WorldWideScience

Sample records for morphology enhances escape

  1. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    Science.gov (United States)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  2. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    Science.gov (United States)

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-09-08

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.

  3. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    Science.gov (United States)

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  4. Role of AmiA in the morphological transition of Helicobacter pylori and in immune escape.

    Directory of Open Access Journals (Sweden)

    Catherine Chaput

    2006-09-01

    Full Text Available The human gastric pathogen Helicobacter pylori is responsible for peptic ulcers and neoplasia. Both in vitro and in the human stomach it can be found in two forms, the bacillary and coccoid forms. The molecular mechanisms of the morphological transition between these two forms and the role of coccoids remain largely unknown. The peptidoglycan (PG layer is a major determinant of bacterial cell shape, and therefore we studied H. pylori PG structure during the morphological transition. The transition correlated with an accumulation of the N-acetyl-D-glucosaminyl-beta(1,4-N-acetylmuramyl-L-Ala-D-Glu (GM-dipeptide motif. We investigated the molecular mechanisms responsible for the GM-dipeptide motif accumulation, and studied the role of various putative PG hydrolases in this process. Interestingly, a mutant strain with a mutation in the amiA gene, encoding a putative PG hydrolase, was impaired in accumulating the GM-dipeptide motif and transforming into coccoids. We investigated the role of the morphological transition and the PG modification in the biology of H. pylori. PG modification and transformation of H. pylori was accompanied by an escape from detection by human Nod1 and the absence of NF-kappaB activation in epithelial cells. Accordingly, coccoids were unable to induce IL-8 secretion by AGS gastric epithelial cells. amiA is, to our knowledge, the first genetic determinant discovered to be required for this morphological transition into the coccoid forms, and therefore contributes to modulation of the host response and participates in the chronicity of H. pylori infection.

  5. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    Science.gov (United States)

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  6. Infection of human endothelium in vitro by cytomegalovirus causes enhanced expression of purinergic receptors : A potential virus escape mechanism?

    NARCIS (Netherlands)

    Zandberg, Mariet; van Son, Willem J.; Harmsen, Martin C.; Bakker, Winston W.

    2007-01-01

    Background. Human cytomegalovirus (CMV) uses different strategies to escape from human host defense reactions. Previously we have observed that infection of endothelial cells with CMV in vitro leads to enhanced activity of endothelial ectonucleotidases. These ectoenzymes are responsible for hydrolys

  7. Infection of human endothelium in vitro by cytomegalovirus causes enhanced expression of purinergic receptors : A potential virus escape mechanism?

    NARCIS (Netherlands)

    Zandberg, Mariet; van Son, Willem J.; Harmsen, Martin C.; Bakker, Winston W.

    2007-01-01

    Background. Human cytomegalovirus (CMV) uses different strategies to escape from human host defense reactions. Previously we have observed that infection of endothelial cells with CMV in vitro leads to enhanced activity of endothelial ectonucleotidases. These ectoenzymes are responsible for

  8. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Directory of Open Access Journals (Sweden)

    Hendrik Fuchs

    2016-07-01

    Full Text Available The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  9. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Science.gov (United States)

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  10. A thermonuclease of Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps.

    Science.gov (United States)

    Juneau, Richard A; Stevens, Jacqueline S; Apicella, Michael A; Criss, Alison K

    2015-07-15

    Acute gonorrhea is characterized by neutrophilic inflammation that is insufficient to clear Neisseria gonorrhoeae. Activated neutrophils release extracellular traps (NETs), which are composed of chromatin and decorated with antimicrobial proteins. The N. gonorrhoeae NG0969 open reading frame contains a gene (nuc) that encodes a putatively secreted thermonuclease (Nuc) that contributes to biofilm remodeling. Here, we report that Nuc degrades NETs to help N. gonorrhoeae resist killing by neutrophils. Primary human neutrophils released NETs after exposure to N. gonorrhoeae, but NET integrity declined over time with Nuc-containing bacteria. Recombinant Nuc and conditioned medium from Nuc-containing N. gonorrhoeae degraded human neutrophil DNA and NETs. NETs were found to have antimicrobial activity against N. gonorrhoeae, and Nuc expression enhanced N. gonorrhoeae survival in the presence of neutrophils that released NETs. We propose that Nuc enables N. gonorrhoeae to escape trapping and killing by NETs during symptomatic infection, highlighting Nuc as a multifunctional virulence factor for N. gonorrhoeae.

  11. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma.

    Science.gov (United States)

    Hegde, Meenakshi; Corder, Amanda; Chow, Kevin K H; Mukherjee, Malini; Ashoori, Aidin; Kew, Yvonne; Zhang, Yi Jonathan; Baskin, David S; Merchant, Fatima A; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Wu, Meng Fen; Liu, Hao; Heslop, Helen E; Gottschalk, Stephen; Gottachalk, Stephen; Yvon, Eric; Ahmed, Nabil

    2013-11-01

    Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.

  12. Loss of immune escape mutations during persistent HCV infection in pregnancy enhances replication of vertically transmitted viruses.

    Science.gov (United States)

    Honegger, Jonathan R; Kim, Seungtaek; Price, Aryn A; Kohout, Jennifer A; McKnight, Kevin L; Prasad, Mona R; Lemon, Stanley M; Grakoui, Arash; Walker, Christopher M

    2013-11-01

    Globally, about 1% of pregnant women are persistently infected with the hepatitis C virus (HCV). Mother-to-child transmission of HCV occurs in 3-5% of pregnancies and accounts for most new childhood infections. HCV-specific CD8(+) cytotoxic T lymphocytes (CTLs) are vital in the clearance of acute HCV infections, but in the 60-80% of infections that persist, these cells become functionally exhausted or select for mutant viruses that escape T cell recognition. Increased HCV replication during pregnancy suggests that maternofetal immune tolerance mechanisms may further impair HCV-specific CTLs, limiting their selective pressure on persistent viruses. To assess this possibility, we characterized circulating viral quasispecies during and after consecutive pregnancies in two women. This revealed a loss of some escape mutations in HLA class I epitopes during pregnancy that was associated with emergence of more fit viruses. CTL selective pressure was reimposed after childbirth, at which point escape mutations in these epitopes again predominated in the quasispecies and viral load dropped sharply. Importantly, the viruses transmitted perinatally were those with enhanced fitness due to reversion of escape mutations. Our findings indicate that the immunoregulatory changes of pregnancy reduce CTL selective pressure on HCV class I epitopes, thereby facilitating vertical transmission of viruses with optimized replicative fitness.

  13. The conjugation of diphtheria toxin T domain to poly(ethylenimine) based vectors for enhanced endosomal escape during gene transfection.

    Science.gov (United States)

    Kakimoto, Shinji; Hamada, Tsutomu; Komatsu, Yuuki; Takagi, Masahiro; Tanabe, Toshizumi; Azuma, Hideki; Shinkai, Seiji; Nagasaki, Takeshi

    2009-01-01

    The endosomal escape is a well-known serious obstacle for non-viral gene delivery. This is because of an acidic and enzymatic degradation of the contents of the endosome/lysosome. Therefore, the internalized gene needs to be efficient released into the cytosol to obtain the efficiently transfection efficiency. On the other hand, the diphtheria toxin T domain fuses with endosome membrane by pH decrease, then enhances the endosomal escape of the diphtheria toxin C fragment. In this study, we constructed diphtheria toxin T domain-conjugated poly(ethylenimine)s (PEI) polyplex for enhancing the endosomal escape of exogenous gene. The conjugation of diphtheria toxin T domain with PEI/pDNA polyplex leads to the significant enhancement of transfection efficiency when compared with plain PEI/pDNA polyplex. The pH-responsive increase in hydrophobicity of the diphtheria toxin T domain might not only trigger the perturbation of the endocytic vesicle membrane but might also increase the membrane permeability.

  14. mPGES-1 deletion impairs aldosterone escape and enhances sodium appetite

    OpenAIRE

    Jia, Zhanjun; Aoyagi, Toshinori; Kohan, Donald E.; Yang, Tianxin

    2010-01-01

    Aldosterone (Aldo) is a major sodium-retaining hormone that reduces renal sodium excretion and also stimulates sodium appetite. In the face of excess Aldo, the sodium-retaining action of this steroid is overridden by an adaptive regulatory mechanism, a phenomenon termed Aldo escape. The underlying mechanism of this phenomenon is not well defined but appeared to involve a number of natriuretic factors such prostaglandins (PGs). Here, we investigated the role of microsomal prostaglandin E synth...

  15. TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors

    Science.gov (United States)

    Doorduijn, Elien M.; Sluijter, Marjolein; Querido, Bianca J.; Oliveira, Cláudia C.; Achour, Adnane; Ossendorp, Ferry; van der Burg, Sjoerd H.; van Hall, Thorbald

    2016-01-01

    Tumor cells frequently escape from CD8+ T cell recognition by abrogating MHC-I antigen presentation. Deficiency in processing components, like the transporter associated with antigen processing (TAP), results in strongly decreased surface display of peptide/MHC-I complexes. We previously identified a class of hidden self-antigens known as T cell epitopes associated with impaired peptide processing (TEIPP), which emerge on tumor cells with such processing defects. In the present study, we analyzed thymus selection and peripheral behavior of T cells with specificity for the prototypic TEIPP antigen, the “self” TRH4 peptide/Db complex. TEIPP T cells were efficiently selected in the thymus, egressed with a naive phenotype, and could be exploited for immunotherapy against immune-escaped, TAP-deficient tumor cells expressing low levels of MHC-I (MHC-Ilo). In contrast, overt thymus deletion and functionally impaired TEIPP T cells were observed in mice deficient for TAP1 due to TEIPP antigen presentation on all body cells in these mice. Our results strongly support the concept that TEIPPs derive from ubiquitous, nonmutated self-antigens and constitute a class of immunogenic neoantigens that are unmasked during tumor immune evasion. These data suggest that TEIPP-specific CD8+ T cells are promising candidates in the treatment of tumors that have escaped from conventional immunotherapies. PMID:26784543

  16. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.

    Science.gov (United States)

    McFarlane, Laura; Altringham, John D; Askew, Graham N

    2016-05-01

    Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass.

  17. mPGES-1 deletion impairs aldosterone escape and enhances sodium appetite.

    Science.gov (United States)

    Jia, Zhanjun; Aoyagi, Toshinori; Kohan, Donald E; Yang, Tianxin

    2010-07-01

    Aldosterone (Aldo) is a major sodium-retaining hormone that reduces renal sodium excretion and also stimulates sodium appetite. In the face of excess Aldo, the sodium-retaining action of this steroid is overridden by an adaptive regulatory mechanism, a phenomenon termed Aldo escape. The underlying mechanism of this phenomenon is not well defined but appeared to involve a number of natriuretic factors such prostaglandins (PGs). Here, we investigated the role of microsomal prostaglandin E synthase-1 (mPGES-1) in the response to excess Aldo. A 14-day Aldo infusion at 0.35 mg x kg(-1) x day(-1) via an osmotic minipump in conjunction with normal salt intake did not produce obvious disturbances in fluid metabolism in WT mice as suggested by normal sodium and water balance, plasma sodium concentration, hematocrit, and body weight, despite the evidence of a transient sodium accumulation on days 1 or 2. In a sharp contrast, the 14-day Aldo treatment in mPGES-1 knockoute (KO) mice led to increased sodium and water balance, persistent reduction of hematocrit, hypernatremia, and body weight gain, all evidence of fluid retention. The escaped wild-type (WT) mice displayed a remarkable increase in urinary PGE(2) excretion in parallel with coinduction of mPGES-1 in the proximal tubules, accompanied by a remarkable, widespread downregulation of renal sodium and water transporters. The increase in urinary PGE(2) excretion together with the downregulation of renal sodium and water transporters were all significantly blocked in the KO mice. Interestingly, compared with WT controls, the KO mice exhibited consistent increases in sodium and water intake during Aldo infusion. Together, these results suggest an important role of mPGES-1 in antagonizing the sodium-retaining action of Aldo at the levels of both the central nervous system and the kidney.

  18. Multiscale Micro-Nano Nested Structures: Engineered Surface Morphology for Efficient Light Escaping in Organic Light-Emitting Diodes.

    Science.gov (United States)

    Zhou, Lei; Dong, Xiaoxuan; Zhou, Yun; Su, Wenming; Chen, Xiaolian; Zhu, Yufu; Shen, Su

    2015-12-01

    Various micro-to-nanometer scale structures are extremely attractive for light escaping in organic light-emitting diodes. To develop and optimize such structures, an innovative approach was demonstrated for the first time to fabricate multiscale micro-nano nested structures by photolithography with a well-designed mask pattern followed by a controllable thermal reflow process. The experimental and theoretical characterizations verify that these unique nested structures hold the capability of light concentration, noticeable low haze, and efficient antireflection. As a proof-of-concept, the incorporation of this pattern onto the glass substrate efficiently facilitates light escaping from the device, resulting in current efficiency 1.60 times and external quantum efficiency 1.63 times that of a control flat device, respectively. Moreover, compared to a hexagonally arranged microlens array and quasi-random biomimetic moth eye nanostructures, the nested structures proposed here can magically tune the spatial emission profile to comply with the Lambertian radiation pattern. Hence, this novel structure is expected to be of great potential in related ubiquitous optoelectronic applications and provide scientific inspiration to other novel multiscale micro-nanostructure research.

  19. Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience.

    Science.gov (United States)

    Choisy-Rossi, Caroline-Morgane; Holl, Thomas M; Pierce, Melissa A; Chapman, Harold D; Serreze, David V

    2004-09-15

    For unknown reasons, the common MHC class I variants encoded by the H2g7 haplotype (Kd, Db) aberrantly elicit autoreactive CD8 T cell responses essential to type 1 diabetes development when expressed in NOD mice, but not other strains. In this study, we show that interactive non-MHC genes allow a NOD-derived diabetogenic CD8 T cell clonotype (AI4) to be negatively selected at far greater efficiency in C57BL/6 mice congenically expressing H2g7 (B6.H2g7). However, the few AI4 T cells escaping negative selection in B6.H2g7 mice are exported from the thymus more efficiently, and are more functionally aggressive than those of NOD origin. This provides mechanistic insight to previous findings that resistant mouse strains carry some genes conferring greater diabetes susceptibility than the corresponding NOD allele. In the B6.H2g7 stock, non-MHC gene-controlled elevations in TCR expression are associated with both enhanced negative selection of diabetogenic CD8 T cells and increased aggressiveness of those escaping this process. An implication of this finding is that the same phenotype, in this case relatively high TCR expression levels, could have double-edged sword effects, contributing to type 1 diabetes resistance at one level of T cell development, but at another actually promoting pathogenesis.

  20. Simvastatin enhances protection against Listeria monocytogenes infection in mice by counteracting Listeria-induced phagosomal escape.

    Directory of Open Access Journals (Sweden)

    Suraj P Parihar

    Full Text Available Statins are well-known cholesterol lowering drugs targeting HMG-CoA-reductase, reducing the risk of coronary disorders and hypercholesterolemia. Statins are also involved in immunomodulation, which might influence the outcome of bacterial infection. Hence, a possible effect of statin treatment on Listeriosis was explored in mice. Statin treatment prior to subsequent L. monocytogenes infection strikingly reduced bacterial burden in liver and spleen (up to 100-fold and reduced histopathological lesions. Statin-treatment in infected macrophages resulted in increased IL-12p40 and TNF-α and up to 4-fold reduced bacterial burden within 6 hours post infection, demonstrating a direct effect of statins on limiting bacterial growth in macrophages. Bacterial uptake was normal investigated in microbeads and GFP-expressing Listeria experiments by confocal microscopy. However, intracellular membrane-bound cholesterol level was decreased, as analyzed by cholesterol-dependent filipin staining and cellular lipid extraction. Mevalonate supplementation restored statin-inhibited cholesterol biosynthesis and reverted bacterial growth in Listeria monocytogenes but not in listeriolysin O (LLO-deficient Listeria. Together, these results suggest that statin pretreatment increases protection against L. monocytogenes infection by reducing membrane cholesterol in macrophages and thereby preventing effectivity of the cholesterol-dependent LLO-mediated phagosomal escape of bacteria.

  1. Understanding the size selectivity in diamond mesh codends based on flume tank experiments and fish morphology: effect of catch size and fish escape behaviour

    DEFF Research Database (Denmark)

    Karlsen, Junita Diana; Krag, Ludvig Ahm; Herrmann, Bent;

    2013-01-01

    (Gadus morhua) and Nephrops (N. norvegicus) to simulate potential size selection. By assuming certain patterns of fish escape behaviour in the codend, it was demonstrated that it was possible to replicate results for size selection based on sea trials with similar codends. Results show that L50 can......This study quantifies potential size selection of a fish and a crustacean species in di-amond mesh codends during a fishing process. Changes in mesh geometry along the codends and at different catch weights were recorded in a flume tank and subse-quently used together with the morphology of cod...... happens mostly in the area of catch accu-mulation. In response to questions, it was also noted that FISHSELECT methodology has been used. Mesh penetrations were simulated for each individual. Considering the relationship between catch weight and codend selectivity, studies with lower catches can...

  2. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA.

    Science.gov (United States)

    Li, Yan; Cheng, Qiang; Jiang, Qian; Huang, Yuanyu; Liu, Hongmei; Zhao, Yuliang; Cao, Weipeng; Ma, Guanghui; Dai, Fengying; Liang, Xingjie; Liang, Zicai; Zhang, Xin

    2014-02-28

    Cationic liposome based siRNA delivery system has improved the efficiencies of siRNA. However, cationic liposomes are prone to be rapidly cleared by the reticuloendothelial system (RES). Although modification of cationic liposomes with polyethylene glycol (PEG) could prolong circulation lifetime, PEG significantly inhibits siRNA entrapment efficiency, cellular uptake and endosomal/lysosomal escape process, resulting in low gene silencing efficiency of siRNA. In this study, we report the synthesis of zwitterionic polycarboxybetaine (PCB) based distearoyl phosphoethanolamine-polycarboxybetaine (DSPE-PCB) lipid for cationic liposome modification. The DSPE-PCB20 cationic liposome/siRNA complexes (lipoplexes) show an excellent stability in serum medium. The siRNA encapsulation efficiency of DSPE-PCB20 lipoplexes could reach 92% at N/P ratio of 20/1, but only 73% for DSPE-PEG lipoplexes. The zeta potential of DSPE-PCB20 lipoplexes is 8.19±0.53mV at pH 7.4, and increases to 24.6±0.87mV when the pH value is decreased to 4.5, which promotes the endosomal/lysosomal escape of siRNA. The DSPE-PCB20 modification could enhance the silencing efficiency of siRNA by approximately 20% over the DSPE-PEG 2000 lipoplexes at the same N/P ratio in vitro. Furthermore, DSPE-PCB20 lipoplexes could efficiently mediate the down-regulation of Apolipoprotein B (ApoB) mRNA in the liver and consequently decrease the total cholesterol in the serum in vivo, suggesting therapeutic potentials for siRNA delivery in hypercholesterolemia-related diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Image Enhancement and Background Detection Using Morphological Transformation

    Directory of Open Access Journals (Sweden)

    Nikesh T. Gadare

    2014-02-01

    Full Text Available This paper deals with enhancement of images and background detection using Mathematical Morphological [MM] theory on dark images. Due to poor lightening the background of the image is not clear. This image can be enhanced by lightening the back ground with various morphological operations. Basically, Weber’s Law Operator is used to analyze dark images which are carried out by two methods such as Image background detection by block analysis while second operator utilize opening by reconstruction to define multi background notion. Some Morphological operations such as (Erosion, Dilation, Compound operation such as Opening by reconstruction, Erosion-Dilation method and Block Analysis is used to detect the background of images. Analysis of above mention methods illustrated through the processing of images with different dark background images.

  4. Closing escape routes: inhibition of IL-8 signaling enhances the anti-tumor efficacy of PI3K inhibitors.

    Science.gov (United States)

    Juvekar, Ashish; Wulf, Gerburg M

    2013-04-08

    The phosphoinositide 3-kinase (PI3K) pathway serves as a relay where signals that emanate from the cell membrane are received and converted into intracellular signals that promote proliferation and survival. Inhibitors of PI3K hold promise for the treatment of breast cancer because activation of this pathway is highly prevalent. However, as is increasingly observed with inhibitors of cell signaling, there appear to be mechanisms of primary and secondary resistance. Britschgi and colleagues report that compensatory activation of the IL-8 signaling axis is a mechanism of primary resistance to PI3K inhibitors in some triple-negative breast cancers. In a set of experiments that carefully emulate the clinical scenario in a mouse model, they show that simultaneous inhibition of Janus kinase 2 enhances the efficacy of PI3K/mammalian target of rapamycin inhibition. Their paper lends further support to the concept that successful design of treatments with signal transduction inhibitors must anticipate potential escape routes - and include agents to simultaneously block them.

  5. Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2017-03-01

    Full Text Available In exploring bacterial resistance to bacteriophages, emphasis typically is placed on those mechanisms which completely prevent phage replication. Such resistance can be detected as extensive reductions in phage ability to form plaques, that is, reduced efficiency of plating. Mechanisms include restriction-modification systems, CRISPR/Cas systems, and abortive infection systems. Alternatively, phages may be reduced in their “vigor” when infecting certain bacterial hosts, that is, with phages displaying smaller burst sizes or extended latent periods rather than being outright inactivated. It is well known, as well, that most phages poorly infect bacteria that are less metabolically active. Extracellular polymers such as biofilm matrix material also may at least slow phage penetration to bacterial surfaces. Here I suggest that such “less-robust” mechanisms of resistance to bacteriophages could serve bacteria by slowing phage propagation within bacterial biofilms, that is, delaying phage impact on multiple bacteria rather than necessarily outright preventing such impact. Related bacteria, ones that are relatively near to infected bacteria, e.g., roughly 10+ µm away, consequently may be able to escape from biofilms with greater likelihood via standard dissemination-initiating mechanisms including erosion from biofilm surfaces or seeding dispersal/central hollowing. That is, given localized areas of phage infection, so long as phage spread can be reduced in rate from initial points of contact with susceptible bacteria, then bacterial survival may be enhanced due to bacteria metaphorically “running away” to more phage-free locations. Delay mechanisms—to the extent that they are less specific in terms of what phages are targeted—collectively could represent broader bacterial strategies of phage resistance versus outright phage killing, the latter especially as require specific, evolved molecular recognition of phage presence. The

  6. Enhanced internalization and endosomal escape of dual-functionalized poly(ethyleneimine)s polyplex with diphtheria toxin T and R domains.

    Science.gov (United States)

    Kakimoto, Shinji; Tanabe, Toshizumi; Azuma, Hideki; Nagasaki, Takeshi

    2010-04-01

    A new multifunctional gene delivery system was constructed with diphtheria toxin's functional domains. Used functional domains are T domain for endosomal escape and R domain for efficient internalization into cell. In order to conjugate these domains into PEI polyplex, diphtheria toxin T and R domains-streptavidin fusion protein (DTRS) was prepared. The conjugation of the DTRS with biotinylated PEI polyplex (DTRS-polyplex) lead to the significant enhancement of transfection efficiency when compared with plain PEI/pDNA polyplex in CHO-K1 cell. It was demonstrated that DTRS-polyplex had high endosomal escape efficiency and internalization efficiency by several measurements, such as in vitro intracellular trafficking observation and the internalization inhibition with several inhibitors. These results suggest that this multifunctional non-viral vector may contribute to the future cancer gene therapy. (c) 2009 Elsevier Masson SAS. All rights reserved.

  7. Morphology optimization for enhanced performance in organic photovoltaics

    Science.gov (United States)

    Wodo, Olga; Zola, Jaroslaw; Ganapathysubramanian, Baskar

    2015-03-01

    Organic solar cells have the potential for widespread usage due to their low cost-per-watt and mechanical flexibility. Their wide spread use, however, is bottlenecked primarily by their low solar efficiencies. Experimental evidence suggests that a key property determining the solar efficiency of such devices is the final morphological distribution of the electron-donor and electron-acceptor constituents. By carefully designing the morphology of the device, one could potentially significantly enhance their performance. This is an area of intense experimental effort that is mostly trial-and-error based, and serves as a fertile area for introducing mechanics and computational thinking. In this work, we use optimization techniques coupled with computational modeling to identify the optimal structures for high efficiency solar cells. In particular, we use adaptive population-based incremental learning method linked to graph-based surrogate model to evaluate properties for given structure. We study several different criterions and find optimal structure that that improve the performance of currently hypothesized optimal structures by 29%.

  8. Wind-Induced Atmospheric Escape: Titan

    Science.gov (United States)

    Hartle, Richard; Johnson, Robert; Sittler, Edward, Jr.; Sarantos, Menelaos; Simpson, David

    2012-01-01

    Rapid thermospheric flows can significantly enhance the estimates of the atmospheric loss rate and the structure of the atmospheric corona of a planetary body. In particular, rapid horizontal flow at the exobase can increase the corresponding constituent escape rate. Here we show that such corrections, for both thermal and non-thermal escape, cannot be ignored when calculating the escape of methane from Titan, for which drastically different rates have been proposed. Such enhancements are also relevant to Pluto and exoplanets.

  9. Robust Video Text Detection with Morphological Filtering Enhanced MSER

    Institute of Scientific and Technical Information of China (English)

    诸葛云志; 卢湖川

    2015-01-01

    Video text detection is a challenging problem, since video image background is generally complex and its subtitles often have the problems of color bleeding, fuzzy boundaries and low contrast due to video lossy compression and low resolution. In this paper, we propose a robust framework to solve these problems. Firstly, we exploit gradient amplitude map (GAM) to enhance the edge of an input image, which can overcome the problems of color bleeding and fuzzy boundaries. Secondly, a two-direction morphological filtering is developed to filter background noise and enhance the contrast between background and text. Thirdly, maximally stable extremal region (MSER) is applied to detect text regions with two extreme colors, and we use the mean intensity of the regions as the graph cuts’ label set, and the Euclidean distance of three channels in HSI color space as the graph cuts smooth term, to get optimal segmentations. Finally, we group them into text lines using the geometric characteristics of the text, and then corner detection, multi-frame verification, and some heuristic rules are used to eliminate non-text regions. We test our scheme with some challenging videos, and the results prove that our text detection framework is more robust than previous methods.

  10. Fragment Propagation and Colonization Ability Enhanced and Varied at Node Level after Escaping from Apical Dominance in Submerged Macrophytes

    Institute of Scientific and Technical Information of China (English)

    Jinhui Jiang; Shuqing An; Changfang Zhou; Baohua Guan; Zhiyi Sun; Ying Cai; Fude Liu

    2009-01-01

    Aquatic plants develop strong fragment propagation and colonization ability to endure the natural disturbances. However,detailed research of ability to endure the natural disturbances has been lacking to date. Therefore, reproduction (shoot) and colonization (root) of shoot fragments of Potamogeton crispus L. with or without apices were investigated for the effect of apical dominance, and the growth of decapitated shoot fragments at three lengths (2, 4, 6cm) was compared. Meanwhile,fragment propagation at levels of bud position was studied for bud position effect after escaping from apical dominance.The results showed significant increases occurred in the outgrowth of lateral branches on fragments decapitated compared with the fragments with apices, implying that apical dominance exists. Different lengths of fragments showed little difference in biomass allocations, but significant differences were noted in their propagation. Meanwhile, the effect of bud position was verified, due to the significant difference of average reproduction per node among the three length groups. Thus, the present study has made progress in the current understanding of aquatic plant dispersion among natural systems and contributes to improve methods of in vitro propagation for re-implantation purposes.

  11. Morphology-enhanced conductivity in dry ionic liquids.

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera

    2016-03-01

    Ionic liquids exhibit fascinating nanoscale morphological phases and are promising materials for energy storage applications. Liquid crystalline order emerges in ionic liquids with specific chemical structures. Here, we investigate the phase behaviour and related ionic conductivities of dry ionic liquids, using extensive molecular dynamics simulations. Temperature dependence, properties of polymeric tail and excluded volume symmetry of the amphiphilic ionic liquid molecules are investigated in large scale systems with both short and long-range Coulomb interactions. Our results suggest that by adjusting stiffness and steric interactions of the amphiphilic molecules, lamellar or 3D continuous phases result in these molecular salts. The resulting phases are composed of ion rich and ion pure domains. In 3D phases, ion rich clusters form ionic channels and have significant effects on the conductive properties of the observed nano-phases. If there is no excluded-volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the steric interactions become asymmetric, lamellar phases are replaced by complex 3D continuous phases. Within the temperature ranges for which morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments on ionic liquid crystals. Stiffer molecules increase the high-conductivity interval and strengthen temperature-resistance of morphological phases. Increasing the steric interactions of cation leads to higher conductivities. Moreover, at low monomeric volume fractions and at low temperatures, cavities are observed in the nano-phases of flexible ionic liquids. We also demonstrate that, in the absence of electrostatic interactions, the morphology is distorted. Our findings inspire new design principles for room temperature ionic liquids and help explain previously-reported experimental data.

  12. Dust escape from Io

    Science.gov (United States)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  13. Synthesis of hierarchical anatase TiO 2 nanostructures with tunable morphology and enhanced photocatalytic activity

    KAUST Repository

    Rahal, Raed

    2012-01-01

    A facile one-pot method to prepare three-dimensional hierarchical nanostructures of titania with good control over their morphologies without the use of hydrofluoric acid is developed. The reaction is performed under microwave irradiation conditions in pure water, and enables enhanced photocatalytic activity. This study indicates that photocatalytic activity depends not only on the surface area but also on the morphology of the titania. © 2012 The Royal Society of Chemistry.

  14. Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures

    KAUST Repository

    Chen, Wei

    2013-07-25

    Polyaniline is one of the most investigated conducting polymers as supercapacitor material for energy storage applications. The preparation of nanostructured polyaniline with well-controlled morphology is crucial to obtaining good supercapacitor performance. We present here a facile chemical process to produce polyaniline nanostructures with three different morphologies (i.e., nanofibers, nanospheres, and nanotubes) by utilizing the corresponding tunable morphology of MnO2 reactive templates. A growth mechanism is proposed to explain the evolution of polyaniline morphology based on the reactive templates. The morphology-induced improvement in the electrochemical performance of polyaniline pseudocapacitors is as large as 51% due to the much enhanced surface area and the porous nature of the template-guided polyaniline nanostructures. In addition, and for the first time, a redox-active electrolyte is applied to the polyaniline pseudocapacitors to achieve significant enhancement of pseudocapacitance. Compared to the conventional electrolyte, the enhancement of pseudocapacitance in the redox-active electrolyte is 49%-78%, depending on the specific polyaniline morphology, reaching the highest reported capacitance of 896 F/g for polyaniline full cells so far. © 2013 American Chemical Society.

  15. Net escapement of Antartic krill in trawls

    DEFF Research Database (Denmark)

    Krafft, B.A.; Krag, Ludvig Ahm; Herrmann, Bent;

    This document describes the aims and methodology of a three year project (commenced in 2012) entitled Net Escapement of Antarctic krill in Trawls (NEAT). The study will include a morphology based mathematical modeling (FISHSELECT) of different sex and maturity groups of Antarctic krill (Euphausia...

  16. An escape from crowding.

    Science.gov (United States)

    Freeman, Jeremy; Pelli, Denis G

    2007-10-26

    Crowding occurs when nearby flankers jumble the appearance of a target object, making it hard to identify. Crowding is feature integration over an inappropriately large region. What determines the size of that region? According to bottom-up proposals, the size is that of an anatomically determined isolation field. According to top-down proposals, the size is that of the spotlight of attention. Intriligator and Cavanagh (2001) proposed the latter, but we show that their conclusion rests on an implausible assumption. Here we investigate the role of attention in crowding using the change blindness paradigm. We measure capacity for widely and narrowly spaced letters during a change detection task, both with and without an interstimulus cue. We find that standard crowding manipulations-reducing spacing and adding flankers-severely impair uncued change detection but have no effect on cued change detection. Because crowded letters look less familiar, we must use longer internal descriptions (less compact representations) to remember them. Thus, fewer fit into working memory. The memory limit does not apply to the cued condition because the observer need remember only the cued letter. Cued performance escapes the effects of crowding, as predicted by a top-down account. However, our most parsimonious account of the results is bottom-up: Cued change detection is so easy that the observer can tolerate feature degradation and letter distortion, making the observer immune to crowding. The change detection task enhances the classic partial report paradigm by making the test easier (same/different instead of identifying one of many possible targets), which increases its sensitivity, so it can reveal degraded memory traces.

  17. Escape in Hill's Problem

    CERN Document Server

    Heggie, D C

    2000-01-01

    This didactic paper is motivated by the problem of understanding how stars escape from globular star clusters. One formulation of this problem is known, in dynamical astronomy, as Hill's problem. Originally intended as a model for the motion of the moon around the earth with perturbations by the sun, with simple modifications it also serves as a model for the motion of a star in a star cluster with perturbations by the galaxy. The paper includes introductory sections on the derivation of the equations of motion of Hill's problem, their elementary properties, and extensions to deal with non-point masses and non-circular orbits. We then show how the rate of escape may be calculated numerically and estimated theoretically, and discuss how this simple picture is modified if the stars in a cluster are also undergoing two-body relaxation. Finally we introduce some established ideas for obtaining the distribution of escape times.

  18. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    Directory of Open Access Journals (Sweden)

    Domenico F Galati

    2016-09-01

    Full Text Available Abstract Brain-derived neurotrophic factor (BDNF regulates both action potential (AP generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.

  19. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. An Effective Occipitomental View Enhancement Based on Adaptive Morphological Texture Analysis.

    Science.gov (United States)

    Chondro, Peter; Hu, Hao-Chun; Hung, Hsuan-Yen; Chang, Shin-Yuan; Li, Lieber Po-Hung; Ruan, Shanq-Jang

    2017-07-01

    This paper aims to present an algorithm that specifically enhances maxillary sinuses using a novel contrast enhancement technique based on the adaptive morphological texture analysis for occipitomental view radiographs. First, the skull X-ray (SXR) is decomposed into rotational blocks (RBs). Second, each RB is rotated into various directions and processed using morphological kernels to obtain the dark and bright features. Third, a gradient-based block segmentation decomposes the interpolated feature maps into feature blocks (FBs). Finally, the histograms of FBs are equalized and overlaid locally to the input SXR. The performance of the proposed method was evaluated on an independent dataset, which comprises of 145 occipitomental view-based human SXR images. According to the experimental results, the proposed method is able to increase the diagnosis accuracy by 83.45% compared with the computed tomography modality as the gold standard.

  1. Pure Nanoscale Morphology Effect Enhancing the Energy Storage Characteristics of Processable Hierarchical Polypyrrole.

    Science.gov (United States)

    Wannapob, Rodtichoti; Vagin, Mikhail Yu; Jeerapan, Itthipon; Mak, Wing Cheung

    2015-11-03

    We report a new synthesis approach for the precise control of wall morphologies of colloidal polypyrrole microparticles (PPyMPs) based on a time-dependent template-assisted polymerization technique. The resulting PPyMPs are water processable, allowing the simple and direct fabrication of multilevel hierarchical PPyMPs films for energy storage via a self-assembly process, whereas convention methods creating hierarchical conducting films based on electrochemical polymerization are complicated and tedious. This approach allows the rational design and fabrication of PPyMPs with well-defined size and tunable wall morphology, while the chemical composition, zeta potential, and microdiameter of the PPyMPs are well characterized. By precisely controlling the wall morphology of the PPyMPs, we observed a pure nanoscale morphological effect of the materials on the energy storage performance. We demonstrated by controlling purely the wall morphology of PPyMPs to around 100 nm (i.e., thin-walled PPyMPs) that the thin-walled PPyMPs exhibit typical supercapacitor characteristics with a significant enhancement of charge storage performance of up to 290% compared to that of thick-walled PPyMPs confirmed by cyclic voltametry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. We envision that the present design concept could be extended to different conducting polymers as well as other functional organic and inorganic dopants, which provides an innovative model for future study and understanding of the complex physicochemical phenomena of energy-related materials.

  2. Parametric based morphological transformation for contrast enhancement of color images in poor-lighting

    Indian Academy of Sciences (India)

    Atluri Srikrishna; M Pompapathi; G Srinivasa Rao

    2015-04-01

    The objective of contrast operators consists in normalizing the gray levels of the input image for the purpose of avoiding abrupt changes in intensity among different regions. In this paper morphological transformations are used to detect the background in color images characterized by poor lighting. The disadvantage of contrast enhancement as studied in previous contrast enhancement algorithms is over illumination. An efficient algorithm is introduced to tackle the problem of over illumination by controlling the intensities at dark and bright regions of an image and preserve the geometry of the object. Finally the performance of the proposed algorithm is illustrated through the processing of gray scale images and color images with different backgrounds.

  3. Image Enhancement Techniques for Quantitative Investigations of Morphological Features in Cometary Comae: A Comparative Study

    CERN Document Server

    Samarasinha, Nalin

    2014-01-01

    Many cometary coma features are only a few percent above the ambient coma (i.e., the background) and therefore coma enhancement techniques are needed to discern the morphological structures present in cometary comae. A range of image enhancement techniques widely used by cometary scientists is discussed by categorizing them and carrying out a comparative analysis. The enhancement techniques and the corresponding characteristics are described in detail and the respective mathematical representations are provided. As the comparative analyses presented in this paper make use of simulated images with known coma features, the feature identifications as well as the artifacts caused by enhancement provide an objective and definitive assessment of the various techniques. Examples are provided which highlight contrasting capabilities of different techniques to pick out qualitatively distinct features of widely different strengths and spatial scales. On account of this as well as serious image artifacts and spurious fe...

  4. Introducing kernel based morphology as an enhancement method for mass classification on mammography.

    Science.gov (United States)

    Amirzadi, Azardokht; Azmi, Reza

    2013-04-01

    Since mammography images are in low-contrast, applying enhancement techniques as a pre-processing step are wisely recommended in the classification of the abnormal lesions into benign or malignant. A new kind of structural enhancement is proposed by morphological operator, which introduces an optimal Gaussian Kernel primitive, the kernel parameters are optimized the use of Genetic Algorithm. We also take the advantages of optical density (OD) images to promote the diagnosis rate. The proposed enhancement method is applied on both the gray level (GL) images and their OD values respectively, as a result morphological patterns get bolder on GL images; then, local binary patterns are extracted from this kind of images. Applying the enhancement method on OD images causes more differences between the values therefore a threshold method is applied toremove some background pixels. Those pixels that are more eligible to be mass are remained, and some statistical texture features are extracted from their equivalent GL images. Support vector machine is used for both approaches and the final decision is made by combining these two classifiers. The classification performance rate is evaluated by Az, under the receiver operating characteristic curve. The designed method yields Az = 0.9231, which demonstrates good results.

  5. MR imaging in cardiac amyloidosis - morphology, function and late enhancement; Magnetresonanztomografie bei kardialer Amyloidose - Morphologie, Funktion und late enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, W.; Heye, T.; Kauffmann, G.W.; Kauczor, H.U. [Abt. Diagnostische Radiologie, Universitaetsklinik Heidelberg (Germany); Libicher, M. [Abt. Diagnostische Radiologie, Universitaetsklinik Heidelberg (Germany); Inst. fuer Radiologische Diagnostik, Klinikum der Univ. zu Koeln (Germany); Ley, S. [Abt. Paediatrische Radiologie, Universitaetsklinik Heidelberg (Germany); Abt. Radiologie, Deutsches Krebsforschungszentrum (dkfz) (Germany); Schnabel, P. [Pathologisches Inst., Universitaetsklinik Heidelberg (Germany); Dengler, T.J.; Katus, H.A.; Kristen, A.V. [Abt. Innere Medizin III, Universitaetsklinik Heidelberg (Germany)

    2008-07-15

    Purpose: since limited data is available using MR imaging in cardiac amyloidosis, the purpose of our study was to evaluate morphological and functional differences of the heart using cardiac MRI. Materials and methods: 19 consecutive patients (14 males, 5 females, mean age 59 {+-} 6 years) with histologically proven cardiac amyloidosis were evaluated with MRI at 1.5 T. Results were compared with data of 10 healthy, age-matched control subjects (5 males, 5 females, mean age 60 {+-} 6 years). Functional and morphological data including late enhancement (LE) was acquired. Results: compared to the control group, patients with cardiac amyloidosis had thickened atrial walls and dilated atriums. Both ventricles and the interventricular septum were thickened. The LV hypertrophy was focal in 11/19 (58%) and global in 4/19 (21%) of patients. A myocardial edema occurred in 2/19 patients with cardiac amyloidosis (11%). An edema of the myocardium was visible in 2/19 (11%) of patients. The LV ejection fraction was statistically significantly decreased. The prevalence of LE was 74% (14/19 of patients). LE was detected predominantly in the LV anterior wall and in the interventricular septum. Within the segments LE was located predominantly in a subendocardial location. Between patients with and without LE no statistically significant differences of functional and morphological results were able to be established. (orig.)

  6. Morphological confocal microscopy in arthropods and the enhancement of autofluorescence after proteinase K extraction.

    Science.gov (United States)

    Valdecasas, Antonio G; Abad, Angela

    2011-02-01

    Procedures to study the molecular and morphological characteristics of microscopic organisms are often incompatible with each other. Therein, the realization of alternatives that make the characterization of these features compatible and simultaneously permit the deposition of the original material as a voucher sample into a reference collection is one of the foremost goals of biodiversity studies. In this study, we show that genomic extraction does not necessarily compromise the detailed study of the external morphology of microscopic organisms, and to do so, we used a group of aquatic mites (Acari, Hydrachnidia) as a test group. Hydrachnidia morphology is difficult to study when specimens have been stored in pure ethanol; however, proteinase K extraction leaves them flexible and easy to dissect, while, at the same time, maintaining all of their diagnostic features intact. Furthermore, autofluorescence is significantly enhanced after proteinase extraction. Our study was conducted with aquatic mites that were stored in absolute ethanol in the field and processed for DNA extraction using a Qiagen QIAamp minikit. Before and after molecular extraction, a laser scanning confocal microscopy morphological examination was carried out.

  7. A Lucky Escape

    Institute of Scientific and Technical Information of China (English)

    王道庚

    2009-01-01

    @@ This story concerns(有关)a spider(蜘蛛)and a certain general of ancient times who had lost a battle and,in the company of(在……陪同下)a faithful(忠诚的)servant,was trying to escape(逃脱)from the enemy.Both were extremely(极度,非常)tired,and both were hungry and thirsty,but they did not dare to go into any town for fear of (担心,害怕)being discovered and captured(捉)by the enemy.Toward evening they arrived at a mountain where there was a small cave.

  8. Oxygen Escape from Venus During High Dynamic Pressure ICMEs

    Science.gov (United States)

    McEnulty, Tess; Luhmann, J. G.; Brain, D. A.; Fedorov, A.; Jian, L. K.; Russell, C. T.; Zhang, T.; Möstl, C.; Futaana, Y.; de Pater, I.

    2013-10-01

    Previous studies using data from Pioneer Venus suggested that oxygen ion escape flux may be enhanced by orders of magnitude during Interplanetary Coronal Mass Ejections. However, this large enhancement has been ambiguous in Venus Express ion data - with some analyses showing no flux enhancement or a small enhancement (within 2 times undisturbed cases). One possible explanation is that high escape flux may be due to high dynamic pressure in the solar wind, and the dynamic pressure has been lower during the VEX time period. So, we focus on ICMEs with the largest dynamic pressure and with VEX sampling of the escaping ions during the sheath of the ICMEs (during which the highest dynamic pressures in the solar wind occur). We will show the characteristics of these large events measured by VEX, and compare them to the largest ICMEs measured by PVO. We will then discuss estimates of the oxygen ion escape flux during these events.

  9. Investigation of 3-dimensional structural morphology for enhancing light trapping with control of surface haze

    Science.gov (United States)

    Park, Hyeongsik; Shin, Myunghun; Kim, Hyeongseok; Kim, Sunbo; Le, Anh Huy Tuan; Kang, Junyoung; Kim, Yongjun; Pham, Duy Phong; Jung, Junhee; Yi, Junsin

    2017-04-01

    A comparative study of 3-dimensional textured glass morphologies with variable haze value and chemical texturing of the glass substrates was conducted to enhance light trapping in silicon (Si) thin film solar cells (TFSCs). The light trapping characteristics of periodic honeycomb structures show enhanced transmittance and haze ratio in numerical and experimental approaches. The periodic honeycomb structure of notched textures is better than a random or periodic carved structure. It has high transmittance of ∼95%, and haze ratio of ∼52.8%, and the haze property of the angular distribution function of transmittance shows wide scattering angles in the long wavelength region because of the wide spacing and aspect ratio of the texture. The numerical and experimental approaches of the 3-D texture structures in this work will be useful in developing high-performance Si TFSCs with light trapping.

  10. Multi-scale contrast enhancement of oriented features in 2D images using directional morphology

    Science.gov (United States)

    Das, Debashis; Mukhopadhyay, Susanta; Praveen, S. R. Sai

    2017-01-01

    This paper presents a multi-scale contrast enhancement scheme for improving the visual quality of directional features present in 2D gray scale images. Directional morphological filters are employed to locate and extract the scale-specific image features with different orientations which are subsequently stored in a set of feature images. The final enhanced image is constructed by weighted combination of these feature images with the original image. While construction, the feature images corresponding to progressively smaller scales are made to have higher proportion of contribution through the use of progressively larger weights. The proposed method has been formulated, implemented and executed on a set of real 2D gray scale images with oriented features. The experimental results visually establish the efficacy of the method. The proposed method has been compared with other similar methods both on subjective and objective basis and the overall performance is found to be satisfactory.

  11. Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance

    Science.gov (United States)

    Adhikari, Nirmal; Khatiwada, Devendra; Dubey, Ashish; Qiao, Qiquan

    2015-01-01

    Conjugated polymers are potential materials for photovoltaic applications due to their high absorption coefficient, mechanical flexibility, and solution-based processing for low-cost solar cells. A bulk heterojunction (BHJ) structure made of donor-acceptor composite can lead to high charge transfer and power conversion efficiency. Active layer morphology is a key factor for device performance. Film formation processes (e.g., spray-coating, spin-coating, and dip-coating), post-treatment (e.g., annealing and UV ozone treatment), and use of additives are typically used to engineer the morphology, which optimizes physical properties, such as molecular configuration, miscibility, lateral and vertical phase separation. We will review electronic donor-acceptor interactions in conjugated polymer composites, the effect of processing parameters and morphology on solar cell performance, and charge carrier transport in polymer solar cells. This review provides the basis for selection of different processing conditions for optimized nanomorphology of active layers and reduced bimolecular recombination to enhance open-circuit voltage, short-circuit current density, and fill factor of BHJ solar cells.

  12. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Krestin, G.P. [Dept. of Medical Radiology, University Hospital Zurich (Switzerland); Fischbach, R. [Dept. of Radiology, Univ. of Cologne (Germany); Vorreuther, R. [Dept. of Urology, Univ. of Cologne (Germany); Schulthess, G.K. von [Dept. of Medical Radiology, University Hospital Zurich (Switzerland)

    1993-06-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  13. Linckosides enhance proliferation and induce morphological changes in human olfactory ensheathing cells.

    Science.gov (United States)

    Tello Velasquez, Johana; Yao, Rebecca-Qing; Lim, Filip; Han, Chunguang; Ojika, Makoto; Ekberg, Jenny A K; Quinn, Ronald J; John, James A St

    2016-09-01

    Linckosides are members of the steroid glycoside family isolated from the starfish Linckia laevigata. These natural compounds have notable neuritogenic activity and synergistic effects on NGF-induced neuronal differentiation of PC12 cells. Neurogenic factors or molecules that are able to mimic their activities are known to be involved in the survival, proliferation and migration of neurons and glial cells; however how glial cells respond to specific neurogenic molecules such as linckosides has not been investigated. This study aimed to examine the effect of three different linckosides (linckoside A, B and granulatoside A) on the morphological properties, proliferation and migration of human olfactory ensheathing cells (hOECs). The proliferation rate after all the treatments was higher than control as detected by MTS assay. Additionally, hOECs displayed dramatic morphological changes characterized by a higher number of processes after linckoside treatment. Interestingly changes in microtubule organization and expression levels of some early neuronal markers (GAP43 and βIII-tubulin) were also observed. An increase in the phosphorylation of ERK 1/2 after addition of the compounds suggests that this pathway may be involved in the linckoside-mediated effects particularly those related to morphological changes. These results are the first description of the stimulating effects of linckosides on hOECs and raise the potential for this natural compound or its derivatives to be used to regulate and enhance the therapeutic properties of OECs, particularly for cell transplantation therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Rezende Camila

    2011-11-01

    Full Text Available Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process, the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between

  15. Escape from the Alternative

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2006-12-01

    Full Text Available This paper sets out to elaborate on Romania’s specific agenda regarding the approach to the integration process in the EU as a project of modernization. The focus is on the functional aspects, the type of strategic solutions destined to consolidate the specific transformations belonging to post-communist transition seen as an internal transition, on the one hand and on the other hand to push convergence as the essence of integration, marked by the vision of EU integration as a continuation of change, which is the stage of external transition. Identifying the prominent factors and the pragmatic priorities of the escape from the peripheries of development by engaging in evolution by way of the second modernization constitutes as well a target for analysis. One particularity of the method of analysis is the review if the value-set of the bobsled effect of path dependency – the path of the peripheries – as well as of the set of values of the escape from the peripheries.

  16. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl2 with controllable dimension and morphology

    Science.gov (United States)

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren; Bai, Jintao

    2016-12-01

    One kind of ZnCl2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  17. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    Science.gov (United States)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-06-01

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H2O2 as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H2O2 under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  18. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  19. Mars - an escaping planet?

    CERN Document Server

    Dvorak, R

    2005-01-01

    The chaotic behaviour of the motion of the planets in our Solar System is well established. Numerical experiments with a modified Solar System consisting of a more massive Earth have shown, that for special values of an enlargement factor K around 5 the dynamical state of a truncated planetary system (excluding Mercury and the outer planets Uranus and Neptune) is highly chaotic. On the contrary for values of the mass of the Earth up to the mass of Saturn no irregular dynamical behaviour was observed. We extended our investigations to the complete planetary system and showed, that this chaotic window found before still exists. Tests in different 'Solar Systems' showed that only including Jupiter and Saturn with their actual masses together with a 'massive' Earth (between 4 and 6 times more massive) destabilize the orbit of Mars so that even escapes from the system are possible.

  20. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction

    Science.gov (United States)

    Wei, Yong; Pu, Zuyin; Zong, Qiugang; Wan, Weixing; Ren, Zhipeng; Fraenz, Markus; Dubinin, Eduard; Tian, Feng; Shi, Quanqi; Fu, Suiyan; Hong, Minghua

    2014-05-01

    The evolution of life is affected by variations of atmospheric oxygen level and geomagnetic field intensity. Oxygen can escape into interplanetary space as ions after gaining momentum from solar wind, but Earth's strong dipole field reduces the momentum transfer efficiency and the ion outflow rate, except for the time of geomagnetic polarity reversals when the field is significantly weakened in strength and becomes Mars-like in morphology. The newest databases available for the Phanerozoic era illustrate that the reversal rate increased and the atmospheric oxygen level decreased when the marine diversity showed a gradual pattern of mass extinctions lasting millions of years. We propose that accumulated oxygen escape during an interval of increased reversal rate could have led to the catastrophic drop of oxygen level, which is known to be a cause of mass extinction. We simulated the oxygen ion escape rate for the Triassic-Jurassic event, using a modified Martian ion escape model with an input of quiet solar wind inferred from Sun-like stars. The results show that geomagnetic reversal could enhance the oxygen escape rate by 3-4 orders only if the magnetic field was extremely weak, even without consideration of space weather effects. This suggests that our hypothesis could be a possible explanation of a correlation between geomagnetic reversals and mass extinction. Therefore, if this causal relation indeed exists, it should be a "many-to-one" scenario rather the previously considered "one-to-one", and planetary magnetic field should be much more important than previously thought for planetary habitability.

  1. Morphological solution for enhancement of electrochemical kinetic performance of LiFePO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Li Lianxing [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Tang Xincun, E-mail: tangxincun@163.co [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China) and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu Hongtao, E-mail: liuht@mail.csu.edu.c [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Qu Yi; Lu Zhouguang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2010-12-30

    LiFePO{sub 4}/C nanosheet composite has been prepared via a low-temperature solvothermal reaction followed by high-temperature treatment. The as-prepared sample is characterized by XRD, FTIR, Raman, SEM, and TEM. It is confirmed that the nanosheets are composed of ca. 50 nm thickness of crystalline LiFePO{sub 4}-core coated with ca. 10 nm thickness of carbon-shell. The charge-discharge tests show that the as-fabricated LiFePO{sub 4}/C nanosheet cathode in lithium-ion cell demonstrates high reversible capacity (164 mAh g{sup -1} at 0.1 C) and good cycle stability (columbic efficiency 100% during 100 cycles). The cyclic voltammetric analysis indicates Li{sup +} diffusion determines the whole electrode reaction kinetics, and the diffusion coefficient estimated by EIS is comparable to the reported data. The enhanced kinetic behavior of the as-fabricated cathode is actually originated from the nano-dimensional sheet-like morphology, which facilitates Li{sup +} migration due to the shortened diffusion distance, and simultaneously increased exchangeable Li{sup +} amount considering more accessible active surface. In addition, the uniformly coated thin conductive carbons contribute a lot for this enhancement because of considerably improved electronic conductivity.

  2. A new paradigm for evaluating avoidance/escape motivation.

    Science.gov (United States)

    Tsutsui-Kimura, Iku; Bouchekioua, Youcef; Mimura, Masaru; Tanaka, Kenji F

    2017-05-06

    Organisms have evolved to approach pleasurable opportunities and to avoid or escape from aversive experiences. These two distinct motivations are referred to as approach and avoidance/escape motivations and are both considered vital for survival. Despite several recent advances in understanding the neurobiology of motivation, most studies addressed approach but not avoidance/escape motivation. Here we develop a new experimental paradigm to quantify avoidance/escape motivation and examine the pharmacological validity. We set up an avoidance variable ratio 5 (VR-5) task in which mice were required to press a lever for variable times to avoid an upcoming aversive stimulus (foot shock) or to escape the ongoing aversive event if mice failed to avoid it. We intraperitoneally injected ketamine (0, 1, or 5 mg/kg) or buspirone (0, 5, or 10 mg/kg) 20 or 30 minutes before the behavioral task in order to see if ketamine enhanced avoidance/escape behavior and buspirone diminished it as previously reported. We found that the performance on the avoidance VR-5 task was sensitive to the intensity of the aversive stimulus. Treatment with ketamine increased, while that with buspirone decreased, the probability of avoidance from an aversive stimulus in the VR-5 task, being consistent with previous reports. Our new paradigm will prove usefulness for quantifying avoidance/escape motivation and will contribute to a more comprehensive understanding of motivation.

  3. Escape rates for Gibbs measures

    CERN Document Server

    Ferguson, Andrew

    2010-01-01

    We study the asymptotic behaviour of the escape rate of a Gibbs measure supported on a conformal repeller through a small hole. There are additional applications to the convergence of Hausdorff dimension of the survivor set.

  4. Direction of escape in reindeer

    OpenAIRE

    Baskin, Leonid M.; Terje Skogland

    1997-01-01

    We tested the hypothesis that reindeer prefer to run uphill and upwind when escaping from man. Groups of wild and feral reindeer in Norway, Svalbard and on Wrangel Island were approached and their behaviour and direction of escape were recorded. Two stages of interaction with man were studied: first flight and final withdrawal. First flights proved to be away from man, upwind and uphill. Most final withdrawals were in the direction reindeer were moving when first observed.

  5. Direction of escape in reindeer

    Directory of Open Access Journals (Sweden)

    Leonid M. Baskin

    1997-04-01

    Full Text Available We tested the hypothesis that reindeer prefer to run uphill and upwind when escaping from man. Groups of wild and feral reindeer in Norway, Svalbard and on Wrangel Island were approached and their behaviour and direction of escape were recorded. Two stages of interaction with man were studied: first flight and final withdrawal. First flights proved to be away from man, upwind and uphill. Most final withdrawals were in the direction reindeer were moving when first observed.

  6. Contrast-enhanced spectral mammography: Impact of the qualitative morphology descriptors on the diagnosis of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Kamal, Rasha [Radiology Department (Women' s Imaging unit), Kasr ElAiny Hospital, Cairo University (Egypt); Hussien Helal, Maha [Radiology Department (Breast Imaging unit), National Cancer Institute, Cairo University (Egypt); Wessam, Rasha [Radiology Department (Women' s Imaging unit), Kasr ElAiny Hospital, Cairo University (Egypt); Mahmoud Mansour, Sahar, E-mail: sahar_mnsr@yahoo.com [Radiology Department (Breast Imaging unit), National Cancer Institute, Cairo University (Egypt); Godda, Iman [Pathology Department, National Cancer Institute, Cairo University (Egypt); Alieldin, Nelly [Statistics Department, National Cancer Institute, Cairo University (Egypt)

    2015-06-15

    Highlights: • We studied interpretation criteria for enhancing lesions on CESM. • We evaluated the enhancement patterns of 211 breast lesions. • Our results proved that CESM minimized positive and negative falsies in DM. • The proposed CESM lexicon helped in characterization and categorization. - Abstract: Objective: To analyze the morphology and enhancement characteristics of breast lesions on contrast-enhanced spectral mammography (CESM) and to assess their impact on the differentiation between benign and malignant lesions. Materials and method: This ethics committee approved study included 168 consecutive patients with 211 breast lesions over 18 months. Lesions classified as non-enhancing and enhancing and then the latter group was subdivided into mass and non-mass. Mass lesions descriptors included: shape, margins, pattern and degree of internal enhancement. Non-mass lesions descriptors included: distribution, pattern and degree of internal enhancement. The impact of each descriptor on diagnosis individually assessed using Chi test and the validity compared in both benign and malignant lesions. The overall performance of CESM were also calculated. Results: The study included 102 benign (48.3%) and 109 malignant (51.7%) lesions. Enhancement was encountered in 145/211 (68.7%) lesions. They further classified into enhancing mass (99/145, 68.3%) and non-mass lesions (46/145, 31.7%). Contrast uptake was significantly more frequent in malignant breast lesions (p value ≤0.001). Irregular mass lesions with intense and heterogeneous enhancement patterns correlated with a malignant pathology (p value ≤0.001). CESM showed an overall sensitivity of 88.99% and specificity of 83.33%. The positive and negative likelihood ratios were 5.34 and 0.13 respectively. Conclusion: The assessment of the morphology and enhancement characteristics of breast lesions on CESM enhances the performance of digital mammography in the differentiation between benign and malignant

  7. Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition.

    Science.gov (United States)

    Jeong, Sang Yun; Choi, Kyoung Soon; Shin, Hye-Min; Kim, Taemin Ludvic; Song, Jaesun; Yoon, Sejun; Jang, Ho Won; Yoon, Myung-Han; Jeon, Cheolho; Lee, Jouhahn; Lee, Sanghan

    2017-01-11

    We have fabricated high quality bismuth vanadate (BiVO4) polycrystalline thin films as photoanodes by pulsed laser deposition (PLD) without a postannealing process. The structure of the grown films is the photocatalytically active phase of scheelite-monoclinic BiVO4 which was obtained by X-ray diffraction (XRD) analysis. The change of surface morphology for the BIVO4 thin films depending on growth temperature during synthesis has been observed by scanning electron microscopy (SEM), and its influence on water splitting performance was investigated. The current density of the BiVO4 film grown on a glass substrate covered with fluorine-doped tin oxide (FTO) at 230 °C was as high as 3.0 mA/cm(2) at 1.23 V versus the potential of the reversible hydrogen electrode (VRHE) under AM 1.5G illumination, which is the highest value so far in previously reported BiVO4 films grown by physical vapor deposition (PVD) methods. We expect that doping of transition metal or decoration of oxygen evolution catalyst (OEC) in our BiVO4 film might further enhance the performance.

  8. Amplitude modulation control of escape from a potential well

    Energy Technology Data Exchange (ETDEWEB)

    Chacón, R. [Departamento de Física Aplicada, Escuela de Ingenierías Industriales, Universidad de Extremadura, Apartado Postal 382, E-06006 Badajoz (Spain); Martínez García-Hoz, A. [Departamento de Física Aplicada, Escuela Universitaria Politécnica, Universidad de Castilla-La Mancha, E-13400 Almadén (Ciudad Real) (Spain); Miralles, J.J. [Departamento de Física Aplicada, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, E-02071 Albacete (Spain); Martínez, P.J. [Departamento de Física Aplicada, E.I.N.A., Universidad de Zaragoza, E-50018 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-03-01

    We demonstrate the effectiveness of periodic amplitude modulations in controlling (suppressing and enhancing) escape from a potential well through the universal model of a damped Helmholtz oscillator subjected to an external periodic excitation (the escape-inducing excitation) whose amplitude is periodically modulated (the escape-controlling excitation). Analytical and numerical results show that this multiplicative control works reliably for different subharmonic resonances between the two periodic excitations involved, and that its effectiveness is comparable to those of different methods of additive control. Additionally, we demonstrate the robustness of the multiplicative control against the presence of low-intensity Gaussian noise. -- Highlights: •Multiplicative control of escape from a potential well has been demonstrated. •Theoretical predictions are obtained from a Melnikov analysis. •It has been shown the robustness of the multiplicative control against noise.

  9. Heterochrony and the development of the escape response: prehatching movements in the rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Gibb, Alice C; Liu, Corina; Swanson, Brook O

    2007-10-01

    Teleost fishes produce coordinated escape responses (C-starts) at hatching. This implies that essential swimming morphologies and motor behaviors develop during the incubation interval while the embryo is in the chorion. We examined prehatching motor behaviors in rainbow trout Oncorhycus mykiss (considered morphologically mature at hatching) and compared this species with zebrafish Danio rerio (considered morphologically immature) and assessed two hypotheses concerning the development of escape behavior. (1) Escape behavior is associated with the formation of key elements of the musculoskeletal and nervous systems; thus, the escape response appears early in ontogeny, when these elements form. (2) Escape behavior is not directly associated with the formation of underlying morphological elements; instead, it appears at hatching (i.e. when needed). We find that rainbow trout, like zebrafish, respond to touch early in the incubation interval, but do not demonstrate a complete C-start (including the second, propulsive stage) until shortly before hatching. At hatching, rainbow trout and zebrafish are similar in the degree of development of the chondocranium, paired fins and visceral arches (which comprise the larval jaw and gill support); however, rainbow trout have incipient rays in their unpaired fins (dorsal, anal and caudal), whereas zebrafish retain the embryonic fin fold. Although rainbow trout are more mature in axial swimming morphology at hatching, the essential neural and musculoskeletal systems that produce a coordinated escape response are functional at hatching in both species. This finding supports the evolutionary hypothesis that an effective escape response is critical for the survival of newly hatched teleost fishes.

  10. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    Directory of Open Access Journals (Sweden)

    Avik Roy

    Full Text Available Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP flow under elevated oxygen pressure. RNS60, but not NS (normal saline, PNS60 (saline containing a comparable level of oxygen without the TCP modification, or RNS10.3 (TCP-modified normal saline without excess oxygen, stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3 kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1 and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD, RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.

  11. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    Science.gov (United States)

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.

  12. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.

    Science.gov (United States)

    Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang

    2016-12-01

    E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

  13. Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network.

    Science.gov (United States)

    Sharvani, S; Upadhayaya, Kishor; Kumari, Gayatri; Narayana, Chandrabhas; Shivaprasad, S M

    2015-11-20

    The GaN nanowall network, formed by opening the screw dislocations by kinetically controlled MBE growth, possesses a large surface and high conductivity. Sharp apexed nanowalls show higher surface electron concentration in the band-tail states, in comparison to blunt apexed nanowalls. Uncapped silver nanoparticles are vapor deposited on the blunt and sharp GaN nanowall networks to study the morphological dependence of band-edge plasmon-coupling. Surface enhanced Raman spectroscopy studies performed with a rhodamine 6G analyte on these two configurations clearly show that the sharp nanowall morphology with smaller Ag nanoparticles shows higher enhancement of the Raman signal. A very large enhancement factor of 2.8 × 10(7) and a very low limit of detection of 10(-10) M is observed, which is attributed to the surface plasmon resonance owing to the high surface electron concentration on the GaN nanowall in addition to that of the Ag nanoparticles. The significantly higher sensitivity with same-sized Ag nanoparticles confirms the unconventional role of morphology-dependent surface charge carrier concentration of GaN nanowalls in the enhancement of Raman signals.

  14. Submarine Escape Set Test Facilities

    Directory of Open Access Journals (Sweden)

    G.S.N. Murthy

    2009-07-01

    Full Text Available Submarine Escape Set (SES is used by submariners to escape from a sunken submarine. This set caters for breathing needs of the submariner under water, until he reaches the surface. Evaluation of such life-saving equipment is of paramount importance. This paper describes the submarine escape set and various constructional features and schedules of operation of test facilities designed indegenously and which can evaluate the SES. The test facility is divided into two parts: the reducer test facility, and the breathing bag test facility. The equipment has been rigorously tested and accepted by Indian Navy. Two such test facilities have been developed, one of which is installed at INS Satavahana, Visakhapatnam, and are working satisfactorily.

  15. Enhancing evaluation of post-storm morphologic response using aerial orthoimagery from Hurricane Sandy

    Science.gov (United States)

    Smith, Jacquelyn Rose; Long, Joseph W.; Stockdon, Hilary F.; Birchler, Justin J.

    2015-01-01

    Improved identification of morphological responses to storms is necessary for developing and maintaining predictive models of coastal change. Morphological responses to Hurricane Sandy were measured using lidar and orthophotos taken before and after the storm. Changes to dune features measured from lidar were compared to the occurrence of overwash deposits measured using orthophotos. Thresholds on morphologic change (e.g. overwash volume and dune height change) were defined to optimize agreement between the classification of lidar and orthophoto-derived dune erosion and overwash. A linear regression showed that overwash volume can be calculated from orthophoto-derived overwash extent.

  16. Pioneer Venus Orbiter (PVO) Ionosphere Evidence for Atmospheric Escape

    Science.gov (United States)

    Grebowsky, J. M.; Hoegy, W. R.

    2009-12-01

    An early estimate of escape of H2O from Venus [McElroy et al., 1982] using observed hot oxygen densities inferred by Nagy et al. [1981] from PVO OUVS 1304 Å dayglow and using ionization rates from photoionization and electron impact. This resulted in an estimated oxygen ionization rate planet-wide above the plasmapause of 3x1025 atoms/s. Based on the energetic O+ being swept up and removed by solar wind, McElroy et al. [1982] gave an estimate of a loss rate for O of 6x106 atoms/cm2/s. Using a different method of estimating escape based data in the ionotail of Venus, Brace et al. [1987] estimated a total planetary O+ escape rate of 5x1025 ions/s. Their estimate was based on PVO measurements of superthermal O+ (energy range 9-16 eV) in the tail ray plasma between 2000 and 3000 km. Their estimated global mean flux was 107 atoms/cm2/s. The two escape rates are remarkably close considering all the errors involved in such estimates of escape. A study of escape by Luhmann et al. [2008] using VEX observations at low solar activity finds modest escape rates, prompting the authors to reconsider the evidence from both PVO and VEX of the possibility of enhanced escape during extreme interplanetary conditions. We reexamine the variation of escape under different solar wind conditions using ion densities and plasma content in the dayside and nightside of Venus using PVO ionosphere density during times of high solar activity. Citations: Brace, L.H., W. T. Kasprzak, H.A. Taylor, R. F. Theis, C. T. Russess, A. Barnes, J. D. Mihalov, and D. M. Hunten, "The Ionotail of Venus: Its Configuration and Evidence for Ion Escape", J. Geophys. Res. 92, 15-26, 1987. Luhmann, J.G., A. Fedorov, S. Barabash, E. Carlsson, Y. Futaana, T.L. Zhang, C.T. Russell, J.G. Lyon, S.A. Ledvina, and D.A. Brain, “Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections”, J. Geophys. Res., 113, 2008. McElroy, M. B., M. J. Prather, J. M. Rodiquez, " Loss

  17. DYNAMICS OF THE ESCAPE RESPONSE.

    Science.gov (United States)

    requirements. It has been shown that force is a lawful response measure under positive reinforcement (Notterman and Mintz, 1965). Subjects will adjust...concluded that response force in an escape situation is a lawful response measure, and that it operates in a manner similar to force under positive reinforcement .

  18. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property

    Science.gov (United States)

    Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen

    2016-03-01

    A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation.

  19. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    Science.gov (United States)

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E

    2014-12-01

    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach.

  20. Silver nanocrystals of various morphologies deposited on silicon wafer and their applications in ultrasensitive surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; Jing, Qifeng; Chen, Jun; Wang, Bodong; Huang, Jianhan; Liu, Younian

    2013-11-15

    Silver nanostructures with dendritic, flower-like and irregular morphologies were controllably deposited on a silicon substrate in an aqueous hydrogen fluoride solution at room temperature. The morphology of the Ag nanostructures changed from dendritic to urchin-like, flowerlike and pinecone-like with increasing the concentration of polyvinyl pyrrolidone (MW = 55,000) from 2 to 10 mM. The Ag nanostructures were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction. Through a series of time-dependent morphological evolution studies, the growth processes of Ag nanostructures have been systematically investigated and the corresponding growth mechanisms have been discussed. In addition, the morphology-dependent surface-enhanced Raman scattering of as-synthesized Ag nanostructures were investigated. The results indicated that flower-like Ag nanostructure had the highest activity than the other Ag nanostructures for Rhodamine 6G probe molecules. Highlights: • A simple method was developed to prepare dendritic and flower-like Ag nanostructures. • The flower-like Ag nanoparticles exhibit highest SERS activity. • The SERS substrate based on flower-like Ag particles can be used to detect melamine.

  1. Competing Contingencies for Escape Behavior: Effects of Negative Reinforcement Magnitude and Quality

    Science.gov (United States)

    Hammond, Jennifer L.

    2009-01-01

    Previous research has shown that problem behavior maintained by social-negative reinforcement can be treated without escape extinction by enhancing the quality of positive reinforcement for an appropriate alternative response such as compliance. By contrast, negative reinforcement (escape) for compliance generally has been ineffective in the…

  2. Enhancing L2 Students' Listening Transcription Ability through a Focus on Morphological Awareness

    Science.gov (United States)

    Karimi, Mohammad Nabi

    2013-01-01

    Morphological awareness (MA), defined as the ability to understand the morphemic structure of the words, has been reported to affect various aspects of second language performance including reading comprehension ability, spelling performance, etc. But the concept has been far less treated with reference to l2 listening. Against this background,…

  3. Enhancing L2 Students' Listening Transcription Ability through a Focus on Morphological Awareness

    Science.gov (United States)

    Karimi, Mohammad Nabi

    2013-01-01

    Morphological awareness (MA), defined as the ability to understand the morphemic structure of the words, has been reported to affect various aspects of second language performance including reading comprehension ability, spelling performance, etc. But the concept has been far less treated with reference to l2 listening. Against this background,…

  4. Cold Ion Escape from Mars

    Science.gov (United States)

    Fränz, M.; Dubinin, E.; Wei, Y.; Morgan, D.; Andrews, D.; Barabash, S.; Lundin, R.; Fedorov, A.

    2013-09-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express in combination with the MARSIS radar experiment. We first compare calculations of the mean ion flux observed by ASPERA-3 alone with previously published results. We then combine observations of the cold ion velocity by ASPERA-3 with observations of the cold plasma density by MARSIS since ASPERA-3 misses the cold core of the ion distribution. We show that the mean density of the nightside plasma observed by MARSIS is about two orders higher than observed by ASPERA-3 (Fig.1). Combining both datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars (Fig. 2). At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 3) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  5. Extreme hydrodynamic atmospheric loss near the critical thermal escape regime

    CERN Document Server

    Erkaev, N V; Odert, P; Kulikov, Yu N; Kislyakova, K G

    2015-01-01

    By considering martian-like planetary embryos inside the habitable zone of solar-like stars we study the behavior of the hydrodynamic atmospheric escape of hydrogen for small values of the Jeans escape parameter $\\beta < 3$, near the base of the thermosphere, that is defined as a ratio of the gravitational and thermal energy. Our study is based on a 1-D hydrodynamic upper atmosphere model that calculates the volume heating rate in a hydrogen dominated thermosphere due to the absorption of the stellar soft X-ray and extreme ultraviolet (XUV) flux. We find that when the $\\beta$ value near the mesopause/homopause level exceeds a critical value of $\\sim$2.5, there exists a steady hydrodynamic solution with a smooth transition from subsonic to supersonic flow. For a fixed XUV flux, the escape rate of the upper atmosphere is an increasing function of the temperature at the lower boundary. Our model results indicate a crucial enhancement of the atmospheric escape rate, when the Jeans escape parameter $\\beta$ decr...

  6. Morphology Engineering of Porous Media for Enhanced Solar Fuel and Power Production

    OpenAIRE

    Suter, Silvan; Haussener, Sophia

    2013-01-01

    The favorable and adjustable transport properties of porous media make them suitable components in reactors used for solar energy conversion and storage processes. The directed engineering of the porous media's morphology can significantly improve the performance of these reactors. We used a multiscale approach to characterize the changes in performance of exemplary solar fuel processing and solar power production reactors incorporating porous media as multifunctional components. The method a...

  7. EscapED: A Framework for Creating Educational Escape Rooms and Interactive Games to For Higher/Further Education.

    Directory of Open Access Journals (Sweden)

    Samantha Jane Clarke

    2017-09-01

    Full Text Available Game-based learning (GBL is often found to be technologically driven and more often than not, serious games for instance, are conceptualised and designed solely for digital platforms and state of the art technologies. To encourage a greater discussion on the potential benefits and challenges of a more holistic approach to developing GBL that promote human centered interactions and play for learning, the authors present the escapED programme. The escapED programme was conceived following the recent entertainment trend of escape rooms and is used for developing non-digital GBL approaches within education. escapED aids the design and creation of educational Escape Rooms and Interactive Gaming Experiences for staff and students in further/higher education settings. The paper first presents a pilot study that was used to assess the feasibility and acceptance of University teaching staff of embedding interactive GBL into a higher education environment. The authors then present the escapED theoretical framework that was used to create the prototype game for the pilot study as a tool to aid future design and development of on-site interactive experiences. The paper also presents an external developer report of using the escapED framework to develop a prototype game for teaching research methods to Southampton University students. Finally, the authors present a discussion on the use of the escapED framework so far and plans for future work and evaluation in order to provide engaging alternatives for learning and soft skills development amongst higher education staff andstudents.

  8. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level.IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  9. ESCAPE AS REINFORCEMENT AND ESCAPE EXTINCTION IN THE TREATMENT OF FEEDING PROBLEMS

    OpenAIRE

    LaRue, Robert H; Stewart, Victoria; Piazza, Cathleen C; Volkert, Valerie M.; Patel, Meeta R; Zeleny, Jason

    2011-01-01

    Given the effectiveness of putative escape extinction as treatment for feeding problems, it is surprising that little is known about the effects of escape as reinforcement for appropriate eating during treatment. In the current investigation, we examined the effectiveness of escape as reinforcement for mouth clean (a product measure of swallowing), escape as reinforcement for mouth clean plus escape extinction (EE), and EE alone as treatment for the food refusal of 5 children. Results were si...

  10. Photochemical Escape of Oxygen from Early Mars

    CERN Document Server

    Zhao, Jinjin

    2015-01-01

    Photochemical escape is an important process for oxygen escape from present Mars. In this work, a 1-D Monte-Carlo Model is developed to calculate escape rates of energetic oxygen atoms produced from O2+ dissociative recombination reactions (DR) under 1, 3, 10, and 20 times present solar XUV fluxes. We found that although the overall DR rates increase with solar XUV flux almost linearly, oxygen escape rate increases from 1 to 10 times present solar XUV conditions but decreases when increasing solar XUV flux further. Analysis shows that atomic species in the upper thermosphere of early Mars increases more rapidly than O2+ when increasing XUV fluxes. While the latter is the source of energetic O atoms, the former increases the collision probability and thus decreases the escape probability of energetic O. Our results suggest that photochemical escape be a less important escape mechanism than previously thought for the loss of water and/or CO2 from early Mars.

  11. Culturing pancreatic islets in microfluidic flow enhances morphology of the associated endothelial cells.

    Directory of Open Access Journals (Sweden)

    Krishana S Sankar

    Full Text Available Pancreatic islets are heavily vascularized in vivo with each insulin secreting beta-cell associated with at least one endothelial cell (EC. This structure is maintained immediately post-isolation; however, in culture the ECs slowly deteriorate, losing density and branched morphology. We postulate that this deterioration occurs in the absence of blood flow due to limited diffusion of media inside the tissue. To improve exchange of media inside the tissue, we created a microfluidic device to culture islets in a range of flow-rates. Culturing the islets from C57BL6 mice in this device with media flowing between 1 and 7 ml/24 hr resulted in twice the EC-density and -connected length compared to classically cultured islets. Media containing fluorescent dextran reached the center of islets in the device in a flow-rate-dependant manner consistent with improved penetration. We also observed deterioration of EC morphology using serum free media that was rescued by addition of bovine serum albumin, a known anti-apoptotic signal with limited diffusion in tissue. We further examined the effect of flow on beta-cells showing dampened glucose-stimulated Ca(2+-response from cells at the periphery of the islet where fluid shear-stress is greatest. However, we observed normal two-photon NAD(PH response and insulin secretion from the remainder of the islet. These data reveal the deterioration of islet EC-morphology is in part due to restricted diffusion of serum albumin within the tissue. These data further reveal microfluidic devices as unique platforms to optimize islet culture by introducing intercellular flow to overcome the restricted diffusion of media components.

  12. Brain size as a driver of avian escape strategy.

    Science.gov (United States)

    Samia, Diogo S M; Pape Møller, Anders; Blumstein, Daniel T

    2015-07-03

    After detecting an approaching predator, animals make a decision when to flee. Prey will initiate flight soon after detecting a predator so as to minimize attentional costs related to on-going monitoring of the whereabouts of the predator. Such costs may compete with foraging and other maintenance activities and hence be larger than the costs of immediate flight. The drivers of interspecific variation in escape strategy are poorly known. Here we investigated the morphological, life history and natural history traits that correlate with variation in avian escape strategy across a sample of 96 species of birds. Brain mass, body size, habitat structure and group size were the main predictors of escape strategy. The direction of the effect of these traits was consistent with selection for a reduction of monitoring costs. Therefore, attentional costs depend on relative brain size, which determines the ability to monitor the whereabouts of potential predators and the difficulty of this task as reflected by habitat and social complexity. Thus brain size, and the cognitive functions associated with it, constitute a general framework for explaining the effects of body size, habitat structure and sociality identified as determinants of avian escape strategy.

  13. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property

    OpenAIRE

    Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen

    2016-01-01

    A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the sel...

  14. A simple route to morphology-controlled polydimethylsiloxane films based on particle-embedded elastomeric masters for enhanced superhydrophobicity.

    Science.gov (United States)

    Jeong, Dong-Wook; Kim, Seung-Jun; Park, Jong-Kweon; Kim, Soo-Hyung; Lee, Deug-Woo; Kim, Jong-Man

    2014-02-26

    We present a simple route for controlling the surface morphology of polydimethylsiloxane (PDMS) films based on a standard replica molding technique incorporating a microparticle-embedded elastomeric master for enhancing surface wetting properties. The elastomeric masters are simply prepared by embedding microparticles (MPs) firmly into a surface of PDMS substrates using an abrasive air-jetting (AAJ) that can be potentially scaled up to large-area fabrication. The surface geometries of the PDMS masters can be easily controlled by using MPs with different shape and size in the AAJ process, resulting in easy control of the surface morphologies and resultant wetting and optical properties of the PDMS films after replicating. The PDMS masters are found to be highly durable, enabling repeated use to produce superhydrophobic PDMS films with similar characteristics. In addition, the fabricated PDMS films retain almost constant properties even under repetitive compressing and stretching deformations thanks to the mechanical robustness enabled by their all-elastomeric architectures. We show that the fabricated PDMS surfaces can be potentially employed as self-cleaning films in glass-based applications, even with complex surfaces, owing to their enhanced wetting properties, fairly good optical transparency, and superior mechanical stability.

  15. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Li, Dawen, E-mail: dawenl@eng.ua.edu [Department of Electrical and Computer Engineering, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Chen, Jihua [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-05-04

    N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN{sub 2}) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN{sub 2} film is much lower than the value of PDIF-CN{sub 2} single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN{sub 2} thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN{sub 2} polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm{sup 2}/V s has been achieved from OTFTs based on the PDIF-CN{sub 2} film with the pre-deposition of PαMS polymer.

  16. Niobium doping induced morphological changes and enhanced photocatalytic performance of anatase TiO2

    Science.gov (United States)

    Wu, Ming-Chung; Lin, Ting-Han; Chih, Jyun-Sian; Hsiao, Kai-Chi; Wu, Po-Yeh

    2017-04-01

    In order to develop high-performance photocatalysts that are easy to produce even in industrial quantities, we developed a facile method of preparing niobium-doped titanium dioxide (Nb:TiO2) by hydrothermal synthesis and followed by thermal annealing treatment. Niobium-ion doping has been considered as an effective way to improve Nb:TiO2 performance for applications in photocatalysis. Niobium-ion doping of anatase TiO2 induced the morphological changes of Nb:TiO2. Morphological analysis shows sub-microscale fibers at doping concentration lower than 1.00 mol % and nanoscale rods at the doping concentration higher than 1.00 mol %. For the catalyzed photodegradation of methyl orange under visible light irradiation, 0.50 mol % Nb:TiO2 shows the highest activity among the synthesized Nb:TiO2 specimens. Also, for photocatalytic hydrogen generation, its photocatalytic activity is even higher than that of commercial TiO2-P25. In this study, we demonstrated the fabrication of a series of superior Nb:TiO2 specimens. It is a reasonable alternative to commercial TiO2 materials for various applications in the decomposition of organic dyes under visible light irradiation.

  17. Experiment for Development of Simple Escape Countermeasures for Frogs Falling into Concrete Canals

    Science.gov (United States)

    Watabe, Keiji; Mori, Atsushi; Koizumi, Noriyuki; Takemura, Takeshi; Park, Myeong Soo

    Three prototype escape countermeasures for frogs that can be easily installed in U-shaped canals with widths of 30-50 cm and depths of 30-50 cm were experimentally produced because frogs cannot escape from agricultural canals with deep concrete walls after falling into the canal. The differences of effectiveness of the 3 prototypes in places for the countermeasures (1 and 2) and flow conditions (dry and water running) were investigated for 2 frog species (Tokyo Daruma Pond Frog and Japanese Brown Frog). The brown frogs escaped from the canals more easily than the pond frogs. The brown frogs escaped regardless of their body size, but the small pond frogs escaped more easily than the large pond frogs. The prototype with slopes beside both canal walls and a net spread across the center line of the canal enabled frogs to escape from the canal more easily than the prototypes with only slopes or nets beside both canal walls. Increasing the number of places for the countermeasures enhanced frog escape. The differences in frog escape between dry canals and canals with water running were not significant. Therefore, the prototypes were confirmed sufficient as escape countermeasures that is inexpensive and can be easily placed in and removed from agricultural canals.

  18. Energy-limited escape revised

    CERN Document Server

    Salz, M; Czesla, S; Schmitt, J H M M

    2016-01-01

    Gas planets in close proximity to their host stars experience photoevaporative mass loss. The energy-limited escape concept is generally used to derive estimates for the planetary mass-loss rates. Our photoionization hydrodynamics simulations of the thermospheres of hot gas planets show that the energy-limited escape concept is valid only for planets with a gravitational potential lower than $\\log_\\mathrm{10}\\left( -\\Phi_{\\mathrm{G}}\\right) < 13.11~$erg$\\,$g$^{-1}$ because in these planets the radiative energy input is efficiently used to drive the planetary wind. Massive and compact planets with $\\log_\\mathrm{10}\\left( -\\Phi_{\\mathrm{G}}\\right) \\gtrsim 13.6~$erg$\\,$g$^{-1}$ exhibit more tightly bound atmospheres in which the complete radiative energy input is re-emitted through hydrogen Ly$\\alpha$ and free-free emission. These planets therefore host hydrodynamically stable thermospheres. Between these two extremes the strength of the planetary winds rapidly declines as a result of a decreasing heating eff...

  19. Morphology transformation of Cu{sub 2}O sub-microstructures by Sn doping for enhanced photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaolong, E-mail: sps_dengxl@ujn.edu.cn [School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan, 250022, Shandong Province (China); Zhang, Qiang, E-mail: wsqrq@126.com [School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan, 250022, Shandong Province (China); Zhou, E., E-mail: 1297524677@qq.com [School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan, 250022, Shandong Province (China); Ji, Changjian, E-mail: 171600621@qq.com [Qilu Normal University, Jinan, 250200, Shandong Province (China); Huang, Jinzhao, E-mail: ss_huangjinzhao@ujn.edu.cn [School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan, 250022, Shandong Province (China); Shao, Minghui, E-mail: ss_shaomh@ujn.edu.cn [School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan, 250022, Shandong Province (China); Ding, Meng, E-mail: sps_dingm@ujn.edu.cn [School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan, 250022, Shandong Province (China); Xu, Xijin, E-mail: sps_xuxj@ujn.edu.cn [School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan, 250022, Shandong Province (China)

    2015-11-15

    Sn-doped Cu{sub 2}O sub-microstructures have been successfully synthesized through a facile one-pot solvothermal method by copper (II) nitrate trihydrate (Cu(NO{sub 3}){sub 2}·3H{sub 2}O) and ethylene glycol (EG) combining with different Sn ion sources as initial reagents. Their surfaces and size distributions of Cu{sub 2}O sub-microstructures were significantly affected by Sn doping. The photocatalytic properties of as-synthesized Cu{sub 2}O samples were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation with or without the addition of H{sub 2}O{sub 2}. The results illustrated that Sn doping strongly enhanced the photocatalytic abilities of as-obtained Sn-doped Cu{sub 2}O samples and the addition of H{sub 2}O{sub 2} also had an important impact on the photocatalytic degradation process. - Graphical abstract: The morphology transformation of Cu{sub 2}O was observed by Sn doping via a facile one-pot solvothermal method. The photocatalytic activity was strongly enhanced by Sn doping and the addition of H{sub 2}O{sub 2}. - Highlights: • Sn-doped Cu{sub 2}O sub-microstructures were successfully fabricated by a facile one-pot solvothermal method. • The morphology was changed from hierarchically cubic to spherical sub-microstructure by Sn doping. • The photocatalytic activity was strongly enhanced by Sn doping and the addition of H{sub 2}O{sub 2}. • The photodegradation rate of SC-1 (Sn{sup 2+} doping) is faster than SC-2 (Sn{sup 4+} doping) and SC-0 (undoped Cu{sub 2}O)

  20. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    Science.gov (United States)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  1. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing.

    Science.gov (United States)

    Senz, Martin; van Lengerich, Bernhard; Bader, Johannes; Stahl, Ulf

    2015-01-02

    The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Candida albicans escapes from mouse neutrophils.

    Science.gov (United States)

    Ermert, David; Niemiec, Maria J; Röhm, Marc; Glenthøj, Andreas; Borregaard, Niels; Urban, Constantin F

    2013-08-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed that murine neutrophils exhibited a significantly lower ability to kill C. albicans than their human counterparts. Strikingly, C. albicans yeast cells formed germ tubes upon internalization by murine neutrophils, eventually rupturing the neutrophil membrane and thereby, killing the phagocyte. On the contrary, growth and subsequent escape of C. albicans are blocked inside human neutrophils. According to our findings, this blockage in human neutrophils might be a result of higher levels of MPO activity and the presence of α-defensins. We therefore outline differences in antifungal immune defense between humans and mouse strains, which facilitates a more accurate interpretation of in vivo results.

  3. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N. (Univ. of Illinois, Urbana, IL (United States))

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seed number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.

  4. Morphology-controlled In2O3 nanostructures enhance the performance of photoelectrochemical water oxidation

    Science.gov (United States)

    Chen, Changlong; Moir, Jonathon; Soheilnia, Navid; Mahler, Benoit; Hoch, Laura; Liao, Kristine; Hoepfner, Veronika; O'Brien, Paul; Qian, Chenxi; He, Le; Ozin, Geoffrey A.

    2015-02-01

    Nanotower- and nanowall-like indium oxide structures were grown directly on fluorine-doped tin oxide (FTO)/In2O3 seeded substrates and pristine FTO substrates, respectively, by a straightforward solvothermal method. The tower-like nanostructures are proposed to form via a self-assembly process on the In2O3 seeds. The wall-like nanostructures are proposed to form via epitaxial growth from the exposed edges of SnO2 crystals of the FTO substrate. The nanotowers and nanowalls are composed of highly crystalline and ordered nanocrystals with preferred orientations in the [111] and [110] directions, respectively. The two structures display remarkably different activities when used as photoanodes in solar light-driven water splitting. X-ray photoelectron spectroscopy results suggest an increased density of hydroxyl groups in the nanowalls, which results in a decrease of the work function and a concomitant shift in the onset potential of the photocurrent in the linear sweep voltammograms, which is further confirmed by Mott-Schottky and flat-band potential measurements, indicating the importance of hydroxyl content in determining the photoelectrochemical properties of the films. Morphology-controlled, nanostructured transparent conducting oxide electrodes of the kind described in this paper are envisioned to provide valuable platforms for supporting catalysts and co-catalysts that are intentionally tailored for efficient light-assisted oxidation of water and reduction of carbon dioxide.Nanotower- and nanowall-like indium oxide structures were grown directly on fluorine-doped tin oxide (FTO)/In2O3 seeded substrates and pristine FTO substrates, respectively, by a straightforward solvothermal method. The tower-like nanostructures are proposed to form via a self-assembly process on the In2O3 seeds. The wall-like nanostructures are proposed to form via epitaxial growth from the exposed edges of SnO2 crystals of the FTO substrate. The nanotowers and nanowalls are composed of

  5. Catalyst-free growth and tailoring morphology of zinc oxide nanostructures by plasma-enhanced deposition at low temperature

    Science.gov (United States)

    Chen, W. Z.; Wang, B. B.; Qu, Y. Z.; Huang, X.; Ostrikov, K.; Levchenko, I.; Xu, S.; Cheng, Q. J.

    2017-03-01

    ZnO nanostructures were grown under different deposition conditions from Zn films pre-deposited onto Si substrates in O2-Ar plasma, ignited in an advanced custom-designed plasma-enhanced horizontal tube furnace deposition system. The morphology and structure of the synthesized ZnO nanostructures were systematically and extensively investigated by scanning and transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. It is shown that the morphology of ZnO nanostructures changes from the hybrid ZnO/nanoparticle and nanorod system to the mixture of ZnO nanosheets and nanorods when the growth temperature increases, and the density of ZnO nanorods increases with the increase of oxygen flow rate. The formation of ZnO nanostructures was explained in terms of motion of Zn atoms on the Zn nanoparticle surfaces, and to the local melting of Zn nanoparticles or nanosheets. Moreover, the photoluminescence properties of ZnO nanostructures were studied, and it was revealed that the photoluminescence spectrum features two strong ultraviolet bands at about 378 and 399 nm and a series of weak blue bands within a range of 440-484 nm, related to the emissions of free excitons, near-band edge, and defects of ZnO nanostructures. The obtained results enrich our knowledge on the synthesis of ZnO-based nanostructures and contribute to the development of ZnO-based optoelectronic devices.

  6. Impacts of enhanced central Pacific ENSO on wave climate and headland-bay beach morphology

    Science.gov (United States)

    Mortlock, Thomas R.; Goodwin, Ian D.

    2016-06-01

    Wave climate and Pacific basin coastal behaviour associated with El Niño Southern Oscillation (ENSO) is understood at a reconnaissance level, but the coastal response to different central Pacific (CP) versus eastern Pacific (EP) flavours of ENSO is unknown. We show that CP ENSO events produce different patterns of directional wave power to EP ENSO along the southeast Australian shelf and southwest Pacific region, because of significant variability in trade-wind wave generation. The modulation of the trade wind wave climate during CP ENSO has thus far been neglected in existing coastal process studies. We also show that coastal change between CP and EP ENSO cannot be inferred from shifts in the deepwater wave climate. This is because variability in trade wind wave generation is masked in deepwater by the persistence of high power extra-tropical waves that have reduced impact on nearshore processes due to high wave refraction. Morphodynamic modelling in a headland-bay beach indicates that CP ENSO leads to higher coastal erosion potential and slower post-storm recovery than EP ENSO during an El Niño/La Niña cycle. We show that the alongshore variability in beach morphological type can be used to model the static equilibrium planform response for each ENSO phase. Results indicate that shoreline response to ENSO in most headland-bay beach coasts is not as simple as the existing paradigm that (anti-) clockwise rotation occurs during El Niño (La Niña). Our methods provide a second-order approach to project coastal response and predict the discrete shoreline rotations for ENSO flavours.

  7. Effect of Uveal Melanocytes on Choroidal Morphology in Rhesus Macaques and Humans on Enhanced-Depth Imaging Optical Coherence Tomography

    Science.gov (United States)

    Yiu, Glenn; Vuong, Vivian S.; Oltjen, Sharon; Cunefare, David; Farsiu, Sina; Garzel, Laura; Roberts, Jeffrey; Thomasy, Sara M.

    2016-01-01

    Purpose To compare cross-sectional choroidal morphology in rhesus macaque and human eyes using enhanced-depth imaging optical coherence tomography (EDI-OCT) and histologic analysis. Methods Enhanced-depth imaging–OCT images from 25 rhesus macaque and 30 human eyes were evaluated for choriocapillaris and choroidal–scleral junction (CSJ) visibility in the central macula based on OCT reflectivity profiles, and compared with age-matched histologic sections. Semiautomated segmentation of the choriocapillaris and CSJ was used to measure choriocapillary and choroidal thickness, respectively. Multivariate regression was performed to determine the association of age, refractive error, and race with choriocapillaris and CSJ visibility. Results Rhesus macaques exhibit a distinct hyporeflective choriocapillaris layer on EDI-OCT, while the CSJ cannot be visualized. In contrast, humans show variable reflectivities of the choriocapillaris, with a distinct CSJ seen in many subjects. Histologic sections demonstrate large, darkly pigmented melanocytes that are densely distributed in the macaque choroid, while melanocytes in humans are smaller, less pigmented, and variably distributed. Optical coherence tomography reflectivity patterns of the choroid appear to correspond to the density, size, and pigmentation of choroidal melanocytes. Mean choriocapillary thickness was similar between the two species (19.3 ± 3.4 vs. 19.8 ± 3.4 μm, P = 0.615), but choroidal thickness may be lower in macaques than in humans (191.2 ± 43.0 vs. 266.8 ± 78.0 μm, P morphology on EDI-OCT in rhesus macaque and human eyes. Racial differences in pigmentation may affect choriocapillaris and CSJ visibility, and may influence the accuracy of choroidal thickness measurements. PMID:27792810

  8. Enhanced fluorescence, morphological and thermal properties of CdSe/ZnS quantum dots incorporated in silicone resin.

    Science.gov (United States)

    Trung, Nguyen Ngoc; Luu, Quynh-Phuong; Son, Bui Thanh; Sinh, Le Hoang; Bae, Jin-Young

    2013-01-01

    Our research focused on the morphological and optical properties of core/shell cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots incorporated in silicone resin. After dispersing ligand-coated quantum dots into Dow Corning two-component silicone resins (OE6630A and OE6630B at 1:4 mixing ratio by weight), the resins were cured at 150 degrees C for 1.5 hours to produce the quantum dot-silicone resin nanocomposites. The optical, morphological and thermal properties of the quantum dot incorporated in silicone resin were investigated by ultraviolet-visible, fluorescence, atomic force microscopy, field emission scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis. When the quantum dots, originally coated with trioctylamine ligand, were transferred from a chloroform solvent to methyl phenyl silicone oil and silicone resins of high viscosity, the quantum dots showed increased turbidity and lowered fluorescence intensity. Fluorescence enhancement was investigated by using various functional ligands such as poly(1, 1-dimethyl silazane) (multi-silazane), hexamethylenediamine (diamine), cysteamine (amino-thiol), triethylsilane (reactive hydrosilane), hexamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane (reactive amines). The results showed that the reactive amines were good additive ligands for enhancing the fluorescence of CdSe/ZnS quantum dots dispersed in the silicone resins, providing 1.2-2.48 Im/W and 4.2-5.56% higher luminous efficiency and photoluminescence conversion efficiency, respectively. We speculate that these reactive amines donate electrons to the surface electron traps, thereby reducing charge recombination. In addition, quantum dots aggregate to form quantum dot clusters with a relatively homogeneously dispersed in the silicone resin matrices, showing good emission properties due to surface passivation and good colloidal stability with the addition of silazane compounds to the resin

  9. Escape as Reinforcement and Escape Extinction in the Treatment of Feeding Problems

    Science.gov (United States)

    LaRue, Robert H.; Stewart, Victoria; Piazza, Cathleen C.; Volkert, Valerie M.; Patel, Meeta R.; Zeleny, Jason

    2011-01-01

    Given the effectiveness of putative escape extinction as treatment for feeding problems, it is surprising that little is known about the effects of escape as reinforcement for appropriate eating during treatment. In the current investigation, we examined the effectiveness of escape as reinforcement for mouth clean (a product measure of…

  10. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.

    Science.gov (United States)

    Coban, Hasan B; Demirci, Ali; Turhan, Irfan

    2015-06-01

    Phytase can be used in animal's diets to increase the absorption of several divalent ions, amino acids and proteins and to decrease the excessive phosphorus release in manure to prevent negative effects on the environment. This study aimed to enhance the current submerged fungal phytase productions with a novel fermentation technique by evaluating the effect of the various microparticles on Aspergillus ficuum phytase production. It was observed that microparticles prevented bulk fungal pellet growth, decreased average fungal pellet size and significantly increased phytase activity in the submerged fermentation. Microbial structure imaging results showed that the average fungal pellet radius decreased from 800 to 500 and 200 µm by addition of 15 g/L aluminum oxide and talcum, respectively, in shake-flask fermentation. Also, addition of 15 g/L of talcum and aluminum oxide increased phytase activity to 2.01 and 2.93 U/ml, respectively, compared to control (1.02 U/ml) in shake-flask fermentation. Additionally, phytase activity reached 6.49 U/ml within 96 h of fermentation with the addition of 15 g/L of talcum, whereas the maximum phytase activity was only 3.45 U/ml at 120 h of fermentation for the control in the 1-L working volume bioreactors. In conclusion, microparticles significantly increased fungal phytase activity and production yield compared to control fermentation.

  11. Learning from escaped prescribed fire reviews [Abstract

    Science.gov (United States)

    Anne Black; Dave Thomas; James Saveland

    2011-01-01

    Over the past decade, the wildland fire community has developed a number of innovative methods for conducting a review following escape of a prescribed fire. The stated purpose been to identify methods that not only meet policy requirements, but to reduce future escapes. Implicit is the assumption that a review leads to learning. Yet, as organizational learning expert...

  12. Escape of atmospheric gases from the Moon

    Indian Academy of Sciences (India)

    Da Dao-an; Yang Ya-tian

    2005-12-01

    The escape rate of atmospheric molecules on the Moon is calculated.Based on the assumption that the rates of emission and escape of gases attain equilibrium, the ratio of molecular number densities during day and night, 0/0, can be explained. The plausible emission rate of helium and radioactive elements present in the Moon has also been calculated.

  13. Escaping in Literature. Teaching in the Library.

    Science.gov (United States)

    Hurst, Carol Otis

    1993-01-01

    Explores the "escape" genre of children's literature, and recommends and describes several books that deal with such topics as escape from prison camps, from slavery, from the Holocaust, from war, and from Utopian societies. These books should provoke meaningful classroom discussions and allow children to view their own world from different…

  14. Statin escape phenomenon: Fact or fiction?

    Science.gov (United States)

    Barkas, Fotios; Elisaf, Moses; Klouras, Eleftherios; Dimitriou, Theodora; Tentolouris, Nikolaos; Liberopoulos, Evangelos

    2017-01-01

    AIM To evaluate the presence of the so called “statin escape” phenomenon among hyperlipidemic subjects attending a lipid clinic. METHODS This was a retrospective analysis of 1240 hyperlipidemic individuals followed-up for ≥ 3 years. We excluded those individuals meeting one of the following criteria: Use of statin therapy at baseline visit, discontinuation of statin treatment at most recent visit, change in statin treatment during follow-up and poor compliance to treatment. Statin escape phenomenon was defined as an increase in low-density lipoprotein cholesterol (LDL-C) levels at the most recent visit by > 10% compared with the value at 6 mo following initiation of statin treatment. RESULTS Of 181 eligible subjects, 31% exhibited the statin escape phenomenon. No major differences regarding baseline characteristics were found between statin escapers and non-statin escapers. Both escapers and non-escapers had similar baseline LDL-C levels [174 (152-189) and 177 (152-205) mg/dL, respectively]. In comparison with non-escapers, statin escapers demonstrated lower LDL-C levels at 6 mo after treatment initiation [88 (78-97) mg/dL vs 109 (91-129) mg/dL, P statin-treated individuals. The clinical significance of this phenomenon remains uncertain.

  15. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    Science.gov (United States)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  16. Atmospheric escape, redox evolution, and planetary habitability

    Science.gov (United States)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  17. Optimal escape theory predicts escape behaviors beyond flight initiation distance: risk assessment and escape by striped plateau lizards Sceloporus virgatus

    Institute of Scientific and Technical Information of China (English)

    William E.COOPER Jr

    2009-01-01

    Escape theory predicts that flight initiation distance (FID=distance between predator and prey when escape begins) is longer when risk is greater and shorter when escape is more costly. A few tests suggest that escape theory applies to distance fled. Escape models have not addressed stochastic variables, such as probability of fleeing and of entering refuge, but their economic logic might be applicable. Experiments on several risk factors in the lizard Sceloporus virgatus confirmed all predictions for the above escape variables. FID was greater when approach was faster and more direct, for lizards on ground than on trees, for lizards rarely exposed to humans, for the second of two approaches, and when the predator turned toward lizards rather than away. Lizards fled further during rapid and second consecutive approaches. They were more likely to flee when approached directly, when a predator turned toward them, and during second approaches. They were more likely to enter refuge when approached rapidly. A novel finding is that perch height in trees was unrelated to FID because lizards escaped by moving out of sight, then moving up or down unpredictably. These findings add to a growing body of evidence supporting predictions of escape theory for FID and distance fled. They show that two probabilistic aspects of escape are predictable based on relative predation risk levels. Because individuals differ in boldness, the assessed optimal FID and threshold risks for fleeing and entering refuge are exceeded for an increasing proportion of individuals as risk increases[Current Zoology 55(2):123-131,2009].

  18. Atmospheric Escape from Hot Jupiters

    CERN Document Server

    Murray-Clay, Ruth; Murray, Norman

    2008-01-01

    Photoionization heating from UV radiation incident on the atmospheres of hot Jupiters may drive planetary mass loss. We construct a model of escape that includes realistic heating and cooling, ionization balance, tidal gravity, and pressure confinement by the host star wind. We show that mass loss takes the form of a hydrodynamic ("Parker") wind, emitted from the planet's dayside during lulls in the stellar wind. When dayside winds are suppressed by the confining action of the stellar wind, nightside winds might pick up if there is sufficient horizontal transport of heat. A hot Jupiter loses mass at maximum rates of ~2 x 10^12 g/s during its host star's pre-main-sequence phase and ~2 x10^10 g/s during the star's main sequence lifetime, for total maximum losses of ~0.06% and ~0.6% of the planet's mass, respectively. For UV fluxes F_UV < 10^4 erg/cm^2/s, the mass loss rate is approximately energy-limited and is proportional to F_UV^0.9. For larger UV fluxes, such as those typical of T Tauri stars, radiative ...

  19. Quantifying Distributions of Lyman Continuum Escape Fraction

    CERN Document Server

    Cen, Renyue

    2015-01-01

    Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewed probability distribution function (PDF) of the escape fraction when viewed at different angles. Thus, the escape fraction of Lyman continuum photons of a galaxy observed along a line of sight merely represents the properties of the interstellar medium along that line of sight, which may be an ill-representation of true escape fraction of the galaxy averaged over its full sky. Here we study how Lyman continuum photons escape from galaxies at $z=4-6$, utilizing high-resolution large-scale cosmological radiation-hydrodynamic simulations. We compute the PDF of the mean escape fraction ($\\left$) averaged over mock observational samples, as a function of the sample size, compared to the true mean (had you an infinite sample size). We find that, when the sample size is...

  20. Plasma-induced Escape and Alterations of Planetary Atmospheres

    Science.gov (United States)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  1. Performance Enhancement of Dye-Sensitized Solar Cells Based on TiO₂ Thick Mesoporous Photoanodes by Morphological Manipulation.

    Science.gov (United States)

    Keshavarzi, Reza; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj

    2015-10-27

    This study is an attempt to give an account of the preparation of mesoporous TiO2 thick templated films of nonsimilar pore architecture and their use in dye-sensitized solar cells (DSSCs). Highly crystallized mesoporous titania thick templated films with four different morphologies including hexagonal, wormlike, cubic, and gridlike mesostructure, have been successfully synthesized through an evaporation-induced self-assembly (EISA) route followed by layer-by-layer deposition. Stabilization, followed by each coating, and calcinations, carried out after every five layers, were used to produce crack-free thick films. These mesoporous templated titanium dioxide samples were characterized by TEM, XRD, SEM, BET, and UV-vis measurements and used as a photoelectrode material in DSSCs. The mesostructured films with a thickness of about 7 μm demonstrated better performance in comparison to nanocrystalline TiO2 films (NC-TiO2) at a film thickness of 13 μm as the most typical films utilized in DSSCs. The findings reveal that a surfactant/Ti ratio change undergone for developing cubic mesostructures can enhance the crystallinity and roughness factor and therefore increase the energy conversion efficiency of DSSC. The cell performances derived from these mesofilms were enhanced compared to the efficiencies reported thus far. The best photovoltaic performance of 8.73% came from DSSC using the cubic mesoporous TiO2 photoelectrode with the following properties: open circuit voltage of 743 mV, short circuit photocurrent density of 16.35 mA/cm(2), and fill factor of 0.72.

  2. A new perspective on structural and morphological properties of carbon nanotubes synthesized by Plasma Enhanced Chemical Vapor Deposition technique

    Science.gov (United States)

    Salar Elahi, A.; Agah, K. Mikaili; Ghoranneviss, M.

    CNTs were produced on a silicon wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs.

  3. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study.

    Science.gov (United States)

    Garcia-Longoria, Luz; Møller, Anders P; Balbontín, Javier; de Lope, Florentino; Marzal, Alfonso

    2015-12-01

    Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities.

  4. The escape velocity and Schwarzschild metric

    CERN Document Server

    Murzagalieva, A G; Murzagaliev, G Z

    2002-01-01

    The escape velocity value in the terms of general relativity by means Schwarzschild metric is provided to make of the motion equation with Friedman cosmological model behavior build in the terms of Robertson-Worker metric. (author)

  5. St.Petersburg Escape Experience Tour

    OpenAIRE

    Palagina, Mariia; Zhak, Svetlana

    2017-01-01

    The growing popularity of Russia as a tourist destination and the high interest towards escape rooms and quests opens new business opportunities and market niches. The aim of this thesis is to develop a tourist product based on the new escape room tourism concept combining the historical, cultural and game experiences. The choice of the theme and destination was determined by the authors’ personal backgrounds and the destination proximity to Finland. The theoretical research was implement...

  6. Polymer escape from a confining potential

    Energy Technology Data Exchange (ETDEWEB)

    Mökkönen, Harri, E-mail: harri.mokkonen@aalto.fi [Department of Applied Physics and COMP CoE, Aalto University School of Science, P.O. Box 11100, FIN-00076 Aalto, Espoo (Finland); Faculty of Physical Sciences, University of Iceland, Reykjavík (Iceland); Ikonen, Timo [Department of Applied Physics and COMP CoE, Aalto University School of Science, P.O. Box 11100, FIN-00076 Aalto, Espoo (Finland); VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Jónsson, Hannes [Department of Applied Physics and COMP CoE, Aalto University School of Science, P.O. Box 11100, FIN-00076 Aalto, Espoo (Finland); Faculty of Physical Sciences, University of Iceland, Reykjavík (Iceland); Department of Physics, Brown University, Providence, Rhode Island 02912-1843 (United States); Ala-Nissila, Tapio [Department of Applied Physics and COMP CoE, Aalto University School of Science, P.O. Box 11100, FIN-00076 Aalto, Espoo (Finland); Department of Physics, Brown University, Providence, Rhode Island 02912-1843 (United States)

    2014-02-07

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  7. Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Levi M. J. [School of Polymers; Bhattacharya, Mithun [School of Polymers; Wu, Qi [School of Polymers; Youm, Sang Gil [Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States; Nesterov, Evgueni E. [Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States; Morgan, Sarah E. [School of Polymers

    2017-06-28

    Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystalline disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.

  8. Breast MRI in the Evaluation of Locally Recurrent or New Breast Cancer in the Postoperative Patient: Correlation of Morphology and Enhancement Features with the BI-RADS Category

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J.M.; Nguyen, E.T.; Jaffey, J. [Dept. of Radiology, The Ottawa Hospit al, Ottawa (Canada)

    2007-10-15

    Background: While breast magnetic resonance imaging (MRI) is a highly sensitive test for detecting breast carcinoma, its specificity is lower, and several methods have been described on how to optimize specificity. Purpose: To compare the specificity and sensitivity of the BI-RADS category with the Fischer score in breast MRI for diagnosing cancer in women previously treated for breast cancer. Material and Methods: Women referred for evaluation of possible local recurrence or new breast cancer underwent breast MRI examination. Morphologic and kinetic enhancement characteristics were evaluated. BI-RADS category and Fischer score were assigned for each enhancing lesion and compared using a chi-square test. Sensitivity, specificity, and positive predictive values for 27 morphologic and enhancement characteristics were calculated. Pathologic diagnosis was obtained in all patients with enhancing lesions who had ultrasound or mammographic correlation. In those without correlate, 6-, 12-, and 24-month follow-up breast MRIs were obtained. Interobserver kappa correlation was determined for each variable studied. Results: 34 benign and 32 malignant lesions were identified in 26 of 30 patients. BI-RADS category yielded a specificity of 77.1% and a sensitivity of 81.8%. Fischer score had a lower specificity and sensitivity (62.9% and 72.7%, respectively) (P<0.0001). Of the 27 variables studied, >100% enhancement was more sensitive than BI-RADS for malignant lesions. Specificity was highest for rim enhancement (97.1%), but sensitivity was low (24.2%). Interobserver kappa correlation was good for all 27 characteristics ( = 0.84), and highest for BI-RADS assessment ( 0.91). Conclusion: BI-RADS category in breast MRI had the highest combination of specificity and sensitivity, and the highest interobserver correlation. Fischer score and other morphologic and enhancement features lack sensitivity or specificity and do not have high positive predictive values when analyzed as single

  9. Genes that escape from X inactivation.

    Science.gov (United States)

    Berletch, Joel B; Yang, Fan; Xu, Jun; Carrel, Laura; Disteche, Christine M

    2011-08-01

    To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.

  10. Changing the habitat: the evolution of intercorrelated traits to escape from predators.

    Science.gov (United States)

    Mikolajewski, D J; Scharnweber, K; Jiang, B; Leicht, S; Mauersberger, R; Johansson, F

    2016-07-01

    Burst escape speed is an effective and widely used behaviour for evading predators, with burst escape speed relying on several different morphological features. However, we know little about how behavioural and underlying morphological attributes change in concert as a response to changes in selective predation regime. We studied intercorrelated trait differentiation of body shape and burst-swim-mediating morphology in response to a habitat shift-related reduction in burst escape speed using larvae of the dragonfly genus Leucorrhinia. Species in this genus underwent a well-known habitat shift from predatory fish lakes (fish lakes) to predatory fish-free lakes dominated by large predatory dragonflies (dragonfly lakes) accompanied by relaxed selection on escape burst speed. Results revealed that species from fish lakes that possess faster burst speed have evolved a suite of functionally intercorrelated traits, expressing a wider abdomen, a higher abdominal muscles mass and a larger branchial chamber compared with species from dragonfly lakes. In contrast, populations within species did not show significant differences in muscle mass and branchial chamber size between lake types in three of the species. High multicollinearity among variables suggests that traits have evolved in concert rather than independently when Leucorrhinia shifted from fish lakes to dragonfly lakes. Thus, relaxed selection on burst escape speed in dragonfly-lake species resulted in a correlated reduction of abdominal muscles and a smaller branchial chamber, likely to save production and/or maintenance costs. Our results highlight the importance of studying integrated behavioural and morphological traits to fully understand the evolution of complex phenotypes.

  11. Escape statistics for parameter sweeps through bifurcations.

    Science.gov (United States)

    Miller, Nicholas J; Shaw, Steven W

    2012-04-01

    We consider the dynamics of systems undergoing parameter sweeps through bifurcation points in the presence of noise. Of interest here are local codimension-one bifurcations that result in large excursions away from an operating point that is transitioning from stable to unstable during the sweep, since information about these "escape events" can be used for system identification, sensing, and other applications. The analysis is based on stochastic normal forms for the dynamic saddle-node and subcritical pitchfork bifurcations with a time-varying bifurcation parameter and additive noise. The results include formulation and numerical solution for the distribution of escape events in the general case and analytical approximations for delayed bifurcations for which escape occurs well beyond the corresponding quasistatic bifurcation points. These bifurcations result in amplitude jumps encountered during parameter sweeps and are particularly relevant to nano- and microelectromechanical systems, for which noise can play a significant role.

  12. Cosmic ray escape from supernova remnants

    CERN Document Server

    Gabici, Stefano

    2011-01-01

    Galactic cosmic rays are believed to be accelerated at supernova remnants via diffusive shock acceleration. Though this mechanism gives fairly robust predictions for the spectrum of particles accelerated at the shock, the spectrum of the cosmic rays which are eventually injected in the interstellar medium is more uncertain and depends on the details of the process of particle escape from the shock. Knowing the spectral shape of these escaping particles is of crucial importance in order to assess the validity of the supernova remnant paradigm for cosmic ray origin. Moreover, after escaping from a supernova remnant, cosmic rays interact with the surrounding ambient gas and produce gamma rays in the vicinity of the remnant itself. The detection of this radiation can be used as an indirect proof of the fact that the supernova remnant was indeed accelerating cosmic rays in the past.

  13. Thermal escape from extrasolar giant planets.

    Science.gov (United States)

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  14. 用于弱目标检测的形态滤波和小波变换图像增强算法%Morphological Filters and Wavelet-based Histogram Equalization Image Enhancement for Weak Target Detection

    Institute of Scientific and Technical Information of China (English)

    吉书鹏; 丁小青

    2003-01-01

    Image enhancement methods are typically aimed at improvement of the overall visibility of features. Though histogram equalization can enhance the contrast by redistributing the gray levels, it has the drawback that it reduces the information in the processed image. In this paper, we present a new image enhancement algorithm. After histogram equalization is carried out, morphological filters and wavelet-based enhancement algorithm is used to clean out the unwanted details and further enhance the image and compensate for the information loss during histogram equalization. Experimental results show that the morphological filters and wavelet-based histogram equalization algorithm can significantly enhance the contrast and increase the information entropy of the image.

  15. Bacillus anthracis factors for phagosomal escape.

    Science.gov (United States)

    Tonello, Fiorella; Zornetta, Irene

    2012-07-01

    The mechanism of phagosome escape by intracellular pathogens is an important step in the infectious cycle. During the establishment of anthrax, Bacillus anthracis undergoes a transient intracellular phase in which spores are engulfed by local phagocytes. Spores germinate inside phagosomes and grow to vegetative bacilli, which emerge from their resident intracellular compartments, replicate and eventually exit from the plasma membrane. During germination, B. anthracis secretes multiple factors that can help its resistance to the phagocytes. Here the possible role of B. anthracis toxins, phospholipases, antioxidant enzymes and capsules in the phagosomal escape and survival, is analyzed and compared with that of factors of other microbial pathogens involved in the same type of process.

  16. Temporal and ontogenetic variation in the escape response of Ameiva festiva (Squamata, Teiidae

    Directory of Open Access Journals (Sweden)

    Lattanzio

    2014-08-01

    Full Text Available Several factors have been shown to affect lizard escape behavior (flight initiation distance or FID, the distance between predator and prey when the prey initiates escape. Patterns of daily activity, such as foraging or movement behavior, vary with respect to time of day, supporting that escape responses may vary temporally as well. However, there remains scant information regarding the effects of time of day on FID. During peak activity, FID may decrease due to increased cost of giving up resources (e.g., prey or potential mates. An alternative hypothesis is that FID may increase because lizard activity in general may serve to alert a predator in advance of its approach. A lizard in this scenario may be favored to flee sooner rather than later. Moreover, juvenile and adult lizards of multiple species may differ in behavioral, ecological, and morphological traits that could influence escape decisions. I tested the effects of time of day (in 30-min intervals and age (juvenile or adult on the FID of a tropical whiptail lizard, Ameiva festiva in Costa Rica. I found that A. festiva escape responses varied with time of day such that in general, their FID decreased throughout the day. In addition, I observed a peak in FID from mid to late-morning that matches published estimates of peak activity times for A. festiva. Overall, juvenile A. festiva initiated an escape response sooner than adults, which may be related to differences in perceived risk associated with differences in size and predator experience between the two age groups. I conclude that escape responses may be contingent on both the activity level of the animal at the time of approach and its age.

  17. Do the visual conditions at the point of escape affect European sea bass escape behavior?

    Directory of Open Access Journals (Sweden)

    I.E. PAPADAKIS

    2013-04-01

    Full Text Available European sea bass (Dicentrarchus labrax, an important species for the Mediterranean aquaculture industry, has been reported to escape from sea cage installations. Fish escapes are caused mainly by operational and technical failures that eventually result into a creation of a tear. Escapees may interact with wild stocks through interbreeding, transfer of pathogens and competition for food. The aim of this study was to examine at which extent the presence of a visible obstacle close to a tear on the net have an influence on sea bass propensity to escape. Fish were initially confined into small sea cages, with a tear at one side. The escape behavior was tested under experimental conditions. It is clearly demonstrated that sea bass was able to locate a tear on the net pen, immediately after its appearance. Crossings occurred in all cages, in singles or in a series of up to seven individuals. The presence of an obstacle close to the net tear altered the escape behavior of D. labrax resulting in a delay that eventually reduced the escape rate. Concluding, it is highly recommended that sea bass cages should be kept internally the culture array. Furthermore, the placement of artificial obstacles close to the sea cages could be an efficient practice that mitigates the escape risk after severe environmental conditions.

  18. Do the visual conditions at the point of escape affect European sea bass escape behavior?

    Directory of Open Access Journals (Sweden)

    I.E. PAPADAKIS

    2013-03-01

    Full Text Available European sea bass (Dicentrarchus labrax, an important species for the Mediterranean aquaculture industry, has been reported to escape from sea cage installations. Fish escapes are caused mainly by operational and technical failures that eventually result into a creation of a tear. Escapees may interact with wild stocks through interbreeding, transfer of pathogens and competition for food. The aim of this study was to examine at which extent the presence of a visible obstacle close to a tear on the net have an influence on sea bass propensity to escape. Fish were initially confined into small sea cages, with a tear at one side. The escape behavior was tested under experimental conditions. It is clearly demonstrated that sea bass was able to locate a tear on the net pen, immediately after its appearance. Crossings occurred in all cages, in singles or in a series of up to seven individuals. The presence of an obstacle close to the net tear altered the escape behavior of D. labrax resulting in a delay that eventually reduced the escape rate. Concluding, it is highly recommended that sea bass cages should be kept internally the culture array. Furthermore, the placement of artificial obstacles close to the sea cages could be an efficient practice that mitigates the escape risk after severe environmental conditions.

  19. Learning from escaped prescribed fire reviews

    Science.gov (United States)

    Anne E. Black; Dave Thomas; James Saveland; Jennifer D. Ziegler

    2011-01-01

    The U.S. wildland fire community has developed a number of innovative methods for conducting a review following escape of a prescribed fire (expanding on the typical regional or local reviews, to include more of a learning focus - expanded After Action Reviews, reviews that incorporate High Reliability Organizing, Facilitated Learning Analyses, etc). The stated purpose...

  20. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    Science.gov (United States)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  1. Nociception and escape behavior in planarians

    Science.gov (United States)

    Schoetz Collins, Eva-Maria

    2015-03-01

    Planarians are famous and widely studied for their regenerative capabilities. When a moving planarian is cut through the middle, the resulting head and tail pieces instantaneously retract and exhibit a characteristic escape response that differs from normal locomotion. In asexual animals, a similar reaction is observed when the planarian undergoes fission, suggesting that reproduction through self-tearing is a rather traumatic event for the animal. Using a multiscale approach, we unravel the dynamics, mechanics, and functional aspects of the planarian escape response. This musculature-driven gait was found to be a dominating response that supersedes the urge to feed or reproduce and quantitatively differs from other modes of planarian locomotion (gliding, peristalsis). We show that this escape gait constitutes the animal's pain response mediated by TRP like receptors and the neurotransmitter histamine, and that it can be induced through adverse thermal, mechanical, electrical or chemical stimuli. Ultimately, we will examine the neuronal subpopulations involved in mediating escape reflexes in planarians and how they are functionally restored during regeneration, thereby gaining mechanistic insight into the neuronal circuits required for specific behaviors. Supported by BWF CASI and Sloan Foundation.

  2. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    Science.gov (United States)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  3. Life events and escape in conversion disorder.

    Science.gov (United States)

    Nicholson, T R; Aybek, S; Craig, T; Harris, T; Wojcik, W; David, A S; Kanaan, R A

    2016-09-01

    Psychological models of conversion disorder (CD) traditionally assume that psychosocial stressors are identifiable around symptom onset. In the face of limited supportive evidence such models are being challenged. Forty-three motor CD patients, 28 depression patients and 28 healthy controls were assessed using the Life Events and Difficulties Schedule in the year before symptom onset. A novel 'escape' rating for events was developed to test the Freudian theory that physical symptoms of CD could provide escape from stressors, a form of 'secondary gain'. CD patients had significantly more severe life events and 'escape' events than controls. In the month before symptom onset at least one severe event was identified in 56% of CD patients - significantly more than 21% of depression patients [odds ratio (OR) 4.63, 95% confidence interval (CI) 1.56-13.70] and healthy controls (OR 5.81, 95% CI 1.86-18.2). In the same time period 53% of CD patients had at least one 'high escape' event - again significantly higher than 14% in depression patients (OR 6.90, 95% CI 2.05-23.6) and 0% in healthy controls. Previous sexual abuse was more commonly reported in CD than controls, and in one third of female patients was contextually relevant to life events at symptom onset. The majority (88%) of life events of potential aetiological relevance were not identified by routine clinical assessments. Nine per cent of CD patients had no identifiable severe life events. Evidence was found supporting the psychological model of CD, the Freudian notion of escape and the potential aetiological relevance of childhood traumas in some patients. Uncovering stressors of potential aetiological relevance requires thorough psychosocial evaluation.

  4. Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment

    Science.gov (United States)

    Cheng, Nian; Liu, Pei; Bai, Sihang; Yu, Zhenhua; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2016-07-01

    The morphology of PbI2 film plays a critical role in determining the quality of the resultant CH3NH3PbI3 film and power conversion efficiency of CH3NH3PbI3 perovskite solar cell. Here, we propose a solvent treatment method in the two-step sequential deposition process to control the morphology of PbI2 film, which leads to enhanced power conversion efficiency. Hole transport material free perovskite solar cell is chosen as a paradigm to demonstrate this idea. Solvent (isopropanol, chlorobenzene, or ethanol) treated PbI2 films exhibit dendrite-like or flake-like morphologies, which facilitate more complete conversion of PbI2 to CH3NH3PbI3 perovskite in ambient atmosphere with a relative high humidity. Therefore, enhanced performance is obtained with the solvent treated PbI2 films. Average power conversion efficiency has been improved from 9.42% in the traditional two-step sequential deposition to 11.22% in solar cells derived from ethanol treated PbI2 films.

  5. Enhanced photocatalytic performance of morphologically tuned Bi2S3 NPs in the degradation of organic pollutants under visible light irradiation.

    Science.gov (United States)

    Sarkar, Arpita; Ghosh, Abhisek Brata; Saha, Namrata; Srivastava, Divesh N; Paul, Parimal; Adhikary, Bibhutosh

    2016-12-01

    Here in, morphologically tuned Bi2S3 NPs were successfully synthesized from a single-source precursor complex [Bi(ACDA)3] [HACDA=2-aminocyclopentene-1-dithiocarboxylic acid] by decomposing in various solvents using a simple solvothermal method. The as-obtained products were characterized by XRD, TEM, UV-vis spectroscopy and BET surface area measurements. Structural analyses revealed that the as-prepared Bi2S3 NPs can be tuned to different morphologies by varying various solvents and surfactants. The interplay of factors that influenced the size and morphology of the nanomaterials has been studied. Moreover, mastery over the morphology of nanoparticles enables control of their properties and enhancement of their usefulness for a given application. These materials emerged as a highly active visible light-driven photocatalyst towards degradation of methylene blue dye and the efficiencies are dependent on size and surface area of the NPs. In addition, photocatalytic degradation of highly toxic dichlorodiphenyltrichloroethane was studied using synthesized Bi2S3 NPs as catalyst and the rate of degradation has been found to be much better compared to that exhibited by commercial WO3. We believe that this new synthesis approach can be extended to the synthesis of other metal sulfide nanostructures and open new opportunities for device applications.

  6. Launch Pad Escape System Design (Human Spaceflight)

    Science.gov (United States)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  7. Hemodynamic and morphologic changes of peripheral hepatic vasculature in cirrhotic liver disease: A preliminary study using contrast-enhanced coded phase inversion harmonic ultrasonography

    Institute of Scientific and Technical Information of China (English)

    Rong-Qin Zheng; Bo Zhang; Masatoshi Kudo; Yasuhiro Sakaguchi

    2005-01-01

    AIM: To provide the useful information for the diagnosis of liver cirrhosis by observing the morphology of peripheral hepatic vessels and the hemodynamics of microbubble arrival time in these vessels.METHODS: Twenty-one subjects including 5 normal volunteers and 16 patients (liver cirrhosis, n=10;chronic hepatitis, n=6) were studied by contrast-enhanced coded phase inversion harmonic sonography (GE LOGIQ9 series) using a 6-8 MHz convex-arrayed wide-band transducer. The images of peripheral hepatic artery,portal and hepatic vein were observed in real-time for about 2 min after intravenous injection of Levovist. The time when microbubbles appeared in the peripheral vessels (microbubble arrival time) was also recorded. The morphologic changes of peripheral hepatic vasculature were classified as marked, slight, and no changes based on the regularity in caliber, course, ramification, and the delineation of vessels compared to normal subjects.RESULTS: The microbubble arrival time at peripheral artery, portal, and hepatic vein was shorter in cirrhotic patients than in chronic hepatitis patients and normal subjects. The marked, slight and no morphologic changes of peripheral hepatic vasculature found in 5 (5/6,83.3%), 1 (1/6, 16.7% ), and 0 (0/6, 0%) liver cirrhosis patients, respectively, and in 1 (1/10, 10%), 6 (6/10,60%), and 3 (3/10, 30%) chronic hepatitis patients,respectively. There was a significant difference between the two groups (P<0.001).CONCLUSION: Evaluation of the hemodynamics and morphology of peripheral hepatic vasculature by contrast-enhanced coded pulse inversion harmonic sonography can provide useful information for the diagnosis of liver cirrhosis.

  8. Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters

    Science.gov (United States)

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a

  9. Innovative Bayesian and parsimony phylogeny of dung beetles (coleoptera, scarabaeidae, scarabaeinae) enhanced by ontology-based partitioning of morphological characters.

    Science.gov (United States)

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a

  10. Morphological tuned preparation of zinc oxide: reduced graphene oxide composites for non-enzymatic fluorescence glucose sensing and enhanced photocatalysis

    Science.gov (United States)

    Sivalingam, Muthu Mariappan; Balasubramanian, Karthikeyan

    2016-07-01

    Zinc oxide: reduced graphene oxide (ZnO:rgo) composites with varying ZnO morphologies have been synthesized towards the application of non-enzymatic fluorescence (FL) glucose sensor and photocatalysis for methylene blue (MB) degradation. The phase structure of ZnO has confirmed by X-ray diffraction studies, and the band gap calculations were done by UV absorption spectra. Scanning electron microscope and Raman spectra revealed the morphological change and the vibrational studies of the prepared samples, respectively. The quenching of the FL emission band of ZnO:rgo composite sample confirmed the transfer of electrons from ZnO to rgo which inhibit the exciton recombination process. The non-enzymatic FL glucose sensing was carried out by the addition of dextrose glucose ( d-glucose) into the ZnO:rgo composite solution, which shows strong relationship between glucose concentration and the FL intensity. The photocatalytic studies showed that composite with high surface to volume ratio exhibits a maximum degradation of MB over 93 %. Our combined results ensured that the ZnO:rgo composites with varying morphologies could be an effective system for applications such as FL-based glucose sensing and photocatalytic degradation.

  11. The escape problem for mortal walkers

    CERN Document Server

    Grebenkov, D S

    2016-01-01

    We introduce and investigate the escape problem for random walkers that may eventually die, decay, bleach, or lose activity during their diffusion towards an escape or reactive region on the boundary of a confining domain. In the case of a first-order kinetics (i.e., exponentially distributed lifetimes), we study the effect of the associated death rate onto the survival probability, the exit probability, and the mean first passage time. We derive the upper and lower bounds and some approximations for these quantities. We reveal three asymptotic regimes of small, intermediate and large death rates. General estimates and asymptotics are compared to several explicit solutions for simple domains, and to numerical simulations. These results allow one to account for stochastic photobleaching of fluorescent tracers in bio-imaging, degradation of mRNA molecules in genetic translation mechanisms, or high mortality rates of spermatozoa in the fertilization process. This is also a mathematical ground for optimizing stor...

  12. The Escaping Upper Atmospheres of Hot Jupiters

    Science.gov (United States)

    Davidson, Eric; Jones, Gabrielle; Uribe, Ana; Carson, Joseph

    2017-01-01

    Hot Jupiters are massive gaseous planets which orbit closely to their parent star. The strong stellar irradiation at these small orbital separations causes the temperature of the upper atmosphere of the planet to rise. This can cause the planet's atmosphere to escape into space, creating an exoplanet outflow. We ascertained which factors determine the presence and structure of these outflows by creating one dimensional simulations of the density, pressure, velocity, optical depth, and neutral fraction of hot Jupiter atmospheres. This was done for planets of masses and radii ranging from 0.5-1.5 Mj and 0.5-1.5 Rj. We found the outflow rate to be highest for a planet of 0.5 Mj and 1.5 Rj at 5.3×10-14 Mj/Yr. We also found that the higher the escape velocity, the lower the chance of the planet having an outflow.

  13. Escape and Stand of the Pluto Atmosphere

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Yi

    2002-01-01

    Molar mass μmin of the lightest gas, which will exist "forever" in the atmosphere at the planet surface,can be evaluated by Jeans rule. The μmin of Pluto is 17.3 g@ mol-1. It is evident that both N2 and CO can be major atmospheric composition at the Pluto surface, and will exist "forever". CH4 can only be escaping slowly from Pluto atmosphere, and still holds quite a proportion in current Pluto atmosphere. However, it will not escape from Titan (or Jupiter, Saturn) atmosphere largely, and will exist "forever". Given the quantitylevelof partial pressure of CH4 in Pluto and Titan (or Jupiter, Saturn) original atmosphere is the same, it will be clear that the current partial pressure of CH4 in Pluto surface atmosphere is 10-3 Pa.

  14. Effects of submarine escape training on the pulmonary function and carbon dioxide retention in the escape

    Institute of Scientific and Technical Information of China (English)

    CHEN Rui-yong; WANG Wen-bo; FANG Yi-qun; XU Ji; XU Lin-jun

    2011-01-01

    Objective Fast buoyancy ascent escape used in submarine escape is the most probable choice of survival in case of a submarine accident.Rate of success for escape depends very much on the extent of training,in spite of the fact that rapid compression and decompression pose great challenges to the human body in terms of enormous stresses.To minimize stresses experienced during sub escape training has always been a research subject for us.Lungs are susceptible to rapid change in pressure during escape.Dynamic pulmonary function and the end-tidal PCO2 ( PETCO2 ) might be the best indicator for its effect on the pulmonary function of the submarine escapee.Methods Five male navy divers received submarine escape trainings,at different depths from 3-60 m.They were compressed at different rates (with pressure doubled every 20 s or 30 s),in the simulated submarine escape tower located in the Naval Medical Research Institute.The gas of end-expiration was collected immediately after escape,respiratory rate (RR) and dynamic pulmonary function were closely monitored,and PETCO2 was determined with the mass spectrometer.Results Experimental results showed that forced expiratory volume in 1 second (FEV1.0) tended to increase with increasing depth,and that it increased significantly at 50 m and 60 m,when compared with the basic data (P < 0.05 ),and it was coupled with a decrease in forced expiratory flow at 25 % ( FEF25% ),indicating that it had certain effect on the function of small airways.PETCO2 and RR all elevated markedly following escapes.No significant differences could be seen in RR following escapes at various depths.PETCO2 and depth ( r =0.387,P < 0.01 ) were positively correlated with compression rate ( r =0.459,P < 0.01 ) and RR ( r =0.467,P < 0.01 ).CO2 retention might be attributed to pulmonary ventilation disorder induced by rapid changes in pressure.PETCO2 was within normal range,following escapes at various depths,suggesting that increased RR might be

  15. Scrunching: a novel escape gait in planarians

    Science.gov (United States)

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  16. Xenon Fractionation and Archean Hydrogen Escape

    Science.gov (United States)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  17. Effect of Ion Escape Velocity and Conversion Surface Material on H- Production

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, Olli [University of Jyvaskyla; Kalvas, T. [University of Jyvaskyla; Komppula, J. [University of Jyvaskyla; Koivisto, H. [University of Jyvaskyla; Geros, E. [Los Alamos National Laboratory (LANL); Stelzer, J. [Los Alamos National Laboratory (LANL); Rouleau, G. [Los Alamos National Laboratory (LANL); Johnson, K.F. [Los Alamos National Laboratory (LANL); Carmichael, Justin R [ORNL

    2011-01-01

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H- production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was affected by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H- no direct gain of extracted beam current can be achieved by increasing the converter voltage. The conversion efficiency of H- was observed to vary with converter voltage and follow the existing theories in qualitative manner. We present calculations predicting relative H- yields from different cesiated surfaces with comparison to experimental observations from different types of H- ion sources. Utilizing materials exhibiting negative electron affinity and exposed to UV-light is considered for Cesium-free H-/D- production.

  18. Characterizing the Impact of Enhanced Solubilization Reagents on Organic-Liquid Morphology and Organic-Liquid/Water Interfacial Area Using Synchrotron X-ray Microtomography

    Science.gov (United States)

    Narter, M.; Brusseau, M.

    2010-12-01

    A primary goal of enhanced solubilization reagents is to increase contaminant mass transfer into the aqueous phase in order to achieve faster and more efficient mass removal from the subsurface. The rate of mass transfer depends on the degree of contact between the aqueous phase and the contaminant, and thus is dependent upon the interfacial area between the two phases. It is therefore important to understand the impact of enhanced solubilization reagents on organic-liquid distribution and morphology. This was accomplished using synchrotron X-ray microtomography to examine entrapped organic liquid in a natural porous medium. Polyoxyethylene Sorbitan Monooleate (tween 80), hydroxypropyl-β-cyclodextrin (HPCD), sodium dodecyl sulfate (SDS), and ethanol were used as the solubilization agents. Tetrachloroethene (PCE) was used as the entrapped organic immiscible liquid. Microtomography images were collected prior to and after successive floods with three concentrations of each reagent. The results were compared to those obtained from equivalent experiments conducted with water flooding.

  19. Sputtering at Mars: MAVEN observations of precipitating and escaping oxygen during nominal and extreme conditions

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Dong, Chuanfei; Ma, Yingjuan; Leblanc, Francois; Modolo, Ronan; Brain, David; Gruesbeck, Jacob; Hara, Takuya; Halekas, Jasper; Dong, Yaxue; Williamson, Hayley N.; Johnson, Robert E.; McFadden, James; Espley, Jared R.; Mitchell, David; Connerney, Jack; Eparvier, Frank; Lillis, Robert J.; Jakosky, Bruce

    2016-10-01

    Sputtering is believed to be one of the dominant escape mechanisms during the early epochs of our solar system when the solar activity and EUV intensities were much higher than the present day. Mars lacks a global dynamo magnetic field, which creates a scenario where the solar wind directly interacts with the upper atmosphere and newly created ions can be picked up and swept away by the background convection electric field. These pick-up ions can directly escape or precipitate back into the atmosphere and induce atmospheric sputtering of neutrals.The MAVEN spacecraft has observed the Mars upper atmosphere, ionosphere, magnetic topology and interactions with the Sun and solar wind during numerous Interplanetary Coronal Mass Ejection (ICME) impacts spanning from March 2015 to June 2016. ICMEs are associated with enhanced solar wind velocities, densities and magnetic field strength, and often drive heavy ion precipitation at much higher rates than during nominal conditions. Thus, ICMEs provide a unique environment for observing sputtering. We will compare MAVEN observations of heavy ion precipitation during nominal conditions as well as during ICMEs. Additionally, we will present global MHD and test particle simulations of the ICMEs in order to calculate sputtering escape rates for oxygen. Finally, we will use the observed and modeled sputtering escape rates to provide an initial estimate of the total sputtered atmospheric escape from Mars over billions of years.

  20. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    Science.gov (United States)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  1. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  2. Measuring morphology and density of internally mixed black carbon with SP2 and VTDMA: new insight to absorption enhancement of black carbon in the atmosphere

    Directory of Open Access Journals (Sweden)

    Y. X. Zhang

    2015-11-01

    Full Text Available The morphology and density of black carbon (BC cores in internally mixed BC (In-BC particles affects their mixing state and absorption enhancement. In this work, we developed a new method to measure the morphology and effective density of BC cores of ambient In-BC particles using a single particle soot photometer (SP2 and a volatility tandem differential mobility analyzer (VTDMA, during the CAREBeijing-2013 campaign from 8 to 27 July 2013 at Xianghe Observatory. The new measurement system can select size-resolved ambient In-BC particles and measure the mobility size and mass of In-BC cores. The morphology and effective density of ambient In-BC cores are then calculated. For In-BC cores in the atmosphere, changes in the dynamic shape factor (χ and effective density (ρeff can be characterized as a function of aging process (Dp ⁄ Dc measured by SP2 and VTDMA. During an intensive field study, the ambient In-BC cores had an average χ of ∼ 1.2 and an average density of ∼ 1.2 g cm−3, indicating that ambient In-BC cores have a near-spherical shape with an internal void of ∼ 30 %. With the measured morphology and density, the average shell ⁄ core ratio and absorption enhancement (Eab from ambient black carbon were estimated to be 2.1–2.7 and 1.6–1.9 for different sizes of In-BC particles at 200–350 nm. When assuming the In-BC cores have a void-free BC sphere with a density of 1.8 g cm−3, the shell ⁄ core ratio and Eab could be overestimated by ∼ 13 and ∼ 17 % respectively. The new approach developed in this work will help improve calculations of mixing state and optical properties of ambient In-BC particles by quantification of changes in morphology and density of ambient In-BC cores during aging process.

  3. Risks incurred by hydrogen escaping from containers and conduits

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Grilliot, E.S. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

    1998-08-01

    This paper is a discussion of a method for hydrogen leak classification. Leaks are classified as; gas escapes into enclosed spaces, gas escapes into partially enclosed spaces (vented), and gas escapes into unenclosed spaces. Each of the three enclosure classifications is further divided into two subclasses; total volume of hydrogen escaped and flow rate of escaping hydrogen. A method to aid in risk assessment determination in partially enclosed spaces is proposed and verified for several enclosure geometries. Examples are discussed for additional enclosure geometries.

  4. Syndecan-2 enhances E-cadherin shedding and fibroblast-like morphological changes by inducing MMP-7 expression in colon cancer cells.

    Science.gov (United States)

    Jang, Bohee; Jung, Hyejung; Chung, Heesung; Moon, Byung-In; Oh, Eok-Soo

    2016-08-12

    E-cadherin plays a mechanical role in mediating cell-cell interactions and maintaining epithelial tissue integrity, and the loss of E-cadherin function has been implicated in cancer progression and metastasis. Syndecan-2, a cell-surface heparan sulfate proteoglycan, is upregulated during the development of colon cancer. Here, we assessed the functional relationship between E-cadherin and syndecan-2. We found that stable overexpression of syndecan-2 in a human colorectal adenocarcinoma cell line (HT29) enhanced the proteolytic shedding of E-cadherin to conditioned-media. Either knockdown of matrix metalloproteinase 7 (MMP-7) or inhibition of MMP-7 activity using GM6001 significantly reduced the extracellular shedding of E-cadherin, suggesting that syndecan-2 mediates E-cadherin shedding via MMP-7. Consistent with this notion, enhancement of MMP-7 expression by interleukin-1α treatment increased the shedding of E-cadherin. Conversely, the specific reduction of either syndecan-2 or MMP-7 reduced the shedding of E-cadherin. HT29 cells overexpressing syndecan-2 showed significantly lower cell-surface expression of E-cadherin, decreased cell-cell contact, a more fibroblastic cell morphology, and increased expression levels of ZEB-1. Taken together, these data suggest that syndecan-2 induces extracellular shedding of E-cadherin and supports the acquisition of a fibroblast-like morphology by regulating MMP-7 expression in a colon cancer cell line.

  5. Effect of morphology of aluminium oxide nanoparticles on viscosity and interfacial tension (IFT) and the recovery efficiency in enhanced oil recovery (EOR)

    Science.gov (United States)

    Zaid, Hasnah Mohd; Radzi, Nur Shahbinar Ahmad; Latiff, Noor Rasyada Ahmad; Shafie, Afza

    2014-10-01

    Conventional enhanced oil recovery (EOR) methods failed to extract the remaining oil from unconventional, high salinity and high temperature high pressure (HTHP) oil reservoirs. In surfactant flooding method, surfactants are injected to reduce the interfacial tension between oil and water hence sufficiently displaces oil from the reservoir. In steam flooding, high temperature steam is injected into a reservoir to heat oil to make it less viscous, making it easier to move to the production wells. However these methods fail to failed to perform because injection agents start to change its properties under the extreme condition. Therefore, nanoparticles are introduced to mitigate these challenges because of its ability to change certain factor in certain condition. Previous studies had shown that increments in the oil recovery were observed when core-flooding experiments using Aluminum Oxide (Al2O3) nanofluid were conducted. In this research, the effect of morphology of Al2O3 nanoparticles on viscosity and interfacial tension (IFT) and the recovery efficiency in EOR was studied. Al2O3 nanoparticles were synthesized and the morphology was altered by hydrothermal treatment using different concentration of NaOH. After being treated, the morphology of Al2O3 changed from hexagonal to thin lath. The IFT between crude oil and the nanofluids of the treated Al2O3 showed lower values compared to the untreated ones. It was also observed from core-flooding experiment that the Al2O3 nanofluid which had undergone treatment with 10 M NaOH gave the highest recovery of 52.50% of residual oil in place (ROIP). The change in morphology could have resulted in better dispersion and thus lead to higher recovery.

  6. The cost of the sword: escape performance in male swordtails.

    Directory of Open Access Journals (Sweden)

    Alex Baumgartner

    Full Text Available The handicap theory of sexual selection posits that male display traits that are favored in mate choice come at a significant cost to performance. We tested one facet of this hypothesis in the green swordtail (Xiphophorus helleri. In this species, the lower ray of male caudal fin is extended into a 'sword', which serves to attract potential mates. However, bearing a long sword may increase drag and thus compromise a male's ability to swim effectively. We tested escape performance in this species by eliciting C-start escape responses, an instinctive escape behavior, in males with various sword lengths. We then removed males' swords and retested escape performance. We found no relationship between escape performance and sword length and no effect of sword removal on escape performance. While having a large sword may attract a predator's attention, our results suggest that sword size does not compromise a male's escape performance.

  7. Escape from attracting sets in randomly perturbed systems.

    Science.gov (United States)

    Rodrigues, Christian S; Grebogi, Celso; de Moura, Alessandro P S

    2010-10-01

    The dynamics of escape from an attractive state due to random perturbations is of central interest to many areas in science. Previous studies of escape in chaotic systems have rather focused on the case of unbounded noise, usually assumed to have Gaussian distribution. In this paper, we address the problem of escape induced by bounded noise. We show that the dynamics of escape from an attractor's basin is equivalent to that of a closed system with an appropriately chosen "hole." Using this equivalence, we show that there is a minimum noise amplitude above which escape takes place, and we derive analytical expressions for the scaling of the escape rate with noise amplitude near the escape transition. We verify our analytical predictions through numerical simulations of two well-known two-dimensional maps with noise.

  8. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  9. Room escape at class: Escape games activities to facilitate the motivation and learning in computer science

    Directory of Open Access Journals (Sweden)

    Carlos Borrego

    2017-06-01

    Full Text Available Real-life room-escape games are ludic activities in which participants enter a room in order to get out of it only after solving some riddles. In this paper, we explain a Room Escape teaching experience developed in the Engineering School at Universitat Autònoma de Barcelona. The goal of this activity is to increase student’s motivation and to improve their learning on two courses of the second year in the Computer Engineering degree: Computer Networksand Information and Security.

  10. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging

    Science.gov (United States)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2016-12-01

    The classification of erythrocytes plays an important role in the field of hematological diagnosis, specifically blood disorders. Since the biconcave shape of red blood cell (RBC) is altered during the different stages of hematological disorders, we believe that the three-dimensional (3-D) morphological features of erythrocyte provide better classification results than conventional two-dimensional (2-D) features. Therefore, we introduce a set of 3-D features related to the morphological and chemical properties of RBC profile and try to evaluate the discrimination power of these features against 2-D features with a neural network classifier. The 3-D features include erythrocyte surface area, volume, average cell thickness, sphericity index, sphericity coefficient and functionality factor, MCH and MCHSD, and two newly introduced features extracted from the ring section of RBC at the single-cell level. In contrast, the 2-D features are RBC projected surface area, perimeter, radius, elongation, and projected surface area to perimeter ratio. All features are obtained from images visualized by off-axis digital holographic microscopy with a numerical reconstruction algorithm, and four categories of biconcave (doughnut shape), flat-disc, stomatocyte, and echinospherocyte RBCs are interested. Our experimental results demonstrate that the 3-D features can be more useful in RBC classification than the 2-D features. Finally, we choose the best feature set of the 2-D and 3-D features by sequential forward feature selection technique, which yields better discrimination results. We believe that the final feature set evaluated with a neural network classification strategy can improve the RBC classification accuracy.

  11. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum.

    Science.gov (United States)

    Liu, Hui; Zheng, Zhiming; Wang, Peng; Gong, Guohong; Wang, Li; Zhao, Genhai

    2013-04-01

    Chitin synthases catalyze the formation of β-(1,4)-glycosidic bonds between N-acetylglucosamine residues to form the unbranched polysaccharide chitin, which is the major component of cell walls in most filamentous fungi. Several studies have shown that chitin synthases are structurally and functionally divergent and play crucial roles in the growth and morphogenesis of the genus Aspergillus although little research on this topic has been done in Penicillium chrysogenum. We used BLAST to find the genes encoding chitin synthases in P. chrysogenum related to chitin synthase genes in Aspergillus nidulans. Three homologous sequences coding for a class III chitin synthase CHS4 and two hypothetical proteins in P. chrysogenum were found. The gene which product showed the highest identity and encoded the class III chitin synthase CHS4 was studied in detail. To investigate the role of CHS4 in P. chrysogenum morphogenesis, we developed an RNA interference system to silence the class III chitin synthase gene chs4. After transformation, mutants exhibited a slow growth rate and shorter and more branched hyphae, which were distinct from those of the original strain. The results also showed that the conidiation efficiency of all transformants was reduced sharply and indicated that chs4 is essential in conidia development. The morphologies of all transformants and the original strain in penicillin production were investigated by light microscopy, which showed that changes in chs4 expression led to a completely different morphology during fermentation and eventually caused distinct penicillin yields, especially in the transformants PcRNAi1-17 and PcRNAi2-1 where penicillin production rose by 27 % and 41 %, respectively.

  12. Evolutionary escape from the prisoner's dilemma.

    Science.gov (United States)

    Worden, Lee; Levin, Simon A

    2007-04-07

    The classic prisoner's dilemma model of game theory is modified by introducing occasional variations on the options available to players. Mutation and selection of game options reliably change the game matrix, gradually, from a prisoner's dilemma game into a byproduct mutualism one, in which cooperation is stable, and "temptation to defect" is replaced by temptation to cooperate. This result suggests that when there are many different potential ways of interacting, exploring those possibilities may make escape from prisoner's dilemmas a common outcome in the world. A consequence is that persistent prisoner's dilemma structures may be less common than one might otherwise expect.

  13. Arduino adventures escape from Gemini station

    CERN Document Server

    Kelly, James Floyd

    2013-01-01

    Arduino Adventures: Escape from Gemini Station provides a fun introduction to the Arduino microcontroller by putting you (the reader) into the action of a science fiction adventure story.  You'll find yourself following along as Cade and Elle explore Gemini Station-an orbiting museum dedicated to preserving and sharing technology throughout the centuries. Trouble ensues. The station is evacuated, including Cade and Elle's class that was visiting the station on a field trip. Cade and Elle don't make it aboard their shuttle and are trapped on the station along with a friendly artificial intellig

  14. Immune escape mechanisms in acute myeloid leukemia

    OpenAIRE

    Kolbeck, Alexandra

    2012-01-01

    Obwohl in den letzten Jahren in der Therapie der AML große Fortschritte erzielt wurden, sind die Ursachen für die hohen Rezidivraten nach allogener SZT weiterhin nicht vollständig geklärt. Als Ursache werden Immune Escape Mechanismen diskutiert, mit deren Hilfe sich Tumorzellen vor der Elimination durch das Immunsystem schützen. Nach einer allogenen Stammzelltransplantation spielen Zytokine bei der Entwicklung einer GvHD, bzw. des GvL-Effektes eine zentrale Rolle. Besonders IFNγ ist ein Schlü...

  15. Serial Escape System For Aircraft Crews

    Science.gov (United States)

    Wood, Kenneth E.

    1990-01-01

    Emergency escape system for aircraft and aerospace vehicles ejects up to seven crewmembers, one by one, within 120 s. Intended for emergencies in which disabled craft still in stable flight at no more than 220 kn (113 m/s) equivalent airspeed and sinking no faster than 110 ft/s (33.5 m/s) at altitudes up to 50,000 ft (15.2 km). Ejection rockets load themselves from magazine after each crewmember ejected. Jumpmaster queues other crewmembers and helps them position themselves on egress ramp. Rockets pull crewmembers clear of aircraft structure. Provides orderly, controlled exit and avoids ditching at sea or landing in rough terrain.

  16. Belt fires and mine escape problems

    Energy Technology Data Exchange (ETDEWEB)

    Kovac, J.G.; Lazzara, C.P. [Bureau of Mines, Pittsburgh, PA (United States); Kravitz, J.H.

    1996-12-31

    A conveyor belt fire in an underground coal mine is a serious threat to life and property. About 30% of the reportable underground coal mine fires from 1988 through 1992 occurred in belt entries. In one instance, a fire started in the drive area of a belt line, spread rapidly, and resulted in seating of the entire mine. Large-scale studies conducted by the U.S. Bureau of Mines in an aboveground fire gallery at Lake Lynn Laboratory clearly show the hazards of conveyor belt fires. Mine conveyor belt formulations which passed the current Federal acceptance test for fire-resistant betting were completely consumed by propagating fires or propagated flame, with flame spread rates ranging from 0.3 to 9 m/min. High downstream temperatures and large quantities of smoke and toxic gases, such as carbon monoxide, were generated as the belting burned. The smoke and gases can be spread by the mine`s ventilation system and can create significant problems for miners in the process of evacuation, such as reduction in visibility and incapacitation. In the aftermath of a belt fire, the atmosphere inside of the mine can become smoke filled or unbreathable, forcing miners to evacuate while wearing Self-Contained Self-Rescuers (SCSR`s), Sometimes there is confusion about how to regard the rated duration of an MSHA/NIOSH-approved 60-min. SCSR, especially when an SCSR is used in a way which takes it outside of the test conditions under which it was approved. As examples, for a mine escape that takes a miner from the deepest point of penetration in the mine to the surface: How long will a 60-min. SCSR actually last? and How many SCSR`s will a miner need? To answer these kinds of questions, in-mine data being gathered on escape times, distance and heart rates using miners escaping on foot and under oxygen. A model will be developed and validated which predicts how much oxygen is actually needed for a mine escape, and compares oxygen consumption bare faced versus wearing an SCSR.

  17. X-chromosome inactivation and escape

    Indian Academy of Sciences (India)

    Christine M. Disteche; Joel B. Berletch

    2015-12-01

    X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field.

  18. Morphology Tuning of Self-Assembled Perylene Monoimide from Nanoparticles to Colloidosomes with Enhanced Excimeric NIR Emission for Bioimaging.

    Science.gov (United States)

    Jana, Avijit; Bai, Linyi; Li, Xin; Ågren, Hans; Zhao, Yanli

    2016-01-27

    Organic near-infrared (NIR) fluorescent probes have been recognized as an emerging class of materials exhibiting a great potential in advanced bioanalytical applications. However, synthesizing such organic probes that could simultaneously work in the NIR spectral range and have large Stokes shift, high stability in biological systems, and high photostability have been proven challenging. In this work, aggregation induced excimeric NIR emission in aqueous media was observed from a suitably substituted perylene monoimide (PeIm) dye. Controlled entrapment of the dye into pluronic F127 micellar system to preserve its monomeric green emission in aqueous media was also established. The aggregation process of the PeIm dye to form organic nanoparticles (NPs) was evaluated experimentally by the means of transmission electron microscope imaging as well as theoretically by the molecular dynamics simulation studies. Tuning the morphology along with the formation of colloidosomes by the controlled self-aggregation of PeIm NPs in aqueous suspension was demonstrated successfully. Finally, both excimeric and monomeric emissive PeIm NPs as well as PeIm colloidosomes were employed for the bioimaging in vitro.

  19. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    Science.gov (United States)

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

  20. Polyaniline – Carrageenan - Polyvinyl Alcohol Composite Material Synthesized Via Interfacial Polymerization, its Morphological Characteristics and Enhanced Solubility in Water

    Science.gov (United States)

    Montalbo, R. C. K.; Marquez, M. C.

    2017-09-01

    In recent years, conducting polyaniline (PAni) has been a popular interest of research in the field of conducting polymers due to its relatively low cost, ease of production, good conductivity, and environmental stability. Many studies however, have focused on improving its short-comings such as its limited processability and solubility in common solvents. In this study, PAni, soluble in water was produced via interfacial polymerization with chloroform as the organic solvent. Poly(vinyl alcohol) (PVA) and kappa(κ), iota(ι) and lambda(λ) - carrageenan (κCGN, ιCGN, λCGN) were added to the aqueous layer to stabilize PAni in the medium. FTIR and UV-Vis absorption spectra of the solutions as well as the fabricated film confirmed the existence of PAni emeraldine salt (PAni-ES). FTIR spectrum also confirmed the peaks corresponding to the interaction of PAni with the CGNs. Moreover, PVA-CGN played a very large role on the stability of the PAni nanofibers integrated on the PVA-CGN matrix. The morphologies of the products were further investigated using SEM and TEM. Polymer electrolyte for supercapacitor or an interfacial layer for organic solar cell is being targeted as potential application of the synthesized water soluble PAni.

  1. Molecular Dications in Planetary Atmospheric Escape

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2016-08-01

    Full Text Available Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER for ions originating from dissociations reactions, induced by Coulomb explosion of doubly charged molecular ions (molecular dications produced by double photoionization of CO2, N2O and C2H2 molecules of interest in planetary atmospheres, are reported. The KER measurement as a function of the ultraviolet (UV photon energy in the range of 28–65 eV was extracted from the electron-ion-ion coincidence spectra obtained by using tunable synchrotron radiation coupled with ion imaging techniques at the ELETTRA Synchrotron Light Laboratory Trieste, Italy. These experiments, coupled with a computational analysis based on a Monte Carlo trajectory simulation, allow assessing the probability of escape for simple ionic species in the upper atmosphere of Mars, Venus and Titan. The measured KER in the case of H+, C+, CH+, CH2+, N+, O+, CO+, N2+ and NO+ fragment ions range between 1.0 and 5.5 eV, being large enough to allow these ionic species to participate in the atmospheric escape from such planets into space. In the case of Mars, we suggest a possible explanation for the observed behavior of the O+ and CO22+ ion density profiles.

  2. Escape mechanisms of dust in Io

    Science.gov (United States)

    Flandes, A.

    The injection of material into the jovian magnetosphere through Io's volcanic activity makes possible the formation of structures such as the plasma torus and the dust ballerina skirt. Io's high temperature volcanism produces spectacular plumes, but even the tallest plumes, as those of Pelen Patera, will not produce enough energy to defeat the gravitational attraction of Io. The fact is that dust escapes from Io, which implies that a second mechanism is acting on the grains. Grains brought to the top of the highest plumes by the volcanic forces are still under Io's gravitational pull, but need only a minimum charge (~10-1 4 C) so that the Lorentz force due to the Jovian magnetic field equilibrates this attraction. In the volcanic vents, the escape velocity of the ejected material and its own density produces enough collisions to create charges. On top of the highest plumes (~500km) charged grains are exposed to the plasma torus that co-rotates rigidly with Jupiter and, due to the relative velocity among Io and the torus, the grains will be dragged away from Io. As it is well known, these dust grains will also be dragged away from Jupiter.

  3. Escape of water molecular from Carbon Nanotubes

    Science.gov (United States)

    Li, Jiaxi; Li, Wenfeng; Zhang, Jianwei

    2014-03-01

    Understanding and controlling the transport of water molecules through nanopores have attracted great interest due to potential applications for designing novel nanofluidic devices, machines and sensors. In this work, we theoretically investigate the effects of an external nonuniform electric field on the escape of water molecules through single-walled carbon nanotubes (SWNTs) by using of molecular dynamics (MD) simulations. When polar water molecules are placed in the gradient electric field, the electric force is experienced that can drive the water molecules. Molecular dynamics simulations show that the escape probability of water obeys the Boltzmann distribution. Our results show that energy barrier delta E is independent of temperature which indicates that it is a single-barrier system. From the MD results statistics, the key parameters could be determined such that the relationship between energy barrier delta E and diameter of SWNTs and nozzle distance of the charge r would be revealed that could deepen our current theoretical understanding on transport of water molecular inside SWNTs with the nonuniform electric field.

  4. Fast escaping points of entire functions

    CERN Document Server

    Rippon, P J

    2010-01-01

    Let $f$ be a transcendental entire function and let $A(f)$ denote the set of points that escape to infinity `as fast as possible' under iteration. By writing $A(f)$ as a countable union of closed sets, called `levels' of $A(f)$, we obtain a new understanding of the structure of this set. For example, we show that if $U$ is a Fatou component in $A(f)$, then $\\partial U\\subset A(f)$ and this leads to significant new results and considerable improvements to existing results about $A(f)$. In particular, we study functions for which $A(f)$, and each of its levels, has the structure of an `infinite spider's web'. We show that there are many such functions and that they have a number of strong dynamical properties. This new structure provides an unexpected connection between a conjecture of Baker concerning the components of the Fatou set and a conjecture of Eremenko concerning the components of the escaping set.

  5. Uremic escape of renal allograft rejection

    Energy Technology Data Exchange (ETDEWEB)

    van Schilfgaarde, R. (Rijksuniversiteit Leiden (Netherlands). Academisch Ziekenhuis); van Breda Vriesman, P.J.C. (Rijksuniversiteit Limburg Maastricht (Netherlands). Dept. of Immunopathology)

    1981-10-01

    It is demonstrated in rats that, in the presence of early postoperative severe but transient uremia, the survival of first set Brown-Norway (BN) renal allografts in Lewis (LEW) recipients is at least three times prolonged when compared to non-uremic controls. This phenomenon is called 'uremic escape of renal allograft rejection'. By means of lethal X-irradiation of donors of BN kidneys transplanted into transiently uremic and non-uremic LEW recipients, the presence of passenger lymphocyte immunocompetence is demonstrated to be obilgatory for this phenomenon to occur. As a result of mobile passenger lymphocyte immunocompetence, a graft-versus-host (GVH) reaction is elicited in the spleens of LEW recipients of BN kidneys which amplifies the host response. The splenomegaly observed in LEW recipients of BN kidneys is caused not only by this GVH reaction, which is shown to be exquisitely sensitive to even mild uremia. It is also contributed to by a proliferative response of the host against the graft (which latter response is equated with an in vivo equivalent of a unilateral mixed lymphocyte reaction (MLR)), since the reduction in spleen weights caused by abrogation of mobile passenger lymphocyte immunocompetence brought about by lethal donor X-irradiation is increased significantly by early postoperative severe but transient uremia. It is concluded that in uremic escape of renal allograft rejection both reactions are suppressed by uremia during the early post-operative period.

  6. Escape from viscosity : the kinematics and hydrodynamics of copepod foraging and escape swimming

    NARCIS (Netherlands)

    van Duren, LA; Videler, JJ

    2003-01-01

    Feeding and escape swimming in adult females of the calanoid copepod. Temora lopgicornis Muller were investigated and compared. Swimming velocities were calculated using a 3-D filming setup., Foraging velocities ranged between 2 and 6 min s(-1), while maximum velocities of up to 80 mm s(-1) were rea

  7. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    Science.gov (United States)

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant.

  8. Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Fan, Mingde; Yuan, Aihua; Zhu, Jianxi; He, Hongping

    2010-12-21

    The inherent or enhanced solid acidity of raw or activated diatomite is found to have significant effects on the synthesis of hierarchically porous diatomite-templated carbon with high surface area and special porous structure. The solid acidity makes raw/activated diatomite a catalyst for the generation of porous carbon, and the porous parameters of the carbon products are strongly dependent on the solid acidity of diatomite templates. The morphology of diatomite also dramatically affects the textural structure of porous carbon. Two types of macroporous structures in the carbon product, the partially solid pillars and the ordered hollow tubes, derive from the replication of the central and the edge pores of diatom shell, respectively. The hierarchically porous carbon shows good capability for the adsorption of solvent naphtha and H(2), enabling potential applications in adsorption and gas storage.

  9. Controlled synthesis of Bi25FeO40 with different morphologies: growth mechanism and enhanced photo-Fenton catalytic properties.

    Science.gov (United States)

    Ji, Wenda; Li, Mingmeng; Zhang, Gaoke; Wang, Pei

    2017-08-15

    Bi25FeO40 microtetrahedra, microcubes and microspheres were successfully synthesized by a simple hydrothermal process and by adding different additive agents. The formation mechanism of Bi25FeO40 microcrystals was proposed; the additive agents had important influences on the morphology and facet exposure of the products. The catalytic activity of these materials was evaluated by the degradation of RhB in a heterogeneous photo-Fenton process. The Bi25FeO40 microcubes showed enhanced photo-Fenton catalytic activity, which can be attributed to an exposed {001} facet with the active O atoms. The hydroxyl radicals are the main active group in the heterogeneous photo-Fenton catalytic degradation. This study may provide a new method to design and synthesize novel nanoscale and microscope functional materials.

  10. Strong purifying selection at genes escaping X chromosome inactivation.

    Science.gov (United States)

    Park, Chungoo; Carrel, Laura; Makova, Kateryna D

    2010-11-01

    To achieve dosage balance of X-linked genes between mammalian males and females, one female X chromosome becomes inactivated. However, approximately 15% of genes on this inactivated chromosome escape X chromosome inactivation (XCI). Here, using a chromosome-wide analysis of primate X-linked orthologs, we test a hypothesis that such genes evolve under a unique selective pressure. We find that escape genes are subject to stronger purifying selection than inactivated genes and that positive selection does not significantly affect the evolution of these genes. The strength of selection does not differ between escape genes with similar versus different expression levels in males versus females. Intriguingly, escape genes possessing Y homologs evolve under the strongest purifying selection. We also found evidence of stronger conservation in gene expression levels in escape than inactivated genes. We hypothesize that divergence in function and expression between X and Y gametologs is driving such strong purifying selection for escape genes.

  11. Interplay and escape in three-body scattering.

    Science.gov (United States)

    Shebalin, J. V.; Tippens, A. L.

    1996-05-01

    The problem of three gravitationally interacting bodies, with total energy less than zero, is investigated numerically. After introducing the concepts of `periastron graphs' and `composite binaries', time-of-escape and interplay are precisely defined. These definitions are useful in characterizing the complete scattering process: escape to t=-{infinity}, interplay, and escape to t=+{infinity}. These definitions are also useful for the efficient and automatic termination of a numerical simulation of interplay.

  12. Experimental self-punishment and superstitious escape behavior.

    Science.gov (United States)

    MIGLER, B

    1963-07-01

    Rats were trained to escape from shock by pressing a bar. Bar holding was subsequently punished with very brief shocks. This treatment failed to depress bar-holding behavior. In some cases, although the escape shocks were delivered very infrequently, bar holding was maintained and resulted in the delivery of several thousand punishments per session. These and other effects of the punishment treatment were investigated. Finally, some of the possibilities of superstitious escape responding were explored by presenting inescapable shocks to rats that had been trained to escape shock by lever pressing. Although responding during these shocks had no programmed consequences, responding was sustained.

  13. Cockroaches keep predators guessing by using preferred escape trajectories

    Science.gov (United States)

    Domenici, P.; Booth, D.; Blagburn, J.M.; Bacon, J. P.

    2009-01-01

    Summary Anti-predator behaviour is vital for most animals, and calls for accurate timing and swift motion. While fast reaction times [1] and predictable, context-dependent, escape initiation distances [2] are common features of most escape systems, previous work has highlighted the need for unpredictability in escape directions, in order to prevent predators from learning a repeated, fixed pattern [3–5]. Ultimate unpredictability would result from random escape trajectories. Although this strategy would deny any predictive power to the predator, it would also result in some escape trajectories towards the threat. Previous work has shown that escape trajectories are in fact generally directed away from the threat, although with a high variability [5–8]. However, the rules governing this variability are largely unknown. Here, we demonstrate tha t individual cockroaches (Periplaneta americana, a much studied model prey species [9–14]) keep each escape unpredictable by running along one of a set of preferred trajectories at fixed angles from the direction of the threatening stimulus. These results provide a new paradigm for understanding the behavio ural strategies for escape responses, underscoring the need to revisit the neural mechanisms controlling escape directions in the cockroach and similar animal models, and the evolutionary forces driving unpredictable, or “protean” [3], anti-predator behaviour. PMID:19013065

  14. The Fastest Saccadic Responses Escape Visual Masking

    DEFF Research Database (Denmark)

    M. Crouzet, Sébastien; Overgaard, Morten; Busch, Niko A.

    2014-01-01

    , which gives access to very early stages of visual processing, target visibility was reduced either by OSM, conventional backward masking, or low stimulus contrast. A general reduction of performance was observed in all three conditions. However, the fastest saccades did not show any sign of interference......Object-substitution masking (OSM) occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. The reduction of target visibility occurring after OSM has been suggested to result from a specific interference with reentrant...... visual processing while the initial feedforward processing is thought to be left intact. We tested a prediction derived from this hypothesis: the fastest responses, being triggered before the beginning of reentrant processing, should escape the OSM interference. In a saccadic choice reaction time task...

  15. Escape dynamics through a continuously growing leak

    Science.gov (United States)

    Kovács, Tamás; Vanyó, József

    2017-06-01

    We formulate a model that describes the escape dynamics in a leaky chaotic system in which the size of the leak depends on the number of the in-falling particles. The basic motivation of this work is the astrophysical process, which describes the planetary accretion. In order to study the dynamics generally, the standard map is investigated in two cases when the dynamics is fully hyperbolic and in the presence of Kolmogorov-Arnold-Moser islands. In addition to the numerical calculations, an analytic solution to the temporal behavior of the model is also derived. We show that in the early phase of the leak expansion, as long as there are enough particles in the system, the number of survivors deviates from the well-known exponential decay. Furthermore, the analytic solution returns the classical result in the limiting case when the number of particles does not affect the leak size.

  16. Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs.

    Science.gov (United States)

    Tao, Lin; Zhu, Feng; Xu, Feng; Chen, Zhe; Jiang, Yu Yang; Chen, Yu Zong

    2015-12-01

    Recent investigations have suggested that anticancer therapeutics may be enhanced by co-targeting the primary anticancer target and the corresponding drug escape pathways. Whether this strategy confers statistically significant clinical advantage has not been systematically investigated. This question was probed by the evaluation of the clinical status and the multiple targets of 23 approved and 136 clinical trial multi-target anticancer drugs with particular focus on those co-targeting EGFR, HER2, Abl, VEGFR2, mTOR, PI3K, Alk, MEK, KIT, and DNA topoisomerase, and some of the 14, 7, 13, 20, 6, 5, 7, 2, 4 and 10 cancer drug escape pathways respectively. Most of the approved (73.9%) and phase III (75.0%), the majority of the Phase II (62.8%) and I (53.6%), and the minority of the discontinued (35.3%) multi-target drugs were found to co-target cancer drug escape pathways. This suggests that co-targeting anticancer targets and drug escape pathways confer significant clinical advantage and such strategy can be more extensively explored. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Escape behaviour in the stomatopod crustacean Squilla mantis, and the evolution of the caridoid escape reaction.

    Science.gov (United States)

    Heitler, W J; Fraser, K; Ferrero, E A

    2000-01-01

    The mantis shrimp Squilla mantis shows a graded series of avoidance/escape responses to visual and mechanical (vibration and touch) rostral stimuli. A low-threshold response is mediated by the simultaneous protraction of the thoracic walking legs and abdominal swimmerets and telson, producing a backwards 'lurch' or jump that can displace the animal by up to one-third of its body length, but leaves it facing in the same direction. A stronger response starts with similar limb protraction, but is followed by partial abdominal flexion. The maximal response also consists of limb protraction followed by abdominal flexion, but in this case the abdominal flexion is sufficiently vigorous to pull the animal into a tight vertical loop, which leaves it inverted and facing away from the stimulus. The animal then swims forward (away from the stimulus) and rights itself by executing a half-roll. A bilaterally paired, large-diameter, rapidly conducting axon in the dorsal region of the ventral nerve excites swimmeret protractor motoneurons in several ganglia and is likely to be the driver neuron for the limb-protraction response. The same neuron also excites unidentified abdominal trunk motoneurons, but less reliably. The escape response is a key feature of the malacostracan caridoid facies, and we provide the first detailed description of this response in a group that diverged early in malacostracan evolution. We show that the components of the escape response contrast strongly with those of the full caridoid reaction, and we provide physiological and behavioural evidence for the biological plausibility of a limb-before-tail thesis for the evolution of the escape response.

  18. The Origins and Underpinning Principles of E-Scape

    Science.gov (United States)

    Kimbell, Richard

    2012-01-01

    In this article I describe the context within which we developed project e-scape and the early work that laid the foundations of the project. E-scape (e-solutions for creative assessment in portfolio environments) is centred on two innovations. The first concerns a web-based approach to portfolio building; allowing learners to build their…

  19. How many ions have escaped the Martian atmosphere?

    Science.gov (United States)

    Brain, David; McFadden, James; Halekas, Jasper; Connerney, J. E. P.; Eparvier, Frank; Mitchell, David; Bougher, Stephen W.; Bowers, Charlie; Curry, Shannon; Dong, Chuanfei; Dong, Yaxue; Egan, Hilary; Fang, Xiaohua; Harada, Yuki; Jakosky, Bruce; Lillis, Robert; Luhmann, Janet; Ma, Yingjuan; Modolo, Ronan; Weber, Tristan

    2016-10-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making science measurements of the Martian upper atmosphere and its escape to space since November 2014. A key part of this effort is the measurement of the escape rates of charged particles (ions) at present and over solar system history. The lack of a global dynamo magnetic field at Mars leaves its upper atmosphere more directly exposed to the impinging solar wind than magnetized planets such as Earth. For this reason it is thought that ion escape at Mars may have played a significant role in long term climate change. MAVEN measures escaping planetary ions directly, with high energy, mass, and time resolution.With nearly two years of observations in hand, we will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express). We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.). Finally, we will use these results to provide an initial estimate of the total ion escape from Mars over billions of years.

  20. Entrapment and escape of liquid lubricant in metal forming

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels; Eriksen, Morten

    1999-01-01

    Using a transparent tool entrapment, compression and eventual escape of liquid lubricant in surface pockets is observed in plane strip drawing. The two mechanisms of lubricant escape. Micro Plasto HydroDynamic and Hydrostatic Lubrication (MPHDL and MPHSL), are observed and quantified experimentally...

  1. 46 CFR 169.313 - Means of escape.

    Science.gov (United States)

    2010-10-01

    ... a hold-back to hold the scuttle in an open position. (e) The required means of escape must not have... escape is acceptable provided that— (1) There is no source of fire in the space, such as a galley stove... back of the ladder; and (4) Except when unavoidable obstructions are encountered, there must be...

  2. 46 CFR 177.500 - Means of escape.

    Science.gov (United States)

    2010-10-01

    ...) There is no stove, heater, or other source of fire in the space; (3) The means of escape is located as... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the...

  3. Behavioural asymmetry affects escape performance in a teleost fish

    NARCIS (Netherlands)

    Dadda, Marco; Koolhaas, Wouter H.; Domenici, Paolo

    2010-01-01

    Escape performance is fundamental for survival in fish and most other animals. While previous work has shown that both intrinsic (e.g. size, shape) and extrinsic (e.g. temperature, hypoxia) factors can affect escape performance, the possibility that behavioural asymmetry may affect timing and locomo

  4. Green Pea Galaxies Reveal Secrets of Lyα Escape

    Science.gov (United States)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Dijkstra, Mark; Jaskot, Anne; Zheng, Zhenya; Wang, Junxian

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fraction and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.

  5. Escape response of planktonic protists to fluid mechanical signals

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2001-01-01

    The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow. 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required...

  6. Escape for the Slow Solar Wind

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    Plasma from the Sun known as the slow solar wind has been observed far away from where scientists thought it was produced. Now new simulations may have resolved the puzzle of where the slow solar wind comes from and how it escapes the Sun to travel through our solar system.An Origin PuzzleA full view of a coronal hole (dark portion) from SDO. The edges of the coronal hole mark the boundary between open and closed magnetic field lines. [SDO; adapted from Higginson et al. 2017]The Suns atmosphere, known as the corona, is divided into two types of regions based on the behavior of magnetic field lines. In closed-field regions, the magnetic field is firmly anchored in the photosphere at both ends of field lines, so traveling plasma is confined to coronal loops and must return to the Suns surface. In open-field regions, only one end of each magnetic field line is anchored in the photosphere, so plasma is able to stream from the Suns surface out into the solar system.This second type of region known as a coronal hole is thought to be the origin of fast-moving plasma measured in our solar system and known as the fast solar wind. But we also observe a slow solar wind: plasma that moves at speeds of less than 500 km/s.The slow solar wind presents a conundrum. Its observational properties strongly suggest it originates in the hot, closed corona rather than the cooler, open regions. But if the slow solar wind plasma originates in closed-field regions of the Suns atmosphere, then how does it escape from the Sun?Slow Wind from Closed FieldsA team of scientists led by Aleida Higginson (University of Michigan) has now used high-resolution, three-dimensional magnetohydrodynamic simulations to show how the slow solar wind can be generated from plasma that starts outin closed-field parts of the Sun.A simulated heliospheric arc, composed of open magnetic field lines. [Higginson et al. 2017]Motions on the Suns surface near the boundary between open and closed-field regions the boundary

  7. Escaping in couples facilitates evacuation: Experimental study and modeling

    CERN Document Server

    Guo, Ning; Hu, Mao-Bin; Ding, Jian-Xun; Ding, Zhong-Jun

    2015-01-01

    In this paper, the impact of escaping in couples on the evacuation dynamics has been investigated via experiments and modeling. Two sets of experiments have been implemented, in which pedestrians are asked to escape either in individual or in couples. The experiments show that escaping in couples can decrease the average evacuation time. Moreover, it is found that the average evacuation time gap is essentially constant, which means that the evacuation speed essentially does not depend on the number of pedestrians that have not yet escaped. To model the evacuation dynamics, an improved social force model has been proposed, in which it is assumed that the driving force of a pedestrian cannot be fulfilled when the composition of physical forces exceeds a threshold because the pedestrian cannot keep his/her body balance under this circumstance. To model the effect of escaping in couples, attraction force has been introduced between the partners. Simulation results are in good agreement with the experimental ones.

  8. Split-second escape decisions in blue tits (Parus caeruleus)

    Science.gov (United States)

    Lind, Johan; Kaby, Ulrika; Jakobsson, Sven

    2002-07-01

    Bird mortality is heavily affected by birds of prey. Under attack, take-off is crucial for survival and even minor mistakes in initial escape response can have devastating consequences. Birds may respond differently depending on the character of the predator's attack and these split-second decisions were studied using a model merlin (Falco columbarius) that attacked feeding blue tits (Parus caeruleus) from two different attack angles in two different speeds. When attacked from a low attack angle they took off more steeply than when attacked from a high angle. This is the first study to show that escape behaviour also depends on predator attack speed. The blue tits responded to a high-speed attack by dodging sideways more often than when attacked at a low speed. Escape speed was not significantly affected by the different treatments. Although they have only a split-second before escaping an attack, blue tits do adjust their escape strategy to the prevailing attack conditions.

  9. Alternative strategies of seed predator escape by early-germinating oaks in Asia and North America.

    Science.gov (United States)

    Yi, Xianfeng; Yang, Yueqin; Curtis, Rachel; Bartlow, Andrew W; Agosta, Salvatore J; Steele, Michael A

    2012-03-01

    Early germination of white oaks is widely viewed as an evolutionary strategy to escape rodent predation; yet, the mechanism by which this is accomplished is poorly understood. We report that chestnut oak Quercus montana (CO) and white oak Q. alba (WO) (from North America), and oriental cork oak Q. variabilis (OO) and Mongolian oak Q. mongolica (MO) (from Asia) can escape predation and successfully establish from only taproots. During germination in autumn, cotyledonary petioles of acorns of CO and WO elongate and push the plumule out of the cotyledons, whereas OO and MO extend only the hypocotyls and retain the plumule within the cotyledons. Experiments showed that the pruned taproots (>6 cm) of CO and WO acorns containing the plumule successfully germinated and survived, and the pruned taproots (≥12 cm) of OO and MO acorns without the plumule successfully regenerated along with the detached acorns, thus producing two seedlings. We argue that these two distinct regeneration morphologies reflect alternative strategies for escaping seed predation.

  10. The fastest saccadic responses escape visual masking.

    Directory of Open Access Journals (Sweden)

    Sébastien M Crouzet

    Full Text Available Object-substitution masking (OSM occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. The reduction of target visibility occurring after OSM has been suggested to result from a specific interference with reentrant visual processing while the initial feedforward processing is thought to be left intact. We tested a prediction derived from this hypothesis: the fastest responses, being triggered before the beginning of reentrant processing, should escape the OSM interference. In a saccadic choice reaction time task, which gives access to very early stages of visual processing, target visibility was reduced either by OSM, conventional backward masking, or low stimulus contrast. A general reduction of performance was observed in all three conditions. However, the fastest saccades did not show any sign of interference under either OSM or backward masking, as they did under the low-contrast condition. This finding supports the hypothesis that masking interferes mostly with reentrant processing at later stages, while leaving early feedforward processing largely intact.

  11. Immune Escape Strategies of Malaria Parasites

    Science.gov (United States)

    Gomes, Pollyanna S.; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G.; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission. PMID:27799922

  12. Escaping the resource curse in China.

    Science.gov (United States)

    Cao, Shixiong; Li, Shurong; Ma, Hua; Sun, Yutong

    2015-02-01

    Many societies face an income gap between rich regions with access to advanced technology and regions that are rich in natural resources but poorer in technology. This "resource curse" can lead to a Kuznets trap, in which economic inequalities between the rich and the poor increase during the process of socioeconomic development. This can also lead to depletion of natural resources, environmental degradation, social instability, and declining socioeconomic development. These problems will jeopardize China's achievements if the current path continues to be pursued without intervention by the government to solve the problems. To mitigate the socioeconomic development gap between western and eastern China, the government implemented its Western Development Program in 2000. However, recent data suggest that this program has instead worsened the resource curse. Because each region has its own unique strengths and weaknesses, China must escape the resource curse by accounting for this difference; in western China, this can be done by improving education, promoting high-tech industry, adjusting its economic strategy to balance regional development, and seeking more sustainable approaches to socioeconomic development.

  13. Candida albicans escapes from mouse neutrophils

    DEFF Research Database (Denmark)

    Ermert, David; Niemiec, Maria J; Röhm, Marc

    2013-01-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse...

  14. Surface physical-morphological and chemical changes leading to performance enhancement of atmospheric pressure plasma treated polyester fabrics for inkjet printing

    Science.gov (United States)

    Fang, Kuanjun; Zhang, Chunming

    2009-06-01

    Without any preprocessing, polyester fabric has lower ability to hold on water due to the smooth morphology and chemistry property of polyester fibers. Therefore, patterns directly printed with pigment inks have poor color yields and easily bleed. In this paper, atmospheric pressure plasma was used to pretreat polyester fabric in order to provide an active surface for the inkjet printing. The results showed that surface-modified polyester fabrics could obtain the effects of features with enhanced color yields and excellent pattern sharpness. SEM images indicated that the rough surface of plasma treated fibers could provide more capacities for the fabric to capture inks and also facilitate the penetration of colorant particles into the polyester fabric. XPS analysis revealed that air + 50%Ar plasma introduced more oxygen-containing groups onto the fabric surface than air plasma. Although AFM images indicated that etching effects generated by air plasma treatments were more evident, the air/Ar plasma treated sample has higher K/ S value and better color performance. These studies have also shown that the chemical modification of plasma appears to be relatively more significant for improving the effect of inkjet printing.

  15. Efficiently estimating salmon escapement uncertainty using systematically sampled data

    Science.gov (United States)

    Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.

    2007-01-01

    Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.

  16. Lyman-Werner UV escape fractions from primordial haloes

    Science.gov (United States)

    Schauer, Anna T. P.; Whalen, Daniel J.; Glover, Simon C. O.; Klessen, Ralf S.

    2015-12-01

    Population III (Pop III) stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby haloes, and even if their ionizing photons are trapped by their own haloes, their Lyman-Werner (LW) photons can still escape and destroy H2 in other haloes, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic haloes by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9-120 M⊙ Pop III stars in 105-107 M⊙ haloes with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H2 in nearby systems) have escape fractions ranging from 0 to 85 per cent. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18-13.6 eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60 per cent for all but the least massive stars in the most massive haloes. We find that shielding of H2 by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of 3 smaller than those predicted by H2 self-shielding alone.

  17. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    Science.gov (United States)

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  18. Nosema Tolerant Honeybees (Apis mellifera Escape Parasitic Manipulation of Apoptosis.

    Directory of Open Access Journals (Sweden)

    Christoph Kurze

    Full Text Available Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  19. Xenon Fractionation, Hydrogen Escape, and the Oxidation of the Earth

    Science.gov (United States)

    Zahnle, K. J.; Catling, D. C.

    2014-12-01

    Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the range permitted by solar EUV heating when Earth was 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts (Pujol 2011, 2013). What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to be. If xenon was being fractionated by escape — currently the only viable hypothesis — it had to be in Earth's Archean atmosphere and under rather modest levels of EUV forcing. It should be possible for Xe, but not Kr, to escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it, the flux can be small enough to be consistent with diffusion-limited flux), and that Xe alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible along the polar field lines, although a weak or absent magnetic field would likely work as well. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with other suggestions that hydrogen escape in the Archean was considerable. Hydrogen escape plausibly played the key role in creating

  20. Escape of Hydrogen from HD209458b

    Science.gov (United States)

    Erwin, Justin; Yelle, Roger; Koskinen, Tommi

    2017-04-01

    Recent modeling of the atmosphere of HD209458b has been used to interpret the Lyman-α line and other observations during transits. Koskinen et al. (2010) used a hydrostatic density profile in the thermosphere combined with the Voigt profile to estimate the Lyman-alpha transit depths for an array of model parameters. A detailed photochemical-dynamical model of the thermosphere was developed by Koskinen et al. (2013a) and used to again estimate model parameters to fit not only the Lyman-alpha transits, but also the transits in the O I, C II and Si III lines (Koskinen et al., 2013b). Recently, Bourrier and Lecavelier (2013) modeled the escape of hydrogen from the extended atmospheres of HD209458b and HD189733b and used the results to interpret Lyman-alpha observations. They included acceleration of hydrogen by radiation pressure and stellar wind protons to simulate the high velocity tails of the velocity distribution, arguing that the observations are explained by high velocity gas in the system while Voigt broadening is negligible. In this work we connect a free molecular flow (FMF) model similar to Bourrier and Lecavelier (2013) to the results of Koskinen et al. (2013b) and properly include absorption by the extended thermosphere in the transit model. In this manner, we can interpret the necessity of the various physical processes in matching the observed line profiles. Furthermore, the transit depths of this model can be used to re-evaluate the atmospheric model parameters to determine if they need to be adjusted due

  1. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape.

    Science.gov (United States)

    Hegde, Meenakshi; Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A; Wakefield, Amanda; Fousek, Kristen; Bielamowicz, Kevin; Chow, Kevin K H; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S; Baker, Matthew L; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K; Orange, Jordan S; Ahmed, Nabil

    2016-08-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape.

  2. Behavior of the Escape Rate Function in Hyperbolic Dynamical Systems

    CERN Document Server

    Demers, Mark

    2011-01-01

    For a fixed initial reference measure, we study the dependence of the escape rate on the hole for a smooth or piecewise smooth hyperbolic map. First, we prove the existence and Holder continuity of the escape rate for systems with small holes admitting Young towers. Then we consider general holes for Anosov diffeomorphisms, without size or Markovian restrictions. We prove bounds on the upper and lower escape rates using the notion of pressure on the survivor set and show that a variational principle holds under generic conditions. However, we also show that the escape rate function forms a devil's staircase with jumps along sequences of regular holes and present examples to elucidate some of the difficulties involved in formulating a general theory.

  3. On the large escape of ionizing radiation from GEHRs

    CERN Document Server

    Castellanos, M; Tenorio-Tagle, G

    2001-01-01

    A thorough analysis of well studied giant HII regions on galactic discs for which we know the ionizing stellar population, the gas metallicity and the Wolf-Rayet population, leads to photoionization models which can only match all observed line intensity ratios ([OIII], [OII], [NII], [SII] and [SIII] with respect to the intensity of H$\\beta$), as well as the H$\\beta$ luminosity and equivalent width if one allows for an important escape of energetic ionizing radiation. For the three regions presented here, the fractions of escaping Lyman continuum photons amount to 10 to 73 % and, in all cases, the larger fraction of escaping photons has energies between 13.6 and 24.4 eV. These escaping photons clearly must have an important impact as a source of ionization of the diffuse ionized gas (DIG) found surrounding many galaxies, as well as of the intergalactic medium (IGM).

  4. Theoretical Study on Ion Escape in Martian Atmosphere

    Institute of Scientific and Technical Information of China (English)

    SHI Jian-Kui; LIU Zhen-Xing; Klaus TORKAR; Tielong ZHANG

    2007-01-01

    @@ Based on the observation that Martian magnetic moment is gradually reducing from the ancient to the present,we investigate the O+ ion flux distribution along magnetic field lines and the ion escaping flux in Martian tail with different assumed Martian magnetic moments. The results show that the O+ ion flux along magnetic field lines decreases with distance from Mars; the ion flux along the field line decreases more quickly if the magnetic moment is larger; the larger the magnetic moment, the smaller the ion escaping flux in the Martian tail. The ion escaping flux depends on Z-coordinate in the Martian tail. With decrease of the magnetic moment, the ion escaping flux in the Martian tail increases. The results are significant for studying the water loss from Mars surface.

  5. Experimental Analysis and Extinction of Self-Injurious Escape Behavior.

    Science.gov (United States)

    Iwata, Brian A.; And Others

    1990-01-01

    Three studies investigated environmental correlates of self-injurious behavior in seven developmentally disabled children and adolescents which were then later used for treatment. Correlates investigated included positive reinforcement, negative reinforcement, automatic reinforcement, and control. "Escape extinction" was successfully…

  6. Estimation of coho salmon escapement in the Ugashik lakes

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — From 26 July to 24 September 2002, hourly counts were conducted from counting towers to estimate the escapement of coho salmon Oncorhynchus kisutch into the Ugashik...

  7. GREEN PEA GALAXIES REVEAL SECRETS OF Lyα ESCAPE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan; Wang, Junxian [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China (China); Malhotra, Sangeeta; Rhoads, James E. [Arizona State University, School of Earth and Space Exploration (United States); Gronke, Max; Dijkstra, Mark [Institute of Theoretical Astrophysics, University of Oslo (Norway); Jaskot, Anne [Smith College, Northampton, MA (United States); Zheng, Zhenya, E-mail: yanghuan@mail.ustc.edu.cn, E-mail: huan.y@asu.edu, E-mail: Sangeeta.Malhotra@asu.edu, E-mail: James.Rhoads@asu.edu [Pontificia Universidad Católica de Chile, Santiago (Chile)

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fraction and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.

  8. Purinergic Inhibition of ENaC Produces Aldosterone Escape

    OpenAIRE

    Stockand, James D.; Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A.; Vallon, Volker; Peti-Peterdi, Janos; Pochynyuk, Oleh

    2010-01-01

    The mechanisms underlying “aldosterone escape,” which refers to the excretion of sodium (Na+) during high Na+ intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na+ channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na+ intake in mice. Physiologic concentrat...

  9. Group chase and escape with sight-limited chasers

    Science.gov (United States)

    Wang, Huodong; Han, Wenchen; Yang, Junzhong

    2017-01-01

    We study group chase and escape with sight-limited chasers. Two search strategies, random-walk-strategy and relocation-strategy, are introduced for chasers when escapers are out of their fields of vision. There exist two regimes for the group lifetime of escapers. In the narrow sight regime, the group lifetime is a decreasing function of chasers' sight range. In the wide sight regime, the group lifetime stays at a constant when chasers adopting random-walk-strategy while increases with the sight range when chasers adopting relocation-strategy. The impacts of the two search strategies on group chase and escape are studied by investigating the lifetime distribution of all escapers and the dependence of the minimum lifetime on the number of chasers. We also find that, to reach the most efficient and the lowest energy cost chase for chasers, the ratio between the number of chasers and escapers stays at around 6 under random-walk-strategy. However, the optimal number of chasers vanishes and the energy cost monotonically increases with increasing the number of chasers under relocation-strategy.

  10. Green Pea Galaxies Reveal Secrets of Ly$\\alpha$ Escape

    CERN Document Server

    Yang, Huan; Gronke, Max; Rhoads, James E; Jaskot, Anne; Zheng, Zhenya; Dijkstra, Mark

    2015-01-01

    Star-formation in galaxies generates a lot of Ly$\\alpha$ photons. Understanding the escape of Ly$\\alpha$ photons from galaxies is a key issue in studying high redshift galaxies and probing cosmic reionization with Ly$\\alpha$. To understand Ly$\\alpha$ escape, it is valuable to study analogs of high redshift Ly$\\alpha$ emitters in nearby universe. However, most nearby analogs have too small a Ly$\\alpha$ equivalent width and escape fraction compared to high redshift Ly$\\alpha$ emitters. One different group of nearby analogs are "Green Pea" galaxies, selected by their high equivalent width optical emission lines. Here we show that Green Pea galaxies have strong Ly$\\alpha$ emission lines and high Ly$\\alpha$ escape fraction (see also Henry et al. 2015), providing an opportunity to solve Ly$\\alpha$ escape problem. Green Peas have a Ly$\\alpha$ equivalent width distribution similar to high redshift Ly$\\alpha$ emitters. The Ly$\\alpha$ escape fraction correlates with many quantities of Ly$\\alpha$ profile, especially the...

  11. Lyman-Werner UV Escape Fractions from Primordial Halos

    CERN Document Server

    Schauer, Anna T P; Glover, Simon C O; Klessen, Ralf S

    2015-01-01

    Population III stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby halos, and even if their ionizing photons are trapped by their own halos, their Lyman-Werner (LW) photons can still escape and destroy H$_2$ in other halos, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic halos by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9--120 M$_{\\odot}$ Pop III stars in $10^5$ to $10^7$ M$_{\\odot}$ halos with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H$_{2}$ in nearby systems) have escape fractions ranging from 0% to 85%. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18--13.6~eV energy range, which can be redshifted into t...

  12. Dynamics of immune escape during HIV/SIV infection.

    Directory of Open Access Journals (Sweden)

    Christian L Althaus

    Full Text Available Several studies have shown that cytotoxic T lymphocytes (CTLs play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.

  13. Escape dynamics and fractal basin boundaries in Seyfert galaxies

    CERN Document Server

    Zotos, Euaggelos E

    2015-01-01

    The escape dynamics in a simple analytical gravitational model which describes the motion of stars in a Seyfert galaxy is investigated in detail. We conduct a thorough numerical analysis distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. In order to distinguish safely and with certainty between ordered and chaotic motion, we apply the Smaller ALingment Index (SALI) method. It is of particular interest to locate the escape basins through the openings around the collinear Lagrangian points $L_1$ and $L_2$ and relate them with the corresponding spatial distribution of the escape times of the orbits. Our exploration takes place both in the physical $(x,y)$ and in the phase $(x,\\dot{x})$ space in order to elucidate the escape process as well as the overall orbital properties of the galactic system. Our numerical analysis reveals the strong dependence of the properties of the considered escape basins with the...

  14. Non-thermal escape of H2 and OH from the upper atmosphere of Mars

    Science.gov (United States)

    Gacesa, Marko; Kharchenko, Vasili

    2016-10-01

    Two major sources of energetic O atoms in the upper atmosphere of Mars are photochemical production, via dissociative recombination (DR) of O2+ and CO2+ molecular ions, and energizing collisions with fast energetic neutral atoms (ENA) produced by the precipitating solar wind ions. The non-thermal O atoms can either directly escape to space, forming a hot oxygen corona, or participate in collisions with background thermal atmospheric gases, such as H2. In this study we present a theoretical analysis of formation and kinetics of hot OH molecules in the upper atmosphere of Mars, produced in reactions of thermal molecular hydrogen and suprathermal oxygen atoms energized by both DR and ENAs. The non-thermal chemical reaction O + H2(v',j') → H + OH(v',j') is described using recent quantum-mechanical state-to-state cross sections[1], which allow us to predict non-equilibrium distributions of excited rotational and vibrational states (v',j') of OH and expected emission spectra for different geometry and solar activity conditions. A potential consequence is appearance or enhancement of faint Meinel bands in the upper atmosphere of Mars. Moreover, a fraction of produced translationally hot H2 and OH are sufficiently energetic to overcome Mars' gravitational potential and escape into space, contributing to the hot corona. The described non-thermal mechanisms produce estimated total escape fluxes of OH and H2 from dayside of Mars, for low solar activity conditions, equal to about 5×1022 s-1 for OH, or about 0.1% of the total escape rate of atomic O and H, and 1023 s-1 for H2 [2]. If HD molecules are considered instead of H2, the non-thermal mechanisms are about 30 times more efficient than Jeans escape, contribute about 5-10% of the total D escape rate, potentially of interest in atmospheric models of water evolution on Mars.[1] M. Gacesa and V. Kharchenko, J. Chem. Phys. 141, 4324 (2014)[2] M. Gacesa, P. Zhang, V. Kharchenko, Geophys. Res. Lett. 39, L10203 (2012).

  15. Morphological Snakes

    OpenAIRE

    Álvarez, Luis; Baumela Molina, Luis; Henríquez, Pedro; Márquez Neila, Pablo

    2010-01-01

    We introduce a morphological approach to curve evolution. The differential operators used in the standard PDE snake models can be approached using morphological operations on a binary level set. By combining the morphological operators associated to the PDE components we achieve a new snakes evolution algorithm. This new solution is based on numerical methods which are very simple, fast and stable. Moreover, since the level set is just a binary piecewise constant function, this approach does ...

  16. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody.

    Science.gov (United States)

    Chai, Ning; Swem, Lee R; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-06-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness.

  17. The Impact of Unresolved Turbulence on the Escape Fraction of Lyman Continuum Photons

    Science.gov (United States)

    Safarzadeh, M.; Scannapieco, E.

    2016-11-01

    We investigate the relation between the turbulent Mach number ({ M }) and the escape fraction of Lyman continuum photons ({f}{esc}) in high-redshift galaxies. Approximating the turbulence as isothermal and isotropic, we show that the increase in the variance in column densities from { M }=1 to { M }=10 causes {f}{esc} to increase by ≈ 25%, and the increase from { M }=1 to { M }=20 causes {f}{esc} to increases by ≈ 50% for a medium with opacity τ ≈ 1. At a fixed Mach number, the correction factor for escape fraction relative to a constant column density case scales exponentially with the opacity in the cell, which has a large impact for simulated star-forming regions. Furthermore, in simulations of isotropic turbulence with full atomic/ionic cooling and chemistry, the fraction of HI drops by a factor of ≈ 2.5 at { M }≈ 10 even when the mean temperature is ≈ 5× {10}3 {{K}}. If turbulence is unresolved, these effects together enhance {f}{esc} by a factor \\gt 3 at Mach numbers above 10. Such Mach numbers are common at high redshifts where vigorous turbulence is driven by supernovae, gravitational instabilities, and merger activity, as shown both by numerical simulations and observations. These results, if implemented in the current hydrodynamical cosmological simulations to account for unresolved turbulence, can boost the theoretical predictions of the Lyman Continuum photon escape fraction and further constrain the sources of reionization.

  18. Indirect Evidence for Escaping Lyman Continuum Photons in Local Lyman Break Galaxy Analogs

    Science.gov (United States)

    Alexandroff, Rachael; Heckman, Timothy M.; Borthakur, Sanchayeeta; Overzier, Roderik

    2015-01-01

    A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing photons to escape from these gas-rich galaxies. In addition, studies of high redshift galaxies have yet to uncover a large sample of galaxies with the required high escape fraction of ionizing photons.We have uncovered a sample of local analogs to high-redshift, star-forming Lyman Break Galaxies (LBGs) called Lyman Break Analogs (LBAs) by matching the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX) catalogs. These galaxies are remarkably similar to LBGs in their properties-- morphology, size, UV luminosity, SFR, mass, velocity dispersion, metallicity and dust content. We obtained HST COS far-UV spectroscopy plus ancillary multi-waveband data of a sample of 22 LBAs to look for indirect evidence of escaping ionizing radiation (leakiness).We measure three parameters: (1) the residual intensity in the cores of saturated interstellar low-ionization absorption-lines, which indicates incomplete covering by that gas in the galaxy. (2) The relative amount of blue-shifted Lyman alpha line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [SII] optical emission lines that trace matter-bounded HII regions. We find all three diagnostics agree well with one another. Finally, we find the strongest correlation between these leakiness indicators and both the compactness of the galactic star-forming region (size and star formation rate/area) and the speed of the galactic outflow. This suggests that extreme feedback- a high intensity of ionizing radiation and strong pressure from both radiation and a hot galactic wind- combines to create significant holes in the neutral gas. These results not only shed new light on the physical

  19. Alanine mutagenesis of the primary antigenic escape residue cluster, c1, of apical membrane antigen 1.

    Science.gov (United States)

    Dutta, Sheetij; Dlugosz, Lisa S; Clayton, Joshua W; Pool, Christopher D; Haynes, J David; Gasser, Robert A; Batchelor, Adrian H

    2010-02-01

    Antibodies against apical membrane antigen 1 (AMA1) inhibit invasion of Plasmodium merozoites into red cells, and a large number of single nucleotide polymorphisms on AMA1 allow the parasite to escape inhibitory antibodies. The availability of a crystal structure makes it possible to test protein engineering strategies to develop a monovalent broadly reactive vaccine. Previously, we showed that a linear stretch of polymorphic residues (amino acids 187 to 207), localized within the C1 cluster on domain 1, conferred the highest level of escape from inhibitory antibodies, and these were termed antigenic escape residues (AER). Here we test the hypothesis that immunodampening the C1 AER will divert the immune system toward more conserved regions. We substituted seven C1 AER of the FVO strain Plasmodium falciparum AMA1 with alanine residues (ALA). The resulting ALA protein was less immunogenic than the native protein in rabbits. Anti-ALA antibodies contained a higher proportion of cross-reactive domain 2 and domain 3 antibodies and had higher avidity than anti-FVO. No overall enhancement of cross-reactive inhibitory activity was observed when anti-FVO and anti-ALA sera were compared for their ability to inhibit invasion. Alanine mutations at the C1 AER had shifted the immune response toward cross-strain-reactive epitopes that were noninhibitory, refuting the hypothesis but confirming the importance of the C1 cluster as an inhibitory epitope. We further demonstrate that naturally occurring polymorphisms that fall within the C1 cluster can predict escape from cross-strain invasion inhibition, reinforcing the importance of the C1 cluster genotype for antigenic categorization and allelic shift analyses in future phase 2b trials.

  20. Group morphology

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2000-01-01

    In its original form, mathematical morphology is a theory of binary image transformations which are invariant under the group of Euclidean translations. This paper surveys and extends constructions of morphological operators which are invariant under a more general group TT, such as the motion group

  1. 78 FR 54585 - Safety Zone; Escape to Miami Triathlon, Biscayne Bay, Miami, FL

    Science.gov (United States)

    2013-09-05

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Escape to Miami Triathlon, Biscayne Bay... during the Publix Escape to Miami Triathlon. The Publix Escape to Miami Triathlon is scheduled to take... of life on navigable waters of the United States during the Publix Escape to Miami Triathlon....

  2. Structural controls on fluid escape from the subduction interface

    Science.gov (United States)

    Reynard, Bruno; Tauzin, Benoit; Bodin, Thomas; Perrillat, Jean-Philippe; Debayle, Eric

    2017-04-01

    Seismic activity and non-volcanic tremors are often associated with fluid circulation resulting from the dehydration of subducting plates. Tremors in the overriding continental crust of several subduction zones suggest fluid circulation at shallower depths, but potential fluid pathways are still poorly documented. Fluids are also released at different depths in hot and cold subduction zones, which may result in different schemes of fluid escape. We document potential fluid pathways in Cascadia, one of the hottest subduction zone, using receiver function analysis. We provide evidence for a seismic discontinuity near 15 km depth in the crust of the overriding North American plate. This interface is segmented, and its interruptions are spatially correlated with conductive regions of the forearc and shallow swarms of seismicity and non-volcanic tremors. The comparison of seismological and electrical conductivity profiles suggests that fluid escape is controlled by fault zones between blocks of accreted terranes in the overriding plate. These zones constitute fluid escape routes that may influence the seismic cycle by releasing fluid pressure from the megathrust. Results on Cascadia are compared to fluid escape routes suggested by former geophysical observations in NE Japan, one of the coldest subduction zones. Links between fluid escape, permeability and fluid-rock reactions at or above the plate interface are discussed.

  3. Inferring HIV escape rates from multi-locus genotype data

    Directory of Open Access Journals (Sweden)

    Taylor A Kessinger

    2013-09-01

    Full Text Available Cytotoxic T-lymphocytes (CTLs recognize viral protein fragments displayed by major histocompatibility complex (MHC molecules on the surface of virally infected cells and generate an anti-viral response that can kill the infected cells. Virus variants whose protein fragments are not efficiently presented on infected cells or whose fragments are presented but not recognized by CTLs therefore have a competitive advantage and spread rapidly through the population. We present a method that allows a more robust estimation of these escape rates from serially sampled sequence data. The proposed method accounts for competition between multiple escapes by explicitly modeling the accumulation of escape mutations and the stochastic effects of rare multiple mutants. Applying our method to serially sampled HIV sequence data, we estimate rates of HIV escape that are substantially larger than those previously reported. The method can be extended to complex escapes that require compensatory mutations. We expect our method to be applicable in other contexts such as cancer evolution where time series data is also available.

  4. Comparison of spacecraft crew escape systems through dynamic optimization

    Science.gov (United States)

    Hart, William G., III

    Crew escape systems have been a vital component of ensuring safety onboard manned spacecraft. Although there have been only a few aborts involving their use, their operation helps decrease risk in what is known to be a hazardous field. But despite their high reliability, crew escape systems typically suffer from heavy weight, lack of control and hazardous chemical propellants. Hybrid propulsion systems could be a viable solution to all of these problems. With their inert components, ability to throttle and higher specific impulse than solids, hybrids have obtained interest in recent years. This dissertation presents a method that can be used to compare solid and hybrid propulsion systems for the crew escape systems of spacecraft. The concepts of dynamic optimization, Monte Carlo simulation and propulsion system design are combined to produce a tool which can predict the probability of survival for a given abort scenario. The method can also determine the effect of uncertain variables, such as reaction time or the payload of the vehicle, in the safety of the crew. The method is then used to compare crew escape systems for two separate vehicles: a separable crew cabin proposed for the Space Shuttle Launch Vehicle and the Launch Escape System for the Crew Exploration Vehicle scheduled to begin operation in 2012. The effects of uncertain parameters are also studied. The results show the utility of this method and the objective function, and how it could be used in the design process for future space vehicles.

  5. Single-File Escape of Colloidal Particles from Microfluidic Channels

    Science.gov (United States)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  6. Immunosuppressive cells in tumor immune escape and metastasis.

    Science.gov (United States)

    Liu, Yang; Cao, Xuetao

    2016-05-01

    Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy.

  7. Escape dynamics in a binary system of interacting galaxies

    CERN Document Server

    Zotos, Euaggelos E

    2016-01-01

    The escape dynamics in an analytical gravitational model which describes the motion of stars in a binary system of interacting dwarf spheroidal galaxies is investigated in detail. We conduct a numerical analysis distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. In order to distinguish safely and with certainty between ordered and chaotic motion, we apply the Smaller ALingment Index (SALI) method. It is of particular interest to locate the escape basins through the openings around the collinear Lagrangian points $L_1$ and $L_2$ and relate them with the corresponding spatial distribution of the escape times of the orbits. Our exploration takes place both in the configuration $(x,y)$ and in the phase $(x,\\dot{x})$ space in order to elucidate the escape process as well as the overall orbital properties of the galactic system. Our numerical analysis reveals the strong dependence of the properties of the con...

  8. Mathematical morphology

    CERN Document Server

    Najman, Laurent

    2013-01-01

    Mathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foun

  9. Contrast enhancement and morphological findings of hematopoietic regions of bone marrow on MR imaging. Comparative study with spondylitis and vertebral tumors

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Hayashi, Hiromitsu; Matsuura, Maki; Watari, Jun; Kumazaki, Tatsuo [Nippon Medical School, Tokyo (Japan)

    1995-06-01

    The enhanced MR findings of hematopoietic regions in aplastic anemia were compared with those of spondylitis, metastatic vertebral tumors and hematologic neoplasms. The enhanced MR images showed hematopoietic regions to homogeneously enhance and occupy the margin of vertebral bodies, while spondylitis and metastatic tumors appeared as round, inhomogeneously enhancing lesions. MR images of leukemia and myelodysplastic syndrome showed homogeneous enhancement at the margins of vertebrae that was difficult to differentiate from hematopoietic regions. Enhanced MR images were useful in detecting the hematopoietic areas in marrow and differentiating them from spondylitis and metastatic tumors, although further experience is needed to distinguish between tumorous hyperplastic regions and benign hematopoietic regions in marrow. (author).

  10. Parathyroid hormone and calcitonin interactions in bone: Irradiation-induced inhibition of escape in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, N.S.; Tashjian, A.H. Jr.; Feldman, R.S.

    1982-01-01

    Calcitonin (CT) inhibits hormonally stimulated bone resorption only transiently in vitro. This phenomenon has been termed ''escape,'' but the mechanism for the effect is not understood. One possible explanation is that bone cell differentiation and recruitment of specific precursor cells, in response to stimulators of resorption, lead to the appearance of osteoclasts that are unresponsive to CT. To test this hypothesis, cell proliferation in neonatal mouse calvaria in organ culture was inhibited by irradiation from a cobalt-60 source. At a dose of 6000 R, (/sup 3/H)thymidine incorporation into intact calvaria was inhibited approximately 90%. Irradiation had no effect on the resorptive response to 0.1 U/ml parathyroid hormone (PTH). However, irradiation induced a dose-dependent inhibition of the escape response which was maximal at 6000 R. A dose of 6000 R did not affect the binding of /sup 125/I-salmon CT to calvaria and decreased PTH stimulation of cyclic AMP release from bone without affecting the cyclic AMP response to CT. Although irradiation caused a dose-dependent inhibition of DNA synthesis, the dose-response curves for that effect and inhibition of escape were not superimposable. A morphologic study of hormonally treated calvaria demonstrated that irradiation prevented the early increase in number of osteoclasts in PTH-treated calvaria that had been observed previously in unirradiated bones. Autoradiography showed that irradiation also prevented the PTH-stimulated recruitment of newly divided mononuclear cell precursors into osteoclasts. This may be correlated with the effect of irradiation to prevent the loss of responsiveness to CT in the presence of PTH.

  11. Behavior of Ants Escaping from a Single-Exit Room

    Science.gov (United States)

    Wang, Shujie; Lv, Wei; Song, Weiguo

    2015-01-01

    To study the rules of ant behavior and group-formation phenomena, we examined the behaviors of Camponotus japonicus, a species of large ant, in a range of situations. For these experiments, ants were placed inside a rectangular chamber with a single exit that also contained a filter paper soaked in citronella oil, a powerful repellent. The ants formed several groups as they moved toward the exit to escape. We measured the time intervals between individual escapes in six versions of the experiment, each containing an exit of a different width, to quantify the movement of the groups. As the ants exited the chamber, the time intervals between individual escapes changed and the frequency distribution of the time intervals exhibited exponential decay. We also investigated the relationship between the number of ants in a group and the group flow rate. PMID:26125191

  12. Escape probability of the super-Penrose process

    CERN Document Server

    Ogasawara, Kota; Miyamoto, Umpei; Igata, Takahisa; Patil, Mandar

    2016-01-01

    We consider a head-on collision of two massive particles that move in the equatorial plane of an extremal Kerr black hole, which results in the production of two massless particles. Focusing a typical case, where both of the colliding particles have zero angular momenta, we show that a massless particle produced in such a collision can escape to infinity with arbitrarily large energy in the near-horizon limit of the collision point. Furthermore, if we assume that the emission of the produced massless particles is isotropic in the center-of-mass frame but confined to the equatorial plane, the escape probability of the produced massless particle approaches $5/12$ and almost all escaping massless particles have arbitrarily large energy at infinity and an impact parameter approaching $2M$.

  13. Escape rate and diffusion of a Stochastically Driven particle

    Science.gov (United States)

    Piscitelli, Antonio; Pica Ciamarra, Massimo

    2017-01-01

    The dynamical properties of a tracer repeatedly colliding with heat bath particles can be described within a Langevin framework provided that the tracer is more massive than the bath particles, and that the collisions are frequent. Here we consider the escape of a particle from a potential well, and the diffusion coefficient in a periodic potential, without making these assumptions. We have thus investigated the dynamical properties of a Stochastically Driven particle that moves under the influence of the confining potential in between successive collisions with the heat bath. In the overdamped limit, both the escape rate and the diffusion coefficient coincide with those of a Langevin particle. Conversely, in the underdamped limit the two dynamics have a different temperature dependence. In particular, at low temperature the Stochastically Driven particle has a smaller escape rate, but a larger diffusion coefficient. PMID:28120904

  14. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  15. Escape probability based routing for ad hoc networks

    Institute of Scientific and Technical Information of China (English)

    Zhang Xuanping; Qin Zheng; Li Xin

    2006-01-01

    Routes in an ad hoc network may fail frequently because of node mobility. Stability therefore can be an important element in the design of routing protocols. The node escape probability is introduced to estimate the lifetime and stability of link between neighboring nodes and the escape probability based routing (EPBR) scheme to discover stable routes is proposed. Simulation results show that the EPBR can discover stable routes to reduce the number of route rediscovery, and is applicable for the situation that has highly dynamic network topology with broad area of communication.

  16. Escape of protists in predator-generated feeding currents

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2002-01-01

    The ciliate Strobilidium sp. and 2 flagellates, Chrysochromulina simplex and Gymnodinium sp., were exposed to predator-generated feeding currents, and their escape responses were quantified using 2- and 3-dimensional video techniques. All 3 studied organisms responded by escaping at a defined...... of Strobilidium sp. to the copepod Temora longicornis. The predicted reaction distance fit closely that measured, When the flagellates were exposed to the flow field of the ciliate Uronema filificum, they both responded up-stream to the feeding current. From the distance at which the flagellates responded...

  17. Linking vertebral number to performance of aquatic escape responses in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Ackerly, Kerri L; Ward, Andrea B

    2015-12-01

    Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation.

  18. Autologous HIV-1 neutralizing antibodies: emergence of neutralization-resistant escape virus and subsequent development of escape virus neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Nielsen, C; Hansen, J E;

    1992-01-01

    The capacity of consecutive human sera to neutralize sequentially obtained autologous virus isolates was studied. HIV-1 was isolated three times over a 48-164-week period from three individuals immediately after seroconversion and from two individuals in later stages of infection. Development of ...... escape virus may be part of the explanation of the apparent failure of the immune system to control HIV infection.......The capacity of consecutive human sera to neutralize sequentially obtained autologous virus isolates was studied. HIV-1 was isolated three times over a 48-164-week period from three individuals immediately after seroconversion and from two individuals in later stages of infection. Development...... of neutralizing antibodies to the primary virus isolates was detected 13-45 weeks after seroconversion. Emergence of escape virus with reduced sensitivity to neutralization by autologous sera was demonstrated. The patients subsequently developed neutralizing antibodies against the escape virus but after a delay...

  19. Purinergic inhibition of ENaC produces aldosterone escape.

    Science.gov (United States)

    Stockand, James D; Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A; Vallon, Volker; Peti-Peterdi, Janos; Pochynyuk, Oleh

    2010-11-01

    The mechanisms underlying "aldosterone escape," which refers to the excretion of sodium (Na(+)) during high Na(+) intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na(+) channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na(+) intake in mice. Physiologic concentrations of ATP decreased ENaC activity in a dosage-dependent manner. P2Y(2)(-/-) mice, which lack the purinergic receptor, had significantly less increased Na(+) excretion than wild-type mice in response to high-Na(+) intake. Exogenous deoxycorticosterone acetate and deletion of the P2Y(2) receptor each modestly increased the resistance of ENaC to changes in Na(+) intake; together, they markedly increased resistance. Under the latter condition, ENaC could not respond to changes in Na(+) intake. In contrast, as a result of aldosterone escape, wild-type mice had increased Na(+) excretion in response to high-Na(+) intake regardless of the presence of high deoxycorticosterone acetate. These data suggest that control of ENaC by purinergic signaling is necessary for aldosterone escape.

  20. The Dutch approach to the escape from large compartments

    NARCIS (Netherlands)

    Janse, E.W.; Leur, P.H.E. van de

    1999-01-01

    In the Netherlands, the building regulations have no design mies for large fire compartments (over 1000 m2). With respect to the ability of people to escape from a fire in such large spaces, the Centre for Fire Research of TNO Building and Construction Research has developed a guideline that integra

  1. Entropy, Lyapunov Exponents and Escape Rates in Open Systems

    CERN Document Server

    Demers, Mark; Young, Lai-Sang

    2011-01-01

    We study the relation between escape rates and pressure in general dynamical systems with holes, where pressure is defined to be the difference between entropy and the sum of positive Lyapunov exponents. Central to the discussion is the formulation of a class of invariant measures supported on the survivor set over which we take the supremum to measure the pressure. Upper bounds for escape rates are proved for general diffeomorphisms of manifolds, possibly with singularities, for arbitrary holes and natural initial distributions including Lebesgue and SRB measures. Lower bounds do not hold in such generality, but for systems admitting Markov tower extensions with spectral gaps, we prove the equality of the escape rate with the absolute value of the pressure and the existence of an invariant measure realizing the escape rate, i.e. we prove a full variational principle. As an application of our results, we prove a variational principle for the billiard map associated with a planar Lorentz gas of finite horizon ...

  2. Escaping Embarrassment: Face-Work in the Rap Cipher

    Science.gov (United States)

    Lee, Jooyoung

    2009-01-01

    How do individuals escape embarrassing moments in interaction? Drawing from ethnographic fieldwork, in-depth interviews, and video recordings of weekly street corner ciphers (impromptu rap sessions), this paper expands Goffman's theory of defensive and protective face-work. The findings reveal formulaic and indirect dimensions of face-work. First,…

  3. A Slam Simulation Base Escape Model Using Response Surface Methodology.

    Science.gov (United States)

    1986-03-01

    OS/84D-8. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH December 1984. 19. Modianos , Doan T. and others...Pritsker & Associates, Inc, West Lafayette, In--ana, 1984. 21. Patrick , Rayford P. Nuclear Hardness and Base Escape, Engineering Report No. S-112. Omaha

  4. Hepatitis B escape mutants in Scottish blood donors.

    Science.gov (United States)

    Larralde, Osmany; Dow, Brian; Jarvis, Lisa; Davidson, Fiona; Petrik, Juraj

    2013-06-01

    Hepatitis B virus (HBV) remains as the viral infection with the highest risk of transmission by transfusion. This risk is associated with window period donations, occult HBV infection (OBI) and the emergence of escape mutants, which render blood donations false negative for hepatitis B surface antigen (HBsAg) serological testing. A retrospective study was conducted to gain insights into the molecular epidemiology of HBV escape mutants in Scottish blood donors. The criterion for selection was HBV positivity either by serology or nucleic acid testing (NAT). HBsAg detection was compared across several commercial immunoassays. The full length S gene from plasma samples was PCR amplified, cloned and expressed in HepG2 cells. Eight samples showed HBsAg discordant results, while 5 OBI samples were found. Four escape mutants, containing missense mutations in the S gene, are described here. These mutations impaired HBsAg detection both from HBV infected plasma samples and from recombinant proteins derived from its infected donors. Phylogenetic analysis showed that most of the mutants were clustered in the genotype D and were closely related to strains from Asia and the Middle East. We report here a proline substitution, outside the major hydrophilic region, that impaired HBsAg detection in vivo and in vitro, warning about the risk for the emergence of vaccine escape mutants with mutations outside the major neutralisation site.

  5. Enuresis Control through Fading, Escape, and Avoidance Training.

    Science.gov (United States)

    Hansen, Gordon D.

    1979-01-01

    A twin signal device that provides both escape and avoidance conditioning in enuresis control was documented with case studies of two enuretic children (eight and nine years old). In addition, a technique of fading as an adjunct to the process was utilized with one subject. (Author/SBH)

  6. The spectrum of Cosmic Rays escaping from relativistic shocks

    CERN Document Server

    Katz, Boaz; Waxman, Eli

    2010-01-01

    We derive expressions for the time integrated spectrum of Cosmic Rays (CRs) that are accelerated in a decelerating relativistic shock wave and escape ahead of the shock. It is assumed that at any given time the CRs have a power law form, carry a constant fraction of the energy E_tot of the shocked plasma, and escape continuously at the maximal energy attainable. The spectrum of escaping particles is highly sensitive to the instantaneous spectral index due to the fact that the minimal energy, E_min ~ \\Gamma^2 m_pc^2 where \\Gamma is the shock Lorentz factor, changes with time. In particular, the escaping spectrum may be considerably harder than the canonical N(E)\\propto E^-2 spectrum. For a shock expanding into a plasma of density n, a spectral break is expected at the maximal energy attainable at the transition to non relativistic velocities, E ~ 10^19 (\\epsilon_B/0.1)(n/1 cm^-3)^(1/6)(E_tot/10^51 erg)^(1/3) eV where \\epsilon_B is the fraction of the energy flux carried by the magnetic field. If ultra-high ene...

  7. Spatial and Nonspatial Escape Strategies in the Barnes Maze

    Science.gov (United States)

    Harrison, Fiona E.; Reiserer, Randall S.; Tomarken, Andrew J.; McDonald, Michael P.

    2006-01-01

    The Barnes maze is a spatial memory task that requires subjects to learn the position of a hole that can be used to escape the brightly lit, open surface of the maze. Two experiments assessed the relative importance of spatial (extra-maze) versus proximal visible cues in solving the maze. In Experiment 1, four groups of mice were trained either…

  8. Escaping Embarrassment: Face-Work in the Rap Cipher

    Science.gov (United States)

    Lee, Jooyoung

    2009-01-01

    How do individuals escape embarrassing moments in interaction? Drawing from ethnographic fieldwork, in-depth interviews, and video recordings of weekly street corner ciphers (impromptu rap sessions), this paper expands Goffman's theory of defensive and protective face-work. The findings reveal formulaic and indirect dimensions of face-work. First,…

  9. Morphology Effect on Enhanced Li+-Ion Storage Performance for Ni2+/3+ and/or Co2+/3+ Doped LiMnPO4 Cathode Nanoparticles

    Directory of Open Access Journals (Sweden)

    Young Jun Yun

    2015-01-01

    Full Text Available The electrochemical performance of Li(Mn, MPO4 (M = Co2+/3+, Ni2+/3+ was investigated with regard to the particle morphology. Within a controlled chemical composition, Li(Mn0.92Co0.04Ni0.04PO4, the resultant cathode exhibited somewhat spherical-shaped nanocrystalline particles and enhanced Li+-ion storage, which was even better than the undoped LiMnPO4, up to 16% in discharge capacity at 0.05 C. The outstanding electrochemical performance is attributed to the well-dispersed spherical-shaped particle morphology, which allows the fast Li+-ion migration during the electrochemical lithiation/delithiation process, especially at high current density.

  10. Escape chambers in the German coal mining industry. Fluchtkammern im deutschen Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Kock, F.J.; Langer, G. (Bergbau-Forschung G.m.b.H. - Forschungsinstitut des Steinkohlenbergbauvereins, Essen (Germany, F.R.). Hauptstelle fuer das Grubenrettungswesen); Velsen-Zerweck, R. von; Boettcher, K. (Bergbau AG Westfalen, Dortmund (Germany, F.R.). Hauptabteilung Sicherheitswesen)

    1989-08-17

    Escape chambers are used in special cases in German mines for self-rescue of the work force. On the basis of the newly laid down requirements concerning escape chambers a specification for mobile escape chambers was drawn up. The Safety Department of Bergbau AG Westfalen purchased two escape chambers of different manufacturers for 10 persons in each case, which are curently being tested at collieries of Bergbau AG Westfalen. The German coal mining industry thus has escape chambers at its disposal to make self-rescue of the work force even safer in the event of difficult and long escape routes. (orig.).

  11. Formulation of a Cooperative-Confinement-Escape problem of multiple cooperative defenders against an evader escaping from a circular region

    Science.gov (United States)

    Li, Wei

    2016-10-01

    In this paper, we propose and formulate the Cooperative-Confinement-Escape (CCE) problem of multiple cooperative defenders against an evader escaping from a circular region, in which the defenders are moving on the circle with attempt to prevent possible escape of a single evader who is initially located inside the circle. The main contributions are summarized as follows: (1) we first provide an effective formulation of the CCE problem, which is an emphasis of this paper, with design of two nonlinear control strategies for the cooperative defenders and the adversarial evader, respectively. Particularly, we consider to include a proper interaction between each pair of the nearest-neighbor defenders, and an adaptive trajectory prediction mechanism in the strategies of the defenders to increase the chance of successful confinement. (2) For the first attempt on analyzing the CCE dynamics which is unavoidably strongly nonlinear, we analyze the minimum energy of the evader for possible escape. (3) For understanding of the behaviors of the system under different parameters, (i) we illustrate the effectiveness of the confinement strategy using the adaptive trajectory prediction mechanism, and (ii) the physical roles of the system parameters with respect to the system dynamics, some of which may be unexpected or not straightforward. A separate paper will be presented for systematic analysis of the agents' behaviors with respect to the large intervals of the parameter settings.

  12. An Empirical Investigation of Time-Out with and without Escape Extinction to Treat Escape-Maintained Noncompliance

    Science.gov (United States)

    Everett, Gregory E.; Olmi, D. Joe; Edwards, Ron P.; Tingstrom, Daniel H.; Sterling-Turner, Heather E.; Christ, Theodore J.

    2007-01-01

    The present study evaluates the effectiveness of two time-out (TO) procedures in reducing escape-maintained noncompliance of 4 children. Noncompliant behavioral function was established via a functional assessment (FA), including indirect and direct descriptive procedures and brief confirmatory experimental analyses. Following FA, parents were…

  13. PVP assisted hydrothermal fabrication and morphology-controllable fabrication of BiFeO{sub 3} uniform nanostructures with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingfu; Mao, Weiwei [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); School of Science, Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Zhang, Qiaoxia; Wang, Qi; Zhu, Yiyi; Zhang, Jian; Yang, Tao [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Yang, Jianping [School of Science, Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Li, Xing' ao, E-mail: lxahbmy@126.com [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Huang, Wei, E-mail: iamwhuang@njupt.edu.cn [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China)

    2016-08-25

    Bismuth ferrite (BiFeO{sub 3}) nanostructures with various morphologies (spindles, cubes and plates) have been successfully synthesized via a convenient one-pot hydrothermal method. The results show that three kinds of BiFeO{sub 3} products were obtained in this polyvinylpyrrolidone (PVP)-assisted hydrothermal reaction under different alkaline conditions. The resulting nanostructures were characterized using XRD and SEM. Possible formation mechanism for BiFeO{sub 3} nanostructures was proposed on the basis of our results. The experiments showed that the visible light absorptive capacity of the BiFeO{sub 3} nanostructures was significant influenced on the size and morphology. Notably, the as-prepared BiFeO{sub 3} plates with (104) facets exposed exhibit high efficiency for the degradation of methyl orange (MO) under visible light irradiation, suggesting potential applications in photocatalytic and related areas under visible light. - Highlights: • BiFeO{sub 3} nanostructures were synthesized via a PVP-assisted hydrothermal method. • The effect of the PVP and alkaline concentration was investigated. • The visible light absorptive capacity was significant influenced on the morphology. • The photocatalytic activity of the as-prepared BiFeO{sub 3} plates is the best.

  14. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei M; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery.

  15. Stream life of spawning pink salmon and the method of escapement enumeration by aerial survey: Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Aerial surveys are currently used as the method tor escapement enumeration of pink salmon throughout Alaska. Other escapement enumeration methods cannot be...

  16. Parameter Optimization on Experimental Study to Reduce Ammonia Escape in CO2 Absorption by Ammonia Scrubbing

    Institute of Scientific and Technical Information of China (English)

    Hao Leng; Jianmin Gao; Mingyue He; Min Xie; Qian Du; Rui Sun; Shaohua Wu

    2016-01-01

    In order to research ammonia escape in CO2 absorption by ammonia scrubbing, ammonia escape was studied in CO2 absorption process using the bubbling reactor in different conditions as gas flow rate, CO2 ratio, absorbent temperature and ammonia concentration and quantity of escaped ammonia was measured by chemical titration. The results indicated that, the amount of ammonia escape can be around 20% of original amount in 90 min and the escaped amount will increase with the rise of gas flow rate, absorbent temperature, concentration of ammonia while decrease as CO2 ratio goes up. Through the analysis of the law of ammonia escape, at the same time, combined with ammonia escape and the influence of the relationship between the CO2 absorption efficiency, reducing ammonia escape working condition parameter optimization is given.

  17. Novel Anti-Adhesive CMC-PE Hydrogel Significantly Enhanced Morphological and Physiological Recovery after Surgical Decompression in an Animal Model of Entrapment Neuropathy

    Science.gov (United States)

    Urano, Hideki; Iwatsuki, Katsuyuki; Yamamoto, Michiro; Ohnisi, Tetsuro; Kurimoto, Shigeru; Endo, Nobuyuki; Hirata, Hitoshi

    2016-01-01

    We developed a novel hydrogel derived from sodium carboxymethylcellulose (CMC) in which phosphatidylethanolamine (PE) was introduced into the carboxyl groups of CMC to prevent perineural adhesions. This hydrogel has previously shown excellent anti-adhesive effects even after aggressive internal neurolysis in a rat model. Here, we confirmed the effects of the hydrogel on morphological and physiological recovery after nerve decompression. We prepared a rat model of chronic sciatic nerve compression using silicone tubing. Morphological and physiological recovery was confirmed at one, two, and three months after nerve decompression by assessing motor conduction velocity (MCV), the wet weight of the tibialis anterior muscle and morphometric evaluations of nerves. Electrophysiology showed significantly quicker recovery in the CMC-PE group than in the control group (24.0 ± 3.1 vs. 21.0± 2.1 m/s (p < 0.05) at one months and MCV continued to be significantly faster thereafter. Wet muscle weight at one month significantly differed between the CMC-PE (BW) and control groups (0.148 ± 0.020 vs. 0.108 ± 0.019%BW). The mean wet muscle weight was constantly higher in the CMC-PE group than in the control group throughout the experimental period. The axon area at one month was twice as large in the CMC-PE group compared with the control group (24.1 ± 17.3 vs. 12.3 ± 9 μm2) due to the higher ratio of axons with a larger diameter. Although the trend continued throughout the experimental period, the difference decreased after two months and was not statistically significant at three months. Although anti-adhesives can reduce adhesion after nerve injury, their effects on morphological and physiological recovery after surgical decompression of chronic entrapment neuropathy have not been investigated in detail. The present study showed that the new anti-adhesive CMC-PE gel can accelerate morphological and physiological recovery of nerves after decompression surgery. PMID:27741280

  18. Bacillus anthracis Factors for Phagosomal Escape

    Directory of Open Access Journals (Sweden)

    Irene Zornetta

    2012-07-01

    Full Text Available The mechanism of phagosome escape by intracellular pathogens is an important step in the infectious cycle. During the establishment of anthrax, Bacillus anthracis undergoes a transient intracellular phase in which spores are engulfed by local phagocytes. Spores germinate inside phagosomes and grow to vegetative bacilli, which emerge from their resident intracellular compartments, replicate and eventually exit from the plasma membrane. During germination, B. anthracis secretes multiple factors that can help its resistance to the phagocytes. Here the possible role of B. anthracis toxins, phospholipases, antioxidant enzymes and capsules in the phagosomal escape and survival, is analyzed and compared with that of factors of other microbial pathogens involved in the same type of process.

  19. Dynamics of the verge and foliot clock escapement

    CERN Document Server

    Hoyng, P

    2016-01-01

    The verge and foliot escapement has received relatively little attention in horology, despite the fact that it has been used in clocks for ages. We analyse the operation of a verge and foliot escapement in stationary swing. It is driven by a torque $m=\\pm\\mu$, switching sign at fixed swing angles $\\pm\\phi_0$, and $\\mu$ is taken to be constant. Friction is assumed to exert a torque proportional to the angular speed. We determine the shape of the swing angle $\\varphi(t)$, and compute the period and the swing amplitude of the foliot as a function of the model parameters. We find that the period of the foliot scales as $P\\propto\\mu^{-1}$ for weak driving, gradually changing into $P\\propto\\mu^{-1/3}$ for strong driving (large $\\mu$), which underlines that the motion of the foliot is not isochonous.

  20. Quantum and thermal phase escape in extended Josephson systems

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, A.

    2006-07-12

    In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)

  1. Escape Time of Josephson Junctions for Signal Detection

    CERN Document Server

    Addesso, P; Pierro, V

    2014-01-01

    In this Chapter we investigate with the methods of signal detection the response of a Josephson junction to a perturbation to decide if the perturbation contains a coherent oscillation embedded in the background noise. When a Josephson Junction is irradiated by an external noisy source, it eventually leaves the static state and reaches a steady voltage state. The appearance of a voltage step allows to measure the time spent in the metastable state before the transition to the running state, thus defining an escape time. The distribution of the escape times depends upon the characteristics of the noise and the Josephson junction. Moreover, the properties of the distribution depends on the features of the signal (amplitude, frequency and phase), which can be therefore inferred through the appropriate signal processing methods. Signal detection with JJ is interesting for practical purposes, inasmuch as the superconductive elements can be (in principle) cooled to the absolute zero and therefore can add (in practi...

  2. Behavioral analysis of the escape response in larval zebrafish

    Science.gov (United States)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    The behavior of larval zebrafish is of great interest because the limited number of locomotor neurons in larval zebrafish couples with its rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their swimming behavior while our lab has built a parameter-free model based on singular value decomposition analysis to characterize it. Our previous work has analyzed the free swimming of larval zebrafish and presented a different picture from the current classification of larval zebrafish locomotion. Now we are extending this work to the studies of their escape response to acoustic stimulus. Analysis has shown intrinsic difference in the locomotion between escape response and free swimming.

  3. Escape rate of active particles in the effective equilibrium approach

    Science.gov (United States)

    Sharma, A.; Wittmann, R.; Brader, J. M.

    2017-01-01

    The escape rate of a Brownian particle over a potential barrier is accurately described by the Kramers theory. A quantitative theory explicitly taking the activity of Brownian particles into account has been lacking due to the inherently out-of-equilibrium nature of these particles. Using an effective equilibrium approach [Farage et al., Phys. Rev. E 91, 042310 (2015), 10.1103/PhysRevE.91.042310] we study the escape rate of active particles over a potential barrier and compare our analytical results with data from direct numerical simulation of the colored noise Langevin equation. The effective equilibrium approach generates an effective potential that, when used as input to Kramers rate theory, provides results in excellent agreement with the simulation data.

  4. Partial control of chaotic transients using escape times

    Energy Technology Data Exchange (ETDEWEB)

    Sabuco, Juan; Zambrano, Samuel; Sanjuan, Miguel A F, E-mail: juan.sabuco@urjc.e [Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2010-11-15

    The partial control technique allows one to keep the trajectories of a dynamical system inside a region where there is a chaotic saddle and from which nearly all the trajectories diverge. Its main advantage is that this goal is achieved even if the corrections applied to the trajectories are smaller than the action of environmental noise on the dynamics, a counterintuitive result that is obtained by using certain safe sets. Using the Henon map as a paradigm, we show here the deep relationship between the safe sets and the sets of points with different escape times, the escape time sets. Furthermore, we show that it is possible to find certain extended safe sets that can be used instead of the safe sets in the partial control technique. Numerical simulations confirm our findings and show that in some situations, the use of extended safe sets can be more advantageous.

  5. Failed Escape: Solid Surfaces Prevent Tumbling of Escherichia coli

    Science.gov (United States)

    Molaei, Mehdi; Barry, Michael; Stocker, Roman; Sheng, Jian

    2014-08-01

    Understanding how bacteria move close to surfaces is crucial for a broad range of microbial processes including biofilm formation, bacterial dispersion, and pathogenic infections. We used digital holographic microscopy to capture a large number (>103) of three-dimensional Escherichia coli trajectories near and far from a surface. We found that within 20 μm from a surface tumbles are suppressed by 50% and reorientations are largely confined to surface-parallel directions, preventing escape of bacteria from the near-surface region. A hydrodynamic model indicates that the tumble suppression is likely due to a surface-induced reduction in the hydrodynamic force responsible for the flagellar unbundling that causes tumbling. These findings imply that tumbling does not provide an effective means to escape trapping near surfaces.

  6. Escape of Mars atmospheric carbon through time by photochemical means

    Science.gov (United States)

    Luhmann, J. G.; Kim, J.; Nagy, A. F.

    Luhmann et al. recently suggested that sputtering of the Martian atmosphere by re-entering O(+) pickup ions could have provided a significant route of escape for CO2 and its products throughout Mars' history. They estimated that the equivalent of C in an approximately 140-mbar CO2 atmosphere should have been lost this way if the Sun and solar wind evolved according to available models. Another source of escaping C (and O) that is potentially important is the dissociative recombination of ionospheric CO(+) near the exobase. We have evaluated the loss rates due to this process for 'ancient' solar EUV radiation fluxes of 1, 3, and 6 times the present flux in order to calculate the possible cumulative loss over the last 3.5 Gyr.

  7. DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields

    DEFF Research Database (Denmark)

    Chassefiere, E.; Nagy, A.; Mandea, M.

    2004-01-01

    DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure...... and evolution of Mars is thought to have influenced climate evolution. The collapse of the primitive magnetosphere early in Mars history could have enhanced atmospheric escape and favored transition to the present and climate. These objectives are achieved by using a low periapsis orbit. DYNAMO has been...... proposed in response to the AO released in February 2002 for instruments to be flown as a complementary payload onboard the CNES Orbiter to Mars (MO-07), foreseen to be launched in 2007 in the framework of the French PREMIER Mars exploration program. MO-07 orbital phase 2b (with an elliptical orbit...

  8. The C. elegans touch response facilitates escape from predacious fungi

    OpenAIRE

    Maguire, Sean M.; Clark, Christopher M.; Nunnari, John; Pirri, Jennifer K.; Alkema, Mark J.

    2011-01-01

    Predator-prey interactions are vital determinants in the natural selection of behavioral traits. However, we have few insights into both the neural mechanisms and the selective advantage of specific behavioral traits. Gentle touch to the anterior half of the body of Caenorhabditis elegans elicits an escape response in which the animal quickly reverses and suppresses exploratory head movements [1]. Even though the C. elegans touch response has provided one of the rare examples of how neural ne...

  9. On the Relative Contributions of Noncontingent Reinforcement and Escape Extinction in the Treatment of Food Refusal

    Science.gov (United States)

    Reed, Gregory K.; Piazza, Cathleen C.; Patel, Meeta R.; Layer, Stacy A.; Bachmeyer, Melanie H.; Bethke, Stephanie D.; Gutshall, Katharine A.

    2004-01-01

    In the current investigation, we evaluated the relative effects of noncontingent reinforcement (NCR), escape extinction, and a combination of NCR and escape extinction as treatment for the feeding problems exhibited by 4 children. For each participant, consumption increased only when escape extinction was implemented, independent of whether NCR…

  10. 46 CFR 56.50-25 - Safety and relief valve escape piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Safety and relief valve escape piping. 56.50-25 Section 56.50-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-25 Safety and relief valve escape piping. (a) Escape piping...

  11. Escape Geography--Developing Middle-School Students' Sense of Place.

    Science.gov (United States)

    Allen, Rodney F.; Molina, Laurie E. S.

    1992-01-01

    Suggests a social studies unit on escaping geography. Examines escape from dangerous places including an airliner, hotel fire, or war zone or from a social situation such as a boring speech or party. Describes historic escapes such as the Underground Railroad and the Berlin Wall. Lists learning strategies such as awareness of space and cognitive…

  12. MAVEN in situ measurements of photochemical escape of oxygen from Mars

    Science.gov (United States)

    Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce

    2016-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process and its variability with solar drivers is central to understanding the role escape to space has played in Mars' climate evolution. We use near-periapsis (atoms. The second is a Monte Carlo hot atom transport model that takes that distribution of initial O energies and the measured neutral density profiles and calculates the probability that a hot atom born at that altitude will escape. The third takes the measured electron and ion densities and electron temperatures and calculates the production rate of hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We have sufficient coverage in solar zenith angle (SZA) to estimate total escape rates for two intervals with the obvious assumption that escape rates are the same at all points with the same SZA. We estimate total escape rates of 3.5-5.8 x 1025 s-1 for Ls = 289° to 319° and 1.6-2.6 x 1025 s-1 for Ls = 326° to 348°. The latter is the most directly comparable to previous model-based estimates and is roughly in line with several of them. Total photochemical loss over Mars history is not very useful to

  13. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides

    Science.gov (United States)

    Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  14. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium–zinc hybrid oxides

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Rongrong; Wang, Qingyao; Gao, shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium–zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium–zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium–zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium–zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  15. Truncated ErbB2 receptor enhances ErbB1 signaling and induces reversible, ERK-independent loss of epithelial morphology

    DEFF Research Database (Denmark)

    Egeblad, M; Mortensen, Ole Hartvig; Jäättelä, M

    2001-01-01

    breast cancer cells expressing NH(2)-terminally truncated ErbB2 (DeltaNErbB2) were compared with cells overexpressing wild-type ErbB2. Expression of DeltaNErbB2 in MCF-7 cells resulted in sustained activation of extracellular signal-regulated kinases (ERK) 1/2, extensive loss of the epithelial morphology...... and depended on continuous expression of DeltaNErbB2 but not on the activation of the ERK1/2 pathway. Interestingly, the expression of DeltaNErbB2 resulted also in the increased expression and phosphorylation of ErbB1 as well as in the prolonged ligand-induced activation of the ErbB1 signaling pathway...

  16. Broad CTL Response in Early HIV Infection Drives Multiple Concurrent CTL Escapes.

    Science.gov (United States)

    Leviyang, Sivan; Ganusov, Vitaly V

    2015-10-01

    Recent studies have highlighted the ability of HIV to escape from cytotoxic T lymphocyte (CTL) responses that concurrently target multiple viral epitopes. Yet, the viral dynamics involved in such escape are incompletely understood. Previous analyses have made several strong assumptions regarding HIV escape from CTL responses such as independent or non-concurrent escape from individual CTL responses. Using experimental data from evolution of HIV half genomes in four patients we observe concurrent viral escape from multiple CTL responses during early infection (first 100 days of infection), providing confirmation of a recent result found in a study of one HIV-infected patient. We show that current methods of estimating CTL escape rates, based on the assumption of independent escapes, are biased and perform poorly when CTL escape proceeds concurrently at multiple epitopes. We propose a new method for analyzing longitudinal sequence data to estimate the rate of CTL escape across multiple epitopes; this method involves few parameters and performs well in simulation studies. By applying our novel method to experimental data, we find that concurrent multiple escapes occur at rates between 0.03 and 0.4 day(-1), a relatively broad range that reflects uncertainty due to sparse sampling and wide ranges of parameter values. However, we show that concurrent escape at rates 0.1-0.2 day(-1) across multiple epitopes is consistent with our patient datasets.

  17. A comparison of positive and negative reinforcement for compliance to treat problem behavior maintained by escape.

    Science.gov (United States)

    Slocum, Sarah K; Vollmer, Timothy R

    2015-09-01

    Previous research has shown that problem behavior maintained by escape can be treated using positive reinforcement. In the current study, we directly compared functional (escape) and nonfunctional (edible) reinforcers in the treatment of escape-maintained problem behavior for 5 subjects. In the first treatment, compliance produced a break from instructions. In the second treatment, compliance produced a small edible item. Neither treatment included escape extinction. Results suggested that the delivery of a positive reinforcer for compliance was effective for treating escape-maintained problem behavior for all 5 subjects, and the delivery of escape for compliance was ineffective for 3 of the 5 subjects. Implications and future directions related to the use of positive reinforcers in the treatment of escape behavior are discussed.

  18. A New Filter Algorithm Based on Mathematical Morphology and Wavelet Domain Enhancement%一种基于数学形态学与小波域增强的滤波算法

    Institute of Scientific and Technical Information of China (English)

    王小兵; 孙久运; 汤海燕

    2012-01-01

    为了有效滤除图像高斯噪声,将数学形态学与小波域增强相结合,提出了一种高斯噪声新型滤波算法.该算法首先将噪声图像进行二维小波分解,得到低频和高频子图像;然后保留低频子图像不变,对各高频子图像根据其噪声分布特点分别设计出多角度、多结构逐级形态学滤波器进行滤波处理,并进行小波分解系数重构;最后对经过形态学滤波后的图像进行2层小波分解,通过设计出一种新型小波增强函数对不同幅值的小波系数进行不同程度的收缩处理,在此基础上进行分解系数重构.将自适应中值滤波与数学形态学滤波与本文算法进行比较,实验证明本文滤波算法其去噪效果优于前两种算法.%In order to filter the Gaussian noise in digital image,combining the Mathematical morphology and Wavelet domain enhancement,a new filter algorithm is put forward.Firstly,the noise image is conducted two-dimensional wavelet decomposition,obtaining high-frequency and low-frequency sub image.Then keep the low-frequency sub image unchanged,according to the characteristics of the Gaussian noise distribution in each high-frequency sub image,the multi-angles,multi-structure mathematical morphology filters are designed to filter out the Gaussian noise,then the wavelet coefficient are reconstructed.Finally,the image after mathematical morphology filtering are conducted two layer wavelet decomposition,a new wavelet domain enhancement function is designed so as to contract the different amplitude wavelet coefficients in different degree,then the wavelet coefficient are reconstructed.The adaptive average filter and mathematical morphology and the new filter algorithm in this paper are applied to denoising the Gaussian noise in digital image respectively,the experiment results show that the new filter algorithm in this paper is better than the others.

  19. Solar cycle dynamic of the Martian induced magnetosphere. Planetary ions acceleration zones and escape.

    Science.gov (United States)

    Fedorov, Andrey; Modolo, Ronan; Jarvinen, Riku; Barabash, Stas

    2016-10-01

    This work presents a massive statistical analysis of the ion flows in the Martian induced magnetosphere. We performed this analysis using Mars Express ion mass spectrometer data taken during 2008 - 2013 time interval. This data allows to make an enhanced study of the induced magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma properties in the planetary wake as well as the ionosospheric escape as a function of the solar activity.

  20. The DYNAMO Orbiter Project: High Resolution Mapping of Gravity/Magnetic Fields and In Situ Investigation of Mars Atmospheric Escape

    Science.gov (United States)

    Smrekar, S.; Chassefiere, E.; Forget, F.; Reme, H.; Mazelle, C.; Blelly, P. -L.; Acuna, M.; Connerney, J.; Purucker, M.; Lin, R.

    2000-01-01

    /or enhanced effects over the several billion years of the solar system's life. If the detailed history of the Martian internal field could be traced back, and the current escape processes could be understood well enough to model the expected stronger losses under early Sun conditions, one could go a long way toward constraining this part of the mysterious history of Mars' atmosphere.

  1. Prevention of cytotoxic T cell escape using a heteroclitic subdominant viral T cell determinant.

    Directory of Open Access Journals (Sweden)

    Noah S Butler

    2008-10-01

    Full Text Available High affinity antigen-specific T cells play a critical role during protective immune responses. Epitope enhancement can elicit more potent T cell responses and can subsequently lead to a stronger memory pool; however, the molecular basis of such enhancement is unclear. We used the consensus peptide-binding motif for the Major Histocompatibility Complex molecule H-2K(b to design a heteroclitic version of the mouse hepatitis virus-specific subdominant S598 determinant. We demonstrate that a single amino acid substitution at a secondary anchor residue (Q to Y at position 3 increased the stability of the engineered determinant in complex with H-2K(b. The structural basis for this enhanced stability was associated with local alterations in the pMHC conformation as a result of the Q to Y substitution. Recombinant viruses encoding this engineered determinant primed CTL responses that also reacted to the wildtype epitope with significantly higher functional avidity, and protected against selection of virus mutated at a second CTL determinant and consequent disease progression in persistently infected mice. Collectively, our findings provide a basis for the enhanced immunogenicity of an engineered determinant that will serve as a template for guiding the development of heteroclitic T cell determinants with applications in prevention of CTL escape in chronic viral infections as well as in tumor immunity.

  2. A fusogenic peptide from a sea urchin fertilization protein promotes intracellular delivery of biomacromolecules by facilitating endosomal escape.

    Science.gov (United States)

    Niikura, Keisuke; Horisawa, Kenichi; Doi, Nobuhide

    2015-08-28

    The low efficiency of endosomal escape has been considered a bottleneck for the cytosolic delivery of biomacromolecules such as proteins and DNA. Although fusogenic peptides (FPs) such as HA2 have been employed to improve the intracellular delivery of biomacromolecules, the FPs studied thus far are not adequately efficient in enabling endosomal escape; therefore, novel FPs with higher activity are required. In this context, we focused on FPs derived from a sea urchin fertilization protein, bindin, which is involved in gamete recognition (B18, residues 103-120 and B55, residues 83-137 of mature bindin). We show that enhanced green fluorescent protein (EGFP)-fused B55 peptide binds to plasma membranes more strongly than EGFP-B18 and promotes the intracellular delivery of dextrans, which were co-administered using the trans method in a pH-dependent manner without affecting cell viability and proliferation, whereas conventional EGFP-HA2 did not affect dextran internalization. Furthermore, EGFP-B55 promoted the intracellular delivery of biomacromolecules such as antibodies, ribonuclease and plasmidic DNA using the trans method. Because the promotion of intracellular delivery by EGFP-B55 was suppressed by endocytosis inhibitors, EGFP-B55 is considered to have facilitated the endosomal escape of co-administered cargos. These results suggested that an FP that promotes the intracellular delivery of a variety of biomacromolecules with no detectable cytotoxicity should be useful for the cytosolic delivery of membrane-impermeable molecules for biomedical and biotechnological applications.

  3. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll

    Indian Academy of Sciences (India)

    Girdhar K Pandey; Amita Pandey; Vanga Siva Reddy; Renu Deswal; Alok Bhattacharya; Kailash C Upadhyaya; Sudhir K Sopory

    2007-03-01

    Entamoeba histolytica contains a novel calcium-binding protein like calmodulin, which was discovered earlier, and we have reported the presence of its homologue(s) and a dependent protein kinase in plants. To understand the functions of these in plants, a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP) was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised. These plants showed variation in several phenotypic characters, of which two distinct features, more greenness and leaf thickness, were inherited in subsequent generations. The increase in the level of total chlorophyll in different plants ranged from 60% to 70%. There was no major change in chloroplast structure and in the protein level of D1, D2, LHCP and RuBP carboxylase. These morphological changes were not seen in antisense calmodulin transgenic tobacco plants, nor was the calmodulin level altered in EhCaBP antisense plants.

  4. Escaping the Self: Identity, Group Identification and Violence

    Directory of Open Access Journals (Sweden)

    James Hardie-Bick

    2016-12-01

    Full Text Available This article draws on the early work of Erich Fromm. In Escape from Freedom Fromm (1969 [1941] directly addressed the psychological mechanisms of escape modern individuals employ to protect themselves from feelings of ontological insecurity and existential estrangement. The article builds on Fromm’s analysis by discussing the significance of his escape mechanisms for understanding the dynamic psychological attractions of identifying with entitative groups. Fromm’s work will be discussed in relation to Hogg’s recent work on uncertainty-identity theory. The aim of the article is to examine the advantages of combining Fromm’s psychoanalytic analysis with Hogg’s uncertainty-identity theory and to highlight the potential this approach has for understanding why groups engage in violent and destructive behaviour. Este artículo se inspira en las primeras obras de Erich Fromm. En El miedo a la libertad, Fromm (1969 [1941] abordó directamente los mecanismos psicológicos de evasión que los individuos modernos emplean para protegerse de los sentimientos de inseguridad ontológica y distanciamiento existencial. Este artículo se basa en el análisis de Fromm exponiendo el significado de sus mecanismos de evasión para entender las atracciones psicológicas dinámicas de identificación con grupos entitativos. Se analizará la obra de Fromm en relación con la obra reciente de Hogg sobre la teoría de incertidumbre identitaria. El objetivo del artículo es examinar las ventajas de combinar el análisis psicoanalítico de Fromm con la teoría de incertidumbre identitaria de Hogg, y destacar el potencial que tiene esta aproximación para comprender por qué los grupos adoptan un comportamiento violento y destructivo. DOWNLOAD THIS PAPER FROM SSRN: https://ssrn.com/abstract=2875737

  5. Experimental analysis and extinction of self-injurious escape behavior.

    Science.gov (United States)

    Iwata, B A; Pace, G M; Kalsher, M J; Cowdery, G E; Cataldo, M F

    1990-01-01

    Three studies are presented in which environmental correlates of self-injurious behavior were systematically examined and later used as the basis for treatment. In Study 1, 7 developmentally disabled subjects were exposed to a series of conditions designed to identify factors that maintain self-injurious behavior: attention contingent on self-injurious behavior (positive reinforcement), escape from or avoidance of demands contingent on self-injurious behaviour (negative reinforcement), alone (automatic reinforcement), and play (control). Results of a multielement design showed that each subject's self-injurious behavior occurred more frequently in the demand condition, suggesting that the behavior served an avoidance or escape function. Six of the 7 subjects participated in Study 2. During educational sessions, "escape extinction" was applied as treatment for their self-injurious behavior in a multiple baseline across subjects design. Results showed noticeable reduction or elimination of self-injurious behavior for each subject and an increase in compliance with instructions in all subjects for whom compliance data were taken. The 7th subject, whose self-injurious behavior during Study 1 occurred in response to medical demands (i.e., physical examinations), participated in Study 3. Treatment was comprised of extinction, as in Study 2, plus reinforcement for tolerance of the examination procedure, and was evaluated in a multiple baseline across settings design. Results showed that the treatment was successful in eliminating self-injurious behavior and that its effects transferred across eight new therapists and three physicians. General implications for the design, interpretation, and uses of assessment studies are discussed.

  6. Experimental study of subsonic microjet escaping from a rectangular nozzle

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.

    2016-10-01

    The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.

  7. The mirror of the escaped God – Alejandra Pizarnik

    Directory of Open Access Journals (Sweden)

    Mariano Carou

    2015-04-01

    Full Text Available Alejandra Pizarnik (1936-1972 shows many different stands regarding to “God’s escape” in her poetry and his diaries: from the psalmist’s request to the more combative atheism. There is, however, a constant development of a symbolic constellation to speak about God’s mistery, and the certitude –inherited from German romanticism– that the poet has always something to say about God’s escape, searching for a new hope in which is maybe a new form of mysticism.

  8. First-passage and escape problems in the Feller process

    CERN Document Server

    Masoliver, Jaume

    2012-01-01

    The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single neuron firing to volatility of financial assets. While general properties of the process are well known since long, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.

  9. First-passage and escape problems in the Feller process

    Science.gov (United States)

    Masoliver, Jaume; Perelló, Josep

    2012-10-01

    The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.

  10. Chases and escapes the mathematics of pursuit and evasion

    CERN Document Server

    Nahin, Paul J

    2012-01-01

    We all played tag when we were kids. What most of us don't realize is that this simple chase game is in fact an application of pursuit theory, and that the same principles of games like tag, dodgeball, and hide-and-seek are also at play in military strategy, high-seas chases by the Coast Guard, and even romantic pursuits. In Chases and Escapes, Paul Nahin gives us the first complete history of this fascinating area of mathematics, from its classical analytical beginnings to the present day. Drawing on game theory, geometry, linear algebra, target-tracking algorithms, and much

  11. Test of time: what if little Albert had escaped?

    Science.gov (United States)

    Field, Andy P; Nightingale, Zoë C

    2009-04-01

    Watson and Rayner's (1920) ;Little Albert' experiment has become one of the most famous studies in psychology. It is a staple of many general psychology textbooks and is part of the very fabric of the discipline's folklore. Despite this fame, the study has been widely criticized in the nearly 90 years since it was published for its lack of methodological rigour. This article attempts to evaluate the contribution of the ;little Albert' study to modern clinical psychology by speculating on what theories and treatments of child anxiety would look like in a parallel universe in which the study never took place because ;little Albert' escaped from the hospital in which Watson tested him.

  12. Readout of a superconducting qubit. A problem of quantum escape processes for driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Verso, Alvise

    2010-10-27

    density in the rotating frame. We found that a position-position interaction between system and bath in the laboratory frame translates into additional momentum-momentum couplings in the rotating frame. We introduced the concept of an effective temperature to analyze the energy exchange between system and bath. For a structured environment we found a negative effective temperature physically corresponding to the fact that absorption becomes more probable than emission and a population inversion is induced. This effect can explain recent experimental observations of enhanced relaxation in a quantronium circuit coupled to a cavity bifurcation amplifier. Finally we applied the approach on the new master equation in the rotating frame to calculate the quantum escape rate for the Duffing oscillator. We discovered that there is an additional quantum effect compared to the case of a static barrier. In the rotating frame the quantum fluctuations that accompany relaxation of the system coupled to a bath lead to diffusion away from one stationary state and to a transition over the dynamic barrier to the second stationary state. This mechanism is due to the particular form of the interaction between system and bath. We found also that by tuning the bifurcation parameter we can change the effective friction. So, we easily can move from the underdamped regime, studied in this work, to the classical overdamped regime and finally to the quantum overdamped regime. (orig.)

  13. The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations.

    Directory of Open Access Journals (Sweden)

    Rebecca Batorsky

    2014-10-01

    Full Text Available Cytotoxic T lymphocytes (CTL are a major factor in the control of HIV replication. CTL arise in acute infection, causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, [Formula: see text], as well as cost to viral replication, [Formula: see text]. The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of [Formula: see text] from published experimental studies to be in the range (0.01-0.86 and show that the assumption of complete recognition loss ([Formula: see text] leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes

  14. The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations.

    Science.gov (United States)

    Batorsky, Rebecca; Sergeev, Rinat A; Rouzine, Igor M

    2014-10-01

    Cytotoxic T lymphocytes (CTL) are a major factor in the control of HIV replication. CTL arise in acute infection, causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, [Formula: see text], as well as cost to viral replication, [Formula: see text]. The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of [Formula: see text] from published experimental studies to be in the range (0.01-0.86) and show that the assumption of complete recognition loss ([Formula: see text]) leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes that can be

  15. Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology.

    Science.gov (United States)

    Yang, Ting; Zheng, Jin; Cheng, Qian; Hu, Yan-Yan; Chan, Candace K

    2017-07-05

    Composite polymer solid electrolytes (CPEs) containing ceramic fillers embedded inside a polymer-salt matrix show great improvements in Li(+) ionic conductivity compared to the polymer electrolyte alone. Lithium lanthanum zirconate (Li7La3Zr2O12, LLZO) with a garnet-type crystal structure is a promising solid Li(+) conductor. We show that by incorporating only 5 wt % of the ceramic filler comprising undoped, cubic-phase LLZO nanowires prepared by electrospinning, the room temperature ionic conductivity of a polyacrylonitrile-LiClO4-based composite is increased 3 orders of magnitude to 1.31 × 10(-4) S/cm. Al-doped and Ta-doped LLZO nanowires are also synthesized and utilized as fillers, but the conductivity enhancement is similar as for the undoped LLZO nanowires. Solid-state nuclear magnetic resonance (NMR) studies show that LLZO NWs partially modify the PAN polymer matrix and create preferential pathways for Li(+) conduction through the modified polymer regions. CPEs with LLZO nanoparticles and Al2O3 nanowire fillers are also studied to elucidate the role of filler type (active vs passive), LLZO composition (undoped vs doped), and morphology (nanowire vs nanoparticle) on the CPE conductivity. It is demonstrated that both intrinsic Li(+) conductivity and nanowire morphology are needed for optimal performance when using 5 wt % of the ceramic filler in the CPE.

  16. Controlling Solid-Gas Reactions at Nanoscale for Enhanced Thin Film Morphologies and Device Performances in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.

    Science.gov (United States)

    Jiang, Chengyang; Hsieh, Yao-Tsung; Zhao, Hongxiang; Zhou, Huanping; Yang, Yang

    2015-09-02

    Using Cu2ZnSn(S,Se)4 (CZTSSe) as a model system, we demonstrate the kinetic control of solid-gas reactions at nanoscale by manipulating the surface chemistry of both sol-gel nanoparticles (NPs) and colloidal nanocrystals (NCs). Specifically, we first identify that thiourea (commonly used as sulfur source in sol-gel processes for metal sulfides) can transform into melamine upon film formation, which serves as surface ligands for as-formed Cu2ZnSnS4 (CZTS) NPs. We further reveal that the presence of these surface ligands can significantly affect the outcome of the solid-gas reactions, which enables us to effectively control the selenization process during the fabrication of CZTSSe solar cells and achieve optimal film morphologies (continuous large grains) by fine-tuning the amount of surface ligands used. Such enhancement leads to better light absorption and allows us to achieve 6.5% efficiency from CZTSSe solar cells processed via a sol-gel process using nontoxic, low boiling point mixed solvents. We believe our discovery that the ligand of particulate precursors can significantly affect solid-gas reactions is universal to solid-state chemistry and will boost further research in both understanding the fundamentals of solid-state reactions at nanoscale and taking advantage of these reactions to fabricate crystalline thin film semiconductors with better morphologies and performances.

  17. Enhancement of Median Nerve Regeneration by Mesenchymal Stem Cells Engraftment in an Absorbable Conduit: Improvement of Peripheral Nerve Morphology with Enlargement of Somatosensory Cortical Representation.

    Directory of Open Access Journals (Sweden)

    Julia Teixeira Oliveira

    2014-10-01

    Full Text Available We studied the morphology and the cortical representation of the median nerve (MN, 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL conduit with or without bone marrow-derived mesenchymal stem cell (MSC transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1, electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in 3 groups: MN Intact (n=4, PCL-Only (n=3 and PCL+MSC (n=3. Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group or without (PCL-Only group injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to 5 animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383±390 fibers; 2.3 mm2, respectively than the PCL-Only group (2,226±575 fibers; 1.6 mm2. In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN.

  18. Channel Morphology and Bed Sediment Characteristics Before and After Habitat Enhancement Activities in the Uridil Property, Platte River, Nebraska, Water Years 2005-2008

    Science.gov (United States)

    Kinzel, Paul J.

    2009-01-01

    Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per

  19. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.

    Science.gov (United States)

    Kim, Hye-Na; Yoo, Haemin; Moon, Jun Hyuk

    2013-05-21

    We demonstrated the preparation of graphene-embedded 3D inverse opal electrodes for use in DSSCs. The graphene was incorporated locally into the top layers of the inverse opal structures and was embedded into the TiO2 matrix via post-treatment of the TiO2 precursors. DSSCs comprising the bare and 1-5 wt% graphene-incorporated TiO2 inverse opal electrodes were compared. We observed that the local arrangement of graphene sheets effectively enhanced electron transport without significantly reducing light harvesting by the dye molecules. A high efficiency of 7.5% was achieved in DSSCs prepared with the 3 wt% graphene-incorporated TiO2 inverse opal electrodes, constituting a 50% increase over the efficiencies of DSSCs prepared without graphene. The increase in efficiency was mainly attributed to an increase in J(SC), as determined by the photovoltaic parameters and the electrochemical impedance spectroscopy analysis.

  20. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  1. Slow and Fast Escape for Open Intermittent Maps

    Science.gov (United States)

    Demers, Mark F.; Todd, Mike

    2017-04-01

    If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.

  2. Ultra-fast Escape of a Octopus-inspired Rocket

    Science.gov (United States)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  3. Escape of Hydrogen from the Exosphere of Mars

    Science.gov (United States)

    Bhattacharyya, Dolon; Clarke, John T.; Bertaux, Jean-Loup; Chaufray, Jean-Yves; Mayyasi-Matta, Majd A.

    2016-10-01

    After decades of exploration, the martian neutral hydrogen exosphere has remained largely uncharacterized even today. In my dissertation I have attempted to constrain the characteristics of the martian hydrogen exosphere using Hubble Space Telescope observations obtained during October-November 2007 and 2014. These observations reveal short-term seasonal changes exhibited by the martian hydrogen exosphere that are inconsistent with the diffusion-limited escape scenario. This seasonal behavior adds a new element towards backtracking the history of water loss from Mars. Modeling of the data also indicates the likely presence of a superthermal population of hydrogen created by non-thermal processes at Mars, another key element to understand the present-day escape. Exploration of the latitudinal symmetry of the martian exosphere indicates that it is symmetric above 2.5 martian radii and asymmetric below this altitude, which could be due to temperature differences between the day and night sides. Finally, the large uncertainties in determining the characteristics of the martian exosphere after decades of exploration is due to various assumptions about the intrinsic characteristics of the martian exosphere in the modeling process, degeneracy in the two modeling parameters temperature and density of the hydrogen atoms, unaccounted seasonal effects, and uncertainties introduced from spacecraft instrumentation as well as their viewing geometry.

  4. Random fluctuation leads to forbidden escape of particles.

    Science.gov (United States)

    Rodrigues, Christian S; de Moura, Alessandro P S; Grebogi, Celso

    2010-08-01

    A great number of physical processes are described within the context of Hamiltonian scattering. Previous studies have rather been focused on trajectories starting outside invariant structures, since the ones starting inside are expected to stay trapped there forever. This is true though only for the deterministic case. We show however that, under finitely small random fluctuations of the field, trajectories starting inside Kolmogorov-Arnold-Moser (KAM) islands escape within finite time. The nonhyperbolic dynamics gains then hyperbolic characteristics due to the effect of the random perturbed field. As a consequence, trajectories which are started inside KAM curves escape with hyperboliclike time decay distribution, and the fractal dimension of a set of particles that remain in the scattering region approaches that for hyperbolic systems. We show a universal quadratic power law relating the exponential decay to the amplitude of noise. We present a random walk model to relate this distribution to the amplitude of noise, and investigate these phenomena with a numerical study applying random maps.

  5. Numerical simulation of a self-propelled copepod during escape

    Science.gov (United States)

    Sotiropoulos, Fotis; Borazjani, Iman; Malkiel, Edwin; Katz, Josef

    2008-11-01

    Obtaining the 3D flow field, forces, and power is essential for understanding the high accelerations of a copepod during the escap. We carry out numerical simulations to study a free swimming copepod using the sharp-interface immersed boundary, fluid-structure interaction (FSI) approach of Borazjani et al. (J Compu Phys, 2008, 227, p 7587-7620). We use our previous tethered copepod model with a realistic copepod-like body, including all the appendages with the appendages motion prescribed from high-resolution, cinematic dual digital holography. The simulations are performed in a frame of reference attached to the copepod whose velocity is calculated by considering the forces acting on the copepod. The self-propelled simulations are challenging due to the destabilizing effects of the large added mass resulting from the low copepod mass and fast acceleration during the escape. Strongly-coupled FSI with under-relaxation and the Aitken acceleration technique is used to obtain stable and robust FSI iterations. The computed results for the self-propelled model are analyzed and compared with our earlier results for the tethered model.

  6. Metastatic Tumor Dormancy in Cutaneous Melanoma: Does Surgery Induce Escape?

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, William W. [Department of Surgery, University of California at San Francisco, 513 Parnassus Avenue, Room S-321, San Francisco, CA 94143 (United States); Fadaki, Niloofar; Leong, Stanley P., E-mail: leongsx@cpmcri.org [Department of Surgery and Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, 2340 Clay Street, 2nd floor, San Francisco, CA 94115 (United States)

    2011-02-21

    According to the concept of tumor dormancy, tumor cells may exist as single cells or microscopic clusters of cells that are clinically undetectable, but remain viable and have the potential for malignant outgrowth. At metastatic sites, escape from tumor dormancy under more favorable local microenvironmental conditions or through other, yet undefined stimuli, may account for distant recurrence after supposed “cure” following surgical treatment of the primary tumor. The vast majority of evidence to date in support of the concept of tumor dormancy originates from animal studies; however, extensive epidemiologic data from breast cancer strongly suggests that this process does occur in human disease. In this review, we aim to demonstrate that metastatic tumor dormancy does exist in cutaneous melanoma based on evidence from mouse models and clinical observations of late recurrence and occult transmission by organ transplantation. Experimental data underscores the critical role of impaired angiogenesis and immune regulation as major mechanisms for maintenance of tumor dormancy. Finally, we examine evidence for the role of surgery in promoting escape from tumor dormancy at metastatic sites in cutaneous melanoma.

  7. Metastatic Tumor Dormancy in Cutaneous Melanoma: Does Surgery Induce Escape?

    Directory of Open Access Journals (Sweden)

    William W. Tseng

    2011-02-01

    Full Text Available According to the concept of tumor dormancy, tumor cells may exist as single cells or microscopic clusters of cells that are clinically undetectable, but remain viable and have the potential for malignant outgrowth. At metastatic sites, escape from tumor dormancy under more favorable local microenvironmental conditions or through other, yet undefined stimuli, may account for distant recurrence after supposed “cure” following surgical treatment of the primary tumor. The vast majority of evidence to date in support of the concept of tumor dormancy originates from animal studies; however, extensive epidemiologic data from breast cancer strongly suggests that this process does occur in human disease. In this review, we aim to demonstrate that metastatic tumor dormancy does exist in cutaneous melanoma based on evidence from mouse models and clinical observations of late recurrence and occult transmission by organ transplantation. Experimental data underscores the critical role of impaired angiogenesis and immune regulation as major mechanisms for maintenance of tumor dormancy. Finally, we examine evidence for the role of surgery in promoting escape from tumor dormancy at metastatic sites in cutaneous melanoma.

  8. The C. elegans touch response facilitates escape from predacious fungi.

    Science.gov (United States)

    Maguire, Sean M; Clark, Christopher M; Nunnari, John; Pirri, Jennifer K; Alkema, Mark J

    2011-08-09

    Predator-prey interactions are vital determinants in the natural selection of behavioral traits. Gentle touch to the anterior half of the body of Caenorhabditis elegans elicits an escape response in which the animal quickly reverses and suppresses exploratory head movements [1, 2]. Here, we investigate the ecological significance of the touch response in predator-prey interactions between C. elegans and predacious fungi that catch nematodes using constricting hyphal rings. We show that the constricting rings of Drechslerella doedycoides catch early larval stages with a diameter similar to the trap opening. There is a delay between the ring entry and ring closure, which allows the animal to withdraw from the trap before being caught. Mutants that fail to suppress head movements in response to touch are caught more efficiently than the wild-type. This demonstrates that the coordination of motor programs allows C. elegans to smoothly retract from a fungal noose and evade capture. Our results suggest that selective pressures imposed by predacious fungi have shaped the evolution of C. elegans escape behavior.

  9. Tectonic escape in the evolution of the continental crust

    Science.gov (United States)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  10. Autologous HIV-1 neutralizing antibodies: emergence of neutralization-resistant escape virus and subsequent development of escape virus neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Nielsen, C; Hansen, J E

    1992-01-01

    The capacity of consecutive human sera to neutralize sequentially obtained autologous virus isolates was studied. HIV-1 was isolated three times over a 48-164-week period from three individuals immediately after seroconversion and from two individuals in later stages of infection. Development of ...... escape virus may be part of the explanation of the apparent failure of the immune system to control HIV infection.......The capacity of consecutive human sera to neutralize sequentially obtained autologous virus isolates was studied. HIV-1 was isolated three times over a 48-164-week period from three individuals immediately after seroconversion and from two individuals in later stages of infection. Development...

  11. 非哺乳期乳腺炎性病变的 MR 动态增强形态学表现%The morphological features of dynamic contrast enhanced MR in non lactation mastitis

    Institute of Scientific and Technical Information of China (English)

    赵红; 郑穗生; 邹立巍; 姚文君

    2015-01-01

    Objective To assess the value of the dynamic enhanced MR (DE-MRI)morphological features in diagnosis of non lac-tation mastitis.Methods We retrospectively studied the breast DE-MRI image data of 1 5 patients with non lactation mastitis con-firmed by pathology were retrospectively studies and the lesion morphological features and distribution were analyzed.Results Amonge 1 5 patients with non lactation mastitis,6 cases were the plasma cell mastitis,5 cases were granulomatous mastitis,2 cases were abscess,and 2 cases were cyst associated with inflammation.The typical features of non lactation mastitis on DE-MRI were fast wash-in,centrifugal enhancement sign,blur boundaries between lesions and normal breast tissue,increasing unilateral vessel sign in diseased breast.Conclusion Breast DE-MRI can show typical morphological features of non lactation mastitis.When dynam-ic information is obtained inconveniently,these are helpful in diagnosing and differential diagnosing non lactation mastitis.%目的:探讨乳腺动态增强 MR 形态学表现在非哺乳期乳腺炎性病变的诊断价值。方法回顾性分析经临床穿刺病理证实的15例非哺乳期乳腺炎性病变患者的 MR 动态增强资料,分析病变分布及动态增强形态学特征。结果15例非哺乳期乳腺炎性病变分为导管炎型6例、导管炎合并肉芽肿型5例、导管炎合并脓肿型2例、囊肿伴感染型2例。非哺乳期乳腺炎性病变动态增强特征性表现为快速强化,同层动态增强病灶形态表现为离心性强化,边界模糊,与正常腺体间分界不清,患侧乳房周围血供增多。结论非哺乳期乳腺炎性病变动态增强形态学有特征性表现,当病变血流动力学信息提取困难时,动态增强的形态学提供了重要信息。

  12. Tectonic escape of the Caribbean plate since the Paleocene: a consequence of the Chicxulub meteor impact?

    Science.gov (United States)

    Rangin, C.; Martinez-Reyes, J.; Crespy, A.; Zitter, T. A. C.

    2012-04-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic

  13. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    National Research Council Canada - National Science Library

    Warzinski, Robert P; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J; Levine, Jonathan S

    2014-01-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing...

  14. Optical and morphological properties of SiN{sub x}/Si amorphous multilayer structures grown by Plasma Enhanced Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Santana, G.; Melo, O. de; Monroy, B.M.; Fandino, J.; Ortiz, A.; Alonso, J.C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, A.P. 70-360, Coyoacan (Mexico); Aguilar-Hernandez, J.; Cruz, F.; Contreras-Puentes, G. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional; Edificio 9, U.P.A.L.M. (Mexico)

    2005-08-01

    Very thin layers of Si were grown in between silicon nitride layers using Plasma Enhanced Chemical Vapor Deposition (PECVD) technique and SiH{sub 2}Cl{sub 2}/H{sub 2}/NH{sub 3} mixtures. Deposition conditions were selected to favor Si cluster formation. Room Temperature Photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical and structural properties of the films. Scanning Electron Microscopy (SEM) of the cross section of cleaved samples allowed to observe a clear pattern of Si clusters embedded in the SiN matrix. The UV-VIS absorption spectra present two band edges. We assume that the higher band gap is due to the amorphous Si clusters. RT-PL spectra are characterized by two broad bands: one centered at 1.5 eV and the other at 2.1 eV. The broad luminescence centered at 2.1 eV could be associated with the higher band gap observed in absorption spectrum. After vacuum annealing of the samples at 400 and ordm;C, the band at 2.1 eV disappears. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. TAT-mediated transduction of MafA protein in utero results in enhanced pancreatic insulin expression and changes in islet morphology.

    Directory of Open Access Journals (Sweden)

    Nancy Vargas

    Full Text Available Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3, the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero.

  16. 4D imaging of fluid escape in low permeability shales during heating

    Science.gov (United States)

    Renard, F.; Kobchenko, M.

    2012-04-01

    The coupling between thermal effects and deformation is relevant in many natural geological environments (rising magma, primary migration of hydrocarbons, vents) and has many industrial applications (storage of nuclear wastes, enhanced hydrocarbon recovery, coal exploitation, geothermic plants). When thermal effects involve phase transformation in the rock and production of fluids, a strong coupling may emerge between the processes of fluid escape and the ability of the rock to deform and transport fluids. To better understand the mechanisms of fracture pattern development and fluid escape in low permeability rocks, we performed time-resolved in situ X-ray tomography imaging to investigate the processes that occur during the slow heating (from 60° to 400°C) of organic-rich Green River shale. At about 350°C cracks nucleated in the sample, and as the temperature continued to increase, these cracks propagated parallel to shale bedding and coalesced, thus cutting across the sample. Thermogravimetry and gas chromatography revealed that the fracturing occurring at ~350°C was associated with significant mass loss and release of light hydrocarbons generated by the decomposition of immature organic matter. Kerogen decomposition is thought to cause an internal pressure build up sufficient to form cracks in the shale, thus providing pathways for the outgoing hydrocarbons. We show that a 2D numerical model based on this idea qualitatively reproduces the experimentally observed dynamics of crack nucleation, growth and coalescence, as well as the irregular outlines of the cracks. Our results provide a new description of fracture pattern formation in low permeability shales.

  17. Momentum versus extinction effects in the treatment of self-injurious escape behavior.

    OpenAIRE

    Zarcone, J R; Iwata, B A; Hughes, C.E; Vollmer, T R

    1993-01-01

    An individual's self-injurious escape behavior was treated using a high-probability instructional sequence with and without extinction. When presented alone, the high-probability sequence did not reduce self-injurious behavior. When escape extinction was implemented either alone or in combination with the high-probability sequence, self-injury decreased and compliance increased, suggesting that extinction may be a necessary component of the treatment for behavior problems maintained by escape.

  18. On the relative contributions of positive reinforcement and escape extinction in the treatment of food refusal.

    OpenAIRE

    Piazza, Cathleen C; Patel, Meeta R; Gulotta, Charles S; Sevin, Bari M; Layer, Stacy A

    2003-01-01

    We compared the effects of positive reinforcement alone, escape extinction alone, and positive reinforcement with escape extinction in the treatment of the food and fluid refusal of 4 children who had been diagnosed with a pediatric feeding disorder. Consumption did not increase when positive reinforcement was implemented alone. By contrast, consumption increased for all participants when escape extinction was implemented, independent of the presence or absence of positive reinforcement. Howe...

  19. Vaccination and timing influence SIV immune escape viral dynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Liyen Loh

    2008-01-01

    Full Text Available CD8+ cytotoxic T lymphocytes (CTL can be effective at controlling HIV-1 in humans and SIV in macaques, but their utility is partly offset by mutational escape. The kinetics of CTL escape and reversion of escape mutant viruses upon transmission to MHC-mismatched hosts can help us understand CTL-mediated viral control and the fitness cost extracted by immune escape mutation. Traditional methods for following CTL escape and reversion are, however, insensitive to minor viral quasispecies. We developed sensitive quantitative real-time PCR assays to track the viral load of SIV Gag164-172 KP9 wild-type (WT and escape mutant (EM variants in pigtail macaques. Rapid outgrowth of EM virus occurs during the first few weeks of infection. However, the rate of escape plateaued soon after, revealing a prolonged persistence of WT viremia not detectable by standard cloning and sequencing methods. The rate of escape of KP9 correlated with levels of vaccine-primed KP9-specific CD8+ T cells present at that time. Similarly, when non-KP9 responder (lacking the restricting Mane-A*10 allele macaques were infected with SHIVmn229 stock containing a mixture of EM and WT virus, rapid reversion to WT was observed over the first 2 weeks following infection. However, the rate of reversion to WT slowed dramatically over the first month of infection. The serial quantitation of escape mutant viruses evolving during SIV infection shows that rapid dynamics of immune escape and reversion can be observed in early infection, particularly when CD8 T cells are primed by vaccination. However, these early rapid rates of escape and reversion are transient and followed by a significant slowing in these rates later during infection, highlighting that the rate of escape is significantly influenced by the timing of its occurrence.

  20. Characterization of escape times of Josephson junctions for signal detection.

    Science.gov (United States)

    Addesso, Paolo; Filatrella, Giovanni; Pierro, Vincenzo

    2012-01-01

    The measurement of the escape time of a Josephson junction might be used to detect the presence of a sinusoidal signal embedded in noise when use of standard signal processing tools can be prohibitive due to the extreme weakness of the source or to the huge amount of data. In this paper we show that the prescriptions for the experimental setup and some physical behaviors depend on the detection strategy. More specifically, by exploitation of the sample mean of escape times to perform detection, two resonant regions are identified. At low frequencies there is a stochastic resonance or activation phenomenon, while near the plasma frequency a geometric resonance appears. Furthermore, detection performance in the geometric resonance region is maximized at the prescribed value of the bias current. The naive sample mean detector is outperformed, in terms of error probability, by the optimal likelihood ratio test. The latter exhibits only geometric resonance, showing monotonically increasing performance as the bias current approaches the junction critical current. In this regime the escape times are vanishingly small and therefore performance is essentially limited by measurement electronics. The behavior of the likelihood ratio and sample mean detector for different values of incoming signal to noise ratio is discussed, and a relationship with the error probability is found. Detectors based on the likelihood ratio test could be employed also to estimate unknown parameters in the applied input signal. As a prototypical example we study the phase estimation problem of a sinusoidal current, which is accomplished by using the filter bank approach. Finally we show that for a physically feasible detector the performances are found to be very close to the Cramer-Rao theoretical bound. Applications might be found, for example, in some astronomical detection problems (where the all-sky gravitational and/or radio wave search for pulsars requires the analysis of nearly sinusoidal

  1. Improving escape panel selectivity in Nephrops directed fisheries by actively stimulating fish behaviour

    DEFF Research Database (Denmark)

    Krag, Ludvig Ahm; Herrmann, Bent; Feekings, Jordan P.

    2016-01-01

    with it. To increase the efficiency of such panels, the contact probability needs to be improved. In this study, we investigate to what extent the efficiency of escape panels can be improved by actively stimulating the escape behaviour of fish. The performance of two identical panel sections was compared...... in a twin-trawl system, one with and one without a stimulation device. A new coupled analysis method was used to explicitly quantify the improvements in contact probability and release efficiency for the escape panel. The results demonstrate that by actively stimulating escape behaviour, the contact...

  2. Ancient village fire escape path planning based on improved ant colony algorithm

    Science.gov (United States)

    Xia, Wei; Cao, Kang; Hu, QianChuan

    2017-06-01

    The roadways are narrow and perplexing in ancient villages, it brings challenges and difficulties for people to choose route to escape when a fire occurs. In this paper, a fire escape path planning method based on ant colony algorithm is presented according to the problem. The factors in the fire environment which influence the escape speed is introduced to improve the heuristic function of the algorithm, optimal transfer strategy, and adjustment pheromone volatile factor to improve pheromone update strategy adaptively, improve its dynamic search ability and search speed. Through simulation, the dynamic adjustment of the optimal escape path is obtained, and the method is proved to be feasible.

  3. Antibody escape kinetics of equine infectious anemia virus infection of horses.

    Science.gov (United States)

    Schwartz, Elissa J; Nanda, Seema; Mealey, Robert H

    2015-07-01

    Lentivirus escape from neutralizing antibodies (NAbs) is not well understood. In this work, we quantified antibody escape of a lentivirus, using antibody escape data from horses infected with equine infectious anemia virus. We calculated antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. These quantitative kinetic estimates of antibody escape are important for understanding lentiviral control by antibody neutralization and in developing NAb-eliciting vaccine strategies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. On the relative contributions of positive reinforcement and escape extinction in the treatment of food refusal.

    Science.gov (United States)

    Piazza, Cathleen C; Patel, Meeta R; Gulotta, Charles S; Sevin, Bari M; Layer, Stacy A

    2003-01-01

    We compared the effects of positive reinforcement alone, escape extinction alone, and positive reinforcement with escape extinction in the treatment of the food and fluid refusal of 4 children who had been diagnosed with a pediatric feeding disorder. Consumption did not increase when positive reinforcement was implemented alone. By contrast, consumption increased for all participants when escape extinction was implemented, independent of the presence or absence of positive reinforcement. However, the addition of positive reinforcement to escape extinction was associated with beneficial effects (e.g., greater decreases in negative vocalizations and inappropriate behavior) for some participants.

  5. Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis dalmanni

    Directory of Open Access Journals (Sweden)

    Chapman Tracey

    2008-08-01

    Full Text Available Abstract Background Exaggerated male ornaments and displays often evolve in species where males only provide females with ejaculates during reproduction. Although "good genes" arguments are typically invoked to explain this phenomenon, a simpler alternative is possible if variation in male reproductive quality (e.g. sperm number, ejaculate content, mating rate is an important determinant of female reproductive success. The "phenotype-linked fertility hypothesis" states that female preference for male ornaments or displays has been selected to ensure higher levels of fertility and has driven the evolution of exaggerated male traits. Females of the stalk-eyed fly Teleopsis dalmanni must mate frequently to maintain high levels of fertility and prefer to mate with males exhibiting large eyespan, a condition-dependent sexual ornament. If eyespan indicates male reproductive quality, females could directly increase their reproductive success by mating with males with large eyespan. Here we investigate whether male eyespan indicates accessory gland and testis length, and then ask whether mating with large eyespan males affects female fertility. Results Male eyespan was a better predictor of two key male reproductive traits – accessory gland and testis length – than was body size alone. This positive relationship held true over three levels of increasing environmental stress during the maturation of the adult accessory glands and testes. Furthermore, females housed with a large eyespan male exhibited higher levels of fertility than those with small eyespan males. Conclusion Male eyespan in stalk-eyed flies is subject to strong directional mate preference and is a reliable indicator of male reproductive quality – both because males with larger eyespan have bigger accessory glands and testes, and also as they confer higher fertility on females. Fertility enhancement may have arisen because males with larger eyespan mated more often and/or because

  6. Fifty years of chasing lizards: new insights advance optimal escape theory.

    Science.gov (United States)

    Samia, Diogo S M; Blumstein, Daniel T; Stankowich, Theodore; Cooper, William E

    2016-05-01

    Systematic reviews and meta-analyses often examine data from diverse taxa to identify general patterns of effect sizes. Meta-analyses that focus on identifying generalisations in a single taxon are also valuable because species in a taxon are more likely to share similar unique constraints. We conducted a comprehensive phylogenetic meta-analysis of flight initiation distance in lizards. Flight initiation distance (FID) is a common metric used to quantify risk-taking and has previously been shown to reflect adaptive decision-making. The past decade has seen an explosion of studies focused on quantifying FID in lizards, and, because lizards occur in a wide range of habitats, are ecologically diverse, and are typically smaller and differ physiologically from the better studied mammals and birds, they are worthy of detailed examination. We found that variables that reflect the costs or benefits of flight (being engaged in social interactions, having food available) as well as certain predator effects (predator size and approach speed) had large effects on FID in the directions predicted by optimal escape theory. Variables that were associated with morphology (with the exception of crypsis) and physiology had relatively small effects, whereas habitat selection factors typically had moderate to large effect sizes. Lizards, like other taxa, are very sensitive to the costs of flight.

  7. Danionella dracula, an escape from the cypriniform Bauplan via developmental truncation?

    Science.gov (United States)

    Britz, Ralf; Conway, Kevin W

    2016-02-01

    We provide a detailed account of the osteology of the miniature Asian freshwater cyprinid fish Danionella dracula. The skeleton of D. dracula shows a high degree of developmental truncation when compared to most other cyprinids, including its close relative the zebrafish Danio rerio. Sixty-one bones, parts thereof or cartilages present in most other cyprinids are missing in D. dracula. This impressive organism-wide case of progenesis renders it one of the most developmentally truncated bony fishes or even vertebrates. Danionella dracula lacks six of the eight unique synapomorphies that define the order Cypriniformes and has, thus, departed from the cypriniform Bauplan more dramatically than any other member of this group. This escape from one of the most successful Baupläne among bony fishes may have been facilitated by the organism-wide progenesis encountered in D. dracula. By returning in its skeletal structure to the early developmental condition of other cypriniforms, D. dracula may have managed to overcome the evolutionary constraints associated with this Bauplan and opened up new evolutionary avenues that enabled it to evolve a number of striking morphological novelties, including its tooth-like odontoid processes and a complex drumming apparatus. © 2015 Wiley Periodicals, Inc.

  8. Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu, Xiao-Fei Chen, Yan-Hong Ren, Qing-Yuan Zhan, Chen Wang, Chun Yang

    2011-01-01

    Full Text Available Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI treatment. In the present study, primary rat alveolar type II (ATII cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.

  9. Escape and avoidance learning in the earthworm Eisenia hortensis

    Directory of Open Access Journals (Sweden)

    W. Jeffrey Wilson

    2014-01-01

    Full Text Available Interest in instrumental learning in earthworms dates back to 1912 when Yerkes concluded that they can learn a spatial discrimination in a T-maze. Rosenkoetter and Boice determined in the 1970s that the “learning” that Yerkes observed was probably chemotaxis and not learning at all. We examined a different form of instrumental learning: the ability to learn both to escape and to avoid an aversive stimulus. Freely moving “master” worms could turn off an aversive white light by increasing their movement; the behavior of yoked controls had no effect on the light. We demonstrate that in as few as 12 trials the behavior of the master worms comes under the control of this contingency.

  10. Will 3552 Don Quixote escape from the Solar System?

    Directory of Open Access Journals (Sweden)

    Suryadi Siregar

    2011-05-01

    Full Text Available Asteroid 1983 SA, well known as 3552 Don Quixote, is one of Near Earth Asteroids (NEAs which is the most probable candidate for the cometary origin, or otherwise as Jupiter-Family-Comets (JFCs. The aim of this study is to investigate the possibility of 3552 Don Quixote to be ejected from the Solar System. This paper presents an orbital evolution of 100 hypothetical asteroids generated by cloning 3552 Don Quixote. Investigation of its orbital evolution is conducted by using the SWIFT subroutine package, where the gravitational perturbations of eight major planets in the Solar System are considered. Over very short time scales (220 kyr relative to the Solar System life time (10 Gyr, the asteroid 3552 Don Quixote gave an example of chaotic motion that can cause asteroid to move outward and may be followed by escaping from the Solar System. Probability of ejection within the 220 kyr time scale is 50%.

  11. Novel Anti-Melanoma Immunotherapies: Disarming Tumor Escape Mechanisms

    Directory of Open Access Journals (Sweden)

    Sivan Sapoznik

    2012-01-01

    Full Text Available The immune system fights cancer and sometimes temporarily eliminates it or reaches an equilibrium stage of tumor growth. However, continuous immunological pressure also selects poorly immunogenic tumor variants that eventually escape the immune control system. Here, we focus on metastatic melanoma, a highly immunogenic tumor, and on anti-melanoma immunotherapies, which recently, especially following the FDA approval of Ipilimumab, gained interest from drug development companies. We describe new immunomodulatory approaches currently in the development pipeline, focus on the novel CEACAM1 immune checkpoint, and compare its potential to the extensively described targets, CTLA4 and PD1. This paper combines multi-disciplinary approaches and describes anti-melanoma immunotherapies from molecular, medical, and business angles.

  12. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils.

    Science.gov (United States)

    Corleis, Björn; Korbel, Daniel; Wilson, Robert; Bylund, Johan; Chee, Ronnie; Schaible, Ulrich E

    2012-07-01

    Neutrophils enter sites of infection, where they can eliminate pathogenic bacteria in an oxidative manner. Despite their predominance in active tuberculosis lesions, the function of neutrophils in this important human infection is still highly controversial. We observed that virulent Mycobacterium tuberculosis survived inside human neutrophils despite prompt activation of these defence cells' microbicidal effectors. Survival of M. tuberculosis was accompanied by necrotic cell death of infected neutrophils. Necrotic cell death entirely depended on radical oxygen species production since chronic granulomatous disease neutrophils were protected from M. tuberculosis-triggered necrosis. More, importantly, the M. tuberculosis ΔRD1 mutant failed to induce neutrophil necrosis rendering this strain susceptible to radical oxygen species-mediated killing. We conclude that this virulence function is instrumental for M. tuberculosis to escape killing by neutrophils and contributes to pathogenesis in tuberculosis.

  13. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mauricio P. Pinto

    2016-09-01

    Full Text Available Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1 upregulation of compensatory/alternative pathways for angiogenesis; (2 vasculogenic mimicry; and (3 vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.

  14. The structure of spider's web fast escaping sets

    CERN Document Server

    Osborne, J W

    2010-01-01

    Building on recent work by Rippon and Stallard, we explore the intricate structure of the spider's web fast escaping sets associated with certain transcendental entire functions. Our results are expressed in terms of the components of the complement of the set (the 'holes' in the web). We describe the topology of such components and give a characterisation of their possible orbits under iteration. We show that there are uncountably many components having each of a number of orbit types, and we prove that components with bounded orbits are quasiconformally homeomorphic to components of the filled Julia set of a polynomial. We also show that there are singleton periodic components and that these are dense in the Julia set.

  15. Bacillus cereus immune escape: a journey within macrophages.

    Science.gov (United States)

    Tran, Seav-Ly; Ramarao, Nalini

    2013-10-01

    During bacterial infection, professional phagocytes are attracted to the site of infection, where they constitute a first line of host cell defense. Their function is to engulf and destroy the pathogens. Thus, bacteria must withstand the bactericidal activity of professional phagocytes, including macrophages to counteract the host immune system. Bacillus cereus infections are characterized by bacteremia despite the accumulation of inflammatory cells at the site of infection. This implies that the bacteria have developed means of resisting the host immune system. Bacillus cereus spores survive, germinate, and multiply in contact with macrophages, eventually producing toxins that kill these cells. However, the exact mechanism by which B. cereus evades immune attack remains unclear. This review addresses the interaction between B. cereus and macrophages, highlighting, in particular, the ways in which the bacteria escape the microbicidal activities of professional phagocytes.

  16. An Introduction to Survival, Evasion, Resistance, and Escape (SERE) Medicine.

    Science.gov (United States)

    Smith, Michael B

    2013-01-01

    When an individual finds himself/herself in a survival, evasion, resistance, or escape (SERE) scenario, the ability to treat injuries/illnesses can be the difference between life and death. SERE schools are responsible for preparing military members for these situations, but the concept of SERE medicine is not particularly well defined. To provide a comprehensive working description of SERE medicine, operational and training components were examined. Evidence suggests that SERE medicine is diverse, injury/illness patterns are situationally dependent, and treatment options often differ from conventional clinical medicine. Ideally, medical lessons taught in SERE training are based on actual documented events. Unfortunately, the existing body of literature is dated and does not appear to be expanding. In this article, four distinct facets of SERE medicine are presented to establish a basis for future discussion and research. Recommendations to improve SERE medical curricula and data-gathering processes are also provided.

  17. On Escaping a Galaxy Cluster in an Accelerating Universe

    CERN Document Server

    Stark, Alejo; Gifford, Daniel

    2016-01-01

    We derive the escape velocity profile for an Einasto density field in an accelerating universe and demonstrate its physical viability by comparing theoretical expectations to both light-cone data generated from N-body simulations and archival data on 20 galaxy clusters. We demonstrate that the projection function ($g(\\beta )$) is deemed physically viable only for the theoretical expectation that includes a cosmology-dependent term. Using simulations, we show that the inferred velocity anisotropy is more than 6{\\sigma} away from the expected value for the theoretical profile that ignores the acceleration of the universe. In the archival data, we constrain the average velocity anisotropy parameter of a sample of 20 clusters to be $\\beta ={0.248}_{-0.360}^{+0.164}$ at the 68% confidence level. Lastly, we briefly discuss how our analytic model may be used as a novel cosmological probe based on galaxy clusters.

  18. Fast Escape from Quantum Mazes in Integrated Photonics

    CERN Document Server

    Caruso, Filippo; Ciriolo, Anna Gabriella; Sciarrino, Fabio; Osellame, Roberto

    2015-01-01

    Escaping from a complex maze, by exploring different paths with several decision-making branches in order to reach the exit, has always been a very challenging and fascinating task. Wave field and quantum objects may explore a complex structure in parallel by interference effects, but without necessarily leading to more efficient transport. Here, inspired by recent observations in biological energy transport phenomena, we demonstrate how a quantum walker can efficiently reach the output of a maze by partially suppressing the presence of interference. In particular, we show theoretically an unprecedented improvement in transport efficiency for increasing maze size with respect to purely quantum and classical approaches. In addition, we investigate experimentally these hybrid transport phenomena, by mapping the maze problem in an integrated waveguide array, probed by coherent light, hence successfully testing our theoretical results. These achievements may lead towards future bio-inspired photonics technologies...

  19. The morphological and semi-quantitative study of contrast-enhanced color Doppler energy in renal perfusion%造影增强能量图对肾灌注形态学及半定量实验研究

    Institute of Scientific and Technical Information of China (English)

    周翔; 张青萍; 高兴成; 乐桂蓉

    2001-01-01

    Objective To evaluate the application value of the contrast-enhanced color Doppler energy (CDE) in renal perfuison.Methods The renal arteries of 5 rabbits were progressively stenosed at three level. The morphology characterizes and time-intensity curve were studied at every stenosis level after contrast injection as bolus through peripheral vein.Results The contrast-enhanced absence of the cortex outer layer was clearly displayed by the contrast-enhanced CDE. The contrast-enhanced absence represents the reassignment of the re-perfusion renal blood under the ischemia condition. The kidney is the good organ in time-intensity curve study and the parameters of the curve can effectively describe the renal perfusion.Conclusions Contrast-enhanced CDE is good way to valuate the renal perfusion function.%目的 探讨造影增强肾能量图对缺血性肾灌注形态学的评价价值及利用时间-强度曲线半定量分析肾灌注功能的应用价值。方法 对5只实验兔递进性钳夹肾动脉主干,对每一钳夹级别均进行造影实验,采集实验动态图像,分析图像形态特征,并依据时间序列对不同部位行时间-强度曲线半定量分析。结果 造影增强肾能量图可敏感反映缺血状态下皮质外层血流再灌注分配的规律。肾是进行时间-强度曲线半定量分析的良好脏器,时间-强度曲线的相关参数可有效反映肾血流灌注量的变化。结论 造影增强肾能量图是评价肾组织灌注功能的良好手段。

  20. Effects of enhanced ultraviolet-B radiation on water use efficiency, stomatal conductance, leaf nitrogen content and morphological characteristics of Spiraea pubesoens in a warm-temperate deciduous broad-leaved forest

    Institute of Scientific and Technical Information of China (English)

    CHEN Lan; ZHANG Shouren

    2007-01-01

    Spiraeapubescens,a common shrub in the warm temperate deciduous forest zone which is distributed in the Dongling Mountain area of Beijing,was exposed to ambient and enhanced ultraviolet-B(UV-B,280-320 nm)radiation by artificially supplying a daily dose of 9.4 kJ/m2 for three growing seasons,a level that simulated a 17% depletion in stratospheric ozone.The objective of this study was to explore the effects of long-term UV-B enhancement on stomatal conductance,leaf tissue δ13C,leaf water content,and leaf area.Particular attention was paid to the effects of UV-B radiation on water use efficiency(WUE)and leaf total nitrogen content.Enhanced UV-B radiation significantly reduced leaf area (50.1%)but increased leaf total nitrogen content(102%).These changes were associated with a decrease in stomatal conductance(16.1%)and intercellular CO2 concentration/air CO2 concentration(C/Ca)(4.0%),and an increase in leaf tissue δ13C(20.5%),leaf water content(3.1%),specific leaf weight(SLW)(5.2%)and WUE(4.1%).The effects of UV-B on the plant were greatly affected by the water content of the deep soil(30-40 cm).During the dry season,differences in the stomatat conductance δ13C,and WUE between the control and UV-B treated shrubs were very small;whereas,differences became much greater when soil water stress disappeared.Furthermore,the effects of UV-B became much less significant as the treatment period progressed over the three growing seasons.Correlation analysis showed that enhanced UV-B radiation decreased the strength of the correlation between soil water content and leaf water content, δ13C,Ci/Ca,stomatal conductance,with the exception of WUE that had a significant correlation coefficient with soil water content.These results suggest that WUE would become more sensitive to soil water variation due to UV-B radiation.Based on this experiment,it was found that enhanced UV-B radiation had much more significant effects on morphological traits and growth of S.pubescens than hydro

  1. Initiating a watch list for Ebola virus antibody escape mutations

    Directory of Open Access Journals (Sweden)

    Craig R. Miller

    2016-02-01

    Full Text Available The 2014 Ebola virus (EBOV outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.

  2. RpoS controls the Vibrio cholerae mucosal escape response.

    Directory of Open Access Journals (Sweden)

    Alex Toftgaard Nielsen

    2006-10-01

    Full Text Available Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the "mucosal escape response," this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR. Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle.

  3. Whole-body volume regulation and escape from antidiuresis.

    Science.gov (United States)

    Verbalis, Joseph G

    2006-07-01

    Both individual cells and organs regulate their volume in response to sustained hypo-osmolality via solute and water losses. Similar processes occur in the whole body to regulate the volumes of extracellular fluid (ECF) and intravascular spaces toward normal levels. Body water losses occur via the phenomena "escape from antidiuresis"; solute losses occur through the secondary natriuresis induced by water retention. As a result of resistance to arginine vasopressin (AVP) signaling, escape from antidiuresis is caused by downregulation of kidney aquaporin-2 expression despite high AVP plasma levels. Recent data have implicated downregulation of vasopressin V2R as a potential mechanism of resistance, and suggest that this may be a result of decreased intrarenal angiotensin II signaling in combination with increased intrarenal nitric oxide and prostaglandin E2 signaling. The natriuresis that results in volume regulation of the ECF and vascular spaces is the result of intrarenal hemodynamic changes produced by volume expansion, but the degree to which these effects are modulated by aldosterone secretion and the activity of distal sodium cotransporters and channels remains to be elucidated. The clinical implication of these volume-regulatory processes is that the chronic hyponatremic state is one of water retention and solute losses from intracellular fluid and ECF compartments. The degree to which solute losses versus water retention contribute to hyponatremia will vary in association with many factors, including the etiology of the hyponatremia, the rapidity of development of the hyponatremia, the chronicity of the hyponatremia, the volume of daily water loading, and individual variability. Understanding these volume-regulatory processes allows a better understanding of many aspects of the conundrum of patients with "clinical euvolemia" and dilutional hyponatremia from AVP-induced water retention.

  4. RpoS controls the Vibrio cholerae mucosal escape response.

    Directory of Open Access Journals (Sweden)

    Alex Toftgaard Nielsen

    2006-10-01

    Full Text Available Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the "mucosal escape response," this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR. Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle.

  5. Convergent evolution of escape from hepaciviral antagonism in primates.

    Science.gov (United States)

    Patel, Maulik R; Loo, Yueh-Ming; Horner, Stacy M; Gale, Michael; Malik, Harmit S

    2012-01-01

    The ability to mount an interferon response on sensing viral infection is a critical component of mammalian innate immunity. Several viruses directly antagonize viral sensing pathways to block activation of the host immune response. Here, we show that recurrent viral antagonism has shaped the evolution of the host protein MAVS--a crucial component of the viral-sensing pathway in primates. From sequencing and phylogenetic analyses of MAVS from 21 simian primates, we found that MAVS has evolved under strong positive selection. We focused on how this positive selection has shaped MAVS' susceptibility to Hepatitis C virus (HCV). We functionally tested MAVS proteins from diverse primate species for their ability to resist antagonism by HCV, which uses its protease NS3/4A to cleave human MAVS. We found that MAVS from multiple primates are resistant to inhibition by the HCV protease. This resistance maps to single changes within the protease cleavage site in MAVS, which protect MAVS from getting cleaved by the HCV protease. Remarkably, most of these changes have been independently acquired at a single residue 506 that evolved under positive selection. We show that "escape" mutations lower affinity of the NS3 protease for MAVS and allow it to better restrict HCV replication. We further show that NS3 proteases from all other primate hepaciviruses, including the highly divergent GBV-A and GBV-C viruses, are functionally similar to HCV. We conclude that convergent evolution at residue 506 in multiple primates has resulted in escape from antagonism by hepaciviruses. Our study provides a model whereby insights into the ancient history of viral infections in primates can be gained using extant host and virus genes. Our analyses also provide a means by which primates might clear infections by extant hepaciviruses like HCV.

  6. Escaped and Trapped Emission of Organic Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    LIANG Shi-Xiong; WU Zhao-Xin; ZHAO Xuan-Ke; HOU Xun

    2012-01-01

    By locating the emitters around the first and second antinode of the metal electrode, the escaped and trapped emission of small molecule based bottom emission organic light-emitting diodes is investigated by using an integrating sphere, a fiber spectrometer and a glass hemisphere. It is found that the external coupling ratio by locating the emitters at the second antinode (at a distance of 220 nm from the cathode) is 70%, which is higher than that of an emitter at the first antinode (60 nm from the cathode) in theory and experiment. Extending the "half-space" dipole model by taking the dipole radiation pattern into account, we also calculate the optical coupling efficiency for the emitter at both the first and second antinode. Our experimental and theoretical results will benefit the optimization of device structures for the higher out-coupling efficiency.%By locating the emitters around the first and second antinode of the metal electrode,the escaped and trapped emission of small molecule based bottom emission organic light-emitting diodes is investigated by using an integrating sphere,a fiber spectrometer and a glass hemisphere.It is found that the external coupling ratio by locating the emitters at the second antinode (at a distance of 220 nm from the cathode) is 70%,which is higher than that of an emitter at the first antinode (60nm from the cathode) in theory and experiment.Extending the "half-space" dipole model by taking the dipole radiation pattern into account,we also calculate the optical coupling efficiency for the emitter at both the first and second antinode.Our experimental and theoretical results will benefit the optimization of device structures for the higher out-coupling efficiency.

  7. Phenotypic mismatches reveal escape from arms-race coevolution.

    Science.gov (United States)

    Hanifin, Charles T; Brodie, Edmund D; Brodie, Edmund D

    2008-03-11

    Because coevolution takes place across a broad scale of time and space, it is virtually impossible to understand its dynamics and trajectories by studying a single pair of interacting populations at one time. Comparing populations across a range of an interaction, especially for long-lived species, can provide insight into these features of coevolution by sampling across a diverse set of conditions and histories. We used measures of prey traits (tetrodotoxin toxicity in newts) and predator traits (tetrodotoxin resistance of snakes) to assess the degree of phenotypic mismatch across the range of their coevolutionary interaction. Geographic patterns of phenotypic exaggeration were similar in prey and predators, with most phenotypically elevated localities occurring along the central Oregon coast and central California. Contrary to expectations, however, these areas of elevated traits did not coincide with the most intense coevolutionary selection. Measures of functional trait mismatch revealed that over one-third of sampled localities were so mismatched that reciprocal selection could not occur given current trait distributions. Estimates of current locality-specific interaction selection gradients confirmed this interpretation. In every case of mismatch, predators were "ahead" of prey in the arms race; the converse escape of prey was never observed. The emergent pattern suggests a dynamic in which interacting species experience reciprocal selection that drives arms-race escalation of both prey and predator phenotypes at a subset of localities across the interaction. This coadaptation proceeds until the evolution of extreme phenotypes by predators, through genes of large effect, allows snakes to, at least temporarily, escape the arms race.

  8. Phenotypic mismatches reveal escape from arms-race coevolution.

    Directory of Open Access Journals (Sweden)

    Charles T Hanifin

    2008-03-01

    Full Text Available Because coevolution takes place across a broad scale of time and space, it is virtually impossible to understand its dynamics and trajectories by studying a single pair of interacting populations at one time. Comparing populations across a range of an interaction, especially for long-lived species, can provide insight into these features of coevolution by sampling across a diverse set of conditions and histories. We used measures of prey traits (tetrodotoxin toxicity in newts and predator traits (tetrodotoxin resistance of snakes to assess the degree of phenotypic mismatch across the range of their coevolutionary interaction. Geographic patterns of phenotypic exaggeration were similar in prey and predators, with most phenotypically elevated localities occurring along the central Oregon coast and central California. Contrary to expectations, however, these areas of elevated traits did not coincide with the most intense coevolutionary selection. Measures of functional trait mismatch revealed that over one-third of sampled localities were so mismatched that reciprocal selection could not occur given current trait distributions. Estimates of current locality-specific interaction selection gradients confirmed this interpretation. In every case of mismatch, predators were "ahead" of prey in the arms race; the converse escape of prey was never observed. The emergent pattern suggests a dynamic in which interacting species experience reciprocal selection that drives arms-race escalation of both prey and predator phenotypes at a subset of localities across the interaction. This coadaptation proceeds until the evolution of extreme phenotypes by predators, through genes of large effect, allows snakes to, at least temporarily, escape the arms race.

  9. ESCAP holds expert group meeting on population issues facing adolescents.

    Science.gov (United States)

    1997-01-01

    This article summarizes the activities at the ESCAP Population Division Expert Group Meeting on Adolescents that was held during September-October 1997 in Bangkok, Thailand. The meeting was a follow-up to the 1994 International Conference on Population and Development (ICPD). The meeting considered 1) the ICPD recommendations; 2) the recommendations contained in the Jakarta Plan of Action on Human Resource Development; and 3) the Proposals for Action on Human Resources Development for Youth in Asia and the Pacific. Participants included about 25 people from Australia, Bangladesh, China, India, Indonesia, Philippines, Sri Lanka, and Thailand. The conference relied on 8 invited experts, two resource persons, advisors from the UNFPA Country Support Team for East and Southeast Asia, and representatives of UNFPA, the Population Council, and the East-West Center. A concern was the declining age of menarche of girls in the ESCAP region and the increasing age of marriage. During the time of menarche and marriage, girls are migrating and moving away from their family and community in rural areas. Family structure and relationships are changing. Increases are observed in adolescent premarital sexual activity, the incidence of sexually transmitted diseases, substance abuse, teenage pregnancy, and abortion. The mass media and information technologies have both a positive and a negative influence on adolescents. Parent-child communication exchanges and teacher-student exchanges are "less than ideal." Old traditions and practices change slower than people change. Boys and girls are affected differently by the sociocultural and economic environment. The societal norms set expectations for behavior that may conflict with individual beliefs and practices. Changes brought by globalization and rapid economic growth provide greater opportunity for young girls and women to obtain employment and autonomy.

  10. Morphological classification of nanoceramic aggregates

    Science.gov (United States)

    Crosta, Giovanni F.; Kang, Bongwoo; Ospina, Carolina; Sung, Changmo

    2005-01-01

    Aluminum silicate nanoaggregates grown at near-room temperature on an organic template under a variety of experimental conditions have been imaged by transmission electron microscopy. Images have been automatically classified by an algorithm based on "spectrum enhancement", multivariate statistics and supervised optimization. Spectrum enhancement consists of subtracting, in the log scale, a known function of wavenumber from the angle averaged power spectral density of the image. Enhanced spectra of each image, after polynomial interpolation, have been regarded as morphological descriptors and as such submitted to principal components analysis nested with a multiobjective parameter optimization algorithm. The latter has maximized pairwise discrimination between classes of materials. The role of the organic template and of a reaction parameter on aggregate morphology has been assessed at two magnification scales. Classification results have also been related to crystal structure data derived from selected area electron diffraction patterns.

  11. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood.

    NARCIS (Netherlands)

    Fradin, C.; de Groot, P.W.J.; Maccallum, D.; Schaller, M.; Klis, F.M.; Odds, F.C.; Hube, B.

    2005-01-01

    Survival in blood and escape from blood vessels into tissues are essential steps for the yeast Candida albicans to cause systemic infections. To elucidate the influence of blood components on fungal growth, morphology and transcript profile during bloodstream infections, we exposed C. albicans to bl

  12. Hepatitis A Virus Vaccine Escape Variants and Potential New Serotype Emergence

    Science.gov (United States)

    Pérez-Sautu, Unai; Costafreda, M. Isabel; Caylà, Joan; Tortajada, Cecilia; Lite, Josep; Bosch, Albert

    2011-01-01

    Six hepatitis A virus antigenic variants that likely escaped the protective effect of available vaccines were isolated, mostly from men who have sex with men. The need to complete the proper vaccination schedules is critical, particularly in the immunocompromised population, to prevent the emergence of vaccine-escaping variants. PMID:21470474

  13. Hepatitis A Virus Vaccine Escape Variants and Potential New Serotype Emergence

    OpenAIRE

    Pérez-Sautu, Unai; Costafreda, M. Isabel; Caylà, Joan; Tortajada, Cecilia; Lite, Josep; Bosch, Albert; Rosa M Pintó

    2011-01-01

    Six hepatitis A virus antigenic variants that likely escaped the protective effect of available vaccines were isolated, mostly from men who have sex with men. The need to complete the proper vaccination schedules is critical, particularly in the immunocompromised population, to prevent the emergence of vaccine-escaping variants.

  14. Computer Self-Efficacy, Competitive Anxiety and Flow State: Escaping from Firing Online Game

    Science.gov (United States)

    Hong, Jon-Chao; Pei-Yu, Chiu; Shih, Hsiao-Feng; Lin, Pei-Shin; Hong, Jon-Chao

    2012-01-01

    Flow state in game playing affected by computer self-efficacy and game competitive anxiety was studied. In order to examine the effect of those constructs with high competition, this study select "Escaping from firing online game" which require college students to escape from fire and rescue people and eliminate the fire damage along the way of…

  15. Hepatitis A Virus Vaccine Escape Variants and Potential New Serotype Emergence

    OpenAIRE

    Pérez-Sautu, Unai; Costafreda, M. Isabel; Caylà, Joan; Tortajada, Cecilia; Lite, Josep; Bosch, Albert; Pintó, Rosa M.

    2011-01-01

    Six hepatitis A virus antigenic variants that likely escaped the protective effect of available vaccines were isolated, mostly from men who have sex with men. The need to complete the proper vaccination schedules is critical, particularly in the immunocompromised population, to prevent the emergence of vaccine-escaping variants.

  16. The Effects of Fixed-Time Escape on Inappropriate and Appropriate Classroom Behavior

    Science.gov (United States)

    Waller, Rachael D.; Higbee, Thomas S.

    2010-01-01

    Few studies have explored the effects of fixed-time (FT) reinforcement on escape-maintained behavior of students in a classroom setting. We measured the effects of an FT schedule on the disruptive and appropriate academic behaviors of 2 junior high students in a public school setting. Results demonstrated that FT escape from tasks resulted in a…

  17. Spoon Distance Fading with and without Escape Extinction as Treatment for Food Refusal

    Science.gov (United States)

    Rivas, Kristi D.; Piazza, Cathleen C.; Patel, Meeta R.; Bachmeyer, Melanie H.

    2010-01-01

    Little is known about the characteristics of meals that serve as motivating operations (MOs) for escape behavior. In the current investigation, we showed that the distance at which a therapist held a spoon from a child's lips served as an MO for escape behavior. Based on these results, we implemented spoon distance fading, compared fading with and…

  18. HIV-1 Viral Escape in Cerebrospinal Fluid of Subjects on Suppressive Antiretroviral Treatment

    OpenAIRE

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; SVENNERHOLM, BO; Price, Richard W.; Gisslén, Magnus

    2010-01-01

    Background. Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank.

  19. Treatment of Escape-Maintained Behavior with Positive Reinforcement: The Role of Reinforcement Contingency and Density

    Science.gov (United States)

    Ingvarsson, Einar T.; Hanley, Gregory P.; Welter, Katherine M.

    2009-01-01

    Functional analyses suggested that the disruptive behavior of three preschool children was maintained by escape from demands. While keeping the escape contingency intact, we conducted (a) a density analysis in which the children earned preferred items for task completion according to two schedules that varied in reinforcement density, and (b) a…

  20. Identification of genes escaping X inactivation by allelic expression analysis in a novel hybrid mouse model.

    Science.gov (United States)

    Berletch, Joel B; Ma, Wenxiu; Yang, Fan; Shendure, Jay; Noble, William S; Disteche, Christine M; Deng, Xinxian

    2015-12-01

    X chromosome inactivation (XCI) is a female-specific mechanism that serves to balance gene dosage between the sexes whereby one X chromosome in females is inactivated during early development. Despite this silencing, a small portion of genes escape inactivation and remain expressed from the inactive X (Xi). Little is known about the distribution of escape from XCI in different tissues in vivo and about the mechanisms that control tissue-specific differences. Using a new binomial model in conjunction with a mouse model with identifiable alleles and skewed X inactivation we are able to survey genes that escape XCI in vivo. We show that escape from X inactivation can be a common feature of some genes, whereas others escape in a tissue specific manner. Furthermore, we characterize the chromatin environment of escape genes and show that expression from the Xi correlates with factors associated with open chromatin and that CTCF co-localizes with escape genes. Here, we provide a detailed description of the experimental design and data analysis pipeline we used to assay allele-specific expression and epigenetic characteristics of genes escaping X inactivation. The data is publicly available through the GEO database under ascension numbers GSM1014171, GSE44255, and GSE59779. Interpretation and discussion of these data are included in a previously published study (Berletch et al., 2015) [1].

  1. Farming-up coastal fish assemblages through a massive aquaculture escape event.

    Science.gov (United States)

    Toledo-Guedes, Kilian; Sanchez-Jerez, Pablo; Benjumea, María E; Brito, Alberto

    2014-07-01

    We investigated the changes on the mean trophic level of fish assemblages across different spatiotemporal scales, before and after a massive escape event occurred off La Palma (Canary Islands), which resulted in the release of 1.5 million fish (mostly Dicentrarchus labrax) into the wild. The presence of escaped fish altered significantly the mean trophic level of fish assemblages in shallow coastal waters. This alteration was exacerbated by the massive escape. A nearby marine protected area buffered the changes in mean trophic level but exhibited the same temporal patterns as highly fished areas. Moreover, escaped fish exploited natural resources according to their total length and possibly, time since escapement. New concerns arise as a "farming up" process is detected in shallow coastal fish assemblages where marine aquaculture is established.

  2. DR-induced escape of O and C from early Mars

    Science.gov (United States)

    Zhao, Jinjin; Tian, Feng; Ni, Yufang; Huang, Xiaomeng

    2017-03-01

    Energetic particles produced in Dissociative recombination (DR) reactions could escape planets with low gravity, such as Mars, if they could overcome collisions with the surrounding background gases. In this work, a 3-D Monte Carlo model is developed to study these photochemical escape processes on early Mars. Although the DR reaction rates of O2+, CO2+, and CO+ increase monotonically with solar soft X-ray and extreme ultraviolet (XUV) flux, the peak of the calculated DR-induced escape rates of O is near 3 × XUV, and the DR-induced escape rates of C increase with XUV until 10 × XUV. The non-monotonic behavior can be explained by the increased column densities of background species in high XUV conditions, which can deflect energetic particles through collisions more efficiently. At 20 × XUV, CO+ DR is the main source of escaping O and C, and the escape of secondary particles could contribute to 30∼40% and 10% of the total escape of O and C respectively. The time-integrated DR-induced escape of O and C is equivalent to 1 m of H2O and 20 mbar of CO2 escaping early Mars since 4.5 billion years ago. The accumulated CO2 loss is much lower than what's needed to explain the carbon isotopic ratios on Mars and much lower than the total CO2 needed to warm up early Mars. If more vigorous escape mechanisms were absent on early Mars, substantial inventories of volatiles have not been detected yet.

  3. Photochemical escape of oxygen from the Martian atmosphere: new insights from MAVEN

    Science.gov (United States)

    Lillis, R. J.; Deighan, J.; Bougher, S. W.; Cravens, T.; Fox, J. L.; Lee, Y.; Rahmati, A.; McFadden, J. P.; Benna, M.; Mahaffy, P. R.; Elrod, M. K.; Andersson, L.; Fowler, C. M.; Curry, S.; Gröller, H.; Jakosky, B. M.

    2015-12-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through any subsequent collisions. Because escaping hot atoms are not directly measured, models of production and transport (through the atmosphere) of such atoms must be used to constrain photochemical escape rates. These models require altitude profiles of neutral densities and electron and ion densities and temperatures, as well as compositional information, all of which are measured by MAVEN instruments at the relevant altitudes (150-300 km). For every altitude profile: Profiles of O2+ dissociative recombination (DR) rates will be calculated from electron temperature, electron density and O2+ density. Profiles of energy distributions of hot O atoms will be calculated from profiles of electron and ion temperatures. Profiles of all neutral densities will be input into models of hot O transport in order to calculate photochemical escape fluxes from DR of O2+. We will present photochemical escape fluxes as a function of several factors, in particular solar zenith angle and EUV flux. This, combined with further simulations with progressively higher EUV fluxes, will eventually enable a total integrated loss estimate over the course of Martian history and hence a determination of the impact of this loss process on the evolution of the Martian climate.

  4. Complex Economies Have a Lateral Escape from the Poverty Trap

    Science.gov (United States)

    Pugliese, Emanuele; Chiarotti, Guido L.; Zaccaria, Andrea; Pietronero, Luciano

    2017-01-01

    We analyze the decisive role played by the complexity of economic systems at the onset of the industrialization process of countries over the past 50 years. Our analysis of the input growth dynamics, considering a further dimension through a recently introduced measure of economic complexity, reveals that more differentiated and more complex economies face a lower barrier (in terms of GDP per capita) when starting the transition towards industrialization. As a consequence, we can extend the classical concept of a one-dimensional poverty trap, by introducing a two-dimensional poverty trap: a country will start the industrialization process if it is rich enough (as in neo-classical economic theories), complex enough (using this new dimension and laterally escaping from the poverty trap), or a linear combination of the two. This naturally leads to the proposal of a Complex Index of Relative Development (CIRD) which shows, when analyzed as a function of the growth due to input, a shape of an upside down parabola similar to that expected from the standard economic theories when considering only the GDP per capita dimension. PMID:28072867

  5. Complex Economies Have a Lateral Escape from the Poverty Trap.

    Science.gov (United States)

    Pugliese, Emanuele; Chiarotti, Guido L; Zaccaria, Andrea; Pietronero, Luciano

    2017-01-01

    We analyze the decisive role played by the complexity of economic systems at the onset of the industrialization process of countries over the past 50 years. Our analysis of the input growth dynamics, considering a further dimension through a recently introduced measure of economic complexity, reveals that more differentiated and more complex economies face a lower barrier (in terms of GDP per capita) when starting the transition towards industrialization. As a consequence, we can extend the classical concept of a one-dimensional poverty trap, by introducing a two-dimensional poverty trap: a country will start the industrialization process if it is rich enough (as in neo-classical economic theories), complex enough (using this new dimension and laterally escaping from the poverty trap), or a linear combination of the two. This naturally leads to the proposal of a Complex Index of Relative Development (CIRD) which shows, when analyzed as a function of the growth due to input, a shape of an upside down parabola similar to that expected from the standard economic theories when considering only the GDP per capita dimension.

  6. Dynamical correlations in the escape strategy of Influenza A virus

    Science.gov (United States)

    Taggi, L.; Colaiori, F.; Loreto, V.; Tria, F.

    2013-03-01

    The evolutionary dynamics of human Influenza A virus presents a challenging theoretical problem. An extremely high mutation rate allows the virus to escape, at each epidemic season, the host immune protection elicited by previous infections. At the same time, at each given epidemic season a single quasi-species, that is a set of closely related strains, is observed. A non-trivial relation between the genetic (i.e., at the sequence level) and the antigenic (i.e., related to the host immune response) distances can shed light into this puzzle. In this paper we introduce a model in which, in accordance with experimental observations, a simple interaction rule based on spatial correlations among point mutations dynamically defines an immunity space in the space of sequences. We investigate the static and dynamic structure of this space and we discuss how it affects the dynamics of the virus-host interaction. Interestingly we observe a staggered time structure in the virus evolution as in the real Influenza evolutionary dynamics.

  7. Escape of the martian protoatmosphere and initial water inventory

    CERN Document Server

    Erkaev, N V; Elkins-Tanton, L; Stökl, A; Odert, P; Marcq, E; Dorfi, E A; Kislyakova, K G; Kulikov, Yu N; Leitzinger, M; Güdel, M

    2013-01-01

    Latest research in planet formation indicate that Mars formed within a few million years (Myr) and remained a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models, that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained ~0.1-0.2 wt. % of H2O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal...

  8. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice

    Science.gov (United States)

    Panigrahy, Dipak; Edin, Matthew L.; Lee, Craig R.; Huang, Sui; Bielenberg, Diane R.; Butterfield, Catherine E.; Barnés, Carmen M.; Mammoto, Akiko; Mammoto, Tadanori; Luria, Ayala; Benny, Ofra; Chaponis, Deviney M.; Dudley, Andrew C.; Greene, Emily R.; Vergilio, Jo-Anne; Pietramaggiori, Giorgio; Scherer-Pietramaggiori, Sandra S.; Short, Sarah M.; Seth, Meetu; Lih, Fred B.; Tomer, Kenneth B.; Yang, Jun; Schwendener, Reto A.; Hammock, Bruce D.; Falck, John R.; Manthati, Vijaya L.; Ingber, Donald E.; Kaipainen, Arja; D’Amore, Patricia A.; Kieran, Mark W.; Zeldin, Darryl C.

    2011-01-01

    Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer. PMID:22182838

  9. Intertextuality in Novel: An Escape from Patriarchal Soliloquy

    Directory of Open Access Journals (Sweden)

    Nargess Bagheri

    2015-12-01

    Full Text Available Hypertextuality is one of the intertextual relationships introduced by Gerard Genette. According to him, hypertextuality includes all the relationships which the hypertext has with the previous text, i.e. the hypotext. However, he does not consider the relationship between these two texts to be in such a way that the hypertext is the interpretation of the hypotext. On the other hand, other theorizers including Bakhtin, regard the conversation between texts a way to escape a one-voiced and dominant discourse. From this viewpoint, the intertextual relationships of Sadegh Hedayat’s The Blind Owl, with Shahrnoush Parsipour’s The Blue Mind and Abbas Maroufi’s The Body of Farhad are in such a way that The Blind Owl can be regarded as a hypotext for the other 2 novels but these two novels interpret the text differently. The present study aims to examine the intertextual relationships between these 3 novels and explore how a multiple-voiced conversation is formed between them.

  10. Modified guidance laws to escape microbursts with turbulence

    Directory of Open Access Journals (Sweden)

    Atilla Dogan

    2002-01-01

    Full Text Available This paper introduces Modified Altitude- and Dive-Guidance laws for escaping a microburst with turbulence. The goal is to develop a procedure to estimate the highest altitude at which an aircraft can fly through a microburst without running into stall. First, a new metric is constructed that quantifies the aircraft upward force capability in a microburst encounter. In the absence of turbulence, the metric is shown to be a decreasing function of altitude. This suggests that descending to a low altitude may improve safety in the sense that the aircraft will have more upward force capability to maintain its altitude. In the presence of stochastic turbulence, the metric is treated as a random variable and its probability distribution function is analytically approximated as a function of altitude. This approximation allows us to determine the highest safe altitude at which the aircraft may descend, hence avoiding to descend too low. This highest safe altitude is used as the commanded altitude in Modified Altitude- and Dive-Guidance. Monte Carlo simulations show that these Modified Altitude- and Dive-Guidance strategies can decrease the probability of minimum altitude being lower than a given value without significantly increasing the probability of crash.

  11. Breakdown of the escape dynamics in Josephson junctions

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Galletti, L.; Born, D.; Rotoli, G.; Lombardi, F.; Longobardi, L.; Tagliacozzo, A.; Tafuri, F.

    2015-08-01

    We have identified anomalous behavior of the escape rate out of the zero-voltage state in Josephson junctions with a high critical current density Jc. For this study we have employed YBa2Cu3O7 -x grain boundary junctions, which span a wide range of Jc and have appropriate electrodynamical parameters. Such high Jc junctions, when hysteretic, do not switch from the superconducting to the normal state following the expected stochastic Josephson distribution, despite having standard Josephson properties such as a Fraunhofer magnetic field pattern. The switching current distributions (SCDs) are consistent with nonequilibrium dynamics taking place on a local rather than a global scale. This means that macroscopic quantum phenomena seem to be practically unattainable for high Jc junctions. We argue that SCDs are an accurate means to measure nonequilibrium effects. This transition from global to local dynamics is of relevance for all kinds of weak links, including the emergent family of nanohybrid Josephson junctions. Therefore caution should be applied in the use of such junctions in, for instance, the search for Majorana fermions.

  12. Review of One Illness Away: Why People Become Poor and How They Escape Poverty

    OpenAIRE

    Afia B. Yamoah

    2011-01-01

    Afia B. Yamoah reviews One Illness Away: Why People Become Poor and How They Escape Poverty, by Anirudh Krishna. Krishna argues that poverty policy needs to address reasons why people become poor and how they can escape poverty.

  13. ntraspecific Differences in Morphological Response of 20 Wheat Cultivars to Enhanced UV-B Radiation%20个小麦品种对UV-B辐射增强响应的形态学差异

    Institute of Scientific and Technical Information of China (English)

    陈建军; 祖艳群; 陈海燕; 李元

    2001-01-01

    研究了大田栽培和自然光条件下,模拟UV-B辐射增强对20个小麦品种影响的形态学差异。结果表明,叶面积指数、株高、节间长、茎基粗对UV-B辐射增强响应具有品种间差异。株高和节间长对UV-B辐射响应具有一致性,呈极显著正相关。根据形态响应指数(MRI),耐性品种(MRI>-8.5)为:辽春9>文麦3>大理905>兰州80101>绵阳26>YV 97-31>毕90-5。敏感品种(MRI<-49.4)为:会宁18>繁19>楚雄8807>My 94-9>黔14>云麦39>陇春16。耐性品种具有较小的叶展开角度,敏感品种具有较大的叶展开角度。UV-B辐射还不同程度抑制小麦条锈病的发生。%Differences in morphological response of 20 wheat cultivars to enhanced ultraviolet radiation(UV-B,280~315 nm) were investigated under field conditions. Results showed that differences were observed in LAI,plant height,internode length and stem diameter between the cultivars. The responses of the cultivars in plant height and internode length were consistent and in significant positive relationship. Based on morphological response index(MRI),tolerant cultivars (MRI>-8.5) include Liaochun 9>Wenmai 3>Dali 905>Lanzhou 80101>Mianyang 26>YV 97-31>Bi 90-5,and sensitive cultivars(MRI<-49.4) include Huining 18>Fan 19>Chuxiong 8807>My 94-9>Qian 14>Yunmai 39>Longchun 16. Smaller angles of spread of leaves of the tolerant cultivars and wider angles of the sensitive cultivars were observed.Effect of UV-B radiation inhibiting incidence of stripe rust disease on wheat was also discovered.

  14. Enhanced Mitigation of Membrane Fouling by Regulations on Floc Morphology in Electrocoagulation%调控絮体形态强化电絮凝减缓膜污染

    Institute of Scientific and Technical Information of China (English)

    赵凯; 杨春风; 孙境求; 李静; 胡承志

    2016-01-01

    In this study, the electro chemical parameters were regulated to control the floc morphology in order to mitigate membrane fouling. The main effects of current density, initial pH and conductivity on the floc characteristics and flux were studied, and the mechanisms of interaction between flocs with different morphology structures and ultrafiltration membranes were analyzed. The results showed that the key to mitigate the membrane fouling by electrocoagulation was to form a loose and porous cake layer on the membrane surface. The electrocoagulation-ultrafiltration (EC-UF) technology could not only effectively mitigate the membrane fouling, but also greatly enhance the water quality of the effluent. By increasing the current density and keeping water quality conditions at neutral pH, the EC-UF technology could maintain a higher flux. Under conditions of j = 20 A•m - 2 , initial pH = 7 and initial conductivity = 1 000μS•cm - 1 , the removal rate of humic acid (HA) was 97% , and the normalized specific flux of J/ J0 was 81% .%本研究通过调节电絮凝工艺参数来实现对絮体形态的调控,进而达到减缓膜污染的目的。主要考察了电流密度、初始pH、初始电导率对絮体性质以及膜通量的影响,并解析了超滤膜对不同形貌结构絮体的膜污染响应机制。结果表明,电絮凝减缓膜污染的关键是在膜表面形成疏松多孔的滤饼层,电絮凝-超滤(electrocoagulation-ultrafiltration,EC-UF)工艺不但能够有效地减缓膜污染,而且还极大提升了出水水质。增加电流密度,以及在 pH 中性水质条件下,EC-UF 工艺中膜通量保持更高。 j =20 A•m -2、初始 pH =7、初始电导率=1000μS•cm -1,EC-UF 工艺对水中的腐殖酸(humic acid,HA)去除率为97%,平衡阶段归一化通量 J/ J

  15. Reporter Assay for Endo/Lysosomal Escape of Toxin-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Roger Gilabert-Oriol

    2014-05-01

    Full Text Available Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP, Alexa Fluor 488 (Alexa and ricin A-chain (RTA—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.

  16. Failure of rats to escape from a potentially lethal microwave field

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, D.R.; Levinson, D.M.; Justesen, D.R.; Clarke, R.L.

    1980-01-01

    Ocularly pigmented rats, all mature females of the Long-Evans strain, were repeatedly presented an opportunity to escape from an intense 918-MHz field (whole-body dose rate . 60 mW/g) to a field of lower intensity (40, 30, 20, or 2 mW/g) by performing a simple locomotor response. Other rats could escape 800-microamperemeter faradic shock to the feet and tail by performing the same response in the same milieu, a multimode cavity. None of 20 irradiated rats learned to associate entry into a visually well-demarcated area of the cavity with immediate reduction of dose rate, in spite of field-induced elevations of body temperature to levels that exceeded 41 degrees C and would have been lethal but for a limit on durations of irradiation. In contrast, all of ten rats motivated by faradic shock rapidly learned to escape. The failure of escape learning by irradiated animals probably arose from deficiencies of motivation and, especially, sensory feedback. Whole-body hyperthermia induced by a multipath field may lack the painful or directional sensory properties that optimally promote the motive to escape. Moreover, a decline of body temperature after an escape-response-contingent reduction of field strength will be relatively slow because of the large thermal time constants of mammalian tissues. Without timely sensory feedback, which is an essential element of negative reinforcement, stimulus-response associability would be imparied, which could retard or preclude learning of an escape response.

  17. Reporter assay for endo/lysosomal escape of toxin-based therapeutics.

    Science.gov (United States)

    Gilabert-Oriol, Roger; Thakur, Mayank; von Mallinckrodt, Benedicta; Bhargava, Cheenu; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F; Fuchs, Hendrik; Weng, Alexander

    2014-05-22

    Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters-horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)-were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates-saporin-HRP, (Alexa)saporin and saporin-KQ-RTA-were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of (Alexa)saporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10-1000 nM.

  18. H Escape Rates Inferred from MAVEN/IUVS Observations of the Mars Hydrogen Corona

    Science.gov (United States)

    Chaffin, Michael S.; Chaufray, Jean-Yves; Deighan, Justin; Schneider, Nicholas M.; McClintock, William; Stewart, A. Ian F.; Thiemann, E. M.; Clarke, John T.; Holsclaw, Gregory; Jain, Sonal Kumar; Crismani, Matteo; Stiepen, Arnaud; Montmessin, Franck; Eparvier, Francis; Jakosky, Bruce

    2016-10-01

    H escape oxidizes and dessicates the Mars atmosphere and surface, providing a key control on the present-day chemistry and long-term evolution of the planet. Recently, large variations in the escape rate of H as a function of season have been reported by several studies, making continued observation of the variation a high priority. We present escape rates derived from Mars Atmosphere and Volatile EvolutioN (MAVEN) mission Imaging UltraViolet Spectrograph (IUVS) observations of the extended atmosphere of Mars at H Lyman alpha (121.6 nm), which must be interpreted with a coupled density/radiative transfer model owing to the optically thick nature of the emission and the small fraction of H present in the corona on escaping trajectories. We recover densities, temperatures, and escape rates under the assumption of spherical symmetry for multiple periods across MAVEN's mission so far, beginning in December 2014 (escape rates ~4e8/cm2/s). We describe the observed variation and compare it with previously observed seasonal variation in retrieved H escape rates, providing a necessary input for future photochemical modeling studies and estimates of water loss from Mars over its history.

  19. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Directory of Open Access Journals (Sweden)

    Nakamura Shinichiro

    2011-01-01

    Full Text Available Abstract Background Runt-related transcription factor 3 (RUNX3 is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC. Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91% and tissues (90%. RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.

  20. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection

    Science.gov (United States)

    Chang, Chun-Chi; Wang, Liangli; Yuan, Fan

    2017-01-01

    A recent theory suggests that endocytosis is involved in uptake and intracellular transport of electrotransfected plasmid DNA (pDNA). The goal of the current study was to understand if approaches used previously to improve endocytosis of gene delivery vectors could be applied to enhancing electrotransfection efficiency (eTE). Results from the study showed that photochemically induced endosomal escape, which could increase poly-L-lysine (PLL)-mediated gene delivery, decreased eTE. The decrease could not be blocked by treatment of cells with endonuclease inhibitors (aurintricarboxylic acid and zinc ion) or antioxidants (L-glutamine and ascorbic acid). Chemical treatment of cells with an endosomal trafficking inhibitor that blocks endosome progression, bafilomycin A1, resulted in a significant decrease in eTE. However, treatment of cells with lysosomotropic agents (chloroquine and ammonium chloride) had little effects on eTE. These data suggested that endosomes played important roles in protecting and intracellular trafficking of electrotransfected pDNA. PMID:28182739

  1. The impact of escaped farmed Atlantic salmon (Salmo salar L. on catch statistics in Scotland.

    Directory of Open Access Journals (Sweden)

    Darren M Green

    Full Text Available In Scotland and elsewhere, there are concerns that escaped farmed Atlantic salmon (Salmo salar L. may impact on wild salmon stocks. Potential detrimental effects could arise through disease spread, competition, or inter-breeding. We investigated whether there is evidence of a direct effect of recorded salmon escape events on wild stocks in Scotland using anglers' counts of caught salmon (classified as wild or farmed and sea trout (Salmo trutta L.. This tests specifically whether documented escape events can be associated with reduced or elevated escapes detected in the catch over a five-year time window, after accounting for overall variation between areas and years. Alternate model frameworks were somewhat inconsistent, however no robust association was found between documented escape events and higher proportion of farm-origin salmon in anglers' catch, nor with overall catch size. A weak positive correlation was found between local escapes and subsequent sea trout catch. This is in the opposite direction to what would be expected if salmon escapes negatively affected wild fish numbers. Our approach specifically investigated documented escape events, contrasting with earlier studies examining potentially wider effects of salmon farming on wild catch size. This approach is more conservative, but alleviates some potential sources of confounding, which are always of concern in observational studies. Successful analysis of anglers' reports of escaped farmed salmon requires high data quality, particularly since reports of farmed salmon are a relatively rare event in the Scottish data. Therefore, as part of our analysis, we reviewed studies of potential sensitivity and specificity of determination of farmed origin. Specificity estimates are generally high in the literature, making an analysis of the form we have performed feasible.

  2. Quantifying the impact of human immunodeficiency virus-1 escape from cytotoxic T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Ulrich D Kadolsky

    Full Text Available HIV-1 escape from the cytotoxic T-lymphocyte (CTL response leads to a weakening of viral control and is likely to be detrimental to the patient. To date, the impact of escape on viral load and CD4(+ T cell count has not been quantified, primarily because of sparse longitudinal data and the difficulty of separating cause and effect in cross-sectional studies. We use two independent methods to quantify the impact of HIV-1 escape from CTLs in chronic infection: mathematical modelling of escape and statistical analysis of a cross-sectional cohort. Mathematical modelling revealed a modest increase in log viral load of 0.051 copies ml(-1 per escape event. Analysis of the cross-sectional cohort revealed a significant positive association between viral load and the number of "escape events", after correcting for length of infection and rate of replication. We estimate that a single CTL escape event leads to a viral load increase of 0.11 log copies ml(-1 (95% confidence interval: 0.040-0.18, consistent with the predictions from the mathematical modelling. Overall, the number of escape events could only account for approximately 6% of the viral load variation in the cohort. Our findings indicate that although the loss of the CTL response for a single epitope results in a highly statistically significant increase in viral load, the biological impact is modest. We suggest that this small increase in viral load is explained by the small growth advantage of the variant relative to the wildtype virus. Escape from CTLs had a measurable, but unexpectedly low, impact on viral load in chronic infection.

  3. Escape forces and trajectories in optical tweezers and their effect on calibration.

    Science.gov (United States)

    Bui, Ann A M; Stilgoe, Alexander B; Khatibzadeh, Nima; Nieminen, Timo A; Berns, Michael W; Rubinsztein-Dunlop, Halina

    2015-09-21

    Whether or not an external force can make a trapped particle escape from optical tweezers can be used to measure optical forces. Combined with the linear dependence of optical forces on trapping power, a quantitative measurement of the force can be obtained. For this measurement, the particle is at the edge of the trap, away from the region near the equilbrium position where the trap can be described as a linear spring. This method provides the ability to measure higher forces for the same beam power, compared with using the linear region of the trap, with lower risk of optical damage to trapped specimens. Calibration is typically performed by using an increasing fluid flow to exert an increasing force on a trapped particle until it escapes. In this calibration technique, the particle is usually assumed to escape along a straight line in the direction of fluid-flow. Here, we show that the particle instead follows a curved trajectory, which depends on the rate of application of the force (i.e., the acceleration of the fluid flow). In the limit of very low acceleration, the particle follows the surface of zero axial optical force during the escape. The force required to produce escape depends on the trajectory, and hence the acceleration. This can result in variations in the escape force of a factor of two. This can have a major impact on calibration to determine the escape force efficiency. Even when calibration measurements are all performed in the low acceleration regime, variations in the escape force efficiency of 20% or more can still occur. We present computational simulations using generalized Lorenz-Mie theory and experimental measurements to show how the escape force efficiency depends on rate of increase of force and trapping power, and discuss the impact on calibration.

  4. Reduced transcapillary escape of albumin during acute blood pressure-lowering in type 1 (insulin-dependent) diabetic patients with nephropathy

    DEFF Research Database (Denmark)

    Parving, H H; Kastrup, J; Smidt, U M

    1985-01-01

    The effect of acute arterial blood pressure lowering upon albumin extravasation was studied in 10 patients with nephropathy and retinopathy due to long-standing Type 1 (insulin-dependent) diabetes. The following variables were measured: transcapillary escape rate of albumin (initial disappearance...... induced the following changes: arterial blood pressure decreased from 134/87 to 107/73 mmHg (p less than 0.01), transcapillary escape rate of albumin declined from 8.1 to 6.7% of the intravascular mass of albumin/h (p less than 0.01), albuminuria diminished from 1434 to 815 micrograms/min (p less than 0.......01), and plasma volume raised slightly from 2916 to 2995 ml (p less than 0.05). Our findings demonstrate that the enhanced albumin passage through the wall of the microvasculature characteristically found in long-term Type 1 diabetic patients with clinical microangiopathy is pressure-dependent to a large extent...

  5. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture

    Science.gov (United States)

    Garrido, Federico; Perea, Francisco; Bernal, Mónica; Sánchez-Palencia, Abel; Aptsiauri, Natalia; Ruiz-Cabello, Francisco

    2017-01-01

    Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I) expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL). PMID:28264447

  6. Escape from transcriptional shutoff during poliovirus infection: NF-κB-responsive genes IκBa and A20.

    Science.gov (United States)

    Doukas, Tammy; Sarnow, Peter

    2011-10-01

    It has been known for a long time that infection of cultured cells with poliovirus results in the overall inhibition of transcription of most host genes. We examined whether selected host genes can escape transcriptional inhibition by thiouridine marking newly synthesized host mRNAs during viral infection. Using cDNA microarrays hybridized to cDNAs made from thiolated mRNAs, a small set of host transcripts was identified and their expression verified by quantitative PCR and Northern and Western blot analyses. These transcripts were synthesized from genes that displayed enrichment for NF-κB binding sites in their promoter regions, suggesting that some NF-κB-regulated promoters can escape the virus-induced inhibition of transcription. In particular, two negative regulators of NF-κB, IκBa and A20, were upregulated during viral infection. Depletion of A20 enhanced viral RNA abundance and viral yield, arguing that cells respond to virus infection by counteracting NF-κB-induced proviral effects.

  7. Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape.

    Science.gov (United States)

    McCaffrey, Ramona L; Allen, Lee-Ann H

    2006-12-01

    Francisella tularensis is a Gram-negative bacterium and the causative agent of tularemia. Recent data indicate that F. tularensis replicates inside macrophages, but its fate in other cell types, including human neutrophils, is unclear. We now show that F. tularensis live vaccine strain (LVS), opsonized with normal human serum, was rapidly ingested by neutrophils but was not eliminated. Moreover, evasion of intracellular killing can be explained, in part, by disruption of the respiratory burst. As judged by luminol-enhanced chemiluminescence and nitroblue tetrazolium staining, neutrophils infected with live F. tularensis did not generate reactive oxygen species. Confocal microscopy demonstrated that NADPH oxidase assembly was disrupted, and LVS phagosomes did not acquire gp91/p22(phox) or p47/p67(phox). At the same time, F. tularensis also impaired neutrophil activation by heterologous stimuli such as phorbol esters and opsonized zymosan particles. Later in infection, LVS escaped the phagosome, and live organisms persisted in the neutrophil cytosol for at least 12 h. To our knowledge, our data are the first demonstration of a facultative intracellular pathogen, which disrupts the oxidative burst and escapes the phagosome to evade elimination inside neutrophils, and as such, our data define a novel mechanism of virulence.

  8. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture

    Directory of Open Access Journals (Sweden)

    Federico Garrido

    2017-02-01

    Full Text Available Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL.

  9. Born in an alien nest: how do social parasite male offspring escape from host aggression?

    Directory of Open Access Journals (Sweden)

    Patrick Lhomme

    Full Text Available Social parasites exploit the colony resources of social insects. Some of them exploit the host colony as a food resource or as a shelter whereas other species also exploit the brood care behavior of their social host. Some of these species have even lost the worker caste and rely completely on the host's worker force to rear their offspring. To avoid host defenses and bypass their recognition code, these social parasites have developed several sophisticated chemical infiltration strategies. These infiltration strategies have been highly studied in several hymenopterans. Once a social parasite has successfully entered a host nest and integrated its social system, its emerging offspring still face the same challenge of avoiding host recognition. However, the strategy used by the offspring to survive within the host nest without being killed is still poorly documented. In cuckoo bumblebees, the parasite males completely lack the morphological and chemical adaptations to social parasitism that the females possess. Moreover, young parasite males exhibit an early production of species-specific cephalic secretions, used as sexual pheromones. Host workers might thus be able to recognize them. Here we used a bumblebee host-social parasite system to test the hypothesis that social parasite male offspring exhibit a chemical defense strategy to escape from host aggression during their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee males contain a repellent odor that prevents parasite males from being attacked by host workers. We also show that social parasitism reduces host worker aggressiveness and helps parasite offspring acceptance.

  10. Turning pain into cues for goal-directed behavior : Implementation intentions reduce escape-avoidance behavior on a painful task

    NARCIS (Netherlands)

    Karsdorp, P.A.; Geenen, R.; Kroese, F.M.; Vlaeyen, J.W.S.

    2016-01-01

    Pain automatically elicits escape-avoidance behavior to avert bodily harm. In patients with chronic pain, long-term escape-avoidance behavior may increase the risk of chronic disability. The aim of the presents study was to examine whether implementation intentions reduce escape-avoidance behavior d

  11. Escape of the martian protoatmosphere and initial water inventory.

    Science.gov (United States)

    Erkaev, N V; Lammer, H; Elkins-Tanton, L T; Stökl, A; Odert, P; Marcq, E; Dorfi, E A; Kislyakova, K G; Kulikov, Yu N; Leitzinger, M; Güdel, M

    2014-08-01

    Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained [Formula: see text] of H2O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses [Formula: see text] to [Formula: see text] could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was [Formula: see text] times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of [Formula: see text]. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of [Formula: see text] H2O and [Formula: see text] CO2 could have been lost during [Formula: see text], if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that

  12. Optimal search and ambush for a hider who can escape the search region

    OpenAIRE

    Alpern, Steve; Fokkink, Robbert; Simanjuntak, Martin

    2016-01-01

    Search games for a mobile or immobile hider traditionally have the hider permanently confined to a compact ‘search region’ making eventual capture inevitable. Hence the payoff can be taken as time until capture. However in many real life search problems it is possible for the hider to escape an area in which he was known to be located (e.g. Bin Laden from Tora Bora) or for a prey animal to escape a predator’s hunting territory. We model and solve such continuous time problems with escape wher...

  13. Mean Exit Time and Escape Probability for a Tumor Growth System under Non-Gaussian Noise

    CERN Document Server

    Ren, Jian; Gao, Ting; Kan, Xingye; Duan, Jinqiao

    2011-01-01

    Effects of non-Gaussian $\\alpha-$stable L\\'evy noise on the Gompertz tumor growth model are quantified by considering the mean exit time and escape probability of the cancer cell density from inside a safe or benign domain. The mean exit time and escape probability problems are formulated in a differential-integral equation with a fractional Laplacian operator. Numerical simulations are conducted to evaluate how the mean exit time and escape probability vary or bifurcates when $\\alpha$ changes. Some bifurcation phenomena are observed and their impacts are discussed.

  14. Comparative evaluation of modified canal staining and clearing technique, cone-beam computed tomography, peripheral quantitative computed tomography, spiral computed tomography, and plain and contrast medium-enhanced digital radiography in studying root canal morphology.

    Science.gov (United States)

    Neelakantan, Prasanna; Subbarao, Chandana; Subbarao, Chandragiri V

    2010-09-01

    This study investigated the accuracy of cone-beam computed tomography (CBCT), peripheral quantitative computed tomography (pQCT), spiral computed tomography (SCT), plain (plain digi), and contrast medium-enhanced digital radiographs (contrast digi) in studying root canal morphology. The root canal anatomy was analyzed in 95 teeth using CBCT, pQCT, SCT, plain digi, and contrast digi. After flushing out the radiopaque dye, access cavities were sealed, and the teeth were subject to the modified canal staining and clearing technique. The number of root canals (Vertucci classification and Gulabivala's additional classes) was calculated by three calibrated endodontists and two maxillofacial radiologists. Erroneous or unsuccessful identifications of root canals were statistically analyzed by one-way analysis of variance (p = 0.05). The modified canal staining and clearing technique identified an average of 1.8 root canals per mandibular central incisor, 2.3 per maxillary first premolar, 3.9 per maxillary first molar, 3.8 per maxillary and mandibular second molar, and 4.3 per mandibular first molar. CBCT and pQCT were erroneous in 0.29% and 2.05% cases, whereas SCT, contrast digi, and plain digi were unsuccessful in 15.58%, 14.7%, and 23.8%, respectively. There was a significant difference between all the methods (p 0.05). CBCT and pQCT were as accurate as the modified canal staining and tooth clearing technique in identifying root canal systems. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    Science.gov (United States)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  16. Unsteady motion: escape jumps in planktonic copepods, their kinematics and energetics

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Andersen, Anders Peter; Langlois, Vincent J.;

    2010-01-01

    estimate the force and power output needed to accelerate and overcome drag. Both are very high compared with those of other organisms, as are the escape velocities in comparison to startle velocities of other aquatic animals. Thus, the maximum weight-specific force, which for muscle motors of other animals...... has been found to be near constant at 57 N (kg muscle)−1, is more than an order of magnitude higher for the escaping copepods. We argue that this is feasible because most copepods have different systems for steady propulsion (feeding appendages) and intensive escapes (swimming legs), with the muscular...... arrangement of the latter probably adapted for high force production during short-lasting bursts. The resulting escape velocities scale with body length to power 0.65, different from the size-scaling of both similar sized and larger animals moving at constant velocity, but similar to that found for startle...

  17. Escape dynamics in collinear atomic-like three mass point systems

    CERN Document Server

    Pasca, Daniel; Stoica, Cristina

    2009-01-01

    The present paper studies the escape mechanism in collinear three point mass systems with small-range-repulsive/large-range-attractive pairwise-interaction. Specifically, we focus on systems with non-negative total energy. We show that on the zero energy level set, most of the orbits lead to binary escape configurations and the set of initial conditions leading to escape configurations where all three separations infinitely increase as $t \\to \\infty 1$ has zero Lebesgue measure. We also give numerical evidence of the existence of a periodic orbit for the case when the two outer masses are equal. For positive energies, we prove that the set of initial conditions leading to escape configurations where all three separations infinitely increase as $t \\to \\infty$ has positive Lebesgue measure. Keywords: linear three point

  18. Escape of an inertial Lévy flight particle from a truncated quartic potential well

    Science.gov (United States)

    Bai, Zhan-Wu; Hu, Meng

    2017-08-01

    Motivated by that the quartic potential can confined Lévy flights, we investigate the escape rate of an inertial Lévy particle from a truncated quartic potential well via Langevin simulation. The escape rate still depends on the noise intensity in a power-law form in low noise intensity, but the exponent and the inverse coefficient vary significantly for different Lévy indexes compared with previous works. Trimodal structure of the probability density function was found in simulations. The probability density function in a quasi-stable state exhibits transition among unimodal, bimodal, and trimodal structures. A metastable state by stable state approach is developed to calculate the escape rate analytically, which may be applied to extensive escape problems. The theoretical approach is confirmed by Langevin simulation for the Cauchy case of Lévy flight in the applied potential.

  19. Escaping the poverty trap: modeling the interplay between economic growth and the ecology of infectious disease

    CERN Document Server

    Goerg, Georg M; Hébert-Dufresne, Laurent; Althouse, Benjamin M

    2013-01-01

    The dynamics of economies and infectious disease are inexorably linked: economic well-being influences health (sanitation, nutrition, treatment capacity, etc.) and health influences economic well-being (labor productivity lost to sickness and disease). Often societies are locked into ``poverty traps'' of poor health and poor economy. Here, using a simplified coupled disease-economic model with endogenous capital growth we demonstrate the formation of poverty traps, as well as ways to escape them. We suggest two possible mechanisms of escape both motivated by empirical data: one, through an influx of capital (development aid), and another through changing the percentage of GDP spent on healthcare. We find that a large influx of capital is successful in escaping the poverty trap, but increasing health spending alone is not. Our results demonstrate that escape from a poverty trap may be possible, and carry important policy implications in the world-wide distribution of aid and within-country healthcare spending.

  20. Effect Of Feedback On The Escape Of Ionizing Radiation From High-Z Galaxies

    Science.gov (United States)

    Trebitsch, Maxime; Blaizot, Jérémy; Rosdahl, Joakim; Devriendt, Julien; Slyz, Adrianne

    2017-06-01

    Quantifying how much of the ionizing radiation produced in high-redshift galaxies escapes in the IGM is one of the main challenges in understanding the sources of reionization. We investigate the radiative properties of simulated low mass galaxies (halos of a few 109 Msun at z=6), where radiation is modelled on-the-fly, and different sources of feedback (from stars and AGN) are included. Using radiation-hydrodynamic simulations performed with Ramses-RT we study how the energy and momentum input from supernovae and black hole activity modulates the properties of the interstellar medium and therefore how, and how many, photons can escape from the galaxy. I will present simulations showing (Trebitsch et al. 2017, https://arxiv.org/abs/1705.00941) that stellar feedback has a pivotal role in regulating the escape fraction in dwarf galaxies. Supernovae carve holes in the gas distribution, through which ionizing photons can escape.

  1. Pizza or Pancake? Formation Models of Gas Escape Biosignatures in Terrestrial and Martian Sediments

    Science.gov (United States)

    Bonaccorsi, R.; Fairen, A. G.; Baker, L.; McKay, C. P.; Willson, D.

    2016-05-01

    Fine-grained sedimentary hollowed structures were imaged in Gale Crater, but no biomarkers identified to support biology. Our observation-based (gas escape) terrestrial model could inform on possible martian paleoenvironments at time of formation.

  2. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    @@ Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and ultrastructural levels.

  3. Choices between positive and negative reinforcement during treatment for escape-maintained behavior.

    OpenAIRE

    DeLeon, I G; Neidert, P L; Anders, B M; Rodriguez-Catter, V

    2001-01-01

    Positive reinforcement was more effective than negative reinforcement in promoting compliance and reducing escape-maintained problem behavior for a child with autism. Escape extinction was then added while the child was given a choice between positive or negative reinforcement for compliance and the reinforcement schedule was thinned. When the reinforcement requirement reached 10 consecutive tasks, the treatment effects became inconsistent and reinforcer selection shifted from a strong prefer...

  4. Influence of throat configuration and fish density on escapement of channel catfish from hoop nets

    Science.gov (United States)

    Porath, Mark T.; Pape, Larry D.; Richters, Lindsey K.

    2011-01-01

    In recent years, several state agencies have adopted the use of baited, tandemset hoop nets to assess lentic channel catfish Ictalurus punctatus populations. Some level of escapement from the net is expected because an opening exists in each throat of the net, although factors influencing rates of escapement from hoop nets have not been quantified. We conducted experiments to quantify rates of escapement and to determine the influence of throat configuration and fish density within the net on escapement rates. An initial experiment to determine the rate of escapement from each net compartment utilized individually tagged channel catfish placed within the entrance (between the two throats) and cod (within the second throat) compartments of a single hoop net for overnight sets. From this experiment, the mean rate (±SE) of channel catfish escaping was 4.2% (±1.5) from the cod (cod throat was additionally restricted from the traditionally manufactured product), and 74% (±4.2) from the entrance compartments. In a subsequent experiment, channel catfish were placed only in the cod compartment with different throat configurations (restricted or unrestricted) and at two densities (low [6 fish per net] and high [60 fish per net]) for overnight sets to determine the influence of fish density and throat configuration on escapement rates. Escapement rates between throat configurations were doubled at low fish density (13.3 ± 5.4% restricted versus 26.7 ± 5.6% unrestricted) and tripled at high fish density (14.3 ± 4.9% restricted versus 51.9 ± 5.0% unrestricted). These results suggest that retention efficiency is high from cod compartments with restricted throat entrances. However, managers and researchers need to be aware that modification to the cod throats (restrictions) is needed for hoop nets ordered from manufacturers. Managers need to be consistent in their use and reporting of cod end throat configurations when using this gear.

  5. THE EFFECTS OF FIXED-TIME ESCAPE ON INAPPROPRIATE AND APPROPRIATE CLASSROOM BEHAVIOR

    OpenAIRE

    Waller, Rachael D; Higbee, Thomas S.

    2010-01-01

    Few studies have explored the effects of fixed-time (FT) reinforcement on escape-maintained behavior of students in a classroom setting. We measured the effects of an FT schedule on the disruptive and appropriate academic behaviors of 2 junior high students in a public school setting. Results demonstrated that FT escape from tasks resulted in a substantial decrease in disruptive behavior and an increase in time engaged in tasks for both participants.

  6. Choices between positive and negative reinforcement during treatment for escape-maintained behavior.

    Science.gov (United States)

    DeLeon, I G; Neidert, P L; Anders, B M; Rodriguez-Catter, V

    2001-01-01

    Positive reinforcement was more effective than negative reinforcement in promoting compliance and reducing escape-maintained problem behavior for a child with autism. Escape extinction was then added while the child was given a choice between positive or negative reinforcement for compliance and the reinforcement schedule was thinned. When the reinforcement requirement reached 10 consecutive tasks, the treatment effects became inconsistent and reinforcer selection shifted from a strong preference for positive reinforcement to an unstable selection pattern.

  7. Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps.

    OpenAIRE

    S; Beri; Mannella, R.; Luchinsky, Dmitry G.; Silchenko, A. N.; McClintock, Peter V. E.

    2005-01-01

    Topologies of invariant manifolds and optimal trajectories are investigated in stochastic continuous systems and maps. A topological method is introduced that simplifies the solution of boundary value problems: The activation energy is calculated as a function of a set of parameters characterizing the initial conditions of the escape path. The method is applied explicitly to compute the optimal escape path and the activation energy for a variety of dynamical systems and maps.

  8. The relationship between migration and development in the ESCAP region.

    Science.gov (United States)

    Skeldon, R

    1991-01-01

    The relationship between migration and development in the ESCAP region including southeast and south Asian countries and the Pacific island of Fiji, Papua New Guinea, Vanuatu, Kiribati, Samoa, and the Solomon Islands is discussed in terms of mobility transition and origin and destination factors. The changing patterns of mobility in Asia are further delineated in the discussion of internal movements and international movement. Emigration in the smaller countries of the Pacific are treated separately. Future predictions are that the Asia Pacific region will experience continued fertility decline and stabilization of low rates over the next 20 years. The declines will result in slow labor force growth, and increased demand for labor in traditional core and neocore countries as defined and presented in table form by Friedman will be heightened. International movements are likely to increase in large urban areas within destination countries. Tokyo and Singapore are the principal cities in Asia. Tokyo by restrictive government policy has limited immigration, but future labor shortages of unskilled labor from southeast Asia and China are expected. Singapore is already dependent on foreign labor by 10%. Current labor shortages have led to the creation of a growth triangle between Singapore, Indonesia, and Malaysia. Other cities expected to emerge as primary cities in international regional complexes with spillover into the hinterlands include the Hong Kong, Guangzhou, and Macau triangle in the Pearl River delta, Taipei and Seoul, and possibly Kuala Lumpur. Internal migration is expected to increase in the capital cities of Bangkok, Manila,j and centers such as Shanghai, Beijing, and other large cities of southeast Asia. These cities will be linked through the flows of skilled international migrants, which began in the 1960s and is expected to become a future major flow. Recreational and resource niches will be left in much of the Pacific, the Himalayan Kingdoms, and

  9. [Neotropical plant morphology].

    Science.gov (United States)

    Pérez-García, Blanca; Mendoza, Aniceto

    2002-01-01

    An analysis on plant morphology and the sources that are important to the morphologic interpretations is done. An additional analysis is presented on all published papers in this subject by the Revista de Biología Tropical since its foundation, as well as its contribution to the plant morphology development in the neotropics.

  10. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and uhrastructural levels. Morphology is defined as a field of science investigating the shape,

  11. Escape-Route Planning of Underground Coal Mine Based on Improved Ant Algorithm

    Directory of Open Access Journals (Sweden)

    Guangwei Yan

    2013-01-01

    Full Text Available When a mine disaster occurs, to lessen disaster losses and improve survival chances of the trapped miners, good escape routes need to be found and used. Based on the improved ant algorithm, we proposed a new escape-route planning method of underground mines. At first, six factors which influence escape difficulty are evaluated and a weight calculation model is built to form a weighted graph of the underground tunnels. Then an improved ant algorithm is designed and used to find good escape routes. We proposed a tunnel network zoning method to improve the searching efficiency of the ant algorithm. We use max-min ant system method to optimize the meeting strategy of ants and improve the performance of the ant algorithm. In addition, when a small part of the mine tunnel network changes, the system may fix the optimal routes and avoid starting a new processing procedure. Experiments show that the proposed method can find good escape routes efficiently and can be used in the escape-route planning of large and medium underground coal mines.

  12. Fundamental Experiment to Determine Escape Countermeasures for Frogs Falling into Agricultural Canals

    Science.gov (United States)

    Watabe, Keiji; Mori, Atsushi; Koizumi, Noriyuki; Takemura, Takeshi

    Frogs often drown in agricultural canals with deep concrete walls, which are installed commonly in paddy fields after land improvement projects in Japan, because they cannot escape after falling into the canal. Therefore, countermeasures that enable frogs to escape from canals are required in some rural areas. An experimental canal with partially sloped walls was used as an escape countermeasure to investigate the preferable angle of slope for the walls, water depth and flow velocity that enables Tokyo Daruma Pond Frogs (Rana porosa porosa), which have no adhesive discs, to easily escape. Walls with slopes of 30-45 degrees allowed 50-60% of frogs to escape from the experimental canals, frogs especially easily climbed the 30 degree sloped walls. When the water depth was 5 cm or flow velocity was greater than 20 cm/s, approximately 80% of the frogs moved downstream and reached the sloped walls because the frogs' toes did not reach the bottom of the canal. However, if the depth was 2 cm and the flow velocity was 5 cm/s, only 4% of the frogs climbed the sloped walls because they could move freely. The frogs appeared to not be good at long-distance swimming and could not remain a long-time under running water. Therefore, walls sloped less than 30 degrees and control of both water depth and flow velocity appears important for enabling frogs to easily escape from canals.

  13. CD4 binding site broadly neutralizing antibody selection of HIV-1 escape mutants.

    Science.gov (United States)

    Dreja, Hanna; Pade, Corinna; Chen, Lei; McKnight, Áine

    2015-07-01

    All human immunodeficiency virus type-1 (HIV-1) viruses use CD4 to enter cells. Consequently, the viral envelope CD4-binding site (CD4bs) is relatively conserved, making it a logical neutralizing antibody target. It is important to understand how CD4-binding site variation allows for escape from neutralizing antibodies. Alanine scanning mutagenesis identifies residues in antigenic sites, whereas escape mutant selection identifies viable mutants. We selected HIV-1 to escape CD4bs neutralizing mAbs b12, A12 and HJ16. Viruses that escape from A12 and b12 remained susceptible to HJ16, VRC01 and J3, whilst six different viruses that escape HJ16 remained sensitive to A12, b12 and J3. In contrast, their sensitivity to VRC01 was variable. Triple HJ16/A12/b12-resistant virus proved that HIV-1 could escape multiple broadly neutralizing monoclonal antibodies, but still retain sensitivity to VRC01 and the llama-derived J3 nanobody. This antigenic variability may reflect that occurring in circulating viruses, so studies like this can predict immunologically relevant antigenic forms of the CD4bs for inclusion in HIV-1 vaccines.

  14. Effects of Serotonergic and Opioidergic Drugs on Escape Behaviors and Social Status of Male Crickets

    Science.gov (United States)

    Dyakonova, V. E.; Schürmann, F.-W.; Sakharov, D. A.

    We examined the effects of selective serotonin depletion and opioid ligands on social rank and related escape behavior of the cricket Gryllus bimaculatus. Establishment of social rank in a pair of males affected their escape reactions. Losers showed a lower and dominants a higher percentage of jumps in response to tactile cercal stimulation than before a fight. The serotonin-depleting drug α-methyltryptophan (AMTP) caused an activation of the escape reactivity in socially naive crickets. AMTP-treated animals also showed a lower ability to become dominants. With an initial 51.6+/-3.6% of wins in the AMTP group, the percentage decreased to 26+/-1.6% on day 5 after injection. The opiate receptor antagonist naloxone affected fight and escape similarly as AMTP. In contrast to naloxone, the opioid agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin decreased escape responsiveness to cercal stimulation in naive and subordinate crickets. We suggest that serotonergic and opioid systems are involved in the dominance induced depression of escape behavior.

  15. Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior.

    Science.gov (United States)

    Chung, Yuan-Kai; Lin, Chung-Chi

    2017-01-01

    The collective egress of social insects is important in dangerous situations such as natural disasters or enemy attacks. Some studies have described the phenomenon of symmetry breaking in ants, with two exits induced by a repellent. However, whether symmetry breaking occurs under high temperature conditions, which are a common abiotic stress, remains unknown. In our study, we deposited a group of Polyrhachis dives ants on a heated platform and counted the number of escaping ants with two identical exits. We discovered that ants asymmetrically escaped through two exits when the temperature of the heated platform was >32.75°C. The degree of asymmetry increased linearly with the temperature of the platform. Furthermore, the higher the temperature of heated platform was, the more ants escaped from the heated platform. However, the number of escaping ants decreased for 3 min when the temperature was higher than the critical thermal limit (39.46°C), which is the threshold for ants to endure high temperature without a loss of performance. Moreover, the ants tended to form small groups to escape from the thermal stress. A preparatory formation of ant grouping was observed before they reached the exit, indicating that the ants actively clustered rather than accidentally gathered at the exits to escape. We suggest that a combination of individual and grouping ants may help to optimize the likelihood of survival during evacuation.

  16. Escape of Mars' CO2 atmosphere by suprathermal atoms during the past 4 Gyrs

    Science.gov (United States)

    Amerstorfer, Ute; Gröller, Hannes; Lichtenegger, Herbert; Lammer, Helmut; Tian, Feng

    2016-04-01

    The escape of atmospheric particles plays a crucial role in the evolution of the atmosphere of Mars. Especially, the escape of oxygen and carbon is thought to have influenced its amount of CO2. With a Monte-Carlo model we investigate the escape of hot oxygen and carbon from the martian atmosphere for three points in time in its history corresponding to 3, 10, and 20 times the present EUV level. We study and discuss different possible sources of hot oxygen and carbon atoms in the thermosphere and their changing importance with the EUV flux. We find that the escape due to photodissociation increases with increasing EUV level, as is a commonly assumed opinion. However, for the escape via other reactions, e.g. dissociative recombination, this is only true until the EUV level reaches 10 times the present EUV flux, but then the rates start to decrease. Our results thus suggest that some escape mechanisms related to the loss of CO2 are less important than previously thought for atmospheres exposed to higher EUV radiation. This work receives funding from the Austrian Science Fund (FWF): P 24247-N16.

  17. Orbital and escape dynamics in barred galaxies - I. The 2D system

    CERN Document Server

    Jung, Christof

    2016-01-01

    In this paper we use the two-dimensional (2D) version of a new analytical gravitational model in order to explore the orbital as well as the escape dynamics of the stars in a barred galaxy composed of a spherically symmetric central nucleus, a bar, a flat disk and a dark matter halo component. A thorough numerical investigation is conducted for distinguishing between bounded and escaping motion. Furthermore bounded orbits are further classified into non-escaping regular and trapped chaotic using the Smaller ALingment Index (SALI) method. Our aim is to determine the basins of escape through the two symmetrical escape channels around the Lagrange points $L_2$ and $L_3$ and also to relate them with the corresponding distribution of the escape rates of the orbits. We integrate initial conditions of orbits in several types of planes so as to obtain a more complete view of the overall orbital properties of the dynamical system. We also present evidence that the unstable manifolds which guide the orbits in and out t...

  18. Lobelia siphilitica plants that escape herbivory in time also have reduced latex production.

    Directory of Open Access Journals (Sweden)

    Amy L Parachnowitsch

    Full Text Available Flowering phenology is an important determinant of a plant's reproductive success. Both assortative mating and niche construction can result in the evolution of correlations between phenology and other reproductive, functional, and life history traits. Correlations between phenology and herbivore defence traits are particularly likely because the timing of flowering can allow a plant to escape herbivory. To test whether herbivore escape and defence are correlated, we estimated phenotypic and genetic correlations between flowering phenology and latex production in greenhouse-grown Lobelia siphilitica L. (Lobeliaceae. Lobelia siphilitica plants that flower later escape herbivory by a specialist pre-dispersal seed predator, and thus should invest fewer resources in defence. Consistent with this prediction, we found that later flowering was phenotypically and genetically correlated with reduced latex production. To test whether herbivore escape and latex production were costly, we also measured four fitness correlates. Flowering phenology was negatively genetically correlated with three out of four fitness estimates, suggesting that herbivore escape can be costly. In contrast, we did not find evidence for costs of latex production. Generally, our results suggest that herbivore escape and defence traits will not evolve independently in L. siphilitica.

  19. Lévy noise-induced escape in an excitable system

    Science.gov (United States)

    Cai, Rui; Chen, Xiaoli; Duan, Jinqiao; Kurths, Jürgen; Li, Xiaofan

    2017-06-01

    This paper considers the dynamics of escape in the stochastic FitzHugh-Nagumo (FHN) neuronal model driven by symmetric α-stable Lévy noise. External or internal stimulation may make the excitable system produce a pulse or not, which can be interpreted as an escape problem. A new method to analyse the state transition from the rest state to the excitatory state is presented. This approach consists of two deterministic indices: the first escape probability (FEP) and the mean first exit time (MFET). We find that higher FEP in the rest state (equilibrium) promotes such a transition and MFET reflects the stability of the rest state directly with the selected escape region. The developed two dimensional numerical simulation method to calculate FEP and MFET can not only avoid a dimension reduction, but is also applicable for the cases with large noise. In addition, FEP provides us with a new perspective to understand the seperatrix of the stochastic FHN model. It can be seen that smaller jumps of the Lévy motion and relatively small noise intensity are conducive to the production of spikes. In order to characterize the effect of noise on the selected escape region in which the equilibrium lies, the area of higher FEP and MFET in the escape region are calculated. Meanwhile, Brownian motion as a special case is also taken into account for comparison. This work was partly supported by the NSF grant 1620449, and NSFC grants 11531006, 11371367 and 11271290.

  20. Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance

    Science.gov (United States)

    Cravens, T. E.; Rahmati, A.; Fox, Jane L.; Lillis, R.; Bougher, S.; Luhmann, J.; Sakai, S.; Deighan, J.; Lee, Yuni; Combi, M.; Jakosky, B.

    2017-01-01

    The evolution of the atmosphere of Mars and the loss of volatiles over the lifetime of the solar system is a key topic in planetary science. An important loss process for atomic species, such as oxygen, is ionospheric photochemical escape. Dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Many theoretical hot O models have been constructed over the years, although a number of uncertainties are present in these models, particularly concerning the elastic cross sections of O atoms with CO2. Recently, the Mars Atmosphere and Volatile Evolution mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., solar wind), allowing a new assessment of this important loss process. The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to (1) study the role that variations in solar radiation or solar wind fluxes could have on escape in a transparent fashion and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. In agreement with several more elaborate numerical models, we find that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The amount of O lost due to ion transport in the topside ionosphere is found to be about 5-10% of the total.

  1. Quantifying the Escape Mortality of Trawl Caught Antarctic Krill (Euphausia superba)

    Science.gov (United States)

    Krafft, Bjørn A.; Krag, Ludvig A.; Engås, Arill; Nordrum, Sigve; Bruheim, Inge; Herrmann, Bent

    2016-01-01

    Antarctic krill (Euphausia superba) is an abundant fishery resource, the harvest levels of which are expected to increase. However, many of the length classes of krill can escape through commonly used commercial trawl mesh sizes. A vital component of the overall management of a fishery is to estimate the total fishing mortality and quantify the mortality rate of individuals that escape from fishing gear. The methods for determining fishing mortality in krill are still poorly developed. We used a covered codend sampling technique followed by onboard observations made in holding tanks to monitor mortality rates of escaped krill. Haul duration, hydrological conditions, maximum fishing depth and catch composition all had no significant effect on mortality of krill escaping 16 mm mesh size nets, nor was any further mortality associated with the holding tank conditions. A non- parametric Kaplan-Meier analysis was used to model the relationship between mortality rates of escapees and time. There was a weak tendency, though not significant, for smaller individuals to suffer higher mortality than larger individuals. The mortality of krill escaping the trawl nets in our study was 4.4 ± 4.4%, suggesting that krill are fairly tolerant of the capture-and-escape process in trawls. PMID:27622510

  2. Chaotic escape from an open vase-shaped cavity. I. Numerical and experimental results

    Science.gov (United States)

    Novick, Jaison; Keeler, Matthew L.; Giefer, Joshua; Delos, John B.

    2012-01-01

    We present part I in a two-part study of an open chaotic cavity shaped as a vase. The vase possesses an unstable periodic orbit in its neck. Trajectories passing through this orbit escape without return. For our analysis, we consider a family of trajectories launched from a point on the vase boundary. We imagine a vertical array of detectors past the unstable periodic orbit and, for each escaping trajectory, record the propagation time and the vertical detector position. We find that the escape time exhibits a complicated recursive structure. This recursive structure is explored in part I of our study. We present an approximation to the Helmholtz equation for waves escaping the vase. By choosing a set of detector points, we interpolate trajectories connecting the source to the different detector points. We use these interpolated classical trajectories to construct the solution to the wave equation at a detector point. Finally, we construct a plot of the detector position versus the escape time and compare this graph to the results of an experiment using classical ultrasound waves. We find that generally the classical trajectories organize the escaping ultrasound waves.

  3. Chaotic escape from an open vase-shaped cavity. II. Topological theory.

    Science.gov (United States)

    Novick, Jaison; Delos, John B

    2012-01-01

    We present part II of a study of chaotic escape from an open two-dimensional vase-shaped cavity. A surface of section reveals that the chaotic dynamics is controlled by a homoclinic tangle, the union of stable and unstable manifolds attached to a hyperbolic fixed point. Furthermore, the surface of section rectifies escape-time graphs into sequences of escape segments; each sequence is called an epistrophe. Some of the escape segments (and therefore some of the epistrophes) are forced by the topology of the dynamics of the homoclinic tangle. These topologically forced structures can be predicted using the method called homotopic lobe dynamics (HLD). HLD takes a finite length of the unstable manifold and a judiciously altered topology and returns a set of symbolic dynamical equations that encode the folding and stretching of the unstable manifold. We present three applications of this method to three different lengths of the unstable manifold. Using each set of dynamical equations, we compute minimal sets of escape segments associated with the unstable manifold, and minimal sets associated with a burst of trajectories emanating from a point on the vase's boundary. The topological theory predicts most of the early escape segments that are found in numerical computations.

  4. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots

    Science.gov (United States)

    Narayanan, Karthikeyan; Yen, Swee Kuan; Dou, Qingqing; Padmanabhan, Parasuraman; Sudhaharan, Thankiah; Ahmed, Sohail; Ying, Jackie Y.; Selvan, Subramanian Tamil

    2013-07-01

    Protein transport is an important phenomenon in biological systems. Proteins are transported via several mechanisms to reach their destined compartment of cell for its complete function. One such mechanism is the microtubule mediated protein transport. Up to now, there are no reports on synthetic systems mimicking the biological protein transport mechanism. Here we report a highly efficient method of mimicking the microtubule mediated protein transport using newly designed biotinylated peptides encompassing a microtubule-associated sequence (MTAS) and a nuclear localization signaling (NLS) sequence, and their final conjugation with streptavidin-coated CdSe/ZnS quantum dots (QDs). Our results demonstrate that these novel bio-conjugated QDs enhance the endosomal escape and promote targeted delivery into the nucleus of human mesenchymal stem cells via microtubules. Mimicking the cellular transport mechanism in stem cells is highly desirable for diagnostics, targeting and therapeutic applications, opening up new avenues in the area of drug delivery.

  5. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Bates, John T. [The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Keefer, Christopher J. [The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Slaughter, James C. [The Vanderbilt Vaccine Center, Departments of Biostatistics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Kulp, Daniel W. [IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (United States); Schief, William R. [IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (United States); Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA (United States); Crowe, James E., E-mail: james.crowe@vanderbilt.edu [The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2014-04-15

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on} with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.

  6. Hidden surface microstructures on Carboniferous insect Brodioptera sinensis (Megasecoptera) enlighten functional morphology and sensorial perception

    Science.gov (United States)

    Prokop, Jakub; Pecharová, Martina; Ren, Dong

    2016-01-01

    Megasecoptera are insects with haustellate mouthparts and petiolate wings closely related to Palaeodictyoptera and one of the few insect groups that didn’t survive the Permian-Triassic mass extinction. Recent discovery of Brodioptera sinensis in early Pennsylvanian deposits at Xiaheyan in northern China has increased our knowledge of its external morphology using conventional optical stereomicroscopy. Environmental scanning electron microscopy (ESEM) of structures, such as antennae, mouthparts, wing surfaces, external copulatory organs and cerci have shed light on their micromorphology and supposed function. A comparative study has shown an unexpected dense pattern of setae on the wing membrane of B. sinensis. In addition, unlike the results obtained by stereomicroscopy it revealed that the male and female external genitalia clearly differ in their fine structure and setation. Therefore, the present study resulted in a closer examination of the microstructure and function of previously poorly studied parts of the body of Paleozoic insects and a comparison with homologous structures occurring in other Palaeodictyopteroida, Odonatoptera and Ephemerida. This indicates, that the role and presumptive function of these integumental protuberances is likely to have been a sensory one in the coordination of mouthparts and manipulation of stylets, escape from predators, enhancement of aerodynamic properties and copulatory behaviour. PMID:27321551

  7. Within-Epitope Interactions Can Bias CTL Escape Estimation in Early HIV Infection

    Directory of Open Access Journals (Sweden)

    Victor Garcia

    2017-05-01

    Full Text Available As human immunodeficiency virus (HIV begins to replicate within hosts, immune responses are elicited against it. Escape mutations in viral epitopes—immunogenic peptide parts presented on the surface of infected cells—allow HIV to partially evade these responses, and thus rapidly go to fixation. The faster they go to fixation, i.e., the higher their escape rate, the larger the selective pressure exerted by the immune system is assumed to be. This relation underpins the rationale for using escapes to assess the strength of immune responses. However, escape rate estimates are often obtained by employing an aggregation procedure, where several mutations that affect the same epitope are aggregated into a single, composite epitope mutation. The aggregation procedure thus rests upon the assumption that all within-epitope mutations have indistinguishable effects on immune recognition. In this study, we investigate how violation of this assumption affects escape rate estimates. To this end, we extend a previously developed simulation model of HIV that accounts for mutation, selection, and recombination to include different distributions of fitness effects (DFEs and inter-mutational genomic distances. We use this discrete time Wright–Fisher based model to simulate early within-host evolution of HIV for DFEs and apply standard estimation methods to infer the escape rates. We then compare true with estimated escape rate values. We also compare escape rate values obtained by applying the aggregation procedure with values estimated without use of that procedure. We find that across the DFEs analyzed, the aggregation procedure alters the detectability of escape mutations: large-effect mutations are overrepresented while small-effect mutations are concealed. The effect of the aggregation procedure is similar to extracting the largest-effect mutation appearing within an epitope. Furthermore, the more pronounced the over-exponential decay of the DFEs, the

  8. Escaping Slavery: "Sweet Clara and the Freedom Quilt."

    Science.gov (United States)

    Miller, Sue Ann

    This lesson uses the picture book "Sweet Clara and the Freedom Quilt" by Deborah Hopkinson and an interactive website to enhance third- through fifth-grade students' understanding of the Underground Railroad and slavery, development of reading comprehension skills, and application of mapping skills. During three 45-60 minute lessons,…

  9. Two cases of atmospheric escape in the Solar System: Titan and Earth

    Science.gov (United States)

    Dandouras, I.

    2012-01-01

    Escape into space of the constituents of a planetary upper atmosphere can occur either in the form of neutral gas (thermal escape or non-thermal escape), or in the form of plasma. The long-term stability of an atmosphere results from the balance between source and escape rates. Two cases will be examined: Titan and Earth. Titan is the second largest planetary satellite in the Solar System and is the only one that has an atmosphere as substantial as that of the Earth. Titan's nitrogen rich atmosphere is embedded within Saturn's magnetosphere, and is directly bombarded by energetic ions due to Titan's lack of a significant intrinsic magnetic field. In addition to thermal escape, energy input from Saturn's magnetosphere and from Solar UV radiation can drive several non-thermal escape mechanisms in Titan's upper atmosphere: sputtering, dissociation and dissociative ionization of molecular nitrogen producing pick-up ions, photochemical production of fast neutrals etc. Earth also constantly loses matter, mostly in the form of H+ and O+ ions, through various outflow processes from the upper atmosphere and ionosphere. Most of the ions are low-energy (plasma reservoir is the plasmasphere, which is a toroidal region encircling the Earth and containing cold and dense plasma. Plasma plumes, forming in the outer plasmasphere and released outwards, constitute a well-established mode for plasmaspheric material release to the magnetosphere. They are associated to geomagnetically active periods and the related electric field change. In 1992 Lemaire and Shunk proposed the existence of an additional mode for plasmaspheric material release and escape: a plasmaspheric wind, steadily transporting cold plasmaspheric plasma outwards across the geomagnetic field lines. This has been proposed on a theoretical basis. Direct detection of this wind has, however, eluded observation in the past. Analysis of ion measurements, acquired in the outer plasmasphere by the CIS experiment onboard the

  10. Natural Killer Cells and Neuroblastoma: tumor recognition, escape mechanisms and possible novel immunotherapeutic approaches

    Directory of Open Access Journals (Sweden)

    Cristina eBottino

    2014-02-01

    Full Text Available Neuroblastoma (NB is the most common extra-cranial solid tumor of childhood and arises from developing sympathetic nervous system. Most primary tumors localize in the abdomen, the adrenal gland or lumbar sympathetic ganglia. Amplification in tumor cells of MYCN, the major oncogenic driver, patients’ age over 18 months and the presence at diagnosis of a metastatic disease (stage IV, M identify NB at high risk of treatment failure. Conventional therapies did not significantly improve the overall survival of these patients. Moreover, the limited landscape of somatic mutations detected in NB is hampering the development of novel pharmacological approaches. Major efforts aim to identify novel NB-associated surface molecules that activate immune responses and/or direct drugs to tumor cells and tumor-associated vessels. PVR (Poliovirus Receptor and B7-H3 are promising targets, since they are expressed by most high-risk NB, are upregulated in tumor vasculature and are essential for tumor survival/invasiveness. PVR is a ligand of DNAM-1 activating receptor that triggers the cytolytic activity of Natural Killer (NK cells against NB. In animal models targeting of PVR with an attenuated oncolytic poliovirus induced tumor regression and elimination. Also B7-H3 was successfully targeted in preclinical studies and is now being tested in phase I/II clinical trials. B7-H3 down-regulates NK cytotoxicity, providing NB with a mechanism of escape from immune response. The immunosuppressive potential of NB can be enhanced by the release of soluble factors that impair NK cell function and/or recruitment. Among these, TGF-β1 modulates the cytotoxicity receptors and the chemokine receptor repertoire of NK cells.Here, we summarize the current knowledge on the main cell surface molecules and soluble mediators that modulate the function of NK cells in NB, considering the pros and cons that must be taken into account in the design of novel NK cell-based immunotherapeutic

  11. Os professores e seus mecanismos de fuga e enfrentamento Teachers and their escape and coping mechanisms

    Directory of Open Access Journals (Sweden)

    Gideon Borges dos Santos

    2009-10-01

    Full Text Available A partir de exemplos concretos reunidos ao longo de dois anos de estudo sobre a saúde docente, este artigo propõe uma discussão sobre as estratégias que professores constroem para enfrentar as adversidades do cotidiano escolar. Com a utilização dos conceitos de saúde e da psicodinâmica do trabalho, busca-se refletir de que modo os docentes enfrentam adversidades como a não aprendizagem, o comportamento indisciplinado dos alunos, a falta de material didático-pedagógico e o cansaço ou a indisposição para ministrar as aulas. Essas estratégias - denominadas de enfrentamento e de fuga - que seriam, aparentemente, promotoras de aprendizagens, também são atividades que reduzem o desgaste dos professores, o que leva à banalização do processo educacional.Taken from concrete examples gathered over two years of study on the health of teachers, this article proposes a discussion about the strategies that teachers create to face the adversities of everyday school life. With the use of concepts of health and psychodynamics of work, we try to reflect on how teachers deal with adversities such as learning difficulties, the undisciplined behavior of students, the lack of teaching resources, and the teachers fatigue or unwillingness to teach the classes. These strategies - known as coping and escape strategies - which would apparently enhance learning, are also activities that reduce the teacher's burnout, which leads to the trivialization of the educational process.

  12. Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers.

    Science.gov (United States)

    Magzoub, Mazin; Pramanik, Aladdin; Gräslund, Astrid

    2005-11-15

    Cell-penetrating peptides (CPPs) are able to mediate the efficient cellular uptake of a wide range of cargoes. Internalization of a number of CPPs requires uptake by endocytosis, initiated by binding to anionic cell surface heparan sulfate (HS), followed by escape from endosomes. To elucidate the endosomal escape mechanism, we have modeled the process for two CPPs: penetratin (pAntp) and the N-terminal signal peptide of the unprocessed bovine prion protein (bPrPp). Large unilamellar phospholipid vesicles (LUVs) were produced encapsulating either peptide, and an ionophore, nigericin, was used to create a transmembrane pH gradient (DeltapH(mem), inside acidic) similar to the one arising in endosomes in vivo. In the absence of DeltapH(mem), no pAntp escape from the LUVs is observed, while a fraction of bPrPp escapes. In the presence of DeltapH(mem), a significant amount of pAntp escapes and an even higher degree of bPrPp escape takes place. These results, together with the differences in kinetics of escape, indicate different escape mechanisms for the two peptides. A minimum threshold peptide concentration exists for the escape of both peptides. Coupling of the peptides to a cargo reduces the fraction escaping, while complexation with HS significantly hinders the escape. Fluorescence correlation spectroscopy results show that during the escape process the LUVs are intact. Taken together, these results suggest a model for endosomal escape of CPPs: DeltapH(mem)-mediated mechanism, following dissociation from HS of the peptides, above a minimum threshold peptide concentration, in a process that does not involve lysis of the vesicles.

  13. IMF-induced escape of molecular ions from the Martian ionosphere

    Directory of Open Access Journals (Sweden)

    Y. Kubota

    2013-08-01

    Full Text Available Since Mars does not possess a significant global intrinsic magnetic field, the solar wind interacts directly with the Martian ionosphere and can induce ion escapes from it. Phobos-2 and recent Mars Express (MEX observations have shown that the escaping ions are O+ as well as molecular O2+ and CO2+. While O+ escape can be understood by the ion pick-up of non-thermal O corona extended around the planet, regarding the heavy molecular O2+ and CO2+, which are buried in the lower ionosphere, a novel escape mechanism needs to considered. Here we attack this problem by global magnetohydrodynamic (MHD simulations. First, we clarify the global structure of the streamlines that result from the interaction with the solar wind. Then, by focusing on the streamlines that dip into the low-altitude part of the dayside ionosphere, we investigate the escape path of the molecular ions. The effects of the interplanetary magnetic field (IMF on the molecular ion escape process are investigated by comparing the results with and without IMF. IMF has little effect on O+ escape via ion pick-up mediated by solar wind electron impact ionization of the O corona. O2+ and CO2+ are shoveled from the low-altitude regions of the dayside ionosphere by magnetic tension in the presence of IMF. These ions are pulled by the U-shaped field lines to the north and south poles, and at the terminator, they are concentrated in the noon–midnight meridian plane. These ions remain confined to the noon–midnight plane as they are transported to the nightside to form the tail ray. Then they escape along the streamlines open to the interplanetary space. Under a typical solar wind and IMF condition expected at Mars, O+, O2+ and CO2+ escape fluxes are 8.0 × 1023, 3.5 × 1023 and 5.0 × 1022 ion s−1, respectively, which are in good agreement with the MEX observations.

  14. Extinction Correction Significantly Influences the Estimate of the Lyα Escape Fraction

    Science.gov (United States)

    An, Fang Xia; Zheng, Xian Zhong; Hao, Cai-Na; Huang, Jia-Sheng; Xia, Xiao-Yang

    2017-02-01

    The Lyα escape fraction is a key measure to constrain the neutral state of the intergalactic medium and then to understand how the universe was fully reionized. We combine deep narrowband imaging data from the custom-made filter NB393 and the {{{H}}}2S1 filter centered at 2.14 μm to examine the Lyα emitters and Hα emitters at the same redshift z = 2.24. The combination of these two populations allows us to determine the Lyα escape fraction at z = 2.24. Over an area of 383 arcmin2 in the Extended Chandra Deep Field South (ECDFS), 124 Lyα emitters are detected down to NB393 = 26.4 mag at the 5σ level, and 56 Hα emitters come from An et al. Of these, four have both Lyα and Hα emissions (LAHAEs). We also collect the Lyα emitters and Hα emitters at z = 2.24 in the COSMOS field from the literature, and increase the number of LAHAEs to 15 in total. About one-third of them are AGNs. We measure the individual/volumetric Lyα escape fraction by comparing the observed Lyα luminosity/luminosity density to the extinction-corrected Hα luminosity/luminosity density. We revisit the extinction correction for Hα emitters using the Galactic extinction law with color excess for nebular emission. We also adopt the Calzetti extinction law together with an identical color excess for stellar and nebular regions to explore how the uncertainties in extinction correction affect the estimate of individual and global Lyα escape fractions. In both cases, an anti-correlation between the Lyα escape fraction and dust attenuation is found among the LAHAEs, suggesting that dust absorption is responsible for the suppression of the escaping Lyα photons. However, the estimated Lyα escape fraction of individual LAHAEs varies by up to ∼3 percentage points between the two methods of extinction correction. We find the global Lyα escape fraction at z = 2.24 to be (3.7 ± 1.4)% in the ECDFS. The variation in the color excess of the extinction causes a discrepancy of ∼1 percentage

  15. EFFECT OF ESCAPE DEVICE FOR SUBMERGED FLOATING TUNNEL (SFT) ON HYDRODYNAMIC LOADS APPLIED TO SFT

    Institute of Scientific and Technical Information of China (English)

    DONG Man-sheng; MIAO Guo-ping; YONG Long-chang; NIU Zhong-rong; PANG Huan-ping; HOU Chao-qun

    2012-01-01

    This paper presents a potential approach to settle the problem of surviving major safety accidents in Submerged Floating Tunnel (SFT) that detachable emergency escape devices are set up outside SFT.The Computational Fluid Dynamics (CFD)technology is used to investigate the effect of emergency escape devices on the hydrodynamic load acting on SFT in uniform and oscillatory flows and water waves by numerical test.The governing equations,i.e.,the Reynolds-Averaged Navier-Stokes (RANS)equations and k - ε standard turbulence equations,are solved by the Finite Volume Method (FVM).Analytic solutions for the Airy wave are applied to set boundary conditions to generate water wave.The VOF method is used to trace the free surface.In uniform flow,hydrodynamic loads,applied to SFT with emergency escape device,reduce obviously.But,in oscillatory flow,it has little influence on hydrodynamic loads acting on SFT.Horizontal and vertical wave loads of SFT magnify to some extend due to emergency escape devices so that the influence of emergency escape devices on hydrodynamic loads of SFT should be taken into consideration when designed.

  16. Escape from Telomere-Driven Crisis Is DNA Ligase III Dependent

    Directory of Open Access Journals (Sweden)

    Rhiannon E. Jones

    2014-08-01

    Full Text Available Short dysfunctional telomeres are capable of fusion, generating dicentric chromosomes and initiating breakage-fusion-bridge cycles. Cells that escape the ensuing cellular crisis exhibit large-scale genomic rearrangements that drive clonal evolution and malignant progression. We demonstrate that there is an absolute requirement for fully functional DNA ligase III (LIG3, but not ligase IV (LIG4, to facilitate the escape from a telomere-driven crisis. LIG3- and LIG4-dependent alternative (A and classical (C nonhomologous end-joining (NHEJ pathways were capable of mediating the fusion of short dysfunctional telomeres, both displaying characteristic patterns of microhomology and deletion. Cells that failed to escape crisis exhibited increased proportions of C-NHEJ-mediated interchromosomal fusions, whereas those that escaped displayed increased proportions of intrachromosomal fusions. We propose that the balance between inter- and intrachromosomal telomere fusions dictates the ability of human cells to escape crisis and is influenced by the relative activities of A- and C-NHEJ at short dysfunctional telomeres.

  17. How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape

    Science.gov (United States)

    Airapetian, Vladimir S.; Glocer, Alex; Khazanov, George V.; Loyd, R. O. P.; France, Kevin; Sojka, Jan; Danchi, William C.; Liemohn, Michael W.

    2017-02-01

    Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escape in removing the constituents of water from exoplanetary atmospheres under supersolar XUV irradiation. Our models suggest that the atmospheres of a significant fraction of Earth-like exoplanets around M dwarfs and active K stars exposed to high XUV fluxes will incur a significant atmospheric loss rate of oxygen and nitrogen, which will make them uninhabitable within a few tens to hundreds of Myr, given a low replenishment rate from volcanism or cometary bombardment. Our non-thermal escape models have important implications for the habitability of the Proxima Centauri’s terrestrial planet.

  18. Oxygen consumption and ventilation during simulated escape from an offshore oil platform

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J.A.S.; Henderson, G.D. [Institute of Occupational Medicine, Edinburgh (United Kingdom); Howie, R.M. [Institute of Occupational Medicine, Edinburgh (United Kingdom)

    1997-07-01

    Twenty-six male workers from the North Sea offshore oil industry took part in a simulated escape exercise at the Offshore Fire Training Centre. The course was 370 m long and had 19.4 m of vertical ascent and descent using the stairs on simulated offshore structures. Inspired ventilation and oxygen consumption were measured using the P. K. Morgan `Oxylog` and subjects breathed through the apparatus by mouthpiece and one-way valve assembly while wearing a nose clip. Oxygen consumption and ventilation were related to body weight and the maximum figures for ventilation and oxygen consumption were seen in individuals of over the 95th centile for weight who completed the exercise more quickly than other subjects. Draft standards for respiratory protective equipment for use during escape from fire do not specify the breathing volumes identified in this study, and which are considerably higher than those being currently considered. Additionally, the atmospheric conditions near a fire are likely to stimulate ventilation to considerably higher levels than those identified here. Accordingly, such equipment is likely to limit physical performance if a similar intensity of exercise is necessary during an escape. The architecture of offshore installations and protocols for escape from them should be structured to minimize exercise, and stair climbing should be avoided if emergency respirators are to be used. Workers should be trained in the use of escape breathing equipment and instruction should include information regarding its limitations and the need to limit exercise to an appropriate level. (Author)

  19. On the run: mapping the escape speed across the Galaxy with SDSS

    Science.gov (United States)

    Williams, Angus A.; Belokurov, Vasily; Casey, Andrew R.; Evans, N. Wyn

    2017-06-01

    We measure the variation of the escape speed of the Milky Way across a range of ˜40 kpc in Galactocentric radius. The local escape speed is found to be 521^{+46}_{-30}{ km s^{-1}}, in good agreement with other studies. We find that this has already fallen to 379^{+34}_{-28}{ km s^{-1}} at a radius of 50 kpc. Through measuring the escape speed and its variation, we obtain constraints on the Galactic mass profile and rotation curve. The gradient in the escape speed suggests that the total mass contained within 50 kpc is 30^{+7}_{-5}× 10^{10} M_{⊙}, implying a relatively light dark halo for the Milky Way. The local circular speed is found to be v_c(R_0) = 223^{+40}_{-34}{ km s^{-1}} and falls with radius as a power law with index -0.19 ± 0.05. Our method represents a novel way of estimating the mass of the Galaxy, and has very different systematics to more commonly used models of tracers, which are more sensitive to the central parts of the halo velocity distributions. Using our inference on the escape speed, we then investigate the orbits of high-speed Milky Way dwarf galaxies. For each considered dwarf, we predict small pericentre radii and large orbital eccentricities. This naturally explains the large observed ellipticities of two of the dwarfs, which are likely to have been heavily disrupted at pericentre.

  20. The Escape of Ionizing Photons from OB Associations in Disk Galaxies Radiation Transfer Through Superbubbles

    CERN Document Server

    Dove, J B; Ferrara, A; Dove, James B.; Ferrara, Andrea

    1999-01-01

    By solving the time-dependent radiation transfer problem of stellar radiation through evolving superbubbles within a smoothly varying H I distribution, we have estimated the fraction of ionizing photons emitted by OB associations that escapes the H I disk of our Galaxy. We considered a coeval star-formation history and a Gaussian star-formation history with a time spread sigma_t = 2 Myr. We find that the shells of the expanding superbubbles quickly trap or attenuate the ionizing flux, such that most of the escaping radiation escapes shortly after the formation of the superbubble. Superbubbles of large associations can blowout of the H I disk and form dynamic chimneys, which allow the ionizing radiation directly to escape the H I disk. However, blowout occurs when the ionizing photon luminosity has dropped well below the association's maximum luminosity. For the coeval star-formation history, the fraction of photons that escape each side of the disk in the solar vicinity is f_esc approx 6% (the total fraction ...

  1. Selectivity of escape-hole size in tube traps for whitespotted conger Conger myriaster

    Institute of Scientific and Technical Information of China (English)

    YANG Bingzhong; TANG Yanli; LIANG Zhenlin

    2011-01-01

    Comparative fishing experiments were carried out in 2010 using tube traps with five hole diameters (8,15,18,20 and 22 mm) to establish the size selectivity of escape holes for white-spotted conger.Selectivity and split parameters of the SELECT model were calculated using the estimated-split and equal-spilt model.From likelihood ratio tests and AIC (Akaike's Information Criterion) values,the estimated-split model was selected as the best-fit model.Size selectivity of escape holes in the tube traps was expressed as a logistic curve,similar to mesh selectivity.The 50% selection length of white-spotted conger in the estimated-split model was 28.26,33.35,39.31 and 47.30 cm for escape-hole diameters of 15,18,20 and 22 mm,respectively.The optimum escape-hole size is discussed with respect to management of the white-spotted conger fishery.The results indicate that tube traps with escape holes of 18 mm in diameter would benefit this fishery.

  2. Morphology of galaxies

    CERN Document Server

    Wadadekar, Yogesh

    2012-01-01

    The study of the morphology of galaxies is important in order to understand the formation and evolution of galaxies and their sub-components as a function of luminosity, environment, and star-formation and galaxy assembly over cosmic time. Disentangling the many variables that affect galaxy evolution and morphology, requires large galaxy samples and automated ways to measure morphology. The advent of large digital sky surveys, with unprecedented depth and resolution, coupled with sophisticated quantitative methods for morphology measurement are providing new insights in this fast evolving field of astronomical research.

  3. Microhabitat occupation and functional morphology of four species of sympatric agamid lizards in the Kyzylkum Desert, central Uzbekistán

    Directory of Open Access Journals (Sweden)

    Clemann, N.

    2008-12-01

    Full Text Available We examined microhabitat occupation and functional morphology of four sympatric agamid lizards (Phrynocephalus helioscopus helioscopus, P. interscapularis, P. mystaceus galli and Trapelus sanguinolentus at three sites in the arid zone of central Uzbekistan. At two sites located in sand dunes, substrate attributes played a key role in habitat selection by three syntopic species. At a third flat, stony site, P. helioscopus selected habitat non–randomly, tending to occur close to sparse, low vegetation. Syntopic taxa were separated in morphospace, and there was a trend for taxa with proportionally longer limbs to have faster field escape speeds. Field escape distances and predator avoidance tactics differed between species, with two main escape strategies (crypsis or sand–diving following an escape sprint. We caution that broad–scale threatening processes such as over–grazing and salinity may be having a detrimental effect on microhabitat features important to terrestrial reptiles in Uzbekistan.

  4. 3D Simulations of the variability of the atmospheric escape at Mars with the EUV solar flux

    Science.gov (United States)

    Chaufray, J.-Y.; Leblanc, F.; Modolo, R.; Gonzalez-Galindo, F.; Lopez-Valverde, M.; Forget, F.

    2014-04-01

    The exosphere is the collisionless region surrounding a planetary atmosphere. The exosphere of Mars is an important region to characterize the escape processes. It is mainly formed from processes responsible of the atmospheric escape in the underlying atmosphere/ionosphere. The Martian exosphere is mainly composed of atomic hydrogen, molecular hydrogen and atomic oxygen. Atomic and molecular hydrogen escape is dominated by the thermal escape while the oxygen escape is dominated by the O2+ dissociative recombination in the Martian upper ionosphere. Therefore their escape rates are expected to vary strongly with the EUV solar flux which is the main driver of the heating and ionization of the Martian upper atmosphere. In this presentation, we will present simulations obtained from a 3D Martian exospheric model, coupled to the 3D GCM-LMD model for different solar UV conditions representative of current and past conditions.

  5. Inter- vs intra-individual variation and temporal repeatability of escape responses in the coral reef fish Amblyglyphidodon curacao

    Directory of Open Access Journals (Sweden)

    Maïwenn Jornod

    2015-11-01

    Full Text Available Fast-start escape responses are critical behaviours used by fishes during predator-prey encounters and some interactions with hetero- and conspecifics. In experimental studies, escape responses are often measured once per individual and considered representative of maximum performance. However, few studies have compared variability and repeatability in escape performances within and among individuals. Using the tropical damselfish Amblyglyphidodon curacao, we quantified inter- and intra-individual variation in behavioural and kinematic components of escape performance during repeated presentations of a stimulus at 15 min intervals. Individual maximum escape performance was repeatable through time, but there was considerable variation in the magnitude of responses both among and within fish. We found no evidence of habituation or fatigue due to repeated stimulations, suggesting that fish can be stimulated multiple times to ensure that an accurate estimate of maximum escape performance is obtained.

  6. How to escape from the host nest: imperfect chemical mimicry in eucharitid parasitoids and exploitation of the ants' hygienic behavior.

    Science.gov (United States)

    Pérez-Lachaud, Gabriela; Bartolo-Reyes, Juan Carlos; Quiroa-Montalván, Claudia M; Cruz-López, Leopoldo; Lenoir, Alain; Lachaud, Jean-Paul

    2015-04-01

    Communication in ants is based to a great extent on chemical compounds. Recognition of intruders is primarily based on cuticular hydrocarbon (CHC) profile matching but is prone to being cheated. Eucharitid wasps are specific parasitoids of the brood of ants; the immature stages are either well integrated within the colony or are protected within the host cocoons, whereas adult wasps at emergence must leave their host nest to reproduce and need to circumvent the ant recognition system to escape unscathed. The behavioral interactions between eucharitid wasps and workers of their host, the Neotropical ant Ectatomma tuberculatum, are characterized. In experimental bioassays, newly emerged parasitoids were not violently aggressed. They remained still and were grabbed by ants upon contact and transported outside the nest; host workers were even observed struggling to reject them. Parasitoids were removed from the nest within five minutes, and most were unharmed, although two wasps (out of 30) were killed during the interaction with the ants. We analyzed the CHCs of the ant and its two parasitoids, Dilocantha lachaudii and Isomerala coronata, and found that although wasps shared all of their compounds with the ants, each wasp species had typical blends and hydrocarbon abundance was also species specific. Furthermore, the wasps had relatively few CHCs compared to E. tuberculatum (22-44% of the host components), and these were present in low amounts. Wasps, only partially mimicking the host CHC profile, were immediately recognized as alien and actively removed from the nest by the ants. Hexane-washed wasps were also transported to the refuse piles, but only after being thoroughly inspected and after most of the workers had initially ignored them. Being recognized as intruder may be to the parasitoids' advantage, allowing them to quickly leave the natal nest, and therefore enhancing the fitness of these very short lived parasitoids. We suggest that eucharitids take advantage

  7. Ly{alpha} ESCAPE FROM z {approx} 0.03 STAR-FORMING GALAXIES: THE DOMINANT ROLE OF OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Wofford, Aida; Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Salzer, John, E-mail: wofford@stsci.edu [Astronomy Department, Indiana University, Swain West 408, 727 East Third Street, Bloomington, IN 47405 (United States)

    2013-03-10

    The usefulness of H I Ly{alpha} photons for characterizing star formation in the distant universe is limited by our understanding of the astrophysical processes that regulate their escape from galaxies. These processes can only be observed in detail out to a few Multiplication-Sign 100 Mpc. Past nearby (z < 0.3) spectroscopic studies are based on small samples and/or kinematically unresolved data. Taking advantage of the high sensitivity of Hubble Space Telescope's Cosmic Origins Spectrograph (COS), we observed the Ly{alpha} lines of 20 H{alpha}-selected galaxies located at =0.03. The galaxies cover a broad range of luminosity, oxygen abundance, and reddening. In this paper, we characterize the observed Ly{alpha} lines and establish correlations with fundamental galaxy properties. We find seven emitters. These host young ({<=}10 Myr) stellar populations have rest-frame equivalent widths in the range 1-12 A, and have Ly{alpha} escape fractions within the COS aperture in the range 1%-12%. One emitter has a double-peaked Ly{alpha} with peaks 370 km s{sup -1} apart and a stronger blue peak. Excluding this object, the emitters have Ly{alpha} and O I {lambda}1302 offsets from H{alpha} in agreement with expanding-shell models and Lyman break galaxies observations. The absorbers have offsets that are almost consistent with a static medium. We find no one-to-one correspondence between Ly{alpha} emission and age, metallicity, or reddening. Thus, we confirm that Ly{alpha} is enhanced by outflows and is regulated by the dust and H I column density surrounding the hot stars.

  8. Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity.

    Science.gov (United States)

    Spatola, Daniele; Pennino, Valentina; Basilone, Luca; Interbartolo, Francesco; Micallef, Aaron; Sulli, Attilio; Basilone, Walter

    2016-04-01

    In the Sicily Channel, (Central Mediterranean), two geodynamic processes overlap each other, the Maghrebides-Apennines accretionary prism and the Sicily Channel rift. Moreover, the northwestern sector (Banks sector) is characterised by an irregular seafloor morphology linked to the recent volcanic and tectonic activity.In order to discriminate the role exerted by both the processes in the morphostructural setting of the area we used a dataset of both high and very high resolution single-channel and multi-channel profiles, acquired in the frame of the RITMARE project respectively with CHIRP and sparker, and airgun sources, and high resolution (5 m cell) morpho-bathymetric data. The data allowed us to identify and characterise two areas where different geological features (sedimentary and volcanic) are prevailing. They present fluid escaping evidence, which often appears to be active and generating different types of morphologies (both positive and negative). In the western sector we recognised pockmarks at water depths of 195 to 317 m, with diameters from 25 to 580 m, depths from 1.3 to 15 m, and slope up to 23°. They show sub-circular shape in plan-view and reflectors with upward concavity in cross section, and are oriented along a NW-SE trend.The CHIRP and multichannel profiles highlight fluids that affect the Plio-Quaternary succession, especially in areas where the top surface of the Messinian succession is shallower. Conversely, wipe-out acoustic facies were recognised in proximity of: i) extensional faults of Mesozoic age with NW-SE trend; ii) dip/strike slip faults of Cenozoic age with NW-SE, N-S and about NNE-SSW trends, and iii) extensional neo-tectonic faults with NW-SE and NNW-SSE trends. We cannot exclude that they could feed the shallower reservoir producing a mixing between the two. In the eastern sector we recognised a cluster of volcanoes composed of seven cone-shaped structures (SCV1-7), pertaining to a wide area known as Graham Bank. A detailed

  9. Escape rout as a component of the mine fire protection system; Droga ucieczkowa jako element systemu zabezpieczenia przeciwpozarowego kopalni

    Energy Technology Data Exchange (ETDEWEB)

    Badura, H.; Sulkowski, J. [Politechnika Slaska, Gliwice (Poland)

    1996-07-01

    The features and tasks of the fire safety systems are discussed briefly and next the authors concentrate on role and effectiveness of the escape routs in this system. The problems connected with the determination of escape routs as well as estimate of the disposable time for the staff self-rescue. Conclusions important for the practice relating to effective use of the escape routs are presented. (author). 7 refs., 2 figs.

  10. Immune escape mechanisms in colorectal cancer pathogenesis and liver metastasis.

    Science.gov (United States)

    Pancione, Massimo; Giordano, Guido; Remo, Andrea; Febbraro, Antonio; Sabatino, Lina; Manfrin, Erminia; Ceccarelli, Michele; Colantuoni, Vittorio

    2014-01-01

    Over the past decade, growing evidence indicates that the tumor microenvironment (TME) contributes with genomic/epigenomic aberrations of malignant cells to enhance cancer cells survival, invasion, and dissemination. Many factors, produced or de novo synthesized by immune, stromal, or malignant cells, acting in a paracrine and autocrine fashion, remodel TME and the adaptive immune response culminating in metastasis. Taking into account the recent accomplishments in the field of immune oncology and using metastatic colorectal cancer (mCRC) as a model, we propose that the evasion of the immune surveillance and metastatic spread can be achieved through a number of mechanisms that include (a) intrinsic plasticity and adaptability of immune and malignant cells to paracrine and autocrine stimuli or genotoxic stresses; (b) alteration of positional schemes of myeloid-lineage cells, produced by factors controlling the balance between tumour-suppressing and tumour-promoting activities; (c) acquisition by cancer cells of aberrant immune-phenotypic traits (NT5E/CD73, CD68, and CD163) that enhance the interactions among TME components through the production of immune-suppressive mediators. These properties may represent the driving force of metastatic progression and thus clinically exploitable for cancer prevention and therapy. In this review we summarize results and suggest new hypotheses that favour the growing impact of tumor-infiltrating immune cells on tumour progression, metastasis, and therapy resistance.

  11. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod

    2017-05-19

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  12. Escape and collision dynamics in the planar equilateral restricted four-body problem

    CERN Document Server

    Zotos, Euaggelos E

    2016-01-01

    We consider the planar circular equilateral restricted four body-problem where a test particle of infinitesimal mass is moving under the gravitational attraction of three primary bodies which move on circular orbits around their common center of gravity, such that their configuration is always an equilateral triangle. The case where all three primaries have equal masses is numerically investigated. A thorough numerical analysis takes place in the configuration $(x,y)$ as well as in the $(x,C)$ space in which we classify initial conditions of orbits into four main categories: (i) bounded regular orbits, (ii) trapped chaotic orbits, (iii) escaping orbits and (iv) collision orbits. Interpreting the collision motion as leaking in the phase space we related our results to both chaotic scattering and the theory of leaking Hamiltonian systems. We successfully located the escape and the collision basins and we managed to correlate them with the corresponding escape and collision times of orbits. We hope our contribut...

  13. Mathematical modeling of the heat treatment and combustion of a coal particle. III. Volatile escape stage

    Science.gov (United States)

    Enkhjargal, Kh.; Salomatov, V. V.

    2011-05-01

    The present paper is a continuation of previous publications of the authors in this journal in which two phases of the multistage process of combustion of a coal particle were considered in detail with the help of mathematical modeling: its radiation-convection heating and drying. In the present work, the escape dynamics of volatiles is investigated. The physico-mathematical model of the thermodestruction of an individual coal particle with a dominant influence of endothermal effects has been formulated. Approximate-analytical solutions of this model that are of paramount importance for detailed analysis of the influence of the physical and regime parameters on the escape dynamics of volatiles have been found. The results obtained form the basis for engineering calculations of the volatile escape stage and can be used successfully in the search for effective regimes of burning of various solid fuels, in particular, Shivé-Ovoos coal of Mongolia.

  14. Precipitation of Energetic Neutral Atoms and Induced Non-Thermal Escape Fluxes from the Martian Atmosphere

    CERN Document Server

    Lewkow, Nicholas

    2014-01-01

    The precipitation of energetic neutral atoms (ENAs), produced through charge exchange (CX) collisions between solar wind (SW) ions and thermal atmospheric gases, is investigated. Subsequent induced non-thermal escape fluxes have been carried out for the Martian atmosphere. Detailed modeling of the ENA energy input and determination of connections between parameters of precipitating ENAs and resulting escape fluxes, reflection coefficients of fast atoms from the Mars atmosphere, and altitude dependent ENA energy distributions are established using Monte Carlo (MC) simulations of the precipitation process with accurate quantum mechanical (QM) cross sections. Detailed descriptions of secondary hot (SH) atoms and molecules induced by ENAs have been obtained for a better understanding of the mechanisms responsible for atmospheric escape and evolution. The effects of using isotropic hard sphere (HS) cross sections as compared to realistic, anisotropic quantum cross sections are examined for energy-deposition profil...

  15. Intermittent cold water swim stress increases immobility and interferes with escape performance in rat.

    Science.gov (United States)

    Christianson, John P; Drugan, Robert C

    2005-11-30

    The behavioral consequences of intermittent, 5 s cold-water swims (15 degrees C) or confinement were assessed 24 h after stress in a 5 min forced swim test or an instrumental swim escape test (SET). The SET was conducted with temporal and instrumental parameters similar to the shock-motivated shuttle escape test. The tests detected significantly increased immobility in the forced swim test and increased latency to escape in the SET. These results extend previous findings with intermittent swim stress and provide evidence that intermittent swim stress produces behavioral deficits similar to other stress models. This new model may be a useful tool for exploring the physiological mechanisms underlying the stress response.

  16. Studying Lyman-alpha escape and reionization in Green Pea galaxies

    Science.gov (United States)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Gronke, Max; Leitherer, Claus; Wofford, Aida; Dijkstra, Mark

    2017-01-01

    Green Pea galaxies are low-redshift galaxies with extreme [OIII]5007 emission line. We built the first statistical sample of Green Peas observed by HST/COS and used them as analogs of high-z Lyman-alpha emitters to study Ly-alpha escape and Ly-alpha sizes. Using the HST/COS 2D spectra, we found that Ly-alpha sizes of Green Peas are larger than the UV continuum sizes. We found many correlations between Ly-alpha escape fraction and galactic properties -- dust extinction, Ly-alpha kinematic features, [OIII]/[OII] ratio, and gas outflow velocities. We fit an empirical relation to predict Ly-alpha escape fraction from dust extinction and Ly-alpha red-peak velocity. In the JWST era, we can use this relation to derive the IGM HI column density along the line of sight of each high-z Ly-alpha emitter and probe the reionization process.

  17. The Lyman Continuum Escape Fraction of the Cosmic Horseshoe: A Test of Indirect Estimates

    Science.gov (United States)

    Vasei, Kaveh; Siana, Brian; Shapley, Alice E.; Quider, Anna M.; Alavi, Anahita; Rafelski, Marc; Steidel, Charles C.; Pettini, Max; Lewis, Geraint F.

    2016-11-01

    High-redshift star-forming galaxies are likely responsible for the reionization of the universe, yet direct detection of their escaping ionizing (Lyman continuum [LyC]) photons has proven to be extremely challenging. In this study, we search for escaping LyC of the Cosmic Horseshoe, a gravitationally lensed, star-forming galaxy at z = 2.38 with a large magnification of ∼24. Transmission at wavelengths of low-ionization interstellar absorption lines in the rest-frame ultraviolet suggests a patchy, partially transparent interstellar medium. This makes it an ideal candidate for direct detection of the LyC. We obtained a 10-orbit Hubble near-UV image using the Wide Field Camera 3 (WFC3)/UVIS F275W filter that probes wavelengths just below the Lyman limit at the redshift of the Horseshoe in an attempt to detect escaping LyC radiation. After fully accounting for the uncertainties in the opacity of the intergalactic medium (IGM) and accounting for the charge transfer inefficiency in the WFC3 CCDs, we find a 3σ upper limit for the relative escape fraction of {f}{esc,{rel}}\\lt 0.08. This value is a factor of five lower than the value (0.4) predicted by the 40% transmission in the low-ion absorption lines. Though possible, it is unlikely that the nondetection is due to a high-opacity line of sight through the IGM (\\lt 20% chance). We discuss several possible causes for the discrepancy between the escape fraction and the covering fraction and consider the implications for future attempts at both direct LyC detection and indirect estimates of the escape fraction.

  18. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape.

    Directory of Open Access Journals (Sweden)

    Katharine J Bar

    Full Text Available Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50 selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical

  19. Estimates of N2 narcosis and O2 toxicity during submarine escapes from 600 to 1,000 fsw.

    Science.gov (United States)

    Connor, Christopher W; Ferrigno, Massimo

    2009-01-01

    The U.S. Navy recommends submarine escape for depths down to 600 fsw, with deeper escapes entailing the risks of decompression sickness, nitrogen (N2) narcosis and CNS oxygen (O2) toxicity. However, the escape equipment, including the submarine escape and immersion equipment and the escape trunk, could probably function even at 1,000 fsw. Here we report a theoretical analysis of the risks of both N2 narcosis and CNS O2 toxicity for different escape profiles from 600 to 1,000 fsw. The effect of N2 narcosis, calculated as a function of N2 pressure in the brain using Gas Man software, was expressed as equivalent narcosis depth (END), corresponding to the depth at which the same pressure of N2 would be produced in the brain after five minutes of scuba diving with air. The risk of O2-induced convulsions was estimated using the model developed by Arieli et al. Different dwell times (DTs) at maximal pressure in the escape trunk (from 0 to 60 s) and lungs-to-brain circulation times (10 to 30 s) were included in our analysis. When DT in the escape trunk is very short (e.g., 10 s), the risk of either incapacitating N2 narcosis and/or O2-induced convulsions occurring in the trunk is low, even during escapes from 1,000 fsw.

  20. Composing morphological filters

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk)

    1995-01-01

    textabstractA morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openin

  1. Composing morphological filters

    NARCIS (Netherlands)

    Heijmans, H.J.A.M.

    1995-01-01

    A morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openings and closi

  2. Morphological image analysis

    NARCIS (Netherlands)

    Michielsen, K.; Raedt, H. De; Kawakatsu, T.

    2000-01-01

    We describe a morphological image analysis method to characterize images in terms of geometry and topology. We present a method to compute the morphological properties of the objects building up the image and apply the method to triply periodic minimal surfaces and to images taken from polymer chemi

  3. Morphological image analysis

    NARCIS (Netherlands)

    Michielsen, K; De Raedt, H; Kawakatsu, T; Landau, DP; Lewis, SP; Schuttler, HB

    2001-01-01

    We describe a morphological image analysis method to characterize images in terms of geometry and topology. We present a method to compute the morphological properties of the objects building up the image and apply the method to triply periodic minimal surfaces and to images taken from polymer chemi

  4. Beneficiated coals' char morphology

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2012-09-01

    Full Text Available This work evaluated the char morphology of beneficiated and original coal (without beneficiation from four Colombian coalmines: Cerrejón (La Guajira, La Jagua (Cesar, Guachinte (Valle del Cauca and Nechí (Antioquia. Column flotation was used to obtain beneficiated coal, whereas a drop tube reactor at 1,000°C, 104 °C/s heating rate and 100 ms residence time was used to obtain char. The chars were analysed by image analysis which determined their shape, size, porosity and wall thickness. It was found that char morphology depended on coal rank and maceral composition. Morphological characteristics like high porosity, thinner walls and network-like morphology which are beneficial in improving combustion were present in vitrinite- and liptinite-rich lowest-ranking coals. Beneficiated coals showed that their chars had better performance regarding their morphological characteristics than their original coal chars.

  5. Increased transcapillary escape rate of albumin in type 1 (insulin-dependent) diabetic patients with microalbuminuria

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B

    1986-01-01

    The transcapillary escape rate, intravascular mass and outflux of albumin were measured in 75 Type 1 (insulin-dependent) diabetic patients. The groups were defined as: group 1: normal urinary albumin excretion, less than 30 mg/24 h (n = 21); group 2: microalbuminuria, 30-300 mg/24 h (n = 36); group...... vascular leakage of albumin is an early event in the development of diabetic nephropathy, with the leakage of albumin being fully developed in the microalbuminuric patient. In contrast, long-term diabetic patients with normal urinary albumin excretion have a normal transcapillary escape rate of albumin....

  6. "We are free, you are slaves. Come on, let's run away": Escape from Constantia, 1712.

    OpenAIRE

    Paulse, Michele

    2014-01-01

    Slaves were imported to the Cape from 1658 to 1808. The majority of the captives lived in Cape Town and many other slaves lived on farms. Added to this captive population were political exiles. In 1712, 23 slaves and exiles gathered at Constantia, a renowned wine farm, to run away. Since the holding was an important homestead, one would expect that this escape would have been reconstructed in the histories of the farm and slavery at the Cape. At the time, the escape raised s...

  7. Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"

    Science.gov (United States)

    Kislyakova, Kristina; Johnstone, Colin; Odert, Petra; Erkaev, Nikolai; Lammer, Helmut; Lüftinger, Theresa; Holmstöm, Mats; Khodachenko, Maxim; Güdel, Manuel

    2014-05-01

    We present the results of modeling of the interactions between stellar wind and the extended hydrogen-dominated upper atmospheres of planets and estimate the resulting escape of planetary pick-up ions from the 5 «super-Earths» in the compact Kepler-11 system. We compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Assuming the stellar wind of Kepler-11 is similar to the solar wind, we used a polytropic 1D hydrodynamic wind model to estimate the wind properties at the planetary orbits. We applied a Direct Simulation Monte Carlo Model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f planets within a realistic expected heating efficiency range of 15-40%. The same model was used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. Modeling clarifies the influence of possible magnetic moments on escape processes and allows to estimate the charge exchange and photoionization production rates of planetary ions as well as the loss rates of pick-up H+ ions for all five planets. This study presents also the comparison of the results between the five 'super-Earths' and in a more general sense also with the thermal escape rates of the neutral planetary hydrogen atoms. Our results show that for all Kepler-11b-f exoplanets, a huge neutral hydrogen corona is formed around the planet. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure, charge-exchange and gravitational effects. According to our estimates, nonthermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 «super-Earths» vary between ~ 6.4 × 1030 s-1 and ~ 4.1 × 1031 s-1 depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of ~ 1.07 × 107 g·s-1 and ~ 6.8 × 107 g·s-1 respectively, which is a few percent of the thermal

  8. Escape of DNA from a weakly biased thin nanopore: Experimental evidence for a universal diffusive behavior

    Science.gov (United States)

    Hoogerheide, David P.; Albertorio, Fernando; Golovchenko, Jene A.

    2014-01-01

    We report experimental escape time distributions of double-stranded DNA (dsDNA) molecules initially threaded halfway through a thin solid-state nanopore. We find a universal behavior of the escape time distributions consistent with a one-dimensional first passage formulation notwithstanding the geometry of the experiment and the potential role of complex molecule-liquid-pore interactions. Diffusion constants that depend on the molecule length and pore size are determined. Also discussed are the practical implications of long time diffusive molecule trapping in the nanopore. PMID:24483704

  9. Escaping from a Liquidity Trap and Deflation: The Foolproof Way and Others

    OpenAIRE

    Svensson, Lars E. O.

    2003-01-01

    Existing proposals to escape from a liquidity trap and deflation, including my "Foolproof Way," are discussed in the light of the optimal way to escape. The optimal way involves three elements: (1) an explicit central-bank commitment to a higher future price level; (2) a concrete action that demonstrates the central bank's commitment, induces expectations of a higher future price level and jump-starts the economy; and (3) an exit strategy that specifies when and how to get back to normal. A c...

  10. Carrier transfer and thermal escape in CdTe/ZnTe quantum dots.

    Science.gov (United States)

    Man, Minh Tan; Lee, Hong Seok

    2014-02-24

    We report on the carrier transfer and thermal escape in CdTe/ZnTe quantum dots (QDs) grown on a GaAs substrate. The significant emission-energy-dependent decay time at high excitation intensity (35 W/cm2) is attributed to the lateral transfer of carriers in the QDs. At low temperature (thermally activated transition occurs between two different states separated by approximately 9 meV, while the main contribution to nonradiative processes is the thermal escape from QDs that is assisted by carrier scattering via the emission of longitudinal phonons through the excited QD states at high temperature, with energies of approximately 19 meV.

  11. Escape from intermittent repellers: periodic orbit theory for crossover from exponential to algebraic decay.

    Science.gov (United States)

    Dahlqvist, P

    1999-12-01

    We apply periodic orbit theory to study the asymptotic distribution of escape times from an intermittent map. The dynamical zeta function exhibits a branch point which is associated with an asymptotic power law escape. By an analytic continuation technique we compute a pair of complex conjugate zeroes beyond the branch point, associated with a preasymptotic exponential decay. The crossover time from an exponential to a power law is also predicted. The theoretical predictions are confirmed by numerical simulation. Applications to conductance fluctuations in quantum dots are discussed.

  12. Dynamical Creation of Channels for Particle Escape in the Solar Corona

    CERN Document Server

    Mahajan, S M; Nikolskaya, K I; Shatashvili, N L; Mahajan, Swadesh M.; Miklaszewski, Riszard; Nikol'skaya, Komunela I.; Shatashvili, Nana L.

    2003-01-01

    It is shown that the connection of sufficiently fast flows with dynamical channels for particle escape in the Solar Corona is rather direct: it depends on their ability to deform (in specific cases to distort) the ambient magnetic field lines to temporarily stretch (shrink, destroy) the closed field lines so that the flow can escape the local region. Using a dissipative two--fluid code in which the flows are treated at par with the currents, we have demonstrated channel creation in a variety of closed--field line structures. This self--induced transparency constitutes the active mode for the formation of the solar wind.

  13. Entire functions for which the escaping set is a spider's web

    Science.gov (United States)

    Sixsmith, D. J.

    2011-11-01

    We construct several new classes of transcendental entire functions, f, such that both the escaping set, I(f), and the fast escaping set, A(f), have a structure known as a spider's web. We show that some of these classes have a degree of stability under changes in the function. We show that new examples of functions for which I(f) and A(f) are spiders' webs can be constructed by composition, by differentiation, and by integration of existing examples. We use a property of spiders' webs to give new results concerning functions with no unbounded Fatou components.

  14. Entire functions for which the escaping set is a spider's web

    CERN Document Server

    Sixsmith, D J

    2010-01-01

    We construct several new classes of transcendental entire functions, f, such that both the escaping set, I(f), and the fast escaping set, A(f), have a structure known as a spider's web. We show that some of these classes have a degree of stability under changes in the function. We show that new examples of functions for which I(f) and A(f) are spiders' webs can be constructed by composition, by differentiation, and by integration of existing examples. We use a property of spiders' webs to give new results concerning functions with no unbounded Fatou components.

  15. Cubic Polynomial Maps with Periodic Critical Orbit, Part II: Escape Regions

    CERN Document Server

    Bonifant, Araceli; Milnor, John

    2009-01-01

    The parameter space $\\mathcal{S}_p$ for monic centered cubic polynomial maps with a marked critical point of period $p$ is a smooth affine algebraic curve whose genus increases rapidly with $p$. Each $\\mathcal{S}_p$ consists of a compact connectedness locus together with finitely many escape regions, each of which is biholomorphic to a punctured disk and is characterized by an essentially unique Puiseux series. This note will describe the topology of $\\mathcal{S}_p$, and of its smooth compactification, in terms of these escape regions. It concludes with a discussion of the real sub-locus of $\\mathcal{S}_p$.

  16. Antarctic krill; assessment of mesh size selectivity and escape mortality from trawls

    DEFF Research Database (Denmark)

    Krafft, Bjørn A.; Krag, Ludvig Ahm; Herrmann, Bent;

    2015-01-01

    This working paper presents the aims and methodology for a three-year-project (commenced in 2015) assessing size selectivity and escape mortality of Antarctic krill from trawl nets. The project is widely based on acquired experiences from a completed study Net Escapement of Antarctic krill...... in Trawls (NEAT), presented in WG-EMM 2012/24, WGEMM 2013/34, WG-EMM 2014/14 and WG-EMM 2014/16. Funding is provided by the Norwegian Research Council and ship-time for executing the field-experiments is offered free-of-charge by two Norwegian commercial fishing companies; Olympic Seafood AS and Aker Bio...

  17. The Great Observatories Origins Deep Survey: Constraints on the Lyman Continuum Escape Fraction Distribution of Lyman--Break Galaxies at 3.4

    CERN Document Server

    Vanzella, E; Inoue, A; Nonino, M; Fontanot, F; Cristiani, S; Grazian, A; Dickinson, M; Stern, D; Tozzi, P; Giallongo, E; Ferguson, H; Spinrad, H; Boutsia, K; Fontana, A; Rosati, P

    2010-01-01

    We use ultra-deep ultraviolet VLT/VIMOS intermediate-band and VLT/FORS1 narrow-band imaging in the GOODS Southern field to derive limits on the distribution of the escape fraction (f_esc) of ionizing radiation for L >~ L*(z=3) Lyman Break Galaxies (LBGs) at redshift 3.4--4.5. Only one LBG, at redshift z=3.795, is detected in its Lyman continuum (LyC; S/N~5.5), the highest redshift galaxy currently known with a direct detection. Its ultraviolet morphology is quite compact (R_eff=0.8, kpc physical). Three out of seven AGN are also detected in their LyC, including one at redshift z=3.951 and z850 = 26.1. From stacked data (LBGs) we set an upper limit to the average f_esc in the range 5%--20%, depending on the how the data are selected (e.g., by magnitude and/or redshift). We undertake extensive Monte Carlo simulations that take into account intergalactic attenuation, stellar population synthesis models, dust extinction and photometric noise in order to explore the moments of the distribution of the escaping radi...

  18. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    Science.gov (United States)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma

    Science.gov (United States)

    Parker, Brittany C.; Annala, Matti J.; Cogdell, David E.; Granberg, Kirsi J.; Sun, Yan; Ji, Ping; Li, Xia; Gumin, Joy; Zheng, Hong; Hu, Limei; Yli-Harja, Olli; Haapasalo, Hannu; Visakorpi, Tapio; Liu, Xiuping; Liu, Chang-gong; Sawaya, Raymond; Fuller, Gregory N.; Chen, Kexin; Lang, Frederick F.; Nykter, Matti; Zhang, Wei

    2013-01-01

    Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3′–untranslated region (3′-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3′-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma. PMID:23298836

  20. Quantifying factors determining the rate of CTL escape and reversion during acute and chronic phases of HIV infection

    Energy Technology Data Exchange (ETDEWEB)

    Ganusov, Vitaly V [Los Alamos National Laboratory; Korber, Bette M [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory

    2009-01-01

    Human immunodeficiency virus (HIV) often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. However, the importance and quantitative details of CTL escape in humans are poorly understood. In part, this is because most studies looking at escape of HIV from CTL responses are cross-sectional and are limited to early or chronic phases of the infection. We use a novel technique of single genome amplification (SGA) to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We find that HIV escapes from virus-specific CTL responses as early as 30-50 days since the infection, and the rates of viral escapes during acute phase of the infection are much higher than was estimated in previous studies. However, even though with time virus acquires additional escape mutations, these late mutations accumulate at a slower rate. A poor correlation between the rate of CTL escape in a particular epitope and the magnitude of the epitope-specific CTL response suggests that the lower rate of late escapes is unlikely due to a low efficacy of the HIV-specific CTL responses in the chronic phase of the infection. Instead, our results suggest that late and slow escapes are likely to arise because of high fitness cost to the viral replication associated with such CTL escapes. Targeting epitopes in which virus escapes slowly or does not escape at all by CTL responses may, therefore, be a promising direction for the development of T cell based HIV vaccines.