Arctic energy budget in relation to sea ice variability on monthly-to-annual time scales
Krikken, F.; Hazeleger, W.
2015-01-01
The large decrease in Arctic sea ice in recent years has triggered a strong interest in Arctic sea ice predictions on seasonal-to-decadal time scales. Hence, it is important to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. This study
Arctic energy budget in relation to sea ice variability on monthly-to-annual time scales
Krikken, F.; Hazeleger, W.
2015-01-01
The large decrease in Arctic sea ice in recent years has triggered a strong interest in Arctic sea ice predictions on seasonal-to-decadal time scales. Hence, it is important to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. This study anal
TRMM Science Highlights and Status of Precipitation Estimates on Monthly and Finder Time Scales
Adler, Robert; Einaudi, Franco (Technical Monitor)
2001-01-01
The Tropical Rainfall Measuring Mission (TRMM) has completed three years in orbit. A summary of research highlights will be presented focusing on application of TRMM data to topics ranging from climate analysis, through improving forecasts, to microphysical research. Monthly surface rainfall estimates over the ocean based on different instruments on TRMM currently differ by 20%. The difference is not surprising considering the different type of observations available for the first time from TRMM with both the passive and active microwave sensors. Resolving this difference will strengthen the validity and utility of ocean rainfall estimates and is the topic of ongoing research utilizing various facets of the TRMM validation and field experiment programs. The TRMM rainfall estimates are intercompared among themselves and with other estimates, including those of the standard, monthly Global Precipitation Climatology Project (GPCP) analysis. The GPCP analysis agrees roughly in magnitude with the passive microwave-based TRMM estimates which is not surprising considering GPCP over-ocean estimates are based on passive microwave observations. A three year TRMM rainfall climatology is presented based on the TRMM merged product, including anomaly fields related to the changing ENSO situation during the mission. Results of merging TRMM, other passive microwave observations, and geosynchronous infrared rainfall estimates into a global, tropical 3-hour time resolution analysis will also be described.
US stock market efficiency over weekly, monthly, quarterly and yearly time scales
Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.
2014-11-01
In financial markets, the weak form of the efficient market hypothesis implies that price returns are serially uncorrelated sequences. In other words, prices should follow a random walk behavior. Recent developments in evolutionary economic theory (Lo, 2004) have tailored the concept of adaptive market hypothesis (AMH) by proposing that market efficiency is not an all-or-none concept, but rather market efficiency is a characteristic that varies continuously over time and across markets. Within the AMH framework, this work considers the Dow Jones Index Average (DJIA) for studying the deviations from the random walk behavior over time. It is found that the market efficiency also varies over different time scales, from weeks to years. The well-known detrended fluctuation analysis was used for the characterization of the serial correlations of the return sequences. The results from the empirical showed that interday and intraday returns are more serially correlated than overnight returns. Also, some insights in the presence of business cycles (e.g., Juglar and Kuznets) are provided in terms of time variations of the scaling exponent.
ERP-Variations on Time Scales Between Hours and Months Derived From GNSS Observations
Weber, R.; Englich, S.; Mendes Cerveira, P.
2007-05-01
Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Rotation Parameters (ERPs - polar motion, UT1/LOD) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the ERP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the year 2005. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 113 fairly stable stations out of the IGS05 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed.
Empirical behavior of a world stock index from intra-day to monthly time scales
Breymann, W.; Lüthi, D. R.; Platen, E.
2009-10-01
Most of the papers that study the distributional and fractal properties of financial instruments focus on stock prices or foreign exchange rates. This typically leads to mixed results concerning the distributions of log-returns and some multi-fractal properties of exchange rates, stock prices, and regional indices. This paper uses a well diversified world stock index as the central object of analysis. Such index approximates the growth optimal portfolio, which is demonstrated under the benchmark approach, it is the ideal reference unit for studying basic securities. When denominating this world index in units of a given currency, one measures the movements of the currency against the entire market. This provides a least disturbed observation of the currency dynamics. In this manner, one can expect to disentangle, e.g., the superposition of the two currencies involved in an exchange rate. This benchmark approach to the empirical analysis of financial data allows us to establish remarkable stylized facts. Most important is the observation that the repeatedly documented multi-fractal appearance of financial time series is very weak and much less pronounced than the deviation of the mono-scaling properties from Brownian-motion type scaling. The generalized Hurst exponent H(2) assumes typical values between 0.55 and 0.6. Accordingly, autocorrelations of log-returns decay according to a power law, and the quadratic variation vanishes when going to vanishing observation time step size. Furthermore, one can identify the Student t distribution as the log-return distribution of a well-diversified world stock index for long time horizons when a long enough data series is used for estimation. The study of dependence properties, finally, reveals that jumps at daily horizon originate primarily in the stock market while at 5min horizon they originate in the foreign exchange market. The principal message of the empirical analysis is that there is evidence that a diffusion model
Arctic energy budget in relation to sea-ice variability on monthly to annual time scales
Krikken, Folmer; Hazeleger, Wilco
2015-04-01
The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.
Schubert, Siegfried; Dole, Randall; vandenDool, Huug; Suarez, Max; Waliser, Duane
2002-01-01
This workshop, held in April 2002, brought together various Earth Sciences experts to focus on the subseasonal prediction problem. While substantial advances have occurred over the last few decades in both weather and seasonal prediction, progress in improving predictions on these intermediate time scales (time scales ranging from about two weeks to two months) has been slow. The goals of the workshop were to get an assessment of the "state of the art" in predictive skill on these time scales, to determine the potential sources of "untapped" predictive skill, and to make recommendations for a course of action that will accelerate progress in this area. One of the key conclusions of the workshop was that there is compelling evidence for predictability at forecast lead times substantially longer than two weeks. Tropical diabatic heating and soil wetness were singled out as particularly important processes affecting predictability on these time scales. Predictability was also linked to various low-frequency atmospheric "phenomena" such as the annular modes in high latitudes (including their connections to the stratosphere), the Pacific/North American (PNA) pattern, and the Madden Julian Oscillation (MJO). The latter, in particular, was highlighted as a key source of untapped predictability in the tropics and subtropics, including the Asian and Australian monsoon regions.
Katiraie-Boroujerdy, Pari-Sima; Akbari Asanjan, Ata; Hsu, Kuo-lin; Sorooshian, Soroosh
2017-09-01
In the first part of this paper, monthly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Tropical Rainfall Measuring Mission 3B42 algorithm Version 7 (TRMM-3B42V7) are evaluated over Iran using the Generalized Three-Cornered Hat (GTCH) method which is self-sufficient of reference data as input. Climate Data Unit (CRU) is added to the GTCH evaluations as an independent gauge-based dataset thus, the minimum requirement of three datasets for the model is satisfied. To ensure consistency of all datasets, the two satellite products were aggregated to 0.5° spatial resolution, which is the minimum resolution of CRU. The results show that the PERSIANN-CDR has higher Signal to Noise Ratio (SNR) than TRMM-3B42V7 for the monthly rainfall estimation, especially in the northern half of the country. All datasets showed low SNR in the mountainous area of southwestern Iran, as well as the arid parts in the southeast region of the country. Additionally, in order to evaluate the efficacy of PERSIANN-CDR and TRMM-3B42V7 in capturing extreme daily-precipitation amounts, an in-situ rain-gauge dataset collected by the Islamic Republic of the Iran Meteorological Organization (IRIMO) was employed. Given the sparsity of the rain gauges, only 0.25° pixels containing three or more gauges were used for this evaluation. There were 228 such pixels where daily and extreme rainfall from PERSIANN-CDR and TRMM-3B42V7 could be compared. However, TRMM-3B42V7 overestimates most of the intensity indices (correlation coefficients; R between 0.7648-0.8311, Root Mean Square Error; RMSE between 3.29mm/day-21.2mm/5day); PERSIANN-CDR underestimates these extremes (R between 0.6349-0.7791 and RMSE between 3.59mm/day-30.56mm/5day). Both satellite products show higher correlation coefficients and lower RMSEs for the annual mean of consecutive dry spells than wet spells. The results show that TRMM-3B42V7
Gallavotti, G
2006-06-01
Entropy creation rate is introduced for a system interacting with thermostats (i.e., for a system subject to internal conservative forces interacting with "external" thermostats via conservative forces) and a fluctuation theorem for it is proved. As an application, a time scale is introduced, to be interpreted as the time over which irreversibility becomes manifest in a process leading from an initial to a final stationary state of a mechanical system in a general nonequilibrium context. The time scale is evaluated in a few examples, including the classical Joule-Thompson process (gas expansion in a vacuum).
Jensen's Functionals on Time Scales
Directory of Open Access Journals (Sweden)
Matloob Anwar
2012-01-01
Full Text Available We consider Jensen’s functionals on time scales and discuss its properties and applications. Further, we define weighted generalized and power means on time scales. By applying the properties of Jensen’s functionals on these means, we obtain several refinements and converses of Hölder’s inequality on time scales.
Pireaux, S
2007-01-01
The LISA mission is a space interferometer aiming at the detection of gravitational waves in the [$10^{-4}$,$10^{-1}$] Hz frequency band. In order to reach the gravitational wave detection level, a Time Delay Interferometry (TDI) method must be applied to get rid of (most of) the laser frequency noise and optical bench noise. This TDI analysis is carried out in terms of the coordinate time corresponding to the Barycentric Coordinate Reference System (BCRS), TCB, whereas the data at each of the three LISA stations is recorded in terms of each station proper time. We provide here the required proper time versus BCRS time transformation. We show that the difference in rate of station proper time versus TCB is of the order of $5 10^{-8}$. The difference between station proper times and TCB exhibits an oscillatory trend with a maximum amplitude of about $10^{-3}$ s.
Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.
2012-01-01
This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam br
Rehabilitation status three months after first-time myocardial infarction
DEFF Research Database (Denmark)
Larsen, Karen Kjær; Vestergaard, Mogens; Søndergaard, Jens;
2011-01-01
To describe the rehabilitation status three months after first-time myocardial infarction (MI) to identify focus areas for long-term cardiac rehabilitation (CR) in general practice. Design. Population-based cross-sectional study.......To describe the rehabilitation status three months after first-time myocardial infarction (MI) to identify focus areas for long-term cardiac rehabilitation (CR) in general practice. Design. Population-based cross-sectional study....
BRAVISSIMO: 12-month results from a large scale prospective trial.
Bosiers, M; Deloose, K; Callaert, J; Maene, L; Beelen, R; Keirse, K; Verbist, J; Peeters, P; Schroë, H; Lauwers, G; Lansink, W; Vanslembroeck, K; D'archambeau, O; Hendriks, J; Lauwers, P; Vermassen, F; Randon, C; Van Herzeele, I; De Ryck, F; De Letter, J; Lanckneus, M; Van Betsbrugge, M; Thomas, B; Deleersnijder, R; Vandekerkhof, J; Baeyens, I; Berghmans, T; Buttiens, J; Van Den Brande, P; Debing, E; Rabbia, C; Ruffino, A; Tealdi, D; Nano, G; Stegher, S; Gasparini, D; Piccoli, G; Coppi, G; Silingardi, R; Cataldi, V; Paroni, G; Palazzo, V; Stella, A; Gargiulo, M; Muccini, N; Nessi, F; Ferrero, E; Pratesi, C; Fargion, A; Chiesa, R; Marone, E; Bertoglio, L; Cremonesi, A; Dozza, L; Galzerano, G; De Donato, G; Setacci, C
2013-04-01
The BRAVISSIMO study is a prospective, non-randomized, multi-center, multi-national, monitored trial, conducted at 12 hospitals in Belgium and 11 hospitals in Italy. This manuscript reports the findings up to the 12-month follow-up time point for both the TASC A&B cohort and the TASC C&D cohort. The primary endpoint of the study is primary patency at 12 months, defined as a target lesion without a hemodynamically significant stenosis on Duplex ultrasound (>50%, systolic velocity ratio no greater than 2.0) and without target lesion revascularization (TLR) within 12 months. Between July 2009 and September 2010, 190 patients with TASC A or TASC B aortoiliac lesions and 135 patients with TASC C or TASC D aortoiliac lesions were included. The demographic data were comparable for the TASC A/B cohort and the TASC C/D cohort. The number of claudicants was significantly higher in the TASC A/B cohort, The TASC C/D cohort contains more CLI patients. The primary patency rate for the total patient population was 93.1%. The primary patency rates at 12 months for the TASC A, B, C and D lesions were 94.0%, 96.5%, 91.3% and 90.2% respectively. No statistical significant difference was shown when comparing these groups. Our findings confirm that endovascular therapy, and more specifically primary stenting, is the preferred treatment for patients with TASC A, B, C and D aortoiliac lesions. We notice similar endovascular results compared to surgery, however without the invasive character of surgery.
Integral equations on time scales
Georgiev, Svetlin G
2016-01-01
This book offers the reader an overview of recent developments of integral equations on time scales. It also contains elegant analytical and numerical methods. This book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. The students in mathematical and physical sciences will find many sections of direct relevance. The book contains nine chapters and each chapter is pedagogically organized. This book is specially designed for those who wish to understand integral equations on time scales without having extensive mathematical background.
A Time scales Noether's theorem
Anerot, Baptiste; Cresson, Jacky; Pierret, Frédéric
2016-01-01
We prove a time scales version of the Noether's theorem relating group of symmetries and conservation laws. Our result extends the continuous version of the Noether's theorem as well as the discrete one and corrects a previous statement of Bartosiewicz and Torres in \\cite{BT}.
Seasonality, nonstationarity and the forecasting of monthly time series
Ph.H.B.F. Franses (Philip Hans)
1991-01-01
textabstractWe focus on two forecasting models for a monthly time series. The first model requires that the variable is first order and seasonally differenced. The second model considers the series only in its first differences, while seasonality is modeled with a constant and seasonal dummies. A me
Seasonality, nonstationarity and the forecasting of monthly time series
Ph.H.B.F. Franses (Philip Hans)
1991-01-01
textabstractWe focus on two forecasting models for a monthly time series. The first model requires that the variable is first order and seasonally differenced. The second model considers the series only in its first differences, while seasonality is modeled with a constant and seasonal dummies. A me
Seasonality, nonstationarity and the forecasting of monthly time series
Ph.H.B.F. Franses (Philip Hans)
1991-01-01
textabstractWe focus on two forecasting models for a monthly time series. The first model requires that the variable is first order and seasonally differenced. The second model considers the series only in its first differences, while seasonality is modeled with a constant and seasonal dummies. A
Rehabilitation status three months after first-time myocardial infarction
DEFF Research Database (Denmark)
Larsen, Karen Kjær; Vestergaard, Mogens; Søndergaard, Jens
2011-01-01
less than 10 years of education. Upwards of half (58.5%) of the patients stated that they had participated in hospital-based rehabilitation shortly after admission. A total of 262 (29.2%) were identifi ed with anxiety or depressive disorder or both, according to the Hospital Anxiety and Depression...... Scale. Of these, 78 (29.8%) reported that they had participated in psychosocial support, and 55 (21.0%) used antidepressants. One in fi ve patients smoked three months after MI although nearly half of the smokers had stopped after the MI. Regarding cardioprotective drugs, 714 (78.6%) used aspirin, 694...
Integrable Equations on Time Scales
Gurses, Metin; Guseinov, Gusein Sh.; Silindir, Burcu
2005-01-01
Integrable systems are usually given in terms of functions of continuous variables (on ${\\mathbb R}$), functions of discrete variables (on ${\\mathbb Z}$) and recently in terms of functions of $q$-variables (on ${\\mathbb K}_{q}$). We formulate the Gel'fand-Dikii (GD) formalism on time scales by using the delta differentiation operator and find more general integrable nonlinear evolutionary equations. In particular they yield integrable equations over integers (difference equations) and over $q...
Monthly hail time series analysis related to agricultural insurance
Tarquis, Ana M.; Saa, Antonio; Gascó, Gabriel; Díaz, M. C.; Garcia Moreno, M. R.; Burgaz, F.
2010-05-01
Hail is one of the mos important crop insurance in Spain being more than the 50% of the total insurance in cereal crops. The purpose of the present study is to carry out a study about the hail in cereals. Four provinces have been chosen, those with the values of production are higher: Burgos and Zaragoza for the wheat and Cuenca and Valladolid for the barley. The data that we had available for the study of the evolution and intensity of the damages for hail includes an analysis of the correlation between the ratios of agricultural insurances provided by ENESA and the number of days of annual hail (from 1981 to 2007). At the same time, several weather station per province were selected by the longest more complete data recorded (from 1963 to 2007) to perform an analysis of monthly time series of the number of hail days (HD). The results of the study show us that relation between the ratio of the agricultural insurances and the number of hail days is not clear. Several observations are discussed to explain these results as well as if it is possible to determinte a change in tendency in the HD time series.
Directory of Open Access Journals (Sweden)
Panos Panagos
2016-03-01
Full Text Available As a follow up and an advancement of the recently published Rainfall Erosivity Database at European Scale (REDES and the respective mean annual R-factor map, the monthly aspect of rainfall erosivity has been added to REDES. Rainfall erosivity is crucial to be considered at a monthly resolution, for the optimization of land management (seasonal variation of vegetation cover and agricultural support practices as well as natural hazard protection (landslides and flood prediction. We expanded REDES by 140 rainfall stations, thus covering areas where monthly R-factor values were missing (Slovakia, Poland or former data density was not satisfactory (Austria, France, and Spain. The different time resolutions (from 5 to 60 min of high temporal data require a conversion of monthly R-factor based on a pool of stations with available data at all time resolutions. Because the conversion factors show smaller monthly variability in winter (January: 1.54 than in summer (August: 2.13, applying conversion factors on a monthly basis is suggested. The estimated monthly conversion factors allow transferring the R-factor to the desired time resolution at a European scale. The June to September period contributes to 53% of the annual rainfall erosivity in Europe, with different spatial and temporal patterns depending on the region. The study also investigated the heterogeneous seasonal patterns in different regions of Europe: on average, the Northern and Central European countries exhibit the largest R-factor values in summer, while the Southern European countries do so from October to January. In almost all countries (excluding Ireland, United Kingdom and North France, the seasonal variability of rainfall erosivity is high. Very few areas (mainly located in Spain and France show the largest from February to April. The average monthly erosivity density is very large in August (1.67 and July (1.63, while very small in January and February (0.37. This study addresses
Time scale of stationary decoherence
Polonyi, Janos
2017-07-01
The decoherence of a test particle interacting with an ideal gas is studied by the help of the effective Lagrangian, derived in the leading order of the perturbation expansion and in order O (∂t2) . The stationary decoherence time is found to be comparable to or longer than the diffusion time. The decoherence time reaches its minimal value for classical, completely decohered environment, suggesting that physical decoherence is slowed down as compared with diffusion by the quantum coherence of the environment.
Time scale in quasifission reactions
Energy Technology Data Exchange (ETDEWEB)
Back, B.B.; Paul, P.; Nestler, J. [and others
1995-08-01
The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.
Stochastic dynamic equations on general time scales
Directory of Open Access Journals (Sweden)
Martin Bohner
2013-02-01
Full Text Available In this article, we construct stochastic integral and stochastic differential equations on general time scales. We call these equations stochastic dynamic equations. We provide the existence and uniqueness theorem for solutions of stochastic dynamic equations. The crucial tool of our construction is a result about a connection between the time scales Lebesgue integral and the Lebesgue integral in the common sense.
Some integral inequalities on time scales
Institute of Scientific and Technical Information of China (English)
Adnan Tuna; Servet Kutukcu
2008-01-01
In this article, we study the reverse Holder type inequality and Holder in-equality in two dimensional case on time scales. We also obtain many integral inequalities by using H(o)lder inequalities on time scales which give Hardy's inequalities as spacial cases.
Kalman plus weights: a time scale algorithm
Greenhall, C. A.
2001-01-01
KPW is a time scale algorithm that combines Kalman filtering with the basic time scale equation (BTSE). A single Kalman filter that estimates all clocks simultaneously is used to generate the BTSE frequency estimates, while the BTSE weights are inversely proportional to the white FM variances of the clocks. Results from simulated clock ensembles are compared to previous simulation results from other algorithms.
Time Scale in Least Square Method
Directory of Open Access Journals (Sweden)
Özgür Yeniay
2014-01-01
Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.
Adolescent Time Attitude Scale: Adaptation into Turkish
Çelik, Eyüp; Sahranç, Ümit; Kaya, Mehmet; Turan, Mehmet Emin
2017-01-01
This research is aimed at examining the validity and reliability of the Turkish version of the Time Attitude Scale. Data was collected from 433 adolescents; 206 males and 227 females participated in the study. Confirmatory factor analysis performed to discover the structural validity of the scale. The internal consistency method was used for…
A Cornea Substitute Derived from Fish Scale: 6-Month Followup on Rabbit Model
Fei Yuan; Liyan Wang; Chien-Chen Lin; Cheng-Hung Chou; Lei Li
2014-01-01
A fish scale-derived cornea substitute (Biocornea) is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the ...
AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data
Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.
2016-05-01
The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).
Directory of Open Access Journals (Sweden)
M. Finizio
Full Text Available Starting from a number of observables in the form of time-series of meteorological elements in various areas of the northern hemisphere, a model capable of fitting past records and predicting monthly vorticity time changes in the western Mediterranean is implemented. A new powerful statistical methodology is introduced (MARS in order to capture the non-linear dynamics of time-series representing the available 40-year history of the hemispheric circulation. The developed model is tested on a suitable independent data set. An ensemble forecast exercise is also carried out to check model stability in reference to the uncertainty of input quantities.
Key words. Meteorology and atmospheric dynamics · General circulation ocean-atmosphere interactions · Synoptic-scale meteorology
Changing Climate Science Communication, One Month at a Time
Fowler, R.; fiondella, F.
2013-12-01
Many people, even those who are climate-science savvy, do not understand how scientists collect climate data, measure change in the environment over time and analyze this information to understand past, present and future climate. Most of what the public knows about climate science comes from distillations of scientific papers. The people behind these papers, their passion and their everyday working environments are rarely seen. Our 2014 Climate Models Calendar features powerful and compelling portraits of Columbia University climate researchers shared in a unique and accessible format. The calendar features a year's worth of climate scientists and information about their work, and brings climate research into the public realm. The photographs in the calendar break barriers between scientists and non-scientists, literally bringing a face to this important research. The goal of the calendar is to increase awareness of climate change and its impacts by engaging the public with scientists and what they're learning about our warming climate. The project facilitates understanding of current climate research: Who's doing it? Why? Where? And what are they learning? The calendar has paved the way for a discussion of creative methods (including the visual arts, new media and creative nonfiction) that can be used to better communicate climate science to the public. In this presentation we'll discuss the impetus for the calendar, how we're sharing the project with students and the public, why scientists were interested in participating and what they learned from sharing their work in an innovative format, how the public has responsed to the calendar and the long-term impacts of the project.
Hardy type inequalities on time scales
Agarwal, Ravi P; Saker, Samir H
2016-01-01
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and...
The Second Noether Theorem on Time Scales
Malinowska, Agnieszka B.; Natália Martins
2013-01-01
We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the $h$ -calculus and the second Noether theorem for the $q$ -calculus.
The ScaLIng Macroweather Model (SLIMM) and monthly and inter annual regional forecasting.
Lovejoy, S.; Del Rio Amador, L.; Sloman, L.
2015-12-01
By exploiting the sensitive dependence on initial conditions, GCM's can generate a statistical ensemble of future states in which the high frequency "weather" is treated as a driving noise. Following Hasselman, 1976, this has lead to stochastic models that directly generate the noise, and model the low frequencies using systems of integer ordered linear ordinary differential equations, the most well known are the linear inverse models (LIM). These have been presented as a benchmark for decadal surface temperature forecast. Using the LIM, hindcast skills comparable to and sometimes even better than the skill of (coupled) Global Circulation Models (GCM's) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Nevertheless, the short range exponential temporal decorrelations implicit in the LIM models are unrealistic (the true decorrelations are closer to long range power laws), and - as a consequence - the useful limit to the forecast horizon is roughly one year: it enormously underestimates the memory of the system. In presentation, we make a scaling analogue of the LIM: ScaLIng Macroweather Model (SLIMM) that exploits the power law (scaling) behavior in time of the temperature field and consequently, make use of the long history dependence of the data to improve the skill. The results predicted analytically by the model have been tested by performing actual hindcasts in different 5º x 5º regions on the planet using the Twentieth Century Reanalysis as a reference datasets. As a first step, we removed the anthropogenic component of each time series based on its sensitivity to equivalent CO2 concentration for the last 130 years, the residues are our estimates of the natural variability that SLIMM predicts. This residues were treated as fractional Gaussian noise processes with scaling exponent H between -0.5 and 0. The value of H for each grid-point can be obtained directly from the data. We report maps of theoretical skill predicted by the model and we
A Cornea Substitute Derived from Fish Scale: 6-Month Followup on Rabbit Model
Directory of Open Access Journals (Sweden)
Fei Yuan
2014-01-01
Full Text Available A fish scale-derived cornea substitute (Biocornea is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the peripheral Biocornea, the collagen fibrils were arranged in reticular fashion. Slit lamp examination showed that haze and an ulcer were not observed in all groups at 3 months postoperatively while all corneas with Biocornea were clear at both 3 months and 6 months postoperatively. The interface of Biocornea and stromal tissue were filled successfully and without observable immune cells at postoperative day 180. Moreover, the Biocornea was not dissolved and degenerated but remained transparent and showed no apparent fragmentation. Our study demonstrated that the Biocornea derived from fish scale as a good substitute had high biocompatibility and support function after a long-term evaluation. This revealed that the new approach of using Biocornea may yield an ideal artificial cornea substitute for long-term inlay placement.
Time invariant scaling in discrete fragmentation models
Giraud, B G; Giraud, B G; Peschanski, R
1994-01-01
Linear rate equations are used to describe the cascading decay of an initial heavy cluster into fragments. We consider moments of arbitrary orders of the mass multiplicity spectrum and derive scaling properties pertaining to their time evolution. We suggest that the mass weighted multiplicity is a suitable observable for the discovery of scaling. Numerical tests validate such properties, even for moderate values of the initial mass (nuclei, percolation clusters, jets of particles etc.). Finite size effects can be simply parametrized.
Multivariable dynamic calculus on time scales
Bohner, Martin
2016-01-01
This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.
Structure of Student Time Management Scale (STMS)
Balamurugan, M.
2013-01-01
With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…
Some Nonlinear Dynamic Inequalities on Time Scales
Indian Academy of Sciences (India)
Wei Nian Li; Weihong Sheng
2007-11-01
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential equation, J. Math. Anal. Appl. 251 (2000) 736--751).
The Second Noether Theorem on Time Scales
Directory of Open Access Journals (Sweden)
Agnieszka B. Malinowska
2013-01-01
Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.
The second Noether theorem on time scale
Malinowska, Agnieszka B.; Martins, Natália
2014-01-01
We extend the second Noether theorem to variational problems on time scales. Our result provides as corollaries the classical second Noether theorem, the second Noether theorem for the $h$-calculus and the second Noether theorem for the $q$-calculus.
Some Nonlinear Integral Inequalities on Time Scales
Directory of Open Access Journals (Sweden)
Li Wei Nian
2007-01-01
Full Text Available The purpose of this paper is to investigate some nonlinear integral inequalities on time scales. Our results unify and extend some continuous inequalities and their corresponding discrete analogues. The theoretical results are illustrated by a simple example at the end of this paper.
Scale Invariance in Rain Time Series
Deluca, A.; Corral, A.
2009-09-01
In the last few years there have been pieces of evidence that rain events can be considered analogous to other nonequilibrium relaxation processes in Nature such as earthquakes, solar flares and avalanches. In this work we compare the probability densities of rain event size, duration, and recurrence times (i.e., drought periods) between one Mediterranean site and different sites worldwide. We test the existence of scale invariance in these distributions and the possibility of a universal scaling exponent, despite the different climatic characteristics of the different places.
Significance of time scale differences in psychophysics.
Klonowski, W
2009-02-01
We present modeling of both rational processes (thoughts) and emotional processes (feelings) on a two-dimensional lattice and on extremely simplified two-dimensional phase space of the brain. Our purpose is to analyze influence of differences in time-scales of various types of processes. In particular, we show that no 'central executive structure' between consciousness and unconsciousness, the existence of which was suggested by psychologists, is not needed.
Scaling of light and dark time intervals.
Marinova, J
1978-01-01
Scaling of light and dark time intervals of 0.1 to 1.1 s is performed by the mehtod of magnitude estimation with respect to a given standard. The standards differ in duration and type (light and dark). The light intervals are subjectively estimated as longer than the dark ones. The relation between the mean interval estimations and their magnitude is linear for both light and dark intervals.
Special Issue on Time Scale Algorithms
2008-01-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 IOP PUBLISHING METROLOGIA Metrologia 45 (2008) doi:10.1088/0026-1394/45/6/E01...special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the...Paris at the BIPM in 2002 (see Metrologia 40 (3), 2003) • 5th Symposium: in San Fernando, Spain at the ROA in 2008. The early symposia were concerned
Liquidity crises on different time scales
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Multidimensional scaling of musical time estimations.
Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel
2011-06-01
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
uncertain dynamic systems on time scales
Directory of Open Access Journals (Sweden)
V. Lakshmikantham
1995-01-01
Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.
Time-Scale Invariant Audio Data Embedding
Directory of Open Access Journals (Sweden)
Mansour Mohamed F
2003-01-01
Full Text Available We propose a novel algorithm for high-quality data embedding in audio. The algorithm is based on changing the relative length of the middle segment between two successive maximum and minimum peaks to embed data. Spline interpolation is used to change the lengths. To ensure smooth monotonic behavior between peaks, a hybrid orthogonal and nonorthogonal wavelet decomposition is used prior to data embedding. The possible data embedding rates are between 20 and 30 bps. However, for practical purposes, we use repetition codes, and the effective embedding data rate is around 5 bps. The algorithm is invariant after time-scale modification, time shift, and time cropping. It gives high-quality output and is robust to mp3 compression.
Average Wait Time Until Hearing Held Report (By Month), September 2016 (53rd week)
Social Security Administration — A presentation of the average time (in months) from the hearing request date until a hearing is held for claims pending in the Office of Disability Adjudication and...
Time courses of myofascial temporomandibular disorder complaints during a 12-month follow-up period
M.K.A. van Selms; F. Lobbezoo; M. Naeije
2009-01-01
AIMS: To investigate the time courses of myofascial temporomandibular disorder (TMD) pain and mandibular function impairment (MFI), and to identify predictive factors associated with these time courses. METHODS: During a 12-month period following conservative TMD treatment, the time courses of myofa
Effects of practice on the Wechsler Adult Intelligence Scale-IV across 3- and 6-month intervals.
Estevis, Eduardo; Basso, Michael R; Combs, Dennis
2012-01-01
A total of 54 participants (age M = 20.9; education M = 14.9; initial Full Scale IQ M = 111.6) were administered the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) at baseline and again either 3 or 6 months later. Scores on the Full Scale IQ, Verbal Comprehension, Working Memory, Perceptual Reasoning, Processing Speed, and General Ability Indices improved approximately 7, 5, 4, 5, 9, and 6 points, respectively, and increases were similar regardless of whether the re-examination occurred over 3- or 6-month intervals. Reliable change indices (RCI) were computed using the simple difference and bivariate regression methods, providing estimated base rates of change across time. The regression method provided more accurate estimates of reliable change than did the simple difference between baseline and follow-up scores. These findings suggest that prior exposure to the WAIS-IV results in significant score increments. These gains reflect practice effects instead of genuine intellectual changes, which may lead to errors in clinical judgment.
Discounting in Games across Time Scales
Directory of Open Access Journals (Sweden)
Krishnendu Chatterjee
2010-06-01
Full Text Available We introduce two-level discounted games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted game and the lower level game is an undiscounted reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. We show the existence of pure memoryless optimal strategies for both players and an ordered field property for such games. We show that if there is only one player (Markov decision processes, then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted games can be decided in NP intersected coNP. We also give an alternate strategy improvement algorithm to compute the value.
Discounting in Games across Time Scales
Chatterjee, Krishnendu; 10.4204/EPTCS.25.6
2010-01-01
We introduce two-level discounted games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted game and the lower level game is an undiscounted reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. We show the existence of pure memoryless optimal strategies for both players and an ordered field property for such games. We show that if there is only one player (Markov decision processes), then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted games can be decided in NP intersected coNP. We also give an alternate strategy improvement algorithm to compute the value.
Extension of gyrokinetics to transport time scales
Parra, Felix I
2013-01-01
Gyrokinetic simulations have greatly improved our theoretical understanding of turbulent transport in fusion devices. Most gyrokinetic models in use are delta-f simulations in which the slowly varying radial profiles of density and temperature are assumed to be constant for turbulence saturation times, and only the turbulent electromagnetic fluctuations are calculated. New massive simulations are being built to self-consistently determine the radial profiles of density and temperature. However, these new codes have failed to realize that modern gyrokinetic formulations, composed of a gyrokinetic Fokker-Planck equation and a gyrokinetic quasineutrality equation, are only valid for delta-f simulations that do not reach the longer transport time scales necessary to evolve radial profiles. In tokamaks, due to axisymmetry, the evolution of the axisymmetric radial electric field is a challenging problem requiring substantial modifications to gyrokinetic treatments. In this thesis, I study the effect of turbulence o...
Spur in pico-second time scales
Energy Technology Data Exchange (ETDEWEB)
Gopinathan, C.; Girija, G. (Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.)
1983-01-01
The spur diffusion model of aqueous radiation chemistry, proposed in 1953, had run into difficulties with the development of pico-second pulse radiolysis in the late 1960s and early seventies. Using the same values for spur parameters, it was impossible to get good agreement with e/sup -/sub(aq) and OH decay in pico and nano second time scales as well as the steady state molecular product yield measurements. This inconsistency was removed by us by assuming that for a given number of dissociations, a number of radii values for the spur are possible, these radii values being related in a gaussian manner. This new approach proved highly successful in getting agreement between the predictions of the spur diffusion model and the pulse radiolysis results as well as the steady state molecular product yield measurements. Our computations have been extended to cover the entire range of spurs from a single dissociation spur to a thirty dissociation spur. Here again agreement with experimental results is good. This approach also gives interesting insights about the spur formation processes in pico and possibly femto second time scales. We have calculated rate constants for the reactions involving the 'precursor' of the hydrated electron with a number of ions.
Terrestrial carbon-nitrogen interactions across time-scales
Zaehle, Sönke; Sickel, Kerstin
2017-04-01
Through its role in forming amino acids, nitrogen (N) plays a fundamental role in terrestrial biogeochemistry, affecting for instance the photosynthetic rate of a leaf, and the amount of leaf area of a plant; with further consequences for quasi instantaneous terrestrial biophysical properties and fluxes. Because of the high energy requirements of transforming atmospheric N2 to biologically available form, N is generally thought to be limiting terrestrial productivity. Experimental evidence and modelling studies suggest that in temperate and boreal ecosystems, this N-"limitation" affects plant production at scales from days to decades, and potentially beyond. Whether these interactions play a role at longer timescales, such as during the transition from the last glacial maximum to the holocene, is currently unclear. To address this question, we present results from a 22000 years long simulation with dynamic global vegetation model including a comprehensive treatment of the terrestrial carbon and nitrogen balance and their interactions (using the OCN-DGVM) driven by monthly, transient climate forcing obtained from the CESM climate model (TRACE). OCN couples carbon and nitrogen processes at the time-scale of hours, but simulates a comprehensive nitrogen balance as well as vegetation dynamics with time-scales of centuries and beyond. We investigate in particular, whether (and at with time scale) carbon-nitrogen interactions cause important lags in the response of the terrestrial biosphere to changed climate, and which processes (such as altered N inputs from fixation or altered losses through leaching and denitrification) contribute to these lags.
EDITORIAL: Special issue on time scale algorithms
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than
Time Horizon and Social Scale in Communication
Krantz, D. H.
2010-12-01
In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large
Scaling Fire Regimes in Space and Time.
Falk, D. A.
2004-12-01
Spatial and temporal variability are important properties of the forest fire regimes of coniferous forests of southwestern North America. We use a variety of analytical techniques to examine scaling in a surface fire regime in the Jemez Mountains of northern New Mexico, USA, based on an original data set collected from Monument Canyon Research Natural Area (MCN). Spatio-temporal scale dependence in the fire regime can be analyzed quantitatively using statistical descriptors of the fire regime, such as fire frequency and mean fire interval. We describe a theory of the event-area (EA) relationship, an extension of the species-area relationship for events distributed in space and time; the interval-area (IA) relationship, is a related form for fire intervals. We use the EA and IA to demonstrate scale dependence in the MCN fire regime. The slope and intercept of these functions are influenced by fire size, frequency, and spatial distribution, and thus are potentially useful metrics of spatio-temporal synchrony of events in the paleofire record. Second, we outline a theory of fire interval probability, working from first principles in fire ecology and statistics. Fires are conditional events resulting from the interaction of multiple contingent factors that must be satisfied for an event to occur. Outcomes of this kind represent a multiplicative process for which a lognormal model is the limiting distribution. We examine the application of this framework to two probability models, the Weibull and lognormal distributions, which can be used to characterize the distribution of fire intervals over time. Lastly, we present a general model for the collector's curve, with application to the theory and effects of sample size in fire history. Sources of uncertainty in fire history can be partitioned into an error typology; analytical methods used in fire history (particularly the formation of composite fire records) are designed to minimize certain types of error in inference
Time-course of exercise and its association with 12-month bone changes
Directory of Open Access Journals (Sweden)
Vainionpää Aki
2009-11-01
Full Text Available Abstract Background Exercise has been shown to have positive effects on bone density and strength. However, knowledge of the time-course of exercise and bone changes is scarce due to lack of methods to quantify and qualify daily physical activity in long-term. The aim was to evaluate the association between exercise intensity at 3, 6 and 12 month intervals and 12-month changes in upper femur areal bone mineral density (aBMD and mid-femur geometry in healthy premenopausal women. Methods Physical activity was continuously assessed with a waist-worn accelerometer in 35 healthy women (35-40 years participating in progressive high-impact training. To describe exercise intensity, individual average daily numbers of impacts were calculated at five acceleration levels (range 0.3-9.2 g during time intervals of 0-3, 0-6, and 0-12 months. Proximal femur aBMD was measured with dual x-ray absorptiometry and mid-femur geometry was evaluated with quantitative computed tomography at the baseline and after 12 months. Physical activity data were correlated with yearly changes in bone density and geometry, and adjusted for confounding factors and impacts at later months of the trial using multivariate analysis. Results Femoral neck aBMD changes were significantly correlated with 6 and 12 months' impact activity at high intensity levels (> 3.9 g, r being up to 0.42. Trochanteric aBMD changes were associated even with first three months of exercise exceeding 1.1 g (r = 0.39-0.59, p r = 0.38-0.52, p Conclusion The number of high acceleration impacts during 6 months of training was positively associated with 12-month bone changes at the femoral neck, trochanter and mid-femur. These results can be utilized when designing feasible training programs to prevent bone loss in premenopausal women. Trial registration Clinical trials.gov NCT00697957
Expressive timing in infant-directed singing between 3 and 6 months.
Delavenne, Anne; Gratier, Maya; Devouche, Emmanuel
2013-02-01
This longitudinal study compared the temporal characteristics of maternal singing at 3 and then at 6 months. Infant-directed (ID) singing is claimed to have different functions in preverbal communication. However few studies have focused on the specific characteristics of ID singing that change across the first months of life. We aimed to explore these changes between 3 and 6 months because musical routines become prominent in the repertoire of games parents and infants spontaneously play during a period referred to as 'the period of games'. We focused specifically on expressive timing because it reflects how mothers dynamically adapt their singing to their infant's states of attention and involvement. We aimed to determine whether the expressive timing cues of maternal singing would be different at 3 and then at 6 months. To this end, the interactions of 18 mother-infant dyads were recorded while mothers were singing a popular French playsong for their infant at 3 and then at 6 months. Acoustic analyses revealed that mothers showed final-lengthening and tempo slowing for both age groups, but marked the ends of the hierarchical structural units of the song more saliently with their 6-month-olds. Unexpectedly, infant sex was also found to affect maternal singing: more exaggerated phrase-lengthening patterns were observed in singing to girls. Copyright © 2012 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
E. P. Maurer
2008-03-01
Full Text Available Downscaling of climate model data is essential to local and regional impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km^{2} per grid cell resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM. The two methods included are constructed analogues (CA and a bias correction and spatial downscaling (BCSD, both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce generally comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit limited skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.
FRACTAL ANALYSIS OF MONTHLY EVAPORATION AND PRECIPITATION TIME SERIES AT CENTRAL MEXICO
Directory of Open Access Journals (Sweden)
Rafael Magallanes Quintanar
2015-09-01
Full Text Available Advances on climate change research, as well as the assessment of the potential impacts of climate change on water resources, would allow the understanding of the spatial and temporal variability of land-surface precipitation and evaporation time series at local and regional levels. In the present study, the spectral analysis approach was applied on monthly evaporation and precipitation anomaly time series with the aim of estimating their self-affinity statistics. The behavior of estimated fractal dimension values of evaporation time series throughout Zacatecas State territory is irregular, and noise in all the evaporation anomaly time series tends to have a persistent behavior. On the other hand, the behavior of estimated fractal dimension values of most of the precipitation time series throughout Zacatecas State territory tends to be like the Brownian motion. Self-affinity statistics of monthly evaporation or precipitation anomaly time series and geographic coordinates of 32 stations were used to estimate correlation coefficients; the results are compelling evidence concerning monthly precipitation anomaly behavior tends to be more regular toward North of Zacatecas State territory, that is, toward driest areas.
Enroth, Stefan; Hallmans, Göran; Grankvist, Kjell; Gyllensten, Ulf
2016-10-01
The quality of clinical biobank samples is crucial to their value for life sciences research. A number of factors related to the collection and storage of samples may affect the biomolecular composition. We have studied the effect of long-time freezer storage, chronological age at sampling, season and month of the year and on the abundance levels of 108 proteins in 380 plasma samples collected from 106 Swedish women. Storage time affected 18 proteins and explained 4.8-34.9% of the observed variance. Chronological age at sample collection after adjustment for storage-time affected 70 proteins and explained 1.1-33.5% of the variance. Seasonal variation had an effect on 15 proteins and month (number of sun hours) affected 36 proteins and explained up to 4.5% of the variance after adjustment for storage-time and age. The results show that freezer storage time and collection date (month and season) exerted similar effect sizes as age on the protein abundance levels. This implies that information on the sample handling history, in particular storage time, should be regarded as equally prominent covariates as age or gender and need to be included in epidemiological studies involving protein levels.
Detection of crossover time scales in multifractal detrended fluctuation analysis
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Noether theorem for Birkhoffian systems on time scales
Song, Chuan-Jing; Zhang, Yi
2015-10-01
Birkhoff equations on time scales and Noether theorem for Birkhoffian system on time scales are studied. First, some necessary knowledge of calculus on time scales are reviewed. Second, Birkhoff equations on time scales are obtained. Third, the conditions for invariance of Pfaff action and conserved quantities are presented under the special infinitesimal transformations and general infinitesimal transformations, respectively. Fourth, some special cases are given. And finally, an example is given to illustrate the method and results.
Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin
zhang, L.
2011-12-01
Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be
A Quaternary Geomagnetic Instability Time Scale
Singer, B. S.
2013-12-01
Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought
Time-variation of the near 5-month period of sunspot numbers
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The variation of the near 5-month period of sunspot numbers is discussed on the basis of the wavelet transform of the daily sunspot number series in the 14th-22nd solar cycles. The result shows that the period exists in every cycle and its energy density (amplitude) is comparatively large in the peak section of the cycle. In the distinct cycle, the length and intensity of the period is different, which means that the period varies with time. The near 25-day period is also analyzed and it is found to be time- variable and even not very stable in the peak section of the cycle. The variations of the two periods show that the near 5-month period should not be simply regarded as the multiples of the near 25-day period.
Monthly-scale palaeo-rainfall reconstructed using a Belizean stalagmite.
Ridley, H.; Baldini, J. U. L.; Macpherson, C. G.; Prufer, K. M.; Kennett, D. J.; Amserom, Y.
2012-04-01
Stable isotope variations and visible growth layers in a fast growing, U-Th dated, aragonitic stalagmite from southern Belize provide an extraordinarily high resolution proxy palaeo-rainfall record for the Central American Atlantic region over the last 1,400 years. The δ18O and δ13C of speleothem carbonate at this location appears to respond primarily to rainfall variability over the cave site. A surprising result is that annual δ13C cycles are present within the stalagmite, conceivably reflecting seasonality in rainfall. With a bi-monthly resolution the record allows the inference of palaeo-tropical cyclone events as well as intra-annual rainfall variations. The record is also sufficiently long as to lend itself to helping decipher long-term behavioural modes of the tropical Atlantic beyond the instrumental record. The annual variability in stalagmite growth rate over the last 1,400 years is feasibly recording ITCZ migration through time. This study therefore has important implications for deconvolving the Atlantic tropical cyclone record, while also increasing our understanding of the links between ENSO, the ITCZ, and Central American climate.
Heidrich, Elizabeth S; Edwards, Stephen R; Dolfing, Jan; Cotterill, Sarah E; Curtis, Thomas P
2014-12-01
A 100-L microbial electrolysis cell (MEC) was operated for a 12-month period fed on raw domestic wastewater at temperatures ranging from 1°C to 22°C, producing an average of 0.6 L/day of hydrogen. Gas production was continuous though decreased with time. An average 48.7% of the electrical energy input was recovered, with a Coulombic efficiency of 41.2%. COD removal was inconsistent and below the standards required. Limitations to the cell design, in particular the poor pumping system and large overpotential account for many of the problems. However these are surmountable hurdles that can be addressed in future cycles of pilot scale research. This research has established that the biological process of an MEC will to work at low temperatures with real wastewater for prolonged periods. Testing and demonstrating the robustness and durability of bioelectrochemical systems far beyond that in any previous study, the prospects for developing MEC at full scale are enhanced. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Prime time: 18-month violence outcomes of a clinic-linked intervention.
Sieving, Renee E; McMorris, Barbara J; Secor-Turner, Molly; Garwick, Ann W; Shlafer, Rebecca; Beckman, Kara J; Pettingell, Sandra L; Oliphant, Jennifer A; Seppelt, Ann M
2014-08-01
Prime Time, a youth development intervention, aims to reduce multiple risk behaviors among adolescent girls seeking clinic services who are at high risk for pregnancy. The purpose of the current study was to examine whether Prime Time involvement produced changes in relational aggression, physical violence, and related psychosocial and behavioral outcomes. Qualitative case exemplars illustrated social contexts of intervention participants with differing longitudinal patterns of relational aggression and physical violence. Data were from a randomized efficacy trial with 13-17 year-old girls (n = 253) meeting specified risk criteria. Intervention participants were involved in Prime Time and usual clinic services for 18 months, control participants received usual clinic services. Participants in the current study completed self-report surveys at baseline and 18 months following enrollment. Outcomes analyses revealed significantly lower levels of relational aggression perpetration in the intervention group versus controls. In contrast, Prime Time involvement did not result in significant reductions in physical violence. Exploratory dose-response analyses indicated that reductions in relational aggression may have been most pronounced among girls actively involved in Prime Time case management and peer leadership activities. Qualitative findings suggested that the intervention's emphasis on modeling and building supportive relationships contributed to reductions in relational aggression. This study contributes to what has been a very limited evidence base regarding effective approaches to preventing violence among high-risk adolescent girls. Findings suggest that offering youth development interventions through clinic settings hold promise in reducing violence risk among vulnerable youth.
Directory of Open Access Journals (Sweden)
A. K. Katiyar, Akhilesh Kumar, C. K. Pandey, V. K. Katiyar, S. H. Abdi
2010-09-01
Full Text Available The time dependent monthly mean hourly diffuse solar radiation on a horizontal surface has been estimated for Lucknow (latitude26.75 degree, longitude 80.50 degree using least squares regression analysis. The monthly and annually regression constants are obtained. The present results are compared with the estimation of Orgill-Holands (Sol. Energy, 19 (4, 357 (1977, Erbs et. al (Sol. Energy 28 (4, 293-304(1982 and Spencer (Sol. Energy 29 (1, 19-32(1982 as well as with experimental value. The proposed constant provides better estimation for the entire year over others. Spencer, who correlate hourly diffuse fraction with clearness index, estimates lowest value except in summers when insolation in this region is very high. The accuracy of the regression constants are also checked with statistical tests of root mean square error (RMSE, mean bias error (MBE and t –statistic tests.
Lin, Yong; Liu, Shirong; Li, Chongwei; Ge, Jianqing; Suo, Anning; Chen, Baoyu
2005-09-01
Runoff is an important component of regional water resources, and its dynamics is to some extent an indicator of water resources dynamics in a region. To know the runoff dynamics and water resources in a region is essential for the sustainable utilization and planning of water resources, and for the research on hydrological response of vegetation change at watershed scale. To disclose the water resources dynamics in Upper Minjiang River, one of the large reaches of Yangze River in southwest China, this paper analyzed the runoff dynamic features of Zagunao watershed, an important watershed in Minjiang River basin. Multi-Resolution Analysis (MRA) and periodicity analysis were conducted with Dmey wavelet function on the monthly runoff data from 1962 to 2002 observed by Zagunao hydrological station, which provided a data-based approximation on the evolution of monthly runoff in Zagunao watershed. It was found that the runoff dynamics in Zagunao watershed was relatively stable during 1962 - 1978, despite that this period was just in correspondence with the term of intensive deforestation activities in Upper Minjiang River basin. It was also clear that the runoff in Zagunao watershed was increased from 1986 to 1997, which was inconsistent with the commonly accepted viewpoint that the runoff decreased with increasing vegetation cover in forest watershed. However, the increasing trend from 1986 - 1997 was consistent with the research results in Yichang by Wang Wensheng and with the global warming at global and continent scale, which meant that global climate change plays a big role in runoff dynamics in Upper Minjiang River. Periodicity analysis showed that the rich-short water periodicity at the scale of 10 years (120 months) and 5 years (60 months) was 3 and 7 times, respectively, which could provide invaluable information for the eco-hydrological function research of forest landscape in Minjiang river basin and the sustainable utilization of water resources. The results
Local Observability of Systems on Time Scales
Directory of Open Access Journals (Sweden)
Zbigniew Bartosiewicz
2013-01-01
unified way using the language of real analytic geometry, ideals of germs of analytic functions, and their real radicals. It is shown that some properties related to observability are preserved under various discretizations of continuous-time systems.
Chelcea, Silvia; Ionita, Monica; Scholz, Patrick
2016-04-01
Water resources management has become a challenging issue in the southern Europe, an area under a recurrent water stress. It is widely known that hydrologic variables, such as streamflow, are significantly influenced by various large-scale atmospheric circulation patterns. The identification of relationships between the climate conditions given by these patterns and the seasonal streamflow may provide a valuable tool for long-range streamflow forecasting, adding helpful information for developing efficient water-management policies. As such, the aim of this study is to detect the trends in observed hydrological data and to look for the physical mechanisms responsible for the seasonal modes of inter-annual variability of mean streamflow over Romania in connection with teleconnections indices and atmospheric circulation patterns. The trend detection is performed for the monthly, seasonal and annual mean streamflow and the Standardized Streamflow Index (SSI) for an accumulation period of 1 month at 46 stations located over the whole Romanian territory, over the period 1935 - 2010. The results of the trend analysis show increasing trends (95% confidence level) in winter, spring, autumn and at annual time scale over the north-western part of the country and decreasing trends (95% confidence level) in spring over the southern part of the country. To identify the physical mechanisms responsible for the relationships between the annual and seasonal time series of the mean streamflow and large-scale atmospheric circulation patterns, the potential impact of large-scale climate patterns of the Arctic Oscillation (AO), North Atlantic Oscillation (NAO), El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation in modulating streamflow variability at country level is assessed. The correlation map analysis between the annual and seasonal streamflow time series and the Northern Hemisphere teleconnection patterns emphasize that AO
Institute of Scientific and Technical Information of China (English)
YE Liming; YANG Guixia; Eric VAN RANST; TANG Huajun
2013-01-01
A generalized,structural,time series modeling framework was developed to analyze the monthly records of absolute surface temperature,one of the most important environmental parameters,using a deterministicstochastic combined (DSC) approach.Although the development of the framework was based on the characterization of the variation patterns of a global dataset,the methodology could be applied to any monthly absolute temperature record.Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal,involving polynomial functions and the Fourier method,respectively,while stochastic processes were employed to account for any remaining patterns in the temperature signal,involving seasonal autoregressive integrated moving average (SARIMA) models.A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years.The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors,suggesting that DSC models,when coupled with other ecoenvironmental models,can be used as a supplemental tool for short-term (～10-year) environmental planning and decision making.
Del Rio Amador, Lenin; Lovejoy, Shaun
2016-04-01
. The corresponding space-time model (the ScaLIng Macroweather Model (SLIMM) is thus only multifractal in space where the spatial intermittency is associated with different climate zones. SLIMM exploits the power law (scaling) behavior in time of the temperature field and uses the long historical memory of the temperature series to improve the skill. The only model parameter is the fluctuation scaling exponent, H (usually in the range -0.5 - 0), which is directly related to the skill and can be obtained from the data. The results predicted analytically by the model have been tested by performing actual hindcasts in different 5° x 5° regions covering the planet using ERA-Interim, 20CRv2 and NCEP/NCAR reanalysis as reference datasets. We report maps of theoretical skill predicted by the model and we compare it with actual skill based on hindcasts for monthly, seasonal and annual resolutions. We also present maps of calibrated probability hindcasts with their respective validations. Comparisons between our results using SLIMM, some other stochastic autoregressive model, and hindcasts from the Canadian Seasonal to Interannual Prediction System (CanSIPS) and the National Centers for Environmental Prediction (NCEP)'s model CFSv2, are also shown. For seasonal temperature forecasts, SLIMM outperforms the GCM based forecasts in over 90% of the earth's surface. SLIMM forecasts can be accessed online through the site: http://www.to_be_announced.mcgill.ca.
Long-time data storage: relevant time scales
Elwenspoek, Miko C.
2011-01-01
Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habit
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.
OSCILLATION FOR NONAUTONOMOUS NEUTRAL DYNAMIC DELAY EQUATIONS ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z+ of positive integers and for differential equations when the time scale is the set R of real numbers.
Barnes, Jacqueline; Melhuish, Edward C.
2017-01-01
This study investigated whether the amount and timing of group-based childcare between birth and 51 months were predictive of cognitive development at 51 months, taking into account other non-parental childcare, demographic characteristics, cognitive development at 18 months, sensitive parenting and a stimulating home environment. Children's…
Nuclear disassembly time scales using space time correlations
Energy Technology Data Exchange (ETDEWEB)
Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others
1996-09-01
The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.
Directory of Open Access Journals (Sweden)
Wenhui Wang
2016-01-01
Full Text Available The Visible and Infrared Imaging Radiometer Suite (VIIRS onboard the Joint Polar Satellite System (JPSS/Suomi National Polar-Orbiting Partnership (SNPP satellite provide sensor data records for the retrievals of many environment data records. It is critical to monitor the VIIRS long-term calibration stability to ensure quality EDR retrieval. This study investigates the radiometric calibration stability of the NOAA operational SNPP VIIRS Reflective Solar Bands (RSB and Day-Night-Band (DNB using Deep Convective Clouds (DCC. Monthly and semi-monthly DCC time series for 10 moderate resolution bands (M-bands, M1–M5 and M7–M11, March 2013–September 2015, DNB (March 2013–September 2015, low gain stage, and three imagery resolution bands (I-bands, I1–I3, January 2014–September 2015 were developed and analyzed for long-term radiometric calibration stability monitoring. Monthly DCC time series show that M5 and M7 are generally stable, with a stability of 0.4%. DNB has also been stable since May 2013, after its relative response function update, with a stability of 0.5%. The stabilities of M1–M4 are 0.6%–0.8%. Large fluctuations in M1–M4 DCC reflectance were observed since early 2014, correlated with F-factor (calibration coefficients trend changes during the same period. The stabilities of M8-M11 are from 1.0% to 3.1%, comparable to the natural DCC variability at the shortwave infrared spectrum. DCC mean band ratio time series show that the calibration stabilities of I1–I3 follow closely with M5, M7, and M10. Relative calibration changes were observed in M1/M4 and M5/M7 DCC mean band ratio time series. The DCC time series are generally consistent with results from the VIIRS validation sites and VIIRS/MODIS (the Moderate-resolution Imaging Spectroradiometer simultaneous nadir overpass time series. Semi-monthly DCC time series for RSB M-bands and DNB were compared with monthly DCC time series. The results indicate that semi-monthly DCC
Evaluation of Ten Month Time-series of Soil Fundamental Frequency
Daminelli, R.; Marcellini, A.; Tento, A.
2012-12-01
In 2011 two seismic stations were installed on the right bank of the Po river levee to monitor the fundamental soil frequency f0 by H/V technique with the main aim to investigate the dependence of f0 on hydro-geological parameters. The considered embankment consists of poorly consolidated alluvial deposits, mainly sands and sandy-silts with an elevation less than 10 m. Cross-holes and down-holes tests show a VS tacking 3 hours sampling rate (time interval between any two f0 successive evaluations) and a total time span of T=10 months. The preliminary results evidence a correlation between f0 and the level of water table.
Chattopadhyay, Goutami; 10.1140/epjp/i2012-12043-9
2012-01-01
This study reports a statistical analysis of monthly sunspot number time series and observes non homogeneity and asymmetry within it. Using Mann-Kendall test a linear trend is revealed. After identifying stationarity within the time series we generate autoregressive AR(p) and autoregressive moving average (ARMA(p,q)). Based on minimization of AIC we find 3 and 1 as the best values of p and q respectively. In the next phase, autoregressive neural network (AR-NN(3)) is generated by training a generalized feedforward neural network (GFNN). Assessing the model performances by means of Willmott's index of second order and coefficient of determination, the performance of AR-NN(3) is identified to be better than AR(3) and ARMA(3,1).
A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China
Energy Technology Data Exchange (ETDEWEB)
Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)
2013-06-15
Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to
Multi-scale gravity field modeling in space and time
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2016-04-01
The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.
Long-Time Data Storage: Relevant Time Scales
Directory of Open Access Journals (Sweden)
Miko C. Elwenspoek
2011-02-01
Full Text Available Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habitable for complex life is about half a billion years. A system retrieved within the next million years will be read by beings very closely related to Homo sapiens. During this time the surface of the earth will change making it risky to place a small number of large memory systems on earth; the option to place it on the moon might be more favorable. For much longer timescales both options do not seem feasible because of geological processes on the earth and the flux of small meteorites to the moon.
Telesca, Luciano; Shaban, Amin; Gascoin, Simon; Darwich, Talal; Drapeau, Laurent; Hage, Mhamad El; Faour, Ghaleb
2014-11-01
In this study, the time dynamics of the monthly means of the snow cover have been on Lebanese Mountain Chains from 2000 to 2012, derived from the MODIS Aqua/Terra satellite snow products was analyzed. This represents the longest satellite-based snow cover time series produced for Lebanon so far. Field survey was also carried out over the last three years in order to measure the in-situ snow/water equivalent and depth in different localities. Analyzing the regime of the snow cover in Mount-Lebanon (Western Mountain Chains) region, it was found that: (i) snowmelt accounts for about 31% of the rivers and springs discharge in Lebanon; (ii) consecutive peaks in the snow cover time series, representing the change-point between accumulation phase and ablation phase are present in three different patterns (edged, non-edged and double peaked); (iii) the areal snow coverage has big diversity between different years; (iv) the annual periodicity represents the most statistically significant and predominant frequency of the series contributing for about the 40% of the total variance of the snow cover series; (v) the long-term trend, totally hidden by the more powerful yearly component and detected by using the singular spectrum analysis (SSA), accounts for about the 33% of the total variance of the series; (vi) the long-term trend shows an apparent cyclic behavior with an estimated period (interval between the two minima) of about nine years; (vii) the comparison of the long-term trend with the North Atlantic Oscillation (NAO) monthly index reveals that the minima in 2009-2010 of the SSA long-term component coincides with a persistent negative phase in the NAO Index.
Bounds of Certain Dynamic Inequalities on Time Scales
Directory of Open Access Journals (Sweden)
Deepak B. Pachpatte
2014-10-01
Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.
Temperature dependence of fluctuation time scales in spin glasses
DEFF Research Database (Denmark)
Kenning, Gregory G.; Bowen, J.; Sibani, Paolo;
2010-01-01
Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...
From seconds to months: an overview of multi-scale dynamics of mobile telephone calls
Saramäki, Jari; Moro, Esteban
2015-06-01
Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and "zoom out" towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.
From seconds to months: multi-scale dynamics of mobile telephone calls
Saramaki, Jari
2015-01-01
Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and "zoom out" towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.
Forecasting Electrical Load Using a Multi-time-scale Approach
RINGWOOD John; Murray, F.T.
1999-01-01
This paper describes the application of a multi-time-scale technique to the modelling and forecasting of short-term electrical load. The multi-time-scale technique is based on adjusting the underlying short sampling period forecast time series with specific target points and possible aggregated demand. This allows not only improvement of the short sampling period forecast, but also focuses on weighting the accuracy of the forecast at certain critical points e.g. the ov...
Ford, Eric B; Rowe, Jason F; Steffen, Jason H; Barclay, Thomas; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Caldwell, Douglas A; Fabrycky, Daniel C; Gautier, Thomas N; Holman, Matthew J; Ibrahim, Khadeejah A; Kjeldsen, Hans; Kinemuchi, Karen; Koch, David G; Lissauer, Jack J; Still, Martin; Tenenbaum, Peter; Uddin, Kamal; Welsh, William
2012-01-01
Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results an updated TTV analysis for 822 planet candidates (Borucki et al. 2011; Batalha et al. 2012) based on transit times measured during the first seventeen months of Kepler observations (Rowe et al 2012). We present 35 TTV candidates (4.1% of suitable data sets) based on long-term trends and 153 mostly weaker TTV candidates (18% of suitable data sets) based on excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurence rate of planet candidates that show TTVs is significantly increased (~60%-76%) for p...
GRACE RL03-v2 monthly time series of solutions from CNES/GRGS
Lemoine, Jean-Michel; Bourgogne, Stéphane; Bruinsma, Sean; Gégout, Pascal; Reinquin, Franck; Biancale, Richard
2015-04-01
Based on GRACE GPS and KBR Level-1B.v2 data, as well as on LAGEOS-1/2 SLR data, CNES/GRGS has published in 2014 the third full re-iteration of its GRACE gravity field solutions. This monthly time series of solutions, named RL03-v1, complete to spherical harmonics degree/order 80, has displayed interesting performances in terms of spatial resolution and signal amplitude compared to JPL/GFZ/CSR RL05. This is due to a careful selection of the background models (FES2014 ocean tides, ECMWF ERA-interim (atmosphere) and TUGO (non IB-ocean) "dealiasing" models every 3 hours) and to the choice of an original method for gravity field inversion : truncated SVD. Identically to the previous CNES/GRGS releases, no additional filtering of the solutions is necessary before using them. Some problems have however been identified in CNES/GRGS RL03-v1: - an erroneous mass signal located in two small circular rings close to the Earth's poles, leading to the recommendation not to use RL03-v1 above 82° latitudes North and South; - a weakness in the sectorials due to an excessive downweighting of the GRACE GPS observations. These two problems have been understood and addressed, leading to the computation of a corrected time series of solutions, RL03-v2. The corrective steps have been: - to strengthen the determination of the very low degrees by adding Starlette and Stella SLR data to the normal equations; - to increase the weight of the GRACE GPS observations; - to adopt a two steps approach for the computation of the solutions: first a Choleski inversion for the low degrees, followed by a truncated SVD solution. The identification of these problems will be discussed and the performance of the new time series evaluated.
Liquidity spillover in international stock markets through distinct time scales.
Righi, Marcelo Brutti; Vieira, Kelmara Mendes
2014-01-01
This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.
Extreme reaction times determine fluctuation scaling in human color vision
Medina, José M.; Díaz, José A.
2016-11-01
In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.
Scaling of the Time Dependent SGEMP Boundary Layer.
constant in time or rises like any given power of time a single solution suffices for all fluxes. For a more realistic time history with a finite FWHM, the equations reduce to a single parameter family, the parameter being the ratio of the pulse FWHM to the characteristic plasma period. For the time behavior, the unit of time is taken as the FWHM. Both the scaled Boltzmann Equation and Newton’s Equations are
AFSC/ABL: Ugashik sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 b?? 2002) collected from adult sockeye salmon returning to Ugashik River were retrieved from the Alaska Department of Fish and...
The limit order book on different time scales
Eisler, Zoltan; Lillo, Fabrizio
2007-01-01
Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.
The limit order book on different time scales
Eisler, Zoltán; Kertész, János; Lillo, Fabrizio
2007-06-01
Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.
BOUNDARY VALUE PROBLEM TO DYNAMIC EQUATION ON TIME SCALE
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper we consider a nonlinear first-order boundary value problem on a time scale. The existence results of three positive solutions are obtained using fixed point theorems. Finally,examples are presented to illustrate the main results.
AFSC/ABL: Naknek sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 2002) collected from adult sockeye salmon returning to Naknek River were retrieved from the Alaska Department of Fish and Game....
Multiple time-space scale atmosphere-ocean interactions and improvement of Zebiak-Cane model
Institute of Scientific and Technical Information of China (English)
钱维宏; 王绍武
1997-01-01
In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atmosphere described only local air-sea interaction process. Thus the planetary scale Hadley cell and Walker cell anomalies should be introduced in the model. Including the planetary scale Hadley cell anomaly in the model improved the prediction skill. It showed that the improved model provided satisfactory prediction of the equatorial eastern Pacific SST anomaly with lead time of 9-10 months not only for 1970-1991 but also for 1992-1995.
Signatures of discrete scale invariance in Dst time series
Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Anastasiadis, Anastasios; Athanasopoulou, Labrini; Eftaxias, Konstantinos
2011-07-01
Self-similar systems are characterized by continuous scale invariance and, in response, the existence of power laws. However, a significant number of systems exhibits discrete scale invariance (DSI) which in turn leads to log-periodic corrections to scaling that decorate the pure power law. Here, we present the results of a search of log-periodic corrections to scaling in the squares of Dst index increments which are taken as proxies of the energy dissipation rate in the magnetosphere. We show that Dst time series exhibit DSI and discuss the consequence of this feature, as well as the possible implications of Dst DSI on space weather forecasting efforts.
Characteristic Time Scales of Characteristic Magmatic Processes and Systems
Marsh, B. D.
2004-05-01
Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these
Interdecadal Variations of Phase Delays Between Two Ni(n)o Indices at Different Time Scales
Institute of Scientific and Technical Information of China (English)
BIAN Jianchun; YANG Peicai
2005-01-01
Phase delays between two Nino indices-sea surface temperatures in Nino regions 1+2 and 3.4(1950-2001)-at different time scales are detected by wavelet analysis. Analysis results show that thereare two types of period bifurcations in the Nino indices and that period bifurcation points exist only in the region where the wavelet power is small. Interdecadal variation features of phase delays between the two indices vary with different time scales. In the periods of 40-72 months, the phase delay changes its sign in 1977: Nino 1+2 indices are 2-4 months earlier than Nino 3.4 indices before 1977, but 3-6 months later afterwards. In the periods of 20-40 months, however, the phase delay changes its sign in another way:Nino 1+2 indices are 1-4 months earlier before 1980 and during 1986-90, but 1-4 months later during 1980-83 and 1993-2001.
Exponentials and Laplace transforms on nonuniform time scales
Ortigueira, Manuel D.; Torres, Delfim F. M.; Trujillo, Juan J.
2016-10-01
We formulate a coherent approach to signals and systems theory on time scales. The two derivatives from the time-scale calculus are used, i.e., nabla (forward) and delta (backward), and the corresponding eigenfunctions, the so-called nabla and delta exponentials, computed. With these exponentials, two generalised discrete-time Laplace transforms are deduced and their properties studied. These transforms are compatible with the standard Laplace and Z transforms. They are used to study discrete-time linear systems defined by difference equations. These equations mimic the usual continuous-time equations that are uniformly approximated when the sampling interval becomes small. Impulse response and transfer function notions are introduced. This implies a unified mathematical framework that allows us to approximate the classic continuous-time case when the sampling rate is high or to obtain the standard discrete-time case, based on difference equations, when the time grid becomes uniform.
Controllability of multiplex, multi-time-scale networks
Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.
2016-09-01
The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified
Inferring Patterns in Network Traffic: Time Scales and Variations
2014-10-21
2014 Carnegie Mellon University Inferring Patterns in Network Traffic : Time Scales and Variation Soumyo Moitra smoitra@sei.cmu.edu...number. 1. REPORT DATE 21 OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inferring Patterns in Network Traffic : Time...method and metrics for Situational Awareness • SA Monitoring trends and changes in traffic • Analysis over time Time series data analysis • Metrics
Time-Scale and Time-Frequency Analyses of Irregularly Sampled Astronomical Time Series
Directory of Open Access Journals (Sweden)
S. Roques
2005-09-01
Full Text Available We evaluate the quality of spectral restoration in the case of irregular sampled signals in astronomy. We study in details a time-scale method leading to a global wavelet spectrum comparable to the Fourier period, and a time-frequency matching pursuit allowing us to identify the frequencies and to control the error propagation. In both cases, the signals are first resampled with a linear interpolation. Both results are compared with those obtained using Lomb's periodogram and using the weighted waveletZ-transform developed in astronomy for unevenly sampled variable stars observations. These approaches are applied to simulations and to light variations of four variable stars. This leads to the conclusion that the matching pursuit is more efficient for recovering the spectral contents of a pulsating star, even with a preliminary resampling. In particular, the results are almost independent of the quality of the initial irregular sampling.
Time scale bias in erosion rates of glaciated landscapes.
Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe
2016-10-01
Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.
Time scales and species coexistence in chaotic flows
Galla, Tobias
2016-01-01
Empirical observations in marine ecosystems have suggested a balance of biological and advection time scales as a possible explanation of species coexistence. To characterise this scenario, we measure the time to fixation in neutrally evolving populations in chaotic flows. Contrary to intuition the variation of time scales does not interpolate straightforwardly between the no-flow and well-mixed limits; instead we find that fixation is the slowest at intermediate Damk\\"ohler numbers, indicating long-lasting coexistence of species. Our analysis shows that this slowdown is due to spatial organisation on an increasingly modularised network. We also find that diffusion can either slow down or speed up fixation, depending on the relative time scales of flow and evolution.
Grasping Deep Time with Scaled Space in Personal Environs
DEFF Research Database (Denmark)
Jacobsen, B. H.
2014-01-01
the history of geology and evolution. The present project differs from these examples in that the scaling of time is fixed, and the scale is defined so that 1 mm represents the life expectancy of a young person, i.e. 100 years. At this scale, written history fits on a credit card, 1 m measures the time...... of modern man, the age of dinosaurs ended at 650 m and the Big Bang is 137 km away. This choice obviously makes mental calculations easy, and all of time fits inside a geographical area of moderate size and so helps the citizen gain ownership to this learning tool and hence to time. The idea was tested...
Auroral Substorm Time Scales: Seasonal and IMF Variations
Chua, D.; Parks, G. K.; Brittnacher, M.; Germany, G. A.; Spann, J. F.; Six, N. Frank (Technical Monitor)
2002-01-01
The time scales and phases of auroral substorm, activity are quantied in this study using the hemispheric power computed from Polar Ultraviolet Imager (UVI) images. We have applied this technique to several hundred substorm events and we are able to quantify how the characterist act, of substorms vary with season and IMF Bz orientation. We show that substorm time scales vary more strongly with season than with IMF Bz orientation. The recovery time for substorm. activity is well ordered by whether or not the nightside oral zone is sunlit. The recovery time scales for substorms occurring in the winter and equinox periods are similar and are both roughly a factor of two longer than in summer when the auroral oval is sunlit. Our results support the hypothesis that the ionosphere plays an active role in governing the dynamics of the aurora.
Tunneling time scale of under-the-barrier forerunners
García-Calderón, G; Garcia-Calderon, Gaston; Villavicencio, Jorge
2002-01-01
Time-dependent analytical solutions to Schr\\"{o}dinger's equation with quantum shutter initial conditions are used to investigate the issue of the tunneling time of forerunners in rectangular potential barriers. By using a time-frequency analysis, we find the existence of a regime characterized by the opacity of the barrier, where the maximum peak of a forerunner in time domain corresponds to a genuine tunneling process. The corresponding time scale represents the tunneling time of the forerunner through the classically forbidden region.
Long-time scale spectral diffusion in PMMA: Beyond the TLS model?
Müller, J.; Haarer, D.; Khodykin, O. V.; Kharlamov, B. M.
1999-05-01
Spectral diffusion (SD) in PMMA doped with H 2-TPP is investigated at 4.2 K on a time scale of 3 ÷ 10 6 s via optical hole burning. Two contradictory (in frames of the TLS model) results are obtained. The first is the absence of aging effects which put the upper limit for the TLS relaxation times to tens of minutes. The second is an intensive superlogarithmic SD on the whole time scale of the experiment, which evidences the presence of very slow relaxations, independent of the sample history on the time scale of up to 2 months. The presented results provide the clear evidence of the deviation of SD behavior from the TLS model predictions at moderately low temperatures. The concept of structural relaxations is applied for a qualitative interpretation of the experimental data.
Shopping behaviors of low-income families during a 1-month period of time.
Darko, Janice; Eggett, Dennis L; Richards, Rickelle
2013-01-01
To explore food shopping behaviors among low-income families over the course of the month. Two researchers conducted 13 90-minute focus groups. Two community organizations serving low-income populations and a university campus. Low-income adults (n = 72) who were the primary household food shoppers and who had at least 1 child less than 18 years old. Shopping behavior changes during 1 month. Focus groups were recorded, transcribed, and coded independently by 2 researchers. Descriptive statistics were used to evaluate sociodemographic variables such as age, sex, race/ethnicity, and participation in food assistance programs. Economics played a key role in participants' food shopping behaviors and influenced food availability throughout the month. To overcome economic barriers, participants used food and emergency assistance programs and engaged in menu planning, price matching, storing food, using credit cards, and receiving financial assistance from family members and/or neighbors. Low-income families made strategic decisions to maintain a food supply throughout the month. These results suggest limited economics throughout the month may hinder families' ability to consume a varied, nutrient-rich diet, which may have an impact on future health status. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Thermodynamics constrains allometric scaling of optimal development time in insects.
Directory of Open Access Journals (Sweden)
Michael E Dillon
Full Text Available Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1 the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2 numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of
Common scaling patterns in intertrade times of U. S. stocks.
Ivanov, Plamen Ch; Yuen, Ainslie; Podobnik, Boris; Lee, Youngki
2004-05-01
We analyze the sequence of time intervals between consecutive stock trades of thirty companies representing eight sectors of the U.S. economy over a period of 4 yrs. For all companies we find that: (i) the probability density function of intertrade times may be fit by a Weibull distribution, (ii) when appropriately rescaled the probability densities of all companies collapse onto a single curve implying a universal functional form, (iii) the intertrade times exhibit power-law correlated behavior within a trading day and a consistently greater degree of correlation over larger time scales, in agreement with the correlation behavior of the absolute price returns for the corresponding company, and (iv) the magnitude series of intertrade time increments is characterized by long-range power-law correlations suggesting the presence of nonlinear features in the trading dynamics, while the sign series is anticorrelated at small scales. Our results suggest that independent of industry sector, market capitalization and average level of trading activity, the series of intertrade times exhibit possibly universal scaling patterns, which may relate to a common mechanism underlying the trading dynamics of diverse companies. Further, our observation of long-range power-law correlations and a parallel with the crossover in the scaling of absolute price returns for each individual stock, support the hypothesis that the dynamics of transaction times may play a role in the process of price formation.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, using the theory of topological degree and Liapunov functional methods, the authors study the competitive neural networks with time delays and different time scales and present some criteria of global robust stability for this neural network model.
Lavin, Alicia; Somavilla, Raquel; Cano, Daniel; Rodriguez, Carmen; Gonzalez-Pola, Cesar; Viloria, Amaia; Tel, Elena; Ruiz-Villareal, Manuel
2017-04-01
Long-Term Time Series Stations have been developed in order to document seasonal to decadal scale variations in key physical and biogeochemical parameters. Long-term time series measurements are crucial for determining the physical and biological mechanisms controlling the system. The Science and Technology Ministers of the G7 in their Tsukuba Communiqué have stated that 'many parts of the ocean interior are not sufficiently observed' and that 'it is crucial to develop far stronger scientific knowledge necessary to assess the ongoing changes in the ocean and their impact on economies.' Time series has been classically obtained by oceanographic ships that regularly cover standard sections and stations. From 1991, shelf and slope waters of the Southern Bay of Biscay are regularly sampled in a monthly hydrographic line north of Santander to a depth of 1000 m in early stages and for the whole water column down to 2580 m in recent times. Nearby, in June 2007, the IEO deployed an oceanic-meteorological buoy (AGL Buoy, 43° 50.67'N; 3° 46.20'W, and 40 km offshore, www.boya-agl.st.ieo.es). The Santander Atlantic Time Series Station is integrated in the Spanish Institute of Oceanography Observing Sistem (IEOOS). The long-term hydrographic monitoring has allowed to define the seasonality of the main oceanographic facts as the upwelling, the Iberian Poleward Current, low salinity incursions, trends and interannual variability at mixing layer, and at the main water masses North Atlantic Central Water and Mediterranean Water. The relation of these changes with the high frequency surface conditions recorded by the Biscay AGL has been examined using also satellite and reanalysis data. During the FIXO3 Project (Fixed-point Open Ocean Observatories), and using this combined sources, some products and quality controled series of high interest and utility for scientific purposes has been developed. Hourly products as Sea Surface Temperature and Salinity anomalies, wave significant
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Time-dependent scaling patterns in high frequency financial data
Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso
2016-10-01
We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Mixing Time Scales in a Supernova-Driven Interstellar Medium
D'Avillez, M A; Avillez, Miguel A. de; Low, Mordecai-Mark Mac
2002-01-01
We study the mixing of chemical species in the interstellar medium (ISM). Recent observations suggest that the distribution of species such as deuterium in the ISM may be far from homogeneous. This raises the question of how long it takes for inhomogeneities to be erased in the ISM, and how this depends on the length scale of the inhomogeneities. We added a tracer field to the three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing and dispersal in kiloparsec-scale simulations of the ISM with different supernova (SN) rates and different inhomogeneity length scales. We find several surprising results. Classical mixing length theory fails to predict the very weak dependence of mixing time on length scale that we find on scales of 25--500 pc. Derived diffusion coefficients increase exponentially with time, rather than remaining constant. The variance of composition declines exponentially, with a time constant of tens of Myr, so that large differences fade faster than small ones. The time ...
Modelling of UV radiation variations at different time scales
Directory of Open Access Journals (Sweden)
J. L. Borkowski
2008-03-01
Full Text Available Solar UV radiation variability in the period 1976–2006 is discussed with respect to the relative changes in the solar global radiation, ozone content, and cloudiness. All the variables were decomposed into separate components, representing variations of different time scales, using wavelet multi-resolution decomposition. The response of the UV radiation to the changes in the solar global radiation, ozone content, and cloudiness depends on the time scale, therefore, it seems reasonable to model separately the relation between UV and explanatory variables at different time scales. The wavelet components of the UV series are modelled and summed to obtain the fit of observed series. The results show that the coarser time scale components can be modelled with greater accuracy than fine scale components and the fitted values calculated by this method are in better agreement with observed values than values calculated by the regression method, in which variables were not decomposed. The residual standard error in the case of modelling with the use of wavelets is reduced by 14% in comparison to the regression method without decomposition.
Evaluation of scaling invariance embedded in short time series.
Directory of Open Access Journals (Sweden)
Xue Pan
Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Shopping Behaviors of Low-income Families during a 1-Month Period of Time
Darko, Janice; Eggett, Dennis L.; Richards, Rickelle
2013-01-01
Objective: To explore food shopping behaviors among low-income families over the course of the month. Design: Two researchers conducted 13 90-minute focus groups. Setting: Two community organizations serving low-income populations and a university campus. Participants: Low-income adults (n = 72) who were the primary household food shoppers and who…
DEFF Research Database (Denmark)
Nielsen, Thor Pajhede
2017-01-01
. (2016) in examining the conditional independence hypothesis of Lando and Nielsen (2010). Empirically we find that; (1) the current default rate influence the default rate of the following periods even when conditioning on explanatory variables. (2) The 12 month lag is highly significant in explaining...
DEFF Research Database (Denmark)
Panagos, Panos; Borrelli, Pasquale; Spinoni, Jonathan
2016-01-01
, for the optimization of land management (seasonal variation of vegetation cover and agricultural support practices) as well as natural hazard protection (landslides and flood prediction). We expanded REDES by 140 rainfall stations, thus covering areas where monthly R-factor values were missing (Slovakia, Poland...
Transport month is a time to tackle issues in the industry
CSIR Research Space (South Africa)
Ittmann, HW
2008-10-09
Full Text Available October marls National Transport month, giving rise to opportunities to focus on and draw attention to a variety of aspects associated with transport. Everyone in the country is affected by transport in one way or another, with those in metropolitan...
Shopping Behaviors of Low-income Families during a 1-Month Period of Time
Darko, Janice; Eggett, Dennis L.; Richards, Rickelle
2013-01-01
Objective: To explore food shopping behaviors among low-income families over the course of the month. Design: Two researchers conducted 13 90-minute focus groups. Setting: Two community organizations serving low-income populations and a university campus. Participants: Low-income adults (n = 72) who were the primary household food shoppers and who…
Time scales of crystal mixing in magma mushes
Schleicher, Jillian M.; Bergantz, George W.; Breidenthal, Robert E.; Burgisser, Alain
2016-02-01
Magma mixing is widely recognized as a means of producing compositional diversity and preconditioning magmas for eruption. However, the processes and associated time scales that produce the commonly observed expressions of magma mixing are poorly understood, especially under crystal-rich conditions. Here we introduce and exemplify a parameterized method to predict the characteristic mixing time of crystals in a crystal-rich magma mush that is subject to open-system reintrusion events. Our approach includes novel numerical simulations that resolve multiphase particle-fluid interactions. It also quantifies the crystal mixing by calculating both the local and system-wide progressive loss of the spatial correlation of individual crystals throughout the mixing region. Both inertial and viscous time scales for bulk mixing are introduced. Estimated mixing times are compared to natural examples and the time for basaltic mush systems to become well mixed can be on the order of 10 days.
Time scales for molecule formation by ion-molecule reactions
Langer, W. D.; Glassgold, A. E.
1976-01-01
Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.
Short—Time Scaling of Variable Ordering of OBDDs
Institute of Scientific and Technical Information of China (English)
龙望宁; 闵应骅; 等
1997-01-01
A short-time scaling criterion of variable ordering of OBDDs is proposed.By this criterion it is easy and fast to determine which one is better when several variable orders are given,especially when they differ 10% or more in resulted BDD size from each other.An adaptive variable order selection method,based on the short-time scaling criterion,is also presented.The experimental results show that this method is efficient and it makes the heuristic variable ordering methods more practical.
Multiple time scales of fluvial processes—theory and applications
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity region in line with local flow scenario and the bed deforms in comparison with the flow,which literally dictates if a capacity based and/or decoupled model is justified.This paper synthesizes the recently developed multiscale theory for sediment-l...
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Dynamics symmetries of Hamiltonian system on time scales
Peng, Keke; Luo, Yiping
2014-04-01
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Vermeulen, Joan; Neyens, Jacques C L; Spreeuwenberg, Marieke D; van Rossum, Erik; Boessen, April B C G; Sipers, Walther; de Witte, Luc P
2015-05-27
There are indications that older adults who suffer from poor balance have an increased risk for adverse health outcomes, such as falls and disability. Monitoring the development of balance over time enables early detection of balance decline, which can identify older adults who could benefit from interventions aimed at prevention of these adverse outcomes. An innovative and easy-to-use device that can be used by older adults for home-based monitoring of balance is a modified bathroom scale. The objective of this paper is to study the relationship between balance scores obtained with a modified bathroom scale and falls and disability in a sample of older adults. For this 6-month follow-up study, participants were recruited via physiotherapists working in a nursing home, geriatricians, exercise classes, and at an event about health for older adults. Inclusion criteria were being aged 65 years or older, being able to stand on a bathroom scale independently, and able to provide informed consent. A total of 41 nursing home patients and 139 community-dwelling older adults stepped onto the modified bathroom scale three consecutive times at baseline to measure their balance. Their mean balance scores on a scale from 0 to 16 were calculated-higher scores indicated better balance. Questionnaires were used to study falls and disability at baseline and after 6 months of follow-up. The cross-sectional relationship between balance and falls and disability at baseline was studied using t tests and Spearman rank correlations. Univariate and multivariate logistic regression analyses were conducted to study the relationship between balance measured at baseline and falls and disability development after 6 months of follow-up. A total of 128 participants with complete datasets--25.8% (33/128) male-and a mean age of 75.33 years (SD 6.26) were included in the analyses of this study. Balance scores of participants who reported at baseline that they had fallen at least once in the past 6
Zhu, Ye; Wang, Wen; Singh, Vijay P; Liu, Yi
2016-11-15
Prediction of hydrological drought in the absence of hydrological records is of great significance for water resources management and risk assessment. In this study, two meteorological drought indices, including standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) calculated at different time scales (1 to 12months), were analyzed for their capabilities in detecting hydrological droughts. The predictive skills of meteorological drought indices were assessed through correlation analysis, and two skill scores, i.e. probability of detection (POD) and false alarm rate (FAR). When used independently, indices of short time scales generally performed better than did those of long time scales. However, at least 31% of hydrological droughts were still missed in view of the peak POD score (0.69) of a single meteorological drought index. Considering the distinguished roles of different time scales in explaining hydrological droughts with disparate features, an optimization approach of blending SPI/SPEI at multiple time scales was proposed. To examine the robustness of the proposed method, data of 1964-1990 was used to establish the multiscalar index, then validate during 2000-2010. Results showed that POD exhibited a significant increase when more than two time scales were used, and the best performances were found when blending 8 time scales of SPI and 9 for SPEI, with the corresponding values of 0.82 and 0.85 for POD, 0.205 and 0.21 for FAR, in the calibration period, and even better performance in the validation period. These results far exceeded the performance of any single meteorological drought index. This suggests that when there is lack of streamflow measurements, blending climatic information of multiple time scales to jointly monitor hydrological droughts could be an alternative solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Midfrontal theta tracks action monitoring over multiple interactive time scales.
Cohen, Michael X
2016-11-01
Quickly detecting and correcting mistakes is a crucial brain function. EEG studies have identified an idiosyncratic electrophysiological signature of online error correction, termed midfrontal theta. Midfrontal theta has so far been investigated over the fast time-scale of a few hundred milliseconds. But several aspects of behavior and brain activity unfold over multiple time scales, displaying "scale-free" dynamics that have been linked to criticality and optimal flexibility when responding to changing environmental demands. Here we used a novel line-tracking task to demonstrate that midfrontal theta is a transient yet non-phase-locked response that is modulated by task performance over at least three time scales: a few hundred milliseconds at the onset of a mistake, task performance over a fixed window of the previous 5s, and scale-free-like fluctuations over many tens of seconds. These findings provide novel evidence for a role of midfrontal theta in online behavioral adaptation, and suggest new approaches for linking EEG signatures of human executive functioning to its neurobiological underpinnings.
Separation of Time Scales in a Quantum Newton's Cradle
van den Berg, R.; Wouters, B.; Eliëns, S.; De Nardis, J.; Konik, R. M.; Caux, J.-S.
2016-06-01
We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior.
Satellite attitude prediction by multiple time scales method
Tao, Y. C.; Ramnath, R.
1975-01-01
An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.
Linear Scaling Real Time TDDFT in the CONQUEST Code
O'Rourke, Conn
2014-01-01
The real time formulation of Time Dependent Density Functional Theory (RT-TDDFT) is implemented in the linear scaling density functional theory code CONQEST. Proceeding through the propagation of the density matrix, as opposed to the Kohn-Sham orbitals, it is possible to reduced the computational workload. Imposing a cut-off on the density matrix the effort can be made to scale linearly with the size of the system under study. Propagation of the reduced density matrix in this manner provides direct access to the optical response of very large systems, which would be otherwise impractical to obtain using the standard formulations of TDDFT. We discuss our implementation and present several benchmark tests illustrating the validity of the method, and the factors affecting its accuracy. Finally we illustrate the effect of density matrix truncation on the optical response, and illustrate that computational load scales linearly with the system size.
MULTISCALE HOMOGENIZATION OF NONLINEAR HYPERBOLIC EQUATIONS WITH SEVERAL TIME SCALES
Institute of Scientific and Technical Information of China (English)
Jean Louis Woukeng; David Dongo
2011-01-01
We study the multiscale homogenization of a nonlinear hyperbolic equation in a periodic setting. We obtain an accurate homogenization result. We also show that as the nonlinear term depends on the microscopic time variable, the global homogenized problem thus obtained is a system consisting of two hyperbolic equations. It is also shown that in spite of the presence of several time scales, the global homogenized problem is not a reiterated one.
Improved jet noise modeling using a new acoustic time scale
Azarpeyvand, M.; Self, R.H.; Golliard, J.
2006-01-01
To calculate the noise emanating from a turbulent flow (such as a jet flow) using Lighthill's analogy, knowledge concerning the unsteady characteristics of the turbulence is required. Specifically, the form of the turbulent correlation tensor together with various time and length-scales and convecti
Quadratic Lyapunov Function and Exponential Dichotomy on Time Scales
Institute of Scientific and Technical Information of China (English)
ZHANG JI; LIU ZHEN-XIN
2011-01-01
In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△ ＝ A(t)x on time scales.Moreover, for the nonlinear perturbed equation x△ ＝ A(t)x + f(t,x) we give the instability of the zero solution when f is sufficiently small.
Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling
Birmingham, Daniel; Birmingham, Danny; Sen, Siddhartha
2000-01-01
We study the formation of BTZ black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.
Speech Compensation for Time-Scale-Modified Auditory Feedback
Ogane, Rintaro; Honda, Masaaki
2014-01-01
Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…
Wind power impacts and electricity storage - a time scale perspective
DEFF Research Database (Denmark)
Hedegaard, Karsten; Meibom, Peter
2012-01-01
technologies – batteries, flow batteries, compressed air energy storage, electrolysis combined with fuel cells, and electric vehicles – are moreover categorised with respect to the time scales at which they are suited to support wind power integration. While all of these technologies are assessed suitable...
Gott time machines, BTZ black hole formation, and choptuik scaling
Birmingham; Sen
2000-02-07
We study the formation of Banados-Teitelboim-Zanelli black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.
Exponential stability of dynamic equations on time scales
Directory of Open Access Journals (Sweden)
Raffoul Youssef N
2005-01-01
Full Text Available We investigate the exponential stability of the zero solution to a system of dynamic equations on time scales. We do this by defining appropriate Lyapunov-type functions and then formulate certain inequalities on these functions. Several examples are given.
Human learning: Power laws or multiple characteristic time scales?
Directory of Open Access Journals (Sweden)
Gottfried Mayer-Kress
2006-09-01
Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.
Real-time simulation of large-scale floods
Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.
2016-08-01
According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.
Time Scales and Tidal Effects in Minor Mergers
Institute of Scientific and Technical Information of China (English)
Yu Lu; Jian-Yan Wei
2003-01-01
We use controlled N-body simulation to investigate the dynamical processes (dynamical friction, tidal truncation, etc.) involved in the merging of small satellites into bigger halos. We confirm the validity of some analytic formulae proposed earlier based on simple arguments. For rigid satellites represented by softened point masses, the merging time scale depends on both the orbital shape and concentration of the satellite. The dependence on orbital ellipticity is roughly a power law, as suggested by Lacey & Cole, and the dependence on satellite concentration is similar to that proposed by White. When merging satellites are represented by non-rigid objects, Tidal effects must be considered. We found that material beyond the tidal radius are stripped off. The decrease in the satellite mass might mean an increase in the merging time scale, but in fact, the merging time is decreased,because the stripped-off material carries away a proportionately larger amount of of orbital energy and angular momentum.
Cognitive componets of speech at different time scales
DEFF Research Database (Denmark)
Feng, Ling; Hansen, Lars Kai
2007-01-01
Cognitive component analysis (COCA) is defined as unsupervised grouping of data leading to a group structure well aligned with that resulting from human cognitive activity. We focus here on speech at different time scales looking for possible hidden ‘cognitive structure’. Statistical regularities......, assumed to model the basic representation of the human auditory system. The basic features are aggregated in time to obtain features at longer time scales. Simple energy based filtering is used to achieve a sparse representation. Our hypothesis is now basically ecological: We hypothesize that features...... that are essentially independent in a reasonable ensemble can be efficiently coded using a sparse independent component representation. The representations are indeed shown to be very similar between supervised learning (invoking cognitive activity) and unsupervised learning (statistical regularities), hence lending...
Multiple time scale based reduction scheme for nonlinear chemical dynamics
Das, D.; Ray, D. S.
2013-07-01
A chemical reaction is often characterized by multiple time scales governing the kinetics of reactants, products and intermediates. We eliminate the fast relaxing intermediates in autocatalytic reaction by transforming the original system into a new one in which the linearized part is diagonal. This allows us to reduce the dynamical system by identifying the associated time scales and subsequent adiabatic elimination of the fast modes. It has been shown that the reduced system sustains the robust qualitative signatures of the original system and at times the generic form of the return map for the chaotic system from which complex dynamics stems out in the original system can be identified. We illustrate the scheme for a three-variable cubic autocatalytic reaction and four-variable peroxidase-oxidase reaction.
Nonlinear scale space with spatially varying stopping time.
Gilboa, Guy
2008-12-01
A general scale space algorithm is presented for denoising signals and images with spatially varying dominant scales. The process is formulated as a partial differential equation with spatially varying time. The proposed adaptivity is semi-local and is in conjunction with the classical gradient-based diffusion coefficient, designed to preserve edges. The new algorithm aims at maximizing a local SNR measure of the denoised image. It is based on a generalization of a global stopping time criterion presented recently by the author and colleagues. Most notably, the method works well also for partially textured images and outperforms any selection of a global stopping time. Given an estimate of the noise variance, the procedure is automatic and can be applied well to most natural images.
Energy and time determine scaling in biological and computer designs.
Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie
2016-08-19
Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'.
DEFF Research Database (Denmark)
Ford, E.B.; Ragozzine, D.; Holman, M.J.;
2012-01-01
Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during...
An Extensible Timing Infrastructure for Adaptive Large-scale Applications
Stark, Dylan; Goodale, Tom; Radke, Thomas; Schnetter, Erik
2007-01-01
Real-time access to accurate and reliable timing information is necessary to profile scientific applications, and crucial as simulations become increasingly complex, adaptive, and large-scale. The Cactus Framework provides flexible and extensible capabilities for timing information through a well designed infrastructure and timing API. Applications built with Cactus automatically gain access to built-in timers, such as gettimeofday and getrusage, system-specific hardware clocks, and high-level interfaces such as PAPI. We describe the Cactus timer interface, its motivation, and its implementation. We then demonstrate how this timing information can be used by an example scientific application to profile itself, and to dynamically adapt itself to a changing environment at run time.
Anomalous multiphoton photoelectric effect in ultrashort time scales.
Kupersztych, J; Raynaud, M
2005-09-30
In a multiphoton photoelectric process, an electron needs to absorb a given number of photons to escape the surface of a metal. It is shown for the first time that this number is not a constant depending only on the characteristics of the metal and light, but varies with the interaction duration in ultrashort time scales. The phenomenon occurs when electromagnetic energy is transferred, via ultrafast excitation of electron collective modes, to conduction electrons in a duration less than the electron energy damping time. It manifests itself through a dramatic increase of electron production.
Multi-Scale Dissemination of Time Series Data
DEFF Research Database (Denmark)
Guo, Qingsong; Zhou, Yongluan; Su, Li
2013-01-01
In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time-series...
The Available Time Scale: Measuring Foster Parents' Available Time to Foster
Cherry, Donna J.; Orme, John G.; Rhodes, Kathryn W.
2009-01-01
This article presents a new measure of available time specific to fostering, the Available Time Scale (ATS). It was tested with a national sample of 304 foster mothers and is designed to measure the amount of time foster parents are able to devote to fostering activities. The ATS has excellent reliability, and good support exists for its validity.…
QUALITATIVE BEHAVIORS OF LINEAR TIME-INVARIANT DYNAMIC EQUATIONS ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous and discrete times with any step size.
Beevers, Lindsay; Tilmant, Amaury; Mwelwa, Elenestina
2010-05-01
In large hydropower-dominated river basins, reservoirs are mainly operated so as to maximize revenues from energy generation regardless of the consequences of reduced flow fluctuation on downstream ecosystems. Revenue from hydropower plants is essential to a country's economy; however the impact on ecosystems downstream can be large-scale. The timing of flow releases does not mimic natural systems, which has impacts over different temporal and physio-spatial scales to the ecosystem. To inform decision making often hydro-economic modeling is used and it is essential that the response of the system is understood and incorporated adequately into assessment design, to allow for trade-offs to be identified. This requires issues of timing and spatial scale to be understood and incorporated over different planning horizons. Nesting these issues of scale into decisions is complex; where decisions are made on timescales from hours to months and spatially within a basin depending on the operation of the system. Up-scaling the most critical interactions between flow, form and ecosystem into the decision making process, for different time horizons or planning scales, is essential. A proposed framework is illustrated with the Zambezi basin.
Time scale of diffusion in molecular and cellular biology
Holcman, D.; Schuss, Z.
2014-05-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.
DeWalle, David R.; Boyer, Elizabeth W.; Buda, Anthony R.
2016-12-01
Forecasts of ecosystem changes due to variations in atmospheric emissions policies require a fundamental understanding of lag times between changes in chemical inputs and watershed response. Impacts of changes in atmospheric deposition in the United States have been documented using national and regional long-term environmental monitoring programs beginning several decades ago. Consequently, time series of weekly NADP atmospheric wet deposition and monthly EPA-Long Term Monitoring stream chemistry now exist for much of the Northeast which may provide insights into lag times. In this study of Appalachian forest basins, we estimated lag times for S, N and Cl by cross-correlating monthly data from four pairs of stream and deposition monitoring sites during the period from 1978 to 2012. A systems or impulse response function approach to cross-correlation was used to estimate lag times where the input deposition time series was pre-whitened using regression modeling and the stream response time series was filtered using the deposition regression model prior to cross-correlation. Cross-correlations for S were greatest at annual intervals over a relatively well-defined range of lags with the maximum correlations occurring at mean lags of 48 months. Chloride results were similar but more erratic with a mean lag of 57 months. Few high-correlation lags for N were indicated. Given the growing availability of atmospheric deposition and surface water chemistry monitoring data and our results for four Appalachian basins, further testing of cross-correlation as a method of estimating lag times on other basins appears justified.
Realization of a time-scale with an optical clock
Grebing, C; Dörscher, S; Häfner, S; Gerginov, V; Weyers, S; Lipphardt, B; Riehle, F; Sterr, U; Lisdat, C
2015-01-01
Optical clocks are not only powerful tools for prime fundamental research, but are also deemed for the re-definition of the SI base unit second as they surpass the performance of caesium atomic clocks in both accuracy and stability by more than an order of magnitude. However, an important obstacle in this transition has so far been the limited reliability of the optical clocks that made a continuous realization of a time-scale impractical. In this paper, we demonstrate how this dilemma can be resolved and that a time-scale based on an optical clock can be established that is superior to one based on even the best caesium fountain clocks. The paper also gives further proof of the international consistency of strontium lattice clocks on the $10^{-16}$ accuracy level, which is another prerequisite for a change in the definition of the second.
Long-term variation time scales in OJ 287
Institute of Scientific and Technical Information of China (English)
Jun-Hui Fan; Yi Liu; Bo-Chun Qian; Jun Tao; Zhi-Qiang Shen; Jiang-Shui Zhang; Yong Huang; Jin Wang
2010-01-01
The light curve data from 1894 to 2008 are compiled for the BL Lacertae object OJ 287 from the available literature. Periodicity analysis methods (the Discrete Correlation Function-DCE the Jurkevich method, the power spectral (Fourier) analysis, and the CLEANest method) are performed to search for possible periodicites in the light curve of OJ 287. Significance levels are given for the possible periods. The analysis results confirm the existence of the 12.2 ± 0.6 yr time scale and show a hint of a～53 yr time scale. The 12.2 ± 0.6 yr period is used as the orbital period to investigate the supermassive binary black hole system parameters.
Seismic Interevent Time: A Spatial Scaling and Multifractality
Molchan, G
2005-01-01
The optimal scaling problem for the time t(LxL) between two successive events in a seismogenic cell of size L is considered. The quantity t(LxL) is defined for a random cell of a grid covering a seismic region G. We solve that problem in terms of a multifractal characteristic of epicenters in G known as the tau-function or generalized fractal dimensions; the solution depends on the type of cell randomization. Our theoretical deductions are corroborated by California seismicity with magnitude M>2. In other words, the population of waiting time distributions for L = 10-100 km provides positive information on the multifractal nature of seismicity, which impedes the population to be converted into a unified law by scaling. This study is a follow-up of our analysis of power/unified laws for seismicity (see PAGEOPH 162 (2005), 1135 and GJI 162 (2005), 899).
Oligocene calibration of the magnetic polarity time scale
Prothero, Donald R.; Denham, Charles R.; Farmer, Harlow G.
1982-12-01
Magnetostratigraphic studies of the Oligocene White River Group in Wyoming, Colorado, Nebraska, and the Dakotas yield a radiometrically dated polarity stratigraphy that provides mid-Tertiary calibration points for the magnetic polarity time scale. Anomaly 12 13 reversal is bracketed by dates of 32.4 and 34.6 m.y., in best agreement with the time scale of LaBrecque and colleagues. The magnetostratigraphy also helps calibrate the Oligocene North American land mammal “ages” and allows correlation with the European marine microfossil zonation. This correlation suggests that the age of the Eocene-Oligocene boundary is 37.0 m.y., contrary to younger dates obtained from glauconites and microtektites. *Present address: Department of Geology, Knox College, Galesburg, Illinois 61401
HMC algorithm with multiple time scale integration and mass preconditioning
Urbach, C; Shindler, A; Wenger, U
2006-01-01
We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at beta=5.6 and at pion masses ranging from 380 MeV to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the ``Berlin Wall'' figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.
HMC algorithm with multiple time scale integration and mass preconditioning
Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.
2006-01-01
We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.
Entropy Production of Nanosystems with Time Scale Separation
Wang, Shou-Wen; Kawaguchi, Kyogo; Sasa, Shin-ichi; Tang, Lei-Han
2016-08-01
Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables.
Algorithm of simulation time synchronization over large-scale nodes
Institute of Scientific and Technical Information of China (English)
ZHAO QinPing; ZHOU Zhong; Lü Fang
2008-01-01
In distributed simulation, there is no uniform physical clock. And delay cannot be estimated because of jitter. So simulation time synchronization is essential for the event consistency among nodes. This paper investigates time synchronization algorithms over large-scale distributed nodes, analyzes LBTS (lower bound time stamp) computation model described in IEEE HLA standard, and then presents a grouped LBTS model. In fact, there is a default premise for existing algorithms that control packets must be delivered via reliable transportation. Although, a theorem of time synchronization message's reliability is proposed, which proves that only those control messages that constrain time advance need reliability. It breaks out the default premise for reliability. Then multicast is introduced into the transmission of control messages, and algorithm MCTS (multi-node coordination time synchronization) is proposed based on multicast. MCTS not only promotes the time advance efficiency, but also reduces the occupied network bandwidth. Experiment results demonstrate that the algorithm is better than others in both time advance speed and occupied network bandwidth. Its time advance speed is about 50 times per second when there are 1000 nodes, approximately equal to that of similar systems when there are 100 nodes.
The fission time scale measured with an atomic clock
Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK
2003-01-01
We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range w
Isoperimetric problems on time scales with nabla derivatives
Almeida, Ricardo; Torres, Delfim F. M.
2008-01-01
We prove a necessary optimality condition for isoperimetric problems under nabla-differentiable curves. As a consequence, the recent results of [M.R. Caputo, A unified view of ostensibly disparate isoperimetric variational problems, Appl. Math. Lett. (2008), doi:10.1016/j.aml.2008.04.004], that put together seemingly dissimilar optimal control problems in economics and physics, are extended to a generic time scale. We end with an illustrative example of application of our main result to a dyn...
Institute of Scientific and Technical Information of China (English)
1999-01-01
The State Intellectual Poperty Office has announcedan amendment to Sec.5,Paragrph 4.2.of Chapter 7 ofExamination Guidelines.According to the newregulations,for making a respon to an office actionduring the prosecution of a patent application,only a firstrequest for a two-month extension of time can be basicallyallowed upon payment of official fee of RMB300(aboutUSD36).For further extension after the first one,onlyanother request for one or two months,at most twomonths,would be possibly petitioned together with a copyof the client’s instructions of the further extension and its
Time scale interactions and the coevolution of humans and water
Sivapalan, Murugesu; Blöschl, Günter
2015-09-01
We present a coevolutionary view of hydrologic systems, revolving around feedbacks between environmental and social processes operating across different time scales. This brings to the fore an emphasis on emergent phenomena in changing water systems, such as the levee effect, adaptation to change, system lock-in, and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system. Guidance is provided for the framing and modeling of these phenomena to test alternative hypotheses about how they arose. A plurality of coevolutionary models, from stylized to comprehensive system-of-system models, may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesize the observed dynamics in a wide range of case studies. Future research opportunities lie in exploring emergent phenomena arising from time scale interactions through historical, comparative, and process studies of human-water feedbacks.
A stable Cenozoic geologic time scale is indispensable
Institute of Scientific and Technical Information of China (English)
Amos Salvador
2006-01-01
@@ A stable, standard geologic time scale is indispensable for the clear and precise communication among geologists; it is a basic tool of geologic work. Considerable progress has been made to achieve such a stable time scale. However, during the last few years several proposals have been made to modify the Cenozoic section of the geologic time scale that threaten to destabilize it.Seven articles published in Episodes since 2000 that could contribute to this destabilization are discussed.They provide excellent examples of the profusion of different terminologies, hierarchies, and stratigraphic relationships that have been proposed: to eliminate the Tertiary and the Quaternary or to raise their rank to suberathems; to extend the Neogene to the present; to make the Quaternary a formal subsystem of the Neogene, or consider it an informal stratigraphic unit; to eliminate the Holocene, and to decouple the base of the Pleistocene from the base of the Quaternary. If adopted,these proposals would cause nothing but great confusion and controversy. They disregard the clear preferences of geologists the world over as reflected by the terminology they have been using for many decades. Common sense would dictate the continued use of this terminology in its current, widely accepted form.
Evidence for two time scales in long SNS junctions.
Chiodi, F; Aprili, M; Reulet, B
2009-10-23
We use microwave excitation to elucidate the dynamics of long superconductor-normal metal-superconductor Josephson junctions. By varying the excitation frequency in the range 10 MHz-40 GHz, we observe that the critical and retrapping currents, deduced from the dc voltage versus dc current characteristics of the junction, are set by two different time scales. The critical current increases when the ac frequency is larger than the inverse diffusion time in the normal metal, whereas the retrapping current is strongly modified when the excitation frequency is above the electron-phonon rate in the normal metal. Therefore the critical and retrapping currents are associated with elastic and inelastic scattering, respectively.
Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales
2015-09-30
cetacean behavior at intermediate daily time scales. Recent efforts to assess the impacts of sound on marine mammals and to estimate foraging...new dermal attachment for short-term tagging studies of baleen whales. Methods in Ecology and Evolution 6:289-297. Baumgartner, M.F., N.S.J
Scale and time dependence of serial correlations in word-length time series of written texts
Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.
2014-11-01
This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.
Two-time-scale population evolution on a singular landscape
Xu, Song; Jiao, Shuyun; Jiang, Pengyao; Ao, Ping
2014-01-01
Under the effect of strong genetic drift, it is highly probable to observe gene fixation or gene loss in a population, shown by singular peaks on a potential landscape. The genetic drift-induced noise gives rise to two-time-scale diffusion dynamics on the bipeaked landscape. We find that the logarithmically divergent (singular) peaks do not necessarily imply infinite escape times or biological fixations by iterating the Wright-Fisher model and approximating the average escape time. Our analytical results under weak mutation and weak selection extend Kramers's escape time formula to models with B (Beta) function-like equilibrium distributions and overcome constraints in previous methods. The constructed landscape provides a coherent description for the bistable system, supports the quantitative analysis of bipeaked dynamics, and generates mathematical insights for understanding the boundary behaviors of the diffusion model.
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
Scaling in non-stationary time series. (I)
Ignaccolo, M.; Allegrini, P.; Grigolini, P.; Hamilton, P.; West, B. J.
2004-05-01
Most data processing techniques, applied to biomedical and sociological time series, are only valid for random fluctuations that are stationary in time. Unfortunately, these data are often non-stationary and the use of techniques of analysis resting on the stationary assumption can produce a wrong information on the scaling, and so on the complexity of the process under study. Herein, we test and compare two techniques for removing the non-stationary influences from computer generated time series, consisting of the superposition of a slow signal and a random fluctuation. The former is based on the method of wavelet decomposition, and the latter is a proposal of this paper, denoted by us as step detrending technique. We focus our attention on two cases, when the slow signal is a periodic function mimicking the influence of seasons, and when it is an aperiodic signal mimicking the influence of a population change (increase or decrease). For the purpose of computational simplicity the random fluctuation is taken to be uncorrelated. However, the detrending techniques here illustrated work also in the case when the random component is correlated. This expectation is fully confirmed by the sociological applications made in the companion paper. We also illustrate a new procedure to assess the existence of a genuine scaling, based on the adoption of diffusion entropy, multiscaling analysis and the direct assessment of scaling. Using artificial sequences, we show that the joint use of all these techniques yield the detection of the real scaling, and that this is independent of the technique used to detrend the original signal.
Multiple time scale behaviors and network dynamics in liquid methanol.
Sharma, Ruchi; Chakravarty, Charusita; Milotti, Edoardo
2008-07-31
Canonical ensemble molecular dynamics simulations of liquid methanol, modeled using a rigid-body, pair-additive potential, are used to compute static distributions and temporal correlations of tagged molecule potential energies as a means of characterizing the liquid state dynamics. The static distribution of tagged molecule potential energies shows a clear multimodal structure with three distinct peaks, similar to those observed previously in water and liquid silica. The multimodality is shown to originate from electrostatic effects, but not from local, hydrogen bond interactions. An interesting outcome of this study is the remarkable similarity in the tagged potential energy power spectra of methanol, water, and silica, despite the differences in the underlying interactions and the dimensionality of the network. All three liquids show a distinct multiple time scale (MTS) regime with a 1/ f (alpha) dependence with a clear positive correlation between the scaling exponent alpha and the diffusivity. The low-frequency limit of the MTS regime is determined by the frequency of crossover to white noise behavior which occurs at approximately 0.1 cm (-1) in the case of methanol under standard temperature and pressure conditions. The power spectral regime above 200 cm (-1) in all three systems is dominated by resonances due to localized vibrations, such as librations. The correlation between alpha and the diffusivity in all three liquids appears to be related to the strength of the coupling between the localized motions and the larger length/time scale network reorganizations. Thus, the time scales associated with network reorganization dynamics appear to be qualitatively similar in these systems, despite the fact that water and silica both display diffusional anomalies but methanol does not.
Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model
Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko
2015-04-01
One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1
Hamido, Aliou; Madroñero, Javier; Mota-Furtado, Francisca; O'Mahony, Patrick; Frapiccini, Ana Laura; Piraux, Bernard
2011-01-01
We present an ab initio approach to solve the time-dependent Schr\\"odinger equation to treat electron and photon impact multiple ionization of atoms or molecules. It combines the already known time scaled coordinate method with a new high order time propagator based on a predictor-corrector scheme. In order to exploit in an optimal way the main advantage of the time scaled coordinate method namely that the scaled wave packet stays confined and evolves smoothly towards a stationary state the modulus square of which being directly proportional to the electron energy spectra in each ionization channel, we show that the scaled bound states should be subtracted from the total scaled wave packet. In addition, our detailed investigations suggest that multi-resolution techniques like for instance, wavelets are the most appropriate ones to represent spatially the scaled wave packet. The approach is illustrated in the case of the interaction of an one-dimensional model atom as well as atomic hydrogen with a strong osci...
Cai, Ming
2016-04-01
Extreme weather events such as cold air outbreaks (CAOs) pose great threats to human life and socioeconomic well-being of the modern society. In the past, our capability to predict their occurrences is constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as "the pulse of the stratosphere (PULSE)", can often be predicted with a useful skill 4-6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in mid-latitudes increases substantially above the normal condition within a short time period from one week before to 1-2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice of that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America in the 2013-14 winter. A real time forecast experiment inaugurated in the winter of 2014-15 has given support to the idea that it is feasible to forecast CAOs one month in advance.
Cai, M.; Yu, Y.
2016-12-01
Extreme weather events such as cold air outbreaks (CAOs) pose great threats to human life and socioeconomic well-being of the modern society. In the past, our capability to predict their occurrences is constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as "the pulse of the stratosphere (PULSE)", can often be predicted with a useful skill 4-6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in mid-latitudes increases substantially above the normal condition within a short time period from one week before to 1-2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice of that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America in the 2013-14 winter. A real time forecast experiment inaugurated in the winter of 2014-15 has given support to the idea that it is feasible to forecast CAOs one month in advance.
Transient time-domain resonances and the time scale for tunneling
García-Calderón, G; Garc\\'{\\i}a-Calder\\'on, Gast\\'on; Villavicencio, Jorge
2003-01-01
Transient {\\it time-domain resonances} found recently in time-dependent solutions to Schr\\"{o}dinger's equation are used to investigate the issue of the tunneling time in rectangular potential barriers. In general, a time frequency analysis shows that these transients have frequencies above the cutoff frequency associated with the barrier height, and hence correspond to non-tunneling processes. We find, however, a regime characterized by the barrier opacity, where the peak maximum $t_{max}$ of the {\\it time-domain resonance} corresponds to under-the-barrier tunneling. We argue that $t_{max}$ represents the relevant tunneling time scale through the classically forbidden region.
Time scale hierarchies in the functional organization of complex behaviors.
Directory of Open Access Journals (Sweden)
Dionysios Perdikis
2011-09-01
Full Text Available Traditional approaches to cognitive modelling generally portray cognitive events in terms of 'discrete' states (point attractor dynamics rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human behaviour is decomposable into functional modes (elementary units, which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds. The ensemble of modes at an agent's disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals, in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time.
Pashaev, Diial; Demirci, Mustafa; Tekçe, Neslihan; Tuncer, Safa; Baydemir, Canan
2017-01-01
The purpose of this study was to evaluate the effect of double-application coats and times on microtensile bond strength (μTBS) and adhesive-dentin interfaces created by dentin adhesive systems after 6 months of storage in water. Two-hundred sixteen extracted non-carious human third molars were selected for the study. Single-Bond Universal (SU) and All-Bond Universal (AU), Adper Easy One (Eo) Self-Etch adhesive and Adper Single-Bond 2 (Sb) etch-and-rinse adhesive were applied to a flat dentin surface using three methods (1): dentin adhesives were applied as recommended by the manufacturers; (2): two consecutive coats of dentin adhesives were applied before photo-polymerization; and (3): a single coat of adhesive was applied but with twice the manufacturers recommended application time. Microtensile bond strength was determined either immediately or after 6 months of water storage. Data were analyzed using one-way analysis of variance and Tukey's post-hoc tests. At 24 h, groups 1, 2, and 3 exhibited statistically similar results for all dentin adhesive systems. For AU-Er, group 3 showed significantly higher bond strength than all group of AU-Se after 6 months. Universal adhesives seemed more stable against water degradation than traditional two-step etch-and-rinse and all-in-one systems within the 6-month period.
The Role of Time-Scales in Socio-hydrology
Blöschl, Günter; Sivapalan, Murugesu
2016-04-01
Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time scale interactions and the coevolution of humans and water. Water Resour. Res., 51, 6988-7022, doi:10.1002/2015WR017896.
Terrestrial Waters and Sea Level Variations on Interannual Time Scale
Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.
2011-01-01
On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.
Scale relativity and fractal space-time: theory and applications
Nottale, Laurent
2008-01-01
In the first part of this contribution, we review the development of the theory of scale relativity and its geometric framework constructed in terms of a fractal and nondifferentiable continuous space-time. This theory leads (i) to a generalization of possible physically relevant fractal laws, written as partial differential equation acting in the space of scales, and (ii) to a new geometric foundation of quantum mechanics and gauge field theories and their possible generalisations. In the second part, we discuss some examples of application of the theory to various sciences, in particular in cases when the theoretical predictions have been validated by new or updated observational and experimental data. This includes predictions in physics and cosmology (value of the QCD coupling and of the cosmological constant), to astrophysics and gravitational structure formation (distances of extrasolar planets to their stars, of Kuiper belt objects, value of solar and solar-like star cycles), to sciences of life (log-p...
Numerical Experiments on the Spin-up Time for Seasonal-Scale Regional Climate Modeling
Institute of Scientific and Technical Information of China (English)
ZHONG Zhong; HU Yijia; MIN Jinzhong; XU Honglei
2007-01-01
In this paper, the numerical experiments on the issue of spin-up time for seasonal-scale regional climate modeling were conducted with the newly Regional Climate Model (RegCM3), in the case of the abnormal climate event during the summer of 1998 in China. To test the effect of spin-up time on the regional climate simulation results for such abnormal climate event, a total of 11 experiments were performed with different spin-up time from 10 days to 6 months, respectively. The simulation results show that, for the meteorological variables in the atmosphere, the model would be running in "climate mode" after 4-8-day spin-up time, then,it is independent of the spin-up time basically, and the simulation errors are mainly caused by the model's failure in describing the atmospheric processes over the model domain. This verifies again that the regional climate modeling is indeed a lateral boundary condition problem as demonstrated by earlier research work.The simulated mean precipitation rate over each subregion is not sensitive to the spin-up time, but the precipitation scenario is somewhat different for the experiment with different spin-up time, which shows that there exists the uncertainty in the simulation to precipitation scenario, and such a uncertainty exhibits more over the areas where heavy rainfall happened. Generally, for monthly-scale precipitation simulation, aspin-up time of 1 month is enough, whereas a spin-up time of 2 months is better for seasonal-scale one.Furthermore, the relationship between the precipitation simulation error and the advancement/withdrawal of East Asian summer monsoon was analyzed. It is found that the variability of correlation coefficient for precipitation is more significant over the areas where the summer monsoon is predominant. Therefore, the model's capability in reproducing precipitation features is related to the heavy rainfall processes associated with the advancement/withdrawal of East Asian summer monsoon, which suggests
Holographic Brownian motion and time scales in strongly coupled plasmas
Energy Technology Data Exchange (ETDEWEB)
Atmaja, Ardian Nata [Research Center for Physics, Indonesian Institute of Sciences (LIPI), Kompleks PUSPITEK Serpong, Tangerang 15310 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Bandung 40132 (Indonesia); Boer, Jan de [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Shigemori, Masaki [Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Hakubi Center, Kyoto University, Yoshida-Ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan)
2014-03-15
We study Brownian motion of a heavy quark in field theory plasma in the AdS/CFT setup and discuss the time scales characterizing the interaction between the Brownian particle and plasma constituents. Based on a simple kinetic theory, we first argue that the mean-free-path time is related to the connected 4-point function of the random force felt by the Brownian particle. Then, by holographically computing the 4-point function and regularizing the IR divergence appearing in the computation, we write down a general formula for the mean-free-path time, and apply it to the STU black hole which corresponds to plasma charged under three U(1)R-charges. The result indicates that the Brownian particle collides with many plasma constituents simultaneously.
Institute of Scientific and Technical Information of China (English)
张启旺; 张吉; 周涛
2016-01-01
以鄱阳湖13个气象站1957~2013年的逐月降水量、平均气温、各站点纬度和同期水位站逐月平均水位为实验数据，分别计算1、3、6、12、24、48个月尺度下标准降水指数( SPI)和标准降水蒸散指数( SPEI)时间序列，并利用Morlet小波分析理论，分析了该序列多时间尺度变化特征。基于Mann-Kendall检验，分析了鄱阳湖气象干旱趋势特征；利用Spearman秩相关系数，研究了不同时间尺度SPI和SPEI序列与月平均水位的相关关系。研究表明，鄱阳湖流域SPI和SPEI序列存在约68个月变化的主周期，两个主要特征时间尺度变化的强分布；气象干旱与湖水位的相关关系随时间尺度的增大而减弱。%The different 1-month, 3-month, 6-month, 12-month, 24-month and 48-month standardized precipitation index ( SPI) and Standardized Precipitation Evapotranspiration Index ( SPEI) time series are calculated based on the monthly precipitation, mean temperature and respective latitudes of 13 meteorological gauging stations from 1957 to 2013 and the simulta-neous monthly mean water level data in Poyang lake;the multi-scale features for these two time series are analyzed based on the wavelet theory with the Morlet function. The trend of meteorological drought of Poyang Lake is tested by the Mann -Kendall method. The correlation between the different scales of SPI and SPEI time series and the mean monthly water level is analyzed by Spearman coefficient. The results show that the SPI and SPEI time series have a cycle of 68-month period and two strong distri-butions with varied temporal scale. The relationship of meteorological drought of Poyang Lake and the water level decreases with the increase of time scale.
Kalra, Ajay; Ahmad, Sajjad; Nayak, Anurag
2013-03-01
This study focuses on improving the spring-summer streamflow forecast lead time using large scale climate patterns. An artificial intelligence type data-driven model, Support Vector Machine (SVM), was developed incorporating oceanic-atmospheric oscillations to increase the forecast lead time. The application of SVM model is tested on three unimpaired gages in the North Platte River Basin. Seasonal averages of oceanic-atmospheric indices for the period of 1940-2007 are used to generate spring-summer streamflow volumes with 3-, 6- and 9-month lead times. The results reveal a strong association between coupled indices compared to their individual effects. The best streamflow estimates are obtained at 6-month compared to 3-month and 9-month lead times. The proposed modeling technique is expected to provide useful information to water managers and help in better managing the water resources and the operation of water systems.
The role of time scales in extrinsic noise propagation
Iyer-Biswas, Srividya; Pedraza, Juan Manuel; Jayaprakash, C.
2009-03-01
Cell-to cell variability in the number of proteins has been studied extensively experimentally. There are many sources of this stochastic variability or noise that can be classified as intrinsic, due to the stochasticity of chemical reactions and extrinsic, due to environmental differences. The different stages in the production of proteins in response to a stimulus, the signaling cascade before transcription, transcription, and translation are characterized by different time scales. We analyze how these time scales determine the effect of the reactions at each stage on different sources of noise. For example, even if intrinsic noise dominates the fluctuations in mRNA number, for typical degradation rates, extrinsic noise can dominate corresponding protein number fluctuations. Such results are important in determining the importance of intrinsic noise at earlier stages of a genetic network on the products of subsequent stages. We examine cases in which the dynamics of the extrinsic noise can lead to differences from cases in which extrinsic noise arises from static (in time) cell-to-cell variations. We will interpret the experiments of Pedraza et al*. in the light of these results. *J. M. Pedraza et al, Science 25 March 2005:Vol. 307. no. 5717, pp. 1965 - 1969.
Formation processes and time scales for meteorite parent bodies
Weidenschilling, S. J.
1988-01-01
The transition from small particles suspended in the solar nebula to the planetesimals (asteroids) that became the parent bodies of meteorites is examined. Planetesimals probably grew by coagulation of grain aggregates that collided due to different rates of settling and drag-induced orbital decay. Their growth was accompanied by radial transport of solids, possibly sufficient to deplete the primordial mass in the asteroid zone, but with relatively little mixing. The formation of asteroid-sized planetesimals was probably rapid, on a time scale less than 1 Myr.
Modeling geomagnetic storms on prompt and diffusive time scales
Li, Zhao
The discovery of the Van Allen radiation belts in the 1958 was the first major discovery of the Space Age. There are two belts of energetic particles. The inner belt is very stable, but the outer belt is extremely variable, especially during geomagnetic storms. As the energetic particles are hazardous to spacecraft, understanding the source of these particles and their dynamic behavior driven by solar activity has great practical importance. In this thesis, the effects of magnetic storms on the evolution of the electron radiation belts, in particular the outer zone, is studied using two types of numerical simulation: radial diffusion and magnetohydrodynamics (MHD) test-particle simulation. A radial diffusion code has been developed at Dartmouth, applying satellite measurements to model flux as an outer boundary condition, exploring several options for the diffusion coefficient and electron loss time. Electron phase space density is analyzed for July 2004 coronal mass ejection (CME) driven storms and March-April 2008 co-rotating interaction region (CIR) driven storms, and compared with Global Positioning System (GPS) satellite measurements within 5 degrees of the magnetic equator at L=4.16. A case study of a month-long interval in the Van Allen Probes satellite era, March 2013, confirms that electron phase space density is well described by radial diffusion for the whole month at low first invariant 0.6 MeV by an order of magnitude over 24 hours as observed.
Time-Dependent Earthquake Forecasts on a Global Scale
Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.; Graves, W. R.
2014-12-01
We develop and implement a new type of global earthquake forecast. Our forecast is a perturbation on a smoothed seismicity (Relative Intensity) spatial forecast combined with a temporal time-averaged ("Poisson") forecast. A variety of statistical and fault-system models have been discussed for use in computing forecast probabilities. An example is the Working Group on California Earthquake Probabilities, which has been using fault-based models to compute conditional probabilities in California since 1988. An example of a forecast is the Epidemic-Type Aftershock Sequence (ETAS), which is based on the Gutenberg-Richter (GR) magnitude-frequency law, the Omori aftershock law, and Poisson statistics. The method discussed in this talk is based on the observation that GR statistics characterize seismicity for all space and time. Small magnitude event counts (quake counts) are used as "markers" for the approach of large events. More specifically, if the GR b-value = 1, then for every 1000 M>3 earthquakes, one expects 1 M>6 earthquake. So if ~1000 M>3 events have occurred in a spatial region since the last M>6 earthquake, another M>6 earthquake should be expected soon. In physics, event count models have been called natural time models, since counts of small events represent a physical or natural time scale characterizing the system dynamics. In a previous research, we used conditional Weibull statistics to convert event counts into a temporal probability for a given fixed region. In the present paper, we move belyond a fixed region, and develop a method to compute these Natural Time Weibull (NTW) forecasts on a global scale, using an internally consistent method, in regions of arbitrary shape and size. We develop and implement these methods on a modern web-service computing platform, which can be found at www.openhazards.com and www.quakesim.org. We also discuss constraints on the User Interface (UI) that follow from practical considerations of site usability.
DEFF Research Database (Denmark)
Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper;
2016-01-01
Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader...... foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we...... on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach...
A biologically plausible model of time-scale invariant interval timing.
Almeida, Rita; Ledberg, Anders
2010-02-01
The temporal durations between events often exert a strong influence over behavior. The details of this influence have been extensively characterized in behavioral experiments in different animal species. A remarkable feature of the data collected in these experiments is that they are often time-scale invariant. This means that response measurements obtained under intervals of different durations coincide when plotted as functions of relative time. Here we describe a biologically plausible model of an interval timing device and show that it is consistent with time-scale invariant behavior over a substantial range of interval durations. The model consists of a set of bistable units that switch from one state to the other at random times. We first use an abstract formulation of the model to derive exact expressions for some key quantities and to demonstrate time-scale invariance for any range of interval durations. We then show how the model could be implemented in the nervous system through a generic and biologically plausible mechanism. In particular, we show that any system that can display noise-driven transitions from one stable state to another can be used to implement the timing device. Our work demonstrates that a biologically plausible model can qualitatively account for a large body of data and thus provides a link between the biology and behavior of interval timing.
Indian Academy of Sciences (India)
Qinming Qinming Sun; Tong Liu; Zhiquan Han; Yongping Wu; Bai-Lian Li
2016-04-01
This study used a combination of the wavelet cross-correlation technique and numerical analysis ofvegetative feedback to study the role of climate–vegetation feedback from 1981 to 2009 in the northernTianshan Mountains, Xinjiang Province, China. The study area included the Irtysh River, the Bortalaand Ili River valleys, the northern slopes of the Tianshan Mountains, and the western Junggar Basin.The feedback effects of changes in vegetation on precipitation appeared to vary in these five regionswhen different time scales are used to examine them. The most useful time scale was generally found tobe 4–6 months. Time lag was another characteristic of this process, and the optimal time lag was 3–4months. Nevertheless, optimal time scale and time lag did not differ significantly in these five regions. Inthis way, the correct time scale of the effects of variations in vegetation on precipitation in this cold, aridarea was found. This time scale and time lag can be assessed through wavelet cross-correlation analysis.Then numerical analysis can be used to improve the accuracy of the analysis.
A Review of Time-Scale Modification of Music Signals
Directory of Open Access Journals (Sweden)
Jonathan Driedger
2016-02-01
Full Text Available Time-scale modification (TSM is the task of speeding up or slowing down an audio signal’s playback speed without changing its pitch. In digital music production, TSM has become an indispensable tool, which is nowadays integrated in a wide range of music production software. Music signals are diverse—they comprise harmonic, percussive, and transient components, among others. Because of this wide range of acoustic and musical characteristics, there is no single TSM method that can cope with all kinds of audio signals equally well. Our main objective is to foster a better understanding of the capabilities and limitations of TSM procedures. To this end, we review fundamental TSM methods, discuss typical challenges, and indicate potential solutions that combine different strategies. In particular, we discuss a fusion approach that involves recent techniques for harmonic-percussive separation along with time-domain and frequency-domain TSM procedures.
Estimating ventilation time scales using overturning stream functions
Thompson, Bijoy; Nycander, Jonas; Nilsson, Johan; Jakobsson, Martin; Döös, Kristofer
2014-06-01
A simple method for estimating ventilation time scales from overturning stream functions is proposed. The stream function may be computed using either geometric coordinates or a generalized vertical coordinate, such as potential density (salinity in our study). The method is tested with a three-dimensional circulation model describing an idealized semi-enclosed ocean basin ventilated through a narrow strait over a sill, and the result is compared to age estimates obtained from a passive numerical age tracer. The best result is obtained when using the stream function in salinity coordinates. In this case, the reservoir-averaged advection time obtained from the overturning stream function in salinity coordinates agrees rather well with the mean age of the age tracer, and the corresponding maximum ages agree very well.
Generalized dynamic scaling for quantum critical relaxation in imaginary time.
Zhang, Shuyi; Yin, Shuai; Zhong, Fan
2014-10-01
We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.
Bache, Cathleen; Springer, Anne; Noack, Hannes; Stadler, Waltraud; Kopp, Franziska; Lindenberger, Ulman; Werkle-Bergner, Markus
2017-01-01
Research has shown that infants are able to track a moving target efficiently – even if it is transiently occluded from sight. This basic ability allows prediction of when and where events happen in everyday life. Yet, it is unclear whether, and how, infants internally represent the time course of ongoing movements to derive predictions. In this study, 10-month-old crawlers observed the video of a same-aged crawling baby that was transiently occluded and reappeared in either a temporally continuous or non-continuous manner (i.e., delayed by 500 ms vs. forwarded by 500 ms relative to the real-time movement). Eye movement and rhythmic neural brain activity (EEG) were measured simultaneously. Eye movement analyses showed that infants were sensitive to slight temporal shifts in movement continuation after occlusion. Furthermore, brain activity associated with sensorimotor processing differed between observation of continuous and non-continuous movements. Early sensitivity to an action’s timing may hence be explained within the internal real-time simulation account of action observation. Overall, the results support the hypothesis that 10-month-old infants are well prepared for internal representation of the time course of observed movements that are within the infants’ current motor repertoire. PMID:28769831
MULTI SCALE TIME SERIES PREDICTION FOR INTRUSION DETECTION
Directory of Open Access Journals (Sweden)
G. Palanivel
2014-01-01
Full Text Available We propose an anomaly-based network intrusion detection system, which analyzes traffic features to detect anomalies. The proposed system can be used both in online as well as off-line mode for detecting deviations from the expected behavior. Although our approach uses network packet or flow data, it is general enough to be adaptable for use with any other network variable, which may be used as a signal for anomaly detection. It differs from most existing approaches in its use of wavelet transform for generating different time scales for a signal and using these scales as an input to a two-stage neural network predictor. The predictor predicts the expected signal value and labels considerable deviations from this value as anomalies. The primary contribution of our work would be to empirically evaluate the effectiveness of multi resolution analysis as an input to neural network prediction engine specifically for the purpose of intrusion detection. The role of Intrusion Detection Systems (IDSs, as special-purpose devices to detect anomalies and attacks in a network, is becoming more important. First, anomaly-based methods cannot achieve an outstanding performance without a comprehensive labeled and up-to-date training set with all different attack types, which is very costly and time-consuming to create if not impossible. Second, efficient and effective fusion of several detection technologies becomes a big challenge for building an operational hybrid intrusion detection system.
Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes
Shtessel, Yuri; Hall, Charles; Jackson, Mark
2000-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.
Cell assemblies at multiple time scales with arbitrary lag constellations
Russo, Eleonora; Durstewitz, Daniel
2017-01-01
Hebb's idea of a cell assembly as the fundamental unit of neural information processing has dominated neuroscience like no other theoretical concept within the past 60 years. A range of different physiological phenomena, from precisely synchronized spiking to broadly simultaneous rate increases, has been subsumed under this term. Yet progress in this area is hampered by the lack of statistical tools that would enable to extract assemblies with arbitrary constellations of time lags, and at multiple temporal scales, partly due to the severe computational burden. Here we present such a unifying methodological and conceptual framework which detects assembly structure at many different time scales, levels of precision, and with arbitrary internal organization. Applying this methodology to multiple single unit recordings from various cortical areas, we find that there is no universal cortical coding scheme, but that assembly structure and precision significantly depends on the brain area recorded and ongoing task demands. DOI: http://dx.doi.org/10.7554/eLife.19428.001 PMID:28074777
Designing for development: Across the scales of time.
Cole, Michael
2016-11-01
This essay traces the history of an activity designed to promote the intellectual and social development of elementary-age schoolchildren during the afterschool hours. Following in the footsteps of Urie Bronfenbrenner, I highlight his argument that just as all human development occurs in contexts of varying levels of inclusiveness and mutual interchange, human development occurs at intersecting scales of time that themselves vary in character and duration. The task of exploring Bronfenbrenner's idea confronts scholars interested in person-context coconstitutive processes with a difficult methodological requirement; they must study simultaneously the history of persons (at the microgenetic and ontogenetic time scales) as well the history of "the contexts of development" in which the persons participate. A project implementing such a study focused on the life course of the system of activity is described, followed by a discussion of the lessons to be learned from a temporally extensive study of persons developing in contexts that are themselves changing. (PsycINFO Database Record
Complex processes from dynamical architectures with time-scale hierarchy.
Directory of Open Access Journals (Sweden)
Dionysios Perdikis
Full Text Available The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.
Complex processes from dynamical architectures with time-scale hierarchy.
Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor
2011-02-10
The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.
How noise contributes to time-scale invariance of interval timing
Oprisan, Sorinel A.; Buhusi, Catalin V.
2013-05-01
Time perception in the suprasecond range is crucial for fundamental cognitive processes such as decision making, rate calculation, and planning. In the vast majority of species, behavioral manipulations, and neurophysiological manipulations, interval timing is scale invariant: the time-estimation errors are proportional to the estimated duration. The origin and mechanisms of this fundamental property are unknown. We discuss the computational properties of a circuit consisting of a large number of (input) neural oscillators projecting on a small number of (output) coincidence detector neurons, which allows time to be coded by the pattern of coincidental activation of its inputs. We show that time-scale invariance emerges from the neural noise, such as small fluctuations in the firing patterns of its input neurons and in the errors with which information is encoded and retrieved by its output neurons. In this architecture, time-scale invariance is resistant to manipulations as it depends neither on the details of the input population nor on the distribution probability of noise.
Lee, Terrie M.; Fouad, Geoffrey G.
2014-01-01
semivariograms decreased markedly between 2002 and 2003, timing that coincided with decreases in well-field pumping. Cross-validation results suggest that the kriging interpolation may smooth over the drawdown of the potentiometric surface near production wells. The groundwater monitoring network of 197 wells yielded an average kriging error in the potentiometric-surface elevations of 2 feet or less over approximately 70 percent of the map area. Additional data collection within the existing monitoring network of 260 wells and near selected well fields could reduce the error in individual months. Reducing the kriging error in other areas would require adding new monitoring wells. Potentiometric-surface elevations fluctuated by as much as 30 feet over the study period, and the spatially averaged elevation for the entire surface rose by about 2 feet over the decade. Monthly potentiometric-surface elevations describe the lateral groundwater flow patterns in the aquifer and are usable at a variety of spatial scales to describe vertical groundwater recharge and discharge conditions for overlying surface-water features.
Wang, Zhilan; Li, Yaohui; Wang, Suping
2017-04-01
From characteristics of multiple time scale of drought, the Standardized Precipitation Evaportranspiration Index (SPEI) considering precipitation and temperature are calculated using CRU update data, and the characteristics of drought at different time scales from 1901 to 2012 in the east of northwest China have been investigated. In this paper, reliability for hundred years of the CRU data has been tested, and the adaptability of SPEI in study area has been discussed. The result shows that, the SPEI is confirmed to be applicable to analyze the drought in the east of northwest China from drought intensity and range. The time scale of SPEI is shorter, the fluctuation is more frequent, and the change is more significantly. The amplitude, period and phase of SPEI curve with different time scales are not the same. Short time scale mainly shows seasonal characteristics, and long time scale shows interannual and decadal characteristics. The study area is divided into the eastern of the Plateau area and the southern of Shaanxi area. There are three times extreme drought events in 48 months time scale of the SPEI index of less than -2.0 in the eastern of the Plateau area from 1901 to 2012, and only one time in the southern of Shaanxi area. Finally, the contribution of temperature anomaly to the drought is analyzed. The result indicates that high temperature contribution cannot be neglected by comparison with the SPI index.
Modelling Time and Length Scales of Scour Around a Pipeline
Smith, H. D.; Foster, D. L.
2002-12-01
The scour and burial of submarine objects is an area of interest for engineers, oceanographers and military personnel. Given the limited availability of field observations, there exists a need to accurately describe the hydrodynamics and sediment response around an obstacle using numerical models. In this presentation, we will compare observations of submarine pipeline scour with model predictions. The research presented here uses the computational fluid dynamics (CFD) model FLOW-3D. FLOW-3D, developed by Flow Science in Santa Fe, NM, is a 3-dimensional finite-difference model that solves the Navier-Stokes and continuity equations. Using the Volume of Fluid (VOF) technique, FLOW-3D is able to resolve fluid-fluid and fluid-air interfaces. The FAVOR technique allows for complex geometry to be resolved with rectangular grids. FLOW-3D uses a bulk transport method to describe sediment transport and feedback to the hydrodynamic solver is accomplished by morphology evolution and fluid viscosity due to sediment suspension. Previous investigations by the authors have shown FLOW-3D to well-predict the hydrodynamics around five static scoured bed profiles and a stationary pipeline (``Modelling of Flow Around a Cylinder Over a Scoured Bed,'' submit to Journal of Waterway, Port, Coastal, and Ocean Engineering). Following experiments performed by Mao (1986, Dissertation, Technical University of Denmark), we will be performing model-data comparisons of length and time scales for scour around a pipeline. Preliminary investigations with LES and k-ɛ closure schemes have shown that the model predicts shorter time scales in scour hole development than that observed by Mao. Predicted time and length scales of scour hole development are shown to be a function of turbulence closure scheme, grain size, and hydrodynamic forcing. Subsequent investigations consider variable wave-current flow regimes and object burial. This investigation will allow us to identify different regimes for the
Steering of the French time scale TA(F) towards the LNE-SYRTE primary frequency standards
Energy Technology Data Exchange (ETDEWEB)
Uhrich, P.; Valat, D.; Abgrall, M. [Observatoire de Paris, LNE-SYRTE, UMR CNRS 8630, 75 - Paris (France)
2008-12-15
The French atomic time scale TA(F), which is computed with data from about 20 industrial caesium standards located in nine French institutions, aims to provide a stable national frequency reference to the contributing institutions. To improve its stability, it was decided a few years ago to steer the time scale, which up to that date was free running, on the LNE-SYRTE primary frequency standards (PFS). The frequency of TA(F) was first slowly corrected monthly by an arbitrary given frequency offset with respect to TAI, to compensate the drift without disturbing the 30 d relative frequency stability of the time scale. Once close enough to the SI second, the time scale was steered monthly to the frequency data issued from the LNE-SYRTE PFS, in that way providing a more stable reference. We describe the steering applied to TA(F) and show the results in terms of relative stability with respect to TAI, or by comparing TA(F) with the SI second on the geoid as published monthly by the BIPM in its Circular T. When applying this steering during recent years, the departure over 30 d intervals of TA(F) from the SI second on the geoid was maintained inside the limits {+-} 3 * 10{sup -15}. Within these limits, the TA(F) scale unit interval is in agreement with the SI second, a result which was made possible thanks to the four PFS currently in operation in the LNE-SYRTE. (authors)
Institute of Scientific and Technical Information of China (English)
Xiaoxia; WU; Zhujun; GU
2015-01-01
Quantitative analysis of time scale effects is conducive to further understanding of vegetation water and soil conservation mechanism.Based on the observation data of the grass covered and bare soil( control) experimental plots located in Hetian Town,Changting County of Fujian Province from 2007 to 2010,the characteristics of 4 parameters( precipitation,vegetation,RE and SE) were analyzed at precipitation event,month,season,and annual scales,and then the linear regression models were established to describe the relationships between RE( SE)and its influencing factors of precipitation and vegetation. RE( SE) means the ratio of runoff depth( soil loss) of grass covered plot to that of the control plot. Results show that these 4 parameters presented different magnitude and variation on different time scales. RE and SE were relatively stable either within or among different time scales due to their ratios reducing the influence of other factors. The coupling of precipitation and vegetation led to better water conservation effect at lower RE( 0. 7) REs at precipitation event scale as well as at annual scale( R2> 0. 78). For the soil conservation effect,precipitation or / and vegetation was / were the dominated influence factor( s) at precipitation event and annual scales,and the grass LAI could basically describe the positive conservation effect( SE 0. 55),while the maximum 30 min intensity( I30) could describe the negative conservation effect more accurately( SE >1,R2> 0. 79). More uncertainties( R2≈0. 4) exist in the models of both RE and SE at two moderate time scales( month and season). Consequently,factors influencing water and soil conservation effect of grass present different variation and coupling characteristics on different time scales,indicating the importance of time scale at the study on water and soil conservation.
Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel
Directory of Open Access Journals (Sweden)
U.A.K. Chude-Okonkwo
2012-06-01
Full Text Available The time-scale domain geometrical-based method for the characterization of the time varying ultrawideband (UWB channel typical of an infostation channel is presented. Compared to methods that use Doppler shift as a measure of time-variation in the channel this model provides a more reliable measure of frequency dispersion caused by terminal mobility in the UWB infostation channel. Particularly, it offers carrier frequency independent method of computing wideband channel responses and parameters which are important for ultrawideband systems. Results show that the frequency dispersion of the channel depends on the frequency and not on the choice of bandwidth. And time dispersion depends on bandwidth and not on the frequency. It is also shown that for time-varying UWB, frame length defined over the coherence time obtained with reference to the carrier frequency results in an error margin which can be reduced by using the coherence time defined with respect to the maximum frequency in a given frequency band. And the estimation of the frequency offset using the time-scale domain (wideband model presented here (especially in the case of multiband UWB frequency synchronization is more accurate than using frequency offset estimate obtained from narrowband models.
Scaling in Non-stationary time series I
Ignaccolo, M; Grigolini, P; Hamilton, P; West, B J
2003-01-01
Most data processing techniques, applied to biomedical and sociological time series, are only valid for random fluctuations that are stationary in time. Unfortunately, these data are often non stationary and the use of techniques of analysis resting on the stationary assumption can produce a wrong information on the scaling, and so on the complexity of the process under study. Herein, we test and compare two techniques for removing the non-stationary influences from computer generated time series, consisting of the superposition of a slow signal and a random fluctuation. The former is based on the method of wavelet decomposition, and the latter is a proposal of this paper, denoted by us as step detrending technique. We focus our attention on two cases, when the slow signal is a periodic function mimicking the influence of seasons, and when it is an aperiodic signal mimicking the influence of a population change (increase or decrease). For the purpose of computational simplicity the random fluctuation is taken...
Scale-free networks emerging from multifractal time series
Budroni, Marcello A.; Baronchelli, Andrea; Pastor-Satorras, Romualdo
2017-05-01
Methods connecting dynamical systems and graph theory have attracted increasing interest in the past few years, with applications ranging from a detailed comparison of different kinds of dynamics to the characterization of empirical data. Here we investigate the effects of the (multi)fractal properties of a signal, common in time series arising from chaotic dynamics or strange attractors, on the topology of a suitably projected network. Relying on the box-counting formalism, we map boxes into the nodes of a network and establish analytic expressions connecting the natural measure of a box with its degree in the graph representation. We single out the conditions yielding to the emergence of a scale-free topology and validate our findings with extensive numerical simulations. We finally present a numerical analysis on the properties of weighted and directed network projections.
Scale-free networks emerging from multifractal time series.
Budroni, Marcello A; Baronchelli, Andrea; Pastor-Satorras, Romualdo
2017-05-01
Methods connecting dynamical systems and graph theory have attracted increasing interest in the past few years, with applications ranging from a detailed comparison of different kinds of dynamics to the characterization of empirical data. Here we investigate the effects of the (multi)fractal properties of a signal, common in time series arising from chaotic dynamics or strange attractors, on the topology of a suitably projected network. Relying on the box-counting formalism, we map boxes into the nodes of a network and establish analytic expressions connecting the natural measure of a box with its degree in the graph representation. We single out the conditions yielding to the emergence of a scale-free topology and validate our findings with extensive numerical simulations. We finally present a numerical analysis on the properties of weighted and directed network projections.
Empirical mode decomposition using variable filtering with time scale calibrating
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed. Unlike the original empirical mode decomposition (EMD), which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process, this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes. The IMFs are results of a multiple variable frequency response FIR filtering when signals pass through the filters. Numerical examples validate that in contrast with the original EMD, the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.
Dynamic Leidenfrost effect: relevant time- and length-scales
Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef
2015-01-01
When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it as to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting/drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time- and length-scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate.
Nonoscillation for second order sublinear dynamic equations on time scales
Erbe, Lynn; Baoguo, Jia; Peterson, Allan
2009-10-01
Consider the Emden-Fowler sublinear dynamic equation x[Delta][Delta](t)+p(t)f(x([sigma](t)))=0, where , is a time scale, , where ai>0, 0researchers. In this paper, we allow the coefficient function p(t) to be negative for arbitrarily large values of t. We extend a nonoscillation result of Wong for the second order sublinear Emden-Fowler equation in the continuous case to the dynamic equation (0.1). As applications, we show that the sublinear difference equation has a nonoscillatory solution, for b>0, c>[alpha], and the sublinear q-difference equation has a nonoscillatory solution, for , q>1, b>0, c>1+[alpha].
On the superposition of heterogeneous traffic at large time scales
Directory of Open Access Journals (Sweden)
Sidney I. Resnick
2011-01-01
Full Text Available Various empirical and theoretical studies indicate that cumulative network traffic is a Gaussian process. However, depending on whether the intensity at which sessions are initiated is large or small relative to the session duration tail, [25] and [15] have shown that traffic at large time scales can be approximated by either fractional Brownian motion (fBm or stable Lévy motion. We study distributional properties of cumulative traffic that consists of a finite number of independent streams and give an explanation of why Gaussian examples abound in practice but not stable Lévy motion. We offer an explanation of how much vertical aggregation is needed for the Gaussian approximation to hold. Our results are expressed as limit theorems for a sequence of cumulative traffic processes whose session initiation intensities satisfy growth rates similar to those used in [25].
Variation of atmospheric depth profile on different time scales
Wilczynska, B; Homola, P; Pekala, J; Risse, M; Wilczynski, H
2006-01-01
The vertical profile of atmospheric depth is an important element in extensive air shower studies. The depth of shower maximum is one of the most important characteristics of the shower. In the fluorescence technique of shower detection, the geometrical reconstruction provides the altitude of shower maximum, so that an accurate profile of atmospheric depth is needed to convert this altitude to the depth of shower maximum. In this paper the temporal variation of experimentally measured profiles of atmospheric depth at different sites is studied and implications for shower reconstruction are shown. The atmospheric profiles vary on time scales from hours to years. It is shown that the daily variation of the profile is as important as its seasonal variation and should be accounted for in air shower studies. For precise shower reconstruction, the daily profiles determined locally at the site of the air shower detector are recommended.
Large-scale structure of time evolving citation networks
Leicht, E. A.; Clarkson, G.; Shedden, K.; Newman, M. E. J.
2007-09-01
In this paper we examine a number of methods for probing and understanding the large-scale structure of networks that evolve over time. We focus in particular on citation networks, networks of references between documents such as papers, patents, or court cases. We describe three different methods of analysis, one based on an expectation-maximization algorithm, one based on modularity optimization, and one based on eigenvector centrality. Using the network of citations between opinions of the United States Supreme Court as an example, we demonstrate how each of these methods can reveal significant structural divisions in the network and how, ultimately, the combination of all three can help us develop a coherent overall picture of the network's shape.
Decomposition of wind speed fluctuations at different time scales
Indian Academy of Sciences (India)
Qinmin Zheng; S Rehman; Md Mahbub Alam; L M Alhems; A Lashin
2017-04-01
Understanding the inherent features of wind speed (variability on different time scales) has become critical for assured wind power availability, grid stability, and effective power management. The study utilizes the wavelet, autocorrelation, and FFT (fast Fourier transform) techniques to analyze and assimilate the fluctuating nature of wind speed data collected over a period of 29–42 years at different locations in the Kingdom of Saudi Arabia. The analyses extracted the intrinsic features of wind speed, including the long-term mean wind speed and fluctuations at different time scales (periods), which is critical for meteorological purposes including wind power resource assessment and weather forecasting. The longterm mean wind speed varied between 1.45 m/s at Mecca station and 3.73 m/s at Taif. The annual variation is the largest (±0.97 m/s) at Taif and the smallest (±0.25 m/s) at Mecca. Similarly, the wind speed fluctuation with different periods was also discussed in detail. The spectral characteristics obtained using FFT reveal that Al-Baha, Najran, Taif and Wadi-Al-Dawasser having a sharp peak at a frequency f = 0.00269 (1/day) retain a more regular annual repetition of wind speed than Bisha, Khamis-Mushait, Madinah, Mecca, and Sharourah. Based on the autocorrelation analysis and FFT results, the stations are divided into three groups: (i) having strong annual modulations (Al-Baha, Najran, Taif and Wadi-Al-Dawasser), (ii) having comparable annual and half-yearly modulations (Bisha, Khamis-Mushait, and Mecca) and (iii) having annual modulation moderately prominent (Madinah and Sharourah).
Towards a stable numerical time scale for the early Paleogene
Hilgen, Frederik; Kuiper, Klaudia; Sierro, Francisco J.; Wotzlaw, Jorn; Schaltegger, Urs; Sahy, Diana; Condon, Daniel
2014-05-01
The construction of an astronomical time scale for the early Paleogene is hampered by ambiguities in the number, correlation and tuning of 405-kyr eccentricity related cycles in deep marine records from ODP cores and land-based sections. The two most competing age models result in astronomical ages for the K/Pg boundary that differ by ~750 kyr (~66.0 Ma of Vandenberghe et al. (2012) versus 65.25 Ma of Westerhold et al. (2012); these ages in turn are consistent with proposed ages for the Fish Canyon sanidine (FCs) that differ by ~300 kyr (28.201 Ma of Kuiper et al. (2008) versus 27.89 Ma of Westerhold et al. (2012)); an even older age of 28.294 Ma is proposed based on a statistical optimization model (Renne et al., 2011). The astronomically calibrated FCs age of 28.201 ± 0.046 Ma of Kuiper et al. (2008), which is consistent with the astronomical age of ~66.0 Ma for the K/Pg boundary, is currently adopted in the standard geological time scale (GTS2012). Here we combine new and published data in an attempt to solve the controversy and arrive at a stable nuemrical time scale for the early Paleogene. Supporting their younger age model, Westerhold et al. (2012) argue that the tuning of Miocene sections in the Mediterranean, which underlie the older FCs age of Kuiper et al. (2008) and, hence, the coupled older early Paleogene age model of Vandenberghe et al. (2012), might be too old by three precession cycles. We thoroughly rechecked this tuning; distinctive cycle patterns related to eccentricity and precession-obliquity interference make a younger tuning that would be consistent with the younger astronomical age of 27.89 Ma for the FCs of Westerhold et al. (2012) challenging. Next we compared youngest U/Pb zircon and astronomical ages for a number of ash beds in the tuned Miocene section of Monte dei Corvi. These ages are indistinguishable, indicating that the two independent dating methods yield the same age when the same event is dated. This is consistent with results
The stochastic background: scaling laws and time to detection for pulsar timing arrays
Siemens, Xavier; Jenet, Fredrick; Romano, Joseph D
2013-01-01
We derive scaling laws for the signal-to-noise ratio of the optimal cross-correlation statistic, and show that the large power-law increase of the signal-to-noise ratio as a function of the the observation time $T$ that is usually assumed holds only at early times. After enough time has elapsed, pulsar timing arrays enter a new regime where the signal to noise only scales as $\\sqrt{T}$. In addition, in this regime the quality of the pulsar timing data and the cadence become relatively un-important. This occurs because the lowest frequencies of the pulsar timing residuals become gravitational-wave dominated. Pulsar timing arrays enter this regime more quickly than one might naively suspect. For T=10 yr observations and typical stochastic background amplitudes, pulsars with residual RMSs of less than about $1\\,\\mu$s are already in that regime. The best strategy to increase the detectability of the background in this regime is to increase the number of pulsars in the array. We also perform realistic simulations ...
Facing The Challenges Of Tracking Tropical Phenology At Several Scales In Time And Space
Silva, T. S. F.; Morellato, P.; Streher, A. S.; Alberton, B.; Almeida, J.; dos Santos, J.; Cancian, L.; Borges, B.; Mariano, G.; Camargo, M. G.; Torres, R. S.
2015-12-01
Detect plant responses to environmental changes across tropical systems, especially in the Southern Hemisphere, is an important question in the global agenda, since few studies have addressed trends related to global warming. Traditional on-the-ground direct, manned phenological observations preclude large areas of study, are laborious and time consuming and restricts frequency of observations to large time-intervals (usually monthly). Near-surface remote phenology using digital cameras or phenocams set up at the top of towers have reduced the temporal and labor constraints of on-the-ground human observations, and eliminates the uncertainty of cloud cover, enhancing the resolution of information at individual tree, species, and community scales. Phenocams have reduced considerably manpower, since images are taken sequentially at reduced time-scales. Furthermore, Phenocams have proven to be an important tool for monitoring several species and ecosystems, accurately accessing leaf changes daily or several times a day and the relation to climate drivers but it is still area-limited. Here we propose to apply new technologies to enhance the capabilities near-surface remote phenological observations by integrating at time and space to detect changes on vegetation phenology at various scales, from leaves to ecosystems. Our studies have been carried out in the rupestrian grassland (campos rupestres) a rare, unique Brazilian mountain ecosystem, distinguished by a highly species rich, heterogeneous herbaceous/shrub vegetation and high number of endemic species. We discuss how the combination of cutting-edge technologies collected and framed within a e-science research project has been used to increase our observational capabilities in space by integrating phenology to cutting-edge technologies of environmental and phenology monitoring systems, based on the combination of two near-surface remote phenology monitoring systems: digital and hyperspectral sensors at three scales
Mapping monthly rainfall erosivity in Europe
DEFF Research Database (Denmark)
Ballabio, C; Meusburger, K; Klik, A
2017-01-01
Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and...
Repairing filtering induced damage to the GRACE time-series at catchment scale
Dutt Vishwakarma, Bramha; Sneeuw, Nico; Devaraju, Balaji
2016-04-01
The gravity field products from Gravity Recovery And Climate Experiment (GRACE) satellites are usable only after filtering. Filtering suppresses noise, but also changes the signal. There are methods to minimize the signal change, and most of them depend on a hydrological model to compute leakage, scale factor or bias for improving the time-series signal. Using a model to suppress the uncertainty introduced by filtering is not without problems of its own, because it brings in the uncertainty in the model, that varies spatially and temporally. We provide a mathematical relation between leakage, true signal and filtered signal. We find that not only the amplitude but also the phase of the total water storage time-series is affected due to filtering. For certain catchments the phase change can be equivalent to a shift of half a month or nearly a month. We propose a data driven approach to negate the effects of filtering on catchment scale signal. We demonstrate our method in a closed loop simulation environment and compare it to other widely used approaches for 24 catchments. The method proposed is independent of the filter type and works exceptionally well for catchments above the filter resolution. We apply our approach to GRACE products and discuss its limitations.
The pace of aging: Intrinsic time scales in demography
Directory of Open Access Journals (Sweden)
Tomasz Wrycza
2014-05-01
Full Text Available Background: The pace of aging is a concept that captures the time-related aspect of aging. It formalizesthe idea of a characteristic life span or intrinsic population time scale. In the rapidly developing field of comparative biodemography, measures that account for inter-speciesdifferences in life span are needed to compare how species age. Objective: We aim to provide a mathematical foundation for the concept of pace. We derive desiredmathematical properties of pace measures and suggest candidates which satisfy these properties. Subsequently, we introduce the concept of pace-standardization, which reveals differences in demographic quantities that are not due to pace. Examples and consequences are discussed. Conclusions: Mean life span (i.e., life expectancy from birth or from maturity is intuitively appealing,theoretically justified, and the most appropriate measure of pace. Pace-standardizationprovides a serviceable method for comparative aging studies to explore differences indemographic patterns of aging across species, and it may considerably alter conclusionsabout the strength of aging.
Selective attention to temporal features on nested time scales.
Henry, Molly J; Herrmann, Björn; Obleser, Jonas
2015-02-01
Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features.
Forecasting decadal and shorter time-scale solar cycle features
Dikpati, Mausumi
2016-07-01
Solar energetic particles and magnetic fields reach the Earth through the interplanetary medium and affect it in various ways, producing beautiful aurorae, but also electrical blackouts and damage to our technology-dependent economy. The root of energetic solar outputs is the solar activity cycle, which is most likely caused by dynamo processes inside the Sun. It is a formidable task to accurately predict the amplitude, onset and peak timings of a solar cycle. After reviewing all solar cycle prediction methods, including empirical as well as physical model-based schemes, I will describe what we have learned from both validation and nonvalidation of cycle 24 forecasts, and how to refine the model-based schemes for upcoming cycle 25 forecasts. Recent observations indicate that within a solar cycle there are shorter time-scale 'space weather' features, such as bursts of various forms of activity with approximately one year periodicity. I will demonstrate how global tachocline dynamics could play a crucial role in producing such space weather. The National Center for Atmospheric Research is sponsored by the National Science Foundation.
The quenching time scale and quenching rate of galaxies
Lian, Jianhui; Zhang, Kai; Kong, Xu
2016-01-01
The average star formation rate (SFR) in galaxies has been declining since redshift of 2. A fraction of galaxies quench and become quiescent. We constrain two key properties of the quenching process: the quenching time scale and the quenching rate among galaxies. We achieve this by analyzing the galaxy number density profile in NUV-u color space and the distribution in NUV-u v.s. u-i color-color diagram with a simple toy-model framework. We focus on galaxies in three mass bins between 10 to 10 and 10 to 10.6 solar mass. In the NUV-u v.s. u-i color-color diagram, the red u-i galaxies exhibit a different slope from the slope traced by the star-forming galaxies. This angled distribution and the number density profile of galaxies in NUV-u space strongly suggest that the decline of the SFR in galaxies has to accelerate before they turn quiescent. We model this color-color distribution with a two-phase exponential decline star formation history. The models with an e-folding time in the second phase (the quenching p...
On Time/Space Aggregation of Fine-Scale Error Estimates (Invited)
Huffman, G. J.
2013-12-01
Estimating errors inherent in fine time/space-scale satellite precipitation data sets is still an on-going problem and a key area of active research. Complicating features of these data sets include the intrinsic intermittency of the precipitation in space and time and the resulting highly skewed distribution of precipitation rates. Additional issues arise from the subsampling errors that satellites introduce, the errors due to retrieval algorithms, and the correlated error that retrieval and merger algorithms sometimes introduce. Several interesting approaches have been developed recently that appear to make progress on these long-standing issues. At the same time, the monthly averages over 2.5°x2.5° grid boxes in the Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) precipitation data set follow a very simple sampling-based error model (Huffman 1997) with coefficients that are set using coincident surface and GPCP SG data. This presentation outlines the unsolved problem of how to aggregate the fine-scale errors (discussed above) to an arbitrary time/space averaging volume for practical use in applications, reducing in the limit to simple Gaussian expressions at the monthly 2.5°x2.5° scale. Scatter diagrams with different time/space averaging show that the relationship between the satellite and validation data improves due to the reduction in random error. One of the key, and highly non-linear, issues is that fine-scale estimates tend to have large numbers of cases with points near the axes on the scatter diagram (one of the values is exactly or nearly zero, while the other value is higher). Averaging 'pulls' the points away from the axes and towards the 1:1 line, which usually happens for higher precipitation rates before lower rates. Given this qualitative observation of how aggregation affects error, we observe that existing aggregation rules, such as the Steiner et al. (2003) power law, only depend on the aggregated precipitation rate
On the superimposition of heterogeneous traffic at large time scales
Lopez-Oliveros, Luis
2010-01-01
Various empirical and theoretical studies indicate that cumulative network traffic is a Gaussian process. However, depending on whether the intensity at which sessions are initiated is large or small relative to the session duration tail, Mikosch et a. (Ann Appl Probab, 12:23-68, 2002) and Kaj and Taqqu (Progress Probab, 60:383-427, 2008) have shown that traffic at large time scales can be approximated by either fractional Brownian motion (fBm) or stable Levy motion. We study distributional properties of cumulative traffic that consists of a finite number of independent streams and give an explanation of why Gaussian examples abound in practice but not stable Levy motion. We offer an explanation of how much vertical aggregation is needed for the Gaussian approximation to hold. Our results are expressed as limit theorems for a sequence of cumulative traffic processes whose session initiation intensities satisfy growth rates similar to those used in Mikosch et a. (Ann Appl Probab, 12:23-68, 2002).
Evaluating the uncertainty of predicting future climate time series at the hourly time scale
Caporali, E.; Fatichi, S.; Ivanov, V. Y.
2011-12-01
A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.
Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale
Neidel, Ch.; Klei, J.; Yang, C.-H.; Rouzée, A.; Vrakking, M. J. J.; Klünder, K.; Miranda, M.; Arnold, C. L.; Fordell, T.; L'Huillier, A.; Gisselbrecht, M.; Johnsson, P.; Dinh, M. P.; Suraud, E.; Reinhard, P.-G.; Despré, V.; Marques, M. A. L.; Lépine, F.
2013-07-01
Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small- and medium-sized neutral molecules (N2, CO2, and C2H4), monitoring time-dependent variations of the parent molecular ion yield in the ionization by an attosecond pulse, and thereby probing the time-dependent dipole induced by a moderately strong near-infrared laser field. This approach can be generalized to other molecular species and may be regarded as a first example of molecular attosecond Stark spectroscopy.
EON: software for long time simulations of atomic scale systems
Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme
2014-07-01
The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.
Koch, Julian; Siemann, Amanda; Stisen, Simon; Sheffield, Justin
2016-04-01
Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. This study features two innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly driven by air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings.
Directory of Open Access Journals (Sweden)
G. AZHAGUNILA,
2011-02-01
Full Text Available The main aim of this work is to develop a Dynamic Voltage Scaling (DVS algorithm for real- time system with resource constraints and the system thus developed is fault tolerant as well. The system is assumed to contain independent periodic tasks. Earliest Deadline Firstscheduling algorithm is considered in this. The algorithm helps in meeting the deadlines of all the tasks and also ensures that the total power consumption is minimized. The other objective is to develop a fault tolerant system. The proposed system is designed to handle hardware faults. Thus the proposed system is energy efficient and reliable.
A conceptual framework for time and space scale interactions in the climate system
Energy Technology Data Exchange (ETDEWEB)
Meehl, G.A. [National Center for Atmospheric Research (United States); Lukas, R. [University of Hawaii (United States); Kiladis, G.N. [NOAA Aeronomy Lab (United States); Weickmann, K.M. [NOAA Climate Diagnostics Center (United States); Matthews, A.J. [University of East Anglia, Norwich (United Kingdom); Wheeler, M. [Bureau of Meteorology Research Centre (Australia)
2001-07-01
Interactions involving various time and space scales, both within the tropics and between the tropics and midlatitudes, are ubiquitous in the climate system. We propose a conceptual framework for understanding such interactions whereby longer time scales and larger space scales set the base state for processes on shorter time scales and smaller space scales, which in turn have an influence back on the longer time scales and larger space scales in a continuum of process-related interactions. Though not intended to be comprehensive, we do cite examples from the literature to provide evidence for the validity of this framework. Decadal time scale base states of the coupled climate system set the context for the manifestation of interannual time scales (El Nino/Southern Oscillation, ENSO and tropospheric biennial oscillation, TBO) which are influenced by and interact with the annual cycle and seasonal time scales. Those base states in turn influence the large-scale coupled processes involved with intraseasonal and submonthly time scales, tied to interactions within the tropics and extratropics, and tropical-midlatitude teleconnections. All of these set the base state for processes on the synoptic and mesoscale and regional/local space scales. Events at those relatively short time scales and small space scales may then affect the longer time scale and larger space scale processes in turn, reaching back out to submonthly, intraseasonal, seasonal, annual, TBO, ENSO and decadal. Global coupled models can capture some elements of the decadal, ENSO, TBO, annual and seasonal time scales with the associated global space scales. However, coupled models are less successful at simulating phenomena at subseasonal and shorter time scales with hemispheric and smaller space scales. In the context of the proposed conceptual framework, the synergistic interactions of the time and space scales suggest that a high priority must be placed on improved simulations of all of the time and
Energy Technology Data Exchange (ETDEWEB)
Casanovas, R., E-mail: ramon.casanovas@urv.cat [Unitat de Fisica Medica, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, ES-43201 Reus (Tarragona) (Spain); Morant, J.J. [Servei de Proteccio Radiologica, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, ES-43201 Reus (Tarragona) (Spain); Lopez, M. [Unitat de Fisica Medica, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, ES-43201 Reus (Tarragona) (Spain); Servei de Proteccio Radiologica, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, ES-43201 Reus (Tarragona) (Spain); Hernandez-Giron, I. [Unitat de Fisica Medica, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, ES-43201 Reus (Tarragona) (Spain); Batalla, E. [Servei de Coordinacio d' Activitats Radioactives, Departament d' Economia i Finances, Generalitat de Catalunya, ES-08018 Barcelona (Spain); Salvado, M. [Unitat de Fisica Medica, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, ES-43201 Reus (Tarragona) (Spain)
2011-08-15
The automatic real-time environmental radiation surveillance network of Catalonia (Spain) comprises two subnetworks; one with 9 aerosol monitors and the other with 8 Geiger monitors together with 2 water monitors located in the Ebre river. Since September 2006, several improvements were implemented in order to get better quality and quantity of data, allowing a more accurate data analysis. However, several causes (natural causes, equipment failure, artificial external causes and incidents in nuclear power plants) may produce radiological measured values mismatched with the own station background, whether spurious without significance or true radiological values. Thus, data analysis for a 50-month period was made and allowed to establish an easily implementable statistical criterion to find those values that require special attention. This criterion proved a very useful tool for creating a properly debugged database and to give a quick response to equipment failures or possible radiological incidents. This paper presents the results obtained from the criterion application, including the figures for the expected, raw and debugged data, percentages of missing data grouped by causes and radiological measurements from the networks. Finally, based on the discussed information, recommendations for the improvement of the network are identified to obtain better radiological information and analysis capabilities. - Highlights: > Causes producing data mismatching with the own stations background are described. > Causes may be natural, equipment failure, external or nuclear plants incidents. > These causes can produce either spurious or true radiological data. > A criterion to find these data was implemented and tested for a 50-month period. > Recommendations for the improvement of the network are identified.
Ahmad, Imam Safawi; Setiawan, Suhartono, Masun, Nunun Hilyatul
2015-12-01
Currency plays an important role in economic transactions of Indonesian society. In order to guarantee the availability of currency, Bank Indonesia needs to develop demand and supply planning of currency. The purpose of this study is to get model and predict inflow and outflow of currency in KPW BI Region IV (East Java) with ARIMA method, time series regression and ARIMAX. The data of monthly inflow and outflow is used of currency in KPW BI Surabaya, Malang, Kediri and Jember.The observation period starting from January 2003 to December 2014. Based on the smallest values of out-sample RMSE and SMAPE, ARIMA is the best model to predict the outflow of currency in KPW BI Surabaya and ARIMAX for KPW BI Malang, Kediri and Jember. The best forecasting model for inflow of currency in KPW BI Surabaya, Malang, Kediri and Jember chronologically as follows are calendar variation model, transfer function, ARIMA, and time series regression. These results indicates that the more complex models may not necessarily produce a more accurate forecast as the result of M3-Competition.
Tirabassi, Giulio
2013-01-01
The complex network framework has been successfully applied to the analysis of climatological data, providing, for example, a better understanding of the mechanisms underlying reduced predictability during El Ni\\~no or La Ni\\~na years. Despite the large interest that climate networks have attracted, several issues remain to be investigated. Here we focus in the influence of the periodic solar forcing in climate networks constructed via similarities of monthly averaged surface air temperature (SAT) anomalies. We shift the time series in each pair of nodes such as to superpose their seasonal cycles. In this way, when two nodes are located in different hemispheres we are able to quantify the similarity of SAT anomalies during the winters and during the summers. We find that data time-shifting does not significantly modify the network area weighted connectivity (AWC), which is the fraction of the total area of the Earth to which each node is con- nected. This unexpected network property can be understood in terms...
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
Energy Technology Data Exchange (ETDEWEB)
Maslennikov, Oleg V.; Nekorkin, Vladimir I. [Institute of Applied Physics of RAS, Nizhny Novgorod (Russian Federation)
2016-07-15
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Asymptotic Expansions of Backward Equations for Two-time-scale Markov Chains in Continuous Time
Institute of Scientific and Technical Information of China (English)
G Yin; Dung Tien Nguyen
2009-01-01
This work develops asymptotic expansions for solutions of systems of backward equations of timeinhomogeneons Markov chains in continuous time. Owing to the rapid progress in technology and the increasing complexity in modeling, the underlying Markov chains often have large state spaces, which make the computational tasks infeasible. To reduce the complexity, two-time-scale formulations are used. By introducing a small parameter ε＞ 0 and using suitable decomposition and aggregation procedures, it is formulated as a singular perturbation problem. Both Markov chains having recurrent states only and Markov chains including also transient states are treated. Under certain weak irreducibility and smoothness conditions of the generators, the desired asymptotic expansions are constructed. Then error bounds are obtained.
Time-resolved and time-scale adaptive measures of spike train synchrony
Kreuz, Thomas; Greschner, Martin; Andrzejak, Ralph G
2010-01-01
A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter free and time-scale independent. However, it is not well suited to track changes in synchrony that are based on spike coincidences. Here we propose the SPIKE-distance, a complementary measure which is sensitive to spike coincidences but still shares the fundamental advantages of the ISI-distance. In particular, it is easy to visualize in a time-resolved manner and can be extended to a method that is also applicable to larger sets of spike trains. We show the merit of the SPIKE-distance using both simulated and real data.
Time-resolved and time-scale adaptive measures of spike train synchrony.
Kreuz, Thomas; Chicharro, Daniel; Greschner, Martin; Andrzejak, Ralph G
2011-01-30
A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter free and time-scale independent. However, it is not well suited to track changes in synchrony that are based on spike coincidences. Here we propose the SPIKE-distance, a complementary measure which is sensitive to spike coincidences but still shares the fundamental advantages of the ISI-distance. In particular, it is easy to visualize in a time-resolved manner and can be extended to a method that is also applicable to larger sets of spike trains. We show the merit of the SPIKE-distance using both simulated and real data. Copyright © 2010 Elsevier B.V. All rights reserved.
Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales
Zu, Qi-hang; Zhu, Jian-qing
2016-08-01
The paper focuses on studying the Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales. First, the Hamilton equations of nonholonomic nonconservative systems on time scales are established, which is based on the Lagrange equations for nonholonomic systems on time scales. Then, based upon the quasi-invariance of Hamilton action of systems under the infinitesimal transformations with respect to the time and generalized coordinate on time scale, the Noether identity and the conserved quantity of nonholonomic nonconservative systems on time scales are obtained. Finally, an example is presented to illustrate the application of the results.
Multiple time scales and the lifetime coefficient of variation: engineering applications.
Kordonsky, K B; Gertsbakh, I
1997-01-01
We consider linear combinations of "natural" time scales and choose the "best" one which provides the minimum coefficient of variation of the lifetime. Our time scale is in fact a generalized Miner time scale because the latter is based on an appropriate weighting of the times spent on low and high level loadings. The suggested modus operandi for finding the "best" time scale has many features in common with the approach suggested by Farewell and Cox (1979) and Oakes (1995) which is devoted to multiple time scales in survival analysis.
Two-phase micro- and macro-time scales in particle-laden turbulent channel flows
Institute of Scientific and Technical Information of China (English)
Bing Wang; Michael Manhart
2012-01-01
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct numerical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases,respectively.Lagrangian and Eulerian time scales of both phases are calculated using velocity correlation functions.Due to flow anisotropy,micro-time scales are not the same with the theoretical estimations in large Reynolds number (isotropic) turbulence.Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number.The fluid-phase Lagrangian integral time scales increase with distance from the wall,longer than those time scales seen by particles.The Eulerian integral macro-time scales increase in near-wall regions but decrease in out-layer regions.The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales,and in good agreement with previous measurements and numerical predictions.For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions,while away from the walls the micro Lagrangian time scales are longer.The Lagrangian integral time scales are longer than the Eulerian ones.The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.
Kremser, S.; Bodeker, G. E.; Lewis, J.
2014-01-01
A Climate Pattern-Scaling Model (CPSM) that simulates global patterns of climate change, for a prescribed emissions scenario, is described. A CPSM works by quantitatively establishing the statistical relationship between a climate variable at a specific location (e.g. daily maximum surface temperature, Tmax) and one or more predictor time series (e.g. global mean surface temperature, Tglobal) - referred to as the "training" of the CPSM. This training uses a regression model to derive fit coefficients that describe the statistical relationship between the predictor time series and the target climate variable time series. Once that relationship has been determined, and given the predictor time series for any greenhouse gas (GHG) emissions scenario, the change in the climate variable of interest can be reconstructed - referred to as the "application" of the CPSM. The advantage of using a CPSM rather than a typical atmosphere-ocean global climate model (AOGCM) is that the predictor time series required by the CPSM can usually be generated quickly using a simple climate model (SCM) for any prescribed GHG emissions scenario and then applied to generate global fields of the climate variable of interest. The training can be performed either on historical measurements or on output from an AOGCM. Using model output from 21st century simulations has the advantage that the climate change signal is more pronounced than in historical data and therefore a more robust statistical relationship is obtained. The disadvantage of using AOGCM output is that the CPSM training might be compromised by any AOGCM inadequacies. For the purposes of exploring the various methodological aspects of the CPSM approach, AOGCM output was used in this study to train the CPSM. These investigations of the CPSM methodology focus on monthly mean fields of daily temperature extremes (Tmax and Tmin). The methodological aspects of the CPSM explored in this study include (1) investigation of the advantage
HERA Transverse Polarimeter absolute scale and error by rise-time calibration
Karibian, V
2003-01-01
We give the results of an analysis of some 18 rise-time calibrations which are based on data collected in 1996/97. Such measurements are used to determine the absolute polarization scale of the transverse electron beam polarimeter (TPOL) at HERA. The results of the 1996/97 calibrations are found to be in good agreement with earlier calibrations of the TPOL performed in 1994 with errors of 1.2% and 1.1%. Based on these calibrations and a comparison with measurements from the longitudinal polarimeter (LPOL) at HERA carried out over a two-months period in 2000, we obtain a mean LPOL/TPOL ratio of 1.018. Both polarimeters are found to agree with each other within their overall errors of about 2% each.
Barbosa-Leiker, Celestina; McPherson, Sterling; Mamey, Mary Rose; Burns, G Leonard; Roll, John
2014-02-01
The adjective rating scale for withdrawal (ARSW) is commonly used to assess opiate withdrawal in clinical practice and research. The aims of this study were to examine the factor structure of the ARSW, test measurement invariance across gender and treatment groups, and assess longitudinal measurement invariance across the clinical trial. Secondary data analysis of the National Drug Abuse Treatment Clinical Trials Network 000-3, a randomized clinical trial comparing two tapering strategies, was performed. The ARSW was analyzed at baseline, end of taper and 1-month follow-up (N=515 opioid-dependent individuals). A 1-factor model of the ARSW fit the data and demonstrated acceptable reliability. Measurement invariance was supported across gender and taper groups. Longitudinal measurement invariance was not found across the course of the trial, with baseline assessment contributing to the lack of invariance. If change over time is of interest, change from post-treatment through follow-up may offer the most valid comparison.
Directory of Open Access Journals (Sweden)
Beth Dahlrup
2010-12-01
Full Text Available Beth Dahlrup, Eva Nordell, Signe Andrén, Sölve ElmståhlDepartment of Health Sciences, Division of Geriatric Medicine, Lund University, SwedenAbstract: The purpose of this study was to examine if psychosocial intervention for family caregivers made any differences in describing symptoms of dementia in the persons they cared for. The study population comprised family caregivers of persons aged 70 years and older receiving social services and diagnosed with dementia disorders. A group of 129 family caregivers underwent psychosocial intervention including education, information, and provision of a support group, while 133 family caregivers did not and these formed the control group. Family caregivers were followed-up every 6 months for a total of 18 months. They rated intellectual, emotional, and activity of daily living (ADL functions in persons with dementia using the Gottfries-Bråne-Steen scale (GBS-scale. Family caregivers who underwent psychosocial intervention rated the intellectual and emotional symptoms of dementia significantly higher 6 months later compared to controls and the effect was sustained during the 18-month follow-up irrespective of relationship and education. Most notably, decrease in function of recent memory, ability to increase tempo, long-windedness, distractibility, and blunting were better identified. Our findings suggest that the family caregivers who underwent psychosocial intervention achieved better understanding of different symptoms and the behaviors of dementia. These findings may explain earlier findings of positive effects after psychosocial intervention on family caregivers’ sense of burden, satisfaction, and ability to delay nursing home placement.Keywords: intervention, dementia, family caregivers, education, GBS-scale
Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui
2015-07-08
Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation's responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April-October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages.
Directory of Open Access Journals (Sweden)
Zheng Li
2015-07-01
Full Text Available Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI. We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI, from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months. When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation’s responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April–October. The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages.
Vismara, Laura; Rollè, Luca; Agostini, Francesca; Sechi, Cristina; Fenaroli, Valentina; Molgora, Sara; Neri, Erica; Prino, Laura E.; Odorisio, Flaminia; Trovato, Annamaria; Polizzi, Concetta; Brustia, Piera; Lucarelli, Loredana; Monti, Fiorella; Saita, Emanuela; Tambelli, Renata
2016-01-01
Objective: Although there is an established link between parenting stress, postnatal depression, and anxiety, no study has yet investigated this link in first-time parental couples. The specific aims of this study were 1) to investigate whether there were any differences between first-time fathers’ and mothers’ postnatal parenting stress, anxiety, and depression symptoms and to see their evolution between three and 6 months after their child’s birth; and 2) to explore how each parent’s parenting stress and anxiety levels and the anxiety levels and depressive symptoms of their partners contributed to parental postnatal depression. Method: The sample included 362 parents (181 couples; mothers’ MAge = 35.03, SD = 4.7; fathers’ MAge = 37.9, SD = 5.6) of healthy babies. At three (T1) and 6 months (T2) postpartum, both parents filled out, in a counterbalanced order, the Parenting Stress Index-Short Form, the Edinburgh Postnatal Depression Scale, and the State-Trait Anxiety Inventory. Results: The analyses showed that compared to fathers, mothers reported higher scores on postpartum anxiety, depression, and parenting stress. The scores for all measures for both mothers and fathers decreased from T1 to T2. However, a path analysis suggested that the persistence of both maternal and paternal postnatal depression was directly influenced by the parent’s own levels of anxiety and parenting stress and by the presence of depression in his/her partner. Discussion: This study highlights the relevant impact and effects of both maternal and paternal stress, anxiety, and depression symptoms during the transition to parenthood. Therefore, to provide efficacious, targeted, early interventions, perinatal screening should be directed at both parents. PMID:27445906
Changes in channel morphology over human time scales [Chapter 32
John M. Buffington
2012-01-01
Rivers are exposed to changing environmental conditions over multiple spatial and temporal scales, with the imposed environmental conditions and response potential of the river modulated to varying degrees by human activity and our exploitation of natural resources. Watershed features that control river morphology include topography (valley slope and channel...
Mapping Playgrids for Learning across Space, Time, and Scale
Hollett, Ty; Kalir, Jeremiah H.
2017-01-01
In this article, we analyze the production of learner-generated playgrids. Playgrids are produced when learners knit together social media tools to participate across settings and scales, accomplish their goals, pursue interests, and make their learning more enjoyable and personally meaningful. Through case study methodology we examine how two…
Space-time modeling of catchment scale drought characteristics
Tallaksen, L.; Hisdal, H.; Lanen, van H.A.J.
2009-01-01
Drought may affect all components of the water cycle and covers commonly a large part of the catchment area. This paper examines drought propagation at the catchment scale using spatially aggregated drought characteristics and illustrates the importance of catchment processes in modifying the
Input-output description of linear systems with multiple time-scales
Madriz, R. S.; Sastry, S. S.
1984-01-01
It is pointed out that the study of systems evolving at multiple time-scales is simplified by studying reduced-order models of these systems valid at specific time-scales. The present investigation is concerned with an extension of results on the time-scale decomposition of autonomous systems to that of input-output systems. The results are employed to study conditions under which positive realness of a transfer function is preserved under singular perturbation. Attention is given to the perturbation theory for linear operators, the multiple time-scale structure of autonomous linear systems, the input-output description of two time-scale linear systems, the positive realness of two time-scale systems, and multiple time-scale linear systems.
Investigation of cosmic rays in very short time scales
Peltonen, J.; Valtonen, E.; Torsti, J. J.; Arvela, H.; Lumme, M.; Nieminen, M.; Vainikka, E.
1985-01-01
A fast databuffer system, where cosmic ray events in the Turku hadron spectrometer, including particle arrival times are recorded with time resolution of 100 ns was constructed. The databuffer can be read continuously by a microprocessor, which preanalyzes the data and transfers it to the main computer. The time span, that can be analyzed in every detail, is a few seconds. The high time resolution enables a study of time correlated groups of high energy particles. In addition the operational characteristics of the spectrometer can be monitored in detail.
Grasping Deep Time with Scaled Space in Personal Environs
DEFF Research Database (Denmark)
Jacobsen, B. H.
2014-01-01
Deep time comprises the deep past before written history all the way back to the Big Bang as well as the deep future from the time of our grandchildren and beyond the lifetime of our Sun. Numerous installations called time walks or geology paths have previously been designed to communicate...... of modern man, the age of dinosaurs ended at 650 m and the Big Bang is 137 km away. This choice obviously makes mental calculations easy, and all of time fits inside a geographical area of moderate size and so helps the citizen gain ownership to this learning tool and hence to time. The idea was tested...
Global terrestrial biogeochemistry: Perturbations, interactions, and time scales
Energy Technology Data Exchange (ETDEWEB)
Braswell, B.H. Jr.
1996-12-01
Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.
Exploring large scale time-series data using nested timelines
Xie, Zaixian; Ward, Matthew O.; Rundensteiner, Elke A.
2013-01-01
When data analysts study time-series data, an important task is to discover how data patterns change over time. If the dataset is very large, this task becomes challenging. Researchers have developed many visualization techniques to help address this problem. However, little work has been done regarding the changes of multivariate patterns, such as linear trends and clusters, on time-series data. In this paper, we describe a set of history views to fill this gap. This technique works under two modes: merge and non-merge. For the merge mode, merge algorithms were applied to selected time windows to generate a change-based hierarchy. Contiguous time windows having similar patterns are merged first. Users can choose different levels of merging with the tradeoff between more details in the data and less visual clutter in the visualizations. In the non-merge mode, the framework can use natural hierarchical time units or one defined by domain experts to represent timelines. This can help users navigate across long time periods. Gridbased views were designed to provide a compact overview for the history data. In addition, MDS pattern starfields and distance maps were developed to enable users to quickly investigate the degree of pattern similarity among different time periods. The usability evaluation demonstrated that most participants could understand the concepts of the history views correctly and finished assigned tasks with a high accuracy and relatively fast response time.
Characteristic time-scales for macroscopic quantum tunneling
Energy Technology Data Exchange (ETDEWEB)
Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Panciatichi 64, 50127 Florence (Italy); Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Cacciari, I. [Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Sandri, P. [Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Ranfagni, C. [Facolta di Scienze Matematiche, Fisiche e Naturali, Corso di Laurea in Fisica dell' Universita di Firenze, Florence (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Florence (Italy)]. E-mail: r.ruggeri@ifac.cnr.it; Agresti, A. [Dipartimento di Fisica dell' Universita di Firenze, Florence (Italy)
2005-08-22
Tunneling time ({tau}{sub t}), in its real and imaginary parts, can be deduced from measurements of decay time ({tau}{sub d}) in Josephson junctions. It turns out that the real part of {tau}{sub t} is much shorter than the imaginary one, which can be identified with the semiclassical time. A third quantity is the Zeno-time ({tau}{sub Z}) which, in turn, can be estimated from the previous ones, since it is approximately given by their geometrical mean. The possibility of observing the Zeno-effect is then discussed.
Bechle, Matthew J; Millet, Dylan B; Marshall, Julian D
2015-10-20
Land-use regression (LUR) is widely used for estimating within-urban variability in air pollution. While LUR has recently been extended to national and continental scales, these models are typically for long-term averages. Here we present NO2 surfaces for the continental United States with excellent spatial resolution (∼100 m) and monthly average concentrations for one decade. We investigate multiple potential data sources (e.g., satellite column and surface estimates, high- and standard-resolution satellite data, and a mechanistic model [WRF-Chem]), approaches to model building (e.g., one model for the whole country versus having separate models for urban and rural areas, monthly LURs versus temporal scaling of a spatial LUR), and spatial interpolation methods for temporal scaling factors (e.g., kriging versus inverse distance weighted). Our core approach uses NO2 measurements from U.S. EPA monitors (2000-2010) to build a spatial LUR and to calculate spatially varying temporal scaling factors. The model captures 82% of the spatial and 76% of the temporal variability (population-weighted average) of monthly mean NO2 concentrations from U.S. EPA monitors with low average bias (21%) and error (2.4 ppb). Model performance in absolute terms is similar near versus far from monitors, and in urban, suburban, and rural locations (mean absolute error 2-3 ppb); since low-density locations generally experience lower concentrations, model performance in relative terms is better near monitors than far from monitors (mean bias 3% versus 40%) and is better for urban and suburban locations (1-6%) than for rural locations (78%, reflecting the relatively clean conditions in many rural areas). During 2000-2010, population-weighted mean NO2 exposure decreased 42% (1.0 ppb [∼5.2%] per year), from 23.2 ppb (year 2000) to 13.5 ppb (year 2010). We apply our approach to all U.S. Census blocks in the contiguous United States to provide 132 months of publicly available, high
Time Evolution of Galaxy Scaling Relations in Cosmological Simulations
Taylor, Philip
2016-01-01
We predict the evolution of galaxy scaling relationships from cosmological, hydrodynamical simulations, that reproduce the scaling relations of present-day galaxies. Although we do not assume co-evolution between galaxies and black holes a priori, we are able to reproduce the black hole mass--velocity dispersion relation. This relation does not evolve, and black holes actually grow along the relation from significantly less massive seeds than have previously been used. AGN feedback does not very much affect the chemical evolution of our galaxies. In our predictions, the stellar mass--metallicity relation does not change its shape, but the metallicity significantly increases from $z\\sim2$ to $z\\sim1$, while the gas-phase mass-metallicity relation does change shape, having a steeper slope at higher redshifts ($z\\lesssim3$). Furthermore, AGN feedback is required to reproduce observations of the most massive galaxies at $z\\lesssim1$, specifically their positions on the star formation main sequence and galaxy mass...
Implementation of Time-Scale Transformation Based on Continuous Wavelet Theory
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties.This paper presents two methods to derive time-scale transformation formula based on continuous wavelet transform.For an arbitrary given square-integrable function f(t),g(t) = f(t/λ) is derived by continuous wavelet transform and its inverse transform.The result shows that time-scale transformation may be obtained through the modification of the time-scale of wavelet function filter using equivalent substitution. The paper demonstrates the result by theoretic derivations and experimental simulation.
Weak microlensing effect and stability of pulsar time scale
Pshirkov, M S
2006-01-01
An influence of the weak microlensing effect on the pulsar timing is investigated for pulsar B1937+21. Average residuals of Time of Arrival (TOA) due to the effect would be as large as 10 ns in 20 years observation span. These residuals can be much greater (up to 1 ms in 20 years span) if pulsar is located in globular cluster (or behind it).
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons
Buhusi, Catalin V.; Oprisan, Sorinel A.
2013-01-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion (interval timing) based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher-order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively-connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. PMID:23518297
Optical variability of the high synchrotron energy peaked blazar 1ES 1959+650 on various time-scales
Zhang, You-Hong; Li, Jia-Chen
2017-08-01
We report the results of optical monitoring of the high synchrotron energy peaked blazar (HSP), 1ES 1959+650, performed with the 80-cm optical telescope at Xinglong Optical Observatory in 2010-2016. Our study was focused on the optical variability of the source on diverse time-scales over about 6 yr, which is helpful in understanding the variability mechanisms of blazars. Over 19 nights of intense photometric observations, we obtained 38 intranight light curves in the different bands. Intranight variability was not detected from all of these light curves. However, 1ES 1959+650 exhibited significant variations on the short-term (months) and long-term (years) time-scales. During the whole period of our monitoring, the maximum changes in the brightness of the source was 1.38 ± 0.05 and 1.17 ± 0.03 mag in the B and R waveband, respectively. The larger variability amplitude in the blue band than in the red one is demonstrated by the bluer-when-brighter spectral trend. The B - R colour index showed a change of 0.21 ± 0.06 mag across our monitoring period. The non-detection of intranight variations of 1ES 1959+650 is in agreement with previous observations, showing that the optical fluxes of HSPs are less variable than those of intermediate/low synchrotron energy peaked blazars (ISPs/LSPs) on time-scales of hours. In contrast, the detections of significant short-term and long-term variability of the source suggest that the optical variability of HSPs might not be very different from those of ISPs/LSPs on time-scales of months and years. Finally, we discuss some possible scenarios for the differences and the similarities of optical variability on various time-scales between the two blazar subclasses.
Wohlmuth, Johannes; Andersen, Jørgen Vitting
2006-05-01
We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.
Directory of Open Access Journals (Sweden)
Christian Grønhøj Larsen
2015-01-01
Full Text Available Introduction. Sharp, retained foreign bodies in the oesophagus are associated with severe complications. Developmentally delayed patients are especially subject to foreign objects. We describe a 37-year-old, developmentally delayed male with a mincer blade obstructing the oesophagus. Six months prior to surgical intervention, the patient was hospitalized in a condition of sepsis and pneumonia where the thoracic X-ray reveals a foreign body in the proximal oesophagus. When rehospitalized 6 months later, a mincer blade of the type used in immersion blenders was surgically removed. During these 6 months the patient’s main symptoms were dysphagia, weight loss, and diarrhoea. When developmentally delayed patients present with dysphagia, we strongly encourage the awareness of the possible presence of foreign bodies. To our knowledge this is the first reported case of a mincer blade in the oesophagus.
Considering Time-Scale Requirements for the Future
2013-05-01
to correct for the annual seasonal variation in the Earth’s rotational speed and is rarely used today. 4 20 " 15 .. Equation of Time 0 0 I 10 ID...York, 1960. R. Coutrez, ’Transactions of the International Astronomical Union." Ciel et Terre , Vol. 73, 1957, pp. 472. S. Newcomb, Tables of the
Beach morphological variations over micro-time scales
Digital Repository Service at National Institute of Oceanography (India)
Murty, C.S.; Veerayya, M.; Sastry, J.S.; Varadachari, V.V.R.
and down the beach face with breakers, locations of which alternately shift landward and seaward with the rise and fall of tide are observed. The ground water table shows an oscillation with tide with a time lag of about 1 hr. When the ground water table...
Perception of short time scale intervals in a hypnotic virtuoso
Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari
2012-01-01
Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration percep
Coherent spectroscopies on ultrashort time and length scales
Directory of Open Access Journals (Sweden)
Schneider C.
2013-03-01
Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.
Time Scales in the JPL and CfA Ephemerides
Standish, E. M.
1998-01-01
Over the past decades, the IAU has repeatedly attempted to correct its definition of the basic fundamental argument used in the emphemerides. Finally, they have defined a time system which is physically possible, according to the accepted standard theory of gravitation.
Perception of short time scale intervals in a hypnotic virtuoso
Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari
2012-01-01
Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration
Does expressive timing in music performance scale proportionally with tempo?
Desain, P.; Honing, H.
1994-01-01
Evidence is presented that expressive timing in music is not relationally invariant with global tempo. Our results stem from an analysis of repeated performances of Beethoven's variations on a Paisiello theme. Recordings were made of two pianists playing the pieces at three tempi. In contrast with t
Strong light fields coax intramolecular reactions on femtosecond time scales
Krishnamurthy, M; Mathur, D
2004-01-01
Energetic H$_2^+$ ions are formed as a result of intra-molecular rearrangement during fragmentation of linear alcohols (methanol, ethanol, propanol, hexanol, and dodecanol) induced by intense optical fields produced by 100 fs long, infrared, laser pulses of peak intensity 8$\\times10^{15}$ W cm$^{-2}$. Polarization dependent measurements show, counterintuitively, that rearrangement is induced by the strong optical field within a single laser pulse, and that it occurs before Coulomb explosion of the field-ionized multiply charged alcohols.
DEFF Research Database (Denmark)
Larsen, Christian Grønhøj; Charabi, Birgitte
2015-01-01
months the patient's main symptoms were dysphagia, weight loss, and diarrhoea. When developmentally delayed patients present with dysphagia, we strongly encourage the awareness of the possible presence of foreign bodies. To our knowledge this is the first reported case of a mincer blade in the oesophagus....
Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale
Habarulema, John Bosco; Katamzi, Zama Thobeka; Yizengaw, Endawoke; Yamazaki, Yosuke; Seemala, Gopi
2016-07-01
We report on the first simultaneous observations of poleward and equatorward traveling ionospheric disturbances (TIDs) during the same geomagnetic storm period on a global scale. While poleward propagating TIDs originate from the geomagnetic equator region, equatorward propagating TIDs are launched from the auroral regions. On a global scale, we use total electron content observations from the Global Navigation Satellite Systems to show that these TIDs existed over South American, African, and Asian sectors. The American and African sectors exhibited predominantly strong poleward TIDs, while the Asian sector recorded mostly equatorward TIDs which crossed the geomagnetic equator to either hemisphere on 9 March 2012. However, both poleward and equatorward TIDs are simultaneously present in all three sectors. Using a combination of ground-based magnetometer observations and available low-latitude radar (JULIA) data, we have established and confirmed that poleward TIDs of geomagnetic equator origin are due to ionospheric electrodynamics, specifically changes in E × B vertical drift after the storm onset.
Directory of Open Access Journals (Sweden)
Fei Yu
2009-01-01
Full Text Available Based on the theory of calculus on time scales, the homeomorphism theory, Lyapunov functional method, and some analysis techniques, sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of the equilibrium point of Cohen-Grossberg bidirectional associative memory (BAM neural networks with distributed delays and impulses on time scales. This is the first time applying the time-scale calculus theory to unify the discrete-time and continuous-time Cohen-Grossberg BAM neural network with impulses under the same framework.
Statistics of bedload transport over steep slopes: Separation of time scales and collective motion
Heyman, J; Ma, H B; Ancey, C
2016-01-01
Steep slope streams show large fluctuations of sediment discharge across several time scales. These fluctuations may be inherent to the internal dynamics of the sediment transport process. A probabilistic framework thus seems appropriate to analyze such a process. In this letter, we present an experimental study of bedload transport over a steep slope flume for small to moderate Shields numbers. The sampling technique allows the acquisition of high-resolution time series of the solid discharge. The resolved time scales range from $10^{-2}$s up to $10^{5}$s. We show that two distinct time scales can be observed in the probability density function for the waiting time between moving particles. We make the point that the separation of time scales is related to collective dynamics. Proper statistics of a Markov process including collective entrainment are derived. The separation of time scales is recovered theoretically for low entrainment rates.
First-passage times in multi-scale random walks: the impact of movement scales on search efficiency
Campos, Daniel; Bartumeus, Frederic; Raposo, E. P.; Méndez, Vicenç
2015-01-01
An efficient searcher needs to balance properly the tradeoff between the exploration of new spatial areas and the exploitation of nearby resources, an idea which is at the core of scale-free L\\'evy search strategies. Here we study multi-scale random walks as an approximation to the scale- free case and derive the exact expressions for their mean-first passage times in a one-dimensional finite domain. This allows us to provide a complete analytical description of the dynamics driving the asymm...
Global and Local Color Time Scales to Encode Timeline Events in Ion Trajectories for Glassies
Directory of Open Access Journals (Sweden)
J. M. Sharif
2015-02-01
Full Text Available Glassy compounds lead directly to high ionic conductivity. Ionic conductivity generates ion trajectories. However, these trajectories have been represented by two-dimensional graph in order to visualize the timeline events in ion trajectories. This study addresses this problem by encoding the timeline events in ion trajectories with global and local color scales. Two time scales have been introduced namely Global Color Time Scale and Local Color Time Scale. The rainbow color has been chosen to represent global time scale meanwhile solid color has been used to generate local time scale. Based on evaluation, these techniques are successful in representing timeline events in ion trajectories for understanding the complicated heterogeneous movement of ion trajectories.
Continuous-wave laser particle conditioning: Thresholds and time scales
Brown, Andrew; Ogloza, Albert; Olson, Kyle; Talghader, Joseph
2017-03-01
The optical absorption of contaminants on high reflectivity mirrors was measured using photo thermal common-path interferometry before and after exposure to high power continuous-wave laser light. The contaminants were micron-sized graphite flakes on hafnia-silica distributed Bragg reflectors illuminated by a ytterbium-doped fiber laser. After one-second periods of exposure, the mirrors demonstrated reduced absorption for irradiances as low as 11 kW cm-2 and had an obvious threshold near 20 kW cm-2. Final absorption values were reduced by up to 90% of their initial value for irradiances of 92 kW cm-2. For shorter pulses at 34 kW cm-2, a minimum exposure time required to begin absorption reduction was found between 100 μs and 200 μs, with particles reaching their final minimum absorption value within 300 ms. Microscope images of the surface showed agglomerated particles fragmenting with some being removed completely, probably by evaporation for exposures between 200 μs to 10 ms. Exposures of 100 ms and longer left behind a thin semi-transparent residue, covering much of the conditioned area. An order of magnitude estimate of the time necessary to begin altering the surface contaminants (also known as "conditioning") indicates about 200 μs seconds at 34 kW cm-2, based on heating an average carbon particle to its sublimation temperature including energy loss to thermal contact and radiation. This estimation is close to the observed exposure time required to begin absorption reduction.
A Cool Business: Trapping Intermediates on the submillisecond time scale
Yeh, Syun-Ru
2004-03-01
The freeze-quenching technique is extremely useful for trapping meta-stable intermediates populated during fast chemical or biochemical reactions. The application of this technique, however, is limited by the long mixing time of conventional solution mixers and the slow freezing time of cryogenic fluids. To overcome these problems, we have designed and tested a novel microfluidic silicon mixer equipped with a new freeze-quenching device, with which reactions can be followed down to 50 microseconds. In the microfluidic silicon mixer, seven vertical pillars with 10 micrometer diameter are arranged perpendicular to the flow direction and in a staggered fashion in the 450 picoliter mixing chamber to enhance turbulent mixing. The mixed solution jet, with a cross-section of 10 micrometer by 100 micrometer, exits from the microfluidic silicon mixer with a linear flow velocity of 20 m/sec. It instantaneously freezes on one of two rotating copper wheels maintained at 77 K and is subsequently ground into an ultra-fine powder. The ultra-fine frozen powder exhibits excellent spectral quality, high packing factor and can be readily transferred between spectroscopic observation cells. The microfluidic mixer was tested by the reaction between azide and myoglobin at pH 5.0. It was found that complete mixing was achieved within the mixing dead-time of the mixer (20 microseconds) and the first observable point for this coupled device was determined to be 50 microseconds, which is approximately two orders of magnitude faster than commercially available instruments. Several new applications of this device in ultra-fast biological reactions will be presented. Acknowledgements: This work is done in collaboration with Dr. Denis Rousseau and is supported by the NIH Grants HL65465 to S.-R.Y. and GM67814 to D.L.R.
Reynolds Puga, Jose Eduardo; Halldin, Sven; Xu, Chong-Yu; Seibert, Jan
2016-04-01
procedure was based on the long-term daily distribution of rainfall, another on the long-term daily distribution of rainfall per month, and the last procedure assumed constant rainfall intensities during the day as in Reynolds et al. (2015). Finally, the parameter sets inferred from the 3 disaggregation procedures were compared and used to simulate runoff at the 1-h time scale to identify their impact on performance and their ability to reproduce discharge dynamics. REFERENCE J. E. Reynolds, S. Halldin, C. Y. Xu, J. Seibert, and A. Kauffeldt: Sub-daily runoff simulations with parameters inferred at the daily time scale, Hydrol. Earth Syst. Sci. D., 12(8), 7437-7467.
Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops
Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis
2014-05-01
Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical
Toward the Optimal Configuration of Dynamic Voltage Scaling Points in Real-Time Applications
Institute of Scientific and Technical Information of China (English)
Hui-Zhan Yi; Xue-Jun Yang
2006-01-01
In real-time applications, compiler-directed dynamic voltage scaling (DVS) could reduce energy consumption efficiently, where compiler put voltage scaling points in the proper places, and the supply voltage and clock frequency were adjusted to the relationship between the reduced time and the reduced workload. This paper presents the optimal configuration of dynamic voltage scaling points without voltage scaling overhead, which minimizes energy consumption. The conclusion is proved theoretically. Finally, it is confirmed by simulations with equally-spaced voltage scaling configuration.
Efstratiadis, Andreas; Tsoukalas, Ioannis; Kossieris, Panayiotis; Karavokiros, George; Christofides, Antonis; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris
2015-04-01
Modelling of large-scale hybrid renewable energy systems (HRES) is a challenging task, for which several open computational issues exist. HRES comprise typical components of hydrosystems (reservoirs, boreholes, conveyance networks, hydropower stations, pumps, water demand nodes, etc.), which are dynamically linked with renewables (e.g., wind turbines, solar parks) and energy demand nodes. In such systems, apart from the well-known shortcomings of water resources modelling (nonlinear dynamics, unknown future inflows, large number of variables and constraints, conflicting criteria, etc.), additional complexities and uncertainties arise due to the introduction of energy components and associated fluxes. A major difficulty is the need for coupling two different temporal scales, given that in hydrosystem modeling, monthly simulation steps are typically adopted, yet for a faithful representation of the energy balance (i.e. energy production vs. demand) a much finer resolution (e.g. hourly) is required. Another drawback is the increase of control variables, constraints and objectives, due to the simultaneous modelling of the two parallel fluxes (i.e. water and energy) and their interactions. Finally, since the driving hydrometeorological processes of the integrated system are inherently uncertain, it is often essential to use synthetically generated input time series of large length, in order to assess the system performance in terms of reliability and risk, with satisfactory accuracy. To address these issues, we propose an effective and efficient modeling framework, key objectives of which are: (a) the substantial reduction of control variables, through parsimonious yet consistent parameterizations; (b) the substantial decrease of computational burden of simulation, by linearizing the combined water and energy allocation problem of each individual time step, and solve each local sub-problem through very fast linear network programming algorithms, and (c) the substantial
Geomagnetic Instability Time Scale 2008 (GITS-08) and dynamo processes
Singer, B. S.; Hoffman, K. A.
2008-12-01
During the past 2.6 million years Earth's outer core geodynamo has produced at least 18 geomagnetic excursions and 5 full polarity reversals. This record has been compiled from terrestrial volcanic rocks, including mainly basaltic lava flow sequences, but also two silicic ash beds, that have been analyzed using modern paleomagnetic techniques and dated using the 40Ar/39Ar method. Several brief periods of field instability associated with excursions correlate with lows in paleointensity or directional changes recorded in marine sediments, for example in the SINT2000 or GLOPIS75 composite records, or the more detailed records found at ODP site 919, that are dated using astronomically-forced oxygen isotope signals or ice layer counting. However, the lack of correlation of several excursions between marine and terrestrial records indicates that neither sediments, nor lava flows, are ideal recording media. Another factor complicating correlation is that some excursions may be geographically localized and not expressed globally. Despite decades of observation, these records remain fragmentary, especially when periods of millions of years are considered. Recent 40Ar/39Ar dating in our laboratory, that includes age determinations for the Mono Lake, Laschamp, Blake, Pringle Falls, Big Lost, West Eifel, and Agua Nova excursions, as well as the Halawa (C2r.2r-1) cryptochron, prompt us to critically review the terrestrial record of geodynamo instability and propose a GITS for the entire Quaternary period. Both the ca. 4:1 ratio of excursions to reversals during the past 2.6 Ma as well as the temporal pattern of occurrence of these events provide fundamental input as to the long-term behavior and, possibly, the structure of the core dynamo. On the one hand, intervals of significant temporal clustering of excursions have highlighted a relatively stable period of high field strength lasting >250 ka in the middle of the Brunhes chron during which time few, or no, excursions took
Bryce, Donna; Bratzke, Daniel
2015-04-01
In this study, we investigated whether the method of time estimation plays a role in the apparent limits of introspection in dual-task processing. Previous studies showed that when participants reported introspective reaction times after each trial of a dual task by clicking on a visual analogue scale, they appeared to be unaware of the dual-task costs in their performance. However, visual analogue scales have seldom been used in interval estimation, and they may be inappropriate. In the present study, after each dual-task trial, participants reported their introspective reaction times either via a visual analogue scale or via the method of reproduction. The results replicated the previous findings, irrespective of method. That is, even though responses to the second task slowed down with increasing task overlap, this slowing was only very weakly reflected in the introspective reaction times. Thus, the participants' failure to report the objective dual-task costs in their reaction times is a rather robust finding that cannot be attributed to the method employed. However, introspective reaction times reported via visual analogue scales were more closely related to the objective reaction times, suggesting that visual analogue scales are preferable to reproduction. We conclude that introspective reaction times represent the same information regardless of method, but whether that information is temporal in nature is as yet unsettled.
Saleh, Rawan M. Abu; Smadi, Jamil M.
2017-01-01
This study aimed to assess the efficacy of the developmental assessment of young children second edition (DAYC-2) Scale in detecting Developmental Delay among Jordanian children aged birth to 71 months. Firstly, the scale was translated and reviewed for language and cultural appropriateness. Secondly, the Arabic Jordanian version of the scale was…
Wang, Yuefeng; Chen, Xingwei; Chen, Ying; Liu, Meibing; Gao, Lu
2017-04-01
In order to further investigate the capability of the Standardized Precipitation Index (SPI) to identify flood/drought events, monthly precipitation data from 26 precipitation stations and monthly discharge data from four hydrological stations from 1960 to 2006 in the Minjiang River basin were used to analyze the correlations between multiple time scales of the SPI and river discharge. The SPI series that had a maximum correlation with discharge was chosen to detect flood/drought events in the basin, and the results were compared to historical flood/drought events. The results indicated the following. (1) High Pearson correlations between the SPI and discharge were identified at shorter time scales (1 to 3 months), and the maximum correlation was found on the time scale of 2 months. (2) Five floods among the six largest historical flood events in the Minjiang River basin were identified with the 2-month SPI, but the SPI does have shortcomings in identifying more general floods. The SPI also identified major drought events that were consistent with historical data. This demonstrates that the 2-month SPI is an effective indicator for the identification of major flood/drought events in the Minjiang River basin.
RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE
Directory of Open Access Journals (Sweden)
Yu. O. Kuzmin
2015-09-01
Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A
Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time
Pinsky, Malin L.
2016-12-15
The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.
On the time scale associated with Monte Carlo simulations.
Bal, Kristof M; Neyts, Erik C
2014-11-28
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
On the time scale associated with Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Bal, Kristof M., E-mail: kristof.bal@uantwerpen.be; Neyts, Erik C. [Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium)
2014-11-28
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
Updating the planetary time scale: focus on Mars
Tanaka, Kenneth L.; Quantin-Nataf, Cathy
2013-01-01
Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.
Time-scaled scenario of low-energy heavy-ion collisions
Iwata, Yoritaka
2013-01-01
The underlying scenario of low-energy heavy-ion collisions is presented based on time-dependent density-functional calculations. A classification of several types of reaction dynamics is given with respect to their time-scales.
Freshwater flushing time scales of the Vashishti Estuary, west coast of India
Digital Repository Service at National Institute of Oceanography (India)
DineshKumar, P.K.; Sarma, R.V.; Zingde, M.D.
Results are presented for the Vashishti estuary, Kerala, India to evaluate its freshwater flushing time scales based on 8 sets of observations of longitudinal salinity distributions. The results of the flushing time using the fraction of freshwater...
Time and length scales within a fire and implications for numerical simulation
Energy Technology Data Exchange (ETDEWEB)
TIESZEN,SHELDON R.
2000-02-02
A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principles solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.
Detecting abrupt climate changes on different time scales
Matyasovszky, István
2011-10-01
Two concepts are introduced for detecting abrupt climate changes. In the first case, the sampling frequency of climate data is high as compared to the frequency of climate events examined. The method is based on a separation of trend and noise in the data and is applicable to any dataset that satisfies some mild smoothness and statistical dependence conditions for the trend and the noise, respectively. We say that an abrupt change occurs when the first derivative of the trend function has a discontinuity and the task is to identify such points. The technique is applied to Northern Hemisphere temperature data from 1850 to 2009, Northern Hemisphere temperature data from proxy data, a.d. 200-1995 and Holocene δ18O values going back to 11,700 years BP. Several abrupt changes are detected that are, among other things, beneficial for determining the Medieval Warm Period, Little Ice Age and Holocene Climate Optimum. In the second case, the sampling frequency is low relative to the frequency of climate events studied. A typical example includes Dansgaard-Oeschger events. The methodology used here is based on a refinement of autoregressive conditional heteroscedastic models. The key element of this approach is the volatility that characterises the time-varying variance, and abrupt changes are defined by high volatilities. The technique applied to δ18O values going back to 122,950 years BP is suitable for identifying DO events. These two approaches for the two cases are closely related despite the fact that at first glance, they seem quite different.
Holder's and Hardy's Two Dimensional Diamond-alpha Inequalities on Time Scales
Ammi, Moulay Rchid Sidi
2010-01-01
We prove a two dimensional Holder and reverse-Holder inequality on time scales via the diamond-alpha integral. Other integral inequalities are established as well, which have as corollaries some recent proved Hardy-type inequalities on time scales.
Unique Existence Theorem of Solution of Almost Periodic Differential Equations on Time Scales
Directory of Open Access Journals (Sweden)
Meng Hu
2012-01-01
Full Text Available By using the theory of calculus on time scales and M-matrix theory, the unique existence theorem of solution of almost periodic differential equations on almost periodic time scales is established. The result can be used to a large of dynamic systems.
Unique Existence Theorem of Solution of Almost Periodic Differential Equations on Time Scales
Meng Hu; Lili Wang
2012-01-01
By using the theory of calculus on time scales and M-matrix theory, the unique existence theorem of solution of almost periodic differential equations on almost periodic time scales is established. The result can be used to a large of dynamic systems.
Error estimates for asymptotic solutions of dynamic equations on time scales
Directory of Open Access Journals (Sweden)
Gro Hovhannisyan
2007-02-01
Full Text Available We establish error estimates for first-order linear systems of equations and linear second-order dynamic equations on time scales by using calculus on a time scales [1,4,5] and Birkhoff-Levinson's method of asymptotic solutions [3,6,8,9].
Ceccarini, Martina; Manzoni, Gian Mauro; Castelnuovo, Gianluca; Molinari, Enrico
2015-11-01
Addiction is a compulsive need for and use of a specific substance leading to a habit, tolerance, and psychophysiological symptoms. Excessive food consumption is similar to that of substance addiction. Some individuals who have trouble losing weight display addictive eating symptoms. To investigate food addiction in a sample of obese adults referred to hospital for a 1-month-weight-loss treatment. The Italian version of the Yale Food Addiction Scale (YFAS-16) was used as a screening tool in 88 obese inpatients. The construct validity of the YFAS-16 was assessed by testing its correlations with measures of binge eating (Binge Eating Scale), impulsiveness (Barratt Impulsiveness Scale), and emotional dysregulation (Difficulties in Emotion Regulation Scale). 34.1% of our sample was diagnosed with YFAS food addiction. Such diagnosis was also supported by strong associations between FA and psychological and behavioral features, typically descriptive of classic addiction. Patients who endorsed the YFAS-16 criteria for food addiction (FA) had significantly higher binge eating levels, greater emotional dysregulation, and nonacceptance of negative feelings; they lacked goal-oriented behavior, had little impulse control, had difficulty in emotion recognition, and attentional impulsivity; and they were unable to concentrate and lacked inhibitory control behavior, unlike participants who did not meet the FA criteria. Further research is needed to support the reliability of the YFAS-16. This measure has the potential to be applied in epidemiological research, estimating the prevalence of FA within the Italian population and to assess new treatments' efficacy for obese patients with food addiction symptoms seeking weight-loss treatments.
Space-time variability of Indonesian rainfall at inter-annual and multi-decadal time scales
Yanto; Rajagopalan, Balaji; Zagona, Edith
2016-11-01
We investigated the space-time variability of wet (Nov-Apr) and dry (May-Oct) season rainfall over Indonesia, using monthly gridded rainfall data from the University of East Anglia Climatic Research Unit covering the period 1901-2012. Three complimentary techniques were employed—(1) principal component analysis to identify the dominant modes of variability, (2) wavelet spectral analysis to identify the spectral characteristics of the leading modes and their coherence with large scale climate variables and (3) Bayesian Dynamical Linear Model (BDLM) to quantify the temporal variability of the association between rainfall modes and climate variables. In the dry season when the Inter Tropical Convergence Zone (ITCZ) is to the north of the equator the leading two principal components (PCs) explain close to 50 % of the rainfall. In the wet season the ITCZ moves to the south and the leading PCs explain close to 30 % of the variance. El Niño Southern Oscillation (ENSO) is the driver of the leading modes of rainfall variability during both seasons. We find asymmetry in the teleconnections of ENSO to high and low rainfall years in the dry season. Furthermore, ENSO and the leading PCs of rainfall have spectral coherence in the inter-annual band (2-8 years) over the entire period of record and in the multi-decadal (8-16 years) band in post-1980 years. In addition, during the 1950-1980 period the second mode of variability in both seasons has a strong relationship with Pacific Decadal Oscillation. The association between ENSO and the leading mode of Indonesian rainfall has strengthened in recent decades, more so during dry season. These inter-annual and multi-decadal variability of Indonesian rainfall modulated by Pacific climate drivers has implications for rainfall and hydrologic predictability important for water resources management.
Empirical study on structural properties in temporal networks under different time scales
Chen, Duanbing
2015-12-01
Many network analyzing methods are usually based on static networks. However, temporal networks should be considered so as to investigate real complex systems deeply since some dynamics on these systems cannot be described by static networks accurately. In this paper, four structural properties in temporal networks are empirically studied, including degree, clustering coefficient, adjacent correlation, and connected component. Three real temporal networks with different time scales are analyzed in this paper, including short message, telephone, and router networks. Moreover, structural properties of these temporal networks are compared with that of corresponding static aggregation networks in the whole time window. Some essential differences of structural properties between temporal and static networks are achieved through empirical analysis. Finally, the effect of structural properties on spreading dynamics under different time scales is investigated. Some interesting results such as turning point of structure evolving time scale corresponding to certain spreading dynamics time scale from the point of view of infected scale are achieved.
Directory of Open Access Journals (Sweden)
Sangho Lee
2017-01-01
Full Text Available Hydrological responses are being impacted by both climate change and human activities. In particular, climate change and regional human activities have accelerated significantly during the last three decades in South Korea. The variation in runoff due to the two types of factors should be quantitatively investigated to aid effective water resources’ planning and management. In water resources’ planning, analysis using various time scales is useful where rainfall is unevenly distributed. However, few studies analyzed the impacts of these two factors over different time scales. In this study, hydrologic model-based approach and hydrologic sensitivity were used to separate the relative impacts of these two factors at monthly, seasonal and annual time scales in the Soyang Dam upper basin and the Seom River basin in South Korea. After trend analysis using the Mann–Kendall nonparametric test to identify the causes of gradual change, three techniques, such as the double mass curve method, Pettitt’s test and the BCP (Bayesian change point analysis, were used to detect change points caused by abrupt changes in the collected observed runoff. Soil and Water Assessment Tool (SWAT models calibrated from the natural periods were used to calculate the impacts of human activities. Additionally, six Budyko-based methods were used to verify the results obtained from the hydrological-based approach. The results show that impacts of climate change have been stronger than those of human activities in the Soyang Dam upper basin, while the impacts of human activities have been stronger than those of climate change in the Seom River basin. Additionally, the quantitative characteristics of relative impacts due to these two factors were identified at the monthly, seasonal and annual time scales. Finally, we suggest that the procedure used in this study can be used as a reference for regional water resources’ planning and management.
Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.
2017-03-01
In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This
Hansen, Carrinna; Konradsen, Hanne; Abrahamsen, Bo; Pedersen, Birthe D
2014-01-01
This paper describes a phenomenological hermeneutic study of experiences of women who were recently diagnosed with osteoporosis. The research objective was to investigate women's experiences of living with osteoporosis during the first 6 months after diagnosis when treatment was first prescribed. Fifteen women were included in the study. The inclusion criteria were a DXA scan at one of the two hospitals showing a T-score below -2.5 (lower back or hip), age 65 years or older; no previous known osteoporotic fracture; at least one of the known risk factors for osteoporosis; and prescription of anti-osteoporotic treatment. Exclusion criteria were previous diagnosis of osteoporosis or previous treatment with anti-osteoporotic medication. Data were collected through in-depth interviews shortly after diagnosis and 6 months later. The performed analyses were inspired by Paul Ricoeur's theory of interpretation of texts comprising three levels: naïve reading, structural analysis, and critical interpretation and discussion. Three key themes emerged: 1) being diagnosed, 2) being prescribed medical treatment, and 3) being on the path of learning to live with osteoporosis. The findings suggest a need for improved support for the patients to gain understanding of their diagnosis and the risk of osteoporotic fracture as well as to learn to live with osteoporosis. The study highlights new health promotion areas for targeting interventions at newly diagnosed patients, helping them accept and interpret the diagnosis, and the medical treatment.
Directory of Open Access Journals (Sweden)
Carrinna Hansen
2014-02-01
Full Text Available This paper describes a phenomenological hermeneutic study of experiences of women who were recently diagnosed with osteoporosis. The research objective was to investigate women's experiences of living with osteoporosis during the first 6 months after diagnosis when treatment was first prescribed. Fifteen women were included in the study. The inclusion criteria were a DXA scan at one of the two hospitals showing a T-score below −2.5 (lower back or hip, age 65 years or older; no previous known osteoporotic fracture; at least one of the known risk factors for osteoporosis; and prescription of anti-osteoporotic treatment. Exclusion criteria were previous diagnosis of osteoporosis or previous treatment with anti-osteoporotic medication. Data were collected through in-depth interviews shortly after diagnosis and 6 months later. The performed analyses were inspired by Paul Ricoeur's theory of interpretation of texts comprising three levels: naïve reading, structural analysis, and critical interpretation and discussion. Three key themes emerged: 1 being diagnosed, 2 being prescribed medical treatment, and 3 being on the path of learning to live with osteoporosis. The findings suggest a need for improved support for the patients to gain understanding of their diagnosis and the risk of osteoporotic fracture as well as to learn to live with osteoporosis. The study highlights new health promotion areas for targeting interventions at newly diagnosed patients, helping them accept and interpret the diagnosis, and the medical treatment.
National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Monthly Summary contains sea surface temperature (SST) analyses on both regional and ocean basin scales for the Atlantic, Pacific, and Indian Oceans....
CSIR Research Space (South Africa)
Smakhtin, VU
2001-04-01
Full Text Available (IFRs) are used instead of reference natural streamflow time series. The corresponding groundwater storage time series will then represent the groundwater reserve. These storages may provisionally be called ?IFR driven?. Two component reserve time series... (river and groundwater) are, therefore, dependent. In this example, the assumption is that IFRs (river reserve flows) determine the extent to which groundwater resources may be impacted in the absence of any surface water resource development (the impacts...
On the multiple time scales of variability in the Northeast Pacific Ocean
Directory of Open Access Journals (Sweden)
R. Tokmakian
2009-02-01
Full Text Available The spatial and temporal sea surface height energy distribution of the Northeast Pacific Ocean is described and discussed. Using an altimetric data set covering 15 years (1993–2007, the energy within the 3–9 month band is primarily located within 10° of the coast. In the Gulf of Alaska, this energy signal is on the shelf, while further south, west of the California/Oregon coast, the significant energy in this band is west of the shelf break. In both cases, it is primarily forced by the local wind. Within the 2–3 year band, the signal reflects energy generated by local changes to the wind stress from large atmospheric shifts indicated by the Pacific North American Index and by advective or propagating processes related to El Niño-Southern Oscillation. Over the two 4–6 year periods within this data set, the change is primarily due to the large scale shift in atmospheric systems north of about 30° N which also affect changes in current strengths. Based on the distribution of the energy signal and its variability, a set of three winter-time indexes are suggested to characterize the distinct differences in the SSH anomalies in these areas.
Linear-scaling computation of excited states in time-domain
Institute of Scientific and Technical Information of China (English)
YAM ChiYung; CHEN GuanHua
2014-01-01
The applicability of quantum mechanical methods is severely limited by their poor scaling.To circumvent the problem,linearscaling methods for quantum mechanical calculations had been developed.The physical basis of linear-scaling methods is the locality in quantum mechanics where the properties or observables of a system are weakly influenced by factors spatially far apart.Besides the substantial efforts spent on devising linear-scaling methods for ground state,there is also a growing interest in the development of linear-scaling methods for excited states.This review gives an overview of linear-scaling approaches for excited states solved in real time-domain.
Shi, Wei; Xia, Jun
2017-02-01
Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH3-N) and permanganate index (CODMn) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH3-N and CODMn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class Vw, Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH3-N and CODMn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH3-N and CODMn is inferior to class V and class IV water quality standards, respectively.
Vismara, Laura; Rollè, Luca; Agostini, Francesca; Sechi, Cristina; Fenaroli, Valentina; Molgora, Sara; Neri, Erica; Prino, Laura E.; Odorisio, Flaminia; Trovato, Annamaria; Polizzi, Concetta; Brustia, Piera; Lucarelli, Loredana; Monti, Fiorella; Saita, Emanuela
2016-01-01
Objective: Although there is an established link between parenting stress, postnatal depression, and anxiety, no study has yet investigated this link in first-time parental couples. The specific aims of this study were 1) to investigate whether there were any differences between first-time fathers’ and mothers’ postnatal parenting stress, anxiety, and depression symptoms and to see their evolution between three and 6 months after their child’s birth; and 2) to explore how each parent’s parent...
Multi-time scale analysis of precipitation variation in Guyuan,China:1957-2005
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Morlet wavelet transformation is used in this paper to analyze the multi-time scale characteristics of precipitation data series from 1957 to 2005 in Guyuan region.The results showed that (1) the annual precipitation evolution process had obvious multi-time scale variation characteristics of 15-25 years,7-12 years and 3-6 years,and different time scales had different oscillation energy densities;(2) the periods at smaller time scales changed more frequently,which often nested in a biggish quasi periodic oscillations,so the concrete time domain should be analyzed if necessary;(3) the precipitation had three main periods (22-year,9-year and 4-year) and the 22-year period was especially outstanding,and the analysis of this main period reveals that the precipitation would be in a relative high water period until about 2012.
Super-transient scaling in time-delay autonomous Boolean network motifs
D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D.; Gauthier, Daniel J.
2016-09-01
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.
Scaling Behavior of the First Arrival Time of a Random-Walking Magnetic Domain
Energy Technology Data Exchange (ETDEWEB)
Im, M.-Y.; Lee, S.-H.; Kim, D.-H.; Fischer, P.; Shin, S.-C.
2008-02-04
We report a universal scaling behavior of the first arrival time of a traveling magnetic domain wall into a finite space-time observation window of a magneto-optical microscope enabling direct visualization of a Barkhausen avalanche in real time. The first arrival time of the traveling magnetic domain wall exhibits a nontrivial fluctuation and its statistical distribution is described by universal power-law scaling with scaling exponents of 1.34 {+-} 0.07 for CoCr and CoCrPt films, despite their quite different domain evolution patterns. Numerical simulation of the first arrival time with an assumption that the magnetic domain wall traveled as a random walker well matches our experimentally observed scaling behavior, providing an experimental support for the random-walking model of traveling magnetic domain walls.
Super-transient scaling in time-delay autonomous Boolean network motifs.
D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D; Gauthier, Daniel J
2016-09-01
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.
A wavelet based approach to measure and manage contagion at different time scales
Berger, Theo
2015-10-01
We decompose financial return series of US stocks into different time scales with respect to different market regimes. First, we examine dependence structure of decomposed financial return series and analyze the impact of the current financial crisis on contagion and changing interdependencies as well as upper and lower tail dependence for different time scales. Second, we demonstrate to which extent the information of different time scales can be used in the context of portfolio management. As a result, minimizing the variance of short-run noise outperforms a portfolio that minimizes the variance of the return series.
Directory of Open Access Journals (Sweden)
Yongkun Li
2011-01-01
Full Text Available Firstly, we propose a concept of uniformly almost periodic functions on almost periodic time scales and investigate some basic properties of them. When time scale T=ℝ or ℤ, our definition of the uniformly almost periodic functions is equivalent to the classical definitions of uniformly almost periodic functions and the uniformly almost periodic sequences, respectively. Then, based on these, we study the existence and uniqueness of almost periodic solutions and derive some fundamental conditions of admitting an exponential dichotomy to linear dynamic equations. Finally, as an application of our results, we study the existence of almost periodic solutions for an almost periodic nonlinear dynamic equations on time scales.
Institute of Scientific and Technical Information of China (English)
SHAO Li-wei; LIAO Xiao-zhong; ZHANG Yu-he
2007-01-01
Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. The IM time scale is obtained by theoretical analysis. Combining the relations between scale time and ADRC parameters, ADRC parameter tuning in IM vector control based stator flux oriented is obtained. This parameter tuning method is validated by simulations and it provides a new technique for tuning of ADRC parameters of IM.
A simple scaling for the minimum instability time-scale of two widely spaced planets
Veras, Dimitri
2013-01-01
Long-term instability in multi-planet exosystems is a crucial consideration when confirming putative candidates, analyzing exoplanet populations, constraining the age of exosystems, and identifying the sources of white dwarf pollution. Two planets which are Hill stable are separated by a wide-enough distance to ensure that they will never collide. However, Hill stable planetary systems may eventually manifest Lagrange instability when the outer planet escapes or the inner planet collides with the star. We show empirically that for two nearly coplanar Hill stable planets with eccentricities less than about 0.3, instability can manifest itself only after a time corresponding to X initial orbits of the inner planet, where log_{10}(X) is of the order of 5.2 mu^{-0.18} and mu is the planet-star mass ratio measured in (Jupiter mass/Solar mass). This relation applies to any type of equal-mass secondaries, and suggests that two low-eccentricity Hill stable terrestrial-mass or smaller-mass planets should be Lagrange s...
A time-scale analysis of systematic risk: wavelet-based approach
Khalfaoui Rabeh, K; Boutahar Mohamed, B
2011-01-01
The paper studies the impact of different time-scales on the market risk of individual stock market returns and of a given portfolio in Paris Stock Market by applying the wavelet analysis. To investigate the scaling properties of stock market returns and the lead/lag relationship between them at different scales, wavelet variance and crosscorrelations analyses are used. According to wavelet variance, stock returns exhibit long memory dynamics. The wavelet cross-correlation analysis shows that...
Separation of time-scales and model reduction for stochastic reaction networks
Kang, Hye-Won
2010-01-01
A stochastic model for a chemical reaction network is embedded in a one-parameter family of models with species numbers and rate constants scaled by powers of the parameter. A systematic approach is developed for determining appropriate choices of the exponents that can be applied to large complex networks. When the scaling implies subnetworks have different time-scales, the subnetworks can be approximated separately providing insight into the behavior of the full network through the analysis of these lower dimensional approximations.
Estimating the distribution of rest-frame time-scales for blazar jets: a statistical approach
Liodakis, I.; Blinov, D.; Papadakis, I.; Pavlidou, V.
2017-03-01
In any flux-density limited sample of blazars, the distribution of the time-scale modulation factor Δt΄/Δt, which quantifies the change in observed time-scales compared to the rest-frame ones due to redshift and relativistic compression follows an exponential distribution with a mean depending on the flux limit of the sample. In this work, we produce the mathematical formalism that allows us to use this information in order to uncover the underlining rest-frame probability density function of measurable time-scales of blazar jets. We extensively test our proposed methodology using a simulated Flat Spectrum Radio Quasar population with a 1.5 Jy flux-density limit in the simple case (where all blazars share the same intrinsic time-scale), in order to identify limits of applicability and potential biases due to observational systematics and sample selection. We find that for monitoring with time intervals between observations longer than ∼30 per cent of the intrinsic time-scale under investigation the method loses its ability to produce robust results. For time intervals of ∼3 per cent of the intrinsic time-scale, the error of the method is as low as 1 per cent in recovering the intrinsic rest-frame time-scale. We applied our method to rotations of the optical polarization angle of blazars observed by RoboPol. We found that the intrinsic time-scales of the longest duration rotation event in each blazar follows a narrow distribution, well described by a normal distribution with mean 87 d and standard deviation 5 d. We discuss possible interpretations of this result.
Estimating the flood frequency distribution at seasonal and annual time scales
Directory of Open Access Journals (Sweden)
E. Baratti
2012-12-01
Full Text Available We propose an original approach to infer the flood frequency distribution at seasonal and annual time scale. Our purpose is to estimate the peak flow that is expected for an assigned return period T, independently of the season in which it occurs (i.e. annual flood frequency regime, as well as in different selected sub-yearly periods (i.e. seasonal flood frequency regime. While a huge literature exists on annual flood frequency analysis, few studies have focused on the estimation of seasonal flood frequencies despite the relevance of the issue, for instance when scheduling along the months of the year the construction phases of river engineering works directly interacting with the active river bed, like for instance dams. An approximate method for joint frequency analysis is presented here that guarantees consistency between fitted annual and seasonal distributions, i.e. the annual cumulative distribution is the product of the seasonal cumulative distribution functions, under the assumption of independence among floods in different seasons. In our method the parameters of the seasonal frequency distributions are fitted by maximising an objective function that accounts for the likelihoods of both seasonal and annual peaks. In contrast to previous studies, our procedure is conceived to allow the users to introduce subjective weights to the components of the objective function in order to emphasize the fitting of specific seasons or of the annual peak flow distribution. An application to the time series of the Blue Nile daily flows at the Sudan–Ethiopia border is presented.
U.S. Environmental Protection Agency — The 2006 monthly average statistical metrics for 2m Q (g kg-1) domain-wide for the base and MODIS WRF simulations against MADIS observations. This dataset is...
Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory
2012-07-10
Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.
Principles of 5D modeling, full integration of 3D space, time and scale
Van Oosterom, P.; Stoter, J.
2012-01-01
This paper proposes an approach for data modelling in five dimensions. Apart from three dimensions for geometrical representation and a fourth dimension for time, we identify scale as fifth dimensional characteristic. Considering scale as an extra dimension of geographic information, fully integrate
Multi-Scale Gaussian Processes: a Novel Model for Chaotic Time Series Prediction
Institute of Scientific and Technical Information of China (English)
ZHOU Ya-Tong; ZHANG Tai-Yi; SUN Jian-Cheng
2007-01-01
@@ Based on the classical Gaussian process (GP) model, we propose a multi-scale Gaussian process (MGP) model to predict the existence of chaotic time series. The MGP employs a covariance function that is constructed by a scaling function with its different dilations and translations, ensuring that the optimal hyperparameter is easy to determine.
Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz
Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.
2015-01-01
Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.
Pütz, Martin; Nielaba, Peter
2016-08-01
We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen thermostat. It controls the strength of heat bath coupling and allows for quenches with exponential temperature decay at a certain thermalization time scale. The present method allows us to bridge several orders of magnitude in the thermalization time scale. The early stage is highly affected by the choice of time scale. A transition from exponential growth to a 1 /2 ordinary power law scaling in the characteristic lengths is observed. At high initial temperatures the growth is logarithmic. The comparison with pure thermal simulations reveals latent heat to raise the mean system temperature. Large thermalization time scales and thermal conductivity are figured out to affect a stagnation of heating, which is explained with convective processes. Furthermore, large thermalization time scales are responsible for a stagnation of growth of domains, which is temporally embedded between early and late stage of phase separation. Therefore, it is considered as an intermediate stage. We present an aspect concerning this stage, namely that choosing larger thermalization time scales increases the duration. Moreover, it is observed that diffuse interfaces are formed during this stage, provided that the stage is apparent. We show that the differences in the evolution between pure thermal simulations and simulations with an instantaneously scaled mean temperature can be explained by the thermalization process, since a variation of the time scale allows for the bridging between these cases of limit.
A Small-Scale, Feasibility Study of Academic Language Time in Primary Grade Language Arts
Roskos, Kathleen A.; Zuzolo, Nicole; Primm, Ashley
2017-01-01
A small-scale feasibility study was conducted to explore the implementation of academic language time (ALT) in primary grade classrooms with and without access to digital devices. Academic language time is a structural change that dedicates a portion of language arts instructional time to direct vocabulary instruction using evidence-based…
Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale
Mitic, Sandra; Nieuwkasteele, van Jan W.; Berg, van den Albert; Vries, de Simon
2015-01-01
Unravelling (bio)chemical reaction mechanisms and macromolecular folding pathways on the (sub)microsecond time scale is limited by the time resolution of kinetic instruments for mixing reactants and observation of the progress of the reaction. To improve the mixing time resolution, turbulent four- a
Driving forces of Indian summer monsoon on Milankovitch and sub-Milankovitch time scales: A review
Digital Repository Service at National Institute of Oceanography (India)
Naidu, P.D.
and deep water circulation changes drive the variability of southwest (SW) monsoon in the Indian subcontinent. Different forcing factors act on different time scales. Arabian Sea sediments consist of distinct fauna that are endemic to areas of upwelling...
A Study on Time-Scales Ratio and Turbulent Prandtl Number in Ducts of Industrial Applications
DEFF Research Database (Denmark)
Rokni, Masoud
2006-01-01
This investigation concerns numerical time-scales ratio and turbulent Prandtl number in fully developed turbulent ﬂows in ducts of various cross-sections. The low Reynolds number version of a non-linear eddy viscosity model is proposed to predict the Reynolds stresses and the temperature ﬁeld...... is solved using a two-equation heat ﬂux model. The computed results compare satisfactory with the available experimental data. The time-scale ratio R is deﬁned as the ratio between the dynamic time-scale (k/ε) and the scalar time-scale(0.5θθ/εθ). Based on existing DNS data and calculations in this work...
Oscillation Criteria for Fourth-Order Nonlinear Dynamic Equations on Time Scales
Directory of Open Access Journals (Sweden)
Xin Wu
2013-01-01
Full Text Available We establish some new oscillation criteria for nonlinear dynamic equation of the form on an arbitrary time scale with , where are positive rd-continuous functions. An example illustrating the importance of our result is included.
Directory of Open Access Journals (Sweden)
Y. Kawada
2007-10-01
Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.
Multiple time scales in modeling the incidence of infections acquired in intensive care units
Directory of Open Access Journals (Sweden)
Martin Wolkewitz
2016-09-01
Full Text Available Abstract Background When patients are admitted to an intensive care unit (ICU their risk of getting an infection will be highly depend on the length of stay at-risk in the ICU. In addition, risk of infection is likely to vary over calendar time as a result of fluctuations in the prevalence of the pathogen on the ward. Hence risk of infection is expected to depend on two time scales (time in ICU and calendar time as well as competing events (discharge or death and their spatial location. The purpose of this paper is to develop and apply appropriate statistical models for the risk of ICU-acquired infection accounting for multiple time scales, competing risks and the spatial clustering of the data. Methods A multi-center data base from a Spanish surveillance network was used to study the occurrence of an infection due to Methicillin-resistant Staphylococcus aureus (MRSA. The analysis included 84,843 patient admissions between January 2006 and December 2011 from 81 ICUs. Stratified Cox models were used to study multiple time scales while accounting for spatial clustering of the data (patients within ICUs and for death or discharge as competing events for MRSA infection. Results Both time scales, time in ICU and calendar time, are highly associated with the MRSA hazard rate and cumulative risk. When using only one basic time scale, the interpretation and magnitude of several patient-individual risk factors differed. Risk factors concerning the severity of illness were more pronounced when using only calendar time. These differences disappeared when using both time scales simultaneously. Conclusions The time-dependent dynamics of infections is complex and should be studied with models allowing for multiple time scales. For patient individual risk-factors we recommend stratified Cox regression models for competing events with ICU time as the basic time scale and calendar time as a covariate. The inclusion of calendar time and stratification by ICU
Institute of Scientific and Technical Information of China (English)
LI Hong; L(U) Shu; ZHONG Shou-ming
2005-01-01
The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.
Oscillation of Second-order Nonlinear Dynamic Equation on Time Scales
Institute of Scientific and Technical Information of China (English)
YANG Jia-shan
2013-01-01
The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article.By using the generalized Riccati technique,integral averaging technique and the time scales theory,some new sufficient conditions for oscillation of the equation are proposed.These results generalize and extend many known results for second order dynamic equations.Some examples are given to illustrate the main results of this article.
REGION QUALITATIVE ANALYSIS OF PREDATOR-PREY SYSTEMS ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
We first investigate some basic properties of dynamic equations on time scales,and propose contained curves to describe the jump direction of the discrete points.Then we perform qualitative analysis regarding the planar predator-prey systems on time scales,thereby obtain two theorems of this system.At last,we emulate application examples to discuss the parameters of the system.
Kawada, Y.; H. Nagahama; Nakamura, N.
2007-01-01
International audience; We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermod...
A two-time-scale autopilot for high-performance aircraft
Menon, P. K. A.; Chatterji, G. B.; Cheng, V. H. L.
1991-01-01
A two-time-scale autopilot is proposed for the Aircraft Controls Design Challenge problem. This control law uses a nonlinear aircraft model constructed from the given vehicle simulation. The vehicle model is partitioned into slow translational dynamics and fast rotational dynamics. Feedback linearization is then employed to synthesize control laws for these two-time scales. Due to the nature of the synthesis, the control law is suitable for automatic trajectory following, and also for pilot control.
Poiata, N.; Satriano, C.; Vilotte, J. P.; Bernard, P.; Obara, K.
2015-12-01
Seismic radiation associated with transient deformations along the faults and subduction interfaces encompasses a variety of events, i.e., tectonic tremors, low-frequency earthquakes (LFE), very low-frequency earthquakes (VLFs), and slow-slip events (SSE), with a wide range of seismic moment and characteristic durations. Characterizing in space and time the complex sources of these slow earthquakes, and their relationship with background seismicity and large earthquakes generation, is of great importance for understanding the physics and mechanics of the processes of active deformations along the plate interfaces. We present here first developments towards a methodology for: (1) extracting the different frequency and scale components of observed tectonic tremor signal, using advanced time-frequency and time-scale signal representation such as Gabor transform scheme based on, e.g. Wilson bases or Modified Discrete Cosine Transform (MDCT) bases; (2) reconstructing their corresponding potential sources in space and time, using the array method of Poiata et al. (2015). The methodology is assessed using a dataset of tectonic tremor episodes from Shikoku, Japan, recorded by the Hi-net seismic network operated by NIED. We illustrate its performance and potential in providing activity maps - associated to different scale-components of tectonic tremors - that can be analyzed statistically to improve our understanding of tremor sources and scaling, as well as their relation with the background seismicity.
Jaeger, Susanne; Pfiffner, Carmen; Weiser, Prisca; Kilian, Reinhold; Becker, Thomas; Längle, Gerhard; Eschweiler, Gerhard Wilhelm; Croissant, Daniela; Schepp, Wiltrud; Steinert, Tilman
2012-12-30
The purpose of this study was to examine patients' response profiles to the Medication Adherence Rating Scale (MARS) and to evaluate the potential of response styles as predictors of the future course of psychotic disorders in terms of rehospitalisation and maintenance of medication. A total of 371 psychiatric in-patients with schizophrenia or schizoaffective disorder who were taking part in a naturalistic long-term study completed a German version of the MARS. A Latent Class Analysis (LCA) was performed. Five latent classes of response styles could be identified: "moderately adherent", "critical discontinuers", "good compliers", "careless and forgetful", and "compliant sceptics". Class membership was found to be related to the severity of symptoms, level of functioning, insight into illness, insight into necessity of treatment, treatment satisfaction and medication side effects. At a six-month follow-up appointment, significant differences between the classes persisted. Participants showing a "good compliers" response pattern had a significantly better prognosis in terms of rehospitalisation rate and maintenance of the original medication than "critical discontinuers". Evaluation of the MARS by studying response profiles provides informative results that reach beyond the results obtained by an evaluation by scores. Patients can be classified into adherence groups that are of predictive value for long-term patient outcome.
The study of time series of monthly averaged values of F10.7 from 1950 to 2010
Bruevich, E A; Yakunina, G V
2014-01-01
Prior to 1947, the activity of the Sun was assessed by the relative numbers of sunspots (W). The 10.7 cm radio emission (frequency of 2.8 GHz) for observations of the variability of radiation of chromosphere and the lower corona (F10.7) became used from 1947. For the F10,7 are available more detailed observational archive data, so this activity index more often than the other indices is used in the prediction and monitoring of the solar activity. We have made the analysis of time series of F10.7 with the use of different mother wavelets: Daubechies 10, Symlet 8, Meyer, Gauss 8 and Morlet. Wavelet spectrum allows us not only to identify cycles, but analyze their change in time. Each wavelet has its own characteristic features, so sometimes with the help of different wavelets it can be better identify and highlight the different properties of the analyzed signal. We intended to choose the mother wavelet, which is more fully gives information about the analyzed index F10.7. We have received, that all these wavel...
Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network
Yang, Bin
2017-07-01
Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately
Modelling the water balance of a precise weighable lysimeter for short time scales
Fank, Johann; Klammler, Gernot; Rock, Gerhard
2015-04-01
lysimeter has been calculated by adding lysimeter mass and the leachate tank mass for every minute. Based on the resolution of the scales and an evaluation of noise in periods without precipitation and evaporation a dmin-value of 0.002 to filter the leachate tank measurements and a dmin-value of 0.012 was used to filter the lysimeter weight data and the upper boundary data. A mandatory requirement for the quantification of P or ET from lysimeter measurements is that in a reasonably small time interval, either P or ET is negligible. With this assumption, every increase in upper boundary data is interpreted as P. Every increase of seepage mass is interpreted as L, every decrease as C. ΔS is evaluated from filtered lysimeter mass. ET is calculated using the water balance equation. The evaluation results are given as water balance components time series on a minute scale. P measured with the lysimeter for the two years 2010 and 2011 is 105 % of precipitation measured with a standard tipping bucket gauge 100 m beside the lysimeter. While P during the summer season (April to September) is very close to standard precipitation measurement, P during the winter season is more than 120 % of tipping bucket precipitation. Meissner et al. (2007) showed that P includes precipitation of dewfall and rime. A detailed evaluation of the HYDRO-Lysimeter in Wagna showed, that precipitation in the night and not recognized with the standard tipping bucket (interpreted as dew or rime) is about 1 % of P, the highest monthly sums (> 1 mm) are recognized from August to November. Klammler, G. and Fank, J.: Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria). Science of the Total Environment 499 (2014) 448-462. Meissner, R., Seeger, J., Rupp, H., Seyfarth, M., and Borg, H.: Measurement of dew, fog, and rime with a high-precision gravitation lysimeter, J. Plant Nutr. Soil Sci. 2007, 170, 335-344. Peters, A., Nehls, T., Schonsky, H
Universality and extremal aging for dynamics of spin glasses on sub-exponential time scales
Arous, G Ben
2010-01-01
We consider Random Hopping Time (RHT) dynamics of the Sherrington - Kirkpatrick (SK) model and p-spin models of spin glasses. For any of these models and for any inverse temperature we prove that, on time scales that are sub-exponential in the dimension, the properly scaled clock process (time-change process) of the dynamics converges to an extremal process. Moreover, on these time scales, the system exhibits aging like behavior which we called extremal aging. In other words, the dynamics of these models ages as the random energy model (REM) does. Hence, by extension, this confirms Bouchaud's REM-like trap model as a universal aging mechanism for a wide range of systems which, for the first time, includes the SK model.
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
Clark, Logan W; Chin, Cheng
2016-01-01
The dynamics of many-body systems spanning condensed matter, cosmology, and beyond is hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics is expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop anti-ferromagnetic spatial correlations resulting from sub-Poisson generation of topological defects. The characteristic times and lengths scale as power-laws of the crossing rate, yielding the temporal exponent 0.50(2) and the spatial exponent 0.26(2), consistent with theory. Furthermore, the fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum crit...
Vea, Isabelle M; Grimaldi, David A
2016-03-22
The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228-273], and of the neococcoids 60 million years later [210-165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous.
A multi-time scale approach to remaining useful life prediction in rolling bearing
Qian, Yuning; Yan, Ruqiang; Gao, Robert X.
2017-01-01
This paper presents a novel multi-time scale approach to bearing defect tracking and remaining useful life (RUL) prediction, which integrates enhanced phase space warping (PSW) with a modified Paris crack growth model. As a data-driven method, PSW describes the dynamical behavior of the bearing being tested on a fast-time scale, whereas the Paris crack growth model, as a physics-based model, characterizes the bearing's defect propagation on a slow-time scale. Theoretically, PSW constructs a tracking metric by evaluating the phase space trajectory warping of the bearing vibration data, and establishes a correlation between measurement on a fast-time scale and defect growth variables on a slow-time scale. Furthermore, PSW is enhanced by a multi-dimensional auto-regression (AR) model for improved accuracy in defect tracking. Also, the Paris crack growth model is modified by a time-piecewise algorithm for real-time RUL prediction. Case studies performed on two run-to-failure experiments indicate that the developed technique is effective in tracking the evolution of bearing defects and accurately predict the bearing RUL, thus contributing to the literature of bearing prognosis .
Versteeg, R. J.; Johnson, T.; Henrie, A.; Johnson, D.
2013-12-01
. This infrastructure was used for the acquisition and processing of an electrical geophysical timelapse survey which was collected over a highly instrumented field site in the Hanford 300 Area. Over a 13 month period between November 2011 and December 2012 1823 timelapse datasets were collected (roughly 5 datasets a day for a total of 23 million individual measurements) on three parallel resistivity lines of 30 m each with 0.5 meter electrode spacing. In addition, hydrological and environmental data were collected from dedicated and general purpose sensors. This dataset contains rich information on near surface processes on a range of different spatial and temporal scales (ranging from hourly to seasonal). We will show how this cyberinfrastructure was used to manage and process this dataset and how the cyberinfrastructure can be used to access, mine and visualize the resulting data and information.
Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika
2015-12-01
Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.
Sarlis, N. V.; Christopoulos, S.-R. G.; Bemplidaki, M. M.
2015-01-01
The entropy S in natural time as well as the entropy in natural time under time reversal S- have already found useful applications in the physics of complex systems, e.g., in the analysis of electrocardiograms (ECGs). Here, we focus on the complexity measures Λl which result upon considering how the statistics of the time series Δ S≤ft[\\equiv S- S-\\right] changes upon varying the scale l. These scale-specific measures are ratios of the standard deviations σ(Δ S_l) and hence independent of the mean value and the standard deviation of the data. They focus on the different dynamics that appear on different scales. For this reason, they can be considered complementary to other standard measures of heart rate variability in ECG, like SDNN, as well as other complexity measures already defined in natural time. An application to the analysis of ECG —when solely using NN intervals— is presented: We show how Λl can be used to separate ECG of healthy individuals from those suffering from congestive heart failure and sudden cardiac death.
Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna
2016-12-01
Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of ‑0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of ‑0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.
Velten, Andreas
2017-05-01
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
Ford, R. M.
2010-12-01
Many processes contribute to the transport of microorganisms in groundwater environments. One process of interest is chemotaxis, whereby motile bacteria are able to detect and swim toward increasing concentrations of industrial hydrocarbons that they perceive as food sources. By enabling bacteria to migrate to the sources of pollutants that they degrade, chemotaxis has the potential to enhance bioremediation efforts, especially in less permeable zones where contamination may persist. To determine the field conditions under which chemotaxis might be exploited in a bioremediation scheme requires an understanding of the characteristic time scales in the system. We defined a dimensionless chemotaxis number that compares the time over which a bacterial population is exposed to a chemical gradient to the time required for a bacterial population to migrate a significant distance in response to a chemical gradient. The exposure time and the response time are dependent upon the experimental conditions and properties of the bacteria and chemical attractant. Experimental data was analyzed for a range of groundwater flow rates over a wide scope of experimental systems including a single-pore with NAPL source, a microfluidic channel with and without a porous matrix, a laboratory column, a bench-scale microcosm and a field-scale study. Chemical gradients were created transverse to the flow direction. Distributions of chemotactic and nonchemotactic bacteria were compared to determine the extent of migration due to chemotaxis. Under some conditions at higher flow rates, the effect of chemotaxis was diminished to the point of not being detected. The goal of the study was to determine a critical value for the dimensionless chemotaxis number (which is independent of scale) that can be used as a design criterion to ascertain a priori the conditions under which a chemotactic response will impact bacterial transport relative to other processes such as advection and dispersion.
Micro- and nano- second time scale, high power electrical wire explosions in water.
Grinenko, Alon; Efimov, Sergey; Sayapin, Arkadii; Fedotov, Alexander; Gurovich, Viktor; Krasik, Yakov
2006-10-01
Experimental and magneto-hydro-dynamic simulation results of micro- and nanosecond time scale underwater electrical Al, Cu and W wires explosions are presented. A capacitor bank with stored energy up to 6 kJ (discharge current up to 80 kA with 2.5 μs quarter period) was used in microsecond time scale experiments and water forming line generator with current amplitude up to 100 kA and pulse duration of 100 ns were used in nanosecond time scale experiments. Extremely high energy deposition of up to 60 times the atomization enthalpy was registered in nanosecond time scale explosions. A discharge channel evolution and surface temperature were analyzed by streak shadow imaging and using fast photo-diode with a set of interference filters, respectively. Microsecond time scale electrical explosion of cylindrical wire array showed extremely high pressure of converging shock waves at the axis, up to 0.2 MBar. A 1D and 2D magneto-hydro-dynamic simulation demonstrated good agreement with such experimental parameters as discharge channel current, voltage, radius, and temperature.
Interplay between multiple length and time scales in complex chemical systems
Indian Academy of Sciences (India)
Biman Bagchi; Charusita Chakravarty
2010-07-01
Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.
Directory of Open Access Journals (Sweden)
Shichao Sun
2015-01-01
Full Text Available This paper addressed the vehicle routing problem (VRP in large-scale urban transportation networks with stochastic time-dependent (STD travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP, and algorithms for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances. The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and environmental impacts.
Mixing and flushing time scales in the Azhikode Estuary, southwest coast of India
Digital Repository Service at National Institute of Oceanography (India)
Revichandran, C.; Pylee, A.
Flushing time scales of the Azhikode Estuary, Kerala, India showed pronounced dry season and wet season signals as well as large inter-annual variation. Cumulative flushing time of the estuary varies from 4.8 tide cycles in April to 1.22 tide cycles...
Time-scale decomposition of an optimal control problem in greenhouse climate management
Henten, van E.; Bontsema, J.
2009-01-01
Based on differences in dynamic response times in the crop production process, a hierarchical decomposition of greenhouse climate management is proposed. To a large extent the proposed decomposition builds on the time-scale decomposition of singularly perturbed systems commonly found in the
TIME SCALES OF FUSION-FISSION REACTIONS CALCULATED FROM PRESCISSION NEUTRON MULTIPLICITIES
SIWEKWILCZYNSKA, K; WILCZYNSKI, J; SIEMSSEN, RH; WILSCHUT, HW
1995-01-01
The time scale of fusion-fission reactions was found to be in the range from tau(f) = 5 . 10(-20) to 5 . 10(-19) s. This result was obtained from the analysis of the prescission neutron multiplicities with a new method combining the time-dependent statistical cascade calculations with the nuclear
Stability and Convergence of Solutions to Volterra Integral Equations on Time Scales
Directory of Open Access Journals (Sweden)
Eleonora Messina
2015-01-01
Full Text Available We consider Volterra integral equations on time scales and present our study about the long time behavior of their solutions. We provide sufficient conditions for the stability and investigate the convergence properties when the kernel of the equations vanishes at infinity.
Time Scale Analysis of Interest Rate Spreads and Output Using Wavelets
Directory of Open Access Journals (Sweden)
Marco Gallegati
2013-04-01
Full Text Available This paper adds to the literature on the information content of different spreads for real activity by explicitly taking into account the time scale relationship between a variety of monetary and financial indicators (real interest rate, term and credit spreads and output growth. By means of wavelet-based exploratory data analysis we obtain richer results relative to the aggregate analysis by identifying the dominant scales of variation in the data and the scales and location at which structural breaks have occurred. Moreover, using the “double residuals” regression analysis on a scale-by-scale basis, we find that changes in the spread in several markets have different information content for output at different time frames. This is consistent with the idea that allowing for different time scales of variation in the data can provide a fruitful understanding of the complex dynamics of economic relationships between variables with non-stationary or transient components, certainly richer than those obtained using standard time domain methods.
On the variability of Pacific Ocean tides at seasonal to decadal time scales: Observed vs modelled
Devlin, Adam Thomas
Ocean tides worldwide have exhibited secular changes in the past century, simultaneous with a global secular rise in mean sea level (MSL). The combination of these two factors contributes to higher water levels, and may increase threats to coastal regions and populations over the next century. Equally as important as these long-term changes are the short-term fluctuations in sea levels and tidal properties. These fluctuations may interact to yield locally extreme water level events, especially when combined with storm surge. This study, presented in three parts, examines the relationships between tidal anomalies and MSL anomalies on yearly and monthly timescales, with a goal of diagnosing dynamical factors that may influence the long-term evolution of tides in the Pacific Ocean. Correlations between yearly averaged properties are denoted tidal anomaly trends (TATs), and will be used to explore interannual behavior. Correlations of monthly averaged properties are denoted seasonal tidal anomaly trends (STATs), and are used to examine seasonal behavior. Four tidal constituents are analyzed: the two largest semidiurnal (twice daily) constituents, M2 and S2, and the two largest diurnal (once daily) constituents, K1 and O1. Part I surveys TATs and STATs at 153 Pacific Ocean tide gauges, and discusses regional patterns within the entire Pacific Ocean. TATs with statistically significant relations between MSL and amplitudes (A-TATs) are seen at 89% of all gauges; 92 gauges for M2, 66 for S2, 82 for K1, and 59 for O1. TATs with statistically significant relations between tidal phase (the relative timing of high water of the tide) and MSL (P-TATs) are observed at 55 gauges for M2, 47 for S2, 42 for K1, and 61 for O1. Significant seasonal variations (STATs) are observed at about a third of all gauges, with the largest concentration in Southeast Asia. The effect of combined A-TATs was also considered. At selected stations, observed tidal sensitivity with MSL was extrapolated
Adaptive time splitting method for multi-scale evolutionary partial differential equations
Descombes, Stéphane; Dumont, Thierry; Louvet, Violaine; Massot, Marc
2011-01-01
This paper introduces an adaptive time splitting technique for the solution of stiff evolutionary PDEs that guarantees an effective error control of the simulation, independent of the fastest physical time scale for highly unsteady problems. The strategy considers a second order Strang method and another lower order embedded splitting scheme that takes into account potential loss of order due to the stiffness featured by time-space multi-scale phenomena. The scheme is then built upon a precise numerical analysis of the method and a complementary numerical procedure, conceived to overcome classical restrictions of adaptive time stepping schemes based on lower order embedded methods, whenever asymptotic estimates fail to predict the dynamics of the problem. The performance of the method in terms of control of integration errors is evaluated by numerical simulations of stiff propagating waves coming from nonlinear chemical dynamics models as well as highly multi-scale nanosecond repetitively pulsed gas discharge...
Learning to never forget – Time scales and specificity of long-term memory of a motor skill
Directory of Open Access Journals (Sweden)
Se-Woong ePark
2013-09-01
Full Text Available Despite anecdotal reports that humans retain acquired motor skills for many years, if not a lifetime, long-term memory of motor skills has received little attention. While numerous neuroimaging studies showed practice-induced cortical plasticity, the behavioral correlates, what is retained and also what is forgotten, are little understood. This longitudinal case study on four subjects presents detailed kinematic analyses of humans practicing a bimanual polyrhythmic task over 2 months with retention tests after 6 months and, for two subjects, after 8 years. Results showed that individuals not only retained the task, but also reproduced their individual style of performance, even after 8 years. During practice, variables such as the two hands’ frequency ratio and relative phase changed at different rates, indicative of multiple time-scales of neural processes. Frequency leakage across hands, reflecting inter manual crosstalk, attenuated at a significantly slower rate and was the only variable not maintained after 8 years. Complementing recent findings on neuroplasticity in grey and white matter, our study presents new behavioral evidence that highlights the multi-scale process of practice-induced changes and its remarkable persistence. Results suggest that motor memory may comprise not only higher-level task achievement but also individual kinematic signatures.
Andraud, Mathieu; Lejeune, Olivier; Musoro, Jammbe Z; Ogunjimi, Benson; Beutels, Philippe; Hens, Niel
2012-01-01
Understanding the mechanisms involved in long-term persistence of humoral immunity after natural infection or vaccination is challenging and crucial for further research in immunology, vaccine development as well as health policy. Long-lived plasma cells, which have recently been shown to reside in survival niches in the bone marrow, are instrumental in the process of immunity induction and persistence. We developed a mathematical model, assuming two antibody-secreting cell subpopulations (short- and long-lived plasma cells), to analyze the antibody kinetics after HAV-vaccination using data from two long-term follow-up studies. Model parameters were estimated through a hierarchical nonlinear mixed-effects model analysis. Long-term individual predictions were derived from the individual empirical parameters and were used to estimate the mean time to immunity waning. We show that three life spans are essential to explain the observed antibody kinetics: that of the antibodies (around one month), the short-lived plasma cells (several months) and the long-lived plasma cells (decades). Although our model is a simplified representation of the actual mechanisms that govern individual immune responses, the level of agreement between long-term individual predictions and observed kinetics is reassuringly close. The quantitative assessment of the time scales over which plasma cells and antibodies live and interact provides a basis for further quantitative research on immunology, with direct consequences for understanding the epidemiology of infectious diseases, and for timing serum sampling in clinical trials of vaccines.
Albert, H.; Costa Rodriguez, F.; Marti, J.
2014-12-01
Most of the historical eruptive activity in Tenerife has been relatively mafic and mildly-explosive monogenetic eruptions, and thus it seems that this activity is the most likely in the near future. Here we investigate the processes and time scales that lead to such eruptions with the aim to better interpret and plan for any possible unrest in the island. We focus on three historical eruptions: Siete Fuentes (December 31 1704-January 1705), Fasnia (January 5-January 13 1705) and Arafo (February 2-February 26 1705) issued from a 10 km long basaltic fissure eruption oriented N45E and covering an area of 10.4 km2. The erupted volume increases by 5-fold from the first to the last eruption. All magmas are tephritic, although the bulk-rock becomes more mafic with time due to accumulation of olivine with Cr-spinel inclusions, and clinopyroxene rather than to the appearance of a truly more primitive melt. Olivine core compositions of the three eruptions range between Fo79 and Fo87. Frequency histograms show three main populations: at Fo79-80, Fo80-82 and Fo84-87 displaying normal and reverse zoning. Thermodynamic calculations show that only cores with Fo80-82 are in equilibrium with the whole rock. Clinopyroxene phenocrysts can have large pools of matrix glass and show rims of different composition. Only the rims, with Mg#84-86, are in equilibrium with the whole-rock. Considering olivine cores and clinopyroxene rims in equilibrium we obtained a temperature range of 1150-1165°C, and MELTS calculations suggest pressures of 1 to 5 kbar. The variety of olivine core populations reflects mixing and mingling between three different magmas, and their proportions have changed with time from Siete Fuentes to Arafo. Most crystals have complex zoning profiles that record two events: (1) one of magma mixing/mingling at depth, (2) another of magma transport and ascent to the surface. Magma mixing at depth ranges from about 3 months to two years and is similar for the three eruptions
Viviani, Donn A.; Church, Matthew J.
2017-03-01
We measured rates of 3H-leucine (3H-Leu) incorporation, as a proxy for bacterial production, at Station ALOHA (22°45‧N, 158°W) in the oligotrophic North Pacific Subtropical Gyre (NPSG). We report measurements conducted between January 2011 and April 2013, examining variability in 3H-Leu incorporation over diel, daily, and monthly time scales. Rates of 3H-Leu were evaluated in the context of contemporaneous 14C-based primary productivity (14C-PP) to identify potential temporal coupling between these measures of productivity. Throughout the upper ocean (0-125 m), rates of 3H-Leu incorporation measured in the light (3H-LeuLight) were stimulated (1.5-fold, on average) relative to measurements in the dark (3H-LeuDark). At monthly scales, rates of 3H-LeuLight and 3H-LeuDark varied 4.9-fold and 3.8-fold, respectively, while rates of 14C-PP varied 1.7-fold. Rates of 14C-PP were often elevated during summer months (May through August) when incident light flux was greatest, while rates of both 3H-LeuLight and 3H-LeuDark often peaked in early fall (August through October) when seawater temperatures were maximal. Near-daily measurements of 3H-Leu incorporation and 14C-PP conducted over a 62-day period in the summer of 2012 revealed that rates of 3H-LeuLight and 3H-LeuDark varied 2.5 and 2.0-fold, respectively, similar to 1.8-fold daily variability observed in rates of 14C-PP. Over diel time scales, rates of 3H-LeuLight and 3H-LeuDark demonstrated different patterns, with rates of 3H-LeuLight elevated at mid-day and rates of 3H-LeuDark greatest in the early evening. Together, these results suggest that in this oligotrophic ecosystem, photosynthetic production of organic matter and bacterial production can be temporally uncoupled across daily to seasonal scales.
Sachs, T.; Koebsch, F.; Jurasinski, G.; Koch, M.; Hofmann, J.; Glatzel, S.
2014-12-01
Wetlands are the largest natural sources for atmospheric methane (CH4). In wetlands with permanent shallow inundation, the seasonal variation of CH4 exchange is mainly controlled by temperature and phenology. In addition, ecosystem CH4 exchange varies considerably on smaller temporal scales such as days or weeks. Several single processes that control CH4 emissions on the local soil-plant-atmosphere continuum are well investigated, but their interaction on ecosystem level is not well understood yet. We applied wavelet analysis to a quasi-continuous Eddy Covariance CH4 flux time series to describe the temporal variation of ecosystem CH4 exchange within the growing season of a permanently inundated temperate fen. Moreover, we addressed time scale-specific controls and investigated whether their impact changes during the course of the growing season. On large time scales of two weeks to three months, temperature explained most of the variation in ecosystem CH4 exchange. In general, the temperature in the shallow water column had the largest impact as explanatory variable, however, air temperature and soil temperature became increasingly important as explanatory variables when water level dropped slightly up to June. The diurnal variation of ecosystem CH4 exchange shifted during the course of the growing season: During a short time period at the end of April, plant activity (expressed by canopy photosynthesis) caused a diurnal variation of ecosystem CH4 exchange with peak time around noon. In the following weeks, the daily cycle of convective mixing within the water column (expressed by the water temperature gradient) gradually gained importance and caused high night-time CH4 emissions, thereby levelling off the diurnal CH4 emission pattern. Moreover, shear-induced turbulence caused short-term fluctuations of ecosystem CH4 exchange on time scales up to two hours. Our study highlights the need for multi-scale approaches that consider the non-stationarity of the
Directory of Open Access Journals (Sweden)
Junhao Hu
2014-01-01
Full Text Available We develop exponential stability of neutral stochastic functional differential equations with two-time-scale Markovian switching modeled by a continuous-time Markov chain which has a large state space. To overcome the computational effort and the complexity, we split the large-scale system into several classes and lump the states in each class into one class by the different states of changes of the subsystems; then, we give a limit system to effectively “replace” the large-scale system. Under suitable conditions, using the stability of the limit system as a bridge, the desired asymptotic properties of the large-scale system with Brownian motion and Poisson jump are obtained by utilizing perturbed Lyapunov function methods and Razumikhin-type criteria. Two examples are provided to demonstrate our results.
Time-scales of close-in exoplanet radio emission variability
See, V.; Jardine, M.; Fares, R.; Donati, J.-F.; Moutou, C.
2015-07-01
We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and τ Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetized hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is corotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of τ Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at τ Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.
Time-scales of close-in exoplanet radio emission variability
See, V; Fares, R; Donati, J -F; Moutou, C
2015-01-01
We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and tau Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetised hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is co-rotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of tau Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of...
Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems
Energy Technology Data Exchange (ETDEWEB)
Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen
2016-03-31
In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated to handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.
Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period
DEFF Research Database (Denmark)
Blunier, T; Brook, E J
2001-01-01
A precise relative chronology for Greenland and West Antarctic paleotemperature is extended to 90,000 years ago, based on correlation of atmospheric methane records from the Greenland Ice Sheet Project 2 and Byrd ice cores. Over this period, the onset of seven major millennial-scale warmings....... This pattern provides further evidence for the operation of a "bipolar see-saw" in air temperatures and an oceanic teleconnection between the hemispheres on millennial time scales....
Scale relativity and fractal space-time a new approach to unifying relativity and quantum mechanics
Nottale, Laurent
2011-01-01
This book provides a comprehensive survey of the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling the basis of quantum mechanics on the principle of relativity, provided this principle is extended to scale transformations of the reference system. In the framework of such a newly generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that unifies
Defining a Trend for a Time Series Which Makes Use of the Intrinsic Time-Scale Decomposition
Restrepo, Juan M; Comeau, Darin; Flaschka, Hermann
2014-01-01
We propose criteria that define a trend for time series with inherent multi-scale features. We call this trend the {\\it tendency} of a time series. The tendency is defined empirically by a set of criteria and captures the large-scale temporal variability of the original signal as well as the most frequent events in its histogram. Among other properties, the tendency has a variance no larger than that of the original signal; the histogram of the difference between the original signal and the tendency is as symmetric as possible; and with reduced complexity, the tendency captures essential features of the signal. To find the tendency we first use the Intrinsic Time-Scale Decomposition (ITD) of the signal, introduced in 2007 by Frei and Osorio, to produce a set of candidate tendencies. We then apply the criteria to each of the candidates to single out the one that best agrees with them. While the criteria for the tendency are independent of the signal decomposition scheme, it is found that the ITD is a simple an...
Scaling of Langevin and molecular dynamics persistence times of nonhomogeneous fluids.
Olivares-Rivas, Wilmer; Colmenares, Pedro J
2012-01-01
The existing solution for the Langevin equation of an anisotropic fluid allowed the evaluation of the position-dependent perpendicular and parallel diffusion coefficients, using molecular dynamics data. However, the time scale of the Langevin dynamics and molecular dynamics are different and an ansatz for the persistence probability relaxation time was needed. Here we show how the solution for the average persistence probability obtained from the backward Smoluchowski-Fokker-Planck equation (SE), associated to the Langevin dynamics, scales with the corresponding molecular dynamics quantity. Our SE perpendicular persistence time is evaluated in terms of simple integrals over the equilibrium local density. When properly scaled by the perpendicular diffusion coefficient, it gives a good match with that obtained from molecular dynamics.
Feasibility of measuring the Shapiro time delay over meter-scale distances
Energy Technology Data Exchange (ETDEWEB)
Ballmer, S [Syracuse University, Syracuse, NY 13244 (United States); Marka, S [Columbia University in the City of New York, New York, NY 10027 (United States); Shawhan, P, E-mail: sballmer@ligo.caltech.ed, E-mail: smarka@phys.columbia.ed, E-mail: pshawhan@umd.ed [University of Maryland, College Park, MD 20742 (United States)
2010-09-21
The time delay of light as it passes by a massive object, first calculated by Shapiro in 1964, is a hallmark of the curvature of spacetime. To date, all measurements of the Shapiro time delay have been made over solar-system distance scales. We show that the new generation of kilometer-scale laser interferometers being constructed as gravitational wave detectors, in particular Advanced LIGO, will in principle be sensitive enough to measure variations in the Shapiro time delay produced by a suitably designed rotating object placed near the laser beam. We show that such an apparatus is feasible (though not easy) to construct, present an example design, and calculate the signal that would be detectable by Advanced LIGO. This offers the first opportunity to measure spacetime curvature effects on a laboratory distance scale.
Gómez-Uribe, Carlos A; Verghese, George C; Tzafriri, Abraham R
2008-12-28
Widely different time scales are common in systems of chemical reactions and can be exploited to obtain reduced models applicable to the time scales of interest. These reduced models enable more efficient computation and simplify analysis. A classic example is the irreversible enzymatic reaction, for which separation of time scales in a deterministic mass action kinetics model results in approximate rate laws for the slow dynamics, such as that of Michaelis-Menten. Recently, several methods have been developed for separation of slow and fast time scales in chemical master equation (CME) descriptions of stochastic chemical kinetics, yielding separate reduced CMEs for the slow variables and the fast variables. The paper begins by systematizing the preliminary step of identifying slow and fast variables in a chemical system from a specification of the slow and fast reactions in the system. The authors then present an enhanced time-scale-separation method that can extend the validity and improve the accuracy of existing methods by better accounting for slow reactions when equilibrating the fast subsystem. The resulting method is particularly accurate in systems such as enzymatic and protein interaction networks, where the rates of the slow reactions that modify the slow variables are not a function of the slow variables. The authors apply their methodology to the case of an irreversible enzymatic reaction and show that the resulting improvements in accuracy and validity are analogous to those obtained in the deterministic case by using the total quasi-steady-state approximation rather than the classical Michaelis-Menten. The other main contribution of this paper is to show how mass fluctuation kinetics models, which give approximate evolution equations for the means, variances, and covariances of the concentrations in a chemical system, can feed into time-scale-separation methods at a variety of stages.
Response of vegetation to drought time-scales across global land biomes.
Vicente-Serrano, Sergio M; Gouveia, Célia; Camarero, Jesús Julio; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo
2013-01-02
We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.
Herceg, A.; Kalicz, P.; Kisfaludi, B.; Gribovszki, Z.
2016-12-01
Current and ongoing changes in the climate are typified by a rise in global temperatures. Climate change can have a dramatic impact on the water cycle. The aim of this paper was to develop a model based on Thornthwaite-type monthly water balance estimations. The main goals were to calibrate the model parameters using a remote sensing-based evapotranspiration dataset. The calibrated model was used for projection on the basis of four climate model datasets (remo, dmihirham5, smhirca.bcm, knmiracmo2). The four main projection periods were: 1980-2010, 2010-2040, 2040-2070, and 2070-2100. The advantage of this model is its robust structure. It can be applied if temperature and precipitation time series are available. The key parameter is the water storage capacity of the soil (SOILMAX), which can be calibrated using the actual evapotranspiration data available. If the physical properties of the soil are known, the maximal rooting depth is also projectable. The model can be primarily used at the catchment level or for areas without additional amounts of water from below. For testing the model, a mixed parcel of land that is used as a cornfield near Mosonmagyaróvár and a small, forest-covered catchment near Sopron were successfully used as the datasets. Furthermore, we determined the water stress with the calculation of the relative extractable water (REW), soil water deficit (SWD), and the water stress index (IS).
Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test
Nielsen, Tanner; Williams, B.; West, Jeff
2015-01-01
The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.
Hinderer, J.; Hector, B.; Séguis, L.; Descloitres, M.; Cohard, J.; Boy, J.; Calvo, M.; Rosat, S.; Riccardi, U.; Galle, S.
2013-12-01
Water storage changes (WSC) are investigated by the mean of gravity monitoring in Djougou, northern Benin, in the frame of the GHYRAF (Gravity and Hydrology in Africa) project. In this area, WSC are 1) part of the control system for evapotranspiration (ET) processes, a key variable of the West-African monsoon cycle and 2) the state variable for resource management, a critical issue in storage-poor hard rock basement contexts such as in northern Benin. We show the advantages of gravity monitoring for analyzing different processes in the water cycle involved at various time and space scales, using the main gravity sensors available today (FG5 absolute gravimeter, superconducting gravimeter -SG- and CG5 micro-gravimeter). The study area is also part of the long-term observing system AMMA-Catch, and thus under intense hydro-meteorological monitoring (rain, soil moisture, water table level, ET ...). Gravity-derived WSC are compared at all frequencies to hydrological data and to hydrological models calibrated on these data. Discrepancies are analyzed to discuss the pros and cons of each approach. Fast gravity changes (a few hours) are significant when rain events occur, and involve different contributions: rainfall itself, runoff, fast subsurface water redistribution, screening effect of the gravimeter building and local topography. We investigate these effects and present the statistical results of a set of rain events recorded with the SG installed in Djougou since July 2010. The intermediate time scale of gravity changes (a few days) is caused by ET and both vertical and horizontal water redistribution. The integrative nature of gravity measurements does not allow to separate these different contributions, and the screening from the shelter reduces our ability to retrieve ET values. Also, atmospheric corrections are critical at such frequencies, and deserve some specific attention. However, a quick analysis of gravity changes following rain events shows that the
Digital signal processing techniques for pitch shifting and time scaling of audio signals
Buś, Szymon; Jedrzejewski, Konrad
2016-09-01
In this paper, we present the techniques used for modifying the spectral content (pitch shifting) and for changing the time duration (time scaling) of an audio signal. A short introduction gives a necessary background for understanding the discussed issues and contains explanations of the terms used in the paper. In subsequent sections we present three different techniques appropriate both for pitch shifting and for time scaling. These techniques use three different time-frequency representations of a signal, namely short-time Fourier transform (STFT), continuous wavelet transform (CWT) and constant-Q transform (CQT). The results of simulation studies devoted to comparison of the properties of these methods are presented and discussed in the paper.
Scaling properties of rainfall time-series in the urban area of Rome
Volpi, E.; Napolitano, F.; Lombardo, F.
2009-04-01
The rainfall fields exhibits a high space-time variability which generates a large degree of uncertainty in modelling the process, thus causing lack of accuracy in many key hydrological problems, such as the forecasting of floods and the management of water resources. The large amount of literature produced in the last thirty years about this issue deals with the development of stochastic models able to represent the non-linearity and intermittence of rainfall in order to perform the downscaling process, i.e. transferring to finer scales the information on rainfall observed or forecasted at large scales. Traditionally, these models are based upon point processes in both the time (e.g. Waymire and Gupta, 1981) and the space-time domain (e.g. Rodriguez-Iturbe et al., 1986). Although this approach is cluster-based so as to model the physical structure of rainfall, its application may involve an inconvenient mathematical complexity and a large number of parameters, leading to several problems in parameter estimation. Another approach to this problem is based on the empirical detection of some regularity in hydrological observations, such as the scale-invariance properties of rainfall (e.g. Lovejoy and Schertzer, 1985). Models following this approach are based upon the assumption of a power law dependence of all statistical moments on the scale of aggregation. That means scaling properties can provide simple relationships to link the statistical distribution of the rainfall process at different spatial and temporal scales, in the ranges of which the power-low assumption can be verified (Marani, 2003). This work focuses on the analysis of the scaling properties of rainfall time series from a high density rain gauge network covering the Rome's urban area. The network consists of 24 sites, and the gauge record at each site has 10-minute time resolution and about 16-year length (1992-2007). The aim of the study is the identification of temporal scaling regimes, their ranges
Oscillation Criteria for Second-Order Quasilinear Neutral Delay Dynamic Equations on Time Scales
Directory of Open Access Journals (Sweden)
Guangrong Zhang
2010-01-01
Full Text Available We establish some new oscillation criteria for the second-order quasilinear neutral delay dynamic equations [r(t(zΔ(tγ]Δ+q1(txα(τ1(t+q2(txβ(τ2(t=0 on a time scale 𝕋, where z(t=x(t+p(tx(τ0(t, 0<α<γ<β. Our results generalize and improve some known results for oscillation of second-order nonlinear delay dynamic equations on time scales. Some examples are considered to illustrate our main results.
Energy Technology Data Exchange (ETDEWEB)
Gotzig, B. [Laboratoire d`Electrotechnique de Grenoble (France)]|[Schneider Electric S.A., Grenoble (France); Hadjsaid, N.; Feuillet, R. [Laboratoire d`Electrotechnique de Grenoble (France); Jeannot, R. [Schneider Electric S.A., Grenoble (France)
1998-12-31
Optimization of large scale distribution systems on a real time base requires computationally efficient algorithms. In this paper a fast general branch exchange algorithm is proposed. Depending on the objective function which is optimized, both the line loss reduction in the normal state and the restoration of de-energized loads can be carried out. Tests were carried out on a real large scale distribution network. They demonstrate that the method is fast and that it can be used in distribution management systems on real time base. (author)
Characteristic time scales in the American dollar-Mexican peso exchange currency market
Alvarez-Ramirez, Jose
2002-06-01
Daily fluctuations of the American dollar-Mexican peso exchange currency market are studied using multifractal analysis methods. It is found evidence of multiaffinity of daily fluctuations in the sense that the qth-order (roughness) Hurst exponent Hq varies with changes in q. It is also found that there exist several characteristic time scales ranging from week to year. Accordingly, the market exhibits persistence in the sense that instabilities introduced by market events acting around the characteristic time scales (mainly, quarter and year) would propagate through the future market activity. Some implications of our results on the regulation of the dollar-mexpeso market activity are discussed.
Doubly stochastic Poisson process models for precipitation at fine time-scales
Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao
2012-09-01
This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.
On Qualitative Analysis of Delay Systems and $x^ = f (t, x, x^)$ on Time Scales
Indian Academy of Sciences (India)
Yajun Ma; Yu Zhang; Jitao Sun
2010-04-01
Here we solve two problems presented in paper [9] (C C Tisdell and A Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. 68 (2008) 3504–3524). We study existence and uniqueness of solutions for delay systems and first-order dynamic equations of the form $x^=f(t,x,x^)$ on time scales by using the Banach’s fixed-point theorem. Some examples are presented to illustrate the efficiency of the proposed results.
Ranasinghe, R.W.M.R.J.B.; Holman, R.; De Schipper, M.A.; Lippmann, T.; Wehof, J.; Duong, T.M.; Roelvink, D.; Stive, M.J.F.
2012-01-01
Time scales of post-storm nearshore morphological recovery and physical processes governing these time scales are poorly understood at present. The ability to predict nearshore morphological recovery time scales based on pre-, during- or post-resetting storm conditions is an essential requirement fo
Relating the large-scale structure of time series and visibility networks.
Rodríguez, Miguel A
2017-06-01
The structure of time series is usually characterized by means of correlations. A new proposal based on visibility networks has been considered recently. Visibility networks are complex networks mapped from surfaces or time series using visibility properties. The structures of time series and visibility networks are closely related, as shown by means of fractional time series in recent works. In these works, a simple relationship between the Hurst exponent H of fractional time series and the exponent of the distribution of edges γ of the corresponding visibility network, which exhibits a power law, is shown. To check and generalize these results, in this paper we delve into this idea of connected structures by defining both structures more properly. In addition to the exponents used before, H and γ, which take into account local properties, we consider two more exponents that, as we will show, characterize global properties. These are the exponent α for time series, which gives the scaling of the variance with the size as var∼T^{2α}, and the exponent κ of their corresponding network, which gives the scaling of the averaged maximum of the number of edges, 〈k_{M}〉∼N^{κ}. With this representation, a more precise connection between the structures of general time series and their associated visibility network is achieved. Similarities and differences are more clearly established, and new scaling forms of complex networks appear in agreement with their respective classes of time series.
Benchmarking monthly homogenization algorithms
Directory of Open Access Journals (Sweden)
V. K. C. Venema
2011-08-01
Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.
Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve
Institute of Scientific and Technical Information of China (English)
Wenbin Shen; Cunchao Peng
2016-01-01
Scientists pay great attention to different-time-scale signals in the length of day (LOD)variations ALOD,which provide signatures of the Earth's interior structure,couplings among different layers,and potential excitations of ocean and atmosphere.In this study,based on the ensemble empirical mode decomposition (EEMD),we analyzed the latest time series of ALOD data spanning from January 1962 to March 2015.We observed the signals with periods and amplitudes of about 0.5 month and 0.19 ms,1.0 month and 0.19 ms,0.5 yr and 0.22 ms,1.0 yr and 0.18 ms,2.28 yr and 0.03 ms,5.48 yr and 0.05 ms,respectively,in coincidence with the results of predecessors.In addition,some signals that were previously not definitely observed by predecessors were detected in this study,with periods and amplitudes of 9.13 d and 0.12 ms,13.69 yr and 0.10 ms,respectively.The mechanisms of the LOD fluctuations of these two signals are still open.
Kim, Young-Kyun; Kim, Jong-Hwa; Yi, Yang-Jin; Kwon, Min-Jung; Yun, Pil-Young
2015-01-01
The purpose of this study was to demonstrate clinical outcomes of sandblasted, large-grit, acid-etched (SLA)-surfaced tapered implants when early loaded in partially edentulous spaces in the maxilla. SLA-surfaced implants were placed in participants in the maxillary posterior edentulous area. At the time of definitive restoration, participants were allocated either to group 1 (3-month loading group) or group 2 (6-month loading group). A total of 36 participants (18 people [35 implants] in group 1 and 18 [33 implants] in group 2) were analyzed. Clinical outcomes, including survival rate and peri-implant parameters such as marginal bone loss were measured 1 year after loading. The survival rate was 97.0% in group 1 and 100% in group 2. Marginal bone loss was 0.22 ± 0.34 mm in group 1 and 0.17 ± 0.25 mm in group 2 at 1 year after loading (P = .488). There were no significant differences between groups in keratinized mucosal width (P = .206), Plaque Index (P = .677), or Gingival Index (P = .558). With adequate remaining bone height and primary implant stability achieved, the 3-month early loading of SLA-surface tapered implants may be a viable choice when restoring posterior maxillary edentulous areas.
Influence of the time scale on the construction of financial networks.
Directory of Open Access Journals (Sweden)
Frank Emmert-Streib
Full Text Available BACKGROUND: In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. METHODOLOGY/PRINCIPAL FINDINGS: For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. CONCLUSIONS/SIGNIFICANCE: Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.
Time-sliced perturbation theory for large scale structure I: general formalism
Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-07-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.
Scaling analysis of high-frequency time series of gamma-ray counts
Barbosa, Susana; Azevedo, Eduardo
2017-04-01
Gamma radiation is being monitored in a dedicated campaign set-up at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the Government of the Autonomous Region of the Azores and University of the Azores. The temporal variability of gamma radiation is mainly determined by the time-varying concentration of radon progeny, which in turn is influenced by meteorological conditions and precipitation scavenging. The resulting time series of high-frequency (1-minute) gamma-ray counts displays therefore a complex temporal structure on multiple time scales, including long-range dependent behavior. This work addresses the scaling properties of the time series of gamma-ray counts from the ENA site (data freely available from the ARM data archive) using both wavelet and model-based methods for the estimation of the scaling exponent. The time series is dominated by sharp peaks associated with events of strong precipitation. The effect of these peaks on the estimation of the scaling exponent, as well as the effect of temporal aggregation (1-minute versus 15-minute aggregated data) is further addressed.
Influence of the time scale on the construction of financial networks.
Emmert-Streib, Frank; Dehmer, Matthias
2010-09-30
In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.
Large-scale structure effects on the gravitational lens image positions and time delay
Seljak, Uros
1994-01-01
We compute the fluctuations in gravitational lens image positions and time delay caused by large-scale structure correlations. We show that these fluctuations can be expressed as a simple integral over the density power spectrum. Using the Cosmic Background Explorer (COBE) normalization we find that positions of objects at cosmological distances are expected to deviate from their true positions by few arcminutes. These deflections are not directly observable. The positions of the images relative to one another fluctuate by a few percent of the relative separation, implying that one does not expect multiple images to be produced by large-scale structure. Nevertheless, the fluctuations are larger than the observational errors on the positions and affect reconstructions of the lens potential. The time delay fluctuations have a geometrical and a gravitational contribution. Both are much larger than the expected time delay from the primary lens, but partially cancel each other. We find that large-scale structure weakly affects the time delay and time delay measurements can be used as a probe of the distance scale in the universe.
Streamflow response of a small forested catchment on different time scales
Directory of Open Access Journals (Sweden)
A. Zabaleta
2012-08-01
Full Text Available The hydrological response of a catchment to rainfall on different time scales is result of a complex system involving a range of physical processes which may operate simultaneously and have different spatial and temporal influences. This paper presents the analysis of streamflow response of a small humid-temperate catchment (Aixola, 4.8 km^{2} in the Basque Country on different time scales and discusses the role of the controlling factors. Firstly, daily time series analysis was used to establish a hypothesis on the general functioning of the catchment through the relationship between precipitation and discharge on an annual and multi-annual scale (2003–2008. Second, rainfall-runoff relationships and relationships among several hydrological variables, including catchment antecedent conditions, were explored at the event scale (222 events to check and improve the hypothesis. Finally, the evolution of electrical conductivity (EC during some of the monitored storm events (28 events was examined to identify the time-origin of waters. Quick response of the catchment to almost all the rainfall events as well as a considerable regulation capacity was deduced from the correlation and spectral analyses. These results agree with runoff event scale data analysis; however the event analysis revealed the non-linearity of the system, as antecedent conditions play a significant role in this catchment. Further, analysis at the event scale made possible to clarify factors controlling (precipitation, precipitation intensity and initial discharge the different aspects of the runoff response (runoff coefficient and discharge increase for this catchment. Finally, the evolution of EC of the waters enabled the time origin (event or pre-event waters of the quickflow to be established; specifically, the conductivity showed that pre-event waters usually represent a high percentage of the total discharge during runoff peaks. The importance of soil waters in the
Energy Technology Data Exchange (ETDEWEB)
Czaikowski, Oliver; Meyer, Thorsten; Miehe, Ruediger [GRS mbH, Braunschweig (Germany). Final Repository Safety Div.
2015-07-01
The DOPAS Full-Scale Demonstration of Plugs and Seals project consisting of 14 beneficiaries from 8 European countries brings forward important demonstration activities in plugging and sealing. These activities are also a part of each participants national long-term RD and D programm and are therefore jointly funded by Euratom's Seventh Framework Programme and national funding organizations. The Demonstration experiments which will be partially or wholly implemented during the DOPAS project are a full-scale seal (FSS) implemented in Saint-Dizier in France, an experimental pressure sealing plug (EPSP) underground in the Josef Gallery in Czech Republic, a deposition tunnel dome plug (DOMPLU) in the AespoeHard Rock Laboratory in Sweden, a deposition tunnel wedge plug (POPLU) in the underground rock characterization facility ONKALO (future spent fuel repository) in Finland, and components of a shaft sealing system (ELSA) in Germany (Dopas 2012). ELSA is a program of laboratory and in-situ experiments that will be used to further develop the reference shaft seal for the German disposal concept for a repository in rock salt and to develop reference shaft seals for a repository in clay host rocks (Kudla et al. 2013). On behalf of BMWi, the national funding organization for R and D work related to radioactive waste management, facing the ELSA project phase 3, GRS is investigating sealing and backfilling materials planned to be utilized in salt and clay formations. The program aims at providing experimental data needed for the theoretical analysis of the long-term sealing capacity of these sealing materials. According to current R and D work on the salt option, the shaft and drift seal components considered in Germany comprise seal components consisting of MgO and cement based salt concrete (Mueller-Hoeppe et al. 2012). In order to demonstrate hydro-mechanical material stability under representative load scenarios, the sealing capacity of the seal system and the impact
Nondriven Polymer Translocation Through a Nanopore:Scaling for Translocation Time with Chain Length
Institute of Scientific and Technical Information of China (English)
LI Hui; ZHANG Jing; LIU Hong; SUN Chia-chung
2011-01-01
We investigated the dynamics of the passage for a polymer chain through a nanopore in the absence of any external driving force with Weeks-Chandler-Andersen potential in two-dimensional simulations,in particular,focused our attention on the scaling law of the mean translocation time.We found that the effect of hydrodynamic interactions is the major factor in determining the scaling exponents with increasing pore size.The scaling close to N1+2v was observed when the hydrodynamic interactions were screened in the cases of small pore sizes,while the scaling close to N3v was obtained when the hydrodynamic interactions were present in the cases of large pore sizes.
Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures
Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen
Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.
Measuring collective behaviour of multicellular ensembles: role of space–time scales
Indian Academy of Sciences (India)
S Rajesh; Somdatta Sinha
2008-06-01
Living systems are spectacular examples of spatiotemporally organized structures. During the development of complex organization there is dynamic equilibrium between the local and global processes acting at the intra- and intercellular levels in multiple space and time scales. Although in modelling studies such spatiotemporal systems can be described by different space–time scales and at many organizational levels, the experimental quantities measured and predictions useful for practical applications are at a macroscopic (coarser or averaged) level/scale; these are limited by the resolution of the measuring method and experimental protocol. In this work, we address whether the spatiotemporal collective dynamics exhibited by a multiscale system can discriminate between, or be borne out by, the coarse-grained and averaged measurements done at different spatial and temporal scales. Using a simple model of a ring of cells, we show that measurements of both spatial and spatiotemporal average behaviour in this multicellular ensemble can mask the variety of collective dynamics observed at other space–time scales, and exhibit completely different behaviours. Such outcomes of measurements can lead to incomplete and incorrect understanding of physiological functions and pathogenesis in multicell ensembles.
The distribution of length scales generated by mixing processes in time-p eriodic chaotic flows
Muzzio, Fernando; Alvarez, Mario; Cerbelli, Stefano
1997-11-01
This talk explores in some detail the evolution of the spatial structure and th e statistical properties of partially mixed systems as they evolve on a torus by using a direct numerical simulation of the evolution of continuous material lin es as they are stretched, reoriented, and folded by the flow. In the time scale s of interest to mixing processes, such material lines grow exponentially fast, but much faster than predicted by the Lyapunov exponent. The filament develops into a self-similar structure; frequency distribution of filament densities corr esponding to different times collapses onto an invariant curve by a simple homog eneous scaling. It is shown that this behavior is a direct consequence of a gen eric asymptotic directionality property characteristic of 2D time-periodic flows . Mixture microstructure is also analyzed by computing the evolution of th e distribution of length scales in the flow. Once again, the result is a family of self-similar curves that scale homogeneously by the mean length scale, which collapses in inverse proportion to the rate of growth of the filament. It is s hown that this rate of collapse, which has direct relevance to mixing applicatio ns, can be accurately and straightforwardly predicted from the ergodic average o f the stretching field. Implications for mixing processes in realistic systems are also discussed.
Kouloulas, Efthimios J; Papadeas, Alexandros G; Michail, Xanthi; Sakas, Damianos E; Boviatsis, Efstathios J
2013-09-01
The severity of traumatic brain injury (TBI) is determined by many variables, the complexity of which has made prediction of functional outcome an elusive target. To evaluate whether the three components of the Glasgow Coma Scale (GCS) and their alterations over time can serve as predictors of functional outcome after a severe TBI at 12 months after the TBI insult, we carried out a prospective study of patients with severe TBI. Seventy patients were initially enrolled. Data were retrieved from the emergency department records and the patients' intensive care unit, neurosurgical, and rehabilitation unit records. All patients underwent follow-up at 3, 6, and 12 months after injury. GCS components were evaluated on the day of injury and 2 weeks after injury. Functional outcome was estimated using the Glasgow Outcome Scale and the Functional Independence Measure motor scale. It was evaluated during rehabilitation and at 12 months after injury. Fifty-one patients were alive and followed up until 12 months. Logistic regression and receiver-operator characteristic curve analyses were carried out. In terms of functional outcome at 12 months, only GCS on day 15 was found to be a prognostic factor, with all its subscales being related to outcome 12 months later, whereas a higher GCS score on day 15 was also related to survival. A higher motor and verbal response on day 15 was strongly associated with a patient's functional independence, whereby the motor response was a better predictor. The GCS motor score 2 weeks after injury was statistically significantly associated with the 12-month functional outcome in TBI survivors. Motor response was the most useful predictor among the GCS components with respect to the long-term functional outcome in patients with severe TBI.
Voigt, C.; Denker, H.; Timmen, L.
2016-12-01
The latest generation of optical atomic clocks is approaching the level of one part in 1018 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m2 s-2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 1018. The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m2 s-2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m2 s-2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m2 s-2, while the range of the potential between specific laboratories is 0.3 and 1.1 m2 s-2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10-17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10-18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage.
Weston, Joseph; Waintal, Xavier
2016-04-01
We report on a "source-sink" algorithm which allows one to calculate time-resolved physical quantities from a general nanoelectronic quantum system (described by an arbitrary time-dependent quadratic Hamiltonian) connected to infinite electrodes. Although mathematically equivalent to the nonequilibrium Green's function formalism, the approach is based on the scattering wave functions of the system. It amounts to solving a set of generalized Schrödinger equations that include an additional "source" term (coming from the time-dependent perturbation) and an absorbing "sink" term (the electrodes). The algorithm execution time scales linearly with both system size and simulation time, allowing one to simulate large systems (currently around 106 degrees of freedom) and/or large times (currently around 105 times the smallest time scale of the system). As an application we calculate the current-voltage characteristics of a Josephson junction for both short and long junctions, and recover the multiple Andreev reflection physics. We also discuss two intrinsically time-dependent situations: the relaxation time of a Josephson junction after a quench of the voltage bias, and the propagation of voltage pulses through a Josephson junction. In the case of a ballistic, long Josephson junction, we predict that a fast voltage pulse creates an oscillatory current whose frequency is controlled by the Thouless energy of the normal part. A similar effect is found for short junctions; a voltage pulse produces an oscillating current which, in the absence of electromagnetic environment, does not relax.
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
2002-01-01
This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
1997-01-01
This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical
Time-scale effects on the gain-loss asymmetry in stock indices
Sándor, Bulcsú
2016-01-01
The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over $2\\%$, and it is the result of the non-Pearson type auto-correlations in the index. These non-Pearson type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such auto-correlations. Their characteristic time-scale proves to be smaller (less than $25$ trading days) than what was previously believed. It is also found that this characteristic time-scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.
Time-scale effects on the gain-loss asymmetry in stock indices
Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán
2016-08-01
The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.
Simply and multiply scaled diffusion limits for continuous time random walks
Energy Technology Data Exchange (ETDEWEB)
Gorenflo, Rudolf [Erstes Mathematisches Institut, Freie Universitaet Berlin, Arnimallee 3, D-14195 Berlin (Germany); Mainardi, Francesco [Dipartimento di Fisica, Universita di Bologna and INFN, Via Irnerio 46, I-40126 Bologna (Italy)
2005-01-01
First a survey is presented on how space-time fractional diffusion processes can be obtained by well-scaled limiting from continuous time random walks under the sole assumption of asymptotic power laws (with appropriate exponents for the tail behaviour of waiting times and jumps). The spatial operator in the limiting pseudo-differential equation is the inverse of a general Riesz-Feller potential operator. The analysis is carried out via the transforms of Fourier and Laplace. Then mixtures of waiting time distributions, likewise of jump distributions, are considered, and it is shown that correct multiple scaling in the limit yields diffusion equations with distributed order fractional derivatives (fractional operators being replaced by integrals over such ones, with the order of differentiation as variable of integration). It is outlined how in this way super-fast and super-slow diffusion can be modelled.
Scaling relation between earthquake magnitude and the departure time from P wave similar growth
Noda, Shunta; Ellsworth, William L.
2016-01-01
We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.
Climatic changes on millennial time scales--Evidence from a high-resolution loess record
Institute of Scientific and Technical Information of China (English)
任剑璋; 丁仲礼; 刘东生; 孙继敏; 周晓权
1996-01-01
Studies on a high resolution loess section in Huining County reveal that the behavior of climate shows high instability during the last glaciation. Results reflect that climate in Loess Plateau oscillates on millennial time scales during the last glacial period. These can be teleconnected with the records of Dansgaard-Oeschger cycles and Heinrich events in high latitudes. Results also demonstrate that variations in the intensity of wind regime on the Loess Plateau have a close correlation with the changes of global ice sheets volume. All these suggest that two-level fordngs may drive climate changes in central Asia. The first level is the volume changes of ice sheets and the second level with short time scales is superimposed upon the first level on a nearly global scale.
A scale dependent black hole in three-dimensional space-time
Koch, Benjamin; Rincón, Ángel
2016-01-01
Scale dependence at the level of the effective action is a generic result of quantum field theory. Allowing for scale dependence of the gravitational couplings leads to a generalization of the corresponding field equations. In this work, those equations are solved by imposing the "null energy condition" in three-dimensional space time with stationary spherical symmetry. The constants of integration are given in terms of the classical BTZ parameters plus one additional constant, that parametrizes the strength of the scale dependence. The properties such as asymptotics, horizon structure, and thermodynamics are discussed. It is found that the black hole entropy shows a remarkable transition from the usual "area~law" to an "area~$\\times$~radius" law.
Multiple dynamical time-scales in networks with hierarchically nested modular organization
Indian Academy of Sciences (India)
Sitabhra Sinha; Swarup Poria
2011-11-01
Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters deﬁned at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intramodular and slow intermodular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.
Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung
2016-01-01
Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.
Li, Bing; Li, Yongkun; Zhang, Xuemei
2016-01-01
In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).
STABILITY ANALYSIS FOR THE LARGE-SCALE SYSTEMS WITH TIME-DELAY
Institute of Scientific and Technical Information of China (English)
Jingru Qu; Cunchen GAO
2006-01-01
The stability analysis problems were put forward for the large-scale systems with time-delay by using the partial decomposition method. With the stability of the isolated subsystems without time-delay, some sufficient criterions for the asymptotical stability of the whole system were obtained by making a Lyapunov function with the Razumikhin condition and a Lyapunov functional for the retarded type and neutral type, respectively.
Short Time-Scale Sensory Coding in S1 during Discrimination of Whisker Vibrotactile Sequences.
McGuire, Leah M; Telian, Gregory; Laboy-Juárez, Keven J; Miyashita, Toshio; Lee, Daniel J; Smith, Katherine A; Feldman, Daniel E
2016-08-01
Rodent whisker input consists of dense microvibration sequences that are often temporally integrated for perceptual discrimination. Whether primary somatosensory cortex (S1) participates in temporal integration is unknown. We trained rats to discriminate whisker impulse sequences that varied in single-impulse kinematics (5-20-ms time scale) and mean speed (150-ms time scale). Rats appeared to use the integrated feature, mean speed, to guide discrimination in this task, consistent with similar prior studies. Despite this, 52% of S1 units, including 73% of units in L4 and L2/3, encoded sequences at fast time scales (≤20 ms, mostly 5-10 ms), accurately reflecting single impulse kinematics. 17% of units, mostly in L5, showed weaker impulse responses and a slow firing rate increase during sequences. However, these units did not effectively integrate whisker impulses, but instead combined weak impulse responses with a distinct, slow signal correlated to behavioral choice. A neural decoder could identify sequences from fast unit spike trains and behavioral choice from slow units. Thus, S1 encoded fast time scale whisker input without substantial temporal integration across whisker impulses.
The time scales of the scattering of energetic protons in interplanetary space
Stevens, G.; Hick, P
1984-01-01
Observations with the directional spectrometer DFH aboard ISEE3 have been used to obtain results on the scattering time scales of energetic protons. Depending on the duration of the scattering process the particle distribution will be subjected to either phase scattering or full scattering. Our analysis of some representative events shows that full scattering is applicable to shock-associated events.
Periodic Solutions for a Class of Singular Hamiltonian Systems on Time Scales
Directory of Open Access Journals (Sweden)
Xiaofang Meng
2014-01-01
Full Text Available We are concerned with a class of singular Hamiltonian systems on time scales. Some results on the existence of periodic solutions are obtained for the system under consideration by means of the variational methods and the critical point theory.
Time scale of scour around a pile in combined waves and current
DEFF Research Database (Denmark)
Petersen, Thor Ugelvig; Sumer, B. Mutlu; Fredsøe, Jørgen
The time scale of the scour process around a circular vertical pile is studied in combined waves and current. A series of tests were carried out in a flume with pile diameters 40 mm and 75 mm, in both steady current, waves and combined waves and current. In the combined wave and current flow regime...
A multiple time-scale model for TCP bandwidth sharing under user heterogeneity
Abendroth, D.; Berg, J.L. van den; Mandjes, M.
2005-01-01
Building on the vast body of existing TCP models, we develop a novel versatile model that explicitly captures user heterogeneity, and takes into consideration dynamics at both the packet level and the flow level. It is described how the resulting multiple time-scale model can be numerically evaluate
Development and Preliminary Validation of the Time Management for Exercise Scale
Hellsten, Laurie-ann M.; Rogers, W. Todd
2009-01-01
The purpose of this study was to collect preliminary validity evidence for a time management scale for exercise. An initial pool of 91 items was developed from existing literature. Ten exercise/health psychologists evaluated each of the items in terms of relevance and representativeness. Forty-nine items met all criteria. Exploratory factor…
Almost Periodic Solutions to Dynamic Equations on Time Scales and Applications
Directory of Open Access Journals (Sweden)
Yongkun Li
2012-01-01
equations on time scales. Then, as an application, using these concepts and results, we establish sufficient conditions for the existence and exponential stability of almost periodic solution to a class of Hopfield neural networks with delays. Finally, two examples and numerical simulations given to illustrate our results are plausible and meaningful.
Coarse-Grained Modeling of Genetic Circuits as a Function of the Inherent Time Scales
Labavic, Darka; Hildegard, Wolfhard Janke; Meyer-Ortmanns,
2012-01-01
From a coarse-grained perspective the motif of a self-activating species, activating a second species which acts as its own repressor, is widely found in biological systems, in particular in genetic systems with inherent oscillatory behavior. Here we consider a specific realization of this motif as a genetic circuit, in which genes are described as directly producing proteins, leaving out the intermediate step of mRNA production. We focus on the effect that inherent time scales on the underlying fine-grained scale can have on the bifurcation patterns on a coarser scale in time. Time scales are set by the binding and unbinding rates of the transcription factors to the promoter regions of the genes. Depending on the ratio of these rates to the decay times of the proteins, the appropriate averaging procedure for obtaining a coarse-grained description changes and leads to sets of deterministic equations, which differ in their bifurcation structure. In particular the desired intermediate range of regular limit cyc...
Time scales: from Nabla calculus to Delta calculus and vice versa via duality
Caputo, M. Cristina
2009-01-01
In this note we show how one can obtain results from the nabla calculus from results on the delta calculus and vice versa via a duality argument. We provide applications of the main results to the calculus of variations on time scales.
DIRECTIONAL DERIVATIVE OF VECTOR FIELD AND REGULAR CURVES ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
Emin (O)zyilmaz
2006-01-01
The general idea in this paper is to study curves of the parametric equations where the parameter varies in a so-called time scale, which may be an arbitrary closed subset of the set of all real numbers. We introduce the directional derivative according to the vector fields.
ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,we investigate a second order impulsive differential equation on time scales.Sufficient conditions are given to guarantee that the solutions tend to zero.The notable effect of impulse upon the asymptotic behavior of solutions is stressed in this paper.At last,we illustrate our results with two examples.
Time scales: from Nabla calculus to Delta calculus and vice versa via duality
Caputo, M. Cristina
2009-01-01
In this note we show how one can obtain results from the nabla calculus from results on the delta calculus and vice versa via a duality argument. We provide applications of the main results to the calculus of variations on time scales.
Labour productivity, economies of scale and opening time in large retail establishments
A.R. Thurik (Roy)
1984-01-01
textabstractDifferences in labour productivity are dealt with for large French retail establishments. Influences of scale, weekly opening time, assortment composition, wage rate and share of counter service are considered. The relationship used is a result of analyses in the field of small retail es
A limit set trichotomy for order-preserving systems on time scales
Directory of Open Access Journals (Sweden)
Christian Poetzsche
2004-04-01
Full Text Available In this paper we derive a limit set trichotomy for abstract order-preserving 2-parameter semiflows in normal cones of strongly ordered Banach spaces. Additionally, to provide an example, Muller's theorem is generalized to dynamic equations on arbitrary time scales and applied to a model from population dynamics.
OSCILLATION FOR NONLINEAR SECOND-ORDER DYNAMIC EQUATIONS ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Through the use of generalized Riccati transformation techniques, we establish some oscillation criteria for one type of nonlinear dynamic equation on time scales. Several examples, including a semilinear dynamic equation and a nonlinear Emden-Fowler dynamic equation, are also given to illustrate these criteria and to improve the results obtained in some references.
Hardy inequality on time scales and its application to half-linear dynamic equations
Directory of Open Access Journals (Sweden)
Řehák Pavel
2005-01-01
Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
Institute of Scientific and Technical Information of China (English)
Yepeng Xing; Qiong Wang; Valery G. Romanovski
2009-01-01
We prove several new comparison results and develop the monotone iterative tech-nique to show the existence of extremal solutions to a kind of periodic boundary value problem (PBVP) for nonlinear integro-differential equation of mixed type on time scales.
Fission time-scale from the measurement of pre-scission light particles and -ray multiplicities
Indian Academy of Sciences (India)
K Ramachandran; A Chatterjee; A Navin; K Mahata; A Shrivastava; V Tripathi; S Kailas; V Nanal; R G Pillay; A Saxena; R G Thomas; D R Chakrabarty; V M Datar; Suresh Kumar; P K Sahu
2015-08-01
An overview of the experimental result on simultaneous measurement of pre-scission neutron, proton, -particle and GDR -ray multiplicities for the reaction 28Si+175Lu at 159 MeV using the BARC–TIFR Pelletron–LINAC accelerator facility is given. The data were analysed using deformation-dependent particle transmission coefficients, binding energies and level densities which are incorporated in the code JOANNE2 to extract fission time-scales and mean deformation of the saddle-to-scission emitter. The neutron, light charged particle and GDR -ray multiplicity data could be explained consistently. The emission of neutrons seems to be favoured towards larger deformation as compared to charged particles. The pre-saddle time-scale is deduced as (0–2) × 10−21 s whereas the saddle-to-scission time-scale is (36–39) × 10−21 s. The total fission time-scale is deduced as (36–41) × 10−21 s.
Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing
Energy Technology Data Exchange (ETDEWEB)
Pang, Xiufeng; Hong, Tianzhen; Piette, Mary Ann
2013-06-03
This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.
POSITIVE SOLUTIONS FOR p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
Geng Fengjie; Zhu Deming; Li Hongzhi
2007-01-01
The three-point boundary value problems of p-Laplacian dynamic equations on time scales are investigated. By using Krasnosel'skii's fixed-point theorem and fixed-point index theorem, criteria are achieved for the existence of at least one, two or 2n positive solutions.Furthermore, some examples are included to illustrate the main theorems.
Modeling heat dominated electric breakdown in air, with adaptivity to electron or ion time scales
A. Agnihotri (Ashutosh); W. Hundsdorfer (Willem); U. Ebert (Ute)
2017-01-01
textabstractWe model heat dominated electrical breakdown in air in a short planar gap. We couple the discharge dynamics in fluid approximation with the hydrodynamic motion of the air heated by the discharge. To be computationally efficient, we derive a reduced model on the ion time scale, and we
Mass action realizations of reaction kinetic system models on various time scales
Energy Technology Data Exchange (ETDEWEB)
Hangos, K M; Szederkenyi, G, E-mail: hangos@scl.sztaki.hu, E-mail: szeder@scl.sztaki.hu [Process Control Research Group, Computer and Automation Reseach Institute, Kende u. 13-17, H-1111 Budapest (Hungary)
2011-01-01
Complex chemical reaction networks often exhibit different dynamic behaviour on different time scales. A combined approach is proposed in this work for determining physically meaningful mass action realizations of complex chemical reaction networks that describe its dynamic behaviour on different time scales. This is achieved by appropriately reducing the detailed overall mass action kinetic scheme using quasi steady state assumptions fit to the particular time scale, and then searching for an optimal realization using mixed integer linear programing. Furthermore, the relationship between the properties (reversibility, deficiency, stability) of the obtained realizations of the same system on different time scales are also investigated and related to the same properties of the detailed overall model. It is shown that the reduced models obtained by quasi steady state assumptions may show exotic nonlinear behaviour, such as oscillations, when the original detailed is globally asymptotically stable. The proposed methods are illustrated by using a simple Michaelis-Menten type reaction kinetic example. The simplified versions of the well known Brusselator model have also been investigated and presented as a case study.
Existence of Solutions for Nonlinear Four-Point -Laplacian Boundary Value Problems on Time Scales
Directory of Open Access Journals (Sweden)
Topal SGulsan
2009-01-01
Full Text Available We are concerned with proving the existence of positive solutions of a nonlinear second-order four-point boundary value problem with a -Laplacian operator on time scales. The proofs are based on the fixed point theorems concerning cones in a Banach space. Existence result for -Laplacian boundary value problem is also given by the monotone method.
Development and Preliminary Validation of the Time Management for Exercise Scale
Hellsten, Laurie-ann M.; Rogers, W. Todd
2009-01-01
The purpose of this study was to collect preliminary validity evidence for a time management scale for exercise. An initial pool of 91 items was developed from existing literature. Ten exercise/health psychologists evaluated each of the items in terms of relevance and representativeness. Forty-nine items met all criteria. Exploratory factor…
Zhang, Jianlei; Weissing, Franz J.; Cao, Ming
2016-09-01
A commonly used assumption in evolutionary game theory is that natural selection acts on individuals in the same time scale; e.g., players use the same frequency to update their strategies. Variation in learning rates within populations suggests that evolutionary game theory may not necessarily be restricted to uniform time scales associated with the game interaction and strategy adaption evolution. In this study, we remove this restricting assumption by dividing the population into fast and slow groups according to the players' strategy updating frequencies and investigate how different strategy compositions of one group influence the evolutionary outcome of the other's fixation probabilities of strategies within its own group. Analytical analysis and numerical calculations are performed to study the evolutionary dynamics of strategies in typical classes of two-player games (prisoner's dilemma game, snowdrift game, and stag-hunt game). The introduction of the heterogeneity in strategy-update time scales leads to substantial changes in the evolution dynamics of strategies. We provide an approximation formula for the fixation probability of mutant types in finite populations and study the outcome of strategy evolution under the weak selection. We find that although heterogeneity in time scales makes the collective evolutionary dynamics more complicated, the possible long-run evolutionary outcome can be effectively predicted under technical assumptions when knowing the population composition and payoff parameters.
Charting the Transient Radio Sky on Sub-Second Time-Scales with LOFAR
Hessels, J.W.T.
2012-01-01
The LOw Frequency ARray (LOFAR) is a radio interferometric telescope that promises to open a largely unexplored window on transient sources in the "radio sky", from time-scales of nanoseconds to years. An important aspect of this will be the study of radio-emitting neutron stars in their various inc
Anti-control of chaos of single time-scale brushless DC motor.
Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng
2006-09-15
Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.
Directory of Open Access Journals (Sweden)
Ni An
2017-04-01
Full Text Available When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales (half-hourly, hourly, and daily using the two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux.
Viscosity and fission time scale of Dy-156 at high excitation energies and large angular momenta
vantHof, G; Bacelar, JCS; Dioszegi, [No Value; Harakeh, MN; Hesselink, WHA; KalantarNayestanaki, N; Kugler, A; vanderPloeg, H; Plompen, AJM; vanSchagen, JPS
1996-01-01
The reaction Ar-40 + Cd-116 --> Dy-156* --> fission as Studied at beam energies E(b) = 216 MeV and E(b) = 238 MeV, wherein gamma-rays were measured in coincidence with fission fragments. From these spectra the nuclear viscosity gamma and fission time scale were deduced by comparing to statistical
To quantum mechanics through random fluctuations at the Planck time scale
Khrennikov, A
2006-01-01
We show that (in contrast to a rather common opinion) QM is not a complete theory. This is a statistical approximation of classical statistical mechanics on the {\\it infinite dimensional phase space.} Such an approximation is based on the asymptotic expansion of classical statistical averages with respect to a small parameter $\\alpha.$ Therefore statistical predictions of QM are only approximative and a better precision of measurements would induce deviations of experimental averages from quantum mechanical ones. In this note we present a natural physical interpretation of $\\alpha$ as the time scaling parameter (between quantum and prequantum times). By considering the Planck time $t_P$ as the unit of the prequantum time scale we couple our prequantum model with studies on the structure of space-time on the Planck scale performed in general relativity, string theory and cosmology. In our model the Planck time $t_P$ is not at all the {\\it "ultimate limit to our laws of physics"} (in the sense of laws of classi...
Directory of Open Access Journals (Sweden)
José Claudio Isaias
2015-01-01
Full Text Available In the selecting of stock portfolios, one type of analysis that has shown good results is Data Envelopment Analysis (DEA. It, however, has been shown to have gaps regarding its estimates of monthly time horizons of data collection for the selection of stock portfolios and of monthly time horizons for the maintenance of a selected portfolio. To better estimate these horizons, this study proposes a model of mathematical programming binary of minimization of square errors. This model is the paper’s main contribution. The model’s results are validated by simulating the estimated annual return indexes of a portfolio that uses both horizons estimated and of other portfolios that do not use these horizons. The simulation shows that portfolios with both horizons estimated have higher indexes, on average 6.99% per year. The hypothesis tests confirm the statistically significant superiority of the results of the proposed mathematical model’s indexes. The model’s indexes are also compared with portfolios that use just one of the horizons estimated; here the indexes of the dual-horizon portfolios outperform the single-horizon portfolios, though with a decrease in percentage of statistically significant superiority.
Gormsen, A. K.; Hense, A.; Toldam-Andersen, T. B.; Braun, P.
2005-08-01
Large-scale climate variability largely affects average climatic conditions and therefore is likely to influence the phenology of plants. In NW-Europe, the North Atlantic Oscillation (NAO) particularly influences winter climate and, through climate interactions on plants, flowering time of all tree species. In Denmark, like in many other NW-European countries, flowering of most tree species has become earlier since the end of the 1980’s. To quantify a possible relation between NAO and flowering time of tree species, two sources of phenological information from the Copenhagen area (Denmark) were analysed, i.e. pollen counts of the genus Betula and observed first bloom dates of Prunus avium. The Winter NAO explained 29 and 37% of the variation of monthly mean temperature for February and March, respectively. The influence of temperature on flowering time was up to 56% to 60% for the February April mean. A direct correlation of Winter NAO-index and flowering time also revealed a clear relation but the time of influence was earlier (December to February). This was shown to be the likely result of a combination of direct and time-lagged effects of the NAO on air and sea surface temperature. The NAO signal is apparently stored in the North Sea and then influences temperature east up to the Baltic States. It is shown that Denmark is right in the centre of direct and time-lagged effects of the NAO. This offers the possibility of using the NAO-index for predicting flowering time of Prunus avium. The beginning of pollen flow appears to be influenced too much by short-term perturbations of the climate system decreasing the value of the NAO-index for prediction. However, it indicates a close relationship between natural climate variability, measured by the NAO index, and flowering time of tree species for Denmark.
A real-time multi-scale 2D Gaussian filter based on FPGA
Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin
2014-11-01
Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.
Earth History databases and visualization - the TimeScale Creator system
Ogg, James; Lugowski, Adam; Gradstein, Felix
2010-05-01
The "TimeScale Creator" team (www.tscreator.org) and the Subcommission on Stratigraphic Information (stratigraphy.science.purdue.edu) of the International Commission on Stratigraphy (www.stratigraphy.org) has worked with numerous geoscientists and geological surveys to prepare reference datasets for global and regional stratigraphy. All events are currently calibrated to Geologic Time Scale 2004 (Gradstein et al., 2004, Cambridge Univ. Press) and Concise Geologic Time Scale (Ogg et al., 2008, Cambridge Univ. Press); but the array of intercalibrations enable dynamic adjustment to future numerical age scales and interpolation methods. The main "global" database contains over 25,000 events/zones from paleontology, geomagnetics, sea-level and sequence stratigraphy, igneous provinces, bolide impacts, plus several stable isotope curves and image sets. Several regional datasets are provided in conjunction with geological surveys, with numerical ages interpolated using a similar flexible inter-calibration procedure. For example, a joint program with Geoscience Australia has compiled an extensive Australian regional biostratigraphy and a full array of basin lithologic columns with each formation linked to public lexicons of all Proterozoic through Phanerozoic basins - nearly 500 columns of over 9,000 data lines plus hot-curser links to oil-gas reference wells. Other datapacks include New Zealand biostratigraphy and basin transects (ca. 200 columns), Russian biostratigraphy, British Isles regional stratigraphy, Gulf of Mexico biostratigraphy and lithostratigraphy, high-resolution Neogene stable isotope curves and ice-core data, human cultural episodes, and Circum-Arctic stratigraphy sets. The growing library of datasets is designed for viewing and chart-making in the free "TimeScale Creator" JAVA package. This visualization system produces a screen display of the user-selected time-span and the selected columns of geologic time scale information. The user can change the
Institute of Scientific and Technical Information of China (English)
LIU Delin; LIU Xianzhao; LI Bicheng; ZHAO Shiwei; LI Xiguo
2009-01-01
Based on monOdy river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoffin the Dagnjia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoff in the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48×106m3/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runoff time series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.
Late time accelerated scaling attractors in DGP (Dvali-Gabadadze-Porrati) braneworld
Dutta, Jibitesh; Syiemlieh, Erickson
2016-01-01
In the evolution of late universe, the main source of matter are Dark energy and Dark matter. They are indirectly detected only through their gravitational manifestations. So the possibility of interaction with each other without violating observational restrictions is not ruled out. With this motivation, we investigate the dynamics of DGP braneworld where source of dark energy is a scalar field and it interacts with matter source. Since observation favours phantom case more, we have also studied the dynamics of interacting phantom scalar field. In non interacting DGP braneworld there are no late time accelerated scaling attractors and hence cannot alleviate Coincidence problem. In this paper, we shall show that it is possible to get late time accelerated scaling solutions. The phase space is studied by taking two categories of potentials (Exponential and Non exponential functions). The stability of critical points are examined by taking two specific interactions. The first interaction gives late time acceler...
Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales
Baggett, Cory F.; Barnes, Elizabeth A.; Maloney, Eric D.; Mundhenk, Bryan D.
2017-07-01
Atmospheric rivers are elongated plumes of intense moisture transport that are capable of producing extreme and impactful weather. Along the West Coast of North America, they occasionally cause considerable mayhem—delivering flooding rains during periods of heightened activity and desiccating droughts during periods of reduced activity. The intrinsic chaos of the atmosphere makes the prediction of atmospheric rivers at subseasonal-to-seasonal time scales (3 to 5 weeks) an inherently difficult task. We demonstrate here that the potential exists to advance forecast lead times of atmospheric rivers into subseasonal-to-seasonal time scales through knowledge of two of the atmosphere's most prominent oscillations, the Madden-Julian oscillation (MJO) and the quasi-biennial oscillation (QBO). Strong MJO and QBO activity modulates the frequency at which atmospheric rivers strike—offering an opportunity to improve subseasonal-to-seasonal forecast models and thereby skillfully predict atmospheric river activity up to 5 weeks in advance.
Self-assembling of zinc phthalocyanines on ZnO (1010) surface through multiple time scales.
Melis, Claudio; Raiteri, Paolo; Colombo, Luciano; Mattoni, Alessandro
2011-12-27
We adopt a hierarchic combination of theoretical methods to study the assembling of zinc phthalocyanines (ZnPcs) on a ZnO (1010) surface through multiple time scales. Atomistic simulations, such as model potential molecular dynamics and metadynamics, are used to study the energetics and short time evolution (up to ∼100 ns) of small ZnPc aggregates. The stability and the lifetime of large clusters is then studied by means of an atomistically informed coarse-grained model using classical molecular dynamics. Finally, the macroscopic time scale clustering phenomenon is studied by Metropolis Monte Carlo algorithms as a function of temperature and surface coverage. We provide evidence that at room temperature the aggregation is likely to occur at sufficiently high coverage, and we characterize the nature, morphology, and lifetime of ZnPc's clusters. We identify the molecular stripes oriented along [010] crystallographic directions as the most energetically stable aggregates.
Time-Resolved Imaging of Negative Differential Resistance on the Atomic Scale
Rashidi, Mohammad; Taucer, Marco; Ozfidan, Isil; Lloyd, Erika; Koleini, Mohammad; Labidi, Hatem; Pitters, Jason L.; Maciejko, Joseph; Wolkow, Robert A.
2016-12-01
Negative differential resistance remains an attractive but elusive functionality, so far only finding niche applications. Atom scale entities have shown promising properties, but the viability of device fabrication requires a fuller understanding of electron dynamics than has been possible to date. Using an all-electronic time-resolved scanning tunneling microscopy technique and a Green's function transport model, we study an isolated dangling bond on a hydrogen terminated silicon surface. A robust negative differential resistance feature is identified as a many body phenomenon related to occupation dependent electron capture by a single atomic level. We measure all the time constants involved in this process and present atomically resolved, nanosecond time scale images to simultaneously capture the spatial and temporal variation of the observed feature.
Small-time scale network traffic prediction based on a local support vector machine regression model
Institute of Scientific and Technical Information of China (English)
Meng Qing-Fang; Chen Yue-Hui; Peng Yu-Hua
2009-01-01
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.