertebrate-ZIKV interaction and progression of infection following a natural transmission process.

  20. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  1. Determinants of Arbovirus Vertical Transmission in Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sebastian Lequime

    2016-05-01

    Full Text Available Vertical transmission (VT and horizontal transmission (HT of pathogens refer to parental and non-parental chains of host-to-host transmission. Combining HT with VT enlarges considerably the range of ecological conditions in which a pathogen can persist, but the factors governing the relative frequency of each transmission mode are poorly understood for pathogens with mixed-mode transmission. Elucidating these factors is particularly important for understanding the epidemiology of arthropod-borne viruses (arboviruses of public health significance. Arboviruses are primarily maintained by HT between arthropod vectors and vertebrate hosts in nature, but are occasionally transmitted vertically in the vector population from an infected female to her offspring, which is a proposed maintenance mechanism during adverse conditions for HT. Here, we review over a century of published primary literature on natural and experimental VT, which we previously assembled into large databases, to identify biological factors associated with the efficiency of arbovirus VT in mosquito vectors. Using a robust statistical framework, we highlight a suite of environmental, taxonomic, and physiological predictors of arbovirus VT. These novel insights contribute to refine our understanding of strategies employed by arboviruses to persist in the environment and cause substantial public health concern. They also provide hypotheses on the biological processes underlying the relative VT frequency for pathogens with mixed-mode transmission that can be tested empirically.

  2. Predicting local dengue transmission in Guangzhou, China, through the influence of imported cases, mosquito density and climate variability.

    Directory of Open Access Journals (Sweden)

    Shaowei Sang

    Full Text Available Each year there are approximately 390 million dengue infections worldwide. Weather variables have a significant impact on the transmission of Dengue Fever (DF, a mosquito borne viral disease. DF in mainland China is characterized as an imported disease. Hence it is necessary to explore the roles of imported cases, mosquito density and climate variability in dengue transmission in China. The study was to identify the relationship between dengue occurrence and possible risk factors and to develop a predicting model for dengue's control and prevention purpose.Three traditional suburbs and one district with an international airport in Guangzhou city were selected as the study areas. Autocorrelation and cross-correlation analysis were used to perform univariate analysis to identify possible risk factors, with relevant lagged effects, associated with local dengue cases. Principal component analysis (PCA was applied to extract principal components and PCA score was used to represent the original variables to reduce multi-collinearity. Combining the univariate analysis and prior knowledge, time-series Poisson regression analysis was conducted to quantify the relationship between weather variables, Breteau Index, imported DF cases and the local dengue transmission in Guangzhou, China. The goodness-of-fit of the constructed model was determined by pseudo-R2, Akaike information criterion (AIC and residual test. There were a total of 707 notified local DF cases from March 2006 to December 2012, with a seasonal distribution from August to November. There were a total of 65 notified imported DF cases from 20 countries, with forty-six cases (70.8% imported from Southeast Asia. The model showed that local DF cases were positively associated with mosquito density, imported cases, temperature, precipitation, vapour pressure and minimum relative humidity, whilst being negatively associated with air pressure, with different time lags.Imported DF cases and mosquito

  3. Exotic mosquito threats require strategic surveillance and response planning.

    Science.gov (United States)

    Webb, Cameron E; Doggett, Stephen L

    2016-12-14

    Mosquito-borne diseases caused by endemic pathogens such as Ross River, Barmah Forest and Murray Valley encephalitis viruses are an annual concern in New South Wales (NSW), Australia. More than a dozen mosquito species have been implicated in the transmission of these pathogens, with each mosquito occupying a specialised ecological niche that influences their habitat associations, host feeding preferences and the environmental drivers of their abundance. The NSW Arbovirus Surveillance and Mosquito Monitoring Program provides an early warning system for potential outbreaks of mosquito-borne disease by tracking annual activity of these mosquitoes and their associated pathogens. Although the program will effectively track changes in local mosquito populations that may increase with a changing climate, urbanisation and wetland rehabilitation, it will be less effective with current surveillance methodologies at detecting or monitoring changes in exotic mosquito threats, where different surveillance strategies need to be used. Exotic container-inhabiting mosquitoes such as Aedes aegypti and Ae. albopictus pose a threat to NSW because they are nuisance-biting pests and vectors of pathogens such as dengue, chikungunya and Zika viruses. International movement of humans and their belongings have spread these mosquitoes to many regions of the world. In recent years, these two mosquitoes have been detected by the Australian Government Department of Agriculture and Water Resources at local airports and seaports. To target the detection of these exotic mosquitoes, new trapping technologies and networks of surveillance locations are required. Additionally, incursions of these mosquitoes into urban areas of the state will require strategic responses to minimise substantial public health and economic burdens to local communities.

  4. Mosquito Bites

    Science.gov (United States)

    ... virus to humans. Other mosquito-borne infections include yellow fever, malaria and some types of brain infection (encephalitis). ... certain diseases, such as West Nile virus, malaria, yellow fever and dengue fever. The mosquito obtains a virus ...

  5. Emerging mosquito-borne viruses: transmission and modulation of host defence

    NARCIS (Netherlands)

    Fros, J.J.

    2015-01-01

    Summary

    Two highly pathogenic arthropod-borne (arbo)viruses, West Nile virus (WNV) and chikungunya virus (CHIKV), recently (re-)emerged in both Europe and the Americas. This resulted in large-scale epidemics of severe encephalitic and arthritogenic human disease,

  6. Arthropod-Borne Diseases: The Camper's Uninvited Guests.

    Science.gov (United States)

    Juckett, Gregory

    2015-08-01

    Arthropod-borne diseases are a major problem whenever outdoor activities bring arthropods and people into contact. The arthropods discussed here include arachnids (ticks) and insects. Most arthropod bites and stings are minor, with the notable exception being bee-sting anaphylaxis. Ticks cause the most disease transmission. Key hard tick vectors include black-legged (Ixodes), dog (Dermacentor), and lone star (Amblyomma) ticks, which transmit Lyme and various rickettsial diseases. Insect repellents, permethrin sprays, and proper tick inspection reduce this risk significantly. Lyme disease and the milder southern-tick-associated rash illness (STARI) are characterized by the erythema migrans rash followed, in the case of Lyme disease, by early, disseminated, and late systemic symptoms. Treatment is with doxycycline or ceftriaxone. Indefinite treatment of "chronic Lyme disease" based on subjective symptoms is not beneficial. Rickettsial diseases include ehrlichiosis, anaplasmosis, and Rocky Mountain spotted fever, which are characterized by fever, headache, and possible rash and should be empirically treated with doxycycline while awaiting laboratory confirmation. Tularemia is a bacterial disease (Francisella) spread by ticks and rabbits and characterized by fever and adenopathy. Treatment is with gentamicin or streptomycin. Babesiosis is a protozoal disease, mimicking malaria, that causes a self-limited flu-like disease in healthy hosts but can be life threatening with immune compromise. Treatment is with atovaquone and azithromycin. Other tick-related conditions include viral diseases (Powassan, Colorado tick fever, heartland virus), tick-borne relapsing fever (Borrelia), and tick paralysis (toxin). Mosquitoes, lice, fleas, and mites are notable for their annoying bites but are increasingly significant disease vectors even in the United States.

  7. Ultra-sensitive chemiluminescence imaging DNA hybridization method in the detection of mosquito-borne viruses and parasites.

    Science.gov (United States)

    Zhang, Yingjie; Liu, Qiqi; Zhou, Biao; Wang, Xiaobo; Chen, Suhong; Wang, Shengqi

    2017-01-25

    Mosquito-borne viruses (MBVs) and parasites (MBPs) are transmitted through hematophagous arthropods-mosquitoes to homoiothermous vertebrates. This study aims at developing a detection method to monitor the spread of mosquito-borne diseases to new areas and diagnose the infections caused by MBVs and MBPs. In this assay, an ultra-sensitive chemiluminescence (CL) detection method was developed and used to simultaneously detect 19 common MBVs and MBPs. In vitro transcript RNA, virus-like particles (VLPs), and plasmids were established as positive or limit of detection (LOD) reference materials. MBVs and MBPs could be genotyped with high sensitivity and specificity. The cut-off values of probes were calculated. The absolute LODs of this strategy to detect serially diluted in vitro transcribed RNAs of MBVs and serially diluted plasmids of MBPs were 10 2 -10 3 copies/μl and 10 1 -10 2 copies/μl, respectively. Further, the LOD of detecting a strain of pre-quantified JEV was 10 1.8 -10 0.8 PFU/ml, fitted well in a linear regression model (coefficient of determination = 0.9678). Ultra-sensitive CL imaging DNA hybridization was developed and could simultaneously detect various MBVs and MBPs. The method described here has the potential to provide considerable labor savings due to its ability to screen for 19 mosquito-borne pathogens simultaneously.

  8. 加强我国寨卡病毒病等蚊媒传染病的预防控制%Strengthen the prevention and control of Zika virus disease and other mosquito-borne infectious diseases in China

    Institute of Scientific and Technical Information of China (English)

    朱翠云; 卢洪洲

    2016-01-01

    寨卡病毒病是一种主要通过伊蚊叮咬传播的蚊媒传染病。伊蚊除了可以传播寨卡病毒外,还可以传播黄热病、登革热等多种疾病。近年来,随着旅行和贸易全球化、气候变暖等,蚊媒传染病相关疫情在全球多地暴发。该文主要介绍寨卡病毒病、黄热病等在我国首次输入的蚊媒传染病的流行情况,并对预防控制实施的重点措施进行了总结。%Zika virus disease is a mosquito-borne disease with aedes as a potential viral vector. Besides Zika virus, aedes can also serve as a vector for other viruses such as yellow fever virus and dengue virus.With the impact of globalization and climate changes, many regions in the world are experiencing outbreaks of mosquito-borne diseases in recently years.This paper focuses on the epidemic, prevention and control measures of mosquito-borne infectious diseases such as Zika virus disease and yellow fever which are firstly imported to China.

  9. Wolbachia-a foe for mosquitoes

    Directory of Open Access Journals (Sweden)

    Nadipinayakanahalli Munikrishnappa Guruprasad

    2014-02-01

    Full Text Available Mosquitoes act as vectors for a wide range of viral and parasitic infectious diseases such as malaria, dengue, Chickungunya, lymphatic filariasis, Japanese encephalitis and West Nile virus in humans as well as in animals. Although a wide range of insecticides are used to control mosquitoes, it has only resulted in development of resistance to such insecticides. The evolution of insecticide resistance and lack of vaccines for many mosquito-borne diseases have made these arthropods highly harmful vectors. Recently, a novel approach to control mosquitoes by transinfection of life shortening maternally transmitted endo-symbiont Wolbachia wMelPop strain from fruitfly Drosophila into mosquito population has been developed by researchers. The wMelPop strain up-regulated the immune gene expression in mosquitoes thereby reducing the dengue and Chickungunya viral replication in Aedes aegypti, and also it significantly reduced the Plasmodium level in Anopheles gambiae. Here, we discuss the strategy of using Wolbachia in control of vector-borne diseases of mosquitoes.

  10. Predicting the mosquito species and vertebrate species involved in the theoretical transmission of Rift Valley fever virus in the United States.

    Directory of Open Access Journals (Sweden)

    Andrew J Golnar

    2014-09-01

    Full Text Available Rift Valley fever virus (RVFV is a mosquito-borne virus in the family Bunyaviridiae that has spread throughout continental Africa to Madagascar and the Arabian Peninsula. The establishment of RVFV in North America would have serious consequences for human and animal health in addition to a significant economic impact on the livestock industry. Published and unpublished data on RVFV vector competence, vertebrate host competence, and mosquito feeding patterns from the United States were combined to quantitatively implicate mosquito vectors and vertebrate hosts that may be important to RVFV transmission in the United States. A viremia-vector competence relationship based on published mosquito transmission studies was used to calculate a vertebrate host competence index which was then combined with mosquito blood feeding patterns to approximate the vector and vertebrate amplification fraction, defined as the relative contribution of the mosquito or vertebrate host to pathogen transmission. Results implicate several Aedes spp. mosquitoes and vertebrates in the order Artiodactyla as important hosts for RVFV transmission in the U.S. Moreover, this study identifies critical gaps in knowledge which would be necessary to complete a comprehensive analysis identifying the different contributions of mosquitoes and vertebrates to potential RVFV transmission in the U.S. Future research should focus on (1 the dose-dependent relationship between viremic exposure and the subsequent infectiousness of key mosquito species, (2 evaluation of vertebrate host competence for RVFV among North American mammal species, with particular emphasis on the order Artiodactyla, and (3 identification of areas with a high risk for RVFV introduction so data on local vector and host populations can help generate geographically appropriate amplification fraction estimates.

  11. Predicting the mosquito species and vertebrate species involved in the theoretical transmission of Rift Valley fever virus in the United States.

    Science.gov (United States)

    Golnar, Andrew J; Turell, Michael J; LaBeaud, A Desiree; Kading, Rebekah C; Hamer, Gabriel L

    2014-09-01

    Rift Valley fever virus (RVFV) is a mosquito-borne virus in the family Bunyaviridiae that has spread throughout continental Africa to Madagascar and the Arabian Peninsula. The establishment of RVFV in North America would have serious consequences for human and animal health in addition to a significant economic impact on the livestock industry. Published and unpublished data on RVFV vector competence, vertebrate host competence, and mosquito feeding patterns from the United States were combined to quantitatively implicate mosquito vectors and vertebrate hosts that may be important to RVFV transmission in the United States. A viremia-vector competence relationship based on published mosquito transmission studies was used to calculate a vertebrate host competence index which was then combined with mosquito blood feeding patterns to approximate the vector and vertebrate amplification fraction, defined as the relative contribution of the mosquito or vertebrate host to pathogen transmission. Results implicate several Aedes spp. mosquitoes and vertebrates in the order Artiodactyla as important hosts for RVFV transmission in the U.S. Moreover, this study identifies critical gaps in knowledge which would be necessary to complete a comprehensive analysis identifying the different contributions of mosquitoes and vertebrates to potential RVFV transmission in the U.S. Future research should focus on (1) the dose-dependent relationship between viremic exposure and the subsequent infectiousness of key mosquito species, (2) evaluation of vertebrate host competence for RVFV among North American mammal species, with particular emphasis on the order Artiodactyla, and (3) identification of areas with a high risk for RVFV introduction so data on local vector and host populations can help generate geographically appropriate amplification fraction estimates.

  12. Mosquito transmission of the rodent malaria parasite Plasmodium chabaudi

    Directory of Open Access Journals (Sweden)

    Spence Philip J

    2012-12-01

    Full Text Available Abstract Background Serial blood passage of Plasmodium increases virulence, whilst mosquito transmission inherently regulates parasite virulence within the mammalian host. It is, therefore, imperative that all aspects of experimental malaria research are studied in the context of the complete Plasmodium life cycle. Methods Plasmodium chabaudi chabaudi displays many characteristics associated with human Plasmodium infection of natural mosquito vectors and the mammalian host, and thus provides a unique opportunity to study the pathogenesis of malaria in a single infection setting. An optimized protocol that permits efficient and reproducible vector transmission of P. c. chabaudi via Anopheles stephensi was developed. Results and conclusions This protocol was utilized for mosquito transmission of genetically distinct P. c. chabaudi isolates, highlighting differential parasite virulence within the mosquito vector and the spectrum of host susceptibility to infection initiated via the natural route, mosquito bite. An apposite experimental system in which to delineate the pathogenesis of malaria is described in detail.

  13. Cacipacore virus as an emergent mosquito-borne Flavivirus

    Directory of Open Access Journals (Sweden)

    Mario Luis Garcia de Figueiredo

    Full Text Available Abstract INTRODUCTION: Cacipacore virus (CPCV, a possible bird-associated flavivirus, has yet to be detected in mosquitoes. Our purpose is examining CPCV in mosquitoes from the Amazon region of Brazil. METHODS: Approximately 3,253 Culicidae (grouped into 264 pools were collected from the Amazon region during 2002-2006 and analyzed using a Flavivirus genus-specific reverse transcription- polymerase chain reaction followed by nested polymerase chain reaction assay and by nucleotide sequencing of amplicons. RESULTS: Nucleotide sequences from five mosquito samples showed high similarity to the those of CPCV originally isolated in the Amazon region. CONCLUSIONS: This is the first report of CPCV-infected mosquitoes which has implications on the arbovirus maintenance in nature and transmission to man.

  14. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes

    NARCIS (Netherlands)

    Vloet, Rianka P.M.; Vogels, Chantal B.F.; Koenraadt, Constantianus J.M.; Pijlman, Gorben P.; Eiden, Martin; Gonzales, Jose L.; Keulen, van Lucien J.M.; Wichgers Schreur, Paul J.; Kortekaas, Jeroen

    2017-01-01

    Background: Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus

  15. The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review.

    Science.gov (United States)

    Palaniyandi, M

    2012-12-01

    There have been several attempts made to the appreciation of remote sensing and GIS for the study of vectors, biodiversity, vector presence, vector abundance and the vector-borne diseases with respect to space and time. This study was made for reviewing and appraising the potential use of remote sensing and GIS applications for spatial prediction of vector-borne diseases transmission. The nature of the presence and the abundance of vectors and vector-borne diseases, disease infection and the disease transmission are not ubiquitous and are confined with geographical, environmental and climatic factors, and are localized. The presence of vectors and vector-borne diseases is most complex in nature, however, it is confined and fueled by the geographical, climatic and environmental factors including man-made factors. The usefulness of the present day availability of the information derived from the satellite data including vegetation indices of canopy cover and its density, soil types, soil moisture, soil texture, soil depth, etc. is integrating the information in the expert GIS engine for the spatial analysis of other geoclimatic and geoenvironmental variables. The present study gives the detailed information on the classical studies of the past and present, and the future role of remote sensing and GIS for the vector-borne diseases control. The ecological modeling directly gives us the relevant information to understand the spatial variation of the vector biodiversity, vector presence, vector abundance and the vector-borne diseases in association with geoclimatic and the environmental variables. The probability map of the geographical distribution and seasonal variations of horizontal and vertical distribution of vector abundance and its association with vector -borne diseases can be obtained with low cost remote sensing and GIS tool with reliable data and speed.

  16. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens

    NARCIS (Netherlands)

    Guerra, C.A.; Reiner Jr, R.C.; Perkins, T.A.; Lindsay, S.W.; Midega, J.T.; Brady, O.J.; Barker, C.M.; Reisen, W.K.; Harrington, L.C.; Takken, W.; Kitron, U.; Lloyd, A.L.; Hay, S.I.; Scott, T.W.; Smith, D.L.

    2014-01-01

    Background Pathogen transmission by mosquitos is known to be highly sensitive to mosquito bionomic parameters. Mosquito mark-release-recapture (MMRR) experiments are a standard method for estimating such parameters including dispersal, population size and density, survival, blood feeding frequency

  17. Aquatic insect predators and mosquito control.

    Science.gov (United States)

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  18. Mosquitoes and Culicoides biting midges: vector range and the influence of climate change.

    Science.gov (United States)

    Elbers, A R W; Koenraadt, C J M; Meiswinkel, R

    2015-04-01

    Vector-borne animal diseases pose a continuous and substantial threat to livestock economies around the globe. Increasing international travel, the globalisation of trade, and climate change are likely to play a progressively more important role in the introduction, establishment and spread of arthropod-borne pathogens worldwide. A review of the literature reveals that many climatic variables, functioning singly or in combination, exert varying effects on the distribution and range of Culicoides vector midges and mosquitoes. For example, higher temperatures may be associated with increased insect abundance--thereby amplifying the risk of disease transmission--but there are no indications yet of dramatic shifts occurring in the geographic range of Culicoides midges. However, the same cannot be said for mosquitoes: over the last few decades, multiple Asian species have established themselves in Europe, spread and are unlikely to ever be eradicated. Research on how insects respond to changes in climate is still in its infancy. The authors argue that we need to grasp how other annectant changes, such as extremes in precipitation (drought and flooding), may affect the dispersal capability of mosquitoes. Models are useful for assessing the interplay between mosquito vectors expanding their range and the native flora and fauna; however, ecological studies employing classical mark-release-recapture techniques remain essential for addressing fundamental questions about the survival and dispersal of mosquito species, with the resulting parameters fed directly into new-generation disease transmission models. Studies on the eventual impact of mosquitoes on animal and human health should be tackled through large-scale integrated research programmes. Such an approach calls for more collaborative efforts, along the lines of the One Health Initiative.

  19. Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance - developing strategies for future disease mitigation.

    Science.gov (United States)

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-03-03

    The incidence of mosquito-borne diseases is increasing in Europe, partly due to the incursion of a number of invasive species known to be vectors of dengue and chikungunya viruses, but also due to the involvement of native species in the transmission of West Nile virus and malaria. For some of these pathogens, there is a risk of the re-emergence of vector-borne diseases that were once widespread in Europe, but declined partly due to large-scale land-drainage projects. Some mosquito species exploit container habitats as breeding sites in urban areas; an adaptation to human-made micro-habitats resulting from increased urbanisation. However, many species thrive in natural wetland ecosystems. Owing to the impacts of climate change there is an urgent need for environmental adaptation, such as the creation of new wetlands to mitigate coastal and inland flooding. In some cases, these initiatives can be coupled with environmental change strategies to protect a range of endangered flora and fauna species by enhancing and extending wetland landscapes, which may by driven by European legislation, particularly in urban areas. This paper reviews field studies conducted in England to assess the impact of newly created wetlands on mosquito colonisation in a) coastal, b) urban and c) arable reversion habitats. It also considers the impact of wetland management on mosquito populations and explores the implications of various water and vegetation management options on the range of British mosquito species. Understanding the impact of wetland creation and management strategies on mosquito prevalence and the potential risk of increasing the levels of nuisance or disease vector species will be crucial in informing health and well-being risk assessments, guiding targeted control, and anticipating the social effects of extreme weather and climate change. Although new wetlands will certainly extend aquatic habitats for mosquitoes, not all species will become a major nuisance or a vector

  20. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    Science.gov (United States)

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  1. Block the Buzzing, Bites, and Bumps: Preventing Mosquito-Borne Illnesses

    Science.gov (United States)

    ... States.” West Nile tends to be a seasonal epidemic in the U.S. It flares up in late ... Brazil. Zika is another mosquito-borne virus that’s spreading throughout Central and South America. Because the dengue ...

  2. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis.

    Science.gov (United States)

    Kenney, Adam; Cusick, Austin; Payne, Jessica; Gaughenbaugh, Anna; Renshaw, Andrea; Wright, Jenna; Seeber, Roger; Barnes, Rebecca; Florjanczyk, Aleksandr; Horzempa, Joseph

    2017-01-01

    Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.

  3. Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission

    Directory of Open Access Journals (Sweden)

    Guégan Jean-François

    2008-10-01

    Full Text Available Abstract Background Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems. Results Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment. Conclusion Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.

  4. Wolbachia enhances West Nile virus (WNV infection in the mosquito Culex tarsalis.

    Directory of Open Access Journals (Sweden)

    Brittany L Dodson

    2014-07-01

    Full Text Available Novel strategies are required to control mosquitoes and the pathogens they transmit. One attractive approach involves maternally inherited endosymbiotic Wolbachia bacteria. After artificial infection with Wolbachia, many mosquitoes become refractory to infection and transmission of diverse pathogens. We evaluated the effects of Wolbachia (wAlbB strain on infection, dissemination and transmission of West Nile virus (WNV in the naturally uninfected mosquito Culex tarsalis, which is an important WNV vector in North America. After inoculation into adult female mosquitoes, Wolbachia reached high titers and disseminated widely to numerous tissues including the head, thoracic flight muscles, fat body and ovarian follicles. Contrary to other systems, Wolbachia did not inhibit WNV in this mosquito. Rather, WNV infection rate was significantly higher in Wolbachia-infected mosquitoes compared to controls. Quantitative PCR of selected innate immune genes indicated that REL1 (the activator of the antiviral Toll immune pathway was down regulated in Wolbachia-infected relative to control mosquitoes. This is the first observation of Wolbachia-induced enhancement of a human pathogen in mosquitoes, suggesting that caution should be applied before releasing Wolbachia-infected insects as part of a vector-borne disease control program.

  5. Urbanization impact on mosquito community and the transmission potential of filarial infection in central Europe

    Czech Academy of Sciences Publication Activity Database

    Čabanová, V.; Miterpáková, M.; Valentová, D.; Blažejová, Hana; Rudolf, Ivo; Stloukal, E.; Hurníková, Z.; Dzidová, M.

    2018-01-01

    Roč. 11, č. 1 (2018), č. článku 261. ISSN 1756-3305 Institutional support: RVO:68081766 Keywords : Culex pipiens complex * West Nile virus * Diptera Culicidae * Anopheles hyrcanus * Dirofilaria immitis * Aedes albopictus * endemic area * 1st record * Slovakia * vector * Dirofilaria * mosquito-borne diseases * Anopheles maculipennis complex * xenomonitoring Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 3.080, year: 2016

  6. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Adam Kenney

    Full Text Available Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent in 30% sucrose (a nectar surrogate over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.

  7. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease.

    Directory of Open Access Journals (Sweden)

    Courtney C Murdock

    2017-05-01

    Full Text Available Most statistical and mechanistic models used to predict mosquito-borne disease transmission incorporate climate drivers of disease transmission by utilizing environmental data collected at geographic scales that are potentially coarser than what mosquito populations may actually experience. Temperature and relative humidity can vary greatly between indoor and outdoor environments, and can be influenced strongly by variation in landscape features. In the Aedes albopictus system, we conducted a proof-of-concept study in the vicinity of the University of Georgia to explore the effects of fine-scale microclimate variation on mosquito life history and vectorial capacity (VC. We placed Ae. albopictus larvae in artificial pots distributed across three replicate sites within three different land uses-urban, suburban, and rural, which were characterized by high, intermediate, and low proportions of impervious surfaces. Data loggers were placed into each larval environment and in nearby vegetation to record daily variation in water and ambient temperature and relative humidity. The number of adults emerging from each pot and their body size and sex were recorded daily. We found mosquito microclimate to significantly vary across the season as well as with land use. Urban sites were in general warmer and less humid than suburban and rural sites, translating into decreased larval survival, smaller body sizes, and lower per capita growth rates of mosquitoes on urban sites. Dengue transmission potential was predicted to be higher in the summer than the fall. Additionally, the effects of land use on dengue transmission potential varied by season. Warm summers resulted in a higher predicted VC on the cooler, rural sites, while warmer, urban sites had a higher predicted VC during the cooler fall season.

  8. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease.

    Science.gov (United States)

    Murdock, Courtney C; Evans, Michelle V; McClanahan, Taylor D; Miazgowicz, Kerri L; Tesla, Blanka

    2017-05-01

    Most statistical and mechanistic models used to predict mosquito-borne disease transmission incorporate climate drivers of disease transmission by utilizing environmental data collected at geographic scales that are potentially coarser than what mosquito populations may actually experience. Temperature and relative humidity can vary greatly between indoor and outdoor environments, and can be influenced strongly by variation in landscape features. In the Aedes albopictus system, we conducted a proof-of-concept study in the vicinity of the University of Georgia to explore the effects of fine-scale microclimate variation on mosquito life history and vectorial capacity (VC). We placed Ae. albopictus larvae in artificial pots distributed across three replicate sites within three different land uses-urban, suburban, and rural, which were characterized by high, intermediate, and low proportions of impervious surfaces. Data loggers were placed into each larval environment and in nearby vegetation to record daily variation in water and ambient temperature and relative humidity. The number of adults emerging from each pot and their body size and sex were recorded daily. We found mosquito microclimate to significantly vary across the season as well as with land use. Urban sites were in general warmer and less humid than suburban and rural sites, translating into decreased larval survival, smaller body sizes, and lower per capita growth rates of mosquitoes on urban sites. Dengue transmission potential was predicted to be higher in the summer than the fall. Additionally, the effects of land use on dengue transmission potential varied by season. Warm summers resulted in a higher predicted VC on the cooler, rural sites, while warmer, urban sites had a higher predicted VC during the cooler fall season.

  9. Local environmental and meteorological conditions influencing the invasive mosquito Ae. albopictus and arbovirus transmission risk in New York City.

    Science.gov (United States)

    Little, Eliza; Bajwa, Waheed; Shaman, Jeffrey

    2017-08-01

    Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases.

  10. Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States.

    Directory of Open Access Journals (Sweden)

    Carrie A Manore

    2017-01-01

    Full Text Available The recent spread of mosquito-transmitted viruses and associated disease to the Americas motivates a new, data-driven evaluation of risk in temperate population centers. Temperate regions are generally expected to pose low risk for significant mosquito-borne disease; however, the spread of the Asian tiger mosquito (Aedes albopictus across densely populated urban areas has established a new landscape of risk. We use a model informed by field data to assess the conditions likely to facilitate local transmission of chikungunya and Zika viruses from an infected traveler to Ae. albopictus and then to other humans in USA cities with variable human densities and seasonality. Mosquito-borne disease occurs when specific combinations of conditions maximize virus-to-mosquito and mosquito-to-human contact rates. We develop a mathematical model that captures the epidemiology and is informed by current data on vector ecology from urban sites. The model demonstrates that under specific but realistic conditions, fifty-percent of introductions by infectious travelers to a high human, high mosquito density city could initiate local transmission and 10% of the introductions could result in 100 or more people infected. Despite the propensity for Ae. albopictus to bite non-human vertebrates, we also demonstrate that local virus transmission and human outbreaks may occur when vectors feed from humans even just 40% of the time. Inclusion of human behavioral changes and mitigations were not incorporated into the models and would likely reduce predicted infections. This work demonstrates how a conditional series of non-average events can result in local arbovirus transmission and outbreaks of human disease, even in temperate cities.

  11. Mosquito population regulation and larval source management in heterogeneous environments.

    Directory of Open Access Journals (Sweden)

    David L Smith

    Full Text Available An important question for mosquito population dynamics, mosquito-borne pathogen transmission and vector control is how mosquito populations are regulated. Here we develop simple models with heterogeneity in egg laying patterns and in the responses of larval populations to crowding in aquatic habitats. We use the models to evaluate how such heterogeneity affects mosquito population regulation and the effects of larval source management (LSM. We revisit the notion of a carrying capacity and show how heterogeneity changes our understanding of density dependence and the outcome of LSM. Crowding in and productivity of aquatic habitats is highly uneven unless egg-laying distributions are fine-tuned to match the distribution of habitats' carrying capacities. LSM reduces mosquito population density linearly with coverage if adult mosquitoes avoid laying eggs in treated habitats, but quadratically if eggs are laid in treated habitats and the effort is therefore wasted (i.e., treating 50% of habitat reduces mosquito density by approximately 75%. Unsurprisingly, targeting (i.e. treating a subset of the most productive pools gives much larger reductions for similar coverage, but with poor targeting, increasing coverage could increase adult mosquito population densities if eggs are laid in higher capacity habitats. Our analysis suggests that, in some contexts, LSM models that accounts for heterogeneity in production of adult mosquitoes provide theoretical support for pursuing mosquito-borne disease prevention through strategic and repeated application of modern larvicides.

  12. Approaches to passive mosquito surveillance in the EU

    NARCIS (Netherlands)

    Kampen, H.; Medlock, J.M.; Vaux, A.G.C.; Koenraadt, C.J.M.; Vliet, van A.J.H.; Bartumeus, F.; Oltra, A.; Sousa, C.A.; Chouin, S.; Werner, D.

    2015-01-01

    The recent emergence in Europe of invasive mosquitoes and mosquito-borne disease associated with both invasive and native mosquito species has prompted intensified mosquito vector research in most European countries. Central to the efforts are mosquito monitoring and surveillance activities in order

  13. [Climate- and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, I.C.; Schioler, K.L.; Konradsen, F.

    2009-01-01

    The predicted changes in climate have raised concerns that vector-borne diseases may emerge or expand in tempered regions. Malaria, leishmaniasis and tick-borne illnesses are discussed in terms of climate change and their endemic potential, especially in Denmark. While climate may play an important...... role in disease patterns, it is evident that transmission potential is governed by a complex of factors, including socio-economy, health-care capacity and ecology. In Denmark, malaria and leishmaniasis are unlikely to become public health problems, whereas the potential for tick-borne illnesses may...

  14. Environmental statistical modelling of mosquito vectors at different geographical scales

    NARCIS (Netherlands)

    Cianci, D.

    2015-01-01

    Vector-borne diseases are infections transmitted by the bite of infected arthropod vectors, such as mosquitoes, ticks, fleas, midges and flies. Vector-borne diseases pose an increasingly wider threat to global public health, both in terms of people affected and their geographical spread. Mosquitoes

  15. The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus influxes and survival from Vietnam rather than Japan.

    Directory of Open Access Journals (Sweden)

    Su Hyun Lee

    Full Text Available BACKGROUND: Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector's survival during colder winter months will likely occur due to the effects of climate change. METHODS AND RESULTS: In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan. CONCLUSION: Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter

  16. Inter-epidemic abundance and distribution of potential mosquito vectors for Rift Valley fever virus in Ngorongoro district, Tanzania

    OpenAIRE

    Mweya, Clement N.; Kimera, Sharadhuli I.; Mellau, Lesakit S. B.; Mboera, Leonard E. G.

    2015-01-01

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that primarily affects ruminants but also has the capacity to infect humans. Objective: To determine the abundance and distribution of mosquito vectors in relation to their potential role in the virus transmission and maintenance in disease epidemic areas of Ngorongoro district in northern Tanzania. Methods: A cross-sectional entomological investigation was carried out before the suspected RVF outbreak in October 2012. Mos...

  17. West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance.

    Directory of Open Access Journals (Sweden)

    Jelke J Fros

    Full Text Available West Nile virus (WNV is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA, lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic.We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase.Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe.

  18. Emerging arthropod-borne diseases of companion animals in Europe.

    Science.gov (United States)

    Beugnet, Frederic; Marié, Jean-Lou

    2009-08-26

    Vector-borne diseases are caused by parasites, bacteria or viruses transmitted by the bite of hematophagous arthropods (mainly ticks and mosquitoes). The past few years have seen the emergence of new diseases, or re-emergence of existing ones, usually with changes in their epidemiology (i.e. geographical distribution, prevalence, and pathogenicity). The frequency of some vector-borne diseases of pets is increasing in Europe, i.e. canine babesiosis, granulocytic anaplasmosis, canine monocytic ehrlichiosis, thrombocytic anaplasmosis, and leishmaniosis. Except for the last, these diseases are transmitted by ticks. Both the distribution and abundance of the three main tick species, Rhipicephalus sanguineus, Dermacentor reticulatus and Ixodes ricinus are changing. The conditions for such changes involve primarily human factors, such as travel with pets, changes in human habitats, social and leisure activities, but climate changes also have a direct impact on arthropod vectors (abundance, geographical distribution, and vectorial capacity). Besides the most known diseases, attention should be kept on tick-borne encephalitis, which seems to be increasing in western Europe, as well as flea-borne diseases like the flea-transmitted rickettsiosis. Here, after consideration of the main reasons for changes in tick vector ecology, an overview of each "emerging" vector-borne diseases of pets is presented.

  19. Knowledge and use of personal protective measures against mosquito borne diseases in a resettlement colony of delhi.

    Science.gov (United States)

    Anand, T; Kumar, R; Saini, V; Meena, Gs; Ingle, Gk

    2014-03-01

    Mosquito borne diseases (MBDs) are major public health problem in India. State of Delhi is endemic for dengue and other MBDs. The increasing incidence of MBDs in Delhi in recent years warrants a pro-active approach for their prevention. Knowledge and use of personal protective measures (PPMs) presents an effective strategy for prevention and control of MBDs. The present study was conducted to assess the knowledge and use of PPMs against MBDs in an urban resettlement colony of Delhi. It was a cross-sectional study carried out in a resettlement colony of Delhi. A total of 100 families were selected by systematic random sampling. Data was collected using semi-structured questionnaire and supplemented by spot survey by the investigator in the community. The results were analyzed in SPSS version 16.0 (Chicago Illinios, USA). Out of the 100 respondents, 65% (65/100), 58%(58/100) and 13% (13/100) had heard about dengue, malaria and chikungunya, respectively. Nearly, one-fifth (20/100; 20%) of the participants reported incorrect breeding sites for mosquitoes. The knowledge regarding PPMs was very high (93/100; 93%) and about (90/100; 90%) families were actually using at least one of the PPMs. However, very few families were using them correctly (1/90; 1.1%) and adequately (5/90; 5.6%). The most common PPM being used by the study population was liquid vaporizers (54/90; 60%). Nearly one-third (29/90; 32.2%) of the participants reported side-effects due to PPMs with irritation to smell being the most common reported side-effect. On house visit, adult mosquitoes were seen in 67% (67/100) of the houses, while potential mosquito breeding sites were found in and around 56% (56/100) houses. There were crucial gaps in knowledge and practices of participants with regard to prevention and control of MBDs. Thus, there is a need to intensify efforts toward creating public knowledge and mobilizing community about correct use of preventive measures against MBDs.

  20. Zika: the origin and spread of a mosquito-borne virus

    Science.gov (United States)

    Kindhauser, Mary Kay; Allen, Tomas; Frank, Veronika; Santhana, Ravi Shankar

    2016-01-01

    Abstract Objective To describe the temporal and geographical distribution of Zika virus infection and associated neurological disorders, from 1947 to 1 February 2016, when Zika became a Public Health Emergency of International Concern (PHEIC). Methods We did a literature search using the terms “Zika” and “ZIKV” in PubMed, cross-checked the findings for completeness against other published reviews and added formal notifications to WHO submitted under the International Health Regulations. Findings From the discovery of Zika virus in Uganda in 1947 to the declaration of a PHEIC by the World Health Organization (WHO) on 1 February 2016, a total of 74 countries and territories had reported human Zika virus infections. The timeline in this paper charts the discovery of the virus (1947), its isolation from mosquitos (1948), the first human infection (1952), the initial spread of infection from Asia to a Pacific island (2007), the first known instance of sexual transmission (2008), reports of Guillain-Barré syndrome (2014) and microcephaly (2015) linked to Zika infections and the first appearance of Zika in the Americas (from 2015). Conclusion Zika virus infection in humans appears to have changed in character as its geographical range has expanded from equatorial Africa and Asia. The change is from an endemic, mosquito-borne infection causing mild illness to one that can cause large outbreaks linked with neurological sequelae and congenital abnormalities. PMID:27708473

  1. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    Directory of Open Access Journals (Sweden)

    Chenyan Shi

    Full Text Available Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.

  2. A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province

    Science.gov (United States)

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  3. Vector competence of Anopheles and Culex mosquitoes for Zika virus

    Directory of Open Access Journals (Sweden)

    Brittany L. Dodson

    2017-03-01

    Full Text Available Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.

  4. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  5. The effect of vector control strategy against Dengue transmission between mosquitoes and humans

    Directory of Open Access Journals (Sweden)

    Chen-Xia Yang

    2017-03-01

    Full Text Available With the consideration of mechanism of prevention and control for the spread of dengue fever, a mathematical model of dengue fever dynamical transmission between mosquitoes and humans, incorporating a vector control strategy of impulsive culling of mosquitoes, is proposed in this paper. By using the comparison principle, Floquet theorem and some of analytical methods, we obtain the basic reproductive number $\\mathcal{R}_0$ for this infectious disease, which illustrates the stability of the disease-free periodic solution and the uniform persistence of the disease. Further, the explicit conditions determining the backward or forward bifurcation are obtained and the culling rate $\\phi$ is a major effect on the occurrence of backward bifurcation. Finally, numerical simulations are given to verify the correctness of theoretical results and the most efficiency of vector control strategy.

  6. Large-scale control of mosquito vectors of disease

    International Nuclear Information System (INIS)

    Curtis, C.F.; Andreasen, M.H.

    2000-01-01

    By far the most important vector borne disease is malaria transmitted by Anopheles mosquitoes causing an estimated 300-500 million clinical cases per year and 1.4-2.6 million deaths, mostly in tropical Africa (WHO 1995). The second most important mosquito borne disease is lymphatic filariasis, but there are now such effective, convenient and cheap drugs for its treatment that vector control will now have at most a supplementary role (Maxwell et al. 1999a). The only other mosquito borne disease likely to justify large-scale vector control is dengue which is carried in urban areas of Southeast Asia and Latin America by Aedes aegypti L. which was also the urban vector of yellow fever in Latin America. This mosquito was eradicated from most countries of Latin America between the 1930s and 60s but, unfortunately in recent years, it has been allowed to re-infest and cause serious dengue epidemics, except in Cuba where it has been held close to eradication (Reiter and Gubler 1997). In the 1930s and 40s, invasions by An. gambiae Giles s.l., the main tropical African malaria vector, were eradicated from Brazil (Soper and Wilson 1943) and Egypt (Shousha 1947). It is surprising that greatly increased air traffic has not led to more such invasions of apparently climatically suitable areas, e.g., of Polynesia which has no anophelines and therefore no malaria. The above mentioned temporary or permanent eradications were achieved before the advent of DDT, using larvicidal methods (of a kind which would now be considered environmentally unacceptable) carried out by rigorously disciplined teams. MALARIA Between the end of the Second World War and the 1960s, the availability of DDT for spraying of houses allowed eradication of malaria from the Soviet Union, southern Europe, the USA, northern Venezuela and Guyana, Taiwan and the Caribbean Islands, apart from Hispaniola. Its range and intensity were also greatly reduced in China, India and South Africa and, at least temporarily, in

  7. A reappraisal of the role of mosquitoes in the transmission of myxomatosis in Britain.

    Science.gov (United States)

    Service, M W

    1971-03-01

    Field experiments were made in southern England to re-examine the possibility that mosquitoes in Britain might feed on wild rabbits and hence be vectors of myxomatosis. Mosquitoes of several species were attracted to rabbits enclosed in cylindrical traps and in a trap in which the animal was placed in a wire mesh cage. Substantial numbers of mosquitoes were also caught biting, or attempting to bite, tethered rabbits which were not in cages or traps. Evidence that mosquitoes fed on wild rabbits under natural conditions was obtained from results of precipitin tests made on blood-smears collected from mosquitoes caught resting amongst vegetation. On a few evenings mosquitoes were seen to be attracted to healthy wild rabbits and apparently attempting to feed on them. Batches of two mosquito species collected from the field were infected with myxoma virus.It was concluded that contrary to previous beliefs mosquitoes in Britain feed to a certain extent on wild rabbits, and therefore are potential vectors of myxomatosis. No attempts were made to assess their relative importance in the transmission of the disease, which in Britain is transmitted mainly by the rabbit flea.

  8. Surveillance of Mosquitoes and Selected Arthropod-Borne Viruses in the Context of Milan EXPO 2015

    Directory of Open Access Journals (Sweden)

    Mario Chiari

    2016-07-01

    Full Text Available From 1 May 2015 to 31 October 2015 over 20 million visitors from all over the world visited the Universal Exhibition (EXPO hosted by Milan (Lombardy region, Italy, raising concerns about the possible introduction of mosquito-borne diseases from endemic countries. The entomological surveillance protocol performed in Lombardy over the last three years was implemented in the EXPO area and in the two major regional airports using both Center for Disease Control CO2 and Biogents Sentinel traps. This surveillance aimed to estimate the presence and densities of putative vectors, and also to support investigations, including the vector species involved and area of diffusion, on the local spread of Chikungunya, Dengue and West Nile viruses (WNV by competent vectors. From 3544 mosquitoes belonging to five different species, 28 pools of Culex spp. and 45 pools of Aedes spp. were screened for the presence of WNV, and for both Chikungunya and flaviviruses, respectively. The entomological surveillance highlighted a low density of potential vectors in the surveyed areas and did not reveal the presence of Chikungunya or Dengue viruses in the local competent vectors inside the EXPO area or in the two airports. In addition, the surveillance reported a low density of Culex spp. mosquitoes, which all tested negative for WNV.

  9. Mosquito-Disseminated Insecticide for Citywide Vector Control and Its Potential to Block Arbovirus Epidemics: Entomological Observations and Modeling Results from Amazonian Brazil.

    Directory of Open Access Journals (Sweden)

    Fernando Abad-Franch

    2017-01-01

    truly independent replicates and that we did not measure mosquito-borne virus transmission empirically.Mosquito-disseminated PPF has potential to block mosquito-borne virus transmission citywide, even under adverse scenarios. Our results signal new avenues for mosquito-borne disease prevention, likely including the effective control of Aedes-borne dengue, Zika, and chikungunya epidemics. Cluster-randomized controlled trials will help determine whether mosquito-disseminated PPF can, as our findings suggest, develop into a major tool for improving global public health.

  10. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    Science.gov (United States)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  11. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France.

    Science.gov (United States)

    Roiz, David; Boussès, Philippe; Simard, Frédéric; Paupy, Christophe; Fontenille, Didier

    2015-06-01

    Extreme precipitation events are increasing as a result of ongoing global warming, but controversy surrounds the relationship between flooding and mosquito-borne diseases. A common view among the scientific community and public health officers is that heavy rainfalls have a flushing effect on breeding sites, which negatively affects vector populations, thereby diminishing disease transmission. During 2014 in Montpellier, France, there were at least 11 autochthonous cases of chikungunya caused by the invasive tiger mosquito Aedes albopictus in the vicinity of an imported case. We show that an extreme rainfall event increased and extended the abundance of the disease vector Ae. albopictus, hence the period of autochthonous transmission of chikungunya. We report results from close monitoring of the adult and egg population of the chikungunya vector Ae. albopictus through weekly sampling over the entire mosquito breeding season, which revealed an unexpected pattern. Statistical analysis of the seasonal dynamics of female abundance in relation to climatic factors showed that these relationships changed after the heavy rainfall event. Before the inundations, accumulated temperatures are the most important variable predicting Ae. albopictus seasonal dynamics. However, after the inundations, accumulated rainfall over the 4 weeks prior to capture predicts the seasonal dynamics of this species and extension of the transmission period. Our empirical data suggests that heavy rainfall events did increase the risk of arbovirus transmission in Southern France in 2014 by favouring a rapid rise in abundance of vector mosquitoes. Further studies should now confirm these results in different ecological contexts, so that the impact of global change and extreme climatic events on mosquito population dynamics and the risk of disease transmission can be adequately understood.

  12. Avian phenotypic traits related to feeding preferences in two Culex mosquitoes

    Science.gov (United States)

    Yan, Jiayue; Gangoso, Laura; Martínez-de la Puente, Josué; Soriguer, Ramón; Figuerola, Jordi

    2017-10-01

    Host choice by mosquitoes affects the transmission dynamics of vector-borne infectious diseases. Although asymmetries in mosquito attraction to vertebrate species have been reported, the relative importance of host characteristics in mosquito blood-feeding behavior is still poorly studied. Here, we investigate the relationship between avian phenotypic traits—in particular, morphometry, plumage coloration, and nesting and roosting behavior—and the blood-feeding patterns in two common Culex mosquito species on a North American avian community. Forage ratios of the mosquito species were unrelated to the phylogenetic relationships among bird species. Culex pipiens fed preferably on birds with lighter-colored plumage and longer tarsi; furthermore, solitary roosting avian species were both bitten by Cx. pipiens and Cx. restuans more often than expected. These associations may be explained by greater mosquito attraction towards larger birds with a greater color contrast against the background. Although communally roosting birds may release more cues and attract more mosquitoes, individuals may in fact receive fewer bites due to the encounter-dilution effect. Mosquito feeding behavior is a highly complex phenomenon, and our results may improve understanding of the non-random interaction between birds and mosquitoes in natural communities.

  13. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes.

    Science.gov (United States)

    Ciota, Alexander T; Bialosuknia, Sean M; Ehrbar, Dylan J; Kramer, Laura D

    2017-05-01

    To determine the potential role of vertical transmission in Zika virus expansion, we evaluated larval pools of perorally infected Aedes aegypti and Ae. albopictus adult female mosquitoes; ≈1/84 larvae tested were Zika virus-positive; and rates varied among mosquito populations. Thus, vertical transmission may play a role in Zika virus spread and maintenance.

  14. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission.

    Directory of Open Access Journals (Sweden)

    Shuzhen Sim

    Full Text Available Dengue virus (DENV infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity.

  15. Potential impact of climate change on emerging vector-borne and other infections in the UK.

    Science.gov (United States)

    Baylis, Matthew

    2017-12-05

    Climate is one of several causes of disease emergence. Although half or more of infectious diseases are affected by climate it appears to be a relatively infrequent cause of human disease emergence. Climate mostly affects diseases caused by pathogens that spend part of their lifecycle outside of the host, exposed to the environment. The most important routes of transmission of climate sensitive diseases are by arthropod (insect and tick) vectors, in water and in food. Given the sensitivity of many diseases to climate, it is very likely that at least some will respond to future climate change. In the case of vector-borne diseases this response will include spread to new areas. Several vector-borne diseases have emerged in Europe in recent years; these include vivax malaria, West Nile fever, dengue fever, Chikungunya fever, leishmaniasis, Lyme disease and tick-borne encephalitis. The vectors of these diseases are mosquitoes, sand flies and ticks. The UK has endemic mosquito species capable of transmitting malaria and probably other pathogens, and ticks that transmit Lyme disease. The UK is also threatened by invasive mosquito species known to be able to transmit West Nile, dengue, chikungunya and Zika, and sand flies that spread leishmaniasis. Warmer temperatures in the future will increase the suitability of the UK's climate for these invasive species, and increase the risk that they may spread disease. While much attention is on invasive species, it is important to recognize the threat presented by native species too. Proposed actions to reduce the future impact of emerging vector-borne diseases in the UK include insect control activity at points of entry of vehicles and certain goods, wider surveillance for mosquitoes and sand flies, research into the threat posed by native species, increased awareness of the medical profession of the threat posed by specific diseases, regular risk assessments, and increased preparedness for the occurrence of a disease emergency.

  16. Zika virus: Endemic and epidemic ranges of Aedes mosquito transmission

    Directory of Open Access Journals (Sweden)

    David F. Attaway

    2017-01-01

    Full Text Available Summary: As evidence linking Zika virus with serious health complications strengthens, public health officials and clinicians worldwide need to know which locations are likely to be at risk for autochthonous Zika infections. We created risk maps for epidemic and endemic Aedes-borne Zika virus infections globally using a predictive analysis method that draws on temperature, precipitation, elevation, land cover, and population density variables to identify locations suitable for mosquito activity seasonally or year-round. Aedes mosquitoes capable of transmitting Zika and other viruses are likely to live year-round across many tropical areas in the Americas, Africa, and Asia. Our map provides an enhanced global projection of where vector control initiatives may be most valuable for reducing the risk of Zika virus and other Aedes-borne infections. Keywords: Geographic information systems, Geographic information science, Risk mapping, Zika, Aedes modeling

  17. Relative Abundance of Adult Mosquitoes in University of Abuja Main ...

    African Journals Online (AJOL)

    Relative Abundance of Adult Mosquitoes in University of Abuja Main ... relative abundance of adult mosquitoes in four selected sites in University of Abuja ... These results indicated that vectors of mosquito-borne diseases are breeding in the ...

  18. Tick-, Flea-, and Louse-Borne Diseases of Public Health and Veterinary Significance in Nigeria

    Directory of Open Access Journals (Sweden)

    Oluwaseun Oguntomole

    2018-01-01

    Full Text Available Mosquito-borne diseases are common high-impact diseases in tropical and subtropical areas. However, other non-mosquito vector-borne pathogens (VBPs may share their geographic distribution, seasonality, and clinical manifestations, thereby contributing their share to the morbidity and mortality caused by febrile illnesses in these regions. The purpose of this work was to collect and review existing information and identify knowledge gaps about tick, flea-, and louse-borne diseases of veterinary and public health significance in Nigeria. Full-length articles about VBPs were reviewed and relevant information about the vectors, their hosts, geographic distribution, seasonality, and association(s with human or veterinary diseases was extracted. Specific laboratory tools used for detection and identification of VBPs in Nigeria were also identified. A total of 62 original publications were examined. Substantial information about the prevalence and impacts of ticks and fleas on pet and service dogs (18 articles, and livestock animals (23 articles were available; however, information about their association with and potential for causing human illnesses was largely absent despite the zoonotic nature of many of these peri-domestic veterinary diseases. Recent publications that employed molecular methods of detection demonstrated the occurrence of several classic (Ehrlichia canis, Rickettsia africae, Bartonella sp. and emerging human pathogens (R. aeschlimannii, Neoehrlichia mikurensis in ticks and fleas. However, information about other pathogens often found in association with ticks (R. conorii and fleas (R. typhi, R. felis across the African continent was lacking. Records of louse-borne epidemic typhus in Nigeria date to 1947; however, its current status is not known. This review provides an essential baseline summary of the current knowledge in Nigeria of non-mosquito VBPs, and should stimulate improvements in the surveillance of the veterinary and

  19. Preliminary findings on Bagaza virus (Flavivirus: Flaviviridae growth kinetics, transmission potential & transovarial transmission in three species of mosquitoes

    Directory of Open Access Journals (Sweden)

    A B Sudeep

    2013-01-01

    Full Text Available Background & objectives: Bagaza virus (BAGV, a flavivirus synonymous with Israel turkey meningoencephalitis virus, has been found to circulate in India. BAGV has recently been held responsible for inducing febrile illness in humans and causing unusually high mortality to wild birds in Spain. A study was therefore, undertaken to determine its replication kinetics in certain mosquitoes and to determine vector competence and potential of the mosquitoes to transmit BAGV experimentally. Methods: Aedes aegypti, Culex tritaeniorhynchus and Cx quinquefasciatus mosquitoes were inoculated with BAGV; samples were harvested every day and titrated in BHK-21 cell line. Vector competence and experimental transmission were determined by examining the saliva of infected mosquitoes for virus and induction of sickness in suckling mice, respectively. Results: Cx. tritaeniorhynchus and Ae. aegypti mosquitoes yielded 5 log 10 and 4.67 log 10 TCID 50 /ml of virus on day 3 post-infection (PI, respectively while Cx. quinquefasciatus yielded a titre of 4 log 10 TCID 50 /ml on day 4 PI. BAGV was detected in saliva of all the infected mosquitoes demonstrating their vector competence. Experimental transmission of BAGV to infant mice as well as transovarial transmission was demonstrated by Cx. tritaeniorhynchus but not by Ae. aegypti and Cx. quinquefasciatus mosquitoes. Interpretation & conclusions: Replication of BAGV to high titres and dissemination to saliva in three most prevalent mosquitoes in India is of immense public health importance. Though no major outbreak involving man has been reported yet, BAGV has a potential to cause outbreaks in future.

  20. Climate Change and Vector Borne Diseases on NASA Langley Research Center

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

    2014-01-01

    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

  1. An Educational Interventional Study to Assess Awareness about Mosquito Breeding, Diseases Caused and Protective Measures Against them among Families Residing in an Urban Slum of Indore City

    Directory of Open Access Journals (Sweden)

    Deepa Raghunath

    2013-08-01

    Full Text Available Background: Community participation plays an important role in control of Mosquito borne diseases. This study tries to assess impact of educational intervention on various aspects of mosquito borne diseases in an urban slum. Methodology: An educational interventional study was done in 200 families residing in a slum (Badi Gwaltoli which is in field practice area of Urban Health Centre attached to Department of Community Medicine of M.G.M.Medical College, Indore. A pretested semi-structured questionnaire was administered to the Head of the family which studied their awareness and perception regarding breeding sites and biting habits of mosquitoes, diseases spread by them and personal protective measures used, followed by an educational intervention and post assessment. Data was entered into Microsoft excel spread sheet and analysed using SPSS version 20 software. Results: 46% of study population knew the correct breeding season of mosquitoes (monsoon season during pre-intervention and 68% of the population post- intervention (p- value 0.004. When asked at what time mosquitoes bite the most, maximum number (92% of people said that mosquitoes bite most in the evening and night, while only 6% and 2% were for morning and noon, respectively. Only 3.5% of the population who knew about breeding sites knew about artificial collections of water. Majority said mosquito breed in dirty stagnant water (78.5%. About 96%of the study population was aware that mosquitoes spread diseases. However, only 33.3%of respondents knew correctly about the diseases spread which improved to 68% in the post-intervention period (p-value=.000. 46% knew all the protection measures against mosquitoes in the pre-intervention which increased to 86% in the post intervention (p.value-.005. Conclusion: Awareness about Aedes mosquitoes and its habits is quite poor and many people still believe that only dirty water serves as a breeding place in mosquitoes. Regular IEC sessions

  2. Anthropogenic ecological change and impacts on mosquito breeding and control strategies in salt-marshes, Northern Territory, Australia.

    Science.gov (United States)

    Jacups, Susan; Warchot, Allan; Whelan, Peter

    2012-06-01

    Darwin, in the tropical north of Australia, is subject to high numbers of mosquitoes and several mosquito-borne diseases. Many of Darwin's residential areas were built in close proximity to tidally influenced swamps, where long-term storm-water run-off from nearby residences into these swamps has led to anthropogenic induced ecological change. When natural wet-dry cycles were disrupted, bare mud-flats and mangroves were transformed into perennial fresh to brackish-water reed swamps. Reed swamps provided year-round breeding habitat for many mosquito species, such that mosquito abundance was less predictable and seasonally dependent, but constant and often occurring in plague proportions. Drainage channels were constructed throughout the wetlands to reduce pooled water during dry-season months. This study assesses the impact of drainage interventions on vegetation and mosquito ecology in three salt-marshes in the Darwin area. Findings revealed a universal decline in dry-season mosquito abundance in each wetland system. However, some mosquito species increased in abundance during wet-season months. Due to the high expense and potentially detrimental environmental impacts of ecosystem and non-target species disturbance, large-scale modifications such as these are sparingly undertaken. However, our results indicate that some large scale environmental modification can assist the process of wetland restoration, as appears to be the case for these salt marsh systems. Drainage in all three systems has been restored to closer to their original salt-marsh ecosystems, while reducing mosquito abundances, thereby potentially lowering the risk of vector-borne disease transmission and mosquito pest biting problems.

  3. Impact of climate trends on tick-borne pathogen transmission

    Directory of Open Access Journals (Sweden)

    Agustin eEstrada-Pena

    2012-03-01

    Full Text Available Recent advances in climate research together with a better understanding of tick-pathogen interactions, the distribution of ticks and the diagnosis of tick-borne pathogens raise questions about the impact of environmental factors on tick abundance and spread and the prevalence and transmission of tick-borne pathogens. While undoubtedly climate plays a role in the changes in distribution and seasonal abundance of ticks, it is always difficult to disentangle factors impacting on the abundance of tick hosts from those exerted by human habits. All together, climate, host abundance and social factors may explain the upsurge of epidemics transmitted by ticks to humans. Herein we focused on tick-borne pathogens that affect humans with pandemic potential. Borrelia burgdorferi s.l. (Lyme disease, Anaplasma phagocytophilum (human granulocytic anaplasmosis and tick-borne encephalitis virus (tick-borne encephalitis are transmitted by Ixodes spp. Crimean-Congo hemorrhagic fever virus (Crimean-Congo hemorrhagic fever is transmitted by Hyalomma spp. In this review, we discussed how vector tick species occupy the habitat as a function of different climatic factors, and how these factors impact on tick survival and seasonality. How molecular events at the tick-pathogen interface impact on pathogen transmission is also discussed. Results from statistically and biologically derived models are compared to show that while statistical models are able to outline basic information about tick distributions, biologically derived models are necessary to evaluate pathogen transmission rates and understand the effect of climatic variables and host abundance patterns on pathogen transmission. The results of these studies could be used to build early alert systems able to identify the main factors driving the subtle changes in tick distribution and seasonality and the prevalence of tick-borne pathogens.

  4. Zika virus: Endemic and epidemic ranges of Aedes mosquito transmission.

    Science.gov (United States)

    Attaway, David F; Waters, Nigel M; Geraghty, Estella M; Jacobsen, Kathryn H

    As evidence linking Zika virus with serious health complications strengthens, public health officials and clinicians worldwide need to know which locations are likely to be at risk for autochthonous Zika infections. We created risk maps for epidemic and endemic Aedes-borne Zika virus infections globally using a predictive analysis method that draws on temperature, precipitation, elevation, land cover, and population density variables to identify locations suitable for mosquito activity seasonally or year-round. Aedes mosquitoes capable of transmitting Zika and other viruses are likely to live year-round across many tropical areas in the Americas, Africa, and Asia. Our map provides an enhanced global projection of where vector control initiatives may be most valuable for reducing the risk of Zika virus and other Aedes-borne infections. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  5. Comparison of mosquito control programs in seven urban sites in Africa, the Middle East, and the Americas

    Science.gov (United States)

    Impoinvil, Daniel E.; Ahmad, Sajjad; Troyo, Adriana; Keating, Joseph; Githeko, Andrew K.; Mbogo, Charles M; Kibe, Lydiah; Githure, John I.; Gad, Adel M.; Hassan, Ali N.; Orshan, Laor; Warburg, Alon; Calderón-Arguedas, Olger; Sánchez-Loría, Victoria M.; Velit-Suarez, Rosanna; Chadee, Dave D.; Novak, Robert J.; Beier, John C.

    2007-01-01

    Mosquito control programs at seven urban sites in Kenya, Egypt, Israel, Costa Rica, and Trinidad are described and compared. Site-specific urban and disease characteristics, organizational diagrams, and strengths, weaknesses, obstacles and threats (SWOT) analysis tools are used to provide a descriptive assessment of each mosquito control program, and provide a comparison of the factors affecting mosquito abatement. The information for SWOT analysis is collected from surveys, focus group discussions, and personal communication. SWOT analysis identified various issues affecting the efficiency and sustainability of mosquito control operations. The main outcome of our work was the description and comparison of mosquito control operations within the context of each study site’s biological, social, political, management, and economic conditions. The issues identified in this study ranged from lack of inter-sector collaboration to operational issues of mosquito control efforts. A lack of sustainable funding for mosquito control was a common problem for most sites. Many unique problems were also identified, which included lack of mosquito surveillance, lack of law enforcement, and negative consequences of human behavior. Identifying common virtues and shortcomings of mosquito control operations is useful in identifying “best practices” for mosquito control operations, thus leading to better control of mosquito biting and mosquito-borne disease transmission. PMID:17316882

  6. Comparison of mosquito control programs in seven urban sites in Africa, the Middle East, and the Americas.

    Science.gov (United States)

    Impoinvil, Daniel E; Ahmad, Sajjad; Troyo, Adriana; Keating, Joseph; Githeko, Andrew K; Mbogo, Charles M; Kibe, Lydiah; Githure, John I; Gad, Adel M; Hassan, Ali N; Orshan, Laor; Warburg, Alon; Calderón-Arguedas, Olger; Sánchez-Loría, Victoria M; Velit-Suarez, Rosanna; Chadee, Dave D; Novak, Robert J; Beier, John C

    2007-10-01

    Mosquito control programs at seven urban sites in Kenya, Egypt, Israel, Costa Rica, and Trinidad are described and compared. Site-specific urban and disease characteristics, organizational diagrams, and strengths, weaknesses, obstacles and threats (SWOT) analysis tools are used to provide a descriptive assessment of each mosquito control program, and provide a comparison of the factors affecting mosquito abatement. The information for SWOT analysis is collected from surveys, focus-group discussions, and personal communication. SWOT analysis identified various issues affecting the efficiency and sustainability of mosquito control operations. The main outcome of our work was the description and comparison of mosquito control operations within the context of each study site's biological, social, political, management, and economic conditions. The issues identified in this study ranged from lack of inter-sector collaboration to operational issues of mosquito control efforts. A lack of sustainable funding for mosquito control was a common problem for most sites. Many unique problems were also identified, which included lack of mosquito surveillance, lack of law enforcement, and negative consequences of human behavior. Identifying common virtues and shortcomings of mosquito control operations is useful in identifying "best practices" for mosquito control operations, thus leading to better control of mosquito biting and mosquito-borne disease transmission.

  7. HIV Transmission Dynamics Among Foreign-Born Persons in the United States.

    Science.gov (United States)

    Valverde, Eduardo E; Oster, Alexandra M; Xu, Songli; Wertheim, Joel O; Hernandez, Angela L

    2017-12-15

    In the United States (US), foreign-born persons are disproportionately affected by HIV and differ epidemiologically from US-born persons with diagnosed HIV infection. Understanding HIV transmission dynamics among foreign-born persons is important to guide HIV prevention efforts for these populations. We conducted molecular transmission network analysis to describe HIV transmission dynamics among foreign-born persons with diagnosed HIV. Using HIV-1 polymerase nucleotide sequences reported to the US National HIV Surveillance System for persons with diagnosed HIV infection during 2001-2013, we constructed a genetic distance-based transmission network using HIV-TRACE and examined the birth region of potential transmission partners in this network. Of 77,686 people, 12,064 (16%) were foreign born. Overall, 28% of foreign-born persons linked to at least one other person in the transmission network. Of potential transmission partners, 62% were born in the United States, 31% were born in the same region as the foreign-born person, and 7% were born in another region of the world. Most transmission partners of male foreign-born persons (63%) were born in the United States, whereas most transmission partners of female foreign-borns (57%) were born in their same world region. These finding suggests that a majority of HIV infections among foreign-born persons in our network occurred after immigrating to the United States. Efforts to prevent HIV infection among foreign-born persons in the United States should include information of the transmission networks in which these individuals acquire or transmit HIV to develop more targeted HIV prevention interventions.

  8. [Climate change - a pioneer for the expansion of canine vector-borne diseases?].

    Science.gov (United States)

    Krämer, F; Mencke, N

    2011-01-01

    Vector-transmitted diseases are one of the major contributors to the global burden of disease in humans and animals. Climate change is consistently held responsible for the spread of parasitic acarid and insect vectors such as ticks, fleas, sand flies and mosquitoes, and their transmitted pathogens (in the case of the dog the so-called canine vector-borne diseases [CVBD]). Currently, there is only insufficient data available to prove whether climate change is a major driving force for vector and disease expansion, but the evidence is growing. Other reasons, such as ecological, demographic and socio-economic factors, e.g. pet travel into and pet import from endemic areas, also play a role in this development. Apart from all the controversial discussion of the factors leading to vector and disease expansion, preventative measures should include dog owners' education as they are responsible for individual parasite protection as well as for the minimisation of adverse risk behaviour, e.g. regarding pet travel. Broad-spectrum vector control should be practised by using parasiticides that repel and kill blood feeders in order to minimize the risk of CVBD-pathogen transmission.

  9. Relationship between exposure to vector bites and antibody responses to mosquito salivary gland extracts.

    Science.gov (United States)

    Fontaine, Albin; Pascual, Aurélie; Orlandi-Pradines, Eve; Diouf, Ibrahima; Remoué, Franck; Pagès, Frédéric; Fusaï, Thierry; Rogier, Christophe; Almeras, Lionel

    2011-01-01

    Mosquito-borne diseases are major health problems worldwide. Serological responses to mosquito saliva proteins may be useful in estimating individual exposure to bites from mosquitoes transmitting these diseases. However, the relationships between the levels of these IgG responses and mosquito density as well as IgG response specificity at the genus and/or species level need to be clarified prior to develop new immunological markers to assess human/vector contact. To this end, a kinetic study of antibody levels against several mosquito salivary gland extracts from southeastern French individuals living in three areas with distinct ecological environments and, by implication, distinct Aedes caspius mosquito densities were compared using ELISA. A positive association was observed between the average levels of IgG responses against Ae. caspius salivary gland extracts and spatial Ae. caspius densities. Additionally, the average level of IgG responses increased significantly during the peak exposure to Ae. caspius at each site and returned to baseline four months later, suggesting short-lived IgG responses. The species-specificity of IgG antibody responses was determined by testing antibody responses to salivary gland extracts from Cx. pipiens, a mosquito that is present at these three sites at different density levels, and from two other Aedes species not present in the study area (Ae. aegypti and Ae. albopictus). The IgG responses observed against these mosquito salivary gland extracts contrasted with those observed against Ae. caspius salivary gland extracts, supporting the existence of species-specific serological responses. By considering different populations and densities of mosquitoes linked to environmental factors, this study shows, for the first time, that specific IgG antibody responses against Ae. caspius salivary gland extracts may be related to the seasonal and geographical variations in Ae. caspius density. Characterisation of such immunological

  10. PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Pascal Miesen

    2016-12-01

    Full Text Available Vector mosquitoes are responsible for transmission of the majority of arthropod-borne (arbo- viruses. Virus replication in these vectors needs to be sufficiently high to permit efficient virus transfer to vertebrate hosts. The mosquito immune response therefore is a key determinant for arbovirus transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. Besides this well-established antiviral machinery, the PIWI-interacting RNA (piRNA pathway processes viral RNA into piRNAs. In recent years, significant progress has been made in characterizing the biogenesis and function of these viral piRNAs. In this review, we discuss these developments, identify knowledge gaps, and suggest directions for future research.

  11. Mosquito distribution in a saltmarsh: determinants of eggs in a variable environment.

    Science.gov (United States)

    Rowbottom, Raylea; Carver, Scott; Barmuta, Leon A; Weinstein, Philip; Allen, Geoff R

    2017-06-01

    Two saltmarsh mosquitoes dominate the transmission of Ross River virus (RRV, Togoviridae: Alphavirus), one of Australia's most prominent mosquito-borne diseases. Ecologically, saltmarshes vary in their structure, including habitat types, hydrological regimes, and diversity of aquatic fauna, all of which drive mosquito oviposition behavior. Understanding the distribution of vector mosquitoes within saltmarshes can inform early warning systems, surveillance, and management of vector populations. The aim of this study was to identify the distribution of Ae. camptorhynchus, a known vector for RRV, across a saltmarsh and investigate the influence that other invertebrate assemblage might have on Ae. camptorhynchus egg dispersal. We demonstrate that vegetation is a strong indicator for Ae. camptorhynchus egg distribution, and this was not correlated with elevation or other invertebrates located at this saltmarsh. Also, habitats within this marsh are less frequently inundated, resulting in dryer conditions. We conclude that this information can be applied in vector surveillance and monitoring of temperate saltmarsh environments and also provides a baseline for future investigations into understanding mosquito vector habitat requirements. © 2017 The Society for Vector Ecology.

  12. International network for capacity building for the control of emerging viral vector-borne zoonotic diseases: ARBO-ZOONET.

    Science.gov (United States)

    Ahmed, J; Bouloy, M; Ergonul, O; Fooks, Ar; Paweska, J; Chevalier, V; Drosten, C; Moormann, R; Tordo, N; Vatansever, Z; Calistri, P; Estrada-Pena, A; Mirazimi, A; Unger, H; Yin, H; Seitzer, U

    2009-03-26

    Arboviruses are arthropod-borne viruses, which include West Nile fever virus (WNFV), a mosquito-borne virus, Rift Valley fever virus (RVFV), a mosquito-borne virus, and Crimean-Congo haemorrhagic fever virus (CCHFV), a tick-borne virus. These arthropod-borne viruses can cause disease in different domestic and wild animals and in humans, posing a threat to public health because of their epidemic and zoonotic potential. In recent decades, the geographical distribution of these diseases has expanded. Outbreaks of WNF have already occurred in Europe, especially in the Mediterranean basin. Moreover, CCHF is endemic in many European countries and serious outbreaks have occurred, particularly in the Balkans, Turkey and Southern Federal Districts of Russia. In 2000, RVF was reported for the first time outside the African continent, with cases being confirmed in Saudi Arabia and Yemen. This spread was probably caused by ruminant trade and highlights that there is a threat of expansion of the virus into other parts of Asia and Europe. In the light of global warming and globalisation of trade and travel, public interest in emerging zoonotic diseases has increased. This is especially evident regarding the geographical spread of vector-borne diseases. A multi-disciplinary approach is now imperative, and groups need to collaborate in an integrated manner that includes vector control, vaccination programmes, improved therapy strategies, diagnostic tools and surveillance, public awareness, capacity building and improvement of infrastructure in endemic regions.

  13. Current and potential impacts of mosquitoes and the pathogens they vector in the Pacific region

    Science.gov (United States)

    LaPointe, Dennis

    2007-01-01

    Mosquitoes and the pathogens they transmit are ubiquitous throughout most of the temperate and tropical regions of the world. The natural and pre-European distribution and diversity of mosquitoes and mosquito-borne diseases throughout much of the Pacific region, however, depicts a depauperate and relatively benign fauna reinforcing the dream of “paradise regained”. In the central and South Pacific few mosquito species were able to colonize the remotest islands and atolls. Native mosquitoes are limited to a few far-ranging species and island endemics are typically restricted to the genera of Aedes and Culex. Only lymphatic filariasis appears to have been present as an endemic mosquito-borne disease before European contact. In nearby Australia, however, some 242 species of mosquitoes are known to occur and more than 70 arboviruses have been identified (Mackenzie 1999). In this regard Australia is more similar to the rest of the tropic and subtropical world than the smaller islands of Oceania. In our ever-shrinking world of global commerce, military activity and travel, the nature of mosquito-borne disease in the Pacific was bound to change. This paper is a brief summary of introduced mosquitoes in the Pacific and their potential impacts on human and wildlife health.

  14. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different.

    Science.gov (United States)

    Ogden, Nick H; Lindsay, L Robbin

    2016-08-01

    There has been considerable debate as to whether global risk from vector-borne diseases will be impacted by climate change. This has focussed on important mosquito-borne diseases that are transmitted by the vectors from infected to uninfected humans. However, this debate has mostly ignored the biological diversity of vectors and vector-borne diseases. Here, we review how climate and climate change may impact those most divergent of arthropod disease vector groups: multivoltine insects and hard-bodied (ixodid) ticks. We contrast features of the life cycles and behaviour of these arthropods, and how weather, climate, and climate change may have very different impacts on the spatiotemporal occurrence and abundance of vectors, and the pathogens they transmit. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Major emerging vector-borne zoonotic diseases of public health importance in Canada.

    Science.gov (United States)

    Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H

    2015-06-10

    In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response.

  16. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission

    Science.gov (United States)

    Parham, Paul E.; Waldock, Joanna; Christophides, George K.; Hemming, Deborah; Agusto, Folashade; Evans, Katherine J.; Fefferman, Nina; Gaff, Holly; Gumel, Abba; LaDeau, Shannon; Lenhart, Suzanne; Mickens, Ronald E.; Naumova, Elena N.; Ostfeld, Richard S.; Ready, Paul D.; Thomas, Matthew B.; Velasco-Hernandez, Jorge; Michael, Edwin

    2015-01-01

    Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10–15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector–pathogen systems. PMID:25688012

  17. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  18. Regulation of the Immune Response to α-Gal and Vector-borne Diseases.

    Science.gov (United States)

    Cabezas-Cruz, Alejandro; Mateos-Hernández, Lourdes; Pérez-Cruz, Magdiel; Valdés, James J; Mera, Isabel G Fernández de; Villar, Margarita; de la Fuente, José

    2015-10-01

    Vector-borne diseases (VBD) challenge our understanding of emerging diseases. Recently, arthropod vectors have been involved in emerging anaphylactic diseases. In particular, the immunoglobulin E (IgE) antibody response to the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-gal) following a tick bite was associated with allergies to red meat, cetuximab, and gelatin. By contrast, an anti-α-gal IgM antibody response was shown to protect against mosquito-borne malaria. Herein, we highlight the interplay between the gut microbiota, vectors, transmitted pathogens, and the regulation of the immune response as a model to understand the protective or allergic effect of α-gal. Establishing the source of α-gal in arthropod vectors and the immune response to vector bites and transmitted pathogens will be essential for diagnosing, treating, and ultimately preventing these emerging anaphylactic and other vector-borne diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Los mosquitos (Diptera: Culicidae y su importancia en Venezuela | The mosquitoes (Diptera: Culicidae And their importance in Venezuela

    Directory of Open Access Journals (Sweden)

    Irma Fátima Agrela Da Silva

    2018-01-01

    Full Text Available Mosquitoes are responsible for the transmission of various diseases that affect the health of the Venezuelan population. The increase in the incidence of malaria and the emergence of diseases such as chikungunya and Zika make it necessary to implement control measures to reduce the impact of these diseases in Venezuela. To do this, it is essential to know the aspects related to their morphology, bioecology and the characteristics that make possible the participation of mosquitoes in the transmission of these diseases. The purpose of this review is to describe these aspects.

  20. Artificial Diets for Mosquitoes

    Directory of Open Access Journals (Sweden)

    Kristina K. Gonzales

    2016-12-01

    Full Text Available Mosquito-borne diseases are responsible for more than a million human deaths every year. Modern mosquito control strategies such as sterile insect technique (SIT, release of insects carrying a dominant lethal (RIDL, population replacement strategies (PR, and Wolbachia-based strategies require the rearing of large numbers of mosquitoes in culture for continuous release over an extended period of time. Anautogenous mosquitoes require essential nutrients for egg production, which they obtain through the acquisition and digestion of a protein-rich blood meal. Therefore, mosquito mass production in laboratories and other facilities relies on vertebrate blood from live animal hosts. However, vertebrate blood is expensive to acquire and hard to store for longer times especially under field conditions. This review discusses older and recent studies that were aimed at the development of artificial diets for mosquitoes in order to replace vertebrate blood.

  1. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    Science.gov (United States)

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes

  2. Mosquito-host interactions during and after an outbreak of equine viral encephalitis in Eastern Panama.

    Directory of Open Access Journals (Sweden)

    Wayra G Navia-Gine

    Full Text Available Mosquito blood meals provide information about the feeding habits and host preference of potential arthropod-borne disease vectors. Although mosquito-borne diseases are ubiquitous in the Neotropics, few studies in this region have assessed patterns of mosquito-host interactions, especially during actual disease outbreaks. Based on collections made during and after an outbreak of equine viral encephalitis, we identified the source of 338 blood meals from 10 species of mosquitoes from Aruza Abajo, a location in Darien province in eastern Panama. A PCR based method targeting three distinct mitochondrial targets and subsequent DNA sequencing was used in an effort to delineate vector-host relationships. At Aruza Abajo, large domesticated mammals dominated the assemblage of mosquito blood meals while wild bird and mammal species represented only a small portion of the blood meal pool. Most mosquito species fed on a variety of hosts; foraging index analysis indicates that eight of nine mosquito species utilize hosts at similar proportions while a stochastic model suggests dietary overlap among species was greater than would be expected by chance. The results from our null-model analysis of mosquito diet overlap are consistent with the hypothesis that in landscapes where large domestic animals dominate the local biomass, many mosquito species show little host specificity, and feed upon hosts in proportion to their biomass, which may have implications for the role of livestocking patterns in vector-borne disease ecology.

  3. The effect of recruitment rate and other demographic parameters on the transmission of dengue disease

    Science.gov (United States)

    Supriatna, A. K.; Anggriani, N.

    2015-03-01

    One of important factors which always appears in most of dengue transmission mathematical model is the number of new susceptible recruited into the susceptible compartment. In this paper we discuss the effect of different rates of recruitment on the transmission of dengue disease. We choose a dengue transmission model with the most realistic form of recruitment rate and analyze the effect of environmental change to the transmission of dengue based on the selected model. We model the effect of environmental change by considering that it can alter the value of mosquito's carrying capacity and mosquito's death rate. We found that the most prevalent effect of the environmental change to the transmission of dengue is when it can alter the death rate of the mosquitoes.

  4. Emerging Vector-Borne Diseases - Incidence through Vectors.

    Science.gov (United States)

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples

  5. An Overview of Animal Models for Arthropod-Borne Viruses.

    Science.gov (United States)

    Reynolds, Erin S; Hart, Charles E; Hermance, Meghan E; Brining, Douglas L; Thangamani, Saravanan

    2017-06-01

    Arthropod-borne viruses (arboviruses) have continued to emerge in recent years, posing a significant health threat to millions of people worldwide. The majority of arboviruses that are pathogenic to humans are transmitted by mosquitoes and ticks, but other types of arthropod vectors can also be involved in the transmission of these viruses. To alleviate the health burdens associated with arbovirus infections, it is necessary to focus today's research on disease control and therapeutic strategies. Animal models for arboviruses are valuable experimental tools that can shed light on the pathophysiology of infection and will enable the evaluation of future treatments and vaccine candidates. Ideally an animal model will closely mimic the disease manifestations observed in humans. In this review, we outline the currently available animal models for several viruses vectored by mosquitoes, ticks, and midges, for which there are no standardly available vaccines or therapeutics.

  6. Study of the climatic change impact on vector-borne diseases in West Africa: the case of tick-borne borreliosis and malaria

    International Nuclear Information System (INIS)

    Trape, J.F.

    2005-04-01

    Malaria and tick-borne borreliosis are the two first causes of morbidity due to vector-borne diseases in a large part of Sudan-sahelian West Africa. They are also the two tropical diseases which have been the most affected by climatic change in recent years. In the case of tick-borne borreliosis it has been shown in Senegal that the persistence of drought since the years 70 has been associated with a considerable extension of the geographic range of diseases and the vector tick A-sonrai, a species that was in the past limited to the Sahara and Sahel. In the case of malaria, drought has strongly reduced in these same regions of Africa the distribution, abundance and infection rate of Anopheline mosquitoes, but without any significant reduction of the burden of malaria for most populations concerned. The emergence and spread of Plasmodium falciparum resistance to antimalarial drugs only explain part of this phenomenon. (A.L.B.)

  7. Vector-borne Infections

    Centers for Disease Control (CDC) Podcasts

    2011-04-18

    This podcast discusses emerging vector-borne pathogens, their role as prominent contributors to emerging infectious diseases, how they're spread, and the ineffectiveness of mosquito control methods.  Created: 4/18/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 4/27/2011.

  8. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  9. Terrestrial vegetation and aquatic chemistry influence larval mosquito abundance in catch basins, Chicago, USA

    Directory of Open Access Journals (Sweden)

    Gardner Allison M

    2013-01-01

    Full Text Available Abstract Background An important determinant of mosquito-borne pathogen transmission is the spatial distribution of vectors. The primary vectors of West Nile virus (WNV in Illinois are Culex pipiens Linnaeus (Diptera: Culicidae and Culex restuans Theobald. In urban environments, these mosquitoes commonly oviposit in roadside storm water catch basins. However, use of this habitat is inconsistent, with abundance of larvae varying significantly across catch basins at a fine spatial scale. Methods We tested the hypothesis that attributes of the biotic and abiotic environment contribute to spatial and temporal variation in production of mosquito vectors, characterizing the relationship between terrestrial vegetation and aquatic chemistry and Culex abundance in Chicago, Illinois. Larvae were sampled from 60 catch basins from June 14 to October 3, 2009. Density of shrubs and 14 tree genera surrounding the basins were quantified, as well as aquatic chemistry content of each basin. Results We demonstrate that the spatial pattern of Culex abundance in catch basins is strongly influenced by environmental characteristics, resulting in significant variation across the urban landscape. Using regression and machine learning techniques, we described landscape features and microhabitat characteristics of four Chicago neighborhoods and examined the implications of these measures for larval abundance in adjacent catch basins. The important positive predictors of high larval abundance were aquatic ammonia, nitrates, and area of shrubs of height Culex during the fruit-bearing periods and early senescent periods in August and September. Conclusions This study identifies environmental predictors of mosquito production in urban environments. Because an abundance of adult Culex is integral to efficient WNV transmission and mosquitoes are found in especially high densities near larval habitats, identifying aquatic sites for Culex and landscape features that promote

  10. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission.

    Science.gov (United States)

    Parham, Paul E; Waldock, Joanna; Christophides, George K; Hemming, Deborah; Agusto, Folashade; Evans, Katherine J; Fefferman, Nina; Gaff, Holly; Gumel, Abba; LaDeau, Shannon; Lenhart, Suzanne; Mickens, Ronald E; Naumova, Elena N; Ostfeld, Richard S; Ready, Paul D; Thomas, Matthew B; Velasco-Hernandez, Jorge; Michael, Edwin

    2015-04-05

    Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10-15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector-pathogen systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Reciprocal Trophic Interactions and Transmission of Blood Parasites between Mosquitoes and Frogs

    Directory of Open Access Journals (Sweden)

    Todd G. Smith

    2012-04-01

    Full Text Available The relationship between mosquitoes and their amphibian hosts is a unique, reciprocal trophic interaction. Instead of a one-way, predator-prey relationship, there is a cyclical dance of avoidance and attraction. This has prompted spatial and temporal synchrony between organisms, reflected in emergence time of mosquitoes in the spring and choice of habitat for oviposition. Frog-feeding mosquitoes also possess different sensory apparatuses than do their mammal-feeding counterparts. The reciprocal nature of this relationship is exploited by various blood parasites that use mechanical, salivary or trophic transmission to pass from mosquitoes to frogs. It is important to investigate the involvement of mosquitoes, frogs and parasites in this interaction in order to understand the consequences of anthropogenic actions, such as implementing biocontrol efforts against mosquitoes, and to determine potential causes of the global decline of amphibian species.

  12. Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats

    Science.gov (United States)

    Weetman, David; Shearer, Freya M.; Coulibaly, Mamadou

    2018-01-01

    The Zika crisis drew attention to the long-overlooked problem of arboviruses transmitted by Aedes mosquitoes in Africa. Yellow fever, dengue, chikungunya and Zika are poorly controlled in Africa and often go unrecognized. However, to combat these diseases, both in Africa and worldwide, it is crucial that this situation changes. Here, we review available data on the distribution of each disease in Africa, their Aedes vectors, transmission potential, and challenges and opportunities for Aedes control. Data on disease and vector ranges are sparse, and consequently maps of risk are uncertain. Issues such as genetic and ecological diversity, and opportunities for integration with malaria control, are primarily African; others such as ever-increasing urbanization, insecticide resistance and lack of evidence for most control-interventions reflect problems throughout the tropics. We identify key knowledge gaps and future research areas, and in particular, highlight the need to improve knowledge of the distributions of disease and major vectors, insecticide resistance, and to develop specific plans and capacity for arboviral disease surveillance, prevention and outbreak responses. PMID:29382107

  13. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity

    Science.gov (United States)

    Bando, Hironori; Okado, Kiyoshi; Guelbeogo, Wamdaogo M.; Badolo, Athanase; Aonuma, Hiroka; Nelson, Bryce; Fukumoto, Shinya; Xuan, Xuenan; Sagnon, N'Fale; Kanuka, Hirotaka

    2013-01-01

    A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratia marcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito. PMID:23571408

  14. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes.

    Directory of Open Access Journals (Sweden)

    A Marm Kilpatrick

    2008-06-01

    Full Text Available The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T(4 showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission.

  15. [Biological factors influencing infectious diseases transmitted by invasive species of mosquitoes].

    Science.gov (United States)

    Boštíková, Vanda; Pasdiorová, Markéta; Marek, Jan; Prášil, Petr; Salavec, Miloslav; Sleha, Radek; Střtítecká, Hana; Blažek, Pavel; Hanovcová, Irena; Šošovičková, Renáta; Špliňo, Milan; Smetana, Jan; Chlíbek, Roman; Hytych, Václav; Kuča, Kamil; Boštík, Pavel

    2016-06-01

    Studies focused on arbovirus diseases transmitted by invasive species of mosquitoes have become increasingly significant in recent years, due to the fact that these vectors have successfully migrated to Europe and become established in the region. Mosquitoes, represented by more than 3 200 species, occur naturally worldwide, except in Antarctica. They feed on the blood of warm-blooded animals and by this route, they are capable of transmitting dangerous diseases. Some species can travel a distance of 10 km per night and can fly continuously for up to 4 hours at a speed of 1-2 km/h. Most species are active at night, in the evening or morning. It usually takes a mosquito female about 50 seconds to penetrate the skin of mammals and the subsequent blood meal usually takes about 2.5 minutes. Mosquitoes live for several weeks or months, depending on the environmental conditions. The VectorNet project is a European network of information exchange and sharing of data relating to the geographical distribution of arthropod vectors and transmission of infectious agents between human populations and animals. It aims at the development of strategic plans and vaccination policies which are the main tasks of this time, as well as the development and application of new disinfectants to control vector populations.

  16. Identification of diagnostic peptide regions that distinguish Zika virus from related mosquito-borne Flaviviruses.

    Directory of Open Access Journals (Sweden)

    Alexandra J Lee

    Full Text Available Zika virus (ZIKV is a member of the Flavivirus genus of positive-sense single-stranded RNA viruses, which includes Dengue, West Nile, Yellow Fever, and other mosquito-borne arboviruses. Infection by ZIKV can be difficult to distinguish from infection by other mosquito-borne Flaviviruses due to high sequence similarity, serum antibody cross-reactivity, and virus co-circulation in endemic areas. Indeed, existing serological methods are not able to consistently differentiate ZIKV from other Flaviviruses, which makes it extremely difficult to accurately calculate the incidence rate of Zika-associated Guillain-Barre in adults, microcephaly in newborns, or asymptomatic infections within a geographical area. In order to identify Zika-specific peptide regions that could be used as serology reagents, we have applied comparative genomics and protein structure analyses to identify amino acid residues that distinguish each of 10 Flavivirus species and subtypes from each other by calculating the specificity, sensitivity, and surface exposure of each residue in relevant target proteins. For ZIKV we identified 104 and 116 15-mer peptides in the E glycoprotein and NS1 non-structural protein, respectively, that contain multiple diagnostic sites and are located in surface-exposed regions in the tertiary protein structure. These sensitive, specific, and surface-exposed peptide regions should serve as useful reagents for seroprevalence studies to better distinguish between prior infections with any of these mosquito-borne Flaviviruses. The development of better detection methods and diagnostic tools will enable clinicians and public health workers to more accurately estimate the true incidence rate of asymptomatic infections, neurological syndromes, and birth defects associated with ZIKV infection.

  17. Monitoring the age of mosquito populations using near-infrared spectroscopy

    Science.gov (United States)

    Mosquito control with bednets, residual sprays or fumigation remains the most effective tool for preventing vector-borne diseases such as malaria, dengue and Zika, though there are no widely used entomological methods for directly assessing its efficacy. Mosquito age is the most informative method f...

  18. Emerging tropical diseases in Australia. Part 4. Mosquitoborne diseases

    DEFF Research Database (Denmark)

    van den Hurk, A F; Craig, S B; Tulsiani, Suhella

    2010-01-01

    Mosquito-borne diseases continue to be a serious public-health concern in Australia. Endemic alphaviruses (including Ross River and Barmah Forest viruses) account for the majority of the arboviral notifications, while some flaviviruses (Murray Valley encephalitis, Japanese encephalitis and Kunjin...... the trends, threats and challenges that face the management of mosquito-borne disease in Australia. Topical mosquito-borne pathogens of biosecurity and public-health concern, and the potential impacts of environmental and global trends, are discussed. Finally, a short overview of the public-health response...

  19. An Annotated Bibliography of the Mosquitoes and Mosquito-Borne Diseases of Guam (Diptera: Culicidae)

    Science.gov (United States)

    1976-01-01

    of elephantiasis , with 83 Americans and 28 natives admitted during the year with dengue fever, No cases of malaria were known to have originated on...group, p. 109. Mosquito Systematics Vol. 8(4) 1976 -3e *South Pacific Conmission. 1951. Conference of experts on filariasis and elephantiasis . So

  20. The bionomics of the malaria mosquito Anopheles gambiae sensu lato in Southeast Tanzania : adult size variation and its effect on female fecundity, survival and malaria transmission

    NARCIS (Netherlands)

    Lyimo, E.O.K.

    1993-01-01

    Size of adult mosquitoes is known to affect both population dynamics as well as disease transmission. Studies devoted to this topic have given different results for different species. For example in some mosquito species, large size was found to be associated with high fecundity and longer

  1. The first detected airline introductions of yellow fever mosquitoes (Aedes aegypti) to Europe, at Schiphol International airport, the Netherlands.

    Science.gov (United States)

    Ibañez-Justicia, A; Gloria-Soria, A; den Hartog, W; Dik, M; Jacobs, F; Stroo, A

    2017-12-08

    Air-borne introduction of exotic mosquitoes to Schiphol airport in the Netherlands has been considered plausible based upon findings of mosquitoes in aircraft cabins during 2008, 2010 and 2011. Beginning in 2013, surveillance efforts at Schiphol had focused on promptly detecting accidental introductions at the airport facilities in order to quickly react and avoid temporary proliferation or establishment of mosquito populations, identify the origin of the introductions, and avoid potential transmission of vector-borne diseases. BG-Mosquitaire mosquito traps were set at the most likely locations for arrival of the invasive Aedes mosquitoes as part of the mosquito monitoring program at Schiphol airport. Samples were collected bi-weekly. Upon detection of exotic specimens, information about the origin of the flights arriving to the particular location at the airport where specimens were captured was requested from airport authorities. The GIS tool Intersect was then used to identify airports of origin common to positive trapping locations during the specific trapping period. Captured Aedes aegypti mosquitoes were subsequently genotyped at 12 highly polymorphic microsatellite markers and compared to a reference database of 79 populations around the world to further narrow down their location of origin. In 2016, six adult yellow fever mosquitoes were captured indoors and outdoors at the airport of Schiphol in the Netherlands confirming, for the first time, air-borne transport of this mosquito vector species into Europe. Mosquitoes were captured during three time periods: June, September and October. Containers carried by aircrafts are considered the most likely pathway for this introduction. GIS analysis and genetic assignment tests on these mosquitoes point to North America or the Middle East as possible origins, but the small sample size prevents us from reliably identifying the geographic origin of this introduction. The arrival of Ae. aegypti mosquitoes to Schiphol

  2. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Directory of Open Access Journals (Sweden)

    Satya Kalluri

    2007-10-01

    Full Text Available Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  3. Operational Mosquito and Vector-Borne Diseases Surveillance at Incirlik Air Base, Turkey

    Science.gov (United States)

    2017-05-23

    of Biological Diversity , Columbus, OH, or the - cies and tested for arboviruses. Pools ranged from 1-25 mosquitoes depending on submission numbers...Rickettsia felis (Rickett- - phonaptera: Pulicidae) in the Philippines . J Ento- mol Sci. 2012;47:95-96. Mosquito surveillance data from Incirlik Air Base...Taylor SJ, Durden LA, Foley EH, Reeves WK. The bat tick Carios azteci (Acari: Argasidae) from Be- lize, with an endosymbiotic Coxiellaceae. Speleo

  4. An antivector vaccine protects against a lethal vector-borne pathogen.

    Directory of Open Access Journals (Sweden)

    Milan Labuda

    2006-04-01

    Full Text Available Vaccines that target blood-feeding disease vectors, such as mosquitoes and ticks, have the potential to protect against the many diseases caused by vector-borne pathogens. We tested the ability of an anti-tick vaccine derived from a tick cement protein (64TRP of Rhipicephalus appendiculatus to protect mice against tick-borne encephalitis virus (TBEV transmitted by infected Ixodes ricinus ticks. The vaccine has a "dual action" in immunized animals: when infested with ticks, the inflammatory and immune responses first disrupt the skin feeding site, resulting in impaired blood feeding, and then specific anti-64TRP antibodies cross-react with midgut antigenic epitopes, causing rupture of the tick midgut and death of engorged ticks. Three parameters were measured: "transmission," number of uninfected nymphal ticks that became infected when cofeeding with an infected adult female tick; "support," number of mice supporting virus transmission from the infected tick to cofeeding uninfected nymphs; and "survival," number of mice that survived infection by tick bite and subsequent challenge by intraperitoneal inoculation of a lethal dose of TBEV. We show that one dose of the 64TRP vaccine protects mice against lethal challenge by infected ticks; control animals developed a fatal viral encephalitis. The protective effect of the 64TRP vaccine was comparable to that of a single dose of a commercial TBEV vaccine, while the transmission-blocking effect of 64TRP was better than that of the antiviral vaccine in reducing the number of animals supporting virus transmission. By contrast, the commercial antitick vaccine (TickGARD that targets only the tick's midgut showed transmission-blocking activity but was not protective. The 64TRP vaccine demonstrates the potential to control vector-borne disease by interfering with pathogen transmission, apparently by mediating a local cutaneous inflammatory immune response at the tick-feeding site.

  5. Analysis of a Malaria Model with Mosquito-Dependent Transmission ...

    Indian Academy of Sciences (India)

    In this paper, we discuss an ordinary differential equation mathematical model for the spread of malaria in human and mosquito population. We suppose the human population to act as a reservoir. Both the species follow a logistic population model. The transmission coefficient or the interaction coefficient of humans is ...

  6. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands.

    Directory of Open Access Journals (Sweden)

    David Roiz

    Full Text Available Environment determines the distribution of mosquito-borne diseases in that it influences the vector-host-pathogen transmission cycle, including vector distribution, abundance and diversity. In this study, we analyse the relationship between environmental variables estimated by remote sensing and the spatial distribution (presence, abundance and diversity of seven mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofilariasis in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fishponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000 metres from corrected and normalized Landsat Images. We sampled 972,346 female mosquitoes, the most abundant species being Culex theileri, Ochlerotatus caspius, Culex modestus, Culex perexiguus, Culex pipiens, Anopheles atroparvus and Ochlerotatus detritus. Our results suggest that: (1 hydroperiod, inundation surface and NDVI are strongly related to the spatial distribution of mosquitoes; (2 the spatial scales used to measure these variables affected quantification of these relationships, the larger scale being more informative; (3 these relationships are species-specific; (4 hydroperiod is negatively related to mosquito presence and richness; (5 Culex abundance is positively related to hydroperiod; (6 NDVI is positively related to mosquito diversity, presence and abundance, except in the case of the two salt marsh species (Oc. caspius and Oc. detritus; and (7 inundation surfaces positively condition the abundance and richness of most species except the salt marsh mosquitoes. Remote sensing data provided reliable information for monitoring mosquito

  7. Chikungunya Virus Infection of Aedes Mosquitoes.

    Science.gov (United States)

    Wong, Hui Vern; Chan, Yoke Fun; Sam, I-Ching; Sulaiman, Wan Yusof Wan; Vythilingam, Indra

    2016-01-01

    In vivo infection of mosquitoes is an important method to study and characterize arthropod-borne viruses. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is transmitted primarily by Aedes mosquitoes. In this chapter, we describe a protocol for infection of CHIKV in two species of Aedes mosquitoes, Aedes aegypti and Aedes albopictus, together with the isolation of CHIKV in different parts of the infected mosquito such as midgut, legs, wings, salivary gland, head, and saliva. This allows the study of viral infection, replication and dissemination within the mosquito vector.

  8. Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595, lower survival rates (0.72 vs. 0.93, and prolonged gonotrophic cycles (3.33 vs. 2.36 days. The estimated number of females older than the extrinsic incubation period of malaria (10 days in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73% than in the sugar-poor site (48%. In contrast, plant tissue feeding (poor quality sugar source in the sugar-rich habitat was much less (0.3% than in the sugar-poor site (30%. More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens.

  9. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Science.gov (United States)

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  10. MIRO and IRbase: IT Tools for the Epidemiological Monitoring of Insecticide Resistance in Mosquito Disease Vectors

    Science.gov (United States)

    Dialynas, Emmanuel; Topalis, Pantelis; Vontas, John; Louis, Christos

    2009-01-01

    Background Monitoring of insect vector populations with respect to their susceptibility to one or more insecticides is a crucial element of the strategies used for the control of arthropod-borne diseases. This management task can nowadays be achieved more efficiently when assisted by IT (Information Technology) tools, ranging from modern integrated databases to GIS (Geographic Information System). Here we describe an application ontology that we developed de novo, and a specially designed database that, based on this ontology, can be used for the purpose of controlling mosquitoes and, thus, the diseases that they transmit. Methodology/Principal Findings The ontology, named MIRO for Mosquito Insecticide Resistance Ontology, developed using the OBO-Edit software, describes all pertinent aspects of insecticide resistance, including specific methodology and mode of action. MIRO, then, forms the basis for the design and development of a dedicated database, IRbase, constructed using open source software, which can be used to retrieve data on mosquito populations in a temporally and spatially separate way, as well as to map the output using a Google Earth interface. The dependency of the database on the MIRO allows for a rational and efficient hierarchical search possibility. Conclusions/Significance The fact that the MIRO complies with the rules set forward by the OBO (Open Biomedical Ontologies) Foundry introduces cross-referencing with other biomedical ontologies and, thus, both MIRO and IRbase are suitable as parts of future comprehensive surveillance tools and decision support systems that will be used for the control of vector-borne diseases. MIRO is downloadable from and IRbase is accessible at VectorBase, the NIAID-sponsored open access database for arthropod vectors of disease. PMID:19547750

  11. Emerging vector borne diseases – incidence through vectors

    Directory of Open Access Journals (Sweden)

    Sara eSavic

    2014-12-01

    Full Text Available Vector borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowdays, in intercontinetal countries, there is a struggle with emerging diseases which have found their way to appear through vectors. Vector borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector borne infectious diseases and disease outbreaks. It could affect the range and popultion of pathogens, host and vectors, transmission season, etc. Reliable surveilance for diseases that are most likely to emerge is required. Canine vector borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, erlichiosis, leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fudamental role at primeraly prevention and then treatment of vector borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases.During a four year period, from 2009-2013, a total number of 551 dog samples were analysed for vector borne diseases (borreliosis, babesiosis, erlichiosis, anaplasmosis, dirofilariosis and leishmaniasis in routine laboratory work. The analysis were done by serological tests – ELISA for borreliosis, dirofilariosis and leishmaniasis, modified Knott test for dirofilariosis and blood smear for babesiosis, erlichiosis and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on avarege more then half of the samples

  12. Simplified models of vector control impact upon malaria transmission by zoophagic mosquitoes.

    Directory of Open Access Journals (Sweden)

    Samson S Kiware

    Full Text Available BACKGROUND: High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as "very zoophagic," meaning they feed occasionally (<10% of blood meals upon humans, so personal protection interventions have negligible impact upon their survival. METHODS AND FINDINGS: We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index. The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1 Rely on only three field-measurable parameters. (2 Predict immediate and delayed (with and without assuming reduced human infectivity, respectively impacts of personal protection measures upon transmission. (3 Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4 Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user's direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80% are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. CONCLUSIONS: Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact

  13. “Looking over the Backyard Fence”: Householders and Mosquito Control

    Directory of Open Access Journals (Sweden)

    Samir Mainali

    2017-03-01

    Full Text Available (1 Background: Vector-borne diseases are a significant public health problem in Western Australia. Mosquitoes are responsible for the transmission of a number of pathogens and may pose a serious nuisance problem. Prevention efforts in the State are multi-faceted and include physical, chemical, and cultural control methods for restricting mosquito breeding. This is less complex where breeding areas are located within public open spaces. In Australia’s developed urban areas, breeding sites are, however, frequently located within private residential landholdings, where the scope of public health officials to act is constrained by law and practicality. Consequently, mosquito prevention in these locations is predominantly the responsibility of the residents. This research addressed a gap, both in understanding the degree to which “backyard” mosquito breeding has the potential to contribute to local mosquito problems, and in assessing what residents “think and do” about mosquito control within their home environment. (2 Methods: The study was conducted in the Town of Bassendean, a metropolitan Local Government Area of Perth, Western Australia, in close proximity to two natural, productive mosquito breeding sites, namely Ashfield Flats and Bindaring Park. A total of 150 householders were randomly surveyed during the summer of 2015–2016, to gauge residents’ knowledge, attitudes, and practices (KAP (knowledge, attitudes, and practices Survey in regards to mosquitoes, their breeding and ecology, and avoidance or minimization strategies. The survey comprised nine questions covering residents’ knowledge (3 questions, attitudes (3 questions, and practices (3 questions, as well as additional questions regarding the basic demographics of the resident. Larvae were collected from backyard containers and reared to adults for species identification. A series of Encephalitis Vector Surveillance carbon dioxide (EVS CO2 traps were also deployed, to

  14. [Tick-borne diseases].

    Science.gov (United States)

    Tissot Dupont, H; Raoult, D

    1993-05-01

    Due to their worldwide distribution, from hottest to coldest climates, and due to their behaviour, ticks are capable of transmitting numerous human and animal bacterial viral or parasitous diseases. Depending on the disease, they play the role of biological vector or intermediate host. In France, six tick borne diseases are of epidemiologic importance. Q fever (not often tick-borne), Mediterranean Spotted Fever, Lyme disease, Turalemia (human and animal), Babesiosis and Tick-borne Viral Encephalitis.

  15. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system

    Science.gov (United States)

    Alternative methods of mosquito control are needed to tackle the rising burden of mosquito-borne diseases while minimizing the use of synthetic insecticides which are not only harmful to the environment but also are increasingly threatened by the rapid and widespread development of insecticide resis...

  16. Perception and personal protective measures toward mosquito bites by communities in Jaffna District, northern Sri Lanka.

    Science.gov (United States)

    Surendran, S N; Kajatheepan, A

    2007-06-01

    Mosquito-borne diseases are of public health importance in war-torn northern Sri Lanka. The severity of mosquito bites and attitudes of the public toward mosquito problems were investigated using a structured questionnaire among communities in 3 administrative divisions in Jaffna District. One hundred fifty-four households were interviewed during this study. Sixty-four percent of the respondents reported that the mosquito problem was severe in their localities. Fifty-two percent stated that mosquito-biting activity was severe in the evening (1500 h-1900 h), 41% at night (after 1900 h), and 7% throughout the day. Severity of mosquito menace was found to have no association with type of house construction. Seventy-seven percent were able to name at least 1 disease transmitted by mosquitoes. Statistical analysis showed no association between education level and public awareness on mosquito-borne diseases. Nearly 88% were able to identify at least a breeding source of mosquitoes and most of them practice measures to eliminate suitable environments for mosquito breeding. Ninety-six percent used personal protective measures against mosquito bites during some seasons or throughout the year. Mosquito coils were the most commonly used personal protective method followed by bed nets. The monthly expenditure for personal protective measures varied from US$0.19 (LKR 20) to US$3.40 (LKR 350).

  17. Transmission dynamics of the recently-identified BYD virus causing duck egg-drop syndrome.

    Directory of Open Access Journals (Sweden)

    Naveen K Vaidya

    Full Text Available Baiyangdian (BYD virus is a recently-identified mosquito-borne flavivirus that causes severe disease in ducks, with extremely rapid transmission, up to 15% mortality within 10 days and 90% reduction in egg production on duck farms within 5 days of infection. Because of the zoonotic nature of flaviviruses, the characterization of BYD virus and its epidemiology are important public health concerns. Here, we develop a mathematical model for the transmission dynamics of this novel virus. We validate the model against BYD outbreak data collected from duck farms in Southeast China, as well as experimental data obtained from an animal facility. Based on our model, the basic reproductive number of BYD virus is high (R(0 = 21 indicating that this virus is highly transmissible, consistent with the dramatic epidemiology observed in BYDV-affected duck farms. Our results indicate that younger ducks are more vulnerable to BYD disease and that ducks infected with BYD virus reduce egg production (to about 33% on average for about 3 days post-infection; after 3 days infected ducks are no longer able to produce eggs. Using our model, we predict that control measures which reduce contact between mosquitoes and ducks such as mosquito nets are more effective than insecticides.

  18. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    2014-08-01

    Full Text Available Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.

  19. Surge of Dengue Virus Infection and Chikungunya Fever in Bali in 2010: The Burden of Mosquito-Borne Infectious Diseases in a Tourist Destination

    Science.gov (United States)

    Yoshikawa, Minako Jen; Kusriastuti, Rita

    2013-01-01

    Labor flow and travelers are important factors contributing to the spread of Dengue virus infection and chikungunya fever. Bali Province of Indonesia, a popular resort and tourist destination, has these factors and suffers from mosquito-borne infectious diseases. Using area study approach, a series of fieldwork was conducted in Bali to obtain up-to-date primary disease data, to learn more about public health measures, and to interview health officers, hotel personnel, and other resource persons. The national data including information on two other provinces were obtained for comparison. The health ministry reported 5,810 and 11,697 cases of dengue hemorrhagic fever in Bali in 2009 and 2010, respectively. Moreover, two densely populated tourist areas and one district have shown a particularly high incidence and sharp increases in 2010. Cases of chikungunya fever reported in Bali more than doubled in 2010 from the previous year. Our findings suggest that Bali can benefit from a significant reduction in vector populations and dissemination of disease preventive knowledge among both local residents and foreign visitors. This will require a concerted and trans-border approach, which may prove difficult in the province. PMID:23874141

  20. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease

    Science.gov (United States)

    Crompton, Peter D.; Moebius, Jacqueline; Portugal, Silvia; Waisberg, Michael; Hart, Geoffrey; Garver, Lindsey S.; Miller, Louis H.; Barillas, Carolina; Pierce, Susan K.

    2014-01-01

    Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa family, the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world’s most vulnerable populations, claiming the lives of nearly a million children and pregnant women each year in Africa alone. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite’s complex life cycle with a view towards developing the tools that will contribute to the prevention of disease and death and ultimately the goal of malaria eradication. In so doing we hope to inspire immunologists to participate in defeating this devastating disease. PMID:24655294

  1. Mosquito-borne viruses in Europe

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk

    2008-01-01

    Roč. 103, Suppl. 1 (2008), S29-S43 ISSN 0932-0113. [Vector-borne diseases: impact of climate change on vectors and rodent reservoirs. Berlin, 27.09.2007-28.09.2007] R&D Projects: GA AV ČR IAA600930611 Institutional research plan: CEZ:AV0Z60930519 Keywords : moboviruses * epidemiology Subject RIV: EE - Microbiology, Virology Impact factor: 1.473, year: 2008

  2. Transmission-Blocking Antibodies against Mosquito C-Type Lectins for Dengue Prevention

    Science.gov (United States)

    Liu, Yang; Zhang, Fuchun; Liu, Jianying; Xiao, Xiaoping; Zhang, Siyin; Qin, Chengfeng; Xiang, Ye; Wang, Penghua; Cheng, Gong

    2014-01-01

    C-type lectins are a family of proteins with carbohydrate-binding activity. Several C-type lectins in mammals or arthropods are employed as receptors or attachment factors to facilitate flavivirus invasion. We previously identified a C-type lectin in Aedes aegypti, designated as mosquito galactose specific C-type lectin-1 (mosGCTL-1), facilitating the attachment of West Nile virus (WNV) on the cell membrane. Here, we first identified that 9 A. aegypti mosGCTL genes were key susceptibility factors facilitating DENV-2 infection, of which mosGCTL-3 exhibited the most significant effect. We found that mosGCTL-3 was induced in mosquito tissues with DENV-2 infection, and that the protein interacted with DENV-2 surface envelop (E) protein and virions in vitro and in vivo. In addition, the other identified mosGCTLs interacted with the DENV-2 E protein, indicating that DENV may employ multiple mosGCTLs as ligands to promote the infection of vectors. The vectorial susceptibility factors that facilitate pathogen invasion may potentially be explored as a target to disrupt the acquisition of microbes from the vertebrate host. Indeed, membrane blood feeding of antisera against mosGCTLs dramatically reduced mosquito infective ratio. Hence, the immunization against mosGCTLs is a feasible approach for preventing dengue infection. Our study provides a future avenue for developing a transmission-blocking vaccine that interrupts the life cycle of dengue virus and reduces disease burden. PMID:24550728

  3. Urbanization, land tenure security and vector-borne Chagas disease

    Science.gov (United States)

    Levy, Michael Z.; Barbu, Corentin M.; Castillo-Neyra, Ricardo; Quispe-Machaca, Victor R.; Ancca-Juarez, Jenny; Escalante-Mejia, Patricia; Borrini-Mayori, Katty; Niemierko, Malwina; Mabud, Tarub S.; Behrman, Jere R.; Naquira-Velarde, Cesar

    2014-01-01

    Modern cities represent one of the fastest growing ecosystems on the planet. Urbanization occurs in stages; each stage characterized by a distinct habitat that may be more or less susceptible to the establishment of disease vector populations and the transmission of vector-borne pathogens. We performed longitudinal entomological and epidemiological surveys in households along a 1900 × 125 m transect of Arequipa, Peru, a major city of nearly one million inhabitants, in which the transmission of Trypanosoma cruzi, the aetiological agent of Chagas disease, by the insect vector Triatoma infestans, is an ongoing problem. The transect spans a cline of urban development from established communities to land invasions. We find that the vector is tracking the development of the city, and the parasite, in turn, is tracking the dispersal of the vector. New urbanizations are free of vector infestation for decades. T. cruzi transmission is very recent and concentrated in more established communities. The increase in land tenure security during the course of urbanization, if not accompanied by reasonable and enforceable zoning codes, initiates an influx of construction materials, people and animals that creates fertile conditions for epidemics of some vector-borne diseases. PMID:24990681

  4. Resource Limitation, Controphic Ostracod Density and Larval Mosquito Development.

    Directory of Open Access Journals (Sweden)

    Raylea Rowbottom

    Full Text Available Aquatic environments can be restricted with the amount of available food resources especially with changes to both abiotic and biotic conditions. Mosquito larvae, in particular, are sensitive to changes in food resources. Resource limitation through inter-, and intra-specific competition among mosquitoes are known to affect both their development and survival. However, much less is understood about the effects of non-culicid controphic competitors (species that share the same trophic level. To address this knowledge gap, we investigated and compared mosquito larval development, survival and adult size in two experiments, one with different densities of non-culicid controphic conditions and the other with altered resource conditions. We used Aedes camptorhynchus, a salt marsh breeding mosquito and a prominent vector for Ross River virus in Australia. Aedes camptorhynchus usually has few competitors due to its halo-tolerance and distribution in salt marshes. However, sympatric ostracod micro-crustaceans often co-occur within these salt marshes and can be found in dense populations, with field evidence suggesting exploitative competition for resources. Our experiments demonstrate resource limiting conditions caused significant increases in mosquito developmental times, decreased adult survival and decreased adult size. Overall, non-culicid exploitation experiments showed little effect on larval development and survival, but similar effects on adult size. We suggest that the alterations of adult traits owing to non-culicid controphic competition has potential to extend to vector-borne disease transmission.

  5. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases

    Czech Academy of Sciences Publication Activity Database

    Weissenböck, H.; Hubálek, Zdeněk; Bakonyi, T.; Nowotny, N.

    2010-01-01

    Roč. 140, 3-4 (2010), s. 271-280 ISSN 0378-1135 Institutional research plan: CEZ:AV0Z60930519 Keywords : Flaviviridae * mosquitoes * Culicidae * zoonoses * arboviruses Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 3.256, year: 2010

  6. Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense

    NARCIS (Netherlands)

    Halbach, R.; Junglen, S.; Rij, R.P. van

    2017-01-01

    Recent virus discovery programs have identified an extensive reservoir of viruses in arthropods. It is thought that arthropod viruses, including mosquito-specific viruses, are ancestral to vertebrate-pathogenic arboviruses. Mosquito-specific viruses are restricted in vertebrate cells at multiple

  7. Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector

    Science.gov (United States)

    Bäckman, Stina; Näslund, Jonas; Forsman, Mats; Thelaus, Johanna

    2015-01-01

    Mosquitoes are thought to function as mechanical vectors of Francisella tularensis subspecies holarctica (F. t. holarctica) causing tularemia in humans. We investigated the clinical relevance of transstadially maintained F. t. holarctica in mosquitoes. Aedes egypti larvae exposed to a fully virulent F. t. holarctica strain for 24 hours, were allowed to develop into adults when they were individually homogenized. Approximately 24% of the homogenates tested positive for F. t. DNA in PCR. Mice injected with the mosquito homogenates acquired tularemia within 5 days. This novel finding demonstrates the possibility of transmission of bacteria by adult mosquitoes having acquired the pathogen from their aquatic larval habitats.

  8. Detection of the Invasive Mosquito Species Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Portugal

    Science.gov (United States)

    Osório, Hugo Costa; Zé-Zé, Líbia; Neto, Maria; Silva, Sílvia; Marques, Fátima; Silva, Ana Sofia; Alves, Maria João

    2018-01-01

    The Asian tiger mosquito Aedes albopictus is an invasive mosquito originating from the Asia-Pacific region. This species is of major concern to public and veterinary health because of its vector role in the transmission of several pathogens, such as chikungunya, dengue, and Zika viruses. In Portugal, a National Vector Surveillance Network (REde de VIgilância de VEctores—REVIVE) is responsible for the surveillance of autochthonous, but also invasive, mosquito species at points of entry, such as airports, ports, storage areas, and specific border regions with Spain. At these locations, networks of mosquito traps are set and maintained under surveillance throughout the year. In September 2017, Ae. albopictus was detected for the first time in a tyre company located in the North of Portugal. Molecular typing was performed, and a preliminary phylogenetic analysis indicated a high similarity with sequences of Ae. albopictus collected in Europe. A prompt surveillance response was locally implemented to determine its dispersal and abundance, and adult mosquitoes were screened for the presence of arboviral RNA. A total of 103 specimens, 52 immatures and 51 adults, were collected. No pathogenic viruses were detected. Despite the obtained results suggest low abundance of the population locally introduced, the risk of dispersal and potential establishment of Ae. albopictus in Portugal has raised concern for autochthonous mosquito-borne disease outbreaks. PMID:29690531

  9. Detection of the Invasive Mosquito Species Aedes (Stegomyia albopictus (Diptera: Culicidae in Portugal

    Directory of Open Access Journals (Sweden)

    Hugo Costa Osório

    2018-04-01

    Full Text Available The Asian tiger mosquito Aedes albopictus is an invasive mosquito originating from the Asia-Pacific region. This species is of major concern to public and veterinary health because of its vector role in the transmission of several pathogens, such as chikungunya, dengue, and Zika viruses. In Portugal, a National Vector Surveillance Network (REde de VIgilância de VEctores—REVIVE is responsible for the surveillance of autochthonous, but also invasive, mosquito species at points of entry, such as airports, ports, storage areas, and specific border regions with Spain. At these locations, networks of mosquito traps are set and maintained under surveillance throughout the year. In September 2017, Ae. albopictus was detected for the first time in a tyre company located in the North of Portugal. Molecular typing was performed, and a preliminary phylogenetic analysis indicated a high similarity with sequences of Ae. albopictus collected in Europe. A prompt surveillance response was locally implemented to determine its dispersal and abundance, and adult mosquitoes were screened for the presence of arboviral RNA. A total of 103 specimens, 52 immatures and 51 adults, were collected. No pathogenic viruses were detected. Despite the obtained results suggest low abundance of the population locally introduced, the risk of dispersal and potential establishment of Ae. albopictus in Portugal has raised concern for autochthonous mosquito-borne disease outbreaks.

  10. Outbreaks of Tularemia in a Boreal Forest Region Depends on Mosquito Prevalence

    Science.gov (United States)

    Rydén, Patrik; Björk, Rafael; Schäfer, Martina L.; Lundström, Jan O.; Petersén, Bodil; Lindblom, Anders; Forsman, Mats; Sjöstedt, Anders

    2012-01-01

    Background. We aimed to evaluate the potential association of mosquito prevalence in a boreal forest area with transmission of the bacterial disease tularemia to humans, and model the annual variation of disease using local weather data. Methods. A prediction model for mosquito abundance was built using weather and mosquito catch data. Then a negative binomial regression model based on the predicted mosquito abundance and local weather data was built to predict annual numbers of humans contracting tularemia in Dalarna County, Sweden. Results. Three hundred seventy humans were diagnosed with tularemia between 1981 and 2007, 94% of them during 7 summer outbreaks. Disease transmission was concentrated along rivers in the area. The predicted mosquito abundance was correlated (0.41, P tularemia (temporal correlation, 0.76; P tularemia in a tularemia-endemic boreal forest area of Sweden and that environmental variables can be used as risk indicators. PMID:22124130

  11. A quantitative risk assessment approach for mosquito-borne diseases: malaria re-emergence in southern France

    Directory of Open Access Journals (Sweden)

    Luty Adrian JF

    2008-08-01

    Full Text Available Abstract Background The Camargue region is a former malaria endemic area, where potential Anopheles vectors are still abundant. Considering the importation of Plasmodium due to the high number of imported malaria cases in France, the aim of this article was to make some predictions regarding the risk of malaria re-emergence in the Camargue. Methods Receptivity (vectorial capacity and infectivity (vector susceptibility were inferred using an innovative probabilistic approach and considering both Plasmodium falciparum and Plasmodium vivax. Each parameter of receptivity (human biting rate, anthropophily, length of trophogonic cycle, survival rate, length of sporogonic cycle and infectivity were estimated based on field survey, bibliographic data and expert knowledge and fitted with probability distributions taking into account the variability and the uncertainty of the estimation. Spatial and temporal variations of the parameters were determined using environmental factors derived from satellite imagery, meteorological data and entomological field data. The entomological risk (receptivity/infectivity was calculated using 10,000 different randomly selected sets of values extracted from the probability distributions. The result was mapped in the Camargue area. Finally, vulnerability (number of malaria imported cases was inferred using data collected in regional hospitals. Results The entomological risk presented large spatial, temporal and Plasmodium species-dependent variations. The sensitivity analysis showed that susceptibility, survival rate and human biting rate were the three most influential parameters for entomological risk. Assessment of vulnerability showed that among the imported cases in the region, only very few were imported in at-risk areas. Conclusion The current risk of malaria re-emergence seems negligible due to the very low number of imported Plasmodium. This model demonstrated its efficiency for mosquito-borne diseases risk

  12. The Epidemiology, Clinical Characteristic,Transmission Potential and Control Measures of Zika Virus Infection%The Epidemiology,Clinical Characteristic,Transmission Potential and Control Measures of Zika Virus Infection

    Institute of Scientific and Technical Information of China (English)

    ALOTAIBIABDULLAHSAUDM; ALANAZIMANSOURRASHEDM; AHMADMEESAQ

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito born positive standard RNA arbovirus of Flaviviriadae family.Zika virus has been identified sporadically in human in Africa and Asia;however,clinically consequential Zika virus disease had not been documented before to the recent outbreak in the America in 2015.It is rapidly spread across the America and its devastating outcomes for pregnant women and infants.Prior to outbreak of America,Zika virus outbreaks occurred in Yap Island in Micronesia in 2007 and in French Polynesia in 2013.The World Health Organisation (WHO) declarer a Public Health Emergency of International Concern on February 1,2016.Because of the continuous geographicexpansion of both the virus and its mosquito vectors,ZIKV poses a serious threat to public health aroundthe globe.This review summarizes a fast growing body of literature on the history,epidemiology,transmission,clinical presentation and control measures to prevent the transmission of Zika virus.

  13. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?

    Science.gov (United States)

    Macias, Vanessa M; Ohm, Johanna R; Rasgon, Jason L

    2017-09-02

    Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.

  14. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

    OpenAIRE

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-01-01

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementat...

  15. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.

    Science.gov (United States)

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-02-19

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

  16. Fauna and Larval Habitats of Mosquitoes (Diptera: Culicidae of West Azerbaijan Province, Northwestern Iran.

    Directory of Open Access Journals (Sweden)

    Farahnaz Khoshdel-Nezamiha

    2014-12-01

    Full Text Available Several important diseases are transmitted by mosquitoes. Despite of the potential of the occurrence of some mosquito-borne diseases such as West Nile, dirofilariasis and malaria in the region, there is no recent study of mosquitoes in West Azerbaijan Province. The aim of this investigation was to study the fauna, composition and distribution of mosquitoes and the characteristics of their larval habitats in this province.Larvae and adult collections were carried out from different habitats using the standard methods in twenty five localities of seven counties across West Azerbaijan Province.Overall, 1569 mosquitoes including 1336 larvae and 233 adults were collected from 25 localities. The details of geographical properties were recorded. Five genera along with 12 species were collected and identified including: Anopheles claviger, An. maculipennis s.l., An. superpictus, Culex pipiens, Cx. theileri, Cx. modestus, Cx. hortensis, Cx. mimeticus, Culiseta Longiareolata, Ochlerotatus caspius s.l., Oc. geniculatus and Uranotaenia unguiculata. This is the first record of Oc. geniculatus in the province.Due to the geographical location of the West Azerbaijan Province, it comprises different climatic condition which provides suitable environment for the establishment of various species of mosquitoes. The solidarity geographical, cultural and territorial exchanges complicate the situation of the province and its vectors as a threat for future and probable epidemics of mosquito-borne diseases.

  17. Mosquito ovicidal properties of Ageratina adenophora (Family: Asteraceae) against filariasis vector, Culex quinquefasciatus (Diptera: Culicidae)

    Science.gov (United States)

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternativ...

  18. Study of the climatic change impact on vector-borne diseases in West Africa: the case of tick-borne borreliosis and malaria; Etude de l'impact du changement climatique sur les maladies a transmission vectorielle en Afrique de l'Ouest: le cas de la borreliose a tiques et du paludisme

    Energy Technology Data Exchange (ETDEWEB)

    Trape, J.F

    2005-04-15

    Malaria and tick-borne borreliosis are the two first causes of morbidity due to vector-borne diseases in a large part of Sudan-sahelian West Africa. They are also the two tropical diseases which have been the most affected by climatic change in recent years. In the case of tick-borne borreliosis it has been shown in Senegal that the persistence of drought since the years 70 has been associated with a considerable extension of the geographic range of diseases and the vector tick A-sonrai, a species that was in the past limited to the Sahara and Sahel. In the case of malaria, drought has strongly reduced in these same regions of Africa the distribution, abundance and infection rate of Anopheline mosquitoes, but without any significant reduction of the burden of malaria for most populations concerned. The emergence and spread of Plasmodium falciparum resistance to antimalarial drugs only explain part of this phenomenon. (A.L.B.)

  19. Biological Control Strategies for Mosquito Vectors of Arboviruses.

    Science.gov (United States)

    Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L

    2017-02-10

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  20. Tick-borne disease.

    Science.gov (United States)

    Bratton, Robert L; Corey, Ralph

    2005-06-15

    Tick-borne diseases in the United States include Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, tularemia, babesiosis, Colorado tick fever, and relapsing fever. It is important for family physicians to consider these illnesses when patients present with influenza-like symptoms. A petechial rash initially affecting the palms and soles of the feet is associated with Rocky Mountain spotted fever, whereas erythema migrans (annular macule with central clearing) is associated with Lyme disease. Various other rashes or skin lesions accompanied by fever and influenza-like illness also may signal the presence of a tick-borne disease. Early, accurate diagnosis allows treatment that may help prevent significant morbidity and possible mortality. Because 24 to 48 hours of attachment to the host are required for infection to occur, early removal can help prevent disease. Treatment with doxycycline or tetracycline is indicated for Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, and relapsing fever. In patients with clinical findings suggestive of tick-borne disease, treatment should not be delayed for laboratory confirmation. If no symptoms follow exposure to tick bites, empiric treatment is not indicated. The same tick may harbor different infectious pathogens and transmit several with one bite. Advising patients about prevention of tick bites, especially in the summer months, may help prevent exposure to dangerous vector-borne diseases.

  1. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental

  2. Pond dyes are Culex mosquito oviposition attractants

    Directory of Open Access Journals (Sweden)

    Natali Ortiz Perea

    2017-05-01

    Full Text Available Background British mosquito population distribution, abundance, species composition and potential for mosquito disease transmission are intimately linked to the physical environment. The presence of ponds and water storage can significantly increase the density of particular mosquito species in the garden. Culex pipiens is the mosquito most commonly found in UK gardens and a potential vector of West Nile Virus WNV, although the current risk of transmission is low. However any factors that significantly change the distribution and population of C. pipiens are likely to impact subsequent risk of disease transmission. Pond dyes are used to control algal growth and improve aesthetics of still water reflecting surrounding planting. However, it is well documented that females of some species of mosquito prefer to lay eggs in dark water and/or containers of different colours and we predict that dyed ponds will be attractive to Culex mosquitoes. Methods Black pond dye was used in oviposition choice tests using wild-caught gravid C. pipiens. Larvae from wild-caught C. pipiens were also reared in the pond dye to determine whether it had any impact on survival. An emergence trap caught any adults that emerged from the water. Water butts (80 L were positioned around university glasshouses and woodland and treated with black pond dye or left undyed. Weekly sampling over a six month period through summer and autumn was performed to quantified numbers of larvae and pupae in each treatment and habitat. Results Gravid female Culex mosquitoes preferred to lay eggs in dyed water. This was highly significant in tests conducted under laboratory conditions and in a semi-field choice test. Despite this, survivorship in black dyed water was significantly reduced compared to undyed water. Seasonal analysis of wild larval and pupal numbers in two habitats with and without dye showed no impact of dye but a significant impact of season and habitat. Mosquitoes were more

  3. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus

    Science.gov (United States)

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health problem in sub-Saharan Africa. The emergence and re-emergence of the disease in the last 20 years especially in East Africa, poses a looming health threat which is likely to spread to beyond Africa. This threat is exacerbat...

  4. The immune strategies of mosquito Aedes aegypti against microbial infection.

    Science.gov (United States)

    Wang, Yan-Hong; Chang, Meng-Meng; Wang, Xue-Li; Zheng, Ai-Hua; Zou, Zhen

    2018-06-01

    Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparative Risk Analysis of Two Culicoides-Borne Diseases in Horses

    NARCIS (Netherlands)

    Faverjon, C.; Leblond, A.; Lecollinet, S.; Bødker, R.; Koeijer, de A.A.; Fischer, E.A.J.

    2017-01-01

    African horse sickness (AHS) and equine encephalosis (EE) are Culicoides-borne viral diseases that could have the potential to spread across Europe if introduced, thus being potential threats for the European equine industry. Both share similar epidemiology, transmission patterns and geographical

  6. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa

    NARCIS (Netherlands)

    Howard, A.F.V.; N'Guessan, R.; Koenraadt, C.J.M.; Asidi, A.; Farenhorst, M.; Akogbéto, M.; Thomas, M.B.; Knols, B.G.J.; Takken, W.

    2010-01-01

    Background Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that

  7. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa

    NARCIS (Netherlands)

    Howard, A.F.V.; N'Guessan, R.; Koenraadt, C.J.M.; Asidi, A.; Farenhorst, M.; Akogbeto, M.; Thomas, M.B.; Knols, B.G.J.; Takken, W.

    2010-01-01

    Background: Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show

  8. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa

    NARCIS (Netherlands)

    Howard, Annabel Fv; N'Guessan, Raphael; Koenraadt, Constantianus Jm; Asidi, Alex; Farenhorst, Marit; Akogbéto, Martin; Thomas, Matthew B.; Knols, Bart Gj; Takken, Willem

    2010-01-01

    Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that

  9. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting.

    Directory of Open Access Journals (Sweden)

    Clement N Mweya

    Full Text Available Rift Valley Fever (RVF is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics.Time-varying distributed delays (TVDD and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district.Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.

  10. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting.

    Science.gov (United States)

    Mweya, Clement N; Holst, Niels; Mboera, Leonard E G; Kimera, Sharadhuli I

    2014-01-01

    Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics. Time-varying distributed delays (TVDD) and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district. Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.

  11. Detection and characterization of a novel rhabdovirus in Aedes cantans mosquitoes and evidence for a mosquito-associated new genus in the family Rhabdoviridae.

    Science.gov (United States)

    Shahhosseini, Nariman; Lühken, Renke; Jöst, Hanna; Jansen, Stephanie; Börstler, Jessica; Rieger, Toni; Krüger, Andreas; Yadouleton, Anges; de Mendonça Campos, Renata; Cirne-Santos, Claudio Cesar; Ferreira, Davis Fernandes; Garms, Rolf; Becker, Norbert; Tannich, Egbert; Cadar, Daniel; Schmidt-Chanasit, Jonas

    2017-11-01

    Thanks to recent advances in random amplification technologies, metagenomic surveillance expanded the number of novel, often unclassified viruses within the family Rhabdoviridae. Using a vector-enabled metagenomic (VEM) tool, we identified a novel rhabdovirus in Aedes cantans mosquitoes collected from Germany provisionally named Ohlsdorf virus (OHSDV). The OHSDV genome encodes the canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORF in the P gene. Sequence analysis indicated that OHSDV exhibits a similar genome organization and characteristics compared to other mosquito-associated rhabdoviruses (Riverside virus, Tongilchon virus and North Creek virus). Complete L protein based phylogeny revealed that all four viruses share a common ancestor and form a deeply rooted and divergent monophyletic group within the dimarhabdovirus supergroup and define a new genus, tentatively named Ohlsdorfvirus. Although the Ohlsdorfvirus clade is basal within the dimarhabdovirus supergroup phylogeny that includes genera of arthropod-borne rhabdoviruses, it remains unknown if viruses in the proposed new genus are vector-borne pathogens. The observed spatiotemporal distribution in mosquitoes suggests that members of the proposed genus Ohlsdorfvirus are geographically restricted/separated. These findings increase the current knowledge of the genetic diversity, classification and evolution of this virus family. Further studies are needed to determine the host range, transmission route and the evolutionary relationships of these mosquito-associated viruses with those infecting vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biological Control Strategies for Mosquito Vectors of Arboviruses

    Directory of Open Access Journals (Sweden)

    Yan-Jang S. Huang

    2017-02-01

    Full Text Available Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  13. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands.

    Science.gov (United States)

    Afrane, Yaw A; Githeko, Andrew K; Yan, Guiyun

    2012-02-01

    Climate change is expected to lead to latitudinal and altitudinal temperature increases. High-elevation regions such as the highlands of Africa and those that have temperate climate are most likely to be affected. The highlands of Africa generally exhibit low ambient temperatures. This restricts the distribution of Anopheles mosquitoes, the vectors of malaria, filariasis, and O'nyong'nyong fever. The development and survival of larval and adult mosquitoes are temperature dependent, as are mosquito biting frequency and pathogen development rate. Given that various Anopheles species are adapted to different climatic conditions, changes in climate could lead to changes in species composition in an area that may change the dynamics of mosquito-borne disease transmission. It is important to consider the effect of climate change on rainfall, which is critical to the formation and persistence of mosquito breeding sites. In addition, environmental changes such as deforestation could increase local temperatures in the highlands; this could enhance the vectorial capacity of the Anopheles. These experimental data will be invaluable in facilitating the understanding of the impact of climate change on Anopheles. © 2012 New York Academy of Sciences.

  14. Mosquito population dynamics during the construction of Three Gorges Dam in Yangtze River, China.

    Science.gov (United States)

    Guo, Yuhong; Lai, ShengJie; Zhang, Jing; Liu, Qiyong; Zhang, Huaiqing; Ren, Zhoupeng; Mao, Deqiang; Luo, Chao; He, Yuanyuan; Wu, Haixia; Li, Guichang; Ren, Dongsheng; Liu, Xiaobo; Chang, Zhaorui

    2018-06-01

    Mosquitoes are responsible for spreading many diseases and their populations are susceptible to environmental changes. The ecosystems in the Three Gorges Region were probably altered because of changes to the environment during the construction of the Three Gorges Dam (TGD), the world's largest hydroelectric dam by generating capacity. We selected three sites at which to monitor the mosquitoes from 1997 to 2009. We captured adult mosquitoes with battery-powered aspirators fortnightly between May and September of each year in dwellings and sheds. We identified the mosquito species, and examined changes in the species density during the TGD construction. We monitored changes in the species and density of mosquitoes in this area for 13 years during the TGD construction and collected information that could be used to support the control and prevention of mosquito-borne infections. We found that the mosquito species composition around the residential areas remained the same, and the density changed gradually during the TGD construction. The changes in the populations tended to be consistent over the years, and the densities were highest in July, and were between 3 and 5 times greater in the sheds than in the dwellings. The mosquito species and populations remained stable during the construction of the TGD. The mosquito density may have increased as the reservoir filled, and may have decreased during the clean-up work. Clean-up work may be an effective way to control mosquitoes and prevent mosquito-borne diseases. Copyright © 2018. Published by Elsevier B.V.

  15. Modeling freshwater snail habitat suitability and areas of potential snail-borne disease transmission in Uganda

    DEFF Research Database (Denmark)

    Stensgaard, Anna-Sofie; Jørgensen, Aslak; Kabatereine, N B

    2006-01-01

    -borne disease transmission areas. Furthermore, knowledge of abiotic factors affecting intra-molluscan parasitic development can be used to make "masks" based on remotely sensed climatic data, and these can in turn be used to refine these predictions. We used data from a recent freshwater snail survey from......Geographic information system (GIS-based modeling of an intermediate host snail species environmental requirements using known occurrence records can provide estimates of its spatial distribution. When other data are lacking, this can be used as a rough spatial prediction of potential snail...... Uganda, environmental data and the genetic algorithm for rule-set prediction (GARP) to map the potential distribution of snail species known to act as intermediate hosts of several human and animal parasites. The results suggest that large areas of Uganda are suitable habitats for many of these snail...

  16. Environmental and social-demographic predictors of the southern house mosquito Culex quinquefasciatus in New Orleans, Louisiana

    Science.gov (United States)

    Flooding events have become common throughout the world yet our understanding of how these events affect the spatial and temporal distribution of disease vectors such as mosquitoes is limited. This knowledge can guide development of effective and timely strategies for mitigating mosquito-borne disea...

  17. [Tick borne diseases].

    Science.gov (United States)

    Holzer, B R

    2005-11-01

    It is known for many years that tick-borne diseases have worldwide a high economical impact on farming industry and veterinary medicine. But only in the last twenty years the importance of such diseases were notified in human medicine by the medical community and the public with emerging of the tick borne encephalitis virus and the description of Borrelia burgdorferi. It is often forgotten that many other infectious agents as bacteria, virus, Rickettsia or protozoa can be transmitted by ticks. Such diseases are rarely diagnosed in Europe either they are overlooked and misdiagnosed or they are connected with special professional activities. The development of new regions for tourism with different out door activities (adventure trips, trekking, hunting) leads to an exposure to different tick borne diseases, which are often misdiagnosed.

  18. Co-occurrence of viruses and mosquitoes at the vectors' optimal climate range: An underestimated risk to temperate regions?

    Science.gov (United States)

    Blagrove, Marcus S C; Caminade, Cyril; Waldmann, Elisabeth; Sutton, Elizabeth R; Wardeh, Maya; Baylis, Matthew

    2017-06-01

    Mosquito-borne viruses have been estimated to cause over 100 million cases of human disease annually. Many methodologies have been developed to help identify areas most at risk from transmission of these viruses. However, generally, these methodologies focus predominantly on the effects of climate on either the vectors or the pathogens they spread, and do not consider the dynamic interaction between the optimal conditions for both vector and virus. Here, we use a new approach that considers the complex interplay between the optimal temperature for virus transmission, and the optimal climate for the mosquito vectors. Using published geolocated data we identified temperature and rainfall ranges in which a number of mosquito vectors have been observed to co-occur with West Nile virus, dengue virus or chikungunya virus. We then investigated whether the optimal climate for co-occurrence of vector and virus varies between "warmer" and "cooler" adapted vectors for the same virus. We found that different mosquito vectors co-occur with the same virus at different temperatures, despite significant overlap in vector temperature ranges. Specifically, we found that co-occurrence correlates with the optimal climatic conditions for the respective vector; cooler-adapted mosquitoes tend to co-occur with the same virus in cooler conditions than their warmer-adapted counterparts. We conclude that mosquitoes appear to be most able to transmit virus in the mosquitoes' optimal climate range, and hypothesise that this may be due to proportionally over-extended vector longevity, and other increased fitness attributes, within this optimal range. These results suggest that the threat posed by vector-competent mosquito species indigenous to temperate regions may have been underestimated, whilst the threat arising from invasive tropical vectors moving to cooler temperate regions may be overestimated.

  19. Frequency-Dependent Disease Transmission and the Dynamics of the Silene-Ustilago Host-Pathogen System

    NARCIS (Netherlands)

    Thrall, P.H.; Biere, A.; Uyenoyama, M.K.

    1995-01-01

    Models incorporating density-dependent disease transmission functions generally provide a good fit for airborne and directly transmitted bacterial or viral diseases. However, the transmission dynamics of sexually transmitted and vector-borne diseases are likely to be frequency- rather than density-

  20. EPA-Registered Repellents for Mosquitoes Transmitting Emerging Viral Disease.

    Science.gov (United States)

    Patel, Radha V; Shaeer, Kristy M; Patel, Pooja; Garmaza, Aleksey; Wiangkham, Kornwalee; Franks, Rachel B; Pane, Olivia; Carris, Nicholas W

    2016-12-01

    In many parts of the United States, mosquitoes were previously nuisance pests. However, they now represent a potential threat in the spread of viral diseases. The Aedes aegypti, Aedes albopictus, and Culex species mosquitoes are endemic to the United States and together may transmit a variety of viral diseases of growing concern, including West Nile virus, chikungunya, dengue fever, and Zika virus. The Centers for Disease Control and Prevention and the Environmental Protection Agency (EPA) recommend N,N-diethyl-meta-toluamide (DEET) as a first-line mosquito repellent, but for patients refusing to use DEET or other conventional repellents, guidance is limited to any EPA-registered product. Therefore, we conducted a systematic review of the literature to identify which EPA-registered personal mosquito repellent provides the best protection from A. aegypti, A. albopictus, and Culex spp. mosquitoes. We abstracted data from 62 published reports of EPA-registered mosquito repellents. The conventional repellent picaridin has the strongest data to support its use as a second-line agent, while IR3535 and oil of lemon eucalyptus are reasonably effective natural products. Citronella, catnip, and 2-undecanone offer limited protection or have limited data. These results can be used by pharmacists and other health care professionals to advise patients on the selection of an EPA-registered mosquito repellent. Regardless of the repellent chosen, it is vital for patients to follow all instructions/precautions in the product labeling to ensure safe and effective use. © 2016 Pharmacotherapy Publications, Inc.

  1. Celery-based topical repellents as a potential natural alternative for personal protection against mosquitoes.

    Science.gov (United States)

    Tuetun, B; Choochote, W; Pongpaibul, Y; Junkum, A; Kanjanapothi, D; Chaithong, U; Jitpakdi, A; Riyong, D; Pitasawat, B

    2008-12-01

    Celery-based products were investigated for chemical composition, skin irritation, and mosquito repellency in comparison to commercial repellents and the standard chemical, N,N-diethyl-3-methylbenzamide (DEET), with a goal to develop a natural alternative to synthetic repellents for protection against mosquitoes. Chemical identification by gas chromatography coupled with mass spectrometry discovered that the major constituents of Apium graveolens hexane extract (AHE) were 3-n-butyl-tetrahydrophthalide (92.48%), followed by 5.10% beta-selinene and 0.68% gamma-selinene. Evaluation of skin irritation in 27 human volunteers revealed no irritant potential from 25% ethanolic AHE solution. Laboratory investigated repellent against female Aedes aegypti mosquitoes demonstrated that G10 formula, the best AHE-developed product, provided remarkable repellency with a median protection time of 4.5 h (4.5-5 h), which was greater than that of ethanolic DEET solution (25% DEET, 3.5 h) and comparable to that of the best commercial repellent, Insect Block 28 (28.5% DEET, 4.5 h). According to significantly promising results, including highly effective repellency and no potential skin irritation or other side effects, the G10 formula is a worthwhile product that has the promise of being developed for commercialized registration. This developed AHE product could be an acceptable and affordable alternative to conventional synthetic chemicals in preventing mosquito bites, and in turn, helping to interrupt mosquito-borne disease transmission.

  2. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  3. Variations in Modeled Dengue Transmission over Puerto Rico Using a Climate Driven Dynamic Model

    Science.gov (United States)

    Morin, Cory; Monaghan, Andrew; Crosson, William; Quattrochi, Dale; Luvall, Jeffrey

    2014-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Because of variations in topography, ocean influences and atmospheric processes, temperature and rainfall patterns vary across Puerto Rico and so do dengue virus transmission rates. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input, ground-based observations for temperature input, and laboratory confirmed dengue cases reported by the Centers for Disease Control and Prevention for parameter calibration, we modeled dengue transmission at the county level across Puerto Rico from 2010-2013 using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations for each county in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. The top 1% of model simulations that best reproduced the reported dengue case data were then analyzed to determine the most important parameters for dengue virus transmission in each county, as well as the relative influence of climate variability on transmission. These results can be used by public health workers to implement dengue control methods that are targeted for specific locations and climate conditions.

  4. Transfer of toxin genes to alternate bacterial hosts for mosquito control

    Directory of Open Access Journals (Sweden)

    Sergio Orduz

    1995-02-01

    Full Text Available Mosquitoes are vector of serious human and animal diseases, such as malaria, dengue, yellow fever, among others. The use of biological control agents has provide an environmentally safe and highly specific alternative to the use of chemical insecticides in the control of vector borne diseases. Bacillus thuringiensis and B. sphaericus produce toxic proteins to mosquito larvae. Great progress has been made on the biochemical and molecular characterization of such proteins and the genes encoding them. Nevertheless, the low residuality of these biological insecticides is one of the major drawbacks. This article present some interesting aspects of the mosquito larvae feeding habits and review the attempts that have been made to genetically engineer microorganisms that while are used by mosquito larvae as a food source should express the Bacillus toxin genes in order to improve the residuality and stability in the mosquito breeding ponds.

  5. The Influence of Spatial Configuration of Residential Area and Vector Populations on Dengue Incidence Patterns in an Individual-Level Transmission Model.

    Science.gov (United States)

    Kang, Jeon-Young; Aldstadt, Jared

    2017-07-15

    Dengue is a mosquito-borne infectious disease that is endemic in tropical and subtropical countries. Many individual-level simulation models have been developed to test hypotheses about dengue virus transmission. Often these efforts assume that human host and mosquito vector populations are randomly or uniformly distributed in the environment. Although, the movement of mosquitoes is affected by spatial configuration of buildings and mosquito populations are highly clustered in key buildings, little research has focused on the influence of the local built environment in dengue transmission models. We developed an agent-based model of dengue transmission in a village setting to test the importance of using realistic environments in individual-level models of dengue transmission. The results from one-way ANOVA analysis of simulations indicated that the differences between scenarios in terms of infection rates as well as serotype-specific dominance are statistically significant. Specifically, the infection rates in scenarios of a realistic environment are more variable than those of a synthetic spatial configuration. With respect to dengue serotype-specific cases, we found that a single dengue serotype is more often dominant in realistic environments than in synthetic environments. An agent-based approach allows a fine-scaled analysis of simulated dengue incidence patterns. The results provide a better understanding of the influence of spatial heterogeneity on dengue transmission at a local scale.

  6. Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control.

    Science.gov (United States)

    Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P

    2015-10-22

    Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures

  7. Maternal Germline-Specific Genes in the Asian Malaria Mosquito Anopheles stephensi: Characterization and Application for Disease Control

    Science.gov (United States)

    Biedler, James K.; Qi, Yumin; Pledger, David; Macias, Vanessa M.; James, Anthony A.; Tu, Zhijian

    2014-01-01

    Anopheles stephensi is a principal vector of urban malaria on the Indian subcontinent and an emerging model for molecular and genetic studies of mosquito biology. To enhance our understanding of female mosquito reproduction, and to develop new tools for basic research and for genetic strategies to control mosquito-borne infectious diseases, we identified 79 genes that displayed previtellogenic germline-specific expression based on RNA-Seq data generated from 11 life stage–specific and sex-specific samples. Analysis of this gene set provided insights into the biology and evolution of female reproduction. Promoters from two of these candidates, vitellogenin receptor and nanos, were used in independent transgenic cassettes for the expression of artificial microRNAs against suspected mosquito maternal-effect genes, discontinuous actin hexagon and myd88. We show these promoters have early germline-specific expression and demonstrate 73% and 42% knockdown of myd88 and discontinuous actin hexagon mRNA in ovaries 48 hr after blood meal, respectively. Additionally, we demonstrate maternal-specific delivery of mRNA and protein to progeny embryos. We discuss the application of this system of maternal delivery of mRNA/miRNA/protein in research on mosquito reproduction and embryonic development, and for the development of a gene drive system based on maternal-effect dominant embryonic arrest. PMID:25480960

  8. SPECIES COMPOSITION OF MALARIAL MOSQUITOES KHARKIV REGION. NATURAL FACTORS OF MALARIA TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Gazzawi - Rogozinа L. V.

    2015-05-01

    Full Text Available Introduction. This article describes the species composition of the dominant Anopheles mosquitoes in the Kharkiv region, the season of their possible effective infection, as well as ongoing anti-malaria activities . Key words: malaria , mosquitoes, p . Anopheles, epidemiology, census, hydraulic events. Material & methods. The analysis of entomological and meteorological situation in Ukraine and in the Kharkiv region according to data of the Ukrainian Center of control and monitoring of diseases of the Ministry of Health of Ukraine and Kharkiv regional laboratory center. Collection of material (imaginal and larval was carried out on the territory of natural and artificial water bodies of Kharkiv region in the period 2013 - 2014. When collecting the material used conventional accounting methods mosquito populations. On the territory of the region under study, we have found 30 species of mosquitoes three genera: Anopheles, Culex, Aedes. Results & discussion. Epidemiological role of each species of mosquitoes depends on several conditions. Dangerous vector species can only be found in large numbers, a significant percentage of individuals in a population that feeds on the blood of man, having a sufficiently long season activity and a sufficient number of females surviving to age possible maturation of sporozoites in their body. In Ukraine, the major carriers - Anopheles maculipennis, An. m. messeae, An. m. atroparvus, An. claviger, An. plumbeus, An. hyrcanus. Mosquito species registered in the territory of the Kharkiv region are susceptible to currently known types of human malaria parasites . Moreover, the dominant species in terms of urban landscapes are An.maculipennis and An.messeae . These species possess all the qualities necessary to be considered dangerous malaria vector control. They are well infected with the three main types of human parasites. In the study area , in terms of urban landscapes, gonoaktivnye females occurs within 3

  9. Host feeding pattern of Japanese encephalitis virus vector mosquitoes (Diptera: Culicidae) from Kuttanadu, Kerala, India.

    Science.gov (United States)

    Philip Samuel, P; Arunachalam, N; Hiriyan, J; Tyagi, B K

    2008-09-01

    Identification of blood meals of vector mosquitoes is an important tool in the epidemiological investigations of vector-borne diseases. The blood meals of three mosquito species involved in the transmission of Japanese encephalitis virus (JEV) from the Kuttanadu area, Kerala, were determined using the agarose gel diffusion technique. A total of 4959 blood smears belonging to Culex (Culex) tritaeniorhynchus Giles (3273), Cx. (Culex) gelidus Theobald (64), Mansonia (Mnd.) indiana Edwards (735) ,and Ma. (Mnd.) uniformis (Theobald) (887) were tested. Cx. tritaeniorhynchus had predominantly fed on bovids (46.4%), and a good proportion (29%) had fed on more than one host. Cx. tritaeniorhynchus was highly zoophagic, and human feeding accounted for only 1.5% of those individuals successfully tested. Cx. gelidus showed bovid feeding at 36% and pig feeding at 12.5%. The test results showed 42.3% Ma. indiana and 12.2% Ma. uniformis had fed on humans. Multiple feeding was observed in Ma. indiana and Ma. uniformis, and most of the double feedings were from bovids and ovids (7.9 and 20.1%, respectively). Pig feeding accounted for 4.8% of the feedings by Cx. tritaeniorhynchus, 5.3% of Ma. indiana, and 6.4% of Ma. uniformis. This study is significant because of the role played by these mosquitoes in the transmission of JEV in the Kuttanadu area of Kerala, India.

  10. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.

    Science.gov (United States)

    Huang, Zhuojie; Das, Anirrudha; Qiu, Youliang; Tatem, Andrew J

    2012-08-14

    Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible

  11. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.

    Science.gov (United States)

    Pelosse, Perrine; Kribs-Zaleta, Christopher M

    2012-11-07

    Pathogens may use different routes of transmission to maximize their spread among host populations. Theoretical and empirical work conducted on directly transmitted diseases suggest that horizontal (i.e., through host contacts) and vertical (i.e., from mother to offspring) transmission modes trade off, on the ground that highly virulent pathogens, which produce larger parasite loads, are more efficiently transmitted horizontally, and that less virulent pathogens, which impair host fitness less significantly, are better transmitted vertically. Other factors than virulence such as host density could also select for different transmission modes, but they have barely been studied. In vector-borne diseases, pathogen transmission rate is strongly affected by host-vector relative densities and by processes of saturation in contacts between hosts and vectors. The parasite Trypanosoma cruzi which is transmitted by triatomine bugs to several vertebrate hosts is responsible for Chagas' disease in Latin America. It is also widespread in sylvatic cycles in the southeastern U.S. in which it typically induces no mortality costs to its customary hosts. Besides classical transmission via vector bites, alternative ways to generate infections in hosts such as vertical and oral transmission (via the consumption of vectors by hosts) have been reported in these cycles. The two major T. cruzi strains occurring in the U.S. seem to exhibit differential efficiencies at vertical and classical horizontal transmissions. We investigated whether the vector-host ratio affects the outcome of the competition between the two parasite strains using an epidemiological two-strain model considering all possible transmission routes for sylvatic T. cruzi. We were able to show that the vector-host ratio influences the evolution of transmission modes providing that oral transmission is included in the model as a possible transmission mode, that oral and classical transmissions saturate at different vector

  12. Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.

    Science.gov (United States)

    Gardner, Allison M; Muturi, Ephantus J; Overmier, Leah D; Allan, Brian F

    2017-12-01

    Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex interactions between the vector, the pathogen, and the human or wildlife reservoir host. These interactions are highly susceptible to disturbance by invasive species, including terrestrial plants. We conducted a 2-year field experiment using a Before-After/Control-Impact design to examine how removal of invasive Amur honeysuckle (Lonicera maackii) in a forest fragment embedded within a residential neighborhood affects the abundance of mosquitoes, including two of the most important vectors of West Nile virus, Culex pipiens and Cx. restuans. We also assessed any potential changes in avian communities and local microclimate associated with Amur honeysuckle removal. We found that (1) removal of Amur honeysuckle reduces the abundance of both vector and non-vector mosquito species that commonly feed on human hosts, (2) the abundance and composition of avian hosts is altered by honeysuckle removal, and (3) areas invaded with honeysuckle support local microclimates that are favorable to mosquito survival. Collectively, our investigations demonstrate the role of a highly invasive understory shrub in determining the abundance and distribution of mosquitoes and suggest potential mechanisms underlying this pattern. Our results also give rise to additional questions regarding the general impact of invasive plants on vector-borne diseases and the spatial scale at which removal of invasive plants may be utilized to effect disease control.

  13. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China

    Science.gov (United States)

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun

    2017-01-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562

  14. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

    Science.gov (United States)

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang

    2017-07-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

  15. Spatio-temporal transmission patterns of black-band disease in a coral community.

    Directory of Open Access Journals (Sweden)

    Assaf Zvuloni

    Full Text Available BACKGROUND: Transmission mechanisms of black-band disease (BBD in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease. METHODOLOGY/PRINCIPAL FINDINGS: 3,175 susceptible and infected corals were mapped over an area of 10x10 m in Eilat (northern Gulf of Aqaba, Red Sea and the distribution of the disease was examined monthly throughout almost two full disease cycles (June 2006-December 2007. Spatial and spatio-temporal analyses were applied to infer the transmission pattern of the disease and to calculate key epidemiological parameters such as (basic reproduction number. We show that the prevalence of the disease is strongly associated with high water temperature. When water temperatures rise and disease prevalence increases, infected corals exhibit aggregated distributions on small spatial scales of up to 1.9 m. Additionally, newly-infected corals clearly appear in proximity to existing infected corals and in a few cases in direct contact with them. We also present and test a model of water-borne infection, indicating that the likelihood of a susceptible coral becoming infected is defined by its spatial location and by the relative spatial distribution of nearby infected corals found in the site. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that local transmission, but not necessarily by direct contact, is likely to be an important factor in the spread of the disease over the tested spatial scale. In the absence of potential disease vectors with limited mobility (e.g., snails, fireworms in the studied site, water-borne infection is likely to be a significant transmission mechanism of BBD. Our suggested model of water-borne transmission supports this hypothesis. The spatio-temporal analysis also points

  16. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities.

    Science.gov (United States)

    Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-10-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

  17. Genetic manipulation of endosymbionts to control vector and vector borne diseases

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    Full Text Available Vector borne diseases (VBD are on the rise because of failure of the existing methods of control of vector and vector borne diseases and the climate change. A steep rise of VBDs are due to several factors like selection of insecticide resistant vector population, drug resistant parasite population and lack of effective vaccines against the VBDs. Environmental pollution, public health hazard and insecticide resistant vector population indicate that the insecticides are no longer a sustainable control method of vector and vector-borne diseases. Amongst the various alternative control strategies, symbiont based approach utilizing endosymbionts of arthropod vectors could be explored to control the vector and vector borne diseases. The endosymbiont population of arthropod vectors could be exploited in different ways viz., as a chemotherapeutic target, vaccine target for the control of vectors. Expression of molecules with antiparasitic activity by genetically transformed symbiotic bacteria of disease-transmitting arthropods may serve as a powerful approach to control certain arthropod-borne diseases. Genetic transformation of symbiotic bacteria of the arthropod vector to alter the vector’s ability to transmit pathogen is an alternative means of blocking the transmission of VBDs. In Indian scenario, where dengue, chikungunya, malaria and filariosis are prevalent, paratransgenic based approach can be used effectively. [Vet World 2012; 5(9.000: 571-576

  18. Lymphatic Filariasis: Transmission, Treatment and Elimination

    NARCIS (Netherlands)

    W.A. Stolk (Wilma)

    2005-01-01

    textabstractLymphatic filariasis (LF) is a mosquito-borne, tropical disease caused by filarial worms. Infection can lead to disabling chronic disease, characterized by swelling of extremities or external genitalia (lymphoedema, elephantiasis and hydrocele). Mass treatment with antifilarial drugs is

  19. Climate change and the emergence of vector-borne diseases in Europe: case study of dengue fever.

    Science.gov (United States)

    Bouzid, Maha; Colón-González, Felipe J; Lung, Tobias; Lake, Iain R; Hunter, Paul R

    2014-08-22

    Dengue fever is the most prevalent mosquito-borne viral disease worldwide. Dengue transmission is critically dependent on climatic factors and there is much concern as to whether climate change would spread the disease to areas currently unaffected. The occurrence of autochthonous infections in Croatia and France in 2010 has raised concerns about a potential re-emergence of dengue in Europe. The objective of this study is to estimate dengue risk in Europe under climate change scenarios. We used a Generalized Additive Model (GAM) to estimate dengue fever risk as a function of climatic variables (maximum temperature, minimum temperature, precipitation, humidity) and socioeconomic factors (population density, urbanisation, GDP per capita and population size), under contemporary conditions (1985-2007) in Mexico. We then used our model estimates to project dengue incidence under baseline conditions (1961-1990) and three climate change scenarios: short-term 2011-2040, medium-term 2041-2070 and long-term 2071-2100 across Europe. The model was used to calculate average number of yearly dengue cases at a spatial resolution of 10 × 10 km grid covering all land surface of the currently 27 EU member states. To our knowledge, this is the first attempt to model dengue fever risk in Europe in terms of disease occurrence rather than mosquito presence. The results were presented using Geographical Information System (GIS) and allowed identification of areas at high risk. Dengue fever hot spots were clustered around the coastal areas of the Mediterranean and Adriatic seas and the Po Valley in northern Italy. This risk assessment study is likely to be a valuable tool assisting effective and targeted adaptation responses to reduce the likely increased burden of dengue fever in a warmer world.

  20. In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito.

    Science.gov (United States)

    Lai, Yiling; Chen, Huan; Wei, Ge; Wang, Guandong; Li, Fang; Wang, Sibao

    2017-08-01

    The use of entomopathogenic fungi to control mosquitoes is a promising tool for reducing vector-borne disease transmission. To better understand infection stratagems of insect pathogenic fungi, we analyzed the global gene expression profiling of Beauveria bassiana at 36, 60, 84 and 108 h after topical infection of Anopheles stephensi adult mosquitoes using RNA sequencing (RNA-Seq). A total of 5,354 differentially expressed genes (DEGs) are identified over the course of fungal infection. When the fungus grows on the mosquito cuticle, up-regulated DEGs include adhesion-related genes involved in cuticle attachment, Pth11-like GPCRs hypothesized to be involved in host recognition, and extracellular enzymes involved in the degradation and penetration of the mosquito cuticle. Once in the mosquito hemocoel, the fungus evades mosquito immune system probably through up-regulating expression of β-1,3-glucan degrading enzymes and chitin synthesis enzymes for remodeling of cell walls. Moreover, six previous unknown SSCP (small secreted cysteine-rich proteins) are significantly up-regulated, which may serve as "effectors" to suppress host defense responses. B. bassiana also induces large amounts of antioxidant genes to mitigate host-generated exogenous oxidative stress. At late stage of infection, B. bassiana activates a broad spectrum of genes including nutrient degrading enzymes, some transporters and metabolism pathway components, to exploit mosquito tissues and hemolymph as a nutrient source for hyphal growth. These findings establish an important framework of knowledge for further comprehensive elucidation of fungal pathogenesis and molecular mechanism of Beauveria-mosquito interactions.

  1. Worthy of their name: how floods drive outbreaks of two major floodwater mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Berec, Ludĕk; Gelbic, Ivan; Sebesta, Oldrich

    2014-01-01

    An understanding of how climate variables drive seasonal dynamics of mosquito populations is critical to mitigating negative impacts of potential outbreaks, including both nuisance effects and risk of mosquito-borne infectious disease. Here, we identify climate variables most affecting seasonal dynamics of two major floodwater mosquitoes, Aedes vexans (Meigen, 1830) and Aedes sticticus (Meigen, 1838) (Diptera: Culicidae), along the lower courses of the Dyje River, at the border between the Czech Republic and Austria. Monthly trap counts of both floodwater mosquitoes varied both across sites and years. Despite this variability, both models used to fit the observed data at all sites (and especially that for Ae. sticticus) and site-specific models fitted the observed data quite well. The most important climate variables we identified-temperature and especially flooding-were driving seasonal dynamics of both Aedes species. We suggest that flooding determines seasonal peaks in the monthly mosquito trap counts while temperature modulates seasonality in these counts. Hence, floodwater mosquitoes indeed appear worthy of their name. Moreover, the climate variables we considered for modeling were able reasonably to predict mosquito trap counts in the month ahead. Our study can help in planning flood management; timely notification of people, given that these mosquitoes are a real nuisance in this region; public health policy management to mitigate risk from such mosquito-borne diseases as that caused in humans by the Tahyna virus; and anticipating negative consequences of climate change, which are expected only to worsen unless floods, or the mosquitoes themselves, are satisfactorily managed.

  2. USDA Mosquito Control Product Research for the US Military

    Science.gov (United States)

    New techniques that were developed at the USDA to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques to be illustrated include: (1) novel military personal protection methods, (2...

  3. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    Science.gov (United States)

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  4. Non-genetic determinants of mosquito competence for malaria parasites.

    Directory of Open Access Journals (Sweden)

    Thierry Lefèvre

    Full Text Available Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.

  5. Modelling Lymphatic Filariasis: Transmission and Control

    NARCIS (Netherlands)

    S. Swaminathan

    2004-01-01

    textabstractLymphatic filariasis (LF) is a mosquito borne parasitic disease of the tropics. Of the three species of parasites causing the disease, W. bancrofti transmitted by Culex quinquefasciatus is the most widely prevalent. Infection can lead to disabling chronic manifestations: lymphoedema,

  6. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    International Nuclear Information System (INIS)

    Erickson, R A; Presley, S M; Cox, S B; Hayhoe, K; Allen, L J S; Long, K R

    2012-01-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems. (letter)

  7. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    Science.gov (United States)

    Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

    2012-09-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

  8. Canine and feline vector-borne diseases in Italy: current situation and perspectives

    Directory of Open Access Journals (Sweden)

    Dantas-Torres Filipe

    2010-01-01

    Full Text Available Abstract In Italy, dogs and cats are at risk of becoming infected by different vector-borne pathogens, including protozoa, bacteria, and helminths. Ticks, fleas, phlebotomine sand flies, and mosquitoes are recognized vectors of pathogens affecting cats and dogs, some of which (e.g., Anaplasma phagocytophilum, Borrelia burgdorferi, Dipylidium caninum, Leishmania infantum, Dirofilaria immitis, and Dirofilaria repens are of zoonotic concern. Recent studies have highlighted the potential of fleas as vectors of pathogens of zoonotic relevance (e.g., Rickettsia felis in this country. While some arthropod vectors (e.g., ticks and fleas are present in certain Italian regions throughout the year, others (e.g., phlebotomine sand flies are most active during the summer season. Accordingly, control strategies, such as those relying on the systematic use of acaricides and insecticides, should be planned on the basis of the ecology of both vectors and pathogens in different geographical areas in order to improve their effectiveness in reducing the risk of infection by vector-borne pathogens. This article reviews the current situation and perspectives of canine and feline vector-borne diseases in Italy.

  9. Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases

    Directory of Open Access Journals (Sweden)

    Jean-Marie Aerts

    2012-11-01

    Full Text Available The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.

  10. Cell Phone-Based System (Chaak) for Surveillance of Immatures of Dengue Virus Mosquito Vectors

    Science.gov (United States)

    LOZANO–FUENTES, SAUL; WEDYAN, FADI; HERNANDEZ–GARCIA, EDGAR; SADHU, DEVADATTA; GHOSH, SUDIPTO; BIEMAN, JAMES M.; TEP-CHEL, DIANA; GARCÍA–REJÓN, JULIÁN E.; EISEN, LARS

    2014-01-01

    Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, México, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network. PMID:23926788

  11. The invasive shrub Prosopis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: a habitat manipulation experiment.

    Science.gov (United States)

    Muller, Gunter C; Junnila, Amy; Traore, Mohamad M; Traore, Sekou F; Doumbia, Seydou; Sissoko, Fatoumata; Dembele, Seydou M; Schlein, Yosef; Arheart, Kristopher L; Revay, Edita E; Kravchenko, Vasiliy D; Witt, Arne; Beier, John C

    2017-07-05

    A neglected aspect of alien invasive plant species is their influence on mosquito vector ecology and malaria transmission. Invasive plants that are highly attractive to Anopheles mosquitoes provide them with sugar that is critical to their survival. The effect on Anopheles mosquito populations was examined through a habitat manipulation experiment that removed the flowering branches of highly attractive Prosopis juliflora from selected villages in Mali, West Africa. Nine villages in the Bandiagara district of Mali were selected, six with flowering Prosopis juliflora, and three without. CDC-UV light traps were used to monitor their Anopheles spp. vector populations, and recorded their species composition, population size, age structure, and sugar feeding status. After 8 days, all of the flowering branches were removed from three villages and trap catches were analysed again. Villages where flowering branches of the invasive shrub Prosopis juliflora were removed experienced a threefold drop in the older more dangerous Anopheles females. Population density dropped by 69.4% and the species composition shifted from being a mix of three species of the Anopheles gambiae complex to one dominated by Anopheles coluzzii. The proportion of sugar fed females dropped from 73 to 15% and males from 77 to 10%. This study demonstrates how an invasive plant shrub promotes the malaria parasite transmission capacity of African malaria vector mosquitoes. Proper management of invasive plants could potentially reduce mosquito populations and malaria transmission.

  12. Mosquito-larvicidal efficacy of the extract of Musca domestica ...

    African Journals Online (AJOL)

    The intolerably high burdens of mosquito-borne diseases will be reduced sustainably through the development of integral eco-friendly alternative insecticides of natural products origin. The need to broaden the global search for such insecticidal lead-agents, especially , those that will be less vulnerable to resistance, was ...

  13. [Public health pests. Arthropods and rodents as causative disease agents as well as reservoirs and vectors of pathogens].

    Science.gov (United States)

    Faulde, M; Freise, J

    2014-05-01

    Globally, infectious diseases pose the most important cause of death. Among known human pathogenic diseases, approximately 50 % are zoonoses. When considering emerging infectious diseases separately 73 % currently belong to the group of zoonoses. In Central Europe, hard ticks show by far the biggest potential as vectors of agents of human disease. Lyme borreliosis, showing an estimated annual incidence between 60,000 and 214,000 cases is by far the most frequent tick-borne disease in Germany. Continually, formerly unknown disease agents could be discovered in endemic vector species. Additionally, introduction of new arthropod vectors and/or agents of disease occur constantly. Recently, five mosquito species of the genus Aedes have been newly introduced to Europe where they are currently spreading in different regions. Uncommon autochthonous transmission of dengue and chikungunya fever viruses in Southern Europe could be directly linked to these vector species and of these Ae. albopictus and Ae. japonicus are currently reported to occur in Germany. The German Protection against Infection Act only covers the control of public health pests which are either active hematophagous vectors or mechanical transmitters of agents of diseases. Use of officially recommended biocidal products aiming to interrupt transmission cycles of vector-borne diseases, is confined to infested buildings only, including sewage systems in the case of Norway rat control. Outdoor vectors, such as hard ticks and mosquitoes, are currently not taken into consideration. Additionally, adjustments of national public health regulations, detailed arthropod vector and rodent reservoir mapping, including surveillance of vector-borne disease agents, are necessary in order to mitigate future disease risks.

  14. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance.

    Science.gov (United States)

    Mukundarajan, Haripriya; Hol, Felix Jan Hein; Castillo, Erica Araceli; Newby, Cooper; Prakash, Manu

    2017-10-31

    The direct monitoring of mosquito populations in field settings is a crucial input for shaping appropriate and timely control measures for mosquito-borne diseases. Here, we demonstrate that commercially available mobile phones are a powerful tool for acoustically mapping mosquito species distributions worldwide. We show that even low-cost mobile phones with very basic functionality are capable of sensitively acquiring acoustic data on species-specific mosquito wingbeat sounds, while simultaneously recording the time and location of the human-mosquito encounter. We survey a wide range of medically important mosquito species, to quantitatively demonstrate how acoustic recordings supported by spatio-temporal metadata enable rapid, non-invasive species identification. As proof-of-concept, we carry out field demonstrations where minimally-trained users map local mosquitoes using their personal phones. Thus, we establish a new paradigm for mosquito surveillance that takes advantage of the existing global mobile network infrastructure, to enable continuous and large-scale data acquisition in resource-constrained areas.

  15. Capitalizing on Citizen Science Data for Validating Models and Generating Hypotheses Describing Meteorological Drivers of Mosquito-Borne Disease Risk

    Science.gov (United States)

    Boger, R. A.; Low, R.; Paull, S.; Anyamba, A.; Soebiyanto, R. P.

    2017-12-01

    Temperature and precipitation are important drivers of mosquito population dynamics, and a growing set of models have been proposed to characterize these relationships. Validation of these models, and development of broader theories across mosquito species and regions could nonetheless be improved by comparing observations from a global dataset of mosquito larvae with satellite-based measurements of meteorological variables. Citizen science data can be particularly useful for two such aspects of research into the meteorological drivers of mosquito populations: i) Broad-scale validation of mosquito distribution models and ii) Generation of quantitative hypotheses regarding changes to mosquito abundance and phenology across scales. The recently released GLOBE Observer Mosquito Habitat Mapper (GO-MHM) app engages citizen scientists in identifying vector taxa, mapping breeding sites and decommissioning non-natural habitats, and provides a potentially useful new tool for validating mosquito ubiquity projections based on the analysis of remotely sensed environmental data. Our early work with GO-MHM data focuses on two objectives: validating citizen science reports of Aedes aegypti distribution through comparison with accepted scientific data sources, and exploring the relationship between extreme temperature and precipitation events and subsequent observations of mosquito larvae. Ultimately the goal is to develop testable hypotheses regarding the shape and character of this relationship between mosquito species and regions.

  16. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Howard Annabel FV

    2010-09-01

    Full Text Available Abstract Background Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that entomopathogenic fungi can kill insecticide-resistant malaria vectors but this needs to be verified in the field. Methods The present study investigated whether these fungi will be effective at infecting, killing and/or modifying the behaviour of wild multi-insecticide-resistant West African mosquitoes. The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were separately applied to white polyester window netting and used in combination with either a permethrin-treated or untreated bednet in an experimental hut trial. Untreated nets were used because we wanted to test the effect of fungus alone and in combination with an insecticide to examine any potential additive or synergistic effects. Results In total, 1125 female mosquitoes were collected during the hut trial, mainly Culex quinquefasciatus Say. Unfortunately, not enough wild Anopheles gambiae Giles were collected to allow the effect the fungi may have on this malaria vector to be analysed. None of the treatment combinations caused significantly increased mortality of Cx. quinquefasciatus when compared to the control hut. The only significant behaviour modification found was a reduction in blood feeding by Cx. quinquefasciatus, caused by the permethrin and B. bassiana treatments, although no additive effect was seen in the B. bassiana and permethrin combination treatment. Beauveria bassiana did not repel blood foraging mosquitoes either in the laboratory or field. Conclusions This is the first time that an entomopathogenic fungus has been shown to reduce blood feeding of wild mosquitoes. This behaviour modification indicates that B. bassiana could potentially be a new

  17. Tick-Borne Transmission of Murine Gammaherpesvirus 68

    Directory of Open Access Journals (Sweden)

    Valeria Hajnická

    2017-10-01

    Full Text Available Herpesviruses are a large group of DNA viruses infecting mainly vertebrates. Murine gammaherpesvirus 68 (MHV68 is often used as a model in studies of the pathogenesis of clinically important human gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This rodent virus appears to be geographically widespread; however, its natural transmission cycle is unknown. Following detection of MHV68 in field-collected ticks, including isolation of the virus from tick salivary glands and ovaries, we investigated whether MHV68 is a tick-borne virus. Uninfected Ixodes ricinus ticks were shown to acquire the virus by feeding on experimentally infected laboratory mice. The virus survived tick molting, and the molted ticks transmitted the virus to uninfected laboratory mice on which they subsequently fed. MHV68 was isolated from the tick salivary glands, consistent with transmission via tick saliva. The virus survived in ticks without loss of infectivity for at least 120 days, and subsequently was transmitted vertically from one tick generation to the next, surviving more than 500 days. Furthermore, the F1 generation (derived from F0 infected females transmitted MHV68 to uninfected mice on which they fed, with MHV68 M3 gene transcripts detected in blood, lung, and spleen tissue of mice on which F1 nymphs and F1 adults engorged. These experimental data fulfill the transmission criteria that define an arthropod-borne virus (arbovirus, the largest biological group of viruses. Currently, African swine fever virus (ASFV is the only DNA virus recognized as an arbovirus. Like ASFV, MHV68 showed evidence of pathogenesis in ticks. Previous studies have reported MHV68 in free-living ticks and in mammals commonly infested with I. ricinus, and neutralizing antibodies to MHV68 have been detected in large mammals (e.g., deer including humans. Further studies are needed to determine if these reports are the result of tick-borne transmission

  18. Diversity of mosquitoes and larval breeding preference based on physico-chemical parameters in Western Ghats, Tamilnadu, India

    Directory of Open Access Journals (Sweden)

    Periyasamy Senthamarai Selvan

    2015-06-01

    areas at higher risk of disease transmission. The study identifies mosquito species density and diversity of culicine and anopheline larvae. Hence, this research contribution has more significance for basic biological research and developing control strategies for vector borne diseases.

  19. Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak Patterns

    Science.gov (United States)

    Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.

    2014-01-01

    We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused,10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.

  20. Inter-epidemic abundance and distribution of potential mosquito vectors for Rift Valley fever virus in Ngorongoro district, Tanzania.

    Science.gov (United States)

    Mweya, Clement N; Kimera, Sharadhuli I; Mellau, Lesakit S B; Mboera, Leonard E G

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that primarily affects ruminants but also has the capacity to infect humans. To determine the abundance and distribution of mosquito vectors in relation to their potential role in the virus transmission and maintenance in disease epidemic areas of Ngorongoro district in northern Tanzania. A cross-sectional entomological investigation was carried out before the suspected RVF outbreak in October 2012. Mosquitoes were sampled both outdoors and indoors using the Centre for Disease Control (CDC) light traps and Mosquito Magnets baited with attractants. Outdoor traps were placed in proximity with breeding sites and under canopy in banana plantations close to the sleeping places of animals. A total of 1,823 mosquitoes were collected, of which 87% (N=1,588) were Culex pipiens complex, 12% (N=226) Aedes aegypti, and 0.5% (N=9) Anopheles species. About two-thirds (67%; N=1,095) of C. pipiens complex and nearly 100% (N=225) of A. aegypti were trapped outdoors using Mosquito Magnets. All Anopheles species were trapped indoors using CDC light traps. There were variations in abundance of C. pipiens complex and A. aegypti among different ecological and vegetation habitats. Over three quarters (78%) of C. pipiens complex and most (85%) of the A. aegypti were trapped in banana and maize farms. Both C. pipiens complex and A. aegypti were more abundant in proximity with cattle and in semi-arid thorn bushes and lower Afro-montane. The highest number of mosquitoes was recorded in villages that were most affected during the RVF epidemic of 2007. Of the tested 150 pools of C. pipiens complex and 45 pools of A. aegypti, none was infected with RVF virus. These results provide insights into unique habitat characterisation relating to mosquito abundances and distribution in RVF epidemic-prone areas of Ngorongoro district in northern Tanzania.

  1. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    Science.gov (United States)

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  2. Nest Mosquito Trap quantifies contact rates between nesting birds and mosquitoes.

    Science.gov (United States)

    Caillouët, Kevin A; Riggan, Anna E; Rider, Mark; Bulluck, Lesley P

    2012-06-01

    Accurate estimates of host-vector contact rates are required for precise determination of arbovirus transmission intensity. We designed and tested a novel mosquito collection device, the Nest Mosquito Trap (NMT), to collect mosquitoes as they attempt to feed on unrestrained nesting birds in artificial nest boxes. In the laboratory, the NMT collected nearly one-third of the mosquitoes introduced to the nest boxes. We then used these laboratory data to estimate our capture efficiency of field-collected bird-seeking mosquitoes collected over 66 trap nights. We estimated that 7.5 mosquitoes per trap night attempted to feed on nesting birds in artificial nest boxes. Presence of the NMT did not have a negative effect on avian nest success when compared to occupied nest boxes that were not sampled with the trap. Future studies using the NMT may elucidate the role of nestlings in arbovirus transmission and further refine estimates of nesting bird and vector contact rates. © 2012 The Society for Vector Ecology.

  3. Potential for Zika virus introduction and transmission in resource limited countries in Africa and Asia-Pacific: A modeling study

    Science.gov (United States)

    German, Matthew; Creatore, Maria I.; Brent, Shannon; Watts, Alexander G.; Hay, Simon I.; Kulkarni, Manisha A.; Brownstein, John S.; Khan, Kamran

    2016-01-01

    Summary Background As the epidemic of Zika virus expands in the Americas, countries across Africa and the Asia-Pacific region are becoming increasingly susceptible to the importation and possible local spread of the virus. To support public health readiness, we aim to identify regions and times where the potential health, economic, and social effects from Zika virus are greatest, focusing on resource-limited countries in Africa and the Asia-Pacific region. Methods Our model combined transportation network analysis, ecological modelling of mosquito occurrences, and vector competence for flavivirus transmission, using data from the International Air Transport Association, entomological observations from Zika’s primary vector species, and climate conditions using WorldClim. We overlaid monthly flows of airline travellers arriving to Africa and the Asia-Pacific region from areas of the Americas suitable for year-round transmission of Zika virus with monthly maps of climatic suitability for mosquito-borne transmission of Zika virus within Africa and the Asia-Pacific region. Findings An estimated 2·6 billion people live in areas of Africa and the Asia-Pacific region where the presence of competent mosquito vectors and suitable climatic conditions could support local transmission of Zika virus. Countries with large volumes of travellers arriving from Zika affected areas of the Americas and large populations at risk of mosquito-borne Zika virus infection include, India (67 422 travellers arriving per year; 1·2 billion residents in potential Zika transmission areas), China (238 415 travellers; 242 million residents), Indonesia (13 865 travellers; 197 million residents), Philippines (35 635 travellers; 70 million residents), and Thailand (29 241 travellers; 59 million residents). Interpretation Many countries across Africa and the Asia-Pacific region are vulnerable to Zika virus. Strategic use of available health and human resources is essential to prevent or mitigate

  4. Heritable strategies for controlling insect vectors of disease.

    Science.gov (United States)

    Burt, Austin

    2014-01-01

    Mosquito-borne diseases are causing a substantial burden of mortality, morbidity and economic loss in many parts of the world, despite current control efforts, and new complementary approaches to controlling these diseases are needed. One promising class of new interventions under development involves the heritable modification of the mosquito by insertion of novel genes into the nucleus or of Wolbachia endosymbionts into the cytoplasm. Once released into a target population, these modifications can act to reduce one or more components of the mosquito population's vectorial capacity (e.g. the number of female mosquitoes, their longevity or their ability to support development and transmission of the pathogen). Some of the modifications under development are designed to be self-limiting, in that they will tend to disappear over time in the absence of recurrent releases (and hence are similar to the sterile insect technique, SIT), whereas other modifications are designed to be self-sustaining, spreading through populations even after releases stop (and hence are similar to traditional biological control). Several successful field trials have now been performed with Aedes mosquitoes, and such trials are helping to define the appropriate developmental pathway for this new class of intervention.

  5. Factors influencing infection and transmission of Anopheles gambiae densovirus (AgDNV in mosquitoes

    Directory of Open Access Journals (Sweden)

    Tapan K. Barik

    2016-11-01

    Full Text Available Anopheles gambiae densovirus (AgDNV is a potential microbial agent for paratransgenesis and gene transduction in An. gambiae, the major vector of human malaria in sub-Saharan Africa. Understanding the interaction between AgDNV and An. gambiae is critical for using AgDNV in a basic and applied manner for Anopheles gene manipulation. Here, we tested the effects of mosquito age, sex, blood feeding status, and potential for horizontal transmission using an enhanced green fluorescent protein (EGFP reporter AgDNV system. Neither mosquito age at infection nor feeding regime affected viral titers. Female mosquitoes were more permissive to viral infection than males. Despite low viral titers, infected males were able to venereally transmit virus to females during mating, where the virus was localized with the transferred sperm in the spermathecae. These findings will be useful for designing AgDNV-based strategies to manipulate Anopheles gambiae.

  6. Factors influencing infection and transmission of Anopheles gambiae densovirus (AgDNV) in mosquitoes.

    Science.gov (United States)

    Barik, Tapan K; Suzuki, Yasutsugu; Rasgon, Jason L

    2016-01-01

    Anopheles gambiae densovirus (AgDNV) is a potential microbial agent for paratransgenesis and gene transduction in An. gambiae , the major vector of human malaria in sub-Saharan Africa. Understanding the interaction between AgDNV and An. gambiae is critical for using AgDNV in a basic and applied manner for Anopheles gene manipulation. Here, we tested the effects of mosquito age, sex, blood feeding status, and potential for horizontal transmission using an enhanced green fluorescent protein (EGFP) reporter AgDNV system. Neither mosquito age at infection nor feeding regime affected viral titers. Female mosquitoes were more permissive to viral infection than males. Despite low viral titers, infected males were able to venereally transmit virus to females during mating, where the virus was localized with the transferred sperm in the spermathecae. These findings will be useful for designing AgDNV-based strategies to manipulate Anopheles gambiae .

  7. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Antonio-Nkondjio Christophe

    2012-10-01

    Full Text Available Abstract Background Rapid demographic growth in Douala city, Cameroon, has resulted in profound ecological and environmental changes. Although demographic changes can affect anopheline mosquito breeding sites, there is a lack of understanding about the epidemiological impact that such changes might have on vector ecology and malaria transmission. Methods A 12-month entomological study was conducted in a highly populated district of Douala called Ndogpassi. Adult mosquitoes were collected using two methods: 1 human landing catches (HLC; and 2 Centers for Disease Control and Prevention (CDC light traps; these methods were used twice monthly from January to December 2011. Mosquito genus and species were identified with morphological and molecular diagnostic tools. The sampling efficiency of the CDC light trap and HLC were compared. Anopheles gambiae infection with Plasmodium falciparum was detected using ELISA. Susceptibility to DDT, permethrin, and deltamethrin insecticides were also determined. Results A total of 6923 mosquitoes were collected by HLC (5198 and CDC light traps (1725. There was no equivalence in the sampling efficiency between light traps and human landing catches (P > 0.01. With 51% of the total, Culex was the most common, followed by Anopheles (26.14%, Mansonia (22.7% and Aedes (0.1%. An. gambiae ss (M form comprised ~98% of the total anophelines collected. An. gambiae had a biting rate of 0.25 to 49.25 bites per human per night, and was the only species found to be infected with P. falciparum. A P. falciparum infection rate of 0.5% was calculated (based on enzyme-linked immunosorbent assays using the circumsporozoite surface protein. The entomological inoculation rate was estimated at 31 infective bites per annum. Insecticide susceptibility tests on An. gambiae females revealed a mortality rate of 33%, 76% and 98% for DDT, permethrin and deltamethrin, respectively. The West African kdr allele (L1014F was detected in 38 of

  8. Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes

    OpenAIRE

    Campbell, Karen M.; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V.; Halsey, Eric S.; Laguna-Torres, V. Alberto; Yagui, Mart?n; Morrison, Amy C.; Lin, Chii-Dean; Scott, Thomas W.

    2015-01-01

    Background Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model devel...

  9. Outbreak of Zika Virus Infection, Chiapas State, Mexico, 2015, and First Confirmed Transmission by Aedes aegypti Mosquitoes in the Americas.

    Science.gov (United States)

    Guerbois, Mathilde; Fernandez-Salas, Ildefonso; Azar, Sasha R; Danis-Lozano, Rogelio; Alpuche-Aranda, Celia M; Leal, Grace; Garcia-Malo, Iliana R; Diaz-Gonzalez, Esteban E; Casas-Martinez, Mauricio; Rossi, Shannan L; Del Río-Galván, Samanta L; Sanchez-Casas, Rosa M; Roundy, Christopher M; Wood, Thomas G; Widen, Steven G; Vasilakis, Nikos; Weaver, Scott C

    2016-11-01

     After decades of obscurity, Zika virus (ZIKV) has spread through the Americas since 2015 accompanied by congenital microcephaly and Guillain-Barré syndrome. Although these epidemics presumably involve transmission by Aedes aegypti, no direct evidence of vector involvement has been reported, prompting speculation that other mosquitoes such as Culex quinquefasciatus could be involved.  We detected an outbreak of ZIKV infection in southern Mexico in late 2015. Sera from suspected ZIKV-infected patients were analyzed for viral RNA and antibodies. Mosquitoes were collected in and around patient homes and tested for ZIKV.  Of 119 suspected ZIKV-infected patients, 25 (21%) were confirmed by RT-PCR of serum collected 1-8 days after the onset of signs and symptoms including rash, arthralgia, headache, pruritus, myalgia, and fever. Of 796 mosquitoes collected, A. aegypti yielded ZIKV detection by RT-PCR in 15 of 55 pools (27.3%). No ZIKV was detected in C. quinquefasciatus ZIKV sequences derived from sera and mosquitoes showed a monophyletic relationship suggestive of a point source introduction from Guatemala.  These results demonstrate the continued, rapid northward progression of ZIKV into North America with typically mild disease manifestations, and implicate A. aegypti for the first time as a principal vector in North America. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Canepa, Gaspar E; Kamath, Nitin; Pavlovic, Noelle V; Mu, Jianbing; Ramphul, Urvashi N; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-12-08

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.

  11. An attempt of rationalization of tick-borne disease prevention using a multifunctional container for Tick Twister ®

    Directory of Open Access Journals (Sweden)

    Barbara Oczko-Grzesik

    2013-12-01

    Full Text Available Ticks are reservoir and transmission vectors of many bacteria, viruses and parasites, which are pathogenic for humans. Early and correct tick removal is crucial as prevention of tick-borne diseases. The aim of the study is an attempt at rationalization of tick-borne disease prevention using a multifunctional container for Tick Twister®. In practice, it should enable people to use Tick Twister® in all circumstances contributing to the improvement of efficiency in tick-borne diseases prevention, and as a result, to a decrease in their frequency and after effects.

  12. Mosquito-borne illnesses in travelers: a review of risk and prevention.

    Science.gov (United States)

    Mirzaian, Edith; Durham, Melissa J; Hess, Karl; Goad, Jeffery A

    2010-10-01

    In 2008, residents of the United States made 12 million visits to developing countries in Asia, South America, Central America, Oceania, the Middle East, and Africa. Due to the presence of Anopheles, Aedes, and Culex mosquitoes, travel to these destinations poses a risk for diseases such as malaria, yellow fever, and Japanese encephalitis that cause significant morbidity and mortality. To gain a better understanding of the major emerging and established travel-related infectious diseases transmitted principally by mosquitoes and the measures for their prevention in U.S. residents who travel to these developing countries, we performed a literature search of the PubMed and MEDLINE databases (January 1950-February 2010). Information from the Centers for Disease Control and Prevention and the World Health Organization and relevant references from the publications identified were also reviewed. Vaccines for the prevention of Japanese encephalitis and yellow fever are commercially available to U.S. travelers and should be administered when indicated. However, the prevention of malaria, dengue fever, chikungunya, and West Nile virus relies on personal insect protection measures and chemoprophylaxis for malaria. As the rate of international travel continues to rise, individuals traveling overseas should be made aware of the risk of various infectious diseases and the importance of prevention. Physicians, pharmacists, nurses, and other practitioners can play a vital role in disease education and prevention, including the administration of vaccines and provision of chemoprophylactic drugs.

  13. A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector.

    Science.gov (United States)

    Sardar, Tridip; Rana, Sourav; Bhattacharya, Sabyasachi; Al-Khaled, Kamel; Chattopadhyay, Joydev

    2015-05-01

    In the present investigation, three mathematical models on a common single strain mosquito-transmitted diseases are considered. The first one is based on ordinary differential equations, and other two models are based on fractional order differential equations. The proposed models are validated using published monthly dengue incidence data from two provinces of Venezuela during the period 1999-2002. We estimate several parameters of these models like the order of the fractional derivatives (in case of two fractional order systems), the biting rate of mosquito, two probabilities of infection, mosquito recruitment and mortality rates, etc., from the data. The basic reproduction number, R0, for the ODE system is estimated using the data. For two fractional order systems, an upper bound for, R0, is derived and its value is obtained using the published data. The force of infection, and the effective reproduction number, R(t), for the three models are estimated using the data. Sensitivity analysis of the mosquito memory parameter with some important responses is worked out. We use Akaike Information Criterion (AIC) to identify the best model among the three proposed models. It is observed that the model with memory in both the host, and the vector population provides a better agreement with epidemic data. Finally, we provide a control strategy for the vector-borne disease, dengue, using the memory of the host, and the vector. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Optimization of formulation and delivery technology of entomopathogenic fungi for malaria vector control

    NARCIS (Netherlands)

    Mnyone, L.L.

    2010-01-01

    Vector control is one of the most effective means of controlling mosquito-borne diseases such as malaria. The broad goal of this strategy is to protect individuals against infective mosquito bites and, at the community level, to reduce the intensity of disease transmission. With the deployment of

  15. Mosquito fauna and arbovirus surveillance in a coastal Mississippi community after Hurricane Katrina.

    Science.gov (United States)

    Foppa, Ivo M; Evans, Christopher L; Wozniak, Arthur; Wills, William

    2007-06-01

    Hurricane Katrina caused massive destruction and flooding along the Gulf Coast in August 2005. We collected mosquitoes and tested them for arboviral infection in a severely hurricane-damaged community to determine species composition and to assess the risk of a mosquito-borne epidemic disease in that community about 6 wk after the landfall of Hurricane Katrina. Light-trap collections yielded 8,215 mosquitoes representing 19 species, while limited gravid-trap collections were not productive. The most abundant mosquito species was Culex nigripalpus, which constituted 73.6% of all specimens. No arboviruses were detected in any of the mosquitoes collected in this survey, which did not support the assertion that human risk for arboviral infection was increased in the coastal community 6 wk after the hurricane.

  16. Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study.

    Science.gov (United States)

    Bogoch, Isaac I; Brady, Oliver J; Kraemer, Moritz U G; German, Matthew; Creatore, Maria I; Brent, Shannon; Watts, Alexander G; Hay, Simon I; Kulkarni, Manisha A; Brownstein, John S; Khan, Kamran

    2016-11-01

    As the epidemic of Zika virus expands in the Americas, countries across Africa and the Asia-Pacific region are becoming increasingly susceptible to the importation and possible local spread of the virus. To support public health readiness, we aim to identify regions and times where the potential health, economic, and social effects from Zika virus are greatest, focusing on resource-limited countries in Africa and the Asia-Pacific region. Our model combined transportation network analysis, ecological modelling of mosquito occurrences, and vector competence for flavivirus transmission, using data from the International Air Transport Association, entomological observations from Zika's primary vector species, and climate conditions using WorldClim. We overlaid monthly flows of airline travellers arriving to Africa and the Asia-Pacific region from areas of the Americas suitable for year-round transmission of Zika virus with monthly maps of climatic suitability for mosquito-borne transmission of Zika virus within Africa and the Asia-Pacific region. An estimated 2·6 billion people live in areas of Africa and the Asia-Pacific region where the presence of competent mosquito vectors and suitable climatic conditions could support local transmission of Zika virus. Countries with large volumes of travellers arriving from Zika virus-affected areas of the Americas and large populations at risk of mosquito-borne Zika virus infection include India (67 422 travellers arriving per year; 1·2 billion residents in potential Zika transmission areas), China (238 415 travellers; 242 million residents), Indonesia (13 865 travellers; 197 million residents), Philippines (35 635 travellers; 70 million residents), and Thailand (29 241 travellers; 59 million residents). Many countries across Africa and the Asia-Pacific region are vulnerable to Zika virus. Strategic use of available health and human resources is essential to prevent or mitigate the health, economic, and social

  17. Fauna of mosquito larvae (Diptera: Culicida) in Asir Provence, Kingdom of Saudi Arabia.

    Science.gov (United States)

    Al Ashry, Hamdy A; Kenawy, Mohamed A; Shobrak, Mohammed

    2014-04-01

    An entomological survey was undertaken for one year to update the mosquito fauna of Asir Region, Kingdom of Saudi Arabia. A total of 31 species of 8 genera were reported of which genus Culex (55%) was the most common. Most of collected larvae (59%) belonged to genus Culex (+ Lutzia) followed by Culiseta (26%), Anopheles (13%) and Aedine spp. (2%). Cx. pipiens (39%) and Cs. longiareolata (26.%) were generally the most abundant of all collected larvae. Of the Anopheles spp., An. dthali was common (40%), of Culex spp., Cx. pipiens was predominating (66%) and of Aedine spp., St. aegypti was predominating (71%). Four species: An. fluviatilis, Cx. mattinglyi, Cx. arbieeni and Cx. mimeticus were new reports in Asir Region and Cx. wigglesworthi recorded for the first time from the kingdom. Larvae were more common in low- and highlands than in the moderately altitude areas. In general all species prefer stagnant water but with the exception of Aedine larvae (altogether), the other species prefer presence of algae, vegetation and shade and absence of turbidity (except Culex spp.). A total of 98 different forms of association were reported of which 9 forms were common. All genera breed year round with peaks of abundance during spring for Anopheles spp. and Culex spp. and during winter for Aedine spp. and Cs. longiareolata. A complete list of mosquito fauna of Asir Region comprising 45 spp. was presented based on the present and previous surveys. The study concluded that the occurrence and prevalence of mosquito species mainly the disease vectors in Asir carry the thread of maintaining and transmission of several mosquito-borne diseases.

  18. Mathematical model of Zika virus with vertical transmission

    Directory of Open Access Journals (Sweden)

    F.B. Agusto

    2017-05-01

    Full Text Available Zika is a flavivirus transmitted to humans through either the bites of infected Aedes mosquitoes or sexual transmission. Zika has been linked to congenital anomalies such as microcephaly. In this paper, we analyze a new system of ordinary differential equations which incorporates human vertical transmission of Zika virus, the birth of babies with microcephaly and asymptomatically infected individuals. The Zika model is locally and globally asymptotically stable when the basic reproduction number is less than unity. Our model shows that asymptomatic individuals amplify the disease burden in the community, and the most important parameters for ZIKV spread are the death rate of mosquitoes, the mosquito biting rate, the mosquito recruitment rate, and the transmission per contact to mosquitoes and to adult humans. Scenario exploration indicates that personal-protection is a more effective control strategy than mosquito-reduction strategy. It also shows that delaying conception reduces the number of microcephaly cases, although this does little to prevent Zika transmission in the broader community. However, by coupling aggressive vector control and personal protection use, it is possible to reduce both microcephaly and Zika transmission. 2000 Mathematics Subject Classifications: 92B05, 93A30, 93C15. Keywords: Zika virus, Vertical transmission, Microcephaly, Stability, Control

  19. Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector-control interventions

    NARCIS (Netherlands)

    Killeen, G.F.; Knols, B.G.J.; Gu, W.D.

    2003-01-01

    Most malaria transmission models assume enclosed systems of people, parasites, and vectors in which neither emigration nor immigration of mosquitoes is considered. This simplification has facilitated insightful analyses but has substantial limitations for evaluating control measures in the field.

  20. Experimental transmission of Zika virus by mosquitoes from central Europe.

    Science.gov (United States)

    Heitmann, Anna; Jansen, Stephanie; Lühken, Renke; Leggewie, Mayke; Badusche, Marlis; Pluskota, Björn; Becker, Norbert; Vapalahti, Olli; Schmidt-Chanasit, Jonas; Tannich, Egbert

    2017-01-12

    Mosquitoes collected in Germany in 2016, including Culex pipiens pipiens biotype pipiens, Culex torrentium and Aedes albopictus, as well as Culex pipiens pipiens biotype molestus (in colony since 2011) were experimentally infected with Zika virus (ZIKV) at 18 °C or 27 °C. None of the Culex taxa showed vector competence for ZIKV. In contrast, Aedes albopictus were susceptible for ZIKV but only at 27 °C, with transmission rates similar to an Aedes aegypti laboratory colony tested in parallel. This article is copyright of The Authors, 2017.

  1. Establishment of a mouse model for the complete mosquito-mediated transmission cycle of Zika virus.

    Directory of Open Access Journals (Sweden)

    Yi-Ping Kuo

    2018-04-01

    Full Text Available Zika virus (ZIKV is primarily transmitted by Aedes mosquitoes in the subgenus Stegomyia but can also be transmitted sexually and vertically in humans. STAT1 is an important downstream factor that mediates type I and II interferon signaling. In the current study, we showed that mice with STAT1 knockout (Stat1-/- were highly susceptible to ZIKV infection. As low as 5 plaque-forming units of ZIKV could cause viremia and death in Stat1-/- mice. ZIKV replication was initially detected in the spleen but subsequently spread to the brain with concomitant reduction of the virus in the spleen in the infected mice. Furthermore, ZIKV could be transmitted from mosquitoes to Stat1-/- mice back to mosquitoes and then to naïve Stat1-/- mice. The 50% mosquito infectious dose of viremic Stat1-/- mouse blood was close to 810 focus-forming units (ffu/ml. Our further studies indicated that the activation of macrophages and conventional dendritic cells were likely critical for the resolution of ZIKV infection. The newly developed mouse and mosquito transmission models for ZIKV infection will be useful for the evaluation of antiviral drugs targeting the virus, vector, and host.

  2. Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns.

    Directory of Open Access Journals (Sweden)

    Assaf Anyamba

    Full Text Available We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.

  3. Modelling the potential spatial distribution of mosquito species using three different techniques

    NARCIS (Netherlands)

    Cianci, D.; Hartemink, N.; Ibáñez-Justicia, A.

    2015-01-01

    Background: Models for the spatial distribution of vector species are important tools in the assessment of the risk of establishment and subsequent spread of vector-borne diseases. The aims of this study are to define the environmental conditions suitable for several mosquito species through species

  4. Spatial Analysis of West Nile Virus: Predictive Risk Modeling of a Vector-borne Infectious Disease in Illinois by Means of NASA Earth Observation Systems

    Science.gov (United States)

    Renneboog, Nathan; Gathings, David; Hemmings, Sarah; Makasa, Emmanuel; Omer, Wigdan; Tipre, Meghan; Wright, Catherine; McAllister, Marilyn; Luvall, Jeffrey C.

    2009-01-01

    West Nile Virus is a mosquito-borne virus of the family Flaviviridae. It infects birds and various mammals, including humans, and can cause encephalitis that may prove fatal, notably among vulnerable populations. Since its identification in New York City in 1999, WNV has become established in a broad range of ecological settings throughout North America, infecting more than 25,300 people and killing 1133 as of 2008 (CDC,2009). WNV is transmitted by mosquitoes that feed on infected birds. As a result, the degree of human infection depends on local ecology and human exposure. This study hypothesizes that remote sensing and GIS can be used to analyze environmental determinants of WNV transmission, such as climate, elevation, land cover, and vegetation densities, to map areas of WNV risk for surveillance and intervention.

  5. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis.

    Science.gov (United States)

    Sun, Yi-Cheng; Jarrett, Clayton O; Bosio, Christopher F; Hinnebusch, B Joseph

    2014-05-14

    Yersinia pestis is an arthropod-borne bacterial pathogen that evolved recently from Yersinia pseudotuberculosis, an enteric pathogen transmitted via the fecal-oral route. This radical ecological transition can be attributed to a few discrete genetic changes from a still-extant recent ancestor, thus providing a tractable case study in pathogen evolution and emergence. Here, we determined the genetic and mechanistic basis of the evolutionary adaptation of Y. pestis to flea-borne transmission. Remarkably, only four minor changes in the bacterial progenitor, representing one gene gain and three gene losses, enabled transmission by flea vectors. All three loss-of-function mutations enhanced cyclic-di-GMP-mediated bacterial biofilm formation in the flea foregut, which greatly increased transmissibility. Our results suggest a step-wise evolutionary model in which Y. pestis emerged as a flea-borne clone, with each genetic change incrementally reinforcing the transmission cycle. The model conforms well to the ecological theory of adaptive radiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Community Movement in Applying Mosquito Net on House Ventilations: An Initial Support for Green Architecture to Decrease Dengue Disease in Bandung Indonesia

    Science.gov (United States)

    Rinawan, F. R.; Dewi, I. P. P.; Haifa, G. Z.; Suharno, K. D.; Oktavinus, K.; Lyn, P. S.

    2017-10-01

    Green architecture still has risk to dengue disease when trees cover house roofs’ gutter. This study was aimed to continue a geographical information system (GIS) and remote sensing (RS) study on roofs factor association with dengue disease by initiating community movement in applyingmosquito net on house ventilations to cut the disease transmission and mosquito breeding sites inside house. Our methods was an operational research in which improvement of interventions, policies and regulations towards dengue disease prevention is our intended endpoint. Several steps were conducted such as: (1) research problems formulation from GIS-RS analysis from previous phase research in Bandung city, (2) informal and formal approach to community leaders and primary healthcare centre (Puskesmas), (3) Video education and focus group discussion (FGD), (4) initial application of mosquito nets on house in communities; and (5) advocacy to Mayor of Bandung city (was on progress).Our study resulted several supports: one of sub-city leaders (Camat) in the city, village leaders (Lurah), and sub-village leaders (Ketua RW) of 5 villages (kelurahan), one kelurahan which mainly comprised formal settlements needed more efforts, which was experts on dengue disease from university to directly explain the mosquito nets application to its community. Informal leaders in all kelurahan’s community suggested only mothers movement was not enough, thus, youths in community was mentioned to help the community movement on the mosquito nets application.

  7. Bovine Ephemeral Fever As A Disease Related To Climate Change

    Directory of Open Access Journals (Sweden)

    Indrawati Sendow

    2013-06-01

    Full Text Available Bovine Ephemeral Fever (BEF is one of arbovirus diseases infecting in ruminants especially cattle and buffaloes, which is transmitted by mosquito vectors. In general, vector borne disease is also related to climate change, that mosquito as a vector will significantly increase when the environment temperature increases. The disease was found in many countries in Asia, Africa and Australia. The clinical sign of the disease such as fever to paralysis causes economical impact to the farmer, eventhough the mortality is very low. This review will discuss the disease in relation to climate change, which affects vector population that spread the disease. The more population of vector is the higher chance of animal to be infected. This condition describes that the spread of BEF will depend on some factors included the increase of vectors, the availability of susceptible host and vector media facilities, climate condition and supportive ecology. This paper will discuss the feature of BEF, mode of transmission, the impact of environment and climate change, disease prevention and control, and other aspects to prevent further economical impact. It will also discuss how to the transmission, prevention and control of disease BEF. The information can be taken as an input for policy makers to prevent BEF infection in Indonesia.

  8. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.

    Science.gov (United States)

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L

    2017-01-01

    Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including

  9. Mosquito-borne arbovirus surveillance at selected sites in diverse ecological zones of Kenya; 2007 – 2012

    Science.gov (United States)

    2013-01-01

    Background Increased frequency of arbovirus outbreaks in East Africa necessitated the determination of distribution of risk by entomologic arbovirus surveillance. A systematic vector surveillance programme spanning 5 years and covering 11 sites representing seven of the eight provinces in Kenya and located in diverse ecological zones was carried out. Methods Mosquitoes were sampled bi-annually during the wet seasons and screened for arboviruses. Mosquitoes were identified to species, pooled by species, collection date and site and screened for arboviruses by isolation in cell culture and/or RT-PCR screening and sequencing. Results Over 450,000 mosquitoes in 15,890 pools were screened with 83 viruses being detected/isolated that include members of the alphavirus, flavivirus and orthobunyavirus genera many of which are known to be of significant public health importance in the East African region. These include West Nile, Ndumu, Sindbis, Bunyamwera, Pongola and Usutu viruses detected from diverse sites. Ngari virus, which was associated with hemorrhagic fever in northern Kenya in 1997/98 was isolated from a pool of Anopheles funestus sampled from Tana-delta and from Aedes mcintoshi from Garissa. Insect only flaviviruses previously undescribed in Kenya were also isolated in the coastal site of Rabai. A flavivirus most closely related to the Chaoyang virus, a new virus recently identified in China and two isolates closely related to Quang Binh virus previously unreported in Kenya were also detected. Conclusion Active transmission of arboviruses of public health significance continues in various parts of the country with possible undetermined human impact. Arbovirus activity was highest in the pastoralist dominated semi-arid to arid zones sites of the country where 49% of the viruses were isolated suggesting a role of animals as amplifiers and indicating the need for improved arbovirus disease diagnosis among pastoral communities. PMID:23663381

  10. Quinine, mosquitoes and empire: reassembling malaria in British India, 1890-1910.

    Science.gov (United States)

    Roy, Rohan Deb

    2013-01-01

    The drug quinine figured as an object of enforced consumption in British India between the late 1890s and the 1910s, when the corresponding diagnostic category malaria itself was redefined as a mosquito-borne fever disease. This article details an overlapping milieu in which quinine, mosquitoes and malaria emerged as intrinsic components of shared and symbiotic histories. It combines insights from new imperial histories, constructivism in the histories of medicine and literature about non-humans in science studies to examine the ways in which histories of insects, drugs, disease and empire interacted and shaped one another. Firstly, it locates the production of historical intimacies between quinine, malaria and mosquitoes within the exigencies and apparatuses of imperial rule. In so doing, it explores the intersections between the worlds of colonial governance, medical knowledge, vernacular markets and pharmaceutical business. Secondly, it outlines ways to narrate characteristics and enabling properties of non-humans (such as quinines and mosquitoes) while retaining a constructivist critique of scientism and empire. Thirdly, it shows how empire itself was reshaped and reinforced while occasioning the proliferation of categories and entities like malaria, quinine and mosquitoes.

  11. An updated checklist of mosquito species (Diptera: Culicidae) from Madagascar

    Science.gov (United States)

    Tantely, Michaël Luciano; Le Goff, Gilbert; Boyer, Sébastien; Fontenille, Didier

    2016-01-01

    An updated checklist of 235 mosquito species from Madagascar is presented. The number of species has increased considerably compared to previous checklists, particularly the last published in 2003 (178 species). This annotated checklist provides concise information on endemism, taxonomic position, developmental stages, larval habitats, distribution, behavior, and vector-borne diseases potentially transmitted. The 235 species belong to 14 genera: Aedeomyia (3 species), Aedes (35 species), Anopheles (26 species), Coquillettidia (3 species), Culex (at least 50 species), Eretmapodites (4 species), Ficalbia (2 species), Hodgesia (at least one species), Lutzia (one species), Mansonia (2 species), Mimomyia (22 species), Orthopodomyia (8 species), Toxorhynchites (6 species), and Uranotaenia (73 species). Due to non-deciphered species complexes, several species remain undescribed. The main remarkable characteristic of Malagasy mosquito fauna is the high biodiversity with 138 endemic species (59%). Presence and abundance of species, and their association, in a given location could be a bio-indicator of environmental particularities such as urban, rural, forested, deforested, and mountainous habitats. Finally, taking into account that Malagasy culicidian fauna includes 64 species (27%) with a known medical or veterinary interest in the world, knowledge of their biology and host preference summarized in this paper improves understanding of their involvement in pathogen transmission in Madagascar. PMID:27101839

  12. An updated checklist of mosquito species (Diptera: Culicidae from Madagascar

    Directory of Open Access Journals (Sweden)

    Tantely Michaël Luciano

    2016-01-01

    Full Text Available An updated checklist of 235 mosquito species from Madagascar is presented. The number of species has increased considerably compared to previous checklists, particularly the last published in 2003 (178 species. This annotated checklist provides concise information on endemism, taxonomic position, developmental stages, larval habitats, distribution, behavior, and vector-borne diseases potentially transmitted. The 235 species belong to 14 genera: Aedeomyia (3 species, Aedes (35 species, Anopheles (26 species, Coquillettidia (3 species, Culex (at least 50 species, Eretmapodites (4 species, Ficalbia (2 species, Hodgesia (at least one species, Lutzia (one species, Mansonia (2 species, Mimomyia (22 species, Orthopodomyia (8 species, Toxorhynchites (6 species, and Uranotaenia (73 species. Due to non-deciphered species complexes, several species remain undescribed. The main remarkable characteristic of Malagasy mosquito fauna is the high biodiversity with 138 endemic species (59%. Presence and abundance of species, and their association, in a given location could be a bio-indicator of environmental particularities such as urban, rural, forested, deforested, and mountainous habitats. Finally, taking into account that Malagasy culicidian fauna includes 64 species (27% with a known medical or veterinary interest in the world, knowledge of their biology and host preference summarized in this paper improves understanding of their involvement in pathogen transmission in Madagascar.

  13. Zika virus infection: Past and present of another emerging vector-borne disease.

    Science.gov (United States)

    Sakkas, Hercules; Economou, Vangelis; Papadopoulou, Chrissanthy

    2016-01-01

    Zika virus infection is an emerging mosquito-borne disease, first identified in Uganda in 1947. It is caused by the Zika arbovirus, and transmitted by the bites of infected mosquitoes of the genus Aedes. For almost half a century, the Zika virus was reported as the causative agent of sporadic human infections. In 2007, the Zika virus emerged outside Asia and Africa causing an epidemic on the Island of Yap in Micronesia. The manifestation of the newly acquired human infection varies from asymptomatic to self-limiting acute febrile illness with symptoms and clinical features similar to those caused by the Dengue virus ('Dengue-like syndrome'). The real-time PCR and serological methods have been successfully applied for the diagnosis of the disease. The treatment is symptomatic, since there is no specific antiviral treatment or a vaccine. During the recent outbreaks in French Polynesia and Brazil, incidents of Guillain-Barrι syndrome and microcephaly were associated with Zika virus infection, giving rise to fears of further global spread of the virus. Prevention and vector control strategies have to be urgently implemented by national health authorities in order to contain future outbreaks in vulnerable populations. This review summarizes the existing information on Zika virus characteristics, pathogenesis and epidemiology, the available methods for the diagnosis of Zika virus infection and recent approaches for prevention and control.

  14. Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors.

    Science.gov (United States)

    Murugan, Kadarkarai; Wei, Jiang; Alsalhi, Mohamad Saleh; Nicoletti, Marcello; Paulpandi, Manickam; Samidoss, Christina Mary; Dinesh, Devakumar; Chandramohan, Balamurugan; Paneerselvam, Chellasamy; Subramaniam, Jayapal; Vadivalagan, Chithravel; Wei, Hui; Amuthavalli, Pandiyan; Jaganathan, Anitha; Devanesan, Sandhanasamy; Higuchi, Akon; Kumar, Suresh; Aziz, Al Thabiani; Nataraj, Devaraj; Vaseeharan, Baskaralingam; Canale, Angelo; Benelli, Giovanni

    2017-02-01

    A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An. stephensi, LC 50 ranged from 2.563 ppm (1st instar larva) to 6.430 ppm (pupa), and Ae. aegypti, LC 50 ranged from 3.231 ppm (1st instar larva) to 7.545 ppm (pupa). MNP IC 50 on P. falciparum were 83.32 μg ml -1 (CQ-s) and 87.47 μg ml -1 (CQ-r). However, the in vivo efficacy of MNP on Plasmodium berghei was low if compared to CQ-based treatments. Moderate cytotoxicity was detected on Vero cells post-treatment with MNP doses lower than 4 μg ml -1 . MNP evaluated at 2-8 μg ml -1 inhibited DEN-2 replication inhibiting the expression of the envelope (E) protein. In conclusion, our findings represent the first report about the use of MNP in medical and veterinary entomology, proposing them as suitable materials to develop reliable tools to combat mosquito-borne diseases.

  15. Driven to extinction? The ethics of eradicating mosquitoes with gene-drive technologies.

    Science.gov (United States)

    Pugh, Jonathan

    2016-09-01

    Mosquito-borne diseases represent a significant global disease burden, and recent outbreaks of such diseases have led to calls to reduce mosquito populations. Furthermore, advances in 'gene-drive' technology have raised the prospect of eradicating certain species of mosquito via genetic modification. This technology has attracted a great deal of media attention, and the idea of using gene-drive technology to eradicate mosquitoes has been met with criticism in the public domain. In this paper, I shall dispel two moral objections that have been raised in the public domain against the use of gene-drive technologies to eradicate mosquitoes. The first objection invokes the concept of the 'sanctity of life' in order to claim that we should not drive an animal to extinction. In response, I follow Peter Singer in raising doubts about general appeals to the sanctity of life, and argue that neither individual mosquitoes nor mosquitoes species considered holistically are appropriately described as bearing a significant degree of moral status. The second objection claims that seeking to eradicate mosquitoes amounts to displaying unacceptable degrees of hubris. Although I argue that this objection also fails, I conclude by claiming that it raises the important point that we need to acquire more empirical data about, inter alia, the likely effects of mosquito eradication on the ecosystem, and the likelihood of gene-drive technology successfully eradicating the intended mosquito species, in order to adequately inform our moral analysis of gene-drive technologies in this context. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. A spatial model of mosquito host-seeking behavior.

    Directory of Open Access Journals (Sweden)

    Bree Cummins

    Full Text Available Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  17. Spatial repellency screening in a high-throughput apparatus with Aedes aegypti and Anopheles gambiae

    Science.gov (United States)

    Spatial repellents are essential for personal protection against mosquitoes, such as Aedes aegypti and Anopheles gambiae, to reduce annoyance biting and transmission of mosquito-borne diseases. The number of safe and effective repellents, including DEET, picaridin, and IR3535, is limited and contin...

  18. Genetic shifting: a novel approach for controlling vector-borne diseases.

    Science.gov (United States)

    Powell, Jeffrey R; Tabachnick, Walter J

    2014-06-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Inter-epidemic abundance and distribution of potential mosquito vectors for Rift Valley fever virus in Ngorongoro district, Tanzania

    Directory of Open Access Journals (Sweden)

    Clement N. Mweya

    2015-01-01

    Full Text Available Background: Rift Valley fever (RVF is a mosquito-borne viral zoonosis that primarily affects ruminants but also has the capacity to infect humans. Objective: To determine the abundance and distribution of mosquito vectors in relation to their potential role in the virus transmission and maintenance in disease epidemic areas of Ngorongoro district in northern Tanzania. Methods: A cross-sectional entomological investigation was carried out before the suspected RVF outbreak in October 2012. Mosquitoes were sampled both outdoors and indoors using the Centre for Disease Control (CDC light traps and Mosquito Magnets baited with attractants. Outdoor traps were placed in proximity with breeding sites and under canopy in banana plantations close to the sleeping places of animals. Results: A total of 1,823 mosquitoes were collected, of which 87% (N=1,588 were Culex pipiens complex, 12% (N=226 Aedes aegypti, and 0.5% (N=9 Anopheles species. About two-thirds (67%; N=1,095 of C. pipiens complex and nearly 100% (N=225 of A. aegypti were trapped outdoors using Mosquito Magnets. All Anopheles species were trapped indoors using CDC light traps. There were variations in abundance of C. pipiens complex and A. aegypti among different ecological and vegetation habitats. Over three quarters (78% of C. pipiens complex and most (85% of the A. aegypti were trapped in banana and maize farms. Both C. pipiens complex and A. aegypti were more abundant in proximity with cattle and in semi-arid thorn bushes and lower Afro-montane. The highest number of mosquitoes was recorded in villages that were most affected during the RVF epidemic of 2007. Of the tested 150 pools of C. pipiens complex and 45 pools of A. aegypti, none was infected with RVF virus. Conclusions: These results provide insights into unique habitat characterisation relating to mosquito abundances and distribution in RVF epidemic-prone areas of Ngorongoro district in northern Tanzania.

  20. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    OpenAIRE

    Lef?vre, Thierry; Vantaux, Am?lie; Dabir?, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies reve...

  1. Solid Waste/Disease Relationships, A Literature Survey.

    Science.gov (United States)

    Hanks, Thrift G.

    Presented is a comprehensive survey of the literature on the relationships between disease and solid wastes. Diseases are grouped on the basis of waste type or disease vector, such as chemical waste, human fecal waste, animal fecal waste, rodent-borne disease, mosquito-borne disease and miscellaneous communicable disease. The following format is…

  2. GLOBE Observer Mosquito Habitat Mapper: Geoscience and Public Health Connections

    Science.gov (United States)

    Low, R.; Boger, R. A.

    2017-12-01

    The global health crisis posed by vector-borne diseases is so great in scope that it is clearly insurmountable without the active help of tens-or hundreds- of thousands of individuals, working to identify and eradicate risk in communities around the world. Mobile devices equipped with data collection capabilities and visualization opportunities are lowering the barrier for participation in data collection efforts. The GLOBE Observer Mosquito Habitat Mapper (MHM) provides citizen scientists with an easy to use mobile platform to identify and locate mosquito breeding sites in their community. The app also supports the identification of vector taxa in the larvae development phase via a built-in key, which provides important information for scientists and public health officials tracking the rate of range expansion of invasive vector species and associated health threats. GO Mosquito is actively working with other citizen scientist programs across the world to ensure interoperability of data through standardization of metadata fields specific to vector monitoring, and through the development of APIs that allow for data exchange and shared data display through a UN-sponsored proof of concept project, Global Mosquito Alert. Avenues of application for mosquito vector data-both directly, by public health entities, and by modelers who employ remotely sensed environmental data to project mosquito population dynamics and epidemic disease will be featured.

  3. Knowledge, Attitude and Practices of Vector-Borne Disease Prevention during the Emergence of a New Arbovirus: Implications for the Control of Chikungunya Virus in French Guiana.

    Directory of Open Access Journals (Sweden)

    Camille Fritzell

    2016-11-01

    Full Text Available During the last decade, French Guiana has been affected by major dengue fever outbreaks. Although this arbovirus has been a focus of many awareness campaigns, very little information is available about beliefs, attitudes and behaviors regarding vector-borne diseases among the population of French Guiana. During the first outbreak of the chikungunya virus, a quantitative survey was conducted among high school students to study experiences, practices and perceptions related to mosquito-borne diseases and to identify socio-demographic, cognitive and environmental factors that could be associated with the engagement in protective behaviors.A cross-sectional survey was administered in May 2014, with a total of 1462 students interviewed. Classrooms were randomly selected using a two-stage selection procedure with cluster samples. A multiple correspondence analysis (MCA associated with a hierarchical cluster analysis and with an ordinal logistic regression was performed. Chikungunya was less understood and perceived as a more dreadful disease than dengue fever. The analysis identified three groups of individual protection levels against mosquito-borne diseases: "low" (30%, "moderate" (42% and "high" (28%". Protective health behaviors were found to be performed more frequently among students who were female, had a parent with a higher educational status, lived in an individual house, and had a better understanding of the disease.This study allowed us to estimate the level of protective practices against vector-borne diseases among students after the emergence of a new arbovirus. These results revealed that the adoption of protective behaviors is a multi-factorial process that depends on both sociocultural and cognitive factors. These findings may help public health authorities to strengthen communication and outreach strategies, thereby increasing the adoption of protective health behaviors, particularly in high-risk populations.

  4. Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes.

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Hoti, S L

    2014-12-01

    Diseases transmitted by blood-feeding mosquitoes, such as dengue fever, dengue hemorrhagic fever, Japanese encephalitis, malaria, and filariasis, are increasing in prevalence, particularly in tropical and subtropical zones. To control mosquitoes and mosquito-borne diseases, which have worldwide health and economic impacts, synthetic insecticide-based interventions are still necessary, particularly in situations of epidemic outbreak and sudden increases of adult mosquitoes. Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Heliotropium indicum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. Adult mosquitoes were exposed to varying concentrations of aqueous extract of H. indicum and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of H. indicum, and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the adult of A. stephensi (lethal dose (LD)₅₀ = 26.712 μg/mL; LD₉₀ = 49.061 μg/mL), A. aegypti (LD₅₀ = 29.626 μg/mL; LD₉₀ = 54.269 μg/mL), and C. quinquefasciatus (LD₅₀ = 32.077 μg/mL; LD₉₀ = 58.426 μg/mL), respectively. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H.indicum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of

  5. Hydroclimatic drivers, Water-borne Diseases, and Population Vulnerability in Bengal Delta

    Science.gov (United States)

    Akanda, A. S.; Jutla, A. S.

    2012-04-01

    Water-borne diarrheal disease outbreaks in the Bengal Delta region, such as cholera, rotavirus, and dysentery, show distinct seasonal peaks and spatial signatures in their origin and progression. However, the mechanisms behind these seasonal phenomena, especially the role of regional climatic and hydrologic processes behind the disease outbreaks, are not fully understood. Overall diarrheal disease prevalence and the population vulnerability to transmission mechanisms thus remain severely underestimated. Recent findings suggest that diarrheal incidence in the spring is strongly associated with scarcity of freshwater flow volumes, while the abundance of water in monsoon show strong positive correlation with autumn diarrheal burden. The role of large-scale ocean-atmospheric processes that tend to modulate meteorological, hydrological, and environmental conditions over large regions and the effects on the ecological states conducive to the vectors and triggers of diarrheal outbreaks over large geographic regions are not well understood. We take a large scale approach to conduct detailed diagnostic analyses of a range of climate, hydrological, and ecosystem variables to investigate their links to outbreaks, occurrence, and transmission of the most prevalent water-borne diarrheal diseases. We employ satellite remote sensing data products to track coastal ecosystems and plankton processes related to cholera outbreaks. In addition, we investigate the effect of large scale hydroclimatic extremes (e.g., droughts and floods, El Nino) to identify how diarrheal transmission and epidemic outbreaks are most likely to respond to shifts in climatic, hydrologic, and ecological changes over coming decades. We argue that controlling diarrheal disease burden will require an integrated predictive surveillance approach - a combination of prediction and prevention - with recent advances in climate-based predictive capabilities and demonstrated successes in primary and tertiary prevention

  6. Major vectors and vector-borne diseases in small ruminants in Ethiopia: A systematic review.

    Science.gov (United States)

    Asmare, Kassahun; Abayneh, Takele; Sibhat, Berhanu; Shiferaw, Dessie; Szonyi, Barbara; Krontveit, Randi I; Skjerve, Eystein; Wieland, Barbara

    2017-06-01

    five genera, four species of Glossina and 4 genera of biting flies were reported. Despite the evidence on presence of various vectors including ticks, flies, mosquitoes and midges, studies on vector-borne diseases in Ethiopia are surprisingly rare, especially considering risks related to climate change, which is likely to affect distribution of vectors. Thus better evidence on the current situation is urgently needed in order to prevent spread and to model future distribution scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Larvicidal Activities of Indigenous Bacillus thuringiensis Isolates and Nematode Symbiotic Bacterial Toxins against the Mosquito Vector, Culex pipiens (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Ashraf M Ahmed

    2017-06-01

    Full Text Available Background: The incidence of mosquito-borne diseases and the resistance of mosquitoes to conventional pesticides have recently caused a panic to the authorities in the endemic countries. This study was conducted to identify native larvicidal biopesticides against Culex pipiens for utilization in the battle against mosquito-borne diseases.Methods: Larvicidal activities of new indigenous Bacillus thuringiensis isolates and crude toxin complexes (TCs of two nematode bacterial-symbionts, Photorhabdus luminescens akhurstii (HRM1 and Ph. luminescens akhurstii (HS1 that tested against Cx. pipiens. B. thuringiensis isolates were recovered from different environmental samples in Saudi Arabia, and the entomopathogenic nematodes, Heterorhabditis indica (HRM1 and He. sp (HS1 were iso­lated from Egypt. Larvicidal activities (LC50 and LC95 of the potentially active B. thuringiensis strains or TCs were then evaluated at 24 and 48h post-treatment.Results: Three B. thuringiensis isolates were almost as active as the reference B. thuringiensis israelensis (Bti-H14, and seven isolates were 1.6–5.4 times more toxic than Bti-H14. On the other hand, the TCs of the bacterial sym­bionts, HRM1 and HS1, showed promising larvicidal activities. HS1 showed LC50 of 2.54 folds that of HRM1 at 24h post-treatment. Moreover, histopathological examinations of the HS1-treated larvae showed deformations in midgut epithelial cells at 24h post-treatment.Conclusion: Synergistic activity and molecular characterization of these potentially active biocontrol agents are currently being investigated. These results may lead to the identification of eco-friend mosquito larvicidal product(s that could contribute to the battle against mosquito-borne diseases.

  8. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection.

    Science.gov (United States)

    Troupin, Andrea; Londono-Renteria, Berlin; Conway, Michael J; Cloherty, Erin; Jameson, Samuel; Higgs, Stephen; Vanlandingham, Dana L; Fikrig, Erol; Colpitts, Tonya M

    2016-09-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Resolving the conflict of mating versus blood feeding: exploring role of quick-to-court gene in the mosquito Anopheles culicifacies

    Directory of Open Access Journals (Sweden)

    Tanwee Das De

    2017-10-01

    Full Text Available Mosquitoes are the deadliest animal in the world. Mosquitoes transmit several vector borne disease (VBDs such as malaria, dengue, chikungunya, zika fever, yellow fever and responsible for a loss of millions of lives annually. Though, suppression of mosquito population by means of chemical insecticides plays a crucial role in controlling vector population. However, fast emergence of insecticide resistance limits the efforts and demanding to design alternative molecular tools to fight against these VBDs. One of the potential strategies may include interfering complex feeding and/or mating behavioural properties. Compared to female mosquito male mosquito have an indirect effect in disease transmission and thus least studied. Males induce several post-mating behavioural changes in females, including the induction of host seeking and blood feeding behavior. Although, a successful mating events are guided by non-genetic circadian rhythm, but how genetic factors manages the sequential events of swarm formation, suitable mate finding and aerial coupling remains poorly investigated. While understanding the complex feeding behaviour of adult An. culicifacies female mosquito, we identified and analyzed a unique transcript (383 bp from the olfactory system of the blood-fed mosquito, encoding the ‘quick to court’ (QTC protein. It is a homolog of Drosophila coiled-coil QTC (Q9VMU5 protein and shown to play an important role in driving the male courtship behaviour. A comprehensive in silico analysis predicted a 1536 bp long transcript encoding 511 AA long protein in the mosquito genome. Age dependent and sex specific transcriptional profiling revealed that both male female mosquitoes attain the specific age of adulteration on 5-7 days. Circadian clock dependent Ac-qtc profiling indicated that late evening natural dysregulation of Ac-qtc by unknown mechanism may promote the successful insemination event during active copulation. Together, our findings

  10. Quinine, mosquitoes and empire: reassembling malaria in British India, 1890–1910

    Science.gov (United States)

    Roy, Rohan Deb

    2012-01-01

    The drug quinine figured as an object of enforced consumption in British India between the late 1890s and the 1910s, when the corresponding diagnostic category malaria itself was redefined as a mosquito-borne fever disease. This article details an overlapping milieu in which quinine, mosquitoes and malaria emerged as intrinsic components of shared and symbiotic histories. It combines insights from new imperial histories, constructivism in the histories of medicine and literature about non-humans in science studies to examine the ways in which histories of insects, drugs, disease and empire interacted and shaped one another. Firstly, it locates the production of historical intimacies between quinine, malaria and mosquitoes within the exigencies and apparatuses of imperial rule. In so doing, it explores the intersections between the worlds of colonial governance, medical knowledge, vernacular markets and pharmaceutical business. Secondly, it outlines ways to narrate characteristics and enabling properties of non-humans (such as quinines and mosquitoes) while retaining a constructivist critique of scientism and empire. Thirdly, it shows how empire itself was reshaped and reinforced while occasioning the proliferation of categories and entities like malaria, quinine and mosquitoes. PMID:24765235

  11. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  12. Crowdsourcing methodology: establishing the Cervid Disease Network and the North American Mosquito Project.

    Science.gov (United States)

    Cohnstaedt, Lee W; Snyder, Darren; Maki, Elin; Schafer, Shawn

    2016-06-30

    Crowdsourcing is obtaining needed services, ideas, or content by soliciting contributions from a large group of people. This new method of acquiring data works well for single reports, but fails when long-term data collection is needed, mainly due to reporting fatigue or failure of repeated sampling by individuals. To establish a crowdsourced collections network researchers must recruit, reward, and retain contributors to the project. These 3 components of crowdsourcing are discussed using the United States Department of Agriculture social networks, the Cervid Disease Network, and the North American Mosquito Project. The North American Mosquito Project is a large network of professional mosquito control districts and public health agencies, which collects mosquito specimens for genetic studies. The Cervid Disease Network is a crowd-sourced disease monitoring system, which uses voluntary sentinel farms or wildlife programs throughout the United States of America to report the onset and severity of diseases in local areas for pathogen surveillance studies.

  13. Air travel and vector-borne disease movement.

    Science.gov (United States)

    Tatem, A J; Huang, Z; Das, A; Qi, Q; Roth, J; Qiu, Y

    2012-12-01

    Recent decades have seen substantial expansions in the global air travel network and rapid increases in traffic volumes. The effects of this are well studied in terms of the spread of directly transmitted infections, but the role of air travel in the movement of vector-borne diseases is less well understood. Increasingly however, wider reaching surveillance for vector-borne diseases and our improving abilities to map the distributions of vectors and the diseases they carry, are providing opportunities to better our understanding of the impact of increasing air travel. Here we examine global trends in the continued expansion of air transport and its impact upon epidemiology. Novel malaria and chikungunya examples are presented, detailing how geospatial data in combination with information on air traffic can be used to predict the risks of vector-borne disease importation and establishment. Finally, we describe the development of an online tool, the Vector-Borne Disease Airline Importation Risk (VBD-Air) tool, which brings together spatial data on air traffic and vector-borne disease distributions to quantify the seasonally changing risks for importation to non-endemic regions. Such a framework provides the first steps towards an ultimate goal of adaptive management based on near real time flight data and vector-borne disease surveillance.

  14. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Mathur, G; Sanchez-Vargas, I; Alvarez, D; Olson, K E; Marinotti, O; James, A A

    2010-12-01

    Controlled sex-, stage- and tissue-specific expression of antipathogen effector molecules is important for genetic engineering strategies to control mosquito-borne diseases. Adult female salivary glands are involved in pathogen transmission to human hosts and are target sites for expression of antipathogen effector molecules. The Aedes aegypti 30K a and 30K b genes are expressed exclusively in adult female salivary glands and are transcribed divergently from start sites separated by 263 nucleotides. The intergenic, 5'- and 3'-end untranslated regions of both genes are sufficient to express simultaneously two different transgene products in the distal-lateral lobes of the female salivary glands. An antidengue effector gene, membranes no protein (Mnp), driven by the 30K b promoter, expresses an inverted-repeat RNA with sequences derived from the premembrane protein-encoding region of the dengue virus serotype 2 genome and reduces significantly the prevalence and mean intensities of viral infection in mosquito salivary glands and saliva. © 2010 The Authors. Insect Molecular Biology © 2010 The Royal Entomological Society.

  15. Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges

    Science.gov (United States)

    Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2009-01-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346

  16. Impact of Global Climate on Rift Valley Fever and other Vector-borne Disease Outbreaks

    Science.gov (United States)

    Linthicum, K. J.

    2017-12-01

    Rift Valley fever is a viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. Since the virus was first isolated in Kenya in 1930 it has caused significant impact to animal and human health and national economies, and it is of concern to the international agricultural and public health community. In this presentation we will describe the (1) ecology of disease transmission as it relates to climate, (2) the impact of climate and other environmental conditions on outbreaks, (3) the ability to use global climate information to predict outbreaks, (4) effective response activities, and (4) the potential to mitigate globalization.

  17. Anthropogenic impacts on mosquito populations in North America over the past century

    Science.gov (United States)

    Rochlin, Ilia; Faraji, Ary; Ninivaggi, Dominick V.; Barker, Christopher M.; Kilpatrick, A. Marm

    2016-12-01

    The recent emergence and spread of vector-borne viruses including Zika, chikungunya and dengue has raised concerns that climate change may cause mosquito vectors of these diseases to expand into more temperate regions. However, the long-term impact of other anthropogenic factors on mosquito abundance and distributions is less studied. Here, we show that anthropogenic chemical use (DDT; dichlorodiphenyltrichloroethane) and increasing urbanization were the strongest drivers of changes in mosquito populations over the last eight decades in areas on both coasts of North America. Mosquito populations have increased as much as tenfold, and mosquito communities have become two- to fourfold richer over the last five decades. These increases are correlated with the decay in residual environmental DDT concentrations and growing human populations, but not with temperature. These results illustrate the far-reaching impacts of multiple anthropogenic disturbances on animal communities and suggest that interactions between land use and chemical use may have unforeseen consequences on ecosystems.

  18. Dengue virus transovarial transmission by Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Monica Dwi Hartanti

    2016-02-01

    Full Text Available Dengue is a disease that is caused by dengue virus and transmitted to humans through the bite of infected Aedes mosquitoes, especially Aedes aegypti. The disease is hyper-endemic in Southeast Asia, where a more severe form, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS, is a major public health concern. The purpose of the present study was to find evidence of dengue virus transovarial transmision in local vectors in Jakarta. Fifteen Aedes larvae were collected in 2009 from two areas in Tebet subdistrict in South Jakarta, namely one area with the highest and one with the lowest DHF prevalence. All mosquitoes were reared inside two cages in the laboratory, eight mosquitoes in one cage and seven mosquitoes in another cage and given only sucrose solution as their food. The results showed that 20% of the mosquitoes were positive for dengue virus. Dengue virus detection with an immunohistochemical method demonstrated the occurrence of transovarial transmission in local DHF vectors in Tebet subdistrict. Transovarial dengue infection in Ae.aegypti larvae appeared to maintain or enhance epidemics. Further research is needed to investigate the relation of dengue virus transovarial transmission with DHF endemicity in Jakarta.

  19. Dengue virus transovarial transmission by Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Monica Dwi Hartanti

    2010-08-01

    Full Text Available Dengue is a disease that is caused by dengue virus and transmitted to humans through the bite of infected Aedes mosquitoes, especially Aedes aegypti. The disease is hyper-endemic in Southeast Asia, where a more severe form, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS, is a major public health concern. The purpose of the present study was to find evidence of dengue virus transovarial transmision in local vectors in Jakarta. Fifteen Aedes larvae were collected in 2009 from two areas in Tebet subdistrict in South Jakarta, namely one area with the highest and one with the lowest DHF prevalence. All mosquitoes were reared inside two cages in the laboratory, eight mosquitoes in one cage and seven mosquitoes in another cage and given only sucrose solution as their food. The results showed that 20% of the mosquitoes were positive for dengue virus. Dengue virus detection with an immunohistochemical method demonstrated the occurrence of transovarial transmission in local DHF vectors in Tebet subdistrict. Transovarial dengue infection in Ae.aegypti larvae appeared to maintain or enhance epidemics. Further research is needed to investigate the relation of dengue virus transovarial transmission with DHF endemicity in Jakarta.

  20. [Conflicts and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    2010-01-01

    Based on literature and personal experiences, vector-borne diseases and conflicts are reviewed. Simple rapid diagnostic tests for three important parasitoses are available. Resort is often made to case definitions and to presumptive treatment. Resistance is an emerging problem. Vaccines are still...... not available for most diseases. Promising preventive methods, including long-lasting impregnated bed-nets and tents, are available. War has been an impetus for disclosing life-cycles of vector-borne diseases and for control methods; peace, reconciliation and poverty reduction are required to achieve lasting...

  1. Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions.

    Science.gov (United States)

    Equihua, Miguel; Ibáñez-Bernal, Sergio; Benítez, Griselda; Estrada-Contreras, Israel; Sandoval-Ruiz, César A; Mendoza-Palmero, Fredy S

    2017-02-01

    The study was conducted in the central region of Veracruz Mexico, in the metropolitan area of Xalapa. It is a mountainous area where Aedes aegypti (L.) is not currently endemic. An entomological survey was done along an elevation gradient using the Ae. aegypti occurrences at different life cycle stages. Seven sites were sampled and a total of 24 mosquito species were recorded: 9 species were found in urban areas, 18 in non-urban areas with remnant vegetation, and 3 occurred in both environments. Ae. aegypti was found only in the urban areas, usually below 1200m a.s.l., but in this study was recorded for the first time at 1420m a.s.l. These occurrences, together with additional distribution data in the state of Veracruz were used to developed species distribution models using Maxlike software in R to identify the current projected suitable areas for the establishment of this vector and the human populations that might be affected by dengue transmission at higher elevations. Its emergence in previously unsuitable places appears to be driven by both habitat destruction and biodiversity loss associated with biotic homogenization. A border study using data from the edges of the vector's distribution might allow sensitive monitoring to detect any changes in this mosquito's distribution pattern, and any changes in the anthropic drivers or climate that could increase transmission risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Flavivirus-Mosquito Interactions

    Directory of Open Access Journals (Sweden)

    Yan-Jang S. Huang

    2014-11-01

    Full Text Available The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1–4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.

  3. The Role of Culex pipiens L. (Diptera: Culicidae in Virus Transmission in Europe

    Directory of Open Access Journals (Sweden)

    Victor A. Brugman

    2018-02-01

    Full Text Available Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission.

  4. The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe

    Science.gov (United States)

    Hernández-Triana, Luis M.; Medlock, Jolyon M.; Fooks, Anthony R.; Carpenter, Simon; Johnson, Nicholas

    2018-01-01

    Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission. PMID:29473903

  5. A Stochastic Model for Malaria Transmission Dynamics

    Directory of Open Access Journals (Sweden)

    Rachel Waema Mbogo

    2018-01-01

    Full Text Available Malaria is one of the three most dangerous infectious diseases worldwide (along with HIV/AIDS and tuberculosis. In this paper we compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in malaria transmission dynamics. Relationships between the basic reproduction number for malaria transmission dynamics between humans and mosquitoes and the extinction thresholds of corresponding continuous-time Markov chain models are derived under certain assumptions. The stochastic model is formulated using the continuous-time discrete state Galton-Watson branching process (CTDSGWbp. The reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or die out. Thresholds for disease extinction from stochastic models contribute crucial knowledge on disease control and elimination and mitigation of infectious diseases. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that malaria outbreak is more likely if the disease is introduced by infected mosquitoes as opposed to infected humans. These insights demonstrate the importance of a policy or intervention focusing on controlling the infected mosquito population if the control of malaria is to be realized.

  6. Field Assessment of Yeast- and Oxalic Acid-generated Carbon Dioxide for Mosquito Surveillance

    Science.gov (United States)

    2014-12-01

    SentinelTM, Centers for Disease Control and Prevention light trap, sugar- fermenting yeast, electrolyzed oxalic acid INTRODUCTION Successful vector-borne...and Eisen 2008). Population data from trap surveil- lance provide key information for the develop- ment of disease risk assessment models (Diuk- Wasser...generated by a fermentation chamber, in which yeast metabolized sucrose. This source had been shown to attract various mosquito species in field and

  7. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Belmont, Martin; Cazzamali, Giuseppe; Williamson, Michael

    2006-01-01

    The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four evolutio......The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four...... evolutionarily related G protein-coupled receptors (GPCRs) from this mosquito and expressed them in Chinese hamster ovary cells. After screening of a library of thirty-three insect or other invertebrate neuropeptides and eight biogenic amines, we could identify (de-orphanize) three of these GPCRs as...... relationship to the A. gambiae and other insect AKH receptors suggested that it is a receptor for an AKH-like peptide. This is the first published report on evolutionarily related AKH, corazonin, and CCAP receptors in mosquitoes....

  8. Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa.

    Science.gov (United States)

    Soti, Valérie; Tran, Annelise; Degenne, Pascal; Chevalier, Véronique; Lo Seen, Danny; Thiongane, Yaya; Diallo, Mawlouth; Guégan, Jean-François; Fontenille, Didier

    2012-01-01

    Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961-2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the identification of rainfall patterns favourable for RVFV amplification.

  9. Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa.

    Directory of Open Access Journals (Sweden)

    Valérie Soti

    Full Text Available BACKGROUND: Rift Valley fever (RVF is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961-2003. We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. CONCLUSION/SIGNIFICANCE: Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends

  10. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Samat, N. A.; Ma' arof, S. H. Mohd Imam [Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak (Malaysia)

    2014-12-04

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.

  11. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    International Nuclear Information System (INIS)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2014-01-01

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases

  12. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    Science.gov (United States)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2014-12-01

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.

  13. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    Science.gov (United States)

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (Poil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  14. Spatial analysis of vector-borne infectious diseases and ecological indicators using GIS and remote sensing

    Science.gov (United States)

    Anh, N. K.; Liou, Y. A.

    2017-12-01

    Ecological and climate indicators play a vital role in defining patterns of human activities and behaviors, such as seasonal features, migration, winter-summer lifestyles, which in turn might be associated with vector-borne disease habitats and transmission risks. Remote sensing has been instrumental in deriving environmental variables and indicators. GIS is shown to be a powerful tool in spatiotemporal visualization and distribution of vector-borne diseases and for analysis of associations between environmental conditions and characteristics of vector-borne habitats. Vietnam is in the sub-tropical climate zone with high humidity and abundant precipitation, while the distribution of precipitation is uneven leading to frequently annual occurrence of drought and flood disasters. Moreover, urban heat island effect is significantly enhanced in urbanized areas in recent years. The increase in the frequency and magnitude of severity of weather extremes that are potentially linked to climate change and anthropogenic processes have highlighted the demand of research into health risk assessment and adaptive capacity. This research focuses on the analysis of physical features of environmental indicators and its association with vector-borne diseases as well as adaptive capacity. The study illustrates how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, promising possibilities of allowing disease early-warning systems with citizen participation platform will be proposed. Keywords: Vector-borne diseases; environmental indicators; remote sensing; GIS; Vietnam.

  15. Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus

    Directory of Open Access Journals (Sweden)

    Schirtzinger Erin E

    2008-02-01

    Full Text Available Abstract Background Competitive displacement of a weakly virulent pathogen strain by a more virulent strain is one route to disease emergence. However the mechanisms by which pathogens compete for access to hosts are poorly understood. Among vector-borne pathogens, variation in the ability to infect vectors may effect displacement. The current study focused on competitive displacement in dengue virus serotype 3 (DENV3, a mosquito-borne pathogen of humans. In Sri Lanka in the 1980's, a native DENV3 strain associated with relatively mild dengue disease was displaced by an invasive DENV3 strain associated with the most severe disease manifestations, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS, resulting in an outbreak of DHF/DSS. Here we tested the hypothesis that differences between the invasive and native strain in their infectivity for Aedes aegypti mosquitoes, the primary vector of DENV, contributed to the competitive success of the invasive strain Results To be transmitted by a mosquito, DENV must infect and replicate in the midgut, disseminate into the hemocoel, infect the salivary glands, and be released into the saliva. The ability of the native and invasive DENV3 strains to complete the first three steps of this process in Aedes aegypti mosquitoes was measured in vivo. The invasive strain infected a similar proportion of mosquitoes as the native strain but replicated to significantly higher titers in the midgut and disseminated with significantly greater efficiency than the native strain. In contrast, the native and invasive strain showed no significant difference in replication in cultured mosquito, monkey or human cells. Conclusion The invasive DENV3 strain infects and disseminates in Ae. aegypti more efficiently than the displaced native DENV3 strain, suggesting that the invasive strain is transmitted more efficiently. Replication in cultured cells did not adequately characterize the known phenotypic differences between

  16. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania.

    Science.gov (United States)

    Kaindoa, Emmanuel W; Matowo, Nancy S; Ngowo, Halfan S; Mkandawile, Gustav; Mmbando, Arnold; Finda, Marcelina; Okumu, Fredros O

    2017-01-01

    Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than

  17. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south–eastern Tanzania

    Science.gov (United States)

    Matowo, Nancy S.; Ngowo, Halfan S.; Mkandawile, Gustav; Mmbando, Arnold; Finda, Marcelina; Okumu, Fredros O.

    2017-01-01

    Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than

  18. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission

    Science.gov (United States)

    Glennon, Elizabeth K. K.; Adams, L. Garry; Hicks, Derrick R.; Dehesh, Katayoon; Luckhart, Shirley

    2016-01-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  19. [Climate- and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, I.C.; Schioler, K.L.; Konradsen, F.

    2009-01-01

    The predicted changes in climate have raised concerns that vector-borne diseases may emerge or expand in tempered regions. Malaria, leishmaniasis and tick-borne illnesses are discussed in terms of climate change and their endemic potential, especially in Denmark. While climate may play an important...

  20. Nesting bird "host funnel" increases mosquito-bird contact rate.

    Science.gov (United States)

    Caillouët, Kevin A; Riggan, Anna E; Bulluck, Lesley P; Carlson, John C; Sabo, Roy T

    2013-03-01

    Increases in vector-host contact rates can enhance arbovirus transmission intensity. We investigated weekly fluctuations in contact rates between mosquitoes and nesting birds using the recently described Nest Mosquito Trap (NMT). The number of mosquitoes per nestling increased from nesting season. Our evidence suggests the coincidence of the end of the avian nesting season and increasing mosquito abundances may have caused a "host funnel," concentrating host-seeking mosquitoes to the few remaining nestlings. The relative abundance of mosquitoes collected by the NMT suggests that significantly more Aedes albopictus (Skuse) and Culex pipiens (L.) /restuans (Theobald) sought nesting bird bloodmeals than were predicted by their relative abundances in CO2-baited Centers for Disease Control and Prevention light and gravid traps. Culex salinarius (Coquillett) and Culex erraticus Dyar and Knab were collected in NMTs in proportion to their relative abundances in the generic traps. Temporal host funnels and nesting bird host specificity may enhance arbovirus amplification and explain observed West Nile virus and St. Louis encephalitis virus amplification periods.

  1. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    Science.gov (United States)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  2. Economics of vector-borne diseases prevention: The case of the Tiger Mosquito control and Chikungunya and Dengue prevention plan in the Emilia-Romagna region (Northern Italy)

    OpenAIRE

    Rivas Morales, Stefano

    2016-01-01

    Aedes albopictus is considered one of the most invasive mosquito species in the world. It has proved capacity for local transmission of Chikungunya and Dengue within Europe. This research evaluated public costs related to the implementation of the plan for Ae. albopictus control and Chikungunya and Dengue prevention set up in Emilia-Romagna region (Northern Italy), where a Chikungunya epidemic outbreak occurred in 2007, with 217 confirmed cases. The management plan started in 2008 by involvin...

  3. Improving vector-borne pathogen surveillance: A laboratory-based study exploring the potential to detect dengue virus and malaria parasites in mosquito saliva.

    Science.gov (United States)

    Melanson, Vanessa R; Jochim, Ryan; Yarnell, Michael; Ferlez, Karen Bingham; Shashikumar, Soumya; Richardson, Jason H

    2017-01-01

    Vector-borne pathogen surveillance programmes typically rely on the collection of large numbers of potential vectors followed by screening protocols focused on detecting pathogens in the arthropods. These processes are laborious, time consuming, expensive, and require screening of large numbers of samples. To streamline the surveillance process, increase sample throughput, and improve cost-effectiveness, a method to detect dengue virus and malaria parasites (Plasmodium falciparum) by leveraging the sugar-feeding behaviour of mosquitoes and their habit of expectorating infectious agents in their saliva during feeding was investigated in this study. Dengue virus 2 (DENV-2) infected female Aedes aegypti mosquitoes and P. falciparum infected female Anopheles stephensi mosquitoes were allowed to feed on honey coated Flinders Technical Associates -FTA® cards dyed with blue food colouring. The feeding resulted in deposition of saliva containing either DENV-2 particles or P. falciparum sporozoites onto the FTA card. Nucleic acid was extracted from each card and the appropriate real-time PCR (qPCR) assay was run to detect the pathogen of interest. As little as one plaque forming unit (PFU) of DENV-2 and as few as 60 P. falciparum parasites deposited on FTA cards from infected mosquitoes were detected via qPCR. Hence, their use to collect mosquito saliva for pathogen detection is a relevant technique for vector surveillance. This study provides laboratory confirmation that FTA cards can be used to capture and stabilize expectorated DENV-2 particles and P. falciparum sporozoites from infectious, sugar-feeding mosquitoes in very low numbers. Thus, the FTA card-based mosquito saliva capture method offers promise to overcome current limitations and revolutionize traditional mosquito-based pathogen surveillance programmes. Field testing and further method development are required to optimize this strategy.

  4. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Knox, Monique Britto; Reis, Filipe; Hagström, Luciana; Cuba, César A Cuba; Hecht, Mariana Machado; Gurgel-Gonçalves, Rodrigo

    2016-01-26

    Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.

  5. The Potential Use of Wolbachia-Based Mosquito Biocontrol Strategies for Japanese Encephalitis.

    Directory of Open Access Journals (Sweden)

    Claire L Jeffries

    Full Text Available Japanese encephalitis virus (JEV is a zoonotic pathogen transmitted by the infectious bite of Culex mosquitoes. The virus causes the development of the disease Japanese encephalitis (JE in a small proportion of those infected, predominantly affecting children in eastern and southern Asia. Annual JE incidence estimates range from 50,000-175,000, with 25%-30% of cases resulting in mortality. It is estimated that 3 billion people live in countries in which JEV is endemic. The virus exists in an enzootic transmission cycle, with mosquitoes transmitting JEV between birds as reservoir hosts and pigs as amplifying hosts. Zoonotic infection occurs as a result of spillover events from the main transmission cycle. The reservoir avian hosts include cattle egrets, pond herons, and other species of water birds belonging to the family Ardeidae. Irrigated rice fields provide an ideal breeding ground for mosquitoes and attract migratory birds, maintaining the transmission of JEV. Although multiple vaccines have been developed for JEV, they are expensive and require multiple doses to maintain efficacy and immunity. As humans are a "dead-end" host for the virus, vaccination of the human population is unlikely to result in eradication. Therefore, vector control of the principal mosquito vector, Culex tritaeniorhynchus, represents a more promising strategy for reducing transmission. Current vector control strategies include intermittent irrigation of rice fields and space spraying of insecticides during outbreaks. However, Cx. Tritaeniorhynchus is subject to heavy exposure to pesticides in rice fields, and as a result, insecticide resistance has developed. In recent years, significant advancements have been made in the potential use of the bacterial endosymbiont Wolbachia for mosquito biocontrol. The successful transinfection of Wolbachia strains from Drosophila flies to Aedes (Stegomyia mosquitoes has resulted in the generation of "dengue-refractory" mosquito

  6. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change

    NARCIS (Netherlands)

    Paaijmans, K.P.; Imbahale, S.S.; Thomas, M.B.; Takken, W.

    2010-01-01

    Background The relationship between mosquito development and temperature is one of the keys to understanding the current and future dynamics and distribution of vector-borne diseases such as malaria. Many process-based models use mean air temperature to estimate larval development times, and hence

  7. Epidemicity thresholds for water-borne and water-related diseases.

    Science.gov (United States)

    Mari, Lorenzo; Casagrandi, Renato; Rinaldo, Andrea; Gatto, Marino

    2018-06-14

    Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control.

    Directory of Open Access Journals (Sweden)

    Lauren M Childs

    2016-12-01

    Full Text Available The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.

  9. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence

    Science.gov (United States)

    Bialosuknia, Sean M.; Zink, Steven D.; Brecher, Matthew; Ehrbar, Dylan J.; Morrissette, Madeline N.; Kramer, Laura D.

    2017-01-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1–7.5 log10 PFU/mL; minimum infective dose was 4.2 log10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas. PMID:28430564

  10. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence.

    Science.gov (United States)

    Ciota, Alexander T; Bialosuknia, Sean M; Zink, Steven D; Brecher, Matthew; Ehrbar, Dylan J; Morrissette, Madeline N; Kramer, Laura D

    2017-07-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1-7.5 log 10 PFU/mL; minimum infective dose was 4.2 log 10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas.

  11. Eilat virus displays a narrow mosquito vector range.

    Science.gov (United States)

    Nasar, Farooq; Haddow, Andrew D; Tesh, Robert B; Weaver, Scott C

    2014-12-17

    Most alphaviruses are arthropod-borne and utilize mosquitoes as vectors for transmission to susceptible vertebrate hosts. This ability to infect both mosquitoes and vertebrates is essential for maintenance of most alphaviruses in nature. A recently characterized alphavirus, Eilat virus (EILV), isolated from a pool of Anopheles coustani s.I. is unable to replicate in vertebrate cell lines. The EILV host range restriction occurs at both attachment/entry as well as genomic RNA replication levels. Here we investigated the mosquito vector range of EILV in species encompassing three genera that are responsible for maintenance of other alphaviruses in nature. Susceptibility studies were performed in four mosquito species: Aedes albopictus, A. aegypti, Anopheles gambiae, and Culex quinquefasciatus via intrathoracic and oral routes utilizing EILV and EILV expressing red fluorescent protein (-eRFP) clones. EILV-eRFP was injected at 10(7) PFU/mL to visualize replication in various mosquito organs at 7 days post-infection. Mosquitoes were also injected with EILV at 10(4)-10(1) PFU/mosquito and virus replication was measured via plaque assays at day 7 post-infection. Lastly, mosquitoes were provided bloodmeals containing EILV-eRFP at doses of 10(9), 10(7), 10(5) PFU/mL, and infection and dissemination rates were determined at 14 days post-infection. All four species were susceptible via the intrathoracic route; however, replication was 10-100 fold less than typical for most alphaviruses, and infection was limited to midgut-associated muscle tissue and salivary glands. A. albopictus was refractory to oral infection, while A. gambiae and C. quinquefasciatus were susceptible only at 10(9) PFU/mL dose. In contrast, A. aegypti was susceptible at both 10(9) and 10(7) PFU/mL doses, with body infection rates of 78% and 63%, and dissemination rates of 26% and 8%, respectively. The exclusion of vertebrates in its maintenance cycle may have facilitated the adaptation of EILV to a single

  12. Arthropod Innate Immune Systems and Vector-Borne Diseases.

    Science.gov (United States)

    Baxter, Richard H G; Contet, Alicia; Krueger, Kathryn

    2017-02-21

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.

  13. Patterns of phenoloxidase activity in insecticide resistant and susceptible mosquitoes differ between laboratory-selected and wild-caught individuals

    OpenAIRE

    Cornet, St?phane; Gandon, Sylvain; Rivero, Ana

    2013-01-01

    Background Insecticide resistance has the potential to alter vector immune competence and consequently affect the transmission of diseases. Methods Using both laboratory isogenic strains and field-caught Culex pipiens mosquitoes, we investigated the effects of insecticide resistance on an important component of the mosquito immune system: the phenoloxidase (PO) activity. As infection risk varies dramatically with the age and sex of mosquitoes, allocation to PO immunity was quantified across d...

  14. Diversity of Cultivable Midgut Microbiota at Different Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India.

    Directory of Open Access Journals (Sweden)

    Kamlesh K Yadav

    Full Text Available Aedes aegypti and Ae. albopictus are among the most important vectors of arboviral diseases, worldwide. Recent studies indicate that diverse midgut microbiota of mosquitoes significantly affect development, digestion, metabolism, and immunity of their hosts. Midgut microbiota has also been suggested to modulate the competency of mosquitoes to transmit arboviruses, malaria parasites etc. Interestingly, the midgut microbial flora is dynamic and the diversity changes with the development of vectors, in addition to other factors such as species, sex, life-stage, feeding behavior and geographical origin. The aim of the present study was to investigate the midgut bacterial diversity among larva, adult male, sugar fed female and blood fed female Ae. albopictus collected from Tezpur, Northeastern India. Based on colony morphological characteristics, we selected 113 cultivable bacterial isolates for 16S rRNA gene sequence based molecular identification. Of the 113 isolates, we could identify 35 bacterial species belonging to 18 distinct genera under four major phyla, namely Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Phyla Proteobacteria and Firmicutes accounted for majority (80% of the species, while phylum Actinobacteria constituted 17% of the species. Bacteroidetes was the least represented phylum, characterized by a single species- Chryseobacterium rhizoplanae, isolated from blood fed individuals. Dissection of midgut microbiota diversity at different developmental stages of Ae. albopictus will be helpful in better understanding mosquito-borne diseases, and for designing effective strategies to manage mosquito-borne diseases.

  15. Modelling the effects of seasonality and socioeconomic impact on the transmission of Rift Valley fever virus

    Science.gov (United States)

    Xiao, Yanyu; Beier, John C.; Cantrell, Robert Stephen; Cosner, Chris; DeAngelis, Donald L.; Ruan, Shigui

    2015-01-01

    Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).

  16. Molecular identification of host feeding patterns of snow-melt mosquitoes (Diptera: Culicidae): potential implications for the transmission ecology of Jamestown Canyon virus.

    Science.gov (United States)

    Murdock, C C; Olival, Kevin J; Perkins, Susan L

    2010-03-01

    We collected blood-fed, snow-melt mosquitoes (Culicidae: Culiseta and Aedes) to describe the feeding patterns of potential mosquito vectors of Jamestown Canyon virus (JCV, Bunyaviridae: Orthobunyavirus). JCV is an arthropod-borne, zoonotic virus with deer as the primary amplifying host in western alpine ecosystems. We collected mosquitoes from natural resting areas, fiber pots, and carbon-dioxide baited miniature light traps in the Colorado Rocky Mountains in 2007. We conducted two polymerase chain reactions to amplify and sequence vertebrate DNA extracted from blood-fed mosquitoes, which yielded comparable, but not identical, results. Mammal-specific primers found mule deer (Odocoileus hemionus) and elk (Cervus elaphus canadensis) as the source of all bloodmeals. To determine if unamplified bloodmeals were from nonmammalian sources, we screened all samples with conserved vertebrate primers, which confirmed the initial polymerase chain reaction results, but also found porcupine (Erethizon dorsatum) and human (Homo sapiens) as additional bloodmeal sources. We consistently found that mule deer were the primary hosts for mosquitoes in this system. These results suggest that snow-melt mosquitoes, in particular A. cataphylla, may be important vectors in western JCV alpine systems and may also act as a bridge vector for JCV from cervid virus reservoirs to humans.

  17. R0-modeling as a tool for early warning and surveillance of exotic vector borne diseases in Denmark

    DEFF Research Database (Denmark)

    Bødker, Rene

    2011-01-01

    for predicting permanent establishment of presently exotic diseases, mean temperatures may not predict the true potential for local spread and limited outbreaks resulting from accidental introductions in years with temporary periods of warm weather. DTU-Veterinary Institute is developing a system for continuous...... a truly risk based surveillance system for insect borne diseases. R0 models for many vector borne diseases are simple and the available estimates of model parameters like vector densities and survival rates may be uncertain. The quantitative value of R0 estimated from such models is therefore likely......Modeling the potential transmission intensity of insect borne diseases with climate driven R0 process models is frequently used to assess the potential for veterinary and human infections to become established in non endemic areas. Models are often based on mean temperatures of an arbitrary time...

  18. An Assessment of Household and Individual-Level Mosquito Prevention Methods during the Chikungunya Virus Outbreak in the United States Virgin Islands, 2014-2015.

    Science.gov (United States)

    Feldstein, Leora R; Rowhani-Rahbar, Ali; Staples, J Erin; Halloran, M Elizabeth; Ellis, Esther M

    2018-03-01

    Recent large-scale chikungunya virus (CHIKV) and Zika virus epidemics in the Americas pose a growing public health threat. Given that mosquito bite prevention and vector control are the main prevention methods available to reduce transmission of these viruses, we assessed adherence to these methods in the United States Virgin Islands (USVI). We interviewed 334 USVI residents between December 2014 and February 2015 to measure differences in mosquito prevention practices by gender, income, presence of CHIKV symptoms, and age. Only 27% (91/334) of participants reported having an air conditioner, and of the 91 with air-conditioners, 18 (20%) reported never using it. Annual household income > $50,000 was associated with owning and using an air conditioner (41%; 95% confidence interval [CI]: 28-53% compared with annual household income ≤ $50,000: 17%; 95% CI: 12-22%). The majority of participants reported the presence of vegetation in their yard or near their home (79%; 265) and a cistern on their property (78%; 259). Only 52 (16%) participants reported wearing mosquito repellent more than once per week. Although the majority (80%; 268) of participants reported having screens on all of their windows and doors, most (82%; 273) of those interviewed still reported seeing mosquitoes in their homes. Given the uniformly low adherence to individual- and household-level mosquito bite prevention measures in the USVI, these findings emphasize the need for improved public health messaging and investment in therapeutic and vaccine research to mitigate vector-borne disease outbreaks.

  19. Food-borne disease and climate change in the United Kingdom.

    Science.gov (United States)

    Lake, Iain R

    2017-12-05

    This review examined the likely impact of climate change upon food-borne disease in the UK using Campylobacter and Salmonella as example organisms. Campylobacter is an important food-borne disease and an increasing public health threat. There is a reasonable evidence base that the environment and weather play a role in its transmission to humans. However, uncertainty as to the precise mechanisms through which weather affects disease, make it difficult to assess the likely impact of climate change. There are strong positive associations between Salmonella cases and ambient temperature, and a clear understanding of the mechanisms behind this. However, because the incidence of Salmonella disease is declining in the UK, any climate change increases are likely to be small. For both Salmonella and Campylobacter the disease incidence is greatest in older adults and young children. There are many pathways through which climate change may affect food but only a few of these have been rigorously examined. This provides a high degree of uncertainty as to what the impacts of climate change will be. Food is highly controlled at the National and EU level. This provides the UK with resilience to climate change as well as potential to adapt to its consequences but it is unknown whether these are sufficient in the context of a changing climate.

  20. A Field Study in Benin to Investigate the Role of Mosquitoes and Other Flying Insects in the Ecology of Mycobacterium ulcerans.

    Science.gov (United States)

    Zogo, Barnabas; Djenontin, Armel; Carolan, Kevin; Babonneau, Jeremy; Guegan, Jean-François; Eyangoh, Sara; Marion, Estelle

    2015-01-01

    Buruli ulcer, the third mycobacterial disease after tuberculosis and leprosy, is caused by the environmental mycobacterium M. ulcerans. There is at present no clear understanding of the exact mode(s) of transmission of M. ulcerans. Populations affected by Buruli ulcer are those living close to humid and swampy zones. The disease is associated with the creation or the extension of swampy areas, such as construction of dams or lakes for the development of agriculture. Currently, it is supposed that insects (water bugs and mosquitoes) are host and vector of M. ulcerans. The role of water bugs was clearly demonstrated by several experimental and environmental studies. However, no definitive conclusion can yet be drawn concerning the precise importance of this route of transmission. Concerning the mosquitoes, DNA was detected only in mosquitoes collected in Australia, and their role as host/vector was never studied by experimental approaches. Surprisingly, no specific study was conducted in Africa. In this context, the objective of this study was to investigate the role of mosquitoes (larvae and adults) and other flying insects in ecology of M. ulcerans. This study was conducted in a highly endemic area of Benin. Mosquitoes (adults and larvae) were collected over one year, in Buruli ulcer endemic in Benin. In parallel, to monitor the presence of M. ulcerans in environment, aquatic insects were sampled. QPCR was used to detected M. ulcerans DNA. DNA of M. ulcerans was detected in around 8.7% of aquatic insects but never in mosquitoes (larvae or adults) or in other flying insects. This study suggested that the mosquitoes don't play a pivotal role in the ecology and transmission of M. ulcerans in the studied endemic areas. However, the role of mosquitoes cannot be excluded and, we can reasonably suppose that several routes of transmission of M. ulcerans are possible through the world.

  1. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Mathenge Evan

    2006-11-01

    Full Text Available Abstract Background African malaria vectors bite predominantly indoors at night so sleeping under an Insecticide-Treated Net (ITN can greatly reduce malaria risk. Behavioural adaptation by mosquitoes to increasing ITN coverage could allow vector mosquitoes to bite outside of peak sleeping hours and undermine efficacy of this key malaria prevention measure. Methods High coverage with largely untreated nets has been achieved in the Kilombero Valley, southern Tanzania through social marketing programmes. Direct surveys of nightly biting activity by An. gambiae Giles were conducted in the area before (1997 and after (2004 implementation of ITN promotion. A novel analytical model was applied to estimate the effective protection provided by an ITN, based on published experimental hut trials combined with questionnaire surveys of human sleeping behaviour and recorded mosquito biting patterns. Results An. gambiae was predominantly endophagic and nocturnal in both surveys: Approximately 90% and 80% of exposure occurred indoors and during peak sleeping hours, respectively. ITNs consistently conferred >70% protection against exposure to malaria transmission for users relative to non-users. Conclusion As ITN coverage increases, behavioural adaptation by mosquitoes remains a future possibility. The approach described allows comparison of mosquito biting patterns and ITN efficacy at multiple study sites and times. Initial results indicate ITNs remain highly effective and should remain a top-priority intervention. Combined with recently developed transmission models, this approach allows rapid, informative and cost-effective preliminary comparison of diverse control strategies in terms of protection against exposure before more costly and intensive clinical trials.

  2. Vector-borne disease intelligence: Strategies to deal with disease burden and threats

    Directory of Open Access Journals (Sweden)

    Marieta eBraks

    2014-12-01

    Full Text Available Owing to the complex nature of vector-borne diseases, whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of vector-borne diseases. Knowledge on the presence and distribution of vectors and the pathogens they transmit is vital to a risk assessment process to permit effective early warning, surveillance and control of vector-borne diseases. Upon accepting this reality, public health authorities face the phenomenon of an exponential rise in the number of possible surveillance targets and how to decide which are essential. Here, . we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance and context-based surveillance for EU member states to tailor the best surveillance strategy for control of vector-borne diseases in their geographic region. By classifying the surveillance structure into 5 different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for vector-borne diseases entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure.

  3. Mosquito breeding sites and People’s knowledge of mosquitoes and mosquito borne diseases: A comparison of temporary housing and non-damaged village areas in Sri Lanka after the tsunami strike in 2004

    OpenAIRE

    Ohba, Shin-ya; Kashima, Saori; Matsubara, Hiromi; Higa, Yukiko; Piyaseeli, Udage Kankanamge D.; Yamamoto, Hideki; Nakasuji, Fusao

    2010-01-01

    Although it is very important in view of public health to understand the mosquito breeding sites and key reservoirs existing around residential areas, such information is lacking in temporary housing sites constructed after the serious tsunami strikes on 26 December 2004 in Sri Lanka. This study clarified the situation regarding mosquito breeding 14 months after the tsunami in Sri Lanka by surveying temporary housing and non-damaged village areas, and also by examining people‘s knowledge rela...

  4. Aggressive mosquito fauna and malaria transmission in a forest area targeted for the creation of an agro-industrial complex in the south of Cameroon

    Directory of Open Access Journals (Sweden)

    P. Ntonga Akono

    2016-12-01

    Full Text Available Baseline entomological information should be collected before the implementation of industrial projects in malaria endemic areas. This allows for subsequent monitoring and evaluation of the project impact on malaria vectors. This study aimed at assessing the vectorial system and malaria transmission in two ecologically different villages of the South-Cameroon forest bloc targeted for the creation of an agro-industrial complex. For four consecutive seasons in 2013, adult mosquitoes were captured using Human Landing Catch in NDELLE village (located along a main road in a degraded forest with many fish ponds and KOMBO village (located 5km far from the main road in a darker forest and crossed by the Mvobo River. Morpho-taxonomic techniques were used alongside molecular techniques for the identification of mosquito species. ELISA test was used for the detection of circumsporozoite protein antigen of Plasmodium falciparum. Mosquito biting rate was higher in NDELLE than in KOMBO (28.18 versus 17.34 bites per person per night. Mosquitoes had a strong tendency to endophagy both in NDELLE (73.57% and KOMBO (70.21%. Three anophelines species were identified; An. gambiae, An. funestus s.s and An. moucheti s.s.. An. gambiae and An. funestus s.s. represented the bulk of aggressive mosquitoes in NDELLE (n=10,891; 96.62%. An. gambiae was responsible for 62.6% and 77.72% of malaria transmission in KOMBO and NDELLE respectively. Mean entomological inoculation rate recorded in KOMBO and NDELLE were 4.82 and 2.02 infective bites per person per night respectively. Vector control was mainly based on the use of long-lasting insecticidal nets and indoor residual spraying. The degraded forest environment added to the presence of fishponds resulted in the increase of aggressive mosquito density but not of malaria transmission. The managers should use these data for monitoring and evaluation of the impact of their project; malaria control strategies should be included in

  5. Malaria transmission in Tripura: Disease distribution & determinants.

    Science.gov (United States)

    Dev, Vas; Adak, Tridibes; Singh, Om P; Nanda, Nutan; Baidya, Bimal K

    2015-12-01

    Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to

  6. Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique.

    Directory of Open Access Journals (Sweden)

    Harindranath Cholleti

    Full Text Available Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with 'insect-specific' viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV. The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique.

  7. Malaria-induced changes in host odors enhance mosquito attraction.

    Science.gov (United States)

    De Moraes, Consuelo M; Stanczyk, Nina M; Betz, Heike S; Pulido, Hannier; Sim, Derek G; Read, Andrew F; Mescher, Mark C

    2014-07-29

    Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses--using discriminant analysis of principal components and random forest approaches--revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection.

  8. Atopic diseases in twins born after assisted reproduction

    DEFF Research Database (Denmark)

    Jäderberg, Ida; Thomsen, Simon F; Kyvik, Kirsten Ohm

    2012-01-01

    Jäderberg I, Thomsen SF, Kyvik KO, Skytthe A, Backer V. Atopic diseases in twins born after assisted reproduction. Paediatric and Perinatal Epidemiology 2012; 26: 140-145. We examined the risk of atopic diseases in twins born after assisted reproduction. Data on atopic diseases and assisted...... reproduction in 9694 twin pairs, 3-20 years of age, from the Danish Twin Registry were collected via multidisciplinary questionnaires. The risk of atopic diseases in twins born after assisted reproduction was compared with the risk in twins born after spontaneous conception using logistic regression...... and variance components analysis. Children born after assisted reproduction did not have a different risk of atopic outcomes (adjusted odds ratios [95% confidence intervals] for asthma: 0.95 [0.85, 1.07], P = 0.403; hay fever: 1.01 [0.86, 1.18], P = 0.918; and atopic dermatitis: 1.02 [0.81, 1.11], P = 0...

  9. Legal aspects of public health: difficulties in controlling vector-borne and zoonotic diseases in Brazil.

    Science.gov (United States)

    Mendes, Marcílio S; de Moraes, Josué

    2014-11-01

    In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [Vector transmitted diseases and climate changes in Europe].

    Science.gov (United States)

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Garavelli, Pietro Luigi

    2014-09-01

    The increase in temperatures recorded since the mid-nineteenth century is unprecedented in the history of mankind. The consequences of climate changes are numerous and can affect human health through direct (extreme events, natural disasters) or indirect (alteration of the ecosystem) mechanisms. Climate changes have repercussions on ecosystems, agriculture, social conditions, migration, conflicts and the transmission mode of infectious diseases. Vector-borne diseases are infections transmitted by the bite of infected arthropods such as mosquitoes, ticks, triatomines, sand flies and flies. Epidemiological cornerstones of vector-borne diseases are: the ecology and behaviour of the host, the ecology and behaviour of the vector, and the population's degree of immunity. Mosquito vectors related to human diseases mainly belong to the genus Culex, Aedes and Mansonia. Climate changes in Europe have increased the spread of new vectors, such as Aedes albopictus, and in some situations have made it possible to sustain the autochthonous transmission of some diseases (outbreak of Chukungunya virus in northern Italy in 2007, cases of dengue in the South of France and in Croatia). Despite the eradication of malaria from Europe, anopheline carriers are still present, and they may allow the transmission of the disease if the climatic conditions favour the development of the vectors and their contacts with plasmodium carriers. The tick Ixodes ricinus is a vector whose expansion has been documented both in latitude and in altitude in relation to the temperature increase; at the same time the related main viral and bacterial infections have increased. In northern Italy and Germany, the appearance of Leishmaniasis has been associated to climatic conditions that favour the development of the vector Phlebotomus papatasi and the maturation of the parasite within the vector, although the increase of cases of visceral leishmaniasis is also related to host immune factors, particularly

  11. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence.

    Science.gov (United States)

    Kenney, Joan L; Anishchenko, Michael; Hermance, Meghan; Romo, Hannah; Chen, Ching-I; Thangamani, Saravanan; Brault, Aaron C

    2018-05-21

    The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.

  12. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect

    Directory of Open Access Journals (Sweden)

    Filipe Dantas-Torres

    2015-12-01

    Full Text Available We have killed wild animals for obtaining food and decimated forests for many reasons. Nowadays, we are burning fossil fuels as never before and even exploring petroleum in deep waters. The impact of these activities on our planet is now visible to the naked eye and the debate on climate change is warming up in scientific meetings and becoming a priority on the agenda of both scientists and policy decision makers. On the occasion of the Impact of Environmental Changes on Infectious Diseases (IECID meeting, held in the 2015 in Sitges, Spain, I was invited to give a keynote talk on climate change, biodiversity, ticks and tick-borne diseases. The aim of the present article is to logically extend my rationale presented on the occasion of the IECID meeting. This article is not intended to be an exhaustive review, but an essay on climate change, biodiversity, ticks and tick-borne diseases. It may be anticipated that warmer winters and extended autumn and spring seasons will continue to drive the expansion of the distribution of some tick species (e.g., Ixodes ricinus to northern latitudes and to higher altitudes. Nonetheless, further studies are advocated to improve our understanding of the complex interactions between landscape, climate, host communities (biodiversity, tick demography, pathogen diversity, human demography, human behaviour, economics, and politics, also considering all ecological processes (e.g., trophic cascades and other possible interacting effects (e.g., mutual effects of increased greenhouse gas emissions and increased deforestation rates. The multitude of variables and interacting factors involved, and their complexity and dynamism, make tick-borne transmission systems beyond (current human comprehension. That is, perhaps, the main reason for our inability to precisely predict new epidemics of vector-borne diseases in general.

  13. More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations

    International Nuclear Information System (INIS)

    Bourtzis, K.; Lees, R.S.; Hendrichs, J.; Vreysen, M.J.B.

    2016-01-01

    Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, chikungunya and Zika) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically- based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sexseparation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes. (author)

  14. WNV infection - an emergent vector borne viral infection in Serbia: Current situation

    Directory of Open Access Journals (Sweden)

    Petrović Tamaš

    2015-01-01

    Full Text Available West Nile virus (WNV is a neurovirulent mosquito-borne Flavivirus with zoonotic potential. Virus is maintained in nature in an enzootic transmission cycle between avian hosts and mosquito vectors, but occasionally infects other vertebrates. The infection in horses and humans can be asymptomatic or it can have different clinical manifestations ranging from light febrile diseases to fatal meningoencephalitis. Recently, the number, frequency and severity of outbreaks with neurological consequences for birds, humans and horses have increased dramatically throughout central and south Europe, including Serbia, posing a serious veterinary and public health problem. The emergency of WNV infections in Serbia is described through the current epidemiology situation based on recent data on the incidence of WNV infection among virus natural hosts and vectors; sentinel (horses and other animal species, and in human population. The results of the WNV serology studies conducted on horse blood samples collected in different occasions during the last six years, and the results of the serology studies conducted among other animal species like pigs, wild boars, roe deer and dogs in Serbia are presented and discussed. Also, the results of the first studies on WNV presence in mosquito vectors and in wild birds as virus natural hosts in Serbia are presented and analyzed. In addition, the data on the WNV serology studies conducted in human population in Serbia in the last few years, and the existing data of WNV outbreaks in 2012 and 2013 are included. Regarding the existing knowledge on WNV epidemiology situation, the crucial role of veterinary service in early detection of WNV presence and ongoing national program of WNV surveillance in sentinel animals, mosquitoes and wild birds are discussed.

  15. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects.

    Science.gov (United States)

    Nkya, Theresia Estomih; Akhouayri, Idir; Kisinza, William; David, Jean-Philippe

    2013-04-01

    By transmitting major human diseases such as malaria, dengue fever and filariasis, mosquito species represent a serious threat worldwide in terms of public health, and pose a significant economic burden for the African continent and developing tropical regions. Most vector control programmes aiming at controlling life-threatening mosquitoes rely on the use of chemical insecticides, mainly belonging to the pyrethroid class. However, resistance of mosquito populations to pyrethroids is increasing at a dramatic rate, threatening the efficacy of control programmes throughout insecticide-treated areas, where mosquito-borne diseases are still prevalent. In the absence of new insecticides and efficient alternative vector control methods, resistance management strategies are therefore critical, but these require a deep understanding of adaptive mechanisms underlying resistance. Although insecticide resistance mechanisms are intensively studied in mosquitoes, such adaptation is often considered as the unique result of the selection pressure caused by insecticides used for vector control. Indeed, additional environmental parameters, such as insecticides/pesticides usage in agriculture, the presence of anthropogenic or natural xenobiotics, and biotic interactions between vectors and other organisms, may affect both the overall mosquito responses to pyrethroids and the selection of resistance mechanisms. In this context, the present work aims at updating current knowledge on pyrethroid resistance mechanisms in mosquitoes and compiling available data, often from different research fields, on the impact of the environment on mosquito response to pyrethroids. Key environmental factors, such as the presence of urban or agricultural pollutants and biotic interactions between mosquitoes and their microbiome are discussed, and research perspectives to fill in knowledge gaps are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Aedes mosquito salivary immune peptides: boost or block dengue viral infections

    Directory of Open Access Journals (Sweden)

    Natthanej Luplertlop

    2014-02-01

    Full Text Available Dengue virus, one of the most important arthropod-borne viruses, infected to human can severely cause dengue hemorrhagic fever and dengue shock syndrome. There are expected about 50 million dengue infections and 500 000 individuals are hospitalized with dengue hemorrhagic fever, mainly in Southeast Asia, Pacific, and in Americas reported each year. The rapid expansion of global dengue is one of a major public health challenge, together with not yet successful solutions of dengue epidemic control strategies. Thus, these dynamic dengue viral infections exhibited high demographic, societal, and public health infrastructure impacts on human. This review aimed to highlight the current understanding of dengue mosquito immune responses and role of mosquito salivary glands on dengue infection. These information may provide a valuable knowledge of disease pathogenesis, especially in mosquito vector and dengue virus interaction, which may help to control and prevent dengue distribution.

  17. A decade of colonization: the spread of the Asian tiger mosquito in Pennsylvania and implications for disease risk.

    Science.gov (United States)

    Taber, Eric D; Hutchinson, Michael L; Smithwick, Erica A H; Blanford, Justine I

    2017-06-01

    In recent decades, the Asian tiger mosquito expanded its geographic range throughout the northeastern United States, including Pennsylvania. The establishment of Aedes albopictus in novel areas raises significant public health concerns, since this species is a highly competent vector of several arboviruses, including chikungunya, West Nile, and dengue. In this study, we used geographic information systems (GIS) to examine a decade of colonization by Ae. albopictus throughout Pennsylvania between 2001 and 2010. We examined the spatial and temporal distribution of Ae. albopictus using spatial statistical analysis and examined the risk of dengue virus transmission using a model that captures the probability of transmission. Our findings show that since 2001, the Ae. albopictus population in Pennsylvania has increased, becoming established and expanding in range throughout much of the state. Since 2010, imported cases of dengue fever have been recorded in Pennsylvania. Imported cases of dengue, in combination with summer temperatures conducive for virus transmission, raise the risk of local disease transmission. © 2017 The Society for Vector Ecology.

  18. Atopic diseases in twins born after assisted reproduction.

    Science.gov (United States)

    Jäderberg, Ida; Thomsen, Simon F; Kyvik, Kirsten O; Skytthe, Axel; Backer, Vibeke

    2012-03-01

    We examined the risk of atopic diseases in twins born after assisted reproduction. Data on atopic diseases and assisted reproduction in 9694 twin pairs, 3-20 years of age, from the Danish Twin Registry were collected via multidisciplinary questionnaires. The risk of atopic diseases in twins born after assisted reproduction was compared with the risk in twins born after spontaneous conception using logistic regression and variance components analysis. Children born after assisted reproduction did not have a different risk of atopic outcomes (adjusted odds ratios [95% confidence intervals] for asthma: 0.95 [0.85, 1.07], P = 0.403; hay fever: 1.01 [0.86, 1.18], P = 0.918; and atopic dermatitis: 1.02 [0.81, 1.11], P = 0.773 respectively) compared with children born after spontaneous conception. Assisted reproduction did not modify the heritability of atopic diseases. This study does not support an association between assisted reproduction and development of atopic diseases. This result must be confirmed in subsequent studies, preferably of singleton populations. © 2011 Blackwell Publishing Ltd.

  19. Larvicidal potentiality, longevity and fecundity inhibitory activities of Bacillus sphaericus (Bs G3-IV on vector mosquitoes, Aedes aegypti and Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Arjunan Nareshkumar

    2012-12-01

    Full Text Available Intervention measures to control the transmission of vector-borne diseases include control of the vector population. In mosquito control, synthetic insecticides used against both the larvae (larvicides and adults (adulticides create numerous problems, such as environmental pollution, insecticide resistance and toxic hazards to humans. In the present study, a bacterial pesticide, Bacillus sphaericus (Bs G3-IV, was used to control the dengue and filarial vectors, Aedes aegypti and Culex quinquefasciatus. Bacillus sphaericus (Bs G3-IV was very effective against Aedes aegypti and Culex quinquefasciatus, showing significant larval mortality. Evaluated lethal concentrations (LC50 and LC90 were age-dependent, with early instars requiring a lower concentration compared with later stages of mosquitoes. Culex quinquefasciatus was more susceptible to Bacillus sphaericus (Bs G3-IV than was Aedes aegypti. Fecundity rate was highly reduced after treatment with different concentrations of Bacillus sphaericus (Bs G3-IV. Larval and pupal longevity both decreased after treatment with Bacillus sphaericus (Bs G3-IV, total number of days was lower in the B. sphaericus treatments compared with the control. Our results show the bacterial pesticide Bacillus sphaericus (Bs G3-IV to be an effective mosquito control agent that can be used for more integrated pest management programs.

  20. Free boundary models for mosquito range movement driven by climate warming.

    Science.gov (United States)

    Bao, Wendi; Du, Yihong; Lin, Zhigui; Zhu, Huaiping

    2018-03-01

    As vectors, mosquitoes transmit numerous mosquito-borne diseases. Among the many factors affecting the distribution and density of mosquitoes, climate change and warming have been increasingly recognized as major ones. In this paper, we make use of three diffusive logistic models with free boundary in one space dimension to explore the impact of climate warming on the movement of mosquito range. First, a general model incorporating temperature change with location and time is introduced. In order to gain insights of the model, a simplified version of the model with the change of temperature depending only on location is analyzed theoretically, for which the dynamical behavior is completely determined and presented. The general model can be modified into a more realistic one of seasonal succession type, to take into account of the seasonal changes of mosquito movements during each year, where the general model applies only for the time period of the warm seasons of the year, and during the cold season, the mosquito range is fixed and the population is assumed to be in a hibernating status. For both the general model and the seasonal succession model, our numerical simulations indicate that the long-time dynamical behavior is qualitatively similar to the simplified model, and the effect of climate warming on the movement of mosquitoes can be easily captured. Moreover, our analysis reveals that hibernating enhances the chances of survival and successful spreading of the mosquitoes, but it slows down the spreading speed.

  1. [Zika Virus and Zika Viral Disease].

    Science.gov (United States)

    Zhang, Shuo; Li, Dexin

    2016-01-01

    Since Zika virus (ZIKV) has firstly been isolated in 1947, Uganda, outbreaks of Zika fever have been reported in many areas such as in Africa, Southeast Asia and America. Imported cases in China also have been reported. Zika virus belongs to the family Flaviviridae, genus Flavivirus, and include Africa subtype and Asia subtype. It is a mosquito-borne virus primarily transmitted by Aedes aegypti mosquitoes. Sexual transmission, Blood transmission and mother-to-fetus transmission were also reported. Zika virus can go though blood-brain barrier and infect central nervous system. Symptoms are generally mild and self-limited, but recent evidence suggests a possible association between maternal Zika virus infection and adverse fetal outcomes, such as congenital microcephaly, as well as a possible association with Guillain-Barré syndrome. Laboratorial Diagnosis includes nucleic acid detection, Serological test, and isolation of virus. Currently, no vaccine or medication exists to prevent or treat Zika virus infection. Preventive measures against Zika virus infection should be taken through prevention of mosquito bites and surveillance in epidemic area.

  2. Present and Future Projections of Habitat Suitability of the Asian Tiger Mosquito, a Vector of Viral Pathogens, from Global Climate Simulations.

    Science.gov (United States)

    Proestos, Y.; Christophides, G.; Erguler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J.

    2014-12-01

    Climate change can influence the transmission of vector borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian Tiger mosquito (Aedes albopictus), which can transmit pathogens that cause Chikungunya, Dengue fever, yellow fever and various encephalitides. Using a general circulation model (GCM) at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the 21st century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that about 2.4 billion individuals in a land area of nearly 20 million square kilometres will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.

  3. Environmental and social-demographic predictors of the southern house mosquito Culex quinquefasciatus in New Orleans, Louisiana.

    Science.gov (United States)

    Moise, Imelda K; Riegel, Claudia; Muturi, Ephantus J

    2018-04-17

    Understanding the major predictors of disease vectors such as mosquitoes can guide the development of effective and timely strategies for mitigating vector-borne disease outbreaks. This study examined the influence of selected environmental, weather and sociodemographic factors on the spatial and temporal distribution of the southern house mosquito Culex quinquefasciatus Say in New Orleans, Louisiana, USA. Adult mosquitoes were collected over a 4-year period (2006, 2008, 2009 and 2010) using CDC gravid traps. Socio-demographic predictors were obtained from the United States Census Bureau, 2005-2009 American Community Survey and the City of New Orleans Department of Code Enforcement. Linear mixed effects models and ERDAS image processing software were used for statistical analysis and image processing. Only two of the 22 predictors examined were significant predictors of Cx. quinquefasciatus abundance. Mean temperature during the week of mosquito collection was positively associated with Cx. quinquefasciatus abundance while developed high intensity areas were negatively associated with Cx. quinquefasciatus abundance. The findings of this study illustrate the power and utility of integrating biophysical and sociodemographic data using GIS analysis to identify the biophysical and sociodemographic processes that increase the risk of vector mosquito abundance. This knowledge can inform development of accurate predictive models that ensure timely implementation of mosquito control interventions.

  4. Vectors and transmission dynamics for Setaria tundra (Filarioidea; Onchocercidae, a parasite of reindeer in Finland

    Directory of Open Access Journals (Sweden)

    Kuusela Jussi

    2009-01-01

    Full Text Available Abstract Background Recent studies have revealed expansion by an array of Filarioid nematodes' into the northern boreal region of Finland. The vector-borne nematode, Setaria tundra, caused a serious disease outbreak in the Finnish reindeer population in 2003–05. The main aim of this study was to understand the outbreak dynamics and the rapid expansion of S. tundra in the sub arctic. We describe the vectors of S. tundra, and its development in vectors, for the first time. Finally we discuss the results in the context of the host-parasite ecology of S. tundra in Finland Results Development of S. tundra to the infective stage occurs in mosquitoes, (genera Aedes and Anopheles. We consider Aedes spp. the most important vectors. The prevalence of S. tundra naturally infected mosquitoes from Finland varied from 0.5 to 2.5%. The rate of development in mosquitoes was temperature-dependent. Infective larvae were present approximately 14 days after a blood meal in mosquitoes maintained at room temperature (mean 21 C, but did not develop in mosquitoes maintained outside for 22 days at a mean temperature of 14.1 C. The third-stage (infective larvae were elongated (mean length 1411 μm (SD 207, and width 28 μm (SD 2. The anterior end was blunt, and bore two liplike structures, the posterior end slight tapering with a prominent terminal papilla. Infective larvae were distributed anteriorly in the insect's body, the highest abundance being 70 larvae in one mosquito. A questionnaire survey revealed that the peak activity of Culicidae in the reindeer herding areas of Finland was from the middle of June to the end of July and that warm summer weather was associated with reindeer flocking behaviour on mosquito-rich wetlands. Conclusion In the present work, S. tundra vectors and larval development were identified and described for the first time. Aedes spp. mosquitoes likely serve as the most important and competent vectors for S. tundra in Finland. Warm summers

  5. Indoor application of attractive toxic sugar bait (ATSB in combination with mosquito nets for control of pyrethroid-resistant mosquitoes.

    Directory of Open Access Journals (Sweden)

    Zachary P Stewart

    Full Text Available BACKGROUND: Attractive toxic sugar bait (ATSB sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. METHODS: Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. RESULTS: In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05. Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. CONCLUSIONS: Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor

  6. Optical remote sensing for monitoring flying mosquitoes, gender identification and discussion on species identification

    Science.gov (United States)

    Genoud, Adrien P.; Basistyy, Roman; Williams, Gregory M.; Thomas, Benjamin P.

    2018-03-01

    Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year and result in over 1 million deaths. Reliable information on the evolution of population and spatial distribution of key insects species is of major importance in the development of eco-epidemiologic models. This paper reports on the remote characterization of flying mosquitoes using a continuous-wave infrared optical remote sensing system. The system is setup in a controlled environment to mimic long-range lidars, mosquitoes are free flying at a distance of 4 m from the collecting optics. The wing beat frequency is retrieved from the backscattered light from mosquitoes transiting through the laser beam. A total of 427 transit signals have been recorded from three mosquito species, males and females. Since the mosquito species and gender are known a priori, we investigate the use of wing beat frequency as the sole predictor variable for two Bayesian classifications: gender alone (two classes) and species/gender (six classes). The gender of each mosquito is retrieved with a 96.5% accuracy while the species/gender of mosquitoes is retrieved with a 62.3% accuracy. Known to be an efficient mean to identify insect family, we discuss the limitations of using wing beat frequency alone to identify insect species.

  7. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  8. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita; Straschil, Ursula; Bateman, Alex; Bö hme, Ulrike; Cherevach, Inna; Gong, Peng; Pain, Arnab; Billker, Oliver

    2010-01-01

    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  9. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita

    2010-10-21

    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  10. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review.

    Science.gov (United States)

    Fiorenzano, Jodi M; Koehler, Philip G; Xue, Rui-De

    2017-04-10

    Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB.

  11. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  12. The effect of deltamethrin-treated net fencing around cattle enclosures on outdoor-biting mosquitoes in Kumasi, Ghana.

    Directory of Open Access Journals (Sweden)

    Marta Ferreira Maia

    Full Text Available Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and -resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m(2 attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A - with cattle and no net; B - with cattle and protected by an untreated net; C - with cattle and protected by a deltamethrin-treated net; D - no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (p<0.0001 landed on humans. The deltamethrin-treated net significantly reduced (nearly three-fold, p<0.0001 culicine landings inside enclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa.

  13. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Hitoshi Tsujimoto

    Full Text Available The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal.We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses.Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of Ae. albopictus.

  14. Lyme Disease Transmission

    Science.gov (United States)

    ... not known to transmit Lyme disease include Lone star ticks ( Amblyomma americanum ), the American dog tick ( Dermacentor ... of Vector-Borne Diseases (DVBD) Email Recommend Tweet YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs ...

  15. Ulceroglandular tularemia in a toddler in Germany after a mosquito bite.

    Science.gov (United States)

    Hanke, Christof A; Otten, Joerg-Elard; Berner, Reinhard; Serr, Annerose; Splettstoesser, Wolf; von Schnakenburg, Christian

    2009-08-01

    Although tularemia is a long-known disease, its significance had diminished over the last decades in Middle Europe. However, over the past years, there is new evidence suggesting that tularemia has re-emerged in Germany. In 2007, the highest number of human cases for almost 50 years has been notified. Beside typical vectors, new ways of transmission seem to gain significance. So far, mosquito bite-transmitted tularemia has only been known from Scandinavia but not from Middle Europe. We report the first case of a 1-year-old toddler from Southwestern Germany with mosquito bite-associated ulceroglandular tularaemia. The new and interesting features of this case are the young age of the patient and the unusual transmission route. The available data suggesting changes in the epidemiology for tularemia in Germany are reviewed. This is an interesting case of infantile tularemia with a very unusual transmission route, highlighting ongoing changes in the epidemiology of tularemia in Germany.

  16. Engaging scientists: An online survey exploring the experience of innovative biotechnological approaches to controlling vector-borne diseases.

    Science.gov (United States)

    Boëte, Christophe; Beisel, Uli; Reis Castro, Luísa; Césard, Nicolas; Reeves, R Guy

    2015-08-10

    Pioneering technologies (e.g., nanotechnology, synthetic biology or climate engineering) are often associated with potential new risks and uncertainties that can become sources of controversy. The communication of information during their development and open exchanges between stakeholders is generally considered a key issue in their acceptance. While the attitudes of the public to novel technologies have been widely considered there has been relatively little investigation of the perceptions and awareness of scientists working on human or animal diseases transmitted by arthropods. Consequently, we conducted a global survey on 1889 scientists working on aspects of vector-borne diseases, exploring, under the light of a variety of demographic and professional factors, their knowledge and awareness of an emerging biotechnology that has the potential to revolutionize the control of pest insect populations. Despite extensive media coverage of key developments (including releases of manipulated mosquitoes into human communities) this has in only one instance resulted in scientist awareness exceeding 50% on a national or regional scale. We document that awareness of pioneering releases significantly relied on private communication sources that were not equally accessible to scientists from countries with endemic vector-borne diseases (dengue and malaria). In addition, we provide quantitative analysis of the perceptions and knowledge of specific biotechnological approaches to controlling vector-borne disease, which are likely to impact the way in which scientists around the world engage in the debate about their value. Our results indicate that there is scope to strengthen already effective methods of communication, in addition to a strong demand by scientists (expressed by 79.9% of respondents) to develop new, creative modes of public engagement.

  17. Aquatic Insect from Iran for Possible Use of Biological Control of Main Vector-Borne Disease of Malaria and Water Indicator of Contamination

    Directory of Open Access Journals (Sweden)

    Zahra Saeidi

    2018-03-01

    Full Text Available Iran has a wide variety of zoogeographical regions and different seasons. Here are some important mosquito-borne diseases. Mosquitoes normally live in waters. Its aquatic insect fauna is highly unexplored. To being resolved this faunal gap, a variety of literature records from previous century in different parts of Iran was reviewed. In some southern and southeastern foci in Iran, Malaria is still a main endemic disease which is unstable with two seasonal spring and autumn peaks even though Iran is lunching Malaria elimination. This review article showed the wide variety of aquatic insects throughout the country. Researchers can discuss water pollutant and its quality by using aquatic insect fauna as well as biological control for vectors. Types of aquatic in­sects and macroinvertebrates sampling can be useful for water quality monitoring as indicators. Looking at aquatic insects’ life in water could be one of the most cost-effective and the easiest method to assess the water contaminations by different pollutants and will provide a guideline for scientific communities and environmental agencies for decision making.

  18. More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations.

    Science.gov (United States)

    Bourtzis, Kostas; Lees, Rosemary Susan; Hendrichs, Jorge; Vreysen, Marc J B

    2016-05-01

    Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, zika, and chikungunya) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically-based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sex-separation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Controlling Mosquitoes Outside

    Centers for Disease Control (CDC) Podcasts

    2016-08-09

    Mosquitoes can carry viruses, like West Nile, Zika, dengue, and chikungunya. In this podcast, Mr. Hubbard will teach you and his neighbor, Laura, ways to help reduce the number of mosquitoes outside your home. Tips include eliminating areas of standing water where mosquitoes lay eggs and using larvicides to kill young mosquitoes.  Created: 8/9/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/9/2016.

  20. R0-modeling as a tool for early warning and surveillance of exotic vector borne diseases in Denmark

    DEFF Research Database (Denmark)

    Bødker, Rene; Kristensen, Birgit; Græsbøll, Kaare

    2011-01-01

    local spread of exotic insect borne diseases of veterinary and human importance. R0 models for various vector borne diseases are continuously updated with spatial temperature data to quantify the present risk of autochthonous cases (R0>0) and the present risk of epidemics (R0>1) in case an infected...... surveillance to these limited periods of potential risk, thus dramatically reducing the number of samples collected and analysed. The risk estimated from the R0 modelling may be combined with the risk of introduction from neighbouring countries and trading partners to generate a truly risk based surveillance......Modelling the potential transmission intensity of insect borne diseases with climate driven R0 process models is frequently used to assess the potential for veterinary and human infections to become established in non endemic areas. Models are often based on mean temperatures of an arbitrary time...

  1. Mathematical modeling of zika virus disease with nonlinear incidence and optimal control

    Science.gov (United States)

    Goswami, Naba Kumar; Srivastav, Akhil Kumar; Ghosh, Mini; Shanmukha, B.

    2018-04-01

    The Zika virus was first discovered in a rhesus monkey in the Zika Forest of Uganda in 1947, and it was isolated from humans in Nigeria in 1952. Zika virus disease is primarily a mosquito-borne disease, which is transmitted to human primarily through the bite of an infected Aedes species mosquito. However, there is documented evidence of sexual transmission of this disease too. In this paper, a nonlinear mathematical model for Zika virus by considering nonlinear incidence is formulated and analyzed. The equilibria and the basic reproduction number (R0) of the model are found. The stability of the different equilibria of the model is discussed in detail. When the basic reproduction number R0 1, we have endemic equilibrium which is locally stable under some restriction on parameters. Further this model is extended to optimal control model and is analyzed by using Pontryagin’s Maximum Principle. It has been observed that optimal control plays a significant role in reducing the number of zika infectives. Finally, numerical simulation is performed to illustrate the analytical findings.

  2. Rift Valley fever virus-infected mosquito ova and associated pathology: possible implications for endemic maintenance

    Directory of Open Access Journals (Sweden)

    Romoser WS

    2011-09-01

    Full Text Available William S Romoser1, Marco Neira Oviedo1, Kriangkrai Lerdthusnee2, Lisa A Patrican3, Michael J Turell4, David J Dohm4, Kenneth J Linthicum5, Charles L Bailey61Department of Biomedical Sciences, College of Osteopathic Medicine, Tropical Disease Institute, Ohio University, Athens, Ohio, USA; 2Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand; 3Infectious Disease Division, National Center for Medical Intelligence, Fort Detrick, Frederick, Maryland, USA; 4Department of Vector Assessment, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA; 5Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture – Agricultural Research Service, Gainesville, Florida, USA; 6National Center for Biodefense and Infectious Disease, School of Systems Biology, College of Science, George Mason University, Manassas, Virginia, USABackground: Endemic/enzootic maintenance mechanisms like vertical transmission (pathogen passage from infected adults to their offspring are central in the epidemiology of zoonotic pathogens. In Kenya, Rift Valley fever virus (RVFV may be maintained by vertical transmission in ground-pool mosquitoes such as Aedes mcintoshi. RVFV can cause serious morbidity and mortality in humans and livestock. Past epidemics/epizootics have occurred in sub-Saharan Africa but, since the late 1970s, RVFV has also appeared in North Africa and the Middle East. Preliminary results revealed RVFV-infected eggs in Ae. mcintoshi after virus injection into the hemocoel after the first of two blood meals, justifying further study.Methods: Mosquitoes were collected from an artificially flooded water-catching depression along a stream in Kenya, shipped live to the USA, and studied using an immunocytochemical method for RVFV-antigen localization in mosquito sections.Results and conclusion: After virus injection into the

  3. Management of soil-borne diseases of organic vegetables

    Directory of Open Access Journals (Sweden)

    Shafique Hafiza Asma

    2016-07-01

    Full Text Available With the rising awareness of the adverse effects of chemical pesticides, people are looking for organically grown vegetables. Consumers are increasingly choosing organic foods due to the perception that they are healthier than those conventionally grown. Vegetable crops are vulnerable to a range of pathogenic organisms that reduce yield by killing the plant or damaging the product, thus making it unmarketable. Soil-borne diseases are among the major factors contributing to low yields of organic produce. Apart from chemical pesticides there are several methods that can be used to protect crops from soil-borne pathogens. These include the introduction of biocontrol agents against soil-borne plant pathogens, plants with therapeutic effects and organic soil amendments that stimulate antagonistic activities of microorganisms to soil-borne diseases. The decomposition of organic matter in soil also results in the accumulation of specific compounds that may be antifungal or nematicidal. With the growing interest in organic vegetables, it is necessary to find non chemical means of plant disease control. This review describes the impact of soil-borne diseases on organic vegetables and methods used for their control.

  4. Mission Accomplished? We Need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control.

    Science.gov (United States)

    Ritchie, Scott A; van den Hurk, Andrew F; Smout, Michael J; Staunton, Kyran M; Hoffmann, Ary A

    2018-03-01

    Historically, sustained control of Aedes aegypti, the vector of dengue, chikungunya, yellow fever, and Zika viruses, has been largely ineffective. Subsequently, two novel 'rear and release' control strategies utilizing mosquitoes infected with Wolbachia are currently being developed and deployed widely. In the incompatible insect technique, male Aedes mosquitoes, infected with Wolbachia, suppress populations through unproductive mating. In the transinfection strategy, both male and female Wolbachia-infected Ae. aegypti mosquitoes rapidly infect the wild population with Wolbachia, blocking virus transmission. It is critical to monitor the long-term stability of Wolbachia in host populations, and also the ability of this bacterium to continually inhibit virus transmission. Ongoing release and monitoring programs must be future-proofed should political support weaken when these vectors are successfully controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Network-level reproduction number and extinction threshold for vector-borne diseases.

    Science.gov (United States)

    Xue, Ling; Scoglio, Caterina

    2015-06-01

    The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.

  6. Vector-borne diseases

    DEFF Research Database (Denmark)

    More, Simon J.; Bicout, Dominique; Bøtner, Anette

    2017-01-01

    After a request from the Europea n Commission, EFSA’s Panel on Animal Health and Welfaresummarised the main characteristics of 36 vector-borne disease s (VBDs) in 36 web-based storymaps.The risk of introduction in the EU through movement of livestock or pets was assessed for eac h of the36 VBDs......-agents for which the rate of introduction wasestimated to be very low, no further asse ssments were made. Due to the uncertainty related to someparameters used for the risk assessment or the instable or unpredictability disease situation in some ofthe source regions, it is recommended to update the assessment when...

  7. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya

    Science.gov (United States)

    Ndenga, Bryson Alberto; Mutuku, Francis Maluki; Ngugi, Harun Njenga; Mbakaya, Joel Omari; Aswani, Peter; Musunzaji, Peter Siema; Vulule, John; Mukoko, Dunstan; Kitron, Uriel; LaBeaud, Angelle Desiree

    2017-01-01

    Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo) and two coastal (urban Ukunda and rural Msambweni) sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2%) by human landing catches, 459 (20.6%) by Prokopack aspiration and 985 (44.2%) by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579). Comparable numbers were collected in western (1,196) and coastal (1,033) sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (Paegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (Paegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral diseases and for the planning of surveillance and control programs. PMID:29261766

  8. Repelling mosquitoes with essential oils

    Science.gov (United States)

    Riley, L.

    2017-12-01

    Mosquitoes carry diseases than can lead to serious illness and death. According to the World Health Organization, mosquitoes infect over 300 million people a year with Malaria and Dengue Fever, two life threatening diseases vectored by mosquitoes. Although insecticides are the most effective way to control mosquitoes, they are not always environmentally friendly. Therefore, alternative tactics should be considered. In this study, we looked at the repellency of various essential oils on female Aedes aegypti through a series of laboratory assays.

  9. Species composition and fauna distribution of mosquitoes (Diptera: Culicidae and its importance for vector-borne diseases in a rural area of Central Western - Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Alexandre Leal-Santos

    2017-08-01

    Full Text Available Abstract. This study describes ecological data obtained in a rural area in the State of Mato Grosso, including the insects belonging to the family Culicidae, especially those framed as potential vectors of tropical diseases. In 2015, we collected adult mosquitoes in fragments of forest in a rural area located in Mato Grosso Central West of Brazil. We captured 18,256 mosquitoes of the sub-families Culicinae and Anophelinae and have identified 34 species belonging to 12 genera: Aedes (1 species, Anopheles (8 species, Coquillettidia (1 species, Haemagogus (1 species, Culex (5 species, Psorophora  (5 species, Ochlerotatus (4 species, Deinocerites (1 species,  Mansonia (4 species, Sabethes (2 species, Limatus (1 species, Wyeomyia (1 species. The family Culicidae presented high richness and abundance, established by diversity indexes (Margalef α =3.26; Shannon H' = 2.09; Simpson D = 0.19 with dominance of the species Anopheles (Nyssorhyncus darlingi Root (89.8%. This species has considerable epidemiological value, considered the main vector of malaria in Mato Grosso. Many species of mosquitoes are vectors of pathogens that cause disease in humans and domestic animals, transmitting pathogens including viruses (arboviruses, filaria worms (helminths and protozoa. Composição de espécies e distribuição da fauna de mosquitos (Diptera: Culicidae e sua importância para doenças transmitidas por vetores em uma área rural do centro-ocidental - Mato Grosso, Brasil Resumo. Este estudo descreve dados ecológicos de uma área rural do Estado de Mato Grosso e dos insetos da família Culicidae especialmente aqueles enquadrados como vetores potenciais de doenças tropicais. Em 2015, coletamos mosquitos adultos em fragmentos de floresta em localidades de áreas rurais no Mato Grosso região Centro Oeste do Brasil. Foram capturados 18.256 exemplares alados de mosquitos das subfamílias Culicinae e Anophelinae e identificadas 34 espécies pertencentes a 12 g

  10. Late flooding combined with warm autumn – potential possibility for prolongation of transmission of mosquito-borne diseases

    Czech Academy of Sciences Publication Activity Database

    Šebesta, O.; Gelbič, Ivan

    2016-01-01

    Roč. 71, č. 11 (2016), s. 1292-1297 ISSN 0006-3088 Institutional support: RVO:60077344 Keywords : Aedes vexans * Aedes sticticus * autumn floods Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 0.759, year: 2016

  11. THE TRANSMISSION OF EQUINE ENCEPHALOMYELITIS VIRUS BY AEDES AEGYPTI.

    Science.gov (United States)

    Merrill, M H; Tenbroeck, C

    1935-10-31

    In confirming Kelser's work on the transmission of equine encephalomyelitis of the western type by Aëdes aegypti it has been learned that the mosquitoes must be fed virus of high titer if positive results are to be secured. A period of from 4 to 5 days after feeding either on infected guinea pigs or on brain containing virus must elapse before the disease is transmitted by biting, but after this time transmission regularly results for a period of about 2 months. By inoculation, virus can be demonstrated in the bodies of infected mosquitoes for the duration of life. Although virus multiplies in the mosquitoes and is generally distributed in their bodies, repeated attempts to demonstrate it in the eggs from females known to be infected as well as in larvae, pupae, and adults from such eggs have been uniformly negative. Larvae have not taken up virus added to the water in which they were living. Male mosquitoes have been infected with virus by feeding but they have not transmitted the virus to normal females, nor have males transmitted the virus from infected to normal females. When virus of the eastern instead of the western type is used transmission experiments with Aëdes aegypti are negative. Apparently this virus is incapable of penetrating the intestinal mucosa of the mosquito. If, however, it is inoculated into the body cavity by needle puncture it persists and transmission experiments are positive.

  12. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether.

    Directory of Open Access Journals (Sweden)

    Colin J Sutherland

    2005-04-01

    Full Text Available Resistance of malaria parasites to chloroquine (CQ and sulphadoxine-pyrimethamine (SP is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs.In a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91, or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet] (n = 406. Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes. Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001. Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001 and were less infectious to mosquitoes at day 7 (p < 0.001 than carriers who had received CQ/SP.Co-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.

  13. Disease: H01547 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01547 Venezuelan equine fever Venezuelan equine fever is one of the mosquito-born...e viral fevers. The disease is caused by Venezuelan equine encephalitis virus (VEEV), an alphavirus that is ...transmitted by Ochlerotatus mosquitoes. VEEV is the most important human and equine pathogen. VEEV has cause...ometimes followed by death. Infectious disease ... Venezuelan equine encephalitis virus [GN:T40028] ... Serodiagn... fevers. ICD-10: A92.2 MeSH: D004685 PMID:23968890 ... AUTHORS ... Taylor KG, Paessler S ... TITLE ... Pathogenesis of Venezuelan equine

  14. Antibodies to plant-produced Plasmodium falciparum sexual stage protein Pfs25 exhibit transmission blocking activity

    NARCIS (Netherlands)

    Farrance, C.E.; Chichester, J.A.; Musiychuk, K.; Shamloul, M.; Rhee, A.; Manceva, S.D.; Jones, R.M.; Mamedov, T.; Sharma, S.; Mett, V.; Streatfield, S.J.; Roeffen, W.F.G.; Vegte-Bolmer, M.G. van de; Sauerwein, R.W.; Wu, Y.; Muratova, O.; Miller, L.; Duffy, P.; Sinden, R.; Yusibov, V.

    2011-01-01

    Malaria is a serious and sometimes fatal mosquito-borne disease caused by a protozoan parasite. Each year, it is estimated that over one million people are killed by malaria, yet the disease is preventable and treatable. Developing vaccines against the parasite is a critical component in the fight

  15. Analysis of Culex and Aedes mosquitoes in southwestern Nigeria ...

    African Journals Online (AJOL)

    Introduction: Amplification and transmission of West Nile virus (WNV) by mosquitoes are driven by presence and number of viraemic/susceptible avian hosts. Methods: in order to predict risk of WNV infection to humans, we collected mosquitoes from horse stables in Lagos and Ibadan, southwestern Nigeria. The mosquitoes ...

  16. Book review: Mosquito eradication: The story of killing Campto

    Science.gov (United States)

    Lapointe, Dennis

    2015-01-01

    In 1826, the paradise that was the Hawaiian Islands was changed forever when the first mosquito species was accidentally introduced to the island of Maui. Though it has not lived up to its potential as a vector of human disease in the islands, Culex quinquefasciatus and the avian pathogens it transmits laid waste to perhaps the world's most remarkable insular avifauna. Today the lowland native forests, once deafening with birdsong, are largely devoid of native birds and Cx. quinquefasciatus has become an inextricable part of our natural areas. In the Hawaiian Islands, the conservation community struggles to keep invasive species out and to control a number of species that have become naturalized. Despite the millions of dollars spent, these efforts never seem enough to slow the erosion of our native biota. The restoration and long-term preservation of Hawaiian forest birds depend on the nearly complete control of mosquito-borne avian disease, an obstacle that to many land managers appears insurmountable. To rally hope in Hawai`i, the conservation community needs to see a success. As a Pacific island, Hawai`i shares similar conservation problems with New Zealand and has often looked to that nation for innovation and inspiration. Mosquito Eradication: The Story of Killing Campto may be our latest inspiration.

  17. A review of mosquitoes associated with Rift Valley fever virus in Madagascar.

    Science.gov (United States)

    Tantely, Luciano M; Boyer, Sébastien; Fontenille, Didier

    2015-04-01

    Rift Valley fever (RVF) is a viral zoonotic disease occurring throughout Africa, the Arabian Peninsula, and Madagascar. The disease is caused by a Phlebovirus (RVF virus [RVFV]) transmitted to vertebrate hosts through the bite of infected mosquitoes. In Madagascar, the first RVFV circulation was reported in 1979 based on detection in mosquitoes but without epidemic episode. Subsequently, two outbreaks occurred: the first along the east coast and in the central highlands in 1990 and 1991 and the most recent along the northern and eastern coasts and in the central highlands in 2008 and 2009. Despite the presence of 24 mosquitoes species potentially associated with RVFV transmission in Madagascar, little associated entomological information is available. In this review, we list the RVFV vector, Culex antennatus, as well as other taxa as candidate vector species. We discuss risk factors from an entomological perspective for the re-emergence of RVF in Madagascar. © The American Society of Tropical Medicine and Hygiene.

  18. The seasonal influence of climate and environment on yellow fever transmission across Africa.

    Science.gov (United States)

    Hamlet, Arran; Jean, Kévin; Perea, William; Yactayo, Sergio; Biey, Joseph; Van Kerkhove, Maria; Ferguson, Neil; Garske, Tini

    2018-03-01

    Yellow fever virus (YFV) is a vector-borne flavivirus endemic to Africa and Latin America. Ninety per cent of the global burden occurs in Africa where it is primarily transmitted by Aedes spp, with Aedes aegypti the main vector for urban yellow fever (YF). Mosquito life cycle and viral replication in the mosquito are heavily dependent on climate, particularly temperature and rainfall. We aimed to assess whether seasonal variations in climatic factors are associated with the seasonality of YF reports. We constructed a temperature suitability index for YFV transmission, capturing the temperature dependence of mosquito behaviour and viral replication within the mosquito. We then fitted a series of multilevel logistic regression models to a dataset of YF reports across Africa, considering location and seasonality of occurrence for seasonal models, against the temperature suitability index, rainfall and the Enhanced Vegetation Index (EVI) as covariates alongside further demographic indicators. Model fit was assessed by the Area Under the Curve (AUC), and models were ranked by Akaike's Information Criterion which was used to weight model outputs to create combined model predictions. The seasonal model accurately captured both the geographic and temporal heterogeneities in YF transmission (AUC = 0.81), and did not perform significantly worse than the annual model which only captured the geographic distribution. The interaction between temperature suitability and rainfall accounted for much of the occurrence of YF, which offers a statistical explanation for the spatio-temporal variability in transmission. The description of seasonality offers an explanation for heterogeneities in the West-East YF burden across Africa. Annual climatic variables may indicate a transmission suitability not always reflected in seasonal interactions. This finding, in conjunction with forecasted data, could highlight areas of increased transmission and provide insights into the occurrence of

  19. 12 Statistical Survey of Mosquito Vectors.cdr

    African Journals Online (AJOL)

    Administrator

    Introduction. Environmental factors are of prime importance to ... Mexico, Asia, Europe, Russia, Greenland,. Canada, United ... of the countries where the incidence of mosquito borne ... where all laundry washing work is being carried out from ...

  20. Heartworm disease (Dirofilaria immitis and their vectors in Europe. New distribution trends.

    Directory of Open Access Journals (Sweden)

    Rodrigo eMorchón

    2012-06-01

    Full Text Available Cardiopulmonary dirofilariasis is a cosmopolitan disease caused by Dirofilaria immitis, which affects mainly canids and felids. Moreover, it causes zoonotic infections, producing pulmonary dirofilariasis in humans. Heartworm disease is a vector-borne transmitted disease, thus transmission depends on the presence of competent mosquito species, which is directly related to favorable climate conditions for its development and survival. Cardiopulmonary dirofilariasis is mainly located in countries with temperate and tropical climates. Europe is one of the continents where animal dirofilariasis has been studied more extensively. In this article we review the current prevalence of canine and feline cardiopulmonary dirofilariasis in the European continent, the transmission vectors, the current changes in the distribution and the possible causes, though the analysis of the epidemiological studies carried out until 2001 and between 2002-2011. The highest prevalences have been observed in the southern European countries, which are considered historically endemic/hyperendemic countries. Studies carried out in the last 10 years suggest an expansion of cardiopulmonary dirofilariasis in dogs towards central and northern Europe. Several factors can exert an influence on the spreading of the disease, such as movement of infected animals, the introduction of new species of mosquitoes able to act as vectors, the climate change caused by the global warming, and development of human activity in new areas. Veterinary controls to prevent the spreading of this disease, programs of control of vectors, and adequate protocols of prevention of dirofilariasis in the susceptible species should be carried out.

  1. Arthropod Innate Immune Systems and Vector-Borne Diseases

    OpenAIRE

    Baxter, Richard H. G.; Contet, Alicia; Krueger, Kathryn

    2017-01-01

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins ...

  2. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia.

    Directory of Open Access Journals (Sweden)

    Sonja Hall-Mendelin

    2016-09-01

    Full Text Available Within the last 10 years Zika virus (ZIKV has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission.Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50 of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred.We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia.

  3. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia.

    Science.gov (United States)

    Hall-Mendelin, Sonja; Pyke, Alyssa T; Moore, Peter R; Mackay, Ian M; McMahon, Jamie L; Ritchie, Scott A; Taylor, Carmel T; Moore, Frederick A J; van den Hurk, Andrew F

    2016-09-01

    Within the last 10 years Zika virus (ZIKV) has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission. Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50) of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50)/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred. We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia.

  4. Vector Competence of American Mosquitoes for Three Strains of Zika Virus.

    Directory of Open Access Journals (Sweden)

    James Weger-Lucarelli

    2016-10-01

    Full Text Available In 2015, Zika virus (ZIKV; Flaviviridae; Flavivirus emerged in the Americas, causing millions of infections in dozens of countries. The rapid spread of the virus and the association with disease outcomes such as Guillain-Barré syndrome and microcephaly make understanding transmission dynamics essential. Currently, there are no reports of vector competence (VC of American mosquitoes for ZIKV isolates from the Americas. Further, it is not clear whether ZIKV strains from other genetic lineages can be transmitted by American Aedes aegypti populations, and whether the scope of the current epidemic is in part facilitated by viral factors such as enhanced replicative fitness or increased vector competence. Therefore, we characterized replication of three ZIKV strains, one from each of the three phylogenetic clades in several cell lines and assessed their abilities to be transmitted by Ae. aegypti mosquitoes. Additionally, laboratory colonies of different Culex spp. were infected with an American outbreak strain of ZIKV to assess VC. Replication rates were variable and depended on virus strain, cell line and MOI. African strains used in this study outcompeted the American strain in vitro in both mammalian and mosquito cell culture. West and East African strains of ZIKV tested here were more efficiently transmitted by Ae. aegypti from Mexico than was the currently circulating American strain of the Asian lineage. Long-established laboratory colonies of Culex mosquitoes were not efficient ZIKV vectors. These data demonstrate the capacity for additional ZIKV strains to infect and replicate in American Aedes mosquitoes and suggest that neither enhanced virus replicative fitness nor virus adaptation to local vector mosquitoes seems likely to explain the extent and intensity of ZIKV transmission in the Americas.

  5. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe

    Directory of Open Access Journals (Sweden)

    Jing Liu-Helmersson

    2016-05-01

    Full Text Available Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC based on historic and projected temperature (1901–2099. VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence–if sufficient vector populations (either Ae. aegypti and Ae. albopictus were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe.

  6. Mosquitoes meet microfluidics: High-throughput microfluidic tools for insect-parasite ecology in field conditions

    Science.gov (United States)

    Prakash, Manu; Mukundarajan, Haripriya

    2013-11-01

    A simple bite from an insect is the transmission mechanism for many deadly diseases worldwide--including malaria, yellow fever, west nile and dengue. Very little is known about how populations of numerous insect species and disease-causing parasites interact in their natural habitats due to a lack of measurement techniques. At present, vector surveillance techniques involve manual capture by using humans as live bait, which is hard to justify on ethical grounds. Individual mosquitoes are manually dissected to isolate salivary glands to detect sporozites. With typical vector infection rates being very low even in endemic areas, it is almost impossible to get an accurate picture of disease distribution, in both space and time. Here we present novel high-throughput microfluidic tools for vector surveillance, specifically mosquitoes. A two-dimensional high density array with baits provide an integrated platform for multiplex PCR for detection of both vector and parasite species. Combining techniques from engineering and field ecology, methods and tools developed here will enable high-throughput measurement of infection rates for a number of diseases in mosquito populations in field conditions. Pew Foundation.

  7. High Prevalence of West Nile Virus in Domestic Birds and Detection in 2 New Mosquito Species in Madagascar.

    Science.gov (United States)

    Maquart, Marianne; Boyer, Sébastien; Rakotoharinome, Vincent Michel; Ravaomanana, Julie; Tantely, Michael Luciano; Heraud, Jean-Michel; Cardinale, Eric

    2016-01-01

    West Nile virus is an arthropod-borne zoonosis transmitted by a large number of mosquito species, and birds play a key role as reservoir of the virus. Its distribution is largely widespread over Africa, Asia, the Americas and Europe. Since 1978, it has frequently been reported in Madagascar. Studies described a high seroprevalence level of the virus in humans in different areas of the island and a human fatal case of WNV infection was reported in 2011. Despite these reports, the epidemiology of WNV in Madagascar, in particular, viral circulation remains unclear. To explore the transmission of WNV in two rural human populations of Madagascar, we investigated local mosquitoes and poultry for evidence of current infections, and determined seroprevalence of candidate sentinel species among the local poultry. These 2 areas are close to lakes where domestic birds, migratory wild birds and humans coexist. Serological analysis revealed WNV antibodies in domestic birds (duck, chicken, goose, turkey and guinea fowl) sampled in both districts (Antsalova 29.4% and Mitsinjo 16.7%). West Nile virus nucleic acid was detected in one chicken and in 8 pools of mosquitoes including 2 mosquito species (Aedeomyia madagascarica and Anopheles pauliani) that have not been previously described as candidate vectors for WNV. Molecular analysis of WNV isolates showed that all viruses detected were part of the lineage 2 that is mainly distributed in Africa, and were most closely matched by the previous Malagasy strains isolated in 1988. Our study showed that WNV circulates in Madagascar amongst domestic birds and mosquitoes, and highlights the utility of poultry as a surveillance tool to detect WNV transmission in a peri-domestic setting.

  8. Climate change and vector-borne diseases of public health significance.

    Science.gov (United States)

    Ogden, Nicholas H

    2017-10-16

    There has been much debate as to whether or not climate change will have, or has had, any significant effect on risk from vector-borne diseases. The debate on the former has focused on the degree to which occurrence and levels of risk of vector-borne diseases are determined by climate-dependent or independent factors, while the debate on the latter has focused on whether changes in disease incidence are due to climate at all, and/or are attributable to recent climate change. Here I review possible effects of climate change on vector-borne diseases, methods used to predict these effects and the evidence to date of changes in vector-borne disease risks that can be attributed to recent climate change. Predictions have both over- and underestimated the effects of climate change. Mostly under-estimations of effects are due to a focus only on direct effects of climate on disease ecology while more distal effects on society's capacity to control and prevent vector-borne disease are ignored. There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change. © Crown copyright 2017.

  9. Evaluating the effects of mosquito control adulticides on honey bees

    Science.gov (United States)

    While mosquito control adulticides can be effective in rapidly reducing mosquito populations during times of high arbovirus transmission, the impacts of these control measures on pollinators has been of recent interest. The purpose of our study was to evaluate mosquito and honey bee mortality using ...

  10. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Adelman, Zachary N; Jasinskiene, Nijole; James, Anthony A

    2002-04-30

    Transgenesis technology has been developed for the yellow fever mosquito, Aedes aegypti. Successful integration of exogenous DNA into the germline of this mosquito has been achieved with the class II transposable elements, Hermes, mariner and piggyBac. A number of marker genes, including the cinnabar(+) gene of Drosophila melanogaster, and fluorescent protein genes, can be used to monitor the insertion of these elements. The availability of multiple elements and marker genes provides a powerful set of tools to investigate basic biological properties of this vector insect, as well as the materials for developing novel, genetics-based, control strategies for the transmission of disease.

  11. Understanding resistant effect of mosquito on fumigation strategy in dengue control program

    Science.gov (United States)

    Aldila, D.; Situngkir, N.; Nareswari, K.

    2018-01-01

    A mathematical model of dengue disease transmission will be introduced in this talk with involving fumigation intervention into mosquito population. Worsening effect of uncontrolled fumigation in the form of resistance of mosquito to fumigation chemicals will also be included into the model to capture the reality in the field. Deterministic approach in a 9 dimensional of ordinary differential equation will be used. Analytical result about the existence and local stability of the equilibrium points followed with the basic reproduction number will be discussed. Some numerical result will be performed for some scenario to give a better interpretation for the analytical results.

  12. Rodent-borne diseases and their public health importance in Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Rabiee

    2018-04-01

    Full Text Available Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran.We searched Google Scholar, PubMed, Science Direct, Scientific Information Database (SID, and Magiran databases up to September 2016 to obtain articles reporting occurrence of rodent-borne diseases in Iran and extract information from them. Out of 70 known rodent-borne diseases, 34 were reported in Iran: 17 (50% parasitic diseases, 13 (38% bacterial diseases, and 4 (12% viral diseases. Twenty-one out of 34 diseases were reported from both humans and rodents. Among the diseases reported in the rodents of Iran, plague, leishmaniasis, and hymenolepiasis were the most frequent. The most infected rodents were Rattus norvegicus (16 diseases, Mus musculus (14 diseases, Rattus rattus (13 diseases, Meriones persicus (7 diseases, Apodemus spp. (5 diseases, Tatera indica (4 diseases, Meriones libycus (3 diseases, Rhombomys opimus (3 diseases, Cricetulus migratorius (3 diseases, and Nesokia indica (2 diseases.The results of this review indicate the importance of rodent-borne diseases in Iran. Considering notable diversity of rodents and their extensive distribution throughout the country, it is crucial to pay more attention to their role in spreading infectious diseases for better control of the diseases.

  13. Rodent-borne diseases and their public health importance in Iran

    Science.gov (United States)

    Mahmoudi, Ahmad; Siahsarvie, Roohollah; Kryštufek, Boris; Mostafavi, Ehsan

    2018-01-01

    Background Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran. Methodology/Principal finding We searched Google Scholar, PubMed, Science Direct, Scientific Information Database (SID), and Magiran databases up to September 2016 to obtain articles reporting occurrence of rodent-borne diseases in Iran and extract information from them. Out of 70 known rodent-borne diseases, 34 were reported in Iran: 17 (50%) parasitic diseases, 13 (38%) bacterial diseases, and 4 (12%) viral diseases. Twenty-one out of 34 diseases were reported from both humans and rodents. Among the diseases reported in the rodents of Iran, plague, leishmaniasis, and hymenolepiasis were the most frequent. The most infected rodents were Rattus norvegicus (16 diseases), Mus musculus (14 diseases), Rattus rattus (13 diseases), Meriones persicus (7 diseases), Apodemus spp. (5 diseases), Tatera indica (4 diseases), Meriones libycus (3 diseases), Rhombomys opimus (3 diseases), Cricetulus migratorius (3 diseases), and Nesokia indica (2 diseases). Conclusions/Significance The results of this review indicate the importance of rodent-borne diseases in Iran. Considering notable diversity of rodents and their extensive distribution throughout the country, it is crucial to pay more attention to their role in spreading infectious diseases for better control of the diseases. PMID:29672510

  14. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host

    Directory of Open Access Journals (Sweden)

    Mota Maria M

    2011-03-01

    Full Text Available Abstract Background The Plasmodium Cysteine Repeat Modular Proteins (PCRMP are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. Methods In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. Results Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. Conclusions PCRMP3 and 4 play multiple roles during the Plasmodium life

  15. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus' temperature requirements.

    Science.gov (United States)

    Fischer, Dominik; Thomas, Stephanie M; Suk, Jonathan E; Sudre, Bertrand; Hess, Andrea; Tjaden, Nils B; Beierkuhnlein, Carl; Semenza, Jan C

    2013-11-12

    Chikungunya was, from the European perspective, considered to be a travel-related tropical mosquito-borne disease prior to the first European outbreak in Northern Italy in 2007. This was followed by cases of autochthonous transmission reported in South-eastern France in 2010. Both events occurred after the introduction, establishment and expansion of the Chikungunya-competent and highly invasive disease vector Aedes albopictus (Asian tiger mosquito) in Europe. In order to assess whether these outbreaks are indicative of the beginning of a trend or one-off events, there is a need to further examine the factors driving the potential transmission of Chikungunya in Europe. The climatic suitability, both now and in the future, is an essential starting point for such an analysis. The climatic suitability for Chikungunya outbreaks was determined by using bioclimatic factors that influence, both vector and, pathogen. Climatic suitability for the European distribution of the vector Aedes albopictus was based upon previous correlative environmental niche models. Climatic risk classes were derived by combining climatic suitability for the vector with known temperature requirements for pathogen transmission, obtained from outbreak regions. In addition, the longest potential intra-annual season for Chikungunya transmission was estimated for regions with expected vector occurrences.In order to analyse spatio-temporal trends for risk exposure and season of transmission in Europe, climate change impacts are projected for three time-frames (2011-2040, 2041-2070 and 2071-2100) and two climate scenarios (A1B and B1) from the Intergovernmental Panel on Climate Change (IPCC). These climatic projections are based on regional climate model COSMO-CLM, which builds on the global model ECHAM5. European areas with current and future climatic suitability of Chikungunya transmission are identified. An increase in risk is projected for Western Europe (e.g. France and Benelux-States) in the

  16. Disease: H00382 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available Lundstrom JO ... TITLE ... Mosquito-borne viruses in western Europe: a review. ... JOURNAL ... J Vector Ecol 24:1-... fever: an epidemiological review of a re-emerging infectious disease. ... JOURNAL ... Clin Infect Dis 49:942-8

  17. West Nile Virus in Mosquitoes of Iranian Wetlands.

    Science.gov (United States)

    Bagheri, Masoomeh; Terenius, Olle; Oshaghi, Mohammad Ali; Motazakker, Morteza; Asgari, Sassan; Dabiri, Farrokh; Vatandoost, Hassan; Mohammadi Bavani, Mulood; Chavshin, Ali Reza

    2015-12-01

    The West Nile virus (WNV) transmission cycle includes a wide range of migratory wetland birds as reservoirs, mosquitoes as biological vectors, and equines and humans as dead-end hosts. Despite the presence of potential vector species, there is no information about the existence of WNV in mosquito vectors in Iran. The Iranian West Azerbaijan Province is located in the northwestern part of Iran and has borders with Turkey, Iraq, Armenia, and the Republic of Azerbaijan. The current study was conducted to identify the wetland mosquitoes of the West Azerbaijan Province and their infection with WNV. In this study, 2143 specimens were collected, comprising 1541 adults and 602 larvae. Six species belonging to four genera were collected and identified: Anopheles maculipennis sensu lato (s.l.), Culex (Cx.) hortensis, Cx. pipiens s.l., Cx. theileri, Culiseta longiareolata, and Aedes (Ae.) (Ochlerotatus) caspius. In total, 45 pools of mosquitoes were examined. Two of the adult pools collected from the same location showed the presence of WNV in Ae. (Och.) caspius, from Sangar, Makoo County, as confirmed by PCR and sequencing. Due to the discovery of WNV in the mosquito population of the region, and the presence of wetlands and significant populations of migratory birds, the health sector should carefully monitor the factors involved in the cycle of this disease.

  18. Tick Talk: Tick-borne Diseases of South Dakota.

    Science.gov (United States)

    Huntington, Mark K; Allison, Jay

    2017-09-01

    In addition to being a nuisance, ticks can carry disease. This article presents a brief review of ticks and associated tick-borne disease relevant to South Dakota and surrounding regions. Tick-borne diseases of special relevance in South Dakota include tularemia, Rocky Mountain spotted fever, and Lyme disease. A number of others may also be encountered in the state as well. Prompt treatment of suspected cases is important to ensure a successful recovery, and tick-avoidance measures can reduce the risks of acquiring them. Most of these conditions are nationally reportable infectious diseases. Copyright© South Dakota State Medical Association.

  19. Tick-borne pathogen – Reversed and conventional discovery of disease

    Directory of Open Access Journals (Sweden)

    Ellen eTijsse Klasen

    2014-07-01

    Full Text Available Molecular methods have increased the number of known microorganisms associated with ticks significantly. Some of these newly identified microorganisms are readily linked to human disease while others are yet unknown to cause human disease. The face of tick-borne disease discovery has changed with more diseases now being discovered in a ‘reversed way’, detecting disease cases only years after the tick-borne microorganism was first discovered. Compared to the conventional discovery of infectious diseases, this order of discoveries presents researchers with new challenges. Especially estimating public health risks of such agents is challenging, as case definitions and diagnostic procedures may initially be missing. We discuss the advantages and shortcomings of molecular methods, serology, epidemiological studies that might be used to study some fundamental questions regarding newly identified tick-borne diseases. With increased tick-exposure and improved detection methods, more tick-borne microorganisms will be added to the list of pathogens causing disease in humans in future.

  20. Countering a bioterrorist introduction of pathogen-infected mosquitoes through mosquito control.

    Science.gov (United States)

    Tabachnick, Walter J; Harvey, William R; Becnel, James J; Clark, Gary G; Connelly, C Roxanne; Day, Jonathan F; Linser, Paul J; Linthicum, Kenneth J

    2011-06-01

    The release of infected mosquitoes or other arthropods by bioterrorists, i.e., arboterrorism, to cause disease and terror is a threat to the USA. A workshop to assess mosquito control response capabilities to mount rapid and effective responses to eliminate an arboterrorism attack provided recommendations to improve capabilities in the USA. It is essential that mosquito control professionals receive training in possible responses, and it is recommended that a Council for Emergency Mosquito Control be established in each state to coordinate training, state resources, and actions for use throughout the state.

  1. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases.

    Science.gov (United States)

    Pastula, Daniel M; Smith, Daniel E; Beckham, J David; Tyler, Kenneth L

    2016-06-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas.

  2. [Several issues on the epidemiology of Zika virus disease].

    Science.gov (United States)

    Lu, Guiyang; Su, Yingying; Wang, Ning

    2016-04-01

    Zika virus belongs to Aedes mosquito-borne flavivirus. In response to the current cluster of congenital malformations (microcephaly) and other neurological complications (Guillain-Barré Syndrome) that could be linked to Zika virus infection, WHO declares that Zika virus is of global public health importance. Data sources were from peer review articles and WHO documents. The sources of Zika virus infection would include patients, people with asymptomatic infections and primates. The infectious period of Zika virus remains unclear. However, according to the period that RNA of Zika virus can be positively detected in blood, saliva, urine or semen, we can presume that the communicable period may last for 2 months or even longer. Zika virus is primarily transmitted to humans by infected Aedes spp. mosquitoes. Presumptive vertical, blood or sexual routes of transmission have been reported. More evidence indicated the existence of a cause-effect relationship between Zika virus infection and congenital microcephaly/Guillain-Barre syndrome. Strategies include successful control the amount of mosquitoes and minimize the contacts between mosquitoes and human beings could effectively prevent the Zika virus transmission. Other preventive measures as cutting off vertical, blood or sexual routes of transmission should also be adopted. The epidemiology of Zika virus remains uncertain which calls for further research.

  3. Imported Zika Virus in a European City: How to Prevent Local Transmission?

    Directory of Open Access Journals (Sweden)

    Joan-Pau Millet

    2017-07-01

    Full Text Available Background: On February 1st 2016 the WHO declared the Zika Virus (ZIKV infection a worldwide public health emergency because of its rapid expansion and severe complications, such as Guillain-Barré Syndrome or microcephaly in newborn. The huge amount of people traveling to endemic areas and the presence of Aedes albopictus in Barcelona increase the risk of autochtonous transmission. The objective of this study was to describe the first ZIKV cases diagnosed in our city and to analyze the surveillance, prevention, and control measures implemented to avoid autochthonous transmission.Methods: An observational cross-sectional population-based study in Barcelona, Spain was performed.An analysis of the socio-demographic, epidemiological, clinical characteristics, and mosquito control activities of the ZIKV cases detected between January 1st and December 2016 was carried out using a specific ZIKV epidemiological survey of the Barcelona Public Health Agency.Results: A total of 118 notifications of possible ZIKV infections were received, and 44 corresponded to confirmed cases in Barcelona residents.Amongst these, the median age was 35 years and 57% were women. All cases were imported, 48% were Spanish-born and 52% foreign-born. Dominican Republic was the most visited country amongst foreign-born patients and Nicaragua amongst Spanish-born. The most frequent symptoms were exanthema, fever, and arthralgia. Among the 24 diagnosed women, 6 (25% were pregnant. There was one case of microcephaly outside Barcelona city. Entomological inspections were done at the homes of 19 cases (43.2% of the total and in 34 (77.3% public spaces. Vector activity was found in one case of the 44 confirmed cases, and 134 surveillance and vector control were carried out associated to imported ZIKV cases. In all cases prevention measures were recommended to avoid mosquito bites on infected cases.Conclusion: Epidemiological and entomological surveillance are essential for the

  4. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks

    KAUST Repository

    Seirin Lee, S.

    2013-08-01

    The invasion of pest insects often changes or destroys a native ecosystem, and can result in food shortages and disease endemics. Issues such as the environmental effects of chemical control methods, the economic burden of maintaining control strategies and the risk of pest resistance still remain, and mosquito-borne diseases such as malaria and dengue fever prevail in many countries, infecting over 100 million worldwide in 2010. One environmentally friendly method for mosquito control is the Sterile Insect Technique (SIT). This species-specific method of insect control relies on the mass rearing, sterilization and release of large numbers of sterile insects. An alternative transgenic method is the Release of Insects carrying a Dominant Lethal (RIDL). Our objective is to consider contrasting control strategies for two invasive scenarios via SIT and RIDL: an endemic case and an emerging outbreak. We investigate how the release rate and size of release region influence both the potential for control success and the resources needed to achieve it, under a range of conditions and control strategies, and we discuss advantageous strategies with respect to reducing the release resources and strategy costs (in terms of control mosquito numbers) required to achieve complete eradication of wild-type mosquitoes. © 2013 Elsevier Ltd.

  5. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks

    KAUST Repository

    Seirin Lee, S.; Baker, R.E.; Gaffney, E.A.; White, S.M.

    2013-01-01

    The invasion of pest insects often changes or destroys a native ecosystem, and can result in food shortages and disease endemics. Issues such as the environmental effects of chemical control methods, the economic burden of maintaining control strategies and the risk of pest resistance still remain, and mosquito-borne diseases such as malaria and dengue fever prevail in many countries, infecting over 100 million worldwide in 2010. One environmentally friendly method for mosquito control is the Sterile Insect Technique (SIT). This species-specific method of insect control relies on the mass rearing, sterilization and release of large numbers of sterile insects. An alternative transgenic method is the Release of Insects carrying a Dominant Lethal (RIDL). Our objective is to consider contrasting control strategies for two invasive scenarios via SIT and RIDL: an endemic case and an emerging outbreak. We investigate how the release rate and size of release region influence both the potential for control success and the resources needed to achieve it, under a range of conditions and control strategies, and we discuss advantageous strategies with respect to reducing the release resources and strategy costs (in terms of control mosquito numbers) required to achieve complete eradication of wild-type mosquitoes. © 2013 Elsevier Ltd.

  6. Señales físico químicas involucradas en la búsqueda de hospederos y en la inducción de picadura por mosquitos Physic-chemical signals involved in host localization and induction of disease vector mosquito bites

    Directory of Open Access Journals (Sweden)

    José Luis Torres-Estrada

    2003-12-01

    Full Text Available Las hembras de los mosquitos vectores de enfermedades utilizan señales físicas y químicas para localizar su fuente de alimentación sanguínea en hospederos vertebrados. Los mosquitos zoofílicos responden preferentemente al CO2 y al octenol liberados en la respiración y excreciones, mientras que los mosquitos antropofílicos responden al ácido láctico y a una variedad de compuestos del sudor. Estos compuestos son modificados por microrganismos saprófitos de las glándulas sebáceas de la piel. Otros factores presentes en las viviendas contribuyen a la integración de microsistemas constituidos por olores característicos, que explican los diferentes niveles de atracción de mosquitos y la focalización de la transmisión del paludismo a una porción de casas en localidades de áreas endémicas. La identificación de estos atrayentes químicos y sus moléculas receptoras en mosquitos puede ser utilizada como complemento de nuevos métodos para la vigilancia epidemiológica, para atraer a los mosquitos a trampas de colecta o para incrementar su contacto con insecticidas usados en su control, así como en la manipulación genética para desviar las picaduras de los mosquitos hacia otros hospederos vertebrados.Disease vector female mosquitoes respond to physic-chemical signals to localize vertebrate hosts for blood meals. Zoophylic mosquitoes preferentially respond to CO2 and octenol released in the breath and bodily fluids, while anthropophylic mosquitoes respond to lactic acid and a variety of sweat compounds. These compounds are modified by saprophytic microorganisms in the skin sebaceous glands. Other factors present in human dwellings contribute to the integration of microsystems with characteristic odors that have different attraction for mosquitoes, explaining the focalization of malaria transmission in few households in endemic areas. The identification of the chemical attractants and their molecular receptors could be used to

  7. Don't Let the Bugs Bite: Preventing Dengue and Other Diseases Spread by Mosquitoes

    Centers for Disease Control (CDC) Podcasts

    2007-12-10

    This year (2007) CDC is receiving a great many reports of cases of Dengue fever, which is spread by mosquitoes. This podcast discusses ways travelers to the tropics can protect themselves from mosquito bites.  Created: 12/10/2007 by National Center for the Prevention, Detection and Control of Infectious Diseases (NCPDCID).   Date Released: 12/10/2007.

  8. British Container Breeding Mosquitoes: The Impact of Urbanisation and Climate Change on Community Composition and Phenology

    Science.gov (United States)

    Townroe, Susannah; Callaghan, Amanda

    2014-01-01

    The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK. PMID:24759617

  9. Projected Zika Virus Importation and Subsequent Ongoing Transmission after Travel to the 2016 Olympic and Paralympic Games - Country-Specific Assessment, July 2016.

    Science.gov (United States)

    Grills, Ardath; Morrison, Stephanie; Nelson, Bradley; Miniota, Jennifer; Watts, Alexander; Cetron, Martin S

    2016-07-22

    Zika virus belongs to the genus Flavivirus of the family Flaviviridae; it is transmitted to humans primarily through the bite of an infected Aedes species mosquito (e.g., Ae. aegypti and Ae. albopictus) (1). Zika virus has been identified as a cause of congenital microcephaly and other serious brain defects (2). As of June 30, 2016, CDC had issued travel notices for 49 countries and U.S. territories across much of the Western hemisphere (3), including Brazil, where the 2016 Olympic and Paralympic Games (Games of the XXXI Olympiad, also known as Rio 2016; Games) will be hosted in Rio de Janeiro in August and September 2016. During the Games, mosquito-borne Zika virus transmission is expected to be low because August and September are winter months in Brazil, when cooler and drier weather typically reduces mosquito populations (4). CDC conducted a risk assessment to predict those countries susceptible to ongoing Zika virus transmission resulting from introduction by a single traveler to the Games. Whereas all countries are at risk for travel-associated importation of Zika virus, CDC estimated that 19 countries currently not reporting Zika outbreaks have the environmental conditions and population susceptibility to sustain mosquito-borne transmission of Zika virus if a case were imported from infection at the Games. For 15 of these 19 countries, travel to Rio de Janeiro during the Games is not estimated to increase substantially the level of risk above that incurred by the usual aviation travel baseline for these countries. The remaining four countries, Chad, Djibouti, Eritrea, and Yemen, are unique in that they do not have a substantial number of travelers to any country with local Zika virus transmission, except for anticipated travel to the Games. These four countries will be represented by a projected, combined total of 19 athletes (plus a projected delegation of about 60 persons), a tiny fraction of the 350,000-500,000 visitors expected at the Games.* Overall

  10. Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos, Peru

    OpenAIRE

    Liebman, Kelly A.; Stoddard, Steven T.; Reiner, Robert C.; Perkins, T. Alex; Astete, Helvio; Sihuincha, Moises; Halsey, Eric S.; Kochel, Tadeusz J.; Morrison, Amy C.; Scott, Thomas W.

    2014-01-01

    Background Heterogeneous mosquito biting results in different individuals in a population receiving an uneven number of bites. This is a feature of many vector-borne disease systems that, if understood, could guide preventative control efforts toward individuals who are expected to contribute most to pathogen transmission. We aimed to characterize factors determining biting patterns of Aedes aegypti, the principal mosquito vector of dengue virus. Methodology/Principal Findings Engorged female...

  11. Latent tuberculosis infection in foreign-born communities: Import vs. transmission in The Netherlands derived through mathematical modelling.

    Science.gov (United States)

    Korthals Altes, Hester; Kloet, Serieke; Cobelens, Frank; Bootsma, Martin

    2018-01-01

    While tuberculosis (TB) represents a significant disease burden worldwide, low-incidence countries strive to reach the WHO target of pre-elimination by 2035. Screening for TB in immigrants is an important component of the strategy to reduce the TB burden in low-incidence settings. An important option is the screening and preventive treatment of latent TB infection (LTBI). Whether this policy is worthwhile depends on the extent of transmission within the country, and introduction of new cases through import. Mathematical transmission models of TB have been used to identify key parameters in the epidemiology of TB and estimate transmission rates. An important application has also been to investigate the consequences of policy scenarios. Here, we formulate a mathematical model for TB transmission within the Netherlands to estimate the size of the pool of latent infections, and to determine the share of importation-either through immigration or travel- versus transmission within the Netherlands. We take into account importation of infections due to immigration, and travel to the country of origin, focusing on the three ethnicities most represented among foreign-born TB cases (after exclusion of those overrepresented among asylum seekers): Moroccans, Turkish and Indonesians. We fit a system of ordinary differential equations to the data from the Netherlands Tuberculosis Registry on (extra-)pulmonary TB cases from 1995-2013. We estimate that about 27% of Moroccans, 25% of Indonesians, and 16% of Turkish, are latently infected. Furthermore, we find that for all three foreign-born communities, immigration is the most important source of LTBI, but the extent of within-country transmission is much lower (about half) for the Turkish and Indonesian communities than for the Moroccan. This would imply that contact investigation would have a greater yield in the latter community than in the former. Travel remains a minor factor contributing LTBI, suggesting that targeting

  12. Latent tuberculosis infection in foreign-born communities: Import vs. transmission in The Netherlands derived through mathematical modelling

    Science.gov (United States)

    Kloet, Serieke; Cobelens, Frank; Bootsma, Martin

    2018-01-01

    While tuberculosis (TB) represents a significant disease burden worldwide, low-incidence countries strive to reach the WHO target of pre-elimination by 2035. Screening for TB in immigrants is an important component of the strategy to reduce the TB burden in low-incidence settings. An important option is the screening and preventive treatment of latent TB infection (LTBI). Whether this policy is worthwhile depends on the extent of transmission within the country, and introduction of new cases through import. Mathematical transmission models of TB have been used to identify key parameters in the epidemiology of TB and estimate transmission rates. An important application has also been to investigate the consequences of policy scenarios. Here, we formulate a mathematical model for TB transmission within the Netherlands to estimate the size of the pool of latent infections, and to determine the share of importation–either through immigration or travel- versus transmission within the Netherlands. We take into account importation of infections due to immigration, and travel to the country of origin, focusing on the three ethnicities most represented among foreign-born TB cases (after exclusion of those overrepresented among asylum seekers): Moroccans, Turkish and Indonesians. We fit a system of ordinary differential equations to the data from the Netherlands Tuberculosis Registry on (extra-)pulmonary TB cases from 1995–2013. We estimate that about 27% of Moroccans, 25% of Indonesians, and 16% of Turkish, are latently infected. Furthermore, we find that for all three foreign-born communities, immigration is the most important source of LTBI, but the extent of within-country transmission is much lower (about half) for the Turkish and Indonesian communities than for the Moroccan. This would imply that contact investigation would have a greater yield in the latter community than in the former. Travel remains a minor factor contributing LTBI, suggesting that targeting

  13. Latent tuberculosis infection in foreign-born communities: Import vs. transmission in The Netherlands derived through mathematical modelling.

    Directory of Open Access Journals (Sweden)

    Hester Korthals Altes

    Full Text Available While tuberculosis (TB represents a significant disease burden worldwide, low-incidence countries strive to reach the WHO target of pre-elimination by 2035. Screening for TB in immigrants is an important component of the strategy to reduce the TB burden in low-incidence settings. An important option is the screening and preventive treatment of latent TB infection (LTBI. Whether this policy is worthwhile depends on the extent of transmission within the country, and introduction of new cases through import. Mathematical transmission models of TB have been used to identify key parameters in the epidemiology of TB and estimate transmission rates. An important application has also been to investigate the consequences of policy scenarios. Here, we formulate a mathematical model for TB transmission within the Netherlands to estimate the size of the pool of latent infections, and to determine the share of importation-either through immigration or travel- versus transmission within the Netherlands. We take into account importation of infections due to immigration, and travel to the country of origin, focusing on the three ethnicities most represented among foreign-born TB cases (after exclusion of those overrepresented among asylum seekers: Moroccans, Turkish and Indonesians. We fit a system of ordinary differential equations to the data from the Netherlands Tuberculosis Registry on (extra-pulmonary TB cases from 1995-2013. We estimate that about 27% of Moroccans, 25% of Indonesians, and 16% of Turkish, are latently infected. Furthermore, we find that for all three foreign-born communities, immigration is the most important source of LTBI, but the extent of within-country transmission is much lower (about half for the Turkish and Indonesian communities than for the Moroccan. This would imply that contact investigation would have a greater yield in the latter community than in the former. Travel remains a minor factor contributing LTBI, suggesting that

  14. Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent

    Directory of Open Access Journals (Sweden)

    S.L. States

    2017-06-01

    Full Text Available Coexistence of multiple tick-borne pathogens or strains is common in natural hosts and can be facilitated by resource partitioning of the host species, within-host localization, or by different transmission pathways. Most vector-borne pathogens are transmitted horizontally via systemic host infection, but transmission may occur in the absence of systemic infection between two vectors feeding in close proximity, enabling pathogens to minimize competition and escape the host immune response. In a laboratory study, we demonstrated that co-feeding transmission can occur for a rapidly-cleared strain of Borrelia burgdorferi, the Lyme disease agent, between two stages of the tick vector Ixodes scapularis while feeding on their dominant host, Peromyscus leucopus. In contrast, infections rapidly became systemic for the persistently infecting strain. In a field study, we assessed opportunities for co-feeding transmission by measuring co-occurrence of two tick stages on ears of small mammals over two years at multiple sites. Finally, in a modeling study, we assessed the importance of co-feeding on R0, the basic reproductive number. The model indicated that co-feeding increases the fitness of rapidly-cleared strains in regions with synchronous immature tick feeding. Our results are consistent with increased diversity of B. burgdorferi in areas of higher synchrony in immature feeding – such as the midwestern United States. A higher relative proportion of rapidly-cleared strains, which are less human pathogenic, would also explain lower Lyme disease incidence in this region. Finally, if co-feeding transmission also occurs on refractory hosts, it may facilitate the emergence and persistence of new pathogens with a more limited host range.

  15. A new reportable disease is born: Taiwan Centers for Disease Control's response to emerging Zika virus infection.

    Science.gov (United States)

    Huang, Angela Song-En; Shu, Pei-Yun; Yang, Chin-Hui

    2016-04-01

    Zika virus infection, usually a mild disease transmitted through the bite of Aedes mosquitos, has been reported to be possibly associated with microcephaly and neurologic complications. Taiwan's first imported case of Zika virus infection was found through fever screening at airport entry in January 2016. No virus was isolated from patient's blood taken during acute illness; however, PCR products showed that the virus was of Asian lineage closely related to virus from Cambodia. To prevent Zika virus from spreading in Taiwan, the Taiwan Centers for Disease Control has strengthened efforts in quarantine and surveillance, increased Zika virus infection diagnostic capacity, implemented healthcare system preparedness plans, and enhanced vector control program through community mobilization and education. Besides the first imported case, no additional cases of Zika virus infection have been identified. Furthermore, no significant increase in the number of microcephaly or Guillain- Barré Syndrome has been observed in Taiwan. To date, there have been no autochthonous transmissions of Zika virus infection. Copyright © 2016. Published by Elsevier B.V.

  16. [Conflicts and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    2010-01-01

    Based on literature and personal experiences, vector-borne diseases and conflicts are reviewed. Simple rapid diagnostic tests for three important parasitoses are available. Resort is often made to case definitions and to presumptive treatment. Resistance is an emerging problem. Vaccines are still...

  17. Nesting Bird “Host Funnel” Increases Mosquito-Bird Contact Rate

    OpenAIRE

    CAILLOUËT, KEVIN A.; RIGGAN, ANNA E.; BULLUCK, LESLEY P.; CARLSON, JOHN C.; SABO, ROY T.

    2013-01-01

    Increases in vector-host contact rates can enhance arbovirus transmission intensity. We investigated weekly fluctuations in contact rates between mosquitoes and nesting birds using the recently described Nest Mosquito Trap (NMT). The number of mosquitoes per nestling increased from < 1 mosquito per trap night to 36.2 in the final 2 wk of the nesting season. Our evidence suggests the coincidence of the end of the avian nesting season and increasing mosquito abundances may have caused a “host f...

  18. Composition and Genetic Diversity of Mosquitoes (Diptera: Culicidae) on Islands and Mainland Shores of Kenya’s Lakes Victoria and Baringo

    Science.gov (United States)

    Ajamma, Yvonne Ukamaka; Villinger, Jandouwe; Omondi, David; Salifu, Daisy; Onchuru, Thomas Ogao; Njoroge, Laban; Muigai, Anne W. T.; Masiga, Daniel K.

    2016-01-01

    The Lake Baringo and Lake Victoria regions of Kenya are associated with high seroprevalence of mosquito-transmitted arboviruses. However, molecular identification of potential mosquito vector species, including morphologically identified ones, remains scarce. To estimate the diversity, abundance, and distribution of mosquito vectors on the mainland shores and adjacent inhabited islands in these regions, we collected and morphologically identified adult and immature mosquitoes and obtained the corresponding sequence variation at cytochrome c oxidase 1 (COI) and internal transcribed spacer region 2 (ITS2) gene regions. A total of 63 species (including five subspecies) were collected from both study areas, 47 of which have previously been implicated as disease vectors. Fourteen species were found only on island sites, which are rarely included in mosquito diversity surveys. We collected more mosquitoes, yet with lower species composition, at Lake Baringo (40,229 mosquitoes, 32 species) than at Lake Victoria (22,393 mosquitoes, 54 species). Phylogenetic analysis of COI gene sequences revealed Culex perexiguus and Cx. tenagius that could not be distinguished morphologically. Most Culex species clustered into a heterogeneous clade with closely related sequences, while Culex pipiens clustered into two distinct COI and ITS2 clades. These data suggest limitations in current morphological identification keys. This is the first DNA barcode report of Kenyan mosquitoes. To improve mosquito species identification, morphological identifications should be supported by their molecular data, while diversity surveys should target both adults and immatures. The diversity of native mosquito disease vectors identified in this study impacts disease transmission risks to humans and livestock. PMID:27402888

  19. First record of natural vertical transmission of dengue virus in Aedes aegypti from Cuba.

    Science.gov (United States)

    Gutiérrez-Bugallo, Gladys; Rodriguez-Roche, Rosmari; Díaz, Gisell; Vázquez, Antonio A; Alvarez, Mayling; Rodríguez, Magdalena; Bisset, Juan A; Guzman, Maria G

    2017-10-01

    While horizontal transmission (human-mosquito-human) of dengue viruses largely determines the epidemiology of the disease, vertical transmission (infected female mosquito- infected offspring) has been suggested as a mechanism that ensures maintenance of the virus during adverse conditions for horizontal transmission to occur. The purpose of this study was to analyze the natural infection of larval stages of Aedes aegypti (Diptera: Culicidae) with the dengue virus (DENV) in Cuba. Here, we report vertical transmission of DENV-3 genotype III in natural populations of Ae. aegypti through RT-PCR detection and serotyping plus sequencing. Our report constitutes the first record of vertical transmission of DENV in Ae. aegypti from Cuba with details of its serotype and genotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Does reservoir host mortality enhance transmission of West Nile virus?

    Directory of Open Access Journals (Sweden)

    Foppa Ivo M

    2007-05-01

    Full Text Available Abstract Background Since its 1999 emergence in New York City, West Nile virus (WNV has become the most important and widespread cause of mosquito-transmitted disease in North America. Its sweeping spread from the Atlantic to the Pacific coast was accompanied by widespread mortality among wild birds, especially corvids. Only sporadic avian mortality had previously been associated with this infection in the Old World. Here, we examine the possibility that reservoir host mortality may intensify transmission, both by concentrating vector mosquitoes on remaining hosts and by preventing the accumulation of "herd immunity". Results Inspection of the Ross-Macdonald expression of the basic reproductive number (R0 suggests that this quantity may increase with reservoir host mortality. Computer simulation confirms this finding and indicates that the level of virulence is positively associated with the numbers of infectious mosquitoes by the end of the epizootic. The presence of reservoir incompetent hosts in even moderate numbers largely eliminated the transmission-enhancing effect of host mortality. Local host die-off may prevent mosquitoes to "waste" infectious blood meals on immune host and may thus facilitate perpetuation and spread of transmission. Conclusion Under certain conditions, host mortality may enhance transmission of WNV and similarly maintained arboviruses and thus facilitate their emergence and spread. The validity of the assumptions upon which this argument is built need to be empirically examined.