WorldWideScience

Sample records for monthly rainfall anomalies

  1. Arctic dipole anomaly and summer rainfall in Northeast China

    Institute of Scientific and Technical Information of China (English)

    WU BingYi; ZHANG RenHe; D'Arrigo ROSANNE

    2008-01-01

    A dipole structure anomaly in summer Arctic atmospheric variability is identified in this study, which is characterized by the second mode of empirical orthogonal function (EOF) analysis of summer monthly mean sea level pressure (SLP) north of 70°N, accounting for 12.94% of the variance. The dipole anom-aly shows a quasi-barotropic structure with opposite anomalous centers over the Canadian Arctic and the Beaufort Sea and between the Kara Sea and the Laptev Sea. The dipole anomaly reflects alternating variations in location of the polar vortex between the western and eastern Arctic regions. The positive phase of the dipole anomaly corresponds to the center of the polar vortex over the western Arctic, leading to an increase in summer mean rainfall in Northeast China. The dipole anomaly has a pre-dominant 6-year periodicity, and shows interdecadal variations in recent decades.

  2. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A

    2017-01-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and...

  3. Rainfall Predictions From Global Salinity Anomalies

    Science.gov (United States)

    Schmitt, R. W.; Li, L.; Liu, T.

    2016-12-01

    We have discovered that sea surface salinity (SSS) is a better seasonal predictor of terrestrial rainfall than sea surface temperature (SST) or the usual pressure modes of atmospheric variability. In many regions, a 3-6 month lead of SSS over rainfall on land can be seen. While some lead is guaranteed due to the simple conservation of water and salt, the robust seasonal lead for SSS in some places is truly remarkable, often besting traditional SST and pressure predictors by a very significant margin. One mechanism for the lead has been identified in the recycling of water on land through soil moisture in regional ocean to land moisture transfers. However, a global search has yielded surprising long-range SSS-rainfall teleconnections. It is suggested that these teleconnections indicate a marked sensitivity of the atmosphere to where rain falls on the ocean. That is, the latent heat of evaporation is by far the largest energy transfer from ocean to atmosphere and where the atmosphere cashes in this energy in the form of precipitation is well recorded in SSS. SSS also responds to wind driven advection and mixing. Thus, SSS appears to be a robust indicator of atmospheric energetics and moisture transport and the timing and location of rainfall events is suggested to influence the subsequent evolution of the atmospheric circulation. In a sense, if the fall of a rain drop is at least equivalent to the flap of a butterfly's wings, the influence of a billion butterfly rainstorm allows for systematic predictions beyond the chaotic nature of the turbulent atmosphere. SSS is found to be particularly effective in predicting extreme precipitation or droughts, which makes its continued monitoring very important for building societal resilience against natural disasters.

  4. Rainfall variability in suriname and its relationship with the tropical Pacific ENSO SST anomalies and the Atlantic SST anomalies

    Science.gov (United States)

    Nurmohamed, Riad; Naipal, Sieuwnath; Becker, Cor

    2007-02-01

    Spatial correlations in the annual rainfall anomalies are analyzed using principal component analysis (PCA). Cross correlation analysis and composites are used to measure the influence of sea-surface temperature anomalies (SSTAs) in the tropical Atlantic (TA) and the tropical Pacific Ocean on the seasonal rainfall in Suriname. It is shown that the spatial and time variability in rainfall is mainly determined by the meridional movement of the inter-tropical convergence zone (ITCZ). The rainfall anomalies are fairly uniform over the whole country. The strongest correlation in the December-January rainfall (short wet season) at station Cultuurtuin is found to occur with the SSTAs in the Pacific region and is about ckNino1 + 2 = 0.59 at lag 1 month. In the March-May rainfall (beginning of the long wet season), there is a lagged correlation with the SSTAs in the Pacific region (clag3Nino1 + 2 = 0.59). The June-August rainfall (end of the long wet season) shows the highest correlation with SSTAs in the TSA region and is about c = -0.52 for lag 0. In the September-November long dry season there is also a lagged correlation with the TSA SSTAs of about clag3 = 0.66. These different correlations and predictors can be used for seasonal rainfall predictions.

  5. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha(-1)h(-1)) compared to winter (87MJmmha(-1)h(-1)). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R(2) values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  6. Artificial Neural Network for Monthly Rainfall Rate Prediction

    Science.gov (United States)

    Purnomo, H. D.; Hartomo, K. D.; Prasetyo, S. Y. J.

    2017-03-01

    Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.

  7. CONVECTIVE ANOMALIES IN TROPICAL OCEAN AREAS AND LONGLEAD FORECAST OF SUMMER RAINFALL IN SHANDONG

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This study focuses on deep convection anomalies in tropical regions in winter-spring period and their possible influence on the following summer rainfall in shandong province,On the basis of monthly precipitation wet and dry summers in shandong are defined according to a precipitation index.Then monthly OLR data,observed by NOAA satellites,are used to diagnose the features of deep convection for both wet and dry summers.It is found that negative anomalies seem dominant prior to wet summers.while large areas of positive anomalies appear prior to dry summers in tropical oceans.The differences are remarkable especially in the western.middle and eastern tropical Pacific as well as in the tropical Indian Ocean.Correlative analysis confirms the relations between OLR and precipitation.Subtropical High.which plays an essential role in summer rainfall.is also connected with the deep conviction.Altogether eight EOF-CCA forecast models are established on the basis of the above study.The assessment of the models relies on the gauge observing precipitiation in 1997 and 1998.The rsults show that models suing spring OLR data appear to be more practicable than those using winter OLR data,and the models established with OLR in western Pacific and the Indian Ocean perform better than the others,.

  8. CONVECTIVE ANOMALIES IN TROPICAL OCEAN AREAS AND LONG-LEAD FORECAST OF SUMMER RAINFALL IN SHANDONG

    Institute of Scientific and Technical Information of China (English)

    张苏平; 胡桂芳

    2002-01-01

    This study focuses on deep convection anomalies in tropical regions in winter-spring period and their possible influence on the following summer rainfall in Shandong province.On the basis of monthly precipitation wet and dry summers in Shandong are defined according to a precipitation index.Then monthly OLR data,observed by NOAA satellites,are used to diagnose the features of deep convection for both wet and dry summers.It is found that negative anomalies seem dominant prior to wet summers,while large areas of positive anomalies appear prior to dry summers in tropical oceans.The differences are remarkable especially in the western,middle and eastern tropical Pacific as well as in the tropical Indian Ocean.Correlative analysis confirms the relations between OLR and precipitation.Subtropical High,which plays an essential role in summer rainfall,is also connected with the deep conviction.Altogether eight EOF-CCA forecast models are established on the basis of the above study.The assessment of the models relies on the gauge observing precipitation in 1997 and 1998.The results show that models using spring OLR data appear to be more practicable than those using winter OLR data,and the models established with OLR in western Pacific and the Indian Ocean perform better than the others.

  9. Estimating Monthly Rainfall from Geostationary Satellite Imagery Over Amazonia, Brazil.

    Science.gov (United States)

    Cutrim, Elen Maria Camara

    The infrared regression and the grid-history satellite rainfall estimating techniques were utilized to estimate monthly rainfall in Amazonia during one month of the rainy season (March, 1980) and one month of the dry season (September, 1980). The estimates were based on 3-hourly SMS-II infrared and visible images. Three sets of coefficients for the grid history method (Marajo, Arabian Sea, and GATE) were used to estimate rainfall. The estimated rain was compared with gauge measurements over the region. The infrared regression technique overestimated by a factor of 1.5. The Marajo coefficients yielded the best estimate, especially for eastern Amazonia. In the wet month Marajo coefficients overestimated rain by 10% and in the dry month by 70%. The Arabian Sea coefficients overestimated rain and the GATE coefficients slightly underestimated rain for Amazonia. Two maps of monthly rainfall over Amazonia were constructed for March and September, 1980, combining the ground station and satellite inferred rainfall of the grid history method using the Marajo coefficients. The satellite observations and ground data were mutually compatible and were contourable on these final, composite maps. Monthly rainfall was found to be much more inhomogeneous than previously reported. In March there was a belt of high precipitation trending southwest, with higher values and sharpest gradients in the coastal area. The upper Amazon was also an area of high precipitation, both north and south of the equator. In Roraima rainfall decreased drastically to the north. In September, the area of highest precipitation was the northwestern part of Amazonas State (northern hemisphere). Rainfall elsewhere was very localized and in northeastern Amazonia varied from 0 to 150 mm. Even though the grid history method presented better results for estimating rainfall over Amazonia, the IR model could be utilized more efficiently and economically on an operational basis if the calibration were properly made

  10. Predictable patterns of the May-June rainfall anomaly over East Asia

    Science.gov (United States)

    Xing, Wen; Wang, Bin; Yim, So-Young; Ha, Kyung-Ja

    2017-02-01

    During early summer (May-June, MJ), East Asia (EA) subtropical front is a defining feature of Asian monsoon, which produces the most prominent precipitation band in the global subtropics. Here we show that dynamical prediction of early summer EA (20°N-45°N, 100°E-130°E) rainfall made by four coupled climate models' ensemble hindcast (1979-2010) yields only a moderate skill and cannot be used to estimate predictability. The present study uses an alternative, empirical orthogonal function (EOF)-based physical-empirical (P-E) model approach to predict rainfall anomaly pattern and estimate its potential predictability. The first three leading modes are physically meaningful and can be, respectively, attributed to (a) the interaction between the anomalous western North Pacific subtropical high and underlying Indo-Pacific warm ocean, (b) the forcing associated with North Pacific sea surface temperature (SST) anomaly, and (c) the development of equatorial central Pacific SST anomalies. A suite of P-E models is established to forecast the first three leading principal components. All predictors are 0 month ahead of May, so the prediction here is named as a 0 month lead prediction. The cross-validated hindcast results demonstrate that these modes may be predicted with significant temporal correlation skills (0.48-0.72). Using the predicted principal components and the corresponding EOF patterns, the total MJ rainfall anomaly was hindcasted for the period of 1979-2015. The time-mean pattern correlation coefficient (PCC) score reaches 0.38, which is significantly higher than dynamical models' multimodel ensemble skill (0.21). The estimated potential maximum attainable PCC is around 0.65, suggesting that the dynamical prediction models may have large rooms to improve. Limitations and future work are discussed.

  11. NOTES AND CORRESPONDENCE: Near-Global Sea Surface Temperature Anomalies as Predictors of Australian Seasonal Rainfall.

    Science.gov (United States)

    Drosdowsky, Wasyl; Chambers, Lynda E.

    2001-04-01

    An operational system for the prediction of Australian seasonal rainfall variations using sea surface temperature anomaly (SSTA) patterns over the Indian and Pacific Oceans is described. The SSTA patterns are represented by rotated principal components, with individual monthly values at 1- and 3-month lead times used as predictors;for example, November and January SSTAs are used to forecast March-May seasonal rainfall. The historical seasonal rainfall is also represented by rotated principal components of a gridded 1° rainfall dataset, with the principal component loadings used as weights to project the forecasts back to the original 1° grid points.Forecasts of seasonal rainfall in two (above/below median) or three categories (terciles) are produced using linear discriminant analysis. Hindcast skill, measured by the linear error in probability space (LEPS) skill score has been assessed using cross validation. Experiments were also performed using a double or nested cross-validation procedure to select the best model or combination of predictors. The model chosen for operational seasonal forecasts uses the first two rotated SSTA components lagged by 1 and 3 months as predictors for every season and location, to maintain continuity of forecast probabilities between the overlapping 3-month seasons.Current values of the principal component amplitudes are calculated by projecting either the Bureau of Meteorology's or the National Centers for Environmental Prediction's SST analysis onto the set of SST principal components. The hindcasts and experimental real-time forecasts over the 5-yr period from January-March 1994 to December-February 1998/99 indicate improved skill over parts of southern Australia during the autumn period using the SST-based schemes when compared with forecasts using the Southern Oscillation index alone.

  12. Influence of interannual rainfall anomalies on sea level variations in the tropical Indian Ocean

    Science.gov (United States)

    Perigaud, Claire; McCreary, Julian P.

    2003-10-01

    A halo-thermal, reduced-gravity model with four active layers is used to investigate how interannual rainfall anomalies affect sea surface height (SSH) variability in the Indian Ocean. The model is forced by monthly varying winds observed over the period 1980-2000 in two experiments that differ by their rainfall forcing, Run FSU and Run Arkin, forced by climatological and interannually varying rainfall, respectively. Compared to the large impact of wind on SSH (about 30 cm), the impact of rain is much smaller. Its maximum (found in the southeastern Indian Ocean during the rainfall deficits of 1994 and 1997) is only 2 cm. Because rainfall significantly affects model salinity and temperature, the deficits make the layers of Run Arkin colder and saltier than in Run FSU, causing a -5 cm change in sea level. Baroclinic adjustments also occur such that the top (bottom) two layers are thicker (thinner), increasing sea level by 3 cm and hence significantly reducing the SSH change due to steric effects alone. SSH variability in either Run Arkin or Run FSU compares very well with TOPEX data. Although the impact of rainfall on SSH is negligible, salinity variations significantly affect dynamic-height calculations of SSH. In the model, the neglect of salinity variations leads to an error of 5 to 10 cm along the eastern boundary, in the Bay of Bengal, and in the interior ocean south of 8°S. This error is validated by the difference between TOPEX data and SSH derived from observed temperature profiles.

  13. Multivariate forecast of winter monsoon rainfall in India using SST anomaly as a predictor: Neurocomputing and statistical approaches

    CERN Document Server

    Chattopadhyay, Goutami; Jain, Rajni

    2009-01-01

    In this paper, the complexities in the relationship between rainfall and sea surface temperature (SST) anomalies during the winter monsoon (November-January) over India were evaluated statistically using scatter plot matrices and autocorrelation functions.Linear as well as polynomial trend equations were obtained and it was observed that the coefficient of determination for the linear trend was very low and it remained low even when polynomial trend of degree six was used. An exponential regression equation and an artificial neural network with extensive variable selection were generated to forecast the average winter monsoon rainfall of a given year using the rainfall amounts and the sea surface temperature anomalies in the winter monsoon months of the previous year as predictors. The regression coefficients for the multiple exponential regression equation were generated using Levenberg-Marquardt algorithm. The artificial neural network was generated in the form of a multiplayer perceptron with sigmoid non-l...

  14. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2017-08-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  15. Modeling of the Monthly Rainfall-Runoff Process Through Regressions

    Directory of Open Access Journals (Sweden)

    Campos-Aranda Daniel Francisco

    2014-10-01

    Full Text Available To solve the problems associated with the assessment of water resources of a river, the modeling of the rainfall-runoff process (RRP allows the deduction of runoff missing data and to extend its record, since generally the information available on precipitation is larger. It also enables the estimation of inputs to reservoirs, when their building led to the suppression of the gauging station. The simplest mathematical model that can be set for the RRP is the linear regression or curve on a monthly basis. Such a model is described in detail and is calibrated with the simultaneous record of monthly rainfall and runoff in Ballesmi hydrometric station, which covers 35 years. Since the runoff of this station has an important contribution from the spring discharge, the record is corrected first by removing that contribution. In order to do this a procedure was developed based either on the monthly average regional runoff coefficients or on nearby and similar watershed; in this case the Tancuilín gauging station was used. Both stations belong to the Partial Hydrologic Region No. 26 (Lower Rio Panuco and are located within the state of San Luis Potosi, México. The study performed indicates that the monthly regression model, due to its conceptual approach, faithfully reproduces monthly average runoff volumes and achieves an excellent approximation in relation to the dispersion, proved by calculation of the means and standard deviations.

  16. Spatial interpolation methods for monthly rainfalls and temperatures in Basilicata

    Directory of Open Access Journals (Sweden)

    Ferrara A

    2008-12-01

    Full Text Available Spatial interpolated climatic data on grids are important as input in forest modeling because climate spatial variability has a direct effect on productivity and forest growth. Maps of climatic variables can be obtained by different interpolation methods depending on data quality (number of station, spatial distribution, missed data etc. and topographic and climatic features of study area. In this paper four methods are compared to interpolate monthly rainfall at regional scale: 1 inverse distance weighting (IDW; 2 regularized spline with tension (RST; 3 ordinary kriging (OK; 4 universal kriging (UK. Besides, an approach to generate monthly surfaces of temperatures over regions of complex terrain and with limited number of stations is presented. Daily data were gathered from 1976 to 2006 period and then gaps in the time series were filled in order to obtain monthly mean temperatures and cumulative precipitation. Basic statistics of monthly dataset and analysis of relationship of temperature and precipitation to elevation were performed. A linear relationship was found between temperature and altitude, while no relationship was found between rainfall and elevation. Precipitations were then interpolated without taking into account elevation. Based on root mean squared error for each month the best method was ranked. Results showed that universal kriging (UK is the best method in spatial interpolation of rainfall in study area. Then cross validation was used to compare prediction performance of tree different variogram model (circular, spherical, exponential using UK algorithm in order to produce final maps of monthly precipitations. Before interpolating temperatures were referred to see level using the calculated lapse rate and a digital elevation model (DEM. The result of interpolation with RST was then set to originally elevation with an inverse procedure. To evaluate the quality of interpolated surfaces a comparison between interpolated and

  17. Relationship between monthly temperature anomalies and drought frequency

    Science.gov (United States)

    Maeda, E.; Naumann, G.

    2012-04-01

    Meteorological droughts are extreme climate events characterized by a period, of months or years, with below-normal precipitation. The economical and ecological impacts of such events can be catastrophic, having profound effects for agricultural production, water resources, biodiversity, tourism and many other aspects. It is recognized that the cause of meteorological droughts are largely associated with fluctuations on sea surface temperature and atmospheric dynamic processes. Nevertheless, the influence of surface air temperature on the frequency of meteorological droughts is still unclear. The objective of this study was to assess the relationship between temperature anomalies and drought frequency. Records from 50 stations from the Global Historical Climatology Network (GHCN) were analyzed at monthly time scale. The criterion used to select the stations was solely the length of the time series recorded in the stations. Namely, only stations with more than 100 years records, for both precipitation and temperature, were used in this study. In general, the selected stations were distributed along Australia, European countries, Unites States and Canada. Standardized temperature anomalies were calculated taking as baseline the entire dataset recorded at the station. The precipitation anomalies for each month were assessed through the Standardized Precipitation Index (SPI) according to the empirical cumulative distribution at each location. Therefore, both temperature anomalies and precipitation deficits were normalized, allowing a direct comparison of the entire dataset in each station, independent of the season of the year. Next, the monthly SPI were associated with the respective monthly temperatures anomalies. The SPI values were binned based on the temperature anomaly values. The used bin width was 0.5 degC. Finally, for each temperature anomaly bin, the average SPI and the frequency of months with SPI lower than -1 (moderated drought) were calculated. In order

  18. A 305 year monthly rainfall series for the Island of Ireland (1711-2016)

    Science.gov (United States)

    Murphy, Conor; Burt, Tim P.; Broderick, Ciaran; Duffy, Catriona; Macdonald, Neil; Matthews, Tom; McCarthy, Mark P.; Mullan, Donal; Noone, Simon; Ryan, Ciara; Thorne, Peter; Walsh, Seamus; Wilby, Robert L.

    2017-04-01

    This paper derives a continuous 305-year monthly rainfall series for the Island of Ireland (IoI) for the period 1711-2016. Two key data sources are employed: i) a previously unpublished UK Met Office Note which compiled annual rainfall anomalies and corresponding monthly per mille amounts from weather diaries and early observational records for the period 1711-1977; and ii) a long-term, homogenised monthly IoI rainfall series for the period 1850-2016. Using estimates of long-term average precipitation sampled from the quality assured series, the full record is reconstituted and insights drawn regarding notable periods and the range of climate variability and change experienced. Consistency with other long records for the region is examined, including: the England and Wales Precipitation series (EWP; 1766-2016); the early EWP Glasspoole series (1716-1765) and the Central England Temperature series (CET; 1711-2016). Strong correspondence between all records is noted from 1780 onwards. While disparities are evident between the early EWP and Ireland series, the latter shows strong decadal consistency with CET throughout the record. In addition, independent, early observations from Cork and Dublin, along with available documentary sources, corroborate the derived series and add confidence to our reconstruction. The new IoI rainfall record reveals that the wettest decades occurred in the early 18th Century, despite the fact that IoI has experienced a long-term winter wetting trend consistent with climate model projections. These exceptionally wet winters of the 1720s and 1730s were concurrent with almost unprecedented warmth in the CET, glacial advance throughout Scandinavia, and glacial retreat in West Greenland, consistent with a wintertime NAO-type forcing. Our study therefore demonstrates the value of long-term observational records for providing insight to the natural climate variability of the North Atlantic region.

  19. Rainfall variability over Alagoas under the influences of SST anomalies

    Science.gov (United States)

    Lyra, G. B.; Oliveira-Júnior, J. F.; Gois, G.; Cunha-Zeri, G.; Zeri, M.

    2017-04-01

    The rainfall variability for the state of Alagoas, Northeast of Brazil, was evaluated based on the Standardized Precipitation Index (SPI). Harmonic decomposition was applied to 31 years-long (1960-1990) series of SPI, from 33 stations, to relate their modes of variability to El Niño-Southern Oscillation (ENSO) and the Atlantic Ocean sea surface temperature (SST). The most important harmonics identified by the spectral analysis had periods of 10-15 and 2-3 years, followed by other oscillations with smaller periods. The 10-15 years harmonic was associated with the Atlantic interhemispheric SST gradient (AITG), a cross-equatorial dipole which impacts the northeast region of Brazil by influencing the position of the intertropical convergence zone (ITCZ), leading to dry or wet conditions. The 2-3 years harmonic was consistent with the variability of ENSO events. The harmonic analysis is a powerful tool to identify the principal modes of variability of SPI. Although the magnitude of SPI is underestimated in some cases, this tool significantly increases the knowledge of the main drivers of rainfall and droughts in the region.

  20. How predictable is the anomaly pattern of the Indian summer rainfall?

    Science.gov (United States)

    Li, Juan; Wang, Bin

    2016-05-01

    Century-long efforts have been devoted to seasonal forecast of Indian summer monsoon rainfall (ISMR). Most studies of seasonal forecast so far have focused on predicting the total amount of summer rainfall averaged over the entire India (i.e., all Indian rainfall index-AIRI). However, it is practically more useful to forecast anomalous seasonal rainfall distribution (anomaly pattern) across India. The unknown science question is to what extent the anomalous rainfall pattern is predictable. This study attempted to address this question. Assessment of the 46-year (1960-2005) hindcast made by the five state-of-the-art ENSEMBLE coupled dynamic models' multi-model ensemble (MME) prediction reveals that the temporal correlation coefficient (TCC) skill for prediction of AIRI is 0.43, while the area averaged TCC skill for prediction of anomalous rainfall pattern is only 0.16. The present study aims to estimate the predictability of ISMR on regional scales by using Predictable Mode Analysis method and to develop a set of physics-based empirical (P-E) models for prediction of ISMR anomaly pattern. We show that the first three observed empirical orthogonal function (EOF) patterns of the ISMR have their distinct dynamical origins rooted in an eastern Pacific-type La Nina, a central Pacific-type La Nina, and a cooling center near dateline, respectively. These equatorial Pacific sea surface temperature anomalies, while located in different longitudes, can all set up a specific teleconnection pattern that affects Indian monsoon and results in different rainfall EOF patterns. Furthermore, the dynamical models' skill for predicting ISMR distribution primarily comes primarily from these three modes. Therefore, these modes can be regarded as potentially predictable modes. If these modes are perfectly predicted, about 51 % of the total observed variability is potentially predictable. Based on understanding the lead-lag relationships between the lower boundary anomalies and the

  1. Generating monthly rainfall amount using multivariate skew-t copula

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Zanariah Satari, Siti

    2017-09-01

    This study aims to generate rainfall data in cases where the data is not available or not enough for a certain area of study. In general, the rainfall data is rightly skewed, so the multivariate skew-t copula is used as it able to model rainfall amount and capture the spatial dependence in the data. To illustrate the methodology, three rainfall stations in Kelantan are used. Firstly, the observed data is transformed to uniform unit. The Spearman’s correlation coefficient is calculated between the three stations. It is found that the correlations between the stations are significance at α = 0.05. The next step involved generating the synthetic rainfall data using the multivariate skew-t copula. The data is then transformed to uniform unit and the correlation coefficient is calculated for the generated data. Finally, the correlation coefficient of the observed and the generated data are compared. The Kolmogorov-Smirnov goodness of fit test is used to assess the fit between theoretical and empirical copula and supported by graphical representation. The results show that there is no significant difference between empirical and theoretical copula at 5% significance level. Thus, the multivariate skew-t copula is suitable to generate synthetic rainfall data that can mimic the observed rainfall data. It can also be used to present different rainfall scenarios by changing the value of the parameters in the model.

  2. Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective

    Science.gov (United States)

    Xu, Zhiqing; Fan, Ke; Wang, HuiJun

    2017-09-01

    The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.

  3. Contribution of Monthly and Regional Rainfall to the Strength of Indian Summer Monsoon

    Science.gov (United States)

    Zheng, Y.; Ali, M.; Bourassa, M. A.

    2015-12-01

    Indian Summer Monsoon Rainfall (ISMR: June-September) has both temporal and spatial variability causing floods/droughts in different seasons/locations leading to a strong or weak monsoon. Here, we present the contribution of all-India monthly, seasonal and regional rainfall to the ISMR, with special reference to the strong and weak monsoons. For this purpose, rainfall data provided by the India Meteorological Department (IMD: http://www.imd.gov.in/section/nhac/dynamic/Monsoon_frame.htm) for 1901-2013 have been used. The IMD divided the Indian sub-continent into four homogeneous regions of northwest India (NWI), northeast India (NEI), central India (CI), and south peninsula India (SPIN). Rainfall during July-August contributes the most to the total seasonal rainfall, whether it is a strong or weak monsoon. Although the NEI has the maximum area-weighted rainfall, its contribution is the least toward a strong or weak monsoon. The rainfall in the remaining three regions (NWI, CI, and SPIN) controls whether an ISMR is strong or weak. Compared to the monthly rainfall, the regional rainfall dominates the strong or weak rainfall periods.

  4. A review of statistical analyses on monthly and daily rainfall in Catalonia

    Directory of Open Access Journals (Sweden)

    X. Lana

    2009-01-01

    Full Text Available A review on recent studies about monthly and daily rainfall in Catalonia is presented. Monthly rainfall is analysed along the west Mediterranean Coast and in Catalonia, quantifying aspects as the irregularity of monthly amounts and the spatial distribution of the Standard Precipitation Index. Several statistics are applied to daily rainfall series such as their extreme value and intraannual spatial distributions, the variability of the average and standard deviation rain amounts for each month, their amount and time distributions, and time trends affecting four pluviometric indices for different percentiles and class intervals. All these different analyses constitute the continuity of the scientific study of Catalan rainfall, which started about a century ago.

  5. Spatiotemporal monthly rainfall forecasts for south-eastern and eastern Australia using climatic indices

    Science.gov (United States)

    Montazerolghaem, Maryam; Vervoort, Willem; Minasny, Budiman; McBratney, Alex

    2016-05-01

    Knowledge about future rainfall is important for agriculture management and planning in arid and semi-arid regions. Australia has complex variations in rainfall patterns in time and space, arising from the combination of the geographic structure and the dual effects of Indian and Pacific Ocean. This study aims to develop a forecasting model of spatiotemporal monthly rainfall totals using lagged climate indices and historical rainfall data from 1950-2011 for south-eastern and eastern Australia. Data were obtained from the Australian Bureau of Meteorology (BoM) from 136 high-quality weather stations. To reduce spatial complexity, climate regionalization was used to divide the stations in homogenous sub-regions based on similarity of rainfall patterns and intensity using principal component analysis (PCA) and K-means clustering. Subsequently, a fuzzy ranking algorithm (FRA) was applied to the lagged climatic predictors and monthly rainfall in each sub-region to identify the best predictors. Selected predictors by FRA were found to vary by sub-region. After these two stages of pre-processing, an artificial neural network (ANN) model was developed and optimized separately for each sub-region and the entire area. The results indicate that climate regionalization can improve a monthly spatiotemporal rainfall forecast model. The location and number of sub-regions were important for ranking predictors and modeling. This further suggests that the impact of climate variables on Australian rainfall is more variable in both time and space than indicated thus far.

  6. Spatiotemporal monthly rainfall forecasting for south-eastern and eastern Australia using climatic indices

    Science.gov (United States)

    Montazerolghaem, Maryam; Vervoort, Willem; Minasny, Budiman; McBratney, Alex

    2014-05-01

    Knowledge about future rainfall would significantly benefit land, water resources and agriculture management, as this assists with planning and management decisions. Forecasting spatiotemporal monthly rainfall is difficult, especially in Australia where there is a complex interaction between topography and the effect of Indian and Pacific Ocean. This study describes a method for spatiotemporal monthly rainfall forecasting in south-eastern and eastern part of Australia using climatic and non-climatic variables. Rainfall data were obtained from Bureau of Meteorology (BoM) from 136 high quality weather stations from the south-eastern and eastern part of Australia with monthly rainfall records from 1879 to 2012. To reduce spatial complexity of the area and improve model accuracy, spatial classification (regionalization) was considered as first step. Significant predictors for each sub-region among lagged climatic input variables were selected using Fuzzy Ranking Algorithm (FRA). Climate classification: 1) discovered homogenous sub-regions with a similar rainfall patterns and investigated spatiotemporal rainfall variations in the area, 2) allowed selection of significant predictors with a fine resolution for each area, 3) improved the prediction model and increased model accuracy. PCA was used to reduce the dimensions of the dataset and to remove the rainfall time series correlation. K-means clustering was used on the loadings of PCs describing 93% of long-term monthly rainfall variations. The analysis was repeated for different numbers of sub-regions (3 - 8) to identify the best number of clusters to improve the forecast model performance. Subsequently, a Fuzzy Ranking Algorithm (FRA) was applied to the lagged climatic predictors and monthly rainfall in each sub-region to identify the best predictors. After these two stages of pre-processing, a Neural Network model was developed and optimized for each of the sub-regions as well as for the entire area. It is concluded

  7. Comparison of semivariogram models for Kriging monthly rainfall in eastern China

    Institute of Scientific and Technical Information of China (English)

    汤燕冰

    2002-01-01

    An exploratory spatial data analysis method (ESDA) was designed Apr.28,2002 for kriging monthly rainfall. Samples were monthly rainfall observed at 61 weather stations in eastern China over the period 1961-1998. Comparison of five semivariogram models (Spherical, Exponential, Linear, Gaussian and Rational Quadratic) indicated that kriging fulfills the objective of finding better ways to estimate interpolation weights and can provide error information for monthly rainfall interpolation. ESDA yielded the three most common forms of experimental semivariogram for monthly rainfall in the area. All five models were appropriate for monthly rainfall interpolation but under different circumstances. Spherical, Exponential and Linear models perform as smoothing interpolator of the data, whereas Gaussian and Rational Quadratic models serve as an exact interpolator. Spherical, Exponential and Linear models tend to underestimate the values. On the contrary, Gaussian and Rational Quadratic models tend to overestimate the values. Since the suitable model for a specific month usually is not unique and each model does not show any bias toward one or more specific months, an ESDA is recommended for a better interpolation result.

  8. The role of synoptic and intraseasonal anomalies in the life cycle of summer rainfall extremes over South America

    Science.gov (United States)

    Hirata, Fernando E.; Grimm, Alice M.

    2016-05-01

    The main goal of this study is to describe the role of synoptic and intraseasonal anomalies during the life cycle of summer rainfall extremes over South America. Eastward-propagating synoptic-scale midlatitude waves are the main drivers of extreme precipitation events south of the Amazon and their interaction with intraseasonal anomalies over South America is important for heavy rainfall over the South Atlantic convergence zone (SACZ) region and the La Plata basin. Madden-Julian Oscillation (MJO) convective activity in the western Pacific (phases 6 and 7) leads 31 out of 81 extremes over the SACZ region by nearly 10 days. The connection between the MJO and rainfall extremes in other regions is less robust. During El Niño seasons extremes are more frequent in the La Plata basin, with decreased importance of intraseasonal anomalies. Precipitation extremes over the La Plata basin tend to be less frequent and also shorter during La Niña summers and, consequently, less hazardous. In the SACZ and the southeastern Brazilian coast, heavy rainfall is also more frequent under El Niño conditions, while La Niña episodes also increase extreme events in the southeastern coast. Extremes over the southeastern coast during El Niños are favored by strong intraseasonal anomalies flanking the subtropical jet, while during La Niñas intraseasonal anomalies are not significant.

  9. Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments

    Directory of Open Access Journals (Sweden)

    Panos Panagos

    2016-03-01

    Full Text Available As a follow up and an advancement of the recently published Rainfall Erosivity Database at European Scale (REDES and the respective mean annual R-factor map, the monthly aspect of rainfall erosivity has been added to REDES. Rainfall erosivity is crucial to be considered at a monthly resolution, for the optimization of land management (seasonal variation of vegetation cover and agricultural support practices as well as natural hazard protection (landslides and flood prediction. We expanded REDES by 140 rainfall stations, thus covering areas where monthly R-factor values were missing (Slovakia, Poland or former data density was not satisfactory (Austria, France, and Spain. The different time resolutions (from 5 to 60 min of high temporal data require a conversion of monthly R-factor based on a pool of stations with available data at all time resolutions. Because the conversion factors show smaller monthly variability in winter (January: 1.54 than in summer (August: 2.13, applying conversion factors on a monthly basis is suggested. The estimated monthly conversion factors allow transferring the R-factor to the desired time resolution at a European scale. The June to September period contributes to 53% of the annual rainfall erosivity in Europe, with different spatial and temporal patterns depending on the region. The study also investigated the heterogeneous seasonal patterns in different regions of Europe: on average, the Northern and Central European countries exhibit the largest R-factor values in summer, while the Southern European countries do so from October to January. In almost all countries (excluding Ireland, United Kingdom and North France, the seasonal variability of rainfall erosivity is high. Very few areas (mainly located in Spain and France show the largest from February to April. The average monthly erosivity density is very large in August (1.67 and July (1.63, while very small in January and February (0.37. This study addresses

  10. Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall

    Science.gov (United States)

    Boschetti, Mirco; Nutini, Francesco; Brivio, Pietro Alessandro; Bartholomé, Etienne; Stroppiana, Daniela; Hoscilo, Agata

    2013-04-01

    Studies of the impact of human activity on vegetation dynamics of the Sahelian belt of Africa have been recently re-invigorated by new scientific findings that highlighted the primary role of climate in the drought crises of the 1970s-1980s. Time series of satellite observations revealed a re-greening of the Sahelian belt that indicates no noteworthy human effect on vegetation dynamics at sub continental scale from the 1980s to late 1990s. However, several regional/local crises related to natural resources occurred in the last decades despite the re-greening thus underlying that more detailed studies are needed. In this study we used time-series (1998-2010) of SPOT-VGT NDVI and FEWS-RFE rainfall estimates to analyse vegetation - rainfall correlation and to map areas of local environmental anomalies where significant vegetation variations (increase/decrease) are not fully explained by seasonal changes of rainfall. Some of these anomalous zones (hot spots) were further analysed with higher resolution images Landsat TM/ETM+ to evaluate the reliability of the identified anomalous behaviour and to provide an interpretation of some example hot spots. The frequency distribution of the hot spots among the land cover classes of the GlobCover map shows that increase in vegetation greenness is mainly located in the more humid southern part and close to inland water bodies where it is likely to be related to the expansion/intensification of irrigated agricultural activities. On the contrary, a decrease in vegetation greenness occurs mainly in the northern part (12°-15°N) in correspondence with herbaceous vegetation covers where pastoral and cropping practices are often critical due to low and very unpredictable rainfall. The results of this study show that even if a general positive re-greening due to increased rainfall is evident for the entire Sahel, some local anomalous hot spots exist and can be explained by human factors such as population growth whose level reaches the

  11. Network-derived inhomogeneity in monthly rainfall analyses over western Tasmania

    Science.gov (United States)

    Fawcett, Robert; Trewin, Blair; Barnes-Keoghan, Ian

    2010-08-01

    Monthly rainfall in the wetter western half of Tasmania was relatively poorly observed in the early to middle parts of the 20th century, and this causes a marked inhomogeneity in the operational gridded monthly rainfall analyses generated by the Australian Bureau of Meteorology up until the end of 2009. These monthly rainfall analyses were generated for the period 1900 to 2009 in two forms; a national analysis at 0.25° latitude-longitude resolution, and a southeastern Australia regional analysis at 0.1° resolution. For any given month, they used all the monthly data from the standard Bureau rainfall gauge network available in the Australian Data Archive for Meteorology. Since this network has changed markedly since Federation (1901), there is obvious scope for network-derived inhomogeneities in the analyses. In this study, we show that the topography-resolving techniques of the new Australian Water Availability Project analyses, adopted as the official operational analyses from the start of 2010, substantially diminish those inhomogeneities, while using largely the same observation network. One result is an improved characterisation of recent rainfall declines across Tasmania. The new analyses are available at two resolutions, 0.25° and 0.05°.

  12. Network-derived inhomogeneity in monthly rainfall analyses over western Tasmania

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, Robert; Trewin, Blair [National Climate Centre, Australian Bureau of Meteorology, Docklands, Victoria 3008 (Australia); Barnes-Keoghan, Ian, E-mail: r.fawcett@bom.gov.a, E-mail: b.trewin@bom.gov.a, E-mail: i.barnes-keoghan@bom.gov.a [Tasmanian Regional Office, Australian Bureau of Meteorology, Hobart, Tasmania 3000 (Australia)

    2010-08-15

    Monthly rainfall in the wetter western half of Tasmania was relatively poorly observed in the early to middle parts of the 20th century, and this causes a marked inhomogeneity in the operational gridded monthly rainfall analyses generated by the Australian Bureau of Meteorology up until the end of 2009. These monthly rainfall analyses were generated for the period 1900 to 2009 in two forms; a national analysis at 0.25{sup 0} latitude-longitude resolution, and a southeastern Australia regional analysis at 0.1{sup 0} resolution. For any given month, they used all the monthly data from the standard Bureau rainfall gauge network available in the Australian Data Archive for Meteorology. Since this network has changed markedly since Federation (1901), there is obvious scope for network-derived inhomogeneities in the analyses. In this study, we show that the topography-resolving techniques of the new Australian Water Availability Project analyses, adopted as the official operational analyses from the start of 2010, substantially diminish those inhomogeneities, while using largely the same observation network. One result is an improved characterisation of recent rainfall declines across Tasmania. The new analyses are available at two resolutions, 0.25{sup 0} and 0.05{sup 0}.

  13. A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: Climatology, anomalies and trends

    KAUST Repository

    El Kenawy, Ahmed M.

    2015-05-15

    Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is

  14. Comparison of semivariogram models for kriging monthly rainfall in eastern China

    Institute of Scientific and Technical Information of China (English)

    汤燕冰

    2002-01-01

    An exploratory spatial data analysis method(ESDA) was designed Apr.28,2002 for kriging monthly rainfall.Samples were monthly rainfall observed at 61 weather stations in eastern China over the period 1961-1998.Comparison of five semivariogram models(Spherical,Exponential,Linear,Gaussian and Rational Quadratic)indicated that kriging fulfills the objective of finding better ways to estimate interpolation weights and can provide error information for monthly rainfall interpolation.ESDA yielded the three most common forms of experimental semivariogram for monthly rainfall in the erea.All five models were appropriate for monthly rainflaa interpolation but under different circumstances.Spherical,Exponential and Linear models perform as smoothing interpolator of the data,whereas Gaussian and Rational Quadratic models serve as an exact interpolator.Spherical,Exponential and Linear models tend to underestimate the values,On the contrayr,Gaussian and Rational Quadratic models tend to overestimate the values.On the contrary,Gaussian and Rational Quadratic models tend to overestimate the values,Since the suitable model for a specific month usually is not unique and each model does not show any bias toward one or more specific months,an ESDA is recommended for a better interpolation result.

  15. Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil

    Science.gov (United States)

    Brito, Thábata T.; Oliveira-Júnior, José F.; Lyra, Gustavo B.; Gois, Givanildo; Zeri, Marcelo

    2016-10-01

    Spatial and temporal patterns of rainfall were identified over the state of Rio de Janeiro, southeast Brazil. The proximity to the coast and the complex topography create great diversity of rainfall over space and time. The dataset consisted of time series (1967-2013) of monthly rainfall over 100 meteorological stations. Clustering analysis made it possible to divide the stations into six groups (G1, G2, G3, G4, G5 and G6) with similar rainfall spatio-temporal patterns. A linear regression model was applied to a time series and a reference. The reference series was calculated from the average rainfall within a group, using nearby stations with higher correlation (Pearson). Based on t-test (p < 0.05) all stations had a linear spatiotemporal trend. According to the clustering analysis, the first group (G1) contains stations located over the coastal lowlands and also over the ocean facing area of Serra do Mar (Sea ridge), a 1500 km long mountain range over the coastal Southeastern Brazil. The second group (G2) contains stations over all the state, from Serra da Mantiqueira (Mantiqueira Mountains) and Costa Verde (Green coast), to the south, up to stations in the Northern parts of the state. Group 3 (G3) contains stations in the highlands over the state (Serrana region), while group 4 (G4) has stations over the northern areas and the continent-facing side of Serra do Mar. The last two groups were formed with stations around Paraíba River (G5) and the metropolitan area of the city of Rio de Janeiro (G6). The driest months in all regions were June, July and August, while November, December and January were the rainiest months. Sharp transitions occurred when considering monthly accumulated rainfall: from January to February, and from February to March, likely associated with episodes of "veranicos", i.e., periods of 4-15 days of duration with no rainfall.

  16. Forecasting and Analysis of Monthly Rainfalls in Ardabil Province by Arima, Autoregrressive, and Winters Models

    Directory of Open Access Journals (Sweden)

    B. Salahi

    2017-01-01

    Full Text Available Introduction: Rainfall has the highest variability at time and place scale. Rainfall fluctuation in different geographical areas reveals the necessity of investigating this climate element and suitable models to forecast the rate of precipitation for regional planning. Ardabil province has always faced rainfall fluctuations and shortage of water supply. Precipitation is one of the most important features of the environment. The amount of precipitation over time and in different places is subject to large fluctuations which may be periodical. Studies show that, due to the certain complexities of rainfall, the models which used to predict future values will also need greater accuracy and less error. Among the forecasting models, Arima has more applications and it has replaced with other models. Materials and Methods: In this research, through order 2 Autoregrressive, Winters, and Arima models, monthly rainfalls of Ardabil synoptic station (representing Ardabil province for a 31-year period (1977-2007 were investigated. To assess the presence or absence of significant changes in mean precipitation of Ardabil synoptic station, rainfall of this station was divided into two periods: 1977-1993 and 1994-2010. T-test was used to statistically examine the difference between the two periods. After adjusting the data, descriptive statistics were applied. In order to model the total monthly precipitation of Ardabil synoptic station, Winters, Autoregressive, and Arima models were used. Among different models, the best options were chosen to predict the time series including the mean absolute deviation (MAD, the mean squared errors (MSE, root mean square errors (RMSE and mean absolute percentage errors (MAPE. In order to select the best model among the available options under investigation, the predicted value of the deviation of the actual value was utilized for the months of 2006-2010. Results and Discussion: Statistical characteristics of the total monthly

  17. Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments

    DEFF Research Database (Denmark)

    Panagos, Panos; Borrelli, Pasquale; Spinoni, Jonathan

    2016-01-01

    , for the optimization of land management (seasonal variation of vegetation cover and agricultural support practices) as well as natural hazard protection (landslides and flood prediction). We expanded REDES by 140 rainfall stations, thus covering areas where monthly R-factor values were missing (Slovakia, Poland...

  18. Frequency Analysis of the Monthly Rainfall Data at Sulaimania Region, Iraq

    Directory of Open Access Journals (Sweden)

    Prof. Dr. Rafa H Al-Suhili

    2016-08-01

    Full Text Available Different frequency distributions models were fitted to the monthly rainfall data in Sulaimania region, north Iraq. Three rainfall gauging stations data were used, Sulaimania city, Dokan Dam, and Derbendikhan Dam metrological stations, for the period (1984-2010. The distributions models fitted are of Normal, Log-normal, Wiebull, Exponential and Two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The fittings were done for the overall data and for each month separately. The Gamma, Exponential and Weibull distributions were found as the best fits for the three stations respectively for the overall models, while for the monthly models different distribution type was found as the best fit for each month and each station, however the Gamma distributions was found to have the highest percent of best fit. The best fitted distributions were used to forecast three sets of monthly rainfall data for each station and compared to the observed ones for the last 7- years of data. The t-test,F-test and KolmogorovSmirnov test indicate the capability of these models to produce data that has the same frequency distribution of the observed one. Comparison between the performances of the overall and periodic models reveals that there no distinguishable improvement of the monthly model over the overall one.

  19. Relationship between summer rainfall anomalies and sub-seasonal oscillations in South China

    Science.gov (United States)

    Li, Chunhui; Li, Tim; Lin, Ailan; Gu, Dejun; Zheng, Bin

    2015-01-01

    Sub-seasonal variability of summer (May-October) rainfall over South China exhibits two dominant timescales, one with a quasi-biweekly (QBW) period (10-20 days) and the other with an intraseasonal oscillation (ISO) period (20-60 days). A significant positive correlation (at a 99 % confidence level) was found between the summer precipitation anomalies and the intensity of the QBW and ISO modes. By examining the composite structure and evolution characteristics, we note that the QBW and ISO modes are characterized by a northwest-southeast oriented wave train pattern with a pronounced baroclinic vertical structure, moving northwestward. A marked feature is the phase leading of low-level moisture relative to convection. For the QBW mode, such a phase leading feature appears in both the strong and weak composites. However, for the ISO mode, this feature is only clearly seen in the strong composite. The high positive correlation between the summer precipitation and the sub-seasonal variability suggests that the summer mean state may exert a large-scale control on the sub-seasonal modes. It is found that when South China is anomalously wet, large-scale atmospheric conditions in the key QBW/ISO activity region are characterized by deeper moist layer, more convectively unstable stratification, and greater ascending motion. Such environmental conditions favor the growth of the QBW and ISO perturbations.

  20. Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa

    Science.gov (United States)

    Goddard, Lisa; Graham, Nicholas E.

    1999-08-01

    The relative contributions of the Indian Ocean and Pacific Ocean sea surface temperatures (SSTs) to the rainfall variability over eastern central, and southern Africa during the austral spring-summer are examined. The variability of African rainfall is statistically related to both oceans, but the variability in the two oceans is also related. To separate the effects of the Indian and Pacific Oceans, a suite of numerical model simulations is presented: GOGA, the atmosphere is forced by observed SSTs globally; IOGA, the atmosphere is forced by observed SSTs only in the Indian Ocean basin; and POGA, the atmosphere is forced by observed SSTs only in the tropical Pacific basin. While the SST variability of the tropical Pacific exerts some influence over the African region, it is the atmospheric response to the Indian Ocean variability that is essential for simulating the correct rainfall response over eastern, central, and southern Africa. Analyses of the dynamical response(s) seen in the numerical experiments and in the observations indicate that the Pacific and Indian Oceans have a competing influence over the Indian Ocean/African region. This competition is related to the influence of the two oceans on the Walker circulation and the consequences of that variability on low-level fluxes of moisture over central and southern Africa. Finally, given the high correlation found between SST variability in the Indian and Pacific Oceans with the Pacific leading by ˜3 months, we speculate on an approach to long-lead dynamical climate prediction over central-east and southern Africa.

  1. Daily disaggregation of simulated monthly flows using different rainfall datasets in southern Africa

    Directory of Open Access Journals (Sweden)

    D.A. Hughes

    2015-09-01

    New hydrological insights for the region: There are substantial regional differences in the success of the monthly hydrological model, which inevitably affects the success of the daily disaggregation results. There are also regional differences in the success of using global rainfall data sets (Climatic Research Unit (CRU datasets for monthly, National Oceanic and Atmospheric Administration African Rainfall Climatology, version 2 (ARC2 satellite data for daily. The overall conclusion is that the disaggregation method presents a parsimonious approach to generating daily flow simulations from existing monthly simulations and that these daily flows are likely to be useful for some purposes (e.g. water quality modelling, but less so for others (e.g. peak flow analysis.

  2. The statistical extended-range (10-30-day) forecast of summer rainfall anomalies over the entire China

    Science.gov (United States)

    Zhu, Zhiwei; Li, Tim

    2017-01-01

    The extended-range (10-30-day) rainfall forecast over the entire China was carried out using spatial-temporal projection models (STPMs). Using a rotated empirical orthogonal function analysis of intraseasonal (10-80-day) rainfall anomalies, China is divided into ten sub-regions. Different predictability sources were selected for each of the ten regions. The forecast skills are ranked for each region. Based on temporal correlation coefficient (TCC) and Gerrity skill score, useful skills are found for most parts of China at a 20-25-day lead. The southern China and the mid-lower reaches of Yangtze River Valley show the highest predictive skills, whereas southwestern China and Huang-Huai region have the lowest predictive skills. By combining forecast results from ten regional STPMs, the TCC distribution of 8-year (2003-2010) independent forecast for the entire China is investigated. The combined forecast results from ten STPMs show significantly higher skills than the forecast with just one single STPM for the entire China. Independent forecast examples of summer rainfall anomalies around the period of Beijing Olympic Games in 2008 and Shanghai World Expo in 2010 are presented. The result shows that the current model is able to reproduce the gross pattern of the summer intraseasonal rainfall over China at a 20-day lead. The present study provides, for the first time, a guide on the statistical extended-range forecast of summer rainfall anomalies for the entire China. It is anticipated that the ideas and methods proposed here will facilitate the extended-range forecast in China.

  3. The statistical extended-range (10-30-day) forecast of summer rainfall anomalies over the entire China

    Science.gov (United States)

    Zhu, Zhiwei; Li, Tim

    2016-03-01

    The extended-range (10-30-day) rainfall forecast over the entire China was carried out using spatial-temporal projection models (STPMs). Using a rotated empirical orthogonal function analysis of intraseasonal (10-80-day) rainfall anomalies, China is divided into ten sub-regions. Different predictability sources were selected for each of the ten regions. The forecast skills are ranked for each region. Based on temporal correlation coefficient (TCC) and Gerrity skill score, useful skills are found for most parts of China at a 20-25-day lead. The southern China and the mid-lower reaches of Yangtze River Valley show the highest predictive skills, whereas southwestern China and Huang-Huai region have the lowest predictive skills. By combining forecast results from ten regional STPMs, the TCC distribution of 8-year (2003-2010) independent forecast for the entire China is investigated. The combined forecast results from ten STPMs show significantly higher skills than the forecast with just one single STPM for the entire China. Independent forecast examples of summer rainfall anomalies around the period of Beijing Olympic Games in 2008 and Shanghai World Expo in 2010 are presented. The result shows that the current model is able to reproduce the gross pattern of the summer intraseasonal rainfall over China at a 20-day lead. The present study provides, for the first time, a guide on the statistical extended-range forecast of summer rainfall anomalies for the entire China. It is anticipated that the ideas and methods proposed here will facilitate the extended-range forecast in China.

  4. Monthly-scale palaeo-rainfall reconstructed using a Belizean stalagmite.

    Science.gov (United States)

    Ridley, H.; Baldini, J. U. L.; Macpherson, C. G.; Prufer, K. M.; Kennett, D. J.; Amserom, Y.

    2012-04-01

    Stable isotope variations and visible growth layers in a fast growing, U-Th dated, aragonitic stalagmite from southern Belize provide an extraordinarily high resolution proxy palaeo-rainfall record for the Central American Atlantic region over the last 1,400 years. The δ18O and δ13C of speleothem carbonate at this location appears to respond primarily to rainfall variability over the cave site. A surprising result is that annual δ13C cycles are present within the stalagmite, conceivably reflecting seasonality in rainfall. With a bi-monthly resolution the record allows the inference of palaeo-tropical cyclone events as well as intra-annual rainfall variations. The record is also sufficiently long as to lend itself to helping decipher long-term behavioural modes of the tropical Atlantic beyond the instrumental record. The annual variability in stalagmite growth rate over the last 1,400 years is feasibly recording ITCZ migration through time. This study therefore has important implications for deconvolving the Atlantic tropical cyclone record, while also increasing our understanding of the links between ENSO, the ITCZ, and Central American climate.

  5. [Seasonality of rotavirus infection in Venezuela: relationship between monthly rotavirus incidence and rainfall rates].

    Science.gov (United States)

    González Chávez, Rosabel

    2015-09-01

    In general, it has been reported that rotavirus infection was detected year round in tropical countries. However, studies in Venezuela and Brazil suggest a seasonal behavior of the infection. On the other hand, some studies link infection with climatic variables such as rainfall. This study analyzes the pattern of behavior of the rotavirus infection in Carabobo-Venezuela (2001-2005), associates the seasonality of the infection with rainfall, and according to the seasonal pattern, estimates the age of greatest risk for infection. The analysis of the rotavirus temporal series and accumulated precipitation was performed with the software SPSS. The infection showed two periods: high incidence (November-April) and low incidence (May-October). Accumulated precipitation presents an opposite behavior. The highest frequency of events (73.8% 573/779) for those born in the period with a low incidence of the virus was recorded at an earlier age (mean age 6.5 +/- 2.0 months) when compared with those born in the station of high incidence (63.5% 568/870, mean age 11.7 +/- 2.2 months). Seasonality of the infection and the inverse relationship between virus incidence and rainfall was demonstrated. In addition, it was found that the period of birth determines the age and risk of infection. This information generated during the preaccine period will be helpful to measure the impact of the vaccine against the rotavirus.

  6. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications

    Science.gov (United States)

    Husak, Gregory J.; Michaelsen, Joel C.; Funk, Christopher C.

    2007-01-01

    Evaluating a range of scenarios that accurately reflect precipitation variability is critical for water resource applications. Inputs to these applications can be provided using location- and interval-specific probability distributions. These distributions make it possible to estimate the likelihood of rainfall being within a specified range. In this paper, we demonstrate the feasibility of fitting cell-by-cell probability distributions to grids of monthly interpolated, continent-wide data. Future work will then detail applications of these grids to improved satellite-remote sensing of drought and interpretations of probabilistic climate outlook forum forecasts. The gamma distribution is well suited to these applications because it is fairly familiar to African scientists, and capable of representing a variety of distribution shapes. This study tests the goodness-of-fit using the Kolmogorov–Smirnov (KS) test, and compares these results against another distribution commonly used in rainfall events, the Weibull. The gamma distribution is suitable for roughly 98% of the locations over all months. The techniques and results presented in this study provide a foundation for use of the gamma distribution to generate drivers for various rain-related models. These models are used as decision support tools for the management of water and agricultural resources as well as food reserves by providing decision makers with ways to evaluate the likelihood of various rainfall accumulations and assess different scenarios in Africa. 

  7. Dynamics of monthly rainfall-runoff process at the Gota basin: A search for chaos

    Science.gov (United States)

    Sivakumar, B.; Berndtsson, R.; Olsson, J.; Jinno, K.; Kawamura, A.

    Sivakumar et al. (2000a), by employing the correlation dimension method, provided preliminary evidence of the existence of chaos in the monthly rainfall-runoff process at the Gota basin in Sweden. The present study verifies and supports the earlier results and strengthens such evidence. The study analyses the monthly rainfall, runoff and runoff coefficient series using the nonlinear prediction method, and the presence of chaos is investigated through an inverse approach, i.e. identifying chaos from the results of the prediction. The presence of an optimal embedding dimension (the embedding dimension with the best prediction accuracy) for each of the three series indicates the existence of chaos in the rainfall-runoff process, providing additional support to the results obtained using the correlation dimension method. The reasonably good predictions achieved, particularly for the runoff series, suggest that the dynamics of the rainfall-runoff process could be understood from a chaotic perspective. The predictions are also consistent with the correlation dimension results obtained in the earlier study, i.e. higher prediction accuracy for series with a lower dimension and vice-versa, so that the correlation dimension method can indeed be used as a preliminary indicator of chaos. However, the optimal embedding dimensions obtained from the prediction method are considerably less than the minimum dimensions essential to embed the attractor, as obtained by the correlation dimension method. A possible explanation for this could be the presence of noise in the series, since the effects of noise at higher embedding dimensions could be significantly greater than that at lower embedding dimensions.

  8. a Statistically Dependent Approach for the Monthly Rainfall Forecastfrom One Point Observations

    Science.gov (United States)

    Pucheta, J.; Patiño, D.; Kuchen, B.

    In this work an adaptive linear filter model in a autoregressive moving average (ARMA) topology for forecasting time series is presented. The time series are composed by observations of the accumulative rainfall every month during several years. The learning rule used to adjust the filter coefficients is mainly based on the gradient-descendent method. In function of the long and short term stochastic dependence of the time series, we propose an on-line heuristic law to set the training process and to modify the filter topology. The input patterns for the predictor filter are the values of the time series after applying a time-delay operator. Hence, the filter's output will tend to approximate the current value available from the data series. The approach is tested over a time series obtained from measures of the monthly accumulative rainfall from La Perla, Cordoba, Argentina. The performance of the presented approach is shown by forecasting the following 18 months from a hypothetical actual time for four time series of 102 data length.

  9. Decadal variability in snow depth anomaly over Eurasia and its association with all India summer monsoon rainfall and seasonal circulations

    CERN Document Server

    Singh, G P

    2003-01-01

    The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used in the computation of winter and spring snow depth anomalies over west (25 deg. E to 70 deg. E, 35 deg. N to 65 deg. N) and east (70 deg. E to 160 deg. E, 35 deg. N to 65 deg. N) Eurasia. It is noticed that winter snow depth anomaly over east Eurasia is positively correlated while west Eurasia is negatively correlated with subsequent Indian summer monsoon rainfall (ISMR). The DJF snow depth anomaly shows highest and inverse correlation coefficient (CC) with ISMR over a large area of west Eurasia in a recent period of study i.e. 1975-1995. On the basis of standardised winter (mean of December, January and February) snow depth anomaly over west Eurasia, the years 1966, 1968, 1979 and 1986 are identified as high snow years and the years 1961 and 1975 as low snow years. The characteristics of seasonal monsoon circulation features have been studied in detail during contrasting years of less (more) snow depth in winter/spring seasons f...

  10. Anomalies.

    Science.gov (United States)

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  11. Test results self-informativity properties annual dynamics of mean monthly air temperature anomalies

    Directory of Open Access Journals (Sweden)

    Nadezhda Aleksandrovna Vazhnova

    2016-11-01

    Full Text Available In this paper it is discussed the issues of methodology and the results of testing the possibilities of using the self- informatively properties in the series of the mean monthly air temperature anomalies (MMATA for the purposes of long-term forecasting of the thermal regime conditions on the example of Kazan Station, university. It is found that the prognostic informatively of the MMATA (for thermal conditions of July of the separately considered months is not statistically significant (missing since the previous June and in the earlier history, excluding the last 2 weeks of June, where the prognostic informatively is confirmed with the probability of ≥ 95%. The prognostic informatively of the mean monthly air temperature anomalies in relation to the thermal conditions of July rapidly increases with an increase in the accounted length of history of changes (preceding to the predicant in the mean monthly air temperature anomalies. It is shown that the filling of useful prognostic information takes place from April to June in relation to the conditions of Kazan. The accounting of self-informativity properties of the series of mean monthly air temperature anomalies has showed that the overall accuracy of the forecasts amounts to = 90%, at the general accuracy of random forecasts 0 = 74%, and at the methodical win = 16%. All these data suggest that the forecasts are at random level. Whereof we can conclude that the nonparametric discriminant analysis method is not always gives the positive results. Therefore, it is advisable to use more precise methods for the long-term weather forecasts, which give more acceptable forecast results with more accuracy.

  12. Transfer function modeling of the monthly accumulated rainfall series over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Vidal L.; Garcia, Jose A.; Serrano, Antonio; De la Cruz Gallego, Maria [Departamento de Fisica, Universidad de Extremadura, Badajoz (Spain)

    2002-10-01

    In order to improve the results given by Autoregressive Moving-Average (ARMA) modeling for the monthly accumulated rainfall series taken at 19 observatories of the Iberian Peninsula, a Discrete Linear Transfer Function Noise (DLTFN) model was applied taking the local pressure series (LP), North Atlantic sea level pressure series (SLP) and North Atlantic sea surface temperature (SST) as input variables, and the rainfall series as the output series. In all cases, the performance of the DLTFN models, measured by the explained variance of the rainfall series, is better than the performance given by the ARMA modeling. The best performance is given by the models that take the local pressure as the input variable, followed by the sea level pressure models and the sea surface temperature models. Geographically speaking, the models fitted to those observatories located in the west of the Iberian Peninsula work better than those on the north and east of the Peninsula. Also, it was found that there is a region located between 0 N and 20 N, which shows the highest cross-correlation between SST and the peninsula rainfalls. This region moves to the west and northwest off the Peninsula when the SLP series are used. [Spanish] Con el objeto de mejorar los resultados porporcionados por los modelos Autorregresivo Media Movil (ARMA) ajustados a las precipitaciones mensuales acumuladas registradas en 19 observatorios de la Peninsula Iberica se han usado modelos de funcion de transferencia (DLTFN) en los que se han empleado como variable independiente la presion local (LP), la presion a nivel del mar (SLP) o la temperatura de agua del mar (SST) en el Atlantico Norte. En todos los casos analizados, los resultados obtenidos con los modelos DLTFN, medidos mediante la varianza explicada por el modelo, han sido mejores que los resultados proporcionados por los modelos ARMA. Los mejores resultados han sido dados por aquellos modelos que usan la presion local como variable de entrada, seguidos

  13. Spatiotemporal monthly rainfall reconstruction via artificial neural network – case study: south of Brazil

    Directory of Open Access Journals (Sweden)

    A. O. Cardoso

    2007-04-01

    Full Text Available Climatological records users, frequently, request time series for geographical locations where there is no observed meteorological attributes. Climatological conditions of the areas or points of interest have to be calculated interpolating observations in the time of neighboring stations and climate proxy. The aim of the present work is the application of reliable and robust procedures for monthly reconstruction of precipitation time series. Time series is a special case of symbolic regression and we can use Artificial Neural Network (ANN to explore the spatiotemporal dependence of meteorological attributes. The ANN seems to be an important tool for the propagation of the related weather information to provide practical solution of uncertainties associated with interpolation, capturing the spatiotemporal structure of the data. In practice, one determines the embedding dimension of the time series attractor (delay time that determine how data are processed and uses these numbers to define the network's architecture. Meteorological attributes can be accurately predicted by the ANN model architecture: designing, training, validation and testing; the best generalization of new data is obtained when the mapping represents the systematic aspects of the data, rather capturing the specific details of the particular training set. As illustration one takes monthly total rainfall series recorded in the period 1961–2005 in the Rio Grande do Sul – Brazil. This reliable and robust reconstruction method has good performance and in particular, they were able to capture the intrinsic dynamic of atmospheric activities. The regional rainfall has been related to high-frequency atmospheric phenomena, such as El Niño and La Niña events, and low frequency phenomena, such as the Pacific Decadal Oscillation.

  14. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Mato Grosso do Sul State, Brazil

    Science.gov (United States)

    Teodoro, Paulo Eduardo; de Oliveira-Júnior, José Francisco; da Cunha, Elias Rodrigues; Correa, Caio Cezar Guedes; Torres, Francisco Eduardo; Bacani, Vitor Matheus; Gois, Givanildo; Ribeiro, Larissa Pereira

    2016-04-01

    The State of Mato Grosso do Sul (MS) located in Brazil Midwest is devoid of climatological studies, mainly in the characterization of rainfall regime and producers' meteorological systems and rain inhibitors. This state has different soil and climatic characteristics distributed among three biomes: Cerrado, Atlantic Forest and Pantanal. This study aimed to apply the cluster analysis using Ward's algorithm and identify those meteorological systems that affect the rainfall regime in the biomes. The rainfall data of 32 stations (sites) of the MS State were obtained from the Agência Nacional de Águas (ANA) database, collected from 1954 to 2013. In each of the 384 monthly rainfall temporal series was calculated the average and applied the Ward's algorithm to identify spatial and temporal variability of rainfall. Bartlett's test revealed only in January homogeneous variance at all sites. Run test showed that there was no increase or decrease in trend of monthly rainfall. Cluster analysis identified five rainfall homogeneous regions in the MS State, followed by three seasons (rainy, transitional and dry). The rainy season occurs during the months of November, December, January, February and March. The transitional season ranges between the months of April and May, September and October. The dry season occurs in June, July and August. The groups G1, G4 and G5 are influenced by South Atlantic Subtropical Anticyclone (SASA), Chaco's Low (CL), Bolivia's High (BH), Low Levels Jet (LLJ) and South Atlantic Convergence Zone (SACZ) and Maden-Julian Oscillation (MJO). Group G2 is influenced by Upper Tropospheric Cyclonic Vortex (UTCV) and Front Systems (FS). The group G3 is affected by UTCV, FS and SACZ. The meteorological systems' interaction that operates in each biome and the altitude causes the rainfall spatial and temporal diversity in MS State.

  15. Multimodel probabilistic prediction of 2 m-temperature anomalies on the monthly timescale

    Science.gov (United States)

    Ferrone, Alfonso; Mastrangelo, Daniele; Malguzzi, Piero

    2017-05-01

    The 2 m-temperature anomalies from the reforecasts of the CNR-ISAC and ECMWF monthly prediction systems have been combined in a multimodel super-ensemble. Tercile probability predictions obtained from the multimodel have been constructed using direct model outputs (DMO) and model output statistics (MOS), like logistic and nonhomogeneous Gaussian regression, for the 1990-2010 winter seasons. Verification with ERA-Interim reanalyses indicates that logistic regression gives the best results in terms of ranked probability skill scores (RPSS) and reliability diagrams for low-medium forecast probabilities. Also, it is argued that the logistic regression would not yield further improvements if a larger dataset was used.

  16. Relationship between summer rainfall anomalies and sub-seasonal oscillation intensity in the ChangJiang Valley in China

    Science.gov (United States)

    Li, Chunhui; Li, Tim; Gu, Dejun; Lin, Ailan; Zheng, Bin

    2015-06-01

    Sub-seasonal variability of summer (May-October) rainfall over the ChangJiang Valley exhibits two dominant timescales, one with a quasi-biweekly (QBW) period (10-20 days) and the other with an intraseasonal oscillation (ISO) period (20-60 days). A significant positive correlation (at a 99% confidence level) was found between the summer precipitation anomaly and the intensity of the QBW and ISO modes in the region. By examining the composite structure and evolution characteristics, we note that the QBW mode is characterized by a northwest-southeast oriented wave train pattern, moving southeastward. The perturbations associated with the ISO mode propagate northwestward in strong ISO years but southeastward in weak ISO years. A marked feature is the phase leading of low-level moisture to convection in both the QBW and ISO mode. When the summer rainfall is strong in the ChangJiang Valley, large-scale atmospheric conditions in the strong QBW/ISO activity region are characterized by deeper moist layer, convectively more unstable stratification and greater ascending motion. Such mean conditions favor the growth of the QBW and ISO perturbations. Thus, a significant positive correlation between the summer precipitation and the strength of sub-seasonal variability arises from the large-scale control of the summer mean flow to perturbations.

  17. Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management?

    Directory of Open Access Journals (Sweden)

    F. Fenicia

    2009-09-01

    Full Text Available The objective of this paper is to investigate the time variability of catchment characteristics in the Meuse basin through its effect on catchment response. The approach uses a conceptual model to represent rainfall-runoff behaviour of this catchment, and evaluates possible time-dependence of model parameters. The main hypothesis is that conceptual model parameters, although not measurable quantities, are representative of specific catchment attributes (e.g. geology, land-use, land management, topography. Hence, we assume that eventual trends in model parameters are representative of catchment attributes that may have changed over time. The available hydrological record involves ninety years of data, starting in 1911. During this period the Meuse catchment has undergone significant modifications. The catchment structural modifications, although documented, are not available as "hard-data". Hence, our results should be considered as "plausible hypotheses". The main motivation of this work is the "anomaly" found in the rainfall runoff behaviour of the Meuse basin, where ninety years of rainfall-runoff simulations show a consistent overestimation of the runoff in the period between 1930 and 1965. Different authors have debated possible causes for the "anomaly", including climatic variability, land-use change and data errors. None of the authors considered the way in which the land is used by for instance agricultural and forestry practises. This aspect influenced the model design, which has been configured to account for different evaporation demand of growing forest. As a result of our analysis, we conclude that the lag time of the catchment has decreased significantly over time, which we attribute to more intensive drainage and river training works. Furthermore, we hypothesise that forest rotation has had a significant impact on the evaporation of the catchment. These results contrast with previous studies, where the effect of land-use change on

  18. Association between premonsoonal SST anomaly field in the eastern Arabian Sea and subsequent monsoon rainfall over the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; RameshBabu, V.; Gopalakrishna, V.V.; Sarma, M.S.S.

    -September) summer monsoon rainfall over the central west coast of India. Premonsoonal warm SST anomaly seems to be mainly the result of higher atmospheric subsidence over the ocean and may not be considered as predictor for a good ensuing monsoon, emphasizing...

  19. The role of synoptic and intraseasonal anomalies on the life cycle of rainfall extremes over South America: non-summer conditions

    Science.gov (United States)

    Hirata, Fernando E.; Grimm, Alice M.

    2016-09-01

    Previous study showed that the interaction of synoptic disturbances with intraseasonal anomalies is important for heavy rainfall in the South Atlantic Convergence Zone and the La Plata basin during the austral summer. Here, we conduct similar analysis to study the evolution of rainfall extremes during austral spring (SON), fall (MAM) and winter (JJA). A relatively homogeneous region over southeastern South America, whose limits change little from season to season, is heavily affected by extreme precipitation events, as indicated by the value of the 95th percentile of daily rainfall, higher during the spring season (16.94 mm day-1) and lower in winter (13.79 mm day-1). From 1979 to 2013, extreme rainfall events are more frequent in spring (131 events) and less frequent in fall (112 events). Similar to summertime extreme events, synoptic-scale waves continue to be the main drivers of extreme precipitation over the region. The interaction between these waves and intraseasonal anomalies during the development of rainfall extremes over southeastern South America is observed especially during neutral ENSO and La Niña conditions. Warm ENSO phases tend to favor more frequent extremes in all three seasons and extreme events during El Niños are associated with synoptic waves, with no significant interaction with intraseasonal anomalies.

  20. ANALYSIS OF THE STATISTICAL BEHAVIOUR OF DAILY MAXIMUM AND MONTHLY AVERAGE RAINFALL ALONG WITH RAINY DAYS VARIATION IN SYLHET, BANGLADESH

    Directory of Open Access Journals (Sweden)

    G. M. J. HASAN

    2014-10-01

    Full Text Available Climate, one of the major controlling factors for well-being of the inhabitants in the world, has been changing in accordance with the natural forcing and manmade activities. Bangladesh, the most densely populated countries in the world is under threat due to climate change caused by excessive use or abuse of ecology and natural resources. This study checks the rainfall patterns and their associated changes in the north-eastern part of Bangladesh mainly Sylhet city through statistical analysis of daily rainfall data during the period of 1957 - 2006. It has been observed that a good correlation exists between the monthly mean and daily maximum rainfall. A linear regression analysis of the data is found to be significant for all the months. Some key statistical parameters like the mean values of Coefficient of Variability (CV, Relative Variability (RV and Percentage Inter-annual Variability (PIV have been studied and found to be at variance. Monthly, yearly and seasonal variation of rainy days also analysed to check for any significant changes.

  1. Detecting the Relationship Between Summer Rainfall Anomalies in Eastern China and the SSTA in the Global Domain with a New Significance Test Method

    Institute of Scientific and Technical Information of China (English)

    LU Chuhan; GUAN Zhaoyong; WANG Panxing; DUAN Mingkeng

    2009-01-01

    It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with sig-nificance tests as per the Bernoulli probability, model. Therefore, both the contemporaneous and lag correlations of summertime pre-cipitation R in any one of the three regions of Northern China (NC), the Changjiang-Huaihe River Valley (CHRV), and Southern China (SC) with the SSTA in the global domain have been tested in the present article, using our significance test method and the method proposed by Livezey and Chen (1983) respectively. Our results demonstrate that the contemporaneous correlations of sum-mer R in CHRV with the SSTA are larger than those in NC. Significant correlations of SSTA with CHRV R are found to be in some warm SST regions in the tropics, whereas those of SSTA with NC R, which are opposite in sign as compared to the SSTA-CHRV R correlations, are found to be in some regions where the mean SSTs are low. In comparison with the patterns of the contemporaneous correlations, the 1 to 12 month lag correlations between NC R and SSTA, and those between CHRV summer R and SSTA show simi-lar patterns, including the magnitudes and signs, and the spatial distributions of the coefficients. However, the summer rainfall in SC is not well correlated with the SSTA, no matter how long the lag interval is. The results derived from the observations have set up a relationship frame connecting the precipitation anomalies in NC, CHRV, and SC with the SSTA in the global domain, which is criti-cally useful for our understanding and predicting the climate variabilities in different parts of China Both NC and CHRV summer R are connected with El Nino events, showing a'--'pattern in an El Nino year and a'+ +'pattern in the subsequent year.

  2. Possible impacts of spring sea surface temperature anomalies over South Indian Ocean on summer rainfall in Guangdong-Guangxi region of China

    Science.gov (United States)

    Jin, Dachao; Guan, Zhaoyong; Huo, Liwei; Wang, Xudong

    2017-01-01

    Based on observational and reanalysis data for 1979-2015, the possible impacts of spring sea surface temperature anomalies (SSTA) over the South Indian Ocean on the inter-annual variations of summer rainfall in Guangdong and Guangxi Provinces (i.e., the Guangdong-Guangxi area, GG) were analysed in this study. The physical mechanism behind these impacts was explored. Two geographic regions over [65°E-95°E, 35°S-25°S] and [90°E-110°E, 20°S-5°S] were defined as the western pole region and the eastern pole region, respectively, for the GG summer precipitation (PGG)-related South Indian Ocean dipole SSTA pattern (R-SIODP). The difference between springtime SST anomalies averaged over the western pole region and that averaged over the eastern pole region was defined as the R-SIODP index. The correlation between the spring R-SIODP index and GG summer precipitation can reach up to 0.52. In the spring of positive R-SIODP anomaly, southerly winds over the western pole of the R-SIODP weaken, whereas the southeast trade winds over the eastern pole strengthen. By means of the wind-evaporation-SST feedback mechanism, the enhanced southeast trade winds can weaken the evaporation over the western pole of the R-SIODP and enhance the evaporation over the eastern pole. This results in a sustained positive SSTA in the western pole of the R-SIODP and a sustained negative SSTA in the eastern pole, whereby the distribution of the SSTAs maintains until summer. The SST dipole abnormally enhances the cross-equatorial airflow near 105°E, which intensifies the anomalous anti-cyclonic circulation over South China Sea at 850 hPa and simultaneously results in abnormal enhancement of water vapour transport to GG. Additionally, the SST dipole promotes abnormal divergence in the lower troposphere and abnormal convergence in the upper troposphere over the maritime continent (MC) region. Moreover, the low-level convergence in GG is enhanced, which results in abnormal enhancement of ascending

  3. ON THE PREDICTION OF TROPICAL CYCLONE LANDFALL AND INFLUENCE ON SOUTHERN CHINA USING MONTHLY OLR ANOMALIES FOR PRIME SUMMER

    Institute of Scientific and Technical Information of China (English)

    段丽; 蒋尚城

    2002-01-01

    With the OLR data, the landfall and activity of tropical cyclones (TC) in southern China over a 20-year period (1975~1994) are studied. The result shows that the variation of the monthly anomalous OLR is somewhat teleconnected with the TC activity in southern China. The former is used to predict short-term climate for the latter over months with frequent or no TC influence. To some extent, the relationship between the TC activity in southern China and the monthly mean OLR anomalies is dependent on the climatological location of the subtropical high in northwestern Pacific region.

  4. Monthly oceanic rainfall based on METH techniques: DMSP SSM/I V6 and SSMIS continuity

    Science.gov (United States)

    Chiu, L. S.; Gao, S.; Shin, D.-B.; Cho, Y.-J.; Adler, R. F.; Huffman, G.; Bolvin, D.; Nelkin, E.

    2012-04-01

    As part of the Global Precipitation Climatology Project (GPCP), our group have been producing oceanic rainfall over 2.5 and 5 degree boxes by applying the Microwave Emission brightness Temperature (Tb) Histogram, or METH technique to the Special Sensor Microwave Imager (SSM/I) data taken on board the Defense Meteorological Satellite Program (DMSP) satellite series. Recently, the rainfall series have been updated using the V6 SSM/I provided by RSS (Chiu and Chokngamwong., 2010). With the demise of the F15 SSM/I sensor, we examine the use of the SSMIS series to continue the DMSP time series. With its long duration, the DMSP satellite sensors constitute a unique data set capable of producing microwave-based products for climate studies. We compared the F13 SSM/I and F17 SSMIS for the period January 2008 - September 2009. The METH technique matches the histogram of Tb (twice 19V minus 22V) to a mixed-distribution of rain rates and estimates the parameters of the rain rate distribution. Mathematical convergence of the matching procedure is reached when a certain Chi-square threshold is reached. The important parameters are the Tb of the non-raining pixels (To) and the freezing level (FL) of the grid box considered. The sample size of the SSMIS is much larger than the SSM/I, hence the convergence criteria is relaxed by changing the Chi-square threshold. Preliminary results show a slight shift of the To (~0.8K). By adjusting To by a constant, the domain average SSMIS rain rates and FL are computed to within 2% and 1% of the SSM/I rain rates, respectively. Further investigation of the SSMIS METH rain rate will involve the comparison of the 19V and 22V and fine tuning the Chi-square parameter.

  5. ON STRONG SIGNALS OF MONTHLY PRECIPITATION ANOMALIES IN EARLY RAINING SEASON OF GUANGDONG AND CONCEPTUAL MODELS OF PREDICTION

    Institute of Scientific and Technical Information of China (English)

    林爱兰

    2002-01-01

    Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).

  6. Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management?

    NARCIS (Netherlands)

    Fenicia, F.; Savenije, H.H.G.; Avdeeva, Y.

    2009-01-01

    OA-Fund TU Delft The objective of this paper is to investigate the time variability of catchment characteristics in the Meuse basin through its effect on catchment response. The approach uses a conceptual model to represent rainfall-runoff behaviour of this catchment, and evaluates possible

  7. Anaesthetic Management of a 1-Month-Old Puppy Undergoing Lateral Thoracotomy for Vascular Ring Anomaly Correction

    Directory of Open Access Journals (Sweden)

    Olga Martin Jurado

    2011-01-01

    Full Text Available A 1-month-old male flat-coated retriever was anaesthetized for correction of oesophageal constriction caused by a vascular ring anomaly. Anaesthesia was uneventfully induced with intravenous fentanyl, diazepam, and propofol and maintained with isoflurane in oxygen and air. An intercostal block with bupivacaine and lidocaine was performed, and additional analgesia with an infusion of fentanyl was provided. Fluid therapy consisted in 5% glucose in lactated Ringer’s solution and hetastarch 6%, which proved adequate to maintain normoglycemia and normovolemia. A lateral thoracotomy was performed, and the ligamentum arteriosum was ligated. Intraoperatively, heart rate (HR varied between 120 and 180 beats min−1 without accompanying changes in blood pressure. No arrhythmias were observed or bleeding occurred. The dog recovered uneventfully. Postoperative analgesia consisted in fentanyl infusion adjusted to the patient's requirement and metamizol. This paper describes for the first time the use of balanced anaesthesia and multimodal analgesia in a paediatric dog undergoing thoracotomy.

  8. Rainfall Variability, Drought Characterization, and Efficacy of Rainfall Data Reconstruction: Case of Eastern Kenya

    Directory of Open Access Journals (Sweden)

    M. Oscar Kisaka

    2015-01-01

    Full Text Available This study examined the extent of seasonal rainfall variability, drought occurrence, and the efficacy of interpolation techniques in eastern Kenya. Analyses of rainfall variability utilized rainfall anomaly index, coefficients of variance, and probability analyses. Spline, Kriging, and inverse distance weighting interpolation techniques were assessed using daily rainfall data and digital elevation model using ArcGIS. Validation of these interpolation methods was evaluated by comparing the modelled/generated rainfall values and the observed daily rainfall data using root mean square errors and mean absolute errors statistics. Results showed 90% chance of below cropping threshold rainfall (500 mm exceeding 258.1 mm during short rains in Embu for one year return period. Rainfall variability was found to be high in seasonal amounts (CV = 0.56, 0.47, and 0.59 and in number of rainy days (CV = 0.88, 0.49, and 0.53 in Machang’a, Kiritiri, and Kindaruma, respectively. Monthly rainfall variability was found to be equally high during April and November (CV = 0.48, 0.49, and 0.76 with high probabilities (0.67 of droughts exceeding 15 days in Machang’a and Kindaruma. Dry-spell probabilities within growing months were high, (91%, 93%, 81%, and 60% in Kiambere, Kindaruma, Machang’a, and Embu, respectively. Kriging interpolation method emerged as the most appropriate geostatistical interpolation technique suitable for spatial rainfall maps generation for the study region.

  9. Long-range forecast of monthly rainfall over India during summer monsoon season using SST in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    Long-range forecasting of summer monsoon rainfall was reported through linear models by Delsole and Shukla3. They showed that minimum number of predictors are sufficient for accurate forecasts. Recent studies4,5 reported long-range prediction...

  10. Hydrological behaviour of the Nilgiri sub-watersheds as affected by bluegum plantations, part II. Monthly water balances at different rainfall and runoff probabilities

    Science.gov (United States)

    Sharda, V. N.; Samraj, P.; Chinnamani, S.; Lakshmanan, V.

    1988-11-01

    Frequency analyses of rainfall and runoff at Ootacamund (the Nilgiris) under conditions of natural grassland and savannah "Shola" land have been carried out. Availability of water at different probabilities during different months after conversion of natural grasslands into bluegum (eucalyptus) plantations has also been worked out. Investigations revealed that the maximum rainfall occurs during the month of July (298.2 mm at 50% chance) and the minimum is received during January (1.5 mm at 50% chance). On an average, the expected total flow and base flow under natural conditions of grasslands and "Shola" are 31% and 22% respectively of the expected rainfall of the region. The expected available total flow is maximum (45.8 mm at 50% chance) during the month of August out of which 31.18 mm is contributed by base flow. The minimum expected available water is observed during January-April (the lowest during March). Plantation of bluegum in natural grasslands further reduces water yield by about 23% (at 50% chance) during these months. These reductions in water yield during lean months may affect the water supply into the downstream hydroelectric reservoirs in the region. Hence, caution may have to be exercised while planning large-scale conversion of natural grasslands into bluegum plantations.

  11. 2011年我国夏季降水动力统计预测与异常成因%Causes and Dynamic-statistical Forecast of the Summer Rainfall Anomaly over China in 2011

    Institute of Scientific and Technical Information of China (English)

    赵俊虎; 杨杰; 封国林; 张世轩

    2013-01-01

    The large-scale rainfall over China in summer of 2011 is reviewed, the prediction results of dynamic-statistical objective quantitative (DSOQ) and dynamic-statistical diagnostic (DSD) methods are evaluated. Compared to the DSOQ, the anomaly correlation coefficient (ACC) and predictive score (PS) of which are 0. 12 and 70, the DSD method has obvious advantage in predicting skill by increasing the ACC and PS to 0. 25 and 75, respectively. Taking the middle and lower reaches of the Yangtze (MLRY) as an experiment region, the differences in predictive factors of these two methods are compared and the advantages of DSD method are analyzed. The probable causes of summer rainfall anomaly distribution in 2011 and the relevant circulation anomaly characteristics are also discussed, such as the blocking-high (BH) anomaly in middle-high latitudes and the western Pacific subtropical high (WPSH) anomaly in low latitudes. The results indicate that the abundant rainfall in June over the middle and lower reaches of the Yangtze and the uneven distribution of June-July-August (JJA) rainfall are the direct causes for the southerly rainbelt in the summer of 2011. And this is related to the BH activities, the intra-seasonal oscillations (ISO) of WPSH and the monthly different configurations between them. In June, the atmospheric circulations reveal two trough areas and one ridge area at the middle-high latitudes. The intensity and western boundary of the WPSH are normal, while the latitude of the ridge line is northerly. The southward cold air behind the trough converges with the northward warm wet airflow over MLRY, which causes substantial precipitation in this area. Compared with June, the atmospheric circulations in middle-high latitudes change into the two ridge areas and one trough area in July, the WPSH becomes weaker and its western boundary moves eastward, and the ridge line is more northward. These situations lead to stronger cold air than the warm wet airflow, resulting in

  12. Tropical stratospheric circulation and monsoon rainfall

    Science.gov (United States)

    Sikder, A. B.; Patwardhan, S. K.; Bhalme, H. N.

    1993-09-01

    Interannual variability of both SW monsoon (June September) and NE monsoon (October December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958 1986). Correlations of zonal wind anomalies to SW monsoon rainfall ( r=0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu. Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks.

  13. Evaluation of forecast skill of monthly rainfall over Northeast China using multi-models%多模式对东北地区月降水预测性能对比评估

    Institute of Scientific and Technical Information of China (English)

    李永生; 段春锋; 王莹

    2016-01-01

    基于中国、美国、欧洲和日本的4种气候模式对1983—2010年东北地区降水的回报试验结果,利用2011—2014年东北地区业务应用的结果和国家气象信息中心提供的东北地区172个气象站的观测资料,采用距平相关系数(ACC)、趋势异常综合评分(Ps)和距平符号一致率(Pc)3种定量方法对比评估了4种模式对东北地区月降水的预测性能。结果表明:EC模式和CFSv 2模式与BCC模式和TCC模式相比,EC模式和CFSv 2模式对东北地区月降水的总体预测效果较好,具有一定的预测技巧。从空间上来看,CFSv 2模式各月Pc的分布存在较明显的差异,模式仍有较大的改进空间。CFSv 2模式对东北地区初夏典型旱涝年具有一定的预测能力,对典型涝年的预测效果优于典型旱年。%The prediction skill of four climate models for monthly rainfall over Northeast China was evaluated using three qualitative evaluation methods,i.e.,anomaly correlation coefficient (ACC),trend anomaly inspection evalu-ation (Ps)and anomaly symbol consistency rate (Pc).Many data were used in this study,including 172 meteoro-logical stations over Northeast China supplied by the National Meteorological Information Center,the hindcast ex-perimental results of rainfall over Northeast China from 1983 to 2010 according to four climate models from Chi-na,America,Japan and Europe,and the operational application results over Northeast China from 201 1 to 2014. The results indicate that the monthly rainfall prediction skills of EC (European Center for Medium-Range Weather Forecasts)and CFSv 2 (Coupled Forecast System Model Version 2)models are better than those of BCC (Bei-jing Climate Center)and TCC (Tokyo Climate Center)models.Looking at the spatial distribution,there is a sig-nificant difference in the distribution of each monthly Pc for CFSv 2 model,indicating that this model has a big space for its improvement.The CFSv 2 model has

  14. Avances en el pronóstico climático de las anomalías de lluvia en la Región Pampeana Advances in the climatic forecast of rainfall anomalies in the Pampa Region

    Directory of Open Access Journals (Sweden)

    Juan C. Labraga

    2011-12-01

    Full Text Available Los modelos globales de la circulación general de la atmósfera (MCGA son capaces de simular anomalías climáticas estadísticamente significativas de escala estacional o mayor, asociadas con anomalías en la temperatura de la superficie del mar. Los MCGA pueden estimar efectivamente el signo y la probabilidad de tales anomalías climáticas cuando su extensión es varias veces mayor que la resolución espacial del modelo. En este trabajo se presentan algunos avances en la estimación de las anomalías de la lluvia en 22 localidades de la Región Pampeana Argentina mediante downscaling estadístico de la información producida por un ensamble de veinte simulaciones con el MCGA CSIRO-9, prescribiendo la temperatura de la superficie del mar de acuerdo con los valores diarios observados en el período 1987-1998. El downscaling estadístico de la lluvia produjo una mayor correlación con las observaciones locales que los datos de lluvia del MCGA interpolados sobre cada sitio. Los resultados de un Análisis de las Componentes Principales aplicado a los datos observados y estimados indican que este método de downscaling permite discernir áreas con diferente comportamiento de la lluvia dentro de la región de estudio.Atmospheric general circulation models (AGCM are able to simulate statistically significant climate anomalies of seasonal or larger time-scales, associated with anomalies in the sea surface temperature. AGCMs can effectively estimate the sign and probability of such climate anomalies whenever their extent is several times greater than the spatial resolution of the model. Some progress attained in the estimation of rainfall anomalies in 22 sites of the Pampa Region, Argentina, by means of statistical downscaling of the output from an AGCM are presented in this work. Downscaling models were based in the multiple lineal regression method. Climatic anomalies of the atmospheric independent variables required in the rainfall downscaling

  15. Influence of rainfalls on heat and steam fluxes of fumarolic zones: Six months records along the Ty fault (Soufrière of Guadeloupe, Lesser Antilles)

    Science.gov (United States)

    Gaudin, Damien; Finizola, Anthony; Delcher, Eric; Beauducel, François; Allemand, Pascal; Delacourt, Christophe; Brothelande, Elodie; Peltier, Aline; Di Gangi, Fabio

    2015-09-01

    Fumarolic zones are permeable areas where both steam and heat are expelled to the atmosphere. Surface fluxes and flows, which are representative of the intensity of the hydrothermal circulation in depth, can be monitored by thermometers, thermal infrared cameras, spectrometers, or condensers. However, the superficial activity of fumarolic zones can be modified by the meteorological conditions, in particular the rainfalls, which might result in erroneous estimations. From this perspective, we developed a set of physical equations to quantify the effects of rainfalls on the thermal behavior of fumarolic zones. Results were faced to continuous measurements achieved at the Ty fault fumarolic zone (La Soufrière volcano, Guadeloupe, Lesser Antilles) during six months in 2010, using six vertical series of thermometers measuring the heat transfer in the ground and one condenser measuring the rising steam flux. Results demonstrate that in the absence of rainfalls, heat and steam flux reach an equilibrium that is representative of the geothermal flux in depth. Conversely, after the rainfalls, the cooling of the ground provokes a deepening of the condensation level. The related soil temperature drop can be estimated by computing the heat required to warm the infiltrated water up to boiling temperature while the recovery rate is directly linked to the geothermal flux. Our observations allow defining in which conditions flux are at steady state, but also to build a first-order numerical model allowing estimating both the physical parameters of the ground (thermal conductivity, precipitation efficiency coefficient and surface flux constant) and the long-term thermal behavior of the hydrothermal system. In particular, our results predict that the hydrothermal activity must vanish on the zones where the geothermal flux drops under a certain threshold (60 W/m2 at La Soufrière). The existence of this limit may have strong implications for the precipitation rate of minerals and the

  16. Dynamical forecast vs Ensemble Streamflow Prediction (ESP): how sensitive are monthly and seasonal hydrological forecasts to the quality of rainfall drivers?

    Science.gov (United States)

    Tanguy, Maliko; Prudhomme, Christel; Harrigan, Shaun; Smith, Katie

    2017-04-01

    Seasonal forecasting of hydrological extremes is challenging for the hydro-meteorological modelling community, and the performance of hydrological forecasts at lead times over 1 month is still poor especially for catchments with limited hydrological memory. A considerable amount of effort is being invested within the meteorological community to improve dynamic meteorological forecasting which can then be used to drive hydrological models to produce physically-driven hydrological forecasts. However, currently for the UK, these meteorological forecasts are being produced at 1 month or seasonal time-step, whereas hydrological models often require daily or sub-daily time-steps. A simpler way to get seasonal forecasts is to use historical climate data to drive hydrological models using Ensemble Streamflow Prediction (ESP). This gives a range of possible future hydrological status given known initial conditions, but it does not contain any information on the future dynamic of the atmosphere. The error is highly dependent on the type of catchment, but ESP is an improvement compared to simply using climatology of river flows, especially in groundwater dominated catchments. The objective of this study is to find out how accurate the seasonal rainfall forecast has to be (in terms of total rainfall and temporal distribution) for the dynamical seasonal forecast to beat ESP. To this aim, we have looked at the sensitivity of hydrological models to the quality of driving rainfall input, proxy of 'best possible' forecasts. Study catchments representative of the range of UK's hydro-climatic conditions were selected. For these catchments, synthetic rainfall time series derived from observed data were created by increasingly degrading the data. The number of rainy days, their intensity and their sequencing were artificially modified to analyse which of these characteristics is most important to get a better hydrological forecast using a simple lumped hydrological model (GR4J), and

  17. Sampling Errors in Monthly Rainfall Totals for TRMM and SSM/I, Based on Statistics of Retrieved Rain Rates and Simple Models

    Science.gov (United States)

    Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.

  18. Intraseasonal Variability of Summer Monsoon Rainfall and Droughts over Central India

    Science.gov (United States)

    Shrivastava, Sourabh; Kar, Sarat C.; Sharma, Anu Rani

    2017-02-01

    Rainfall over Madhya Pradesh (MP) in central India has large intra-seasonal variability causing droughts and floods in many years. In this study, rainfall variability in daily and monthly scale over central India has been examined using observed data. Consistency among various datasets such as rainfall, surface temperature, soil moisture and evapotranspiration has been examined. These parameters are from various different sources and critical for drought monitoring and prediction. It is found that during weak phases of monsoon, central India receives deficit rainfall with weaker monsoon circulation. This phase is characterized by an anticyclonic circulation at 850 hPa centered on MP. The EOF analysis of daily rainfall suggests that the two leading modes explain about 23-24% of rainfall variability in intraseasonal timescale. These two modes represent drought/flood conditions over MP. Relationship of weak phases of rainfall over central India with real-time multivariate (RMM) indices of Madden Julian Oscillation (MJO) has been examined. It is found that RMM-6, RMM-7, RMM-1 and RMM-2 describe the weak monsoon conditions over central India. However, frequency of drought occurrence over MP is more during RMM-7 phase. Surface temperature increases by about 0.5°-1° during weak phases of rainfall over this region. Soil moisture and evapotranspiration gradually reduce when rainfall reduces over the study region. Soil moisture and evapotranspiration anomalies have positive pattern during good rainfall events over central India and gradually reduce and become negative anomalies during weak phases.

  19. A map-based South Pacific rainfall climatology

    Science.gov (United States)

    Lorrey, A.; Diamond, H.; Renwick, J.; Salinger, J.; Gergis, J.; Dalu, G.

    2008-12-01

    The lives of more than four million people that reside in the South Pacific are greatly affected by rainfall variability. This region is subjected to large rainfall anomalies on seasonal timescales due to tropical cyclone occurrences, ENSO activity, and the AAO. Regional climate anomalies are also dictated by the IPO on multi- decadal scales that alter the motions of large-scale circulation features like the South Pacific Convergence Zone (SPCZ). Strong climate change impacts are anticipated for this region, so gauging the severity of rainfall variations that can occur are paramount for implementing appropriate climate change adaptation measures. Lack of historical rainfall records and documentation of other climate data hinders our current understanding of South Pacific climate variability. Climate data rescue activities are currently aimed at recovering, archiving, and digitising this information to rectify this issue. This research aims to examine the rainfall database administered by the Island Climate Update (ICU) project, which is contributed to by all Pacific Island national meteorological services (NMS), Meteo-France (New Caledonia and French Polynesia), NIWA (New Zealand), NOAA (USA), the IRI (USA), and the Bureau of Meteorology (Australia). Monthly rainfall totals for all stations in the ICU database were assessed, and allowed construction of master rainfall chronologies for all or portions of the major South Pacific Island nations. Climatic norms were then calculated over common time periods, and monthly-resolved rainfall anomaly maps for the South Pacific covering 1951-2008 were undertaken. Immediate benefits of this exercise have pointed out holes in the rainfall network that can be specifically targeted for data rescue in the near future, which can be achieved by providing financial assistance to Pacific Island NMSs. In addition, there is ample scope to extend the rainfall anomaly map time series into the early 1900s using a spatially degraded data

  20. Multi-scale cyclone activity in the Changjiang River-Huaihe River valleys during spring and its relationship with rainfall anomalies

    Science.gov (United States)

    Qin, Yujing; Lu, Chuhan; Li, Liping

    2017-02-01

    Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-Huaihe River valleys (CHV) were developed. We studied the characteristics of the multi-scale cyclone activity that affects CHV and its relationship with rainfall during spring since 1979. The results indicated that the automated identification algorithm for cyclones proposed in this paper could intuitively identify multi-scale cyclones that affect CHV. The algorithm allows for effectively describing the shape and coverage area of the closed contours around the periphery of cyclones. We found that, compared to the meso- and sub-synoptic scale cyclone activities, the synoptic-scale cyclone activity showed more intimate correlation with the overall activity intensity of multi-scale CHV cyclones during spring. However, the frequency of occurrence of sub-synoptic scale cyclones was the highest, and their effect on changes in CHV cyclone activity could not be ignored. Based on the area of impact and the depth of the cyclones, the sub-synoptic scale, synoptic scale and comprehensive cyclone intensity indices were further defined, which showed a positive correlation with rainfall in CHV during spring. Additionally, the comprehensive cyclone intensity index was a good indicator of strong rainfall events.

  1. Parenting an infant with a congenital anomaly: An exploratory study on patterns of adjustment from diagnosis to six months post birth.

    Science.gov (United States)

    Fonseca, Ana; Nazaré, Bárbara; Canavarro, Maria Cristina

    2014-06-01

    The present study examined psychological adjustment in parents of infants with congenital anomalies (CAs), focusing on the interval from the disclosure of the diagnosis to six months after the infant's birth and considering the effects of the parent's gender and the timing of diagnosis (pre- vs postnatal). Within-group diversity was also examined by identifying distinct patterns of individual adjustment over time. Parents of 43 infants (43 mothers and 36 fathers) with a pre- or postnatal diagnosis of a CA answered questionnaires assessing psychological distress and quality of life one month after the disclosure of the diagnosis and six months after the infant's birth. Results showed a significant reduction in psychological distress and a significant increase in physical quality of life over time, for both parents, regardless of the timing of diagnosis. In all, 57% of parents presented a pattern of recovery from diagnosis to six months post birth and 26.6% presented a pattern of resilience. However, 15.2% of parents showed chronic adjustment difficulties. Findings suggest that most parents tend to adjust to their infant's CA, although some experienced difficulties and should be targeted for specialised counselling. Both members of the couple should be acknowledged, as both experience similar patterns of adjustment.

  2. Variability of rainfall in Suriname and the relation with ENSO-SST and TA-SST

    Directory of Open Access Journals (Sweden)

    R. J. Nurmohamed

    2006-01-01

    Full Text Available Spatial correlations in the annual rainfall anomalies are analyzed using principle component analyses (PCA. Cross correlation analysis and composites are used to measure the influence of sea surface temperatures anomalies (SSTAs in the tropical Atlantic and tropical Pacific Ocean with the seasonal rainfall in Suriname. The spatial and time variability in rainfall is mainly determined by the meridional movement of the Inter-tropical Convergence Zone (ITCZ. Rainfall anomalies tend to occur fairly uniformly over the whole country. In December-January (short wet season, there is a lagged correlation with the SSTAs in the Pacific region (clag3Nino1+2=-0.63. The strongest correlation between the March-May rainfall (beginning long wet season and the Pacific SSTAs is found with a correlation coefficient of ckNino1+2=0.59 at lag 1 month. The June-August rainfall (end part of long wet season shows the highest correlation with SSTAs in the TSA region and is about c=-0.52 for lag 0. In the September-November long dry season there is also a lagged correlation with the TSA SSTAs of about clag3=0.66. The different correlations and predictors can be used for seasonal rainfall predictions.

  3. An East Asian Subtropical Summer Monsoon Index and Its Relationship to Summer Rainfall in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; ZHOU Zijiang

    2009-01-01

    Using the monthly mean NCEP/NCAR reanalysis data and the monthly rainfall observations at 160 rain gauge stations of China during 1961-1999, and based on major characteristics of the atmospheric circulation over East Asia and the western Pacific, a simple index for the East Asian subtropical summer monsoon (EASSM) is defined. The relationship between this index and summer rainfall in China and associated circulation features are examined. A comparison is made between this index and other monsoon indices. The results indicate that the index defined herein is reflective of variations of both the thermal low pressure centered in Siberia and the subtropical ridge over the western Pacific. It epitomizes the intensity of the EASSM and the variability of summer rainfall along the Yangtze River. Analysis shows that the Siberian low has a greater effect on the rainfall than the subtropical ridge, suggesting that the summer rainfall variability over the eastern parts of China is to a large extent affected by anomalies of the atmospheric circulation and cold air development in the midlatitudes. Taking into account of the effects of both the Siberian low and the subtropical ridge can better capture the summer rainfall anomalies of China. The index exhibits interannual and decadai variabilities, with high-index values occurring mainly in the 1960s and 1970s and low-index values in the 1980s and 1990s. When the EASSM index is low, the Siberian low and the subtropical ridge are weaker, and northerly wind anomalies appear at low levels over the midlatitudes and subtropics of East Asia, whereas southwesterly wind anomalies dominate in the upper troposphere over the tropics and subtropics of Asia and the western Pacific. The northerly wind anomalies bring about frequent cold air disturbances from the midlatitudes of East Asia, strengthening the convergence and ascending motions along the Meiyu front, and result in an increase of summer rainfall over the Yangtze River.

  4. Coupled Modes of Rainfall over China and the Pacific Sea Surface Temperature in Boreal Summertime

    Institute of Scientific and Technical Information of China (English)

    LI Chun; MA Hao

    2011-01-01

    In this study,monthly NCEP/NCAR reanalysis data and NOAA ERSST as well as observed precipitation data from 160 stations in China were used to investigate coupled modes affecting the rainfall over China and sea surface temperature (SST) in the Pacific during boreal summertime based on singular value decomposition (SVD) method.The SVD analysis revealed three remarkable coupled modes:rainfall over North China associated with an ENSO-like SST pattern (ENSO NC),rainfall over the Yangtze River valley associated with SST anomalies in the western tropical Pacific (WTP-YRV),and rainfall over the Ycllow River loop valley associated with tropical Pacific meridional mode-like SST pattern (TPMM-YRLV).These coupled SVD modes appear robust and closely correlated with the single field,Furthermore,the covariabilities among of the three coupled modes have different characteristics at the decadal time scale.In addition,the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed.For the ENSO-NC mode,anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there.For the WTP-YRV mode,East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there.The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal,wave-train-like,atmospheric teleconnection.

  5. The role of satisfaction with social support in perceived burden and stress of parents of six-month-old infants with a congenital anomaly: Actor and partner effects.

    Science.gov (United States)

    Fonseca, Ana; Nazaré, Bárbara; Canavarro, Maria Cristina

    2014-06-01

    This exploratory study examined the role of satisfaction with support from family and friends on the burden and stress of parents of infants with a congenital anomaly (CA). The effects of social support were examined within the couple (actor and partner effects). A total of 36 couples whose six-month-old infant has a CA participated in this study. The parents completed questionnaires regarding satisfaction with support, burden (Impact on Family Scale - Revised), and parenting stress (Parenting Stress Index). The results showed that fathers directly benefited from the support they received from friends in reducing their burden, while mothers only indirectly benefited from it through the father's adjustment. The pattern was different for stress: mothers directly benefited from the support they received from their family in reducing their stress levels, while fathers benefited both directly from the support they received from friends and indirectly from the support that their partners received from family. These results highlight that (1) the different support needs of mothers and fathers (due to their different roles during transition to parenthood) and (2) the diffusion of benefits of social support within the couple should be taken into account when developing strategies to promote support to families of six-month-old infants with a CA.

  6. El-Niño southern oscillation and rainfall erosivity in the headwater region of the Grande River Basin, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    C. R. Mello

    2011-12-01

    Full Text Available Relationships between regional climate and oceanic and atmospheric anomalies are important tools in order to promote the development of models for predicting rainfall erosivity, especially in regions with substantial intra-annual variability in the rainfall regime. In this context, this work aimed to analyze the rainfall erosivity in headwaters of Grande River Basin, Southern Minas Gerais State, Brazil. This study considered the two most representative environments, the Mantiqueira Range (MR and Plateau of Southern Minas Gerais (PSM. These areas are affected by the El Nino Southern Oscillation (ENSO indicators Sea Surface Temperature (SST for Niño 3.4 Region and Multivariate ENSO Index (MEI. Rainfall erosivity was calculated for individual rainfall events from January 2006 to December 2010. The analyses were conducted using the monthly data of ENSO indicators and the following rainfall variables: rainfall erosivity (EI30, rainfall depth (P, erosive rainfall depth (E, number of rainfall events (NRE, number of erosive rainfall events (NEE, frequency of occurrence of an early rainfall pattern (EP, occurrence of late rainfall pattern (LP and occurrence of intermediate rainfall patter (IP. Pearson's coefficient of correlation was used to evaluate the relationships between the rainfall variables and SST and MEI. The coefficients of correlation were significant for SST in the PSM sub-region. Correlations between the rainfall variables and negative oscillations of SST were also significant, especially in the MR sub-region, however, the Person's coefficients were lesser than those obtained for the SST positive oscillations. The correlations between the rainfall variables and MEI were also significant but lesser than the SST correlations. These results demonstrate that SST positive oscillations play a more important role in rainfall erosivity, meaning they were more influenced by El-Niño episodes. Also, these results have shown

  7. 3个月平均气温距平的CCA预报方法%CCA FORECAST SCHEME OF 3-MONTH MEAN TEMPERATURE ANOMALY

    Institute of Scientific and Technical Information of China (English)

    余金波; 吴洪宝

    2001-01-01

    A statistical model is CCA-designed to forecast 3-month mean temperature anomaly in China,which is estimated by using cross-verification scheme,indicating that the skill decreases slowly with the increased leading time intervals;higher skills are found for quasi-global surface temperature as a predictor;it's easy to predict JAS temperature and hard to deal with OND analog.Some meaningful results are obtained from the forecast skill analysis.%用根据CCA方法设计的一个统计预报模式对我国3个月平均气温距平进行预报试验,并用交叉检验方法进行估计。结果表明:预报技巧随提前时间增长而减小得较少;用全球表面温度作预报因子有较高的预报技巧;7、8、9月3个月较易预报,而10、11、12月3个月较难预报。

  8. An assessment of El Niño and La Niña impacts focused on monthly and seasonal rainfall and extreme dry/precipitation events in mountain regions of Colombia and México

    Science.gov (United States)

    Pinilla Herrera, María Carolina; Andrés Pinzón Correa, Carlos

    2016-03-01

    The influence of El Niño and La Niña on monthly and seasonal rainfall over mountain landscapes in Colombia and México was assessed based on the Oceanic Niño Index (ONI). A statistical analysis was develop to compare the extreme dry/precipitation events between El Niño, La Niña and Neutral episodes. For both areas, it was observed that El Niño and La Niña episodes are associated with important increases or decreases in rainfall. However, Neutral episodes showed the highest occurrence of extreme precipitation/dry events. For a better understanding of the impact of El Niño and La Niña on seasonal precipitation, we did a compound and a GIS analyses to define the high/low probability of above, below or normal seasonal precipitation under El Niño, La Niña and cold/warm Neutral episodes. In San Vicente, Colombia the below-normal seasonal rainfall was identified during El Niño and Neutral episodes in the dry season JJA. In this same municipality we also found above-normal seasonal rainfall during La Niña and Neutral episodes, especially in the dry season DJF. In Tancítaro México the below-normal seasonal rainfall was identified during La Niña winters (DJF) and El Niño summers (JJA), the above-normal seasonal rainfall was found during La Niña summers (JJA) and El Niño winters (DJF).

  9. HOW STRONG IS THE RELATIONSHIP BETWEEN RAINFALL VARIABILITY AND CAATINGA PRODUCTIVITY? A CASE STUDY UNDER A CHANGING CLIMATE.

    Science.gov (United States)

    Salimon, Cleber; Anderson, Liana

    2017-05-22

    Despite the knowledge of the influence of rainfall on vegetation dynamics in semiarid tropical Brazil, few studies address and explore quantitatively the various aspects of this relationship. Moreover, Northeast Brazil is expected to have its rainfall reduced by as much as 60% until the end of the 21st Century, under scenario AII of the IPCC Report 2010. We sampled and analyzed satellite-derived monthly rainfall and a vegetation index data for 40 sites with natural vegetation cover in Paraíba State, Brazil from 2001 to 2012. In addition, the anomalies for both variables were calculated. Rainfall variation explained as much as 50% of plant productivity, using the vegetation index as a proxy, and rainfall anomaly explained 80% of the vegetation productivity anomaly. In an extreme dry year (2012), with 65% less rainfall than average for the period 2001-2012, the vegetation index decreased by 25%. If such decrease persists in a long term trend in rainfall reduction, this could lead to a disruption in this ecosystem functioning and the dominant vegetation could become even more xeric or desert-like, bringing serious environmental, social and economical impacts.

  10. Reasonability Analysis of Chaotic Identification of Monthly Rainfall Series%月降雨序列的混沌判定的合理性分析

    Institute of Scientific and Technical Information of China (English)

    路剑飞; 陈子燊

    2011-01-01

    针对目前月降雨序列混沌特性研究中存在的问题,以广东省西江流域高要站月降雨序列为例,运用功率谱方法、主成分分析法、饱和关联维数法、C-C方法进行了混沌特性的判定及特征参数的求取,同时分析了数据长度和噪声对混沌研究的影响.研究结果表明,利用功率谱方法进行混沌判定时,单纯的根据连续多峰的噪声背景作为判定混沌存在的依据并不可靠;饱和关联维数法仅从能量角度对混沌序列进行判定,此外,对混沌序列进行滤波会导致此法判定结果的稳健性降低,C-C方法证明了其计算结果的可靠性;为计算出相对稳定的饱和关联维D2,计算数据的长度至少应为450个点;递归图及相应的各种定量判定标准验证了改进的双小波空域降噪方法可有效去除混沌序列中噪声的影响.%A discussion is conducted due to several problems presented in chaotic research of monthly rainfall series.As an example, monthly precipitation data of Gaoyao Station in West River basin in Guangdong Province is utilized for chaotic identification and calculation of characteristic parameters via power spectrum method, PCA, G-P Algorithm and C-C method.Impacts of data length and noise in the dataset are also studied.The results show that it is not reliable to judge a chaotic feature reflected on the power spectrum as successive multi-peaks; although chaotic series and noise can be distinguished directly with PCA method,it can only be held in the way of energy; besides, filtering process on chaotic series will make identification results derived from PCA method unstable; embedded parameters calculated with C-C method prove the validity of results from G-P Algorithm; take dataset used in this paper for example, a relatively stable D2 can be calculated on the premise that at least 450 data points are considered; recurrence plot and corresponding quantitative analysis indices validate effectiveness of

  11. Spatial and temporal variability of rainfall in the Nile Basin

    Directory of Open Access Journals (Sweden)

    C. Onyutha

    2014-10-01

    Full Text Available Spatio-temporal variability in annual and seasonal rainfall totals were assessed at 37 locations of the Nile Basin in Africa using quantile perturbation method. To get insight into the spatial difference in rainfall statistics, the stations were grouped based on the pattern of the long-term mean of monthly rainfall and that of temporal variability. To find the origin of the driving forces for the temporal variability in rainfall, correlation analyses were carried out using global monthly sea level pressure and surface temperature. Further investigations to support the obtained correlations were made using a total of 10 climate indices. It was possible to obtain 3 groups of stations; those within the equatorial region (A, Sudan and Ethiopia (B, and Egypt (C. For group A, annual rainfall was found to be below (above the reference during the late 1940s to 1950s (1960s to mid 1980s. Conversely for groups B and C, the period 1930s to late 1950s (1960s to 1980s was characterized by anomalies being above (below the reference. For group A, significant linkages were found to Niño 3, Niño 3.4 and the North Atlantic and Indian Ocean drivers. Correlations of annual rainfall of group A with Pacific Ocean-related climate indices were inconclusive. With respect to the main wet seasons, the June to September rainfall of group B has strong connection to the influence from the Indian Ocean. For the March to May (October to February rainfall of group A (C, possible links to the Atlantic and Indian Oceans were found.

  12. Variation in stable isotope ratios of monthly rainfall in the Douala and Yaounde cities, Cameroon: local meteoric lines and relationship to regional precipitation cycle

    Science.gov (United States)

    Wirmvem, Mengnjo Jude; Ohba, Takeshi; Kamtchueng, Brice Tchakam; Taylor, Eldred Tunde; Fantong, Wilson Yetoh; Ako, Ako Andrew

    2017-09-01

    Hydrogen (D) and oxygen (18O) stable isotopes in precipitation are useful tools in groundwater recharge and climatological investigations. This study investigated the isotopes in rainfall during the 2013 and 2014 hydrological years in the Douala and Yaounde urban cities. The objectives were to generate local meteoric water lines (LMWLs), define the spatial-temporal variations of the isotopes in rainwater and their relationship to the regional precipitation cycle, and determine the factors controlling the isotopic variation. The LWMLs in Douala and Yaounde were δD = 7.92δ18O + 12.99 and δD = 8.35δ18O + 15.29, respectively. The slopes indicate isotopic equilibrium conditions during rain formation and negligible evaporation effect during rainfall. Precipitation showed similar wide ranges in δ18O values from -5.26 to -0.75 ‰ in Douala and -5.8 to +1.81 ‰ in Yaounde suggesting a common moisture source from the Atlantic Ocean. Enriched weighted mean δ18O (wδ18O) values during the low pre- and post-monsoon showers coincided with low convective activity across the entire region. Enriched isotopic signatures also marked the West African monsoon transition phase during each hydrological year. Abrupt wδ18O depletion after the transition coincided with the monsoon onset in the region. Peak periods of monsoonal rainfall, associated with high convective activities, were characterised by the most depleted wδ18O values. Controls on isotopic variations are the amount effect and moisture recycling. The stable isotope data provide a tool for groundwater recharge studies while the isotopic correlation with regional rainfall cycle demonstrate their use as markers of moisture circulation and detecting climatic changes in precipitation.

  13. Variation in stable isotope ratios of monthly rainfall in the Douala and Yaounde cities, Cameroon: local meteoric lines and relationship to regional precipitation cycle

    Science.gov (United States)

    Wirmvem, Mengnjo Jude; Ohba, Takeshi; Kamtchueng, Brice Tchakam; Taylor, Eldred Tunde; Fantong, Wilson Yetoh; Ako, Ako Andrew

    2016-04-01

    Hydrogen (D) and oxygen (18O) stable isotopes in precipitation are useful tools in groundwater recharge and climatological investigations. This study investigated the isotopes in rainfall during the 2013 and 2014 hydrological years in the Douala and Yaounde urban cities. The objectives were to generate local meteoric water lines (LMWLs), define the spatial-temporal variations of the isotopes in rainwater and their relationship to the regional precipitation cycle, and determine the factors controlling the isotopic variation. The LWMLs in Douala and Yaounde were δD = 7.92δ18O + 12.99 and δD = 8.35δ18O + 15.29, respectively. The slopes indicate isotopic equilibrium conditions during rain formation and negligible evaporation effect during rainfall. Precipitation showed similar wide ranges in δ18O values from -5.26 to -0.75 ‰ in Douala and -5.8 to +1.81 ‰ in Yaounde suggesting a common moisture source from the Atlantic Ocean. Enriched weighted mean δ18O (wδ18O) values during the low pre- and post-monsoon showers coincided with low convective activity across the entire region. Enriched isotopic signatures also marked the West African monsoon transition phase during each hydrological year. Abrupt wδ18O depletion after the transition coincided with the monsoon onset in the region. Peak periods of monsoonal rainfall, associated with high convective activities, were characterised by the most depleted wδ18O values. Controls on isotopic variations are the amount effect and moisture recycling. The stable isotope data provide a tool for groundwater recharge studies while the isotopic correlation with regional rainfall cycle demonstrate their use as markers of moisture circulation and detecting climatic changes in precipitation.

  14. 华北夏季降水异常的客观分区及时间变化特征%The Regionalization and Temporal Characteristic of Rainfall Anomalies in North China During Summer

    Institute of Scientific and Technical Information of China (English)

    赵翠光; 李泽椿

    2012-01-01

    North China is one of the three rainfall areas in eastern China. Precipitation over North China shows the characteristics of burstiness and locality. According to the statistics, 80%?0% precipitation occurs from June to August. Sometimes daily precipitation of a rainstorm can be up to 50% precipitation amount of that month. So it is important to forecast precipitation correctly especially to forecast larger magnitude precipitation correctly. Objective precipitation forecast is a difficult problem in NWP products interpretation at present in which models are always established station by station. Precipitation especially larger magnitude precipitation is small probability event for individual station, so establishing an effective forecast equation is difficult. Precipitation intensity, spatial and temporal distribution over North China has its own particularity. Due to the regionality characteristic, it is difficult to summarize in one weather mode. Objective partitioning can be used in establishment of precipitation forecast mode. Similar samples in the weather region are combined together. Regional forecast mode is more stable than single-station forecast mode, because the number of large-class precipitation samples is increased. In addition, sample data time selection is important for objective precipitation forecast modeling process. Based on the data of daily precipitation at 703 weather stations over North China from 1981 to 2007, which covers the domain of 32皸42癗, 110皸124癊, the temporal and spatial distribution characteristics are analyzed with Rotated Empirical Orthogonal Function (REOF) method. REOF analysis manifests that precipitation fields may be divided into 7 divisions. Mann-Kendall test and running i-test are used to analyze about the temporal change characteristics of different regions over North China during summer, in order to investigate the beginning and ending dates of rainy season specifically. The 7 divisions are different in

  15. Rainfall generation

    Science.gov (United States)

    Sharma, Ashish; Mehrotra, Raj

    This chapter presents an overview of methods for stochastic generation of rainfall at annual to subdaily time scales, at single- to multiple-point locations, and in a changing climatic regime. Stochastic rainfall generators are used to provide inputs for risk assessment of natural or engineering systems that can undergo failure under sustained (high or low) extremes. As a result, generation of rainfall has evolved to provide options that adequately represent such conditions, leading to sequences that exhibit low-frequency variability of a nature similar to the observed rainfall. The chapter consists of three key sections: the first two outlining approaches for rainfall generation using endogenous predictor variables and the third highlighting approaches for generation using exogenous predictors often simulated to represent future climatic conditions. The first section presents approaches for generation of annual and seasonal rainfall and daily rainfall, both at single-point locations and multiple sites, with an emphasis on alternatives that ensure appropriate representation of low-frequency variability in the generated rainfall sequences. The second section highlights advancements in the subdaily rainfall generation procedures including commonly used approaches for daily to subdaily rainfall generation. The final section (generation using exogenous predictors) presents a range of alternatives for stochastic downscaling of rainfall for climate change impact assessments of natural and engineering systems. We conclude the chapter by outlining some of the key challenges that remain to be addressed, especially in generation under climate change conditions, with an emphasis on the importance of incorporating uncertainty present in both measurements and models, in the rainfall sequences that are generated.

  16. Prediction of seasonal summer monsoon rainfall over homogenous regions of India using dynamical prediction system

    Science.gov (United States)

    Ramu, Dandi A.; Rao, Suryachadra A.; Pillai, Prasanth A.; Pradhan, M.; George, G.; Rao, D. Nagarguna; Mahapatra, S.; Pai, D. S.; Rajeevan, M.

    2017-03-01

    Seasonal prediction of Indian summer monsoon rainfall is a challenging task for the modeling community and predicting seasonal mean rainfall at smaller regional scale is much more difficult than predicting all India averaged seasonal mean rainfall. The regional scale prediction of summer monsoon mean rainfall at longer lead time (e.g., predicting 3-4 months in advance) can play a vital role in planning of hydrological and agriculture aspects of the society. Previous attempts for predicting seasonal mean rainfall at regional level (over 5 Homogeneous regions) have resulted with limited success (anomaly correlation coefficient is low, ACC ≈ 0.1-0.4, even at a short lead time of one month). The high resolution Climate Forecast System, version 2 (CFSv2) model, with spectral resolution of T382 (∼38 km), can predict the Indian summer monsoon rainfall (ISMR) at lead time of 3-4 months, with a reasonably good prediction skill (ACC ≈ 0.55). In the present study, we have investigated whether the seasonal mean rainfall over different homogenous regions is predictable using the same model, at 3-4 months lead time? Out of five homogeneous regions of India three regions have shown moderate prediction skill, even at 3 months lead time. Compared to lower resolution model, high resolution model has good skill for all the regions except south peninsular India. High resolution model is able to capture the extreme events and also the teleconnections associated with large scale features at four months lead time and hence shows better skill (ACC ≈ 0.45) in predicting the seasonal mean rainfall over homogeneous regions.

  17. Tropical Atlantic Contributions to Strong Rainfall Variability Along the Northeast Brazilian Coast

    Directory of Open Access Journals (Sweden)

    G. A. Hounsou-gbo

    2015-01-01

    Full Text Available Tropical Atlantic (TA Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian (NEB coast were investigated for the years 1974–2008. The core rainy seasons of March-April and June-July were identified for Fortaleza (northern NEB; NNEB and Recife (eastern NEB; ENEB, respectively. Lagged linear regressions between sea surface temperature (SST and pseudo wind stress (PWS anomalies over the entire TA and strong rainfall anomalies at Fortaleza and Recife show that the rainfall variability of these regions is differentially influenced by the dynamics of the TA. When the Intertropical Convergence Zone is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode increases humidity and precipitation during the rainy season. Additionally, this study shows predictive effect of SST, meridional PWS, and barrier layer thickness, in the Northwestern equatorial Atlantic, on the NNEB rainfall. The dynamical influence of the TA on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST from the southeastern TA to the southwestern Atlantic warm pool (SAWP offshore of Brazil. Our results also show predictive effect of SST, zonal PWS, and mixed layer depth, in the SAWP, on the ENEB rainfall.

  18. A climatological analysis of the southwest monsoon rainfall in the Philippines

    Science.gov (United States)

    Cruz, F. T.; Narisma, G. T.; Villafuerte, M. Q.; Cheng Chua, K. U.; Olaguera, L. M.

    2013-03-01

    The historical behavior of the southwest monsoon (SWM) rainfall in the Philippines is described using observed rainfall during the months of June to September from 1961 to 2010. Data are obtained from meteorological stations situated in the western half of the country where the impact of SWM is well pronounced. Time series analysis indicates significant decreasing trends from 0.026% to 0.075% per decade in the total SWM rainfall in six of the nine stations (Ambulong, Baguio, Coron, Dagupan, Iba and Vigan) in the past 50 years. A rainfall anomaly index is derived to characterize the inter-annual variability and the influence of the El Niño Southern Oscillation on the SWM rainfall. Results show no above normal rainfall events associated with La Niña years and few occurrences of below normal rainfall associated with El Niño events. Years where the SWM rainfall significantly deviates from its climate mean are also identified. Furthermore, an examination of the rainfall extremes indicate an increasing trend in the number of days without rain, which can be detected with statistical confidence in Ambulong (2.9% per decade), Baguio (5.9% per decade) and Dagupan (4.0% per decade), as well as a decreasing trend in the heavy rainfall days. These findings suggest a climatic change towards a prolonged dry period and an overall decreasing trend in rainfall during the SWM season over western Philippines in the recent decades, which can have serious implications on the country's agricultural sector.

  19. A study on the decreasing trend in tropical easterly jet stream (TEJ) and its impact on Indian summer monsoon rainfall

    Science.gov (United States)

    Sreekala, P. P.; Bhaskara Rao, S. V.; Arunachalam, M. S.; Harikiran, C.

    2014-10-01

    Using the NCEP/NCAR reanalysis wind and temperature data (1948-2011) and India Meteorological Department (IMD) rainfall data, a long-term trend in the tropical easterly jet stream and its effect on Indian summer monsoon rainfall has been explained in the present study. A decreasing trend in zonal wind speed at 100 mb (maximum decrease), 150 mb, and 200 mb (minimum) is observed. The upper-level (100, 150, and 200 mb) zonal wind speed has been correlated with the surface air temperature anomaly index (ATAI) in the month of May, which is taken as the difference in temperature anomaly over land (22.5°N-27.5°N, 80°E-90°E) and Ocean (5°S-0°S, 75°E-85°E). Significant high correlation is observed between May ATAI and tropical easterly jet stream (TEJ) which suggests that the decreasing land-sea temperature contrast could be one major reason behind the decreasing trend in TEJ. The analysis of spatial distribution of rainfall over India shows a decreasing trend in rainfall over Jammu and Kashmir, Arunachal Pradesh, central Indian region, and western coast of India. Increasing trend in rainfall is observed over south peninsular and northeastern part of India. From the spatial correlation analysis of zonal wind with gridded rainfall, it is observed that the correlation of rainfall is found to be high with the TEJ speed over the regions where the decreasing trend in rainfall is observed. Similarly, from the analysis of spatial correlation between rainfall and May ATAI, positive spatial correlation is observed between May ATAI and summer monsoon rainfall over the regions such as south peninsular India where the rainfall trend is positive, and negative correlation is observed over the places such as Jammu and Kashmir where negative rainfall trend is observed. The decreased land-sea temperature contrast in the pre-monsoon month could be one major reason behind the decreased trend in TEJ as well as the observed spatial variation in the summer monsoon rainfall trend. Thus

  20. The impacts of the Indian summer rainfall on North China summer rainfall

    Science.gov (United States)

    Wu, Renguang; Jiao, Yang

    2017-05-01

    Previous studies have indicated a connection between interannual variations of the Indian and North China summer rainfall. An atmospheric circulation wave pattern over the mid-latitude Asia plays an important role in the connection. The present study compares the influence of the above-normal and below-normal Indian summer rainfall on the North China summer rainfall variations. Composite analysis shows that the mid-latitude Asian atmospheric circulation and the North China rainfall anomalies during summer tend to be anti-symmetric in above-normal and below-normal Indian rainfall years. Analysis indicates that the Indian-North China summer rainfall relation tends to be stronger when larger Indian rainfall anomaly occurs during a higher mean rainfall period. The observed long-term change in the Indian-North China summer rainfall relationship cannot be explained by the impact of the El Niño-Southern Oscillation (ENSO). The present study evaluates the Indian-North China summer rainfall relationship in climate models. Analysis shows that the Indian-North China summer rainfall relationship differs largely among different climate models and among different simulations of a specific model. The relationship also displays obvious temporal variations in both individual and ensemble mean model simulations. This suggests an important role of the atmospheric internal variability in the change of the Indian-North China summer rainfall relationship.

  1. Forecasting paediatric malaria admissions on the Kenya Coast using rainfall.

    Science.gov (United States)

    Karuri, Stella Wanjugu; Snow, Robert W

    2016-01-01

    Malaria is a vector-borne disease which, despite recent scaled-up efforts to achieve control in Africa, continues to pose a major threat to child survival. The disease is caused by the protozoan parasite Plasmodium and requires mosquitoes and humans for transmission. Rainfall is a major factor in seasonal and secular patterns of malaria transmission along the East African coast. The goal of the study was to develop a model to reliably forecast incidences of paediatric malaria admissions to Kilifi District Hospital (KDH). In this article, we apply several statistical models to look at the temporal association between monthly paediatric malaria hospital admissions, rainfall, and Indian Ocean sea surface temperatures. Trend and seasonally adjusted, marginal and multivariate, time-series models for hospital admissions were applied to a unique data set to examine the role of climate, seasonality, and long-term anomalies in predicting malaria hospital admission rates and whether these might become more or less predictable with increasing vector control. The proportion of paediatric admissions to KDH that have malaria as a cause of admission can be forecast by a model which depends on the proportion of malaria admissions in the previous 2 months. This model is improved by incorporating either the previous month's Indian Ocean Dipole information or the previous 2 months' rainfall. Surveillance data can help build time-series prediction models which can be used to anticipate seasonal variations in clinical burdens of malaria in stable transmission areas and aid the timing of malaria vector control.

  2. STUDY OF RAINFALL PERIODS IN THE CRASNA BASIN UNTIL THE CONFLUENCE WITH ZALAU

    Directory of Open Access Journals (Sweden)

    OANA MOIGRĂDEAN

    2013-04-01

    Full Text Available Study of Rainfall Periods in the Crasna Basin Until the Confluence with Zalau. The rainfall periods in the Crasna Basin were determined using the weighted anomaly standardized precipitation (WASP. We processed and analyzed data from the period between 1990-2000 from one meteorological station and eight rainfall stations. WASP values were calculated for intervals of one year and of six months (semesters. The frequency analysis was done on three domains of the precipitation periods (rainy, normal and dry. The rainfall risk characterization was studied on three groups: risk by excess, risk by deficiency and free of risk. By analyzing the resulting rainfall periods the wet domains have the predominant share followed by the normal and dry domains. The frequency analysis of the group with risk and without risk indicate a net predominance of situations without rainfall risk. In the spatial distribution of exceeding rainfall periods appear some contrasts, determined by the positions of stations and posts regarding the prevailing western air masses advections.

  3. Teleconnection between rainfall over South China and the East European Plain in July and August

    Science.gov (United States)

    Su, Qin; Lu, Riyu

    2014-10-01

    In the present reported work, we identified that there is a significant negative relationship between rainfall over South China (SC) and the East European Plain (EEP) in the months of July and August, and investigated the possible reason for this negative relationship. The correlation coefficients between SC and the EEP rainfall were calculated to be -0.42 for July and -0.35 for August, both significant at the 95 % confidence level. We report that a wave-like train of circulation anomalies and a pathway of wave-activity flux stretching from Europe to East China connect the anticyclonic anomaly over Europe and the cyclonic anomaly over central and southern China, which are responsible for less EEP rainfall and more SC rainfall. We suggest that the teleconnection between SC and EEP rainfall results from the extension of stationary Rossby waves in the mid-latitudes in the upper troposphere for both July and August. This stationary Rossby wave is contributed to by summer North Atlantic Oscillation (NAO) and its extension features are determined by the location and intensity of the climatological upper-tropospheric westerly jet. Furthermore, we found that there was an interdecadal change around the mid-1970s in the negative SC-EEP rainfall relationship for both July and August. The negative correlation was significant and strong in the period 1976-2005, but much weaker in the period 1955-1975. The extension of stationary Rossby waves from Europe to East China was responsible for the significant negative relationship during the period 1976-2005.

  4. Extreme Rainfall Events Over Southern Africa: Assessment of a Climate Model to Reproduce Daily Extremes

    Science.gov (United States)

    Williams, C.; Kniveton, D.; Layberry, R.

    2007-12-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.

  5. Potential of deterministic and geostatistical rainfall interpolation under high rainfall variability and dry spells: case of Kenya's Central Highlands

    Science.gov (United States)

    Kisaka, M. Oscar; Mucheru-Muna, M.; Ngetich, F. K.; Mugwe, J.; Mugendi, D.; Mairura, F.; Shisanya, C.; Makokha, G. L.

    2016-04-01

    Drier parts of Kenya's Central Highlands endure persistent crop failure and declining agricultural productivity. These have, in part, attributed to high temperatures, prolonged dry spells and erratic rainfall. Understanding spatial-temporal variability of climatic indices such as rainfall at seasonal level is critical for optimal rain-fed agricultural productivity and natural resource management in the study area. However, the predominant setbacks in analysing hydro-meteorological events are occasioned by either lack, inadequate, or inconsistent meteorological data. Like in most other places, the sole sources of climatic data in the study region are scarce and only limited to single stations, yet with persistent missing/unrecorded data making their utilization a challenge. This study examined seasonal anomalies and variability in rainfall, drought occurrence and the efficacy of interpolation techniques in the drier regions of eastern Kenyan. Rainfall data from five stations (Machang'a, Kiritiri, Kiambere and Kindaruma and Embu) were sourced from both the Kenya Meteorology Department and on-site primary recording. Owing to some experimental work ongoing, automated recording for primary dailies in Machang'a have been ongoing since the year 2000 to date; thus, Machang'a was treated as reference (for period of record) station for selection of other stations in the region. The other stations had data sets of over 15 years with missing data of less than 10 % as required by the world meteorological organization whose quality check is subject to the Centre for Climate Systems Modeling (C2SM) through MeteoSwiss and EMPA bodies. The dailies were also subjected to homogeneity testing to evaluate whether they came from the same population. Rainfall anomaly index, coefficients of variance and probability were utilized in the analyses of rainfall variability. Spline, kriging and inverse distance weighting interpolation techniques were assessed using daily rainfall data and

  6. Secular spring rainfall variability at local scale over Ethiopia: trend and associated dynamics

    Science.gov (United States)

    Tsidu, Gizaw Mengistu

    2016-07-01

    Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric

  7. Does GPM-based multi-satellite precipitation enhance rainfall estimates over Pakistan and Bolivia arid regions?

    Science.gov (United States)

    Hussain, Y.; Satgé, F.; Bonnet, M. P.; Pillco, R.; Molina, J.; Timouk, F.; Roig, H.; Martinez-Carvajal, H., Sr.; Gulraiz, A.

    2016-12-01

    Arid regions are sensitive to rainfall variations which are expressed in the form of flooding and droughts. Unfortunately, those regions are poorly monitored and high quality rainfall estimates are still needed. The Global Precipitation Measurement (GPM) mission released two new satellite rainfall products named Integrated Multisatellite Retrievals GPM (IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) bringing the possibility of accurate rainfall monitoring over these countries. This study assessed both products at monthly scale over Pakistan considering dry and wet season over the 4 main climatic zones from 2014 to 2016. With similar climatic conditions, the Altiplano region of Bolivia is considered to quantify the influence of big lakes (Titicaca and Poopó) in rainfall estimates. For comparison, the widely used TRMM-Multisatellite Precipitation Analysis 3B43 (TMPA-3B43) version 7 is also involved in the analysis to observe the potential enhancement in rainfall estimate brought by GPM products. Rainfall estimates derived from 110 rain-gauges are used as reference to compare IMERG, GSMaP-v6 and TMPA-3B43 at the 0.1° and 0.25° spatial resolution. Over both regions, IMERG and GSMaP-v6 capture the spatial pattern of precipitation as well as TMPA-3B43. All products tend to over estimates rainfall over very arid regions. This feature is even more marked during dry season. However, during this season, both reference and estimated rainfall remain very low and do not impact seasonal water budget computation. On a general way, IMERG slightly outperforms TMPA-3B43 and GSMaP-v6 which provides the less accurate rainfall estimate. The TMPA-3B43 rainfall underestimation previously found over Lake Titicaca is still observed in IMERG estimates. However, GSMaP-v6 considerably decreases the underestimation providing the most accurate rainfall estimate over the lake. MOD11C3 Land Surface Temperature (LST) and ASTER Global Emissivity Dataset reveal strong

  8. Maritime Continent rainfall variability during the TRMM era: The role of monsoon, topography and El Niño Modoki

    Science.gov (United States)

    As-syakur, Abd. Rahman; Osawa, Takahiro; Miura, Fusanori; Nuarsa, I. Wayan; Ekayanti, Ni Wayan; Dharma, I. Gusti Bagus Sila; Adnyana, I. Wayan Sandi; Arthana, I. Wayan; Tanaka, Tasuku

    2016-09-01

    Rainfall is among the most important climatic elements of the Maritime Continent. The Maritime Continent rainfall climate is uniquely located in the world's most active convective area. Satellite data measured by the Tropical Rainfall Measuring Mission (TRMM) 3B43 based high-resolution rainfall products represent monthly Maritime Continent rainfall characteristics over 16 years. Several statistical scores were employed to analyse annual means, linear trends, seasonal means, and anomalous Maritime Continent rainfall characteristic percentages. The effects of land and topography on rainfall quantities were also studied and compared with the Global Precipitation Climatology Project (GPCP) gridded precipitation estimates which has low-resolution. Comparison also applied on linear correlation and partial correlation techniques to determine the relationship between rainfall and the El Niño Modoki and El Niño-Southern Oscillation (ENSO; hereafter conventional El Niño). The results show that north-south Maritime Continent precipitation is associated with and generated by the northwest and southeast monsoon patterns. In addition, the large-scale circulations are linked with heavy rainfall over this land-ocean region due to large-scale island-topography-induced convective organization. The rainfall responses to El Niño Modoki and conventional El Niño clearly indicated the times at which the conventional El Niño had a higher impact than El Niño Modoki, especially during northern winter and spring, and vice versa during northern fall, and similarly affect during northern summer. Furthermore, the dynamic movements of rainfall anomaly that are caused by El Niño Modoki and the conventional El Niño events spanned from the southwest during June-July-August (JJA) to throughout the northeast ending in March-April-May (MAM).

  9. Interannual and intra-annual variability of rainfall in Haiti (1905-2005)

    Science.gov (United States)

    Moron, Vincent; Frelat, Romain; Jean-Jeune, Pierre Karly; Gaucherel, Cédric

    2015-08-01

    The interannual variability of annual and monthly rainfall in Haiti is examined from a database of 78 rain gauges in 1905-2005. The spatial coherence of annual rainfall is rather low, which is partly due to Haiti's rugged landscape, complex shoreline, and surrounding warm waters (mean sea surface temperatures >27 °C from May to December). The interannual variation of monthly rainfall is mostly shaped by the intensity of the low-level winds across the Caribbean Sea, leading to a drier- (or wetter-) than-average rainy season associated with easterly (or westerly) anomalies, increasing (or decreasing) winds. The varying speed of low-level easterlies across the Caribbean basin may reflect at least four different processes during the year: (1) an anomalous trough/ridge over the western edge of the Azores high from December to February, peaking in January; (2) a zonal pressure gradient between Eastern Pacific and the tropical Northern Atlantic from May/June to September, with a peak in August (i.e. lower-than-average rainfall in Haiti is associated with positive sea level pressure anomalies over the tropical North Atlantic and negative sea level pressure anomalies over the Eastern Pacific); (3) a local ocean-atmosphere coupling between the speed of the Caribbean Low Level Jet and the meridional sea surface temperature (SST) gradient across the Caribbean basin (i.e. colder-than-average SST in the southern Caribbean sea is associated with increased easterlies and below-average rainfall in Haiti). This coupling is triggered when the warmest Caribbean waters move northward toward the Gulf of Mexico; (4) in October/November, a drier- (or wetter-) than-usual rainy season is related to an almost closed anticyclonic (or cyclonic) anomaly located ENE of Haiti on the SW edge of the Azores high. This suggests a main control of the interannual variations of rainfall by intensity, track and/or recurrence of tropical depressions traveling northeast of Haiti. During this period, the

  10. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  11. Rainfall statistics changes in Sicily

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2013-02-01

    Full Text Available Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles which can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood prone areas.

    In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends while for longer durations the trends are mainly negative.

    Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the non parametric Mann–Kendall test.

    Particularly, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration while daily rainfall properties have been analyzed in term of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations

  12. Rainfall statistics changes in Sicily

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2013-07-01

    Full Text Available Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann–Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall

  13. Verification of SPCZ and ENSO dynamics in the extended reanalysis period using the South Pacific Rainfall Atlas

    Science.gov (United States)

    Lorrey, Andrew; Dalu, Giovanni; Diamond, Howard; Gaetani, Marco; Renwick, James

    2010-05-01

    Ground-based rainfall observations during the pre-satellite era in the South West Pacific were examined for an extreme La Niña event that occurred in 1955-56. The rainfall observations were derived from the South Pacific Rainfall Atlas (SPRAT), a data compilation contributed by the regional meteorological services. The influence of tropical cyclone activity on both monthly and warm season rainfall anomalies were also accounted for using the International Best Tracks Archive for Climate Stewardship (IBTrACS) tropical cyclone database. The rainfall anomalies from more than 60 southwest Pacific Island stations showed a region of enhanced rainfall in the southwest half of the south Pacific encompassing the Southern Cook Islands, Tonga, Fiji, New Caledonia, and Vanuatu. Suppressed rainfall was observed in the northeast corner of the region over the Marquesas, the Northern Cook Islands, Tokelau, and Tuvalu. This pattern is similar to what is expected for La Nina events that occurred during the classic re-analysis period (1958 onward). Elimination of anomalously high historical rainfall totals for individual islands using the IBTrACS data allowed a 'best guess' of the past SPCZ position, suggesting it was probably southwest of the its normal climatological position during the 1955-56 La Nina. A comparison of the 'best guess' SPCZ position fit derived from the rainfall anomalies to the omega velocity furnished by the NOAA-CIRES reanalysis show a remarkably similar position of the SPCZ during the 1955-56 ENSO event. Ground-based rainfall observations that support SPRAT (which extend into the early 1900s and beyond) can therefore confirm the fidelity of the NOAA-CIRES extended 20th century reanalysis and can help to reveal past ENSO and SPCZ dynamics. In addition, the high-resolution daily reanalysis data and IBTrACS information indicate a unique SPCZ control on regional tropical cyclone trajectories into the Southern Hemisphere mid-latitudes during ex-tropical transition

  14. Extra-hepatic bile duct hamartoma in a 10-month-old with a morgagni hernia and multiple anatomical anomalies: a rare and incidental finding.

    Science.gov (United States)

    Shah, Adil A; Karass, Michael; Page, Andrew J; Shehata, Bahig M; Durham, Megan M

    2013-07-01

    Von Meyenburg complexes (VMCs), also known as bile duct hamartomas, are a part of a group of ductal plate malformations. They are typically present intrahepatically. In this case, we present to our knowledge the first report of an extra-hepatic VMC in the pediatric population. The patient presented as a 10-month-old infant with a weeklong history of progressive breathing difficulty. A chest radiograph was obtained, showing intestinal loops in the thoracic cavity consistent with a Morgagni's hernia, unrelated to his breathing difficulty. The patient then underwent an elective repair of his congenital diaphragmatic defect. During the operation, the bile duct hamartoma was found adherent to the accessory lobe of the liver, present to the left of the ligamentum teres.

  15. Anomaly holography

    Energy Technology Data Exchange (ETDEWEB)

    Gripaios, Ben [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford OX1 3NP (United Kingdom); Merton College, Oxford OX1 4JD (United Kingdom)], E-mail: b.gripaios1@physics.ox.ac.uk; West, Stephen M. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford OX1 3NP (United Kingdom)], E-mail: s.west1@physics.ox.ac.uk

    2008-01-21

    We consider, in the effective field theory context, anomalies of gauge field theories on a slice of a five-dimensional, anti-de Sitter geometry and their four-dimensional, holographic duals. A consistent effective field theory description can always be found, notwithstanding the presence of the anomalies and without modifying the degrees of freedom of the theory. If anomalies do not vanish, the d=4 theory contains additional pseudoscalar states, which are either present in the low-energy theory as physical, light states, or are eaten by (would-be massless) gauge bosons. We show that the pseudoscalars ensure that global anomalies of the four-dimensional dual satisfy the 't Hooft matching condition and comment on the relevance for warped models of electroweak symmetry breaking.

  16. Boreal summer quasi-monthly oscillation in the global tropics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin; Kikuchi, Kazuyoshi [University of Hawaii, Department of Meteorology and the International Pacific Research Center (IPRC), Honolulu, HI (United States); Webster, Peter [Georgia Tech University, School of Earth and Atmospheric Science and Civil and Environmental Engineering, Atlanta, GA (United States); Yasunari, Tetsuzo [Nagoya University, Hydrospheric and Atmospheric Research Center, Nagoya (Japan); Qi, Yanjun [Chinese Academy of Science, Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Beijing (China)

    2006-12-15

    The boreal summer intraseasonal oscillation (ISO) in the global tropics is documented here using a 7-year suite (1998-2004) of satellite measurements. A composite scenario was made of 28 selected events with reference to the oscillation in the eastern equatorial Indian Ocean (EIO), where the oscillation is most regular and its intensity is indicative of the strength of the subsequent northward propagation. The average oscillation period is about 32 days, and this quasi-monthly oscillation (QMO) is primarily confined to the tropical Indian and Pacific Oceans. Topics that were investigated are the partition of convective versus stratiform clouds, the vertical structure of precipitation rates, and the evolution of cloud types during the initial organization and the development of intraseasonal convective anomalies in the central Indian Ocean. During the initiation of the convective anomalies, the stratiform and convective rains have comparable rates; the prevailing cloud type experiences a trimodal evolution from shallow to deep convection, and finally to anvil and extended stratiform clouds. A major northwest/southeast-slanted rainband forms as the equatorial rainfall anomalies reach Sumatra, and the rainband subsequently propagates northeastward into the west Pacific Ocean. The enhanced precipitation in the west Pacific then rapidly traverses the Pacific along the Intertropical Convergence Zone, meanwhile migrating northward to the Philippine Sea. A seesaw teleconnection in rainfall anomalies is found between the southern Bay of Bengal (5-15 N, 80-100 E) and the eastern Pacific (5-15 N, 85-105 W). Local sea-surface temperature (SST)-rainfall anomalies display a negative simultaneous correlation in the off-equatorial regions but a zero correlation (quadrature phase relationship) near the equator. We propose that atmosphere-ocean interaction and the vertical monsoon easterly shear are important contributors to the northeastward propagation component of the

  17. Downscaling site rainfall from daily to 11.25-minute resolution: event, diurnal, seasonal and decadal controls on downscaling parameters

    Science.gov (United States)

    McIntyre, Neil; Shi, Shirley; Onof, Christian

    2016-04-01

    Downscaling site rainfall from daily to sub-daily resolution is often approached using the multiplicative discrete random cascade (MDRC) class of models, with mixed success. Questions in any application - for MDRCs or indeed other classes of downscaling model - is to what extent and in what way are model parameters functions of rainfall event type and/or large scale climate controls for example those linked to the El Nino Southern Oscillation (ENSO). These questions underlie the applicability of downscaling models for analysing rainfall and hydrological extremes, in particular for synthesising long-term historical or future sub-daily extremes conditional on historic or projected daily data. Coastal Queensland, Australia, is subject to combinations of multiple weather systems, including tropical cyclones, blocking systems, convective storms, frontal systems and ENSO influences. Using 100 years of fine resolution data from two gauges in central Brisbane, microcanonical MDRC models are fitted to data from 1 day to 11.25 minutes in seven cascade levels, each level dividing the time interval and its rainfall volume into two sub-intervals. Each cascade level involves estimating: the probabilities that all the rainfall observed in a time interval is concentrated in only the first of the two sub-intervals and that all the rainfall observed in a time interval is concentrated in only the second of the two sub-intervals; and also two beta distribution parameters that define the probability of a given division of the rainfall into both sub-intervals. These parameters are found to vary systematically with time of day, rainfall volume, event temporal structure, month of year, and ENSO anomaly. Reasonable downscaling performance is achieved (in terms of replicating extreme values of 11.25 minute rainfall given the observed daily data) by including the parameter dependence on the rainfall volume and event structure, although particular applications may justify development of more

  18. Combined Effect of Multiple Factors on the Summer Rainfall Anomalies over the Huanghe-Huaihe Valley in 1992 and 1998%多因子协同作用对1992年和1998年黄淮地区夏季降水异常的影响

    Institute of Scientific and Technical Information of China (English)

    顾伟宗; 陈丽娟; 左金清; 李维京

    2016-01-01

    AbstractEl Niño events developed in the equatorial central–eastern Pacific in the spring of both 1991 and 1997. The former began in May and the latter in April. However, a dry summer occurred over the Huanghe–Huaihe valley in 1992, but a wet summer prevailed in 1998. Also, the summer circulation anomalies showed different patterns over the Eurasia–Northwest Pacific region between 1992 and 1998. In the summer of 1992, the Northwest Pacific subtropical high (NWPSH) shifted eastward and the blocking high activities over the Eurasian midlatitudes were weaker than normal, resulting in below–normal rainfall anomalies over the Huanghe–Huaihe valley. In contrast, the NWPSH shifted westward and the blocking high activities over the Eurasian midlatitudes were intensified in the summer of 1998, leading to a wet summer over the Huanghe–Huaihe valley. Further diagnosis and model experiment results indicate that the contrasting pattern of summer rainfall anomalies over the Huanghe–Huaihe valley between 1992 and 1998 was probably due to the Northwest Pacific convection activities anomalies, as well as SST anomalies over the Sea of Okhotsk, its adjacent region, and the midlatitudes of the North Atlantic. The summer Northwest Pacific convection activities were intensified (weakened) in 1992 (1998), which favored an eastward (westward) shift of the NWPSH. Additionally, the warm SST anomalies over the Sea of Okhotsk and adjacent region favored the intensified blocking high activities, whereas the warm SST anomalies over the midlatitudes of the North Atlantic favored the intensified blocking high activities over the Urals. These results reveal that a large proportion of the interannual variability of the summer rainfall anomalies over the Huanghe–Huaihe valley cannot be explained solely by the El Niño signals; rather, it is also related to the Northwest Pacific convection activities and SST anomalies over the Sea of Okhotsk and the midlatitudes of the North Atlantic

  19. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  20. A Study of Rainfall Variations in the Philippines: 1950-1996

    Directory of Open Access Journals (Sweden)

    Bonifacio Pajuelas

    2000-06-01

    Full Text Available The long-period rainfall variations in the Philippines are studied using unfiltered and filtered Rainfall Anomaly Index (RAI. To have RAI’s that are representative for each group, zones of quasi-homogeneous climate were constructed based on highly correlated stations (r > 0.75, narrow standard deviation, and period of maximum rainfall using the 1950-1996 monthly rainfall total. Variance analyses of the RAI’s suggest that unfiltered samples do not significantly differ from the normal distribution except for the western part (climate type 1 that have significant positive skewness and peakedness. The RAI’s contain a significant amount of non-random elements and a significant negative change in mean is reflected over the central Visayas and Mindanao (climate type 3. Filtered RAI’s that are not significantly different from the normal distribution (at least for c2 test indicated significant trend over areas with high-variable rainfall (i.e., climate types 1, 2, 4 & 5.In general, long-period rainfall may have changed over the period of study. The 10-year filtered RAI’s have the possibility of falling rate over climate types 1, 2 & 5, but increasing rate over climate type 4. These trends are indicated towards the rainfall-sensitive months (i.e., February through May during El Niño or La Niña events. Falling rate is also significant from October through January over climate type 4. Longer periods (30-year filtered RAI’s have significant negative trend for climate types 2 &4, but positive trend for climate type 5. These trends also occurred during February through May.

  1. Predictability and prediction of summer rainfall in the arid and semi-arid regions of China

    Science.gov (United States)

    Xing, Wen; Wang, Bin

    2016-09-01

    Northwest China (NWC) is an arid and semi-arid region where climate variability and environmental changes are sensitive to precipitation. The present study explores sources and limits of predictability of summer precipitation over NWC using the predictable mode analysis (PMA) of percentage of rainfall anomaly data. Two major modes of NWC summer rainfall variability are identified which are tied to Eurasian continental scale precipitation variations. The first mode features wet northern China corresponding to dry central Siberia and wet Mongolia, which is mainly driven by tropical Pacific sea surface temperature anomalies (SSTA). The second mode features wet western China reflecting wet Central Asia and dry Ural-western Siberia, which strongly links to Indian Ocean SSTA. Anomalous land warming over Eurasia also provides important precursors for the two modes. The cross-validated hindcast results demonstrate these modes can be predicted with significant correlation skills, suggesting that they may be considered as predictable modes. The domain averaged temporal correlation coefficient (TCC) skill during 1979 to 2015 using 0-month (1-month) lead models is 0.39 (0.35), which is considerably higher than dynamical models' multi-model ensemble mean skill (-0.02). Maximum potential attainable prediction skills are also estimated and discussed. The result illustrates advantage of PMA in predicting rainfall over dry land areas and large room for dynamical model improvement. However, secular changes of predictors need to be detected continuously in order to make practical useful prediction.

  2. Urinary System anomalies at birth

    Directory of Open Access Journals (Sweden)

    Sharada B. Menasinkai

    2015-06-01

    Full Text Available Background: Congenital anomalies of urinary system are common and are found in 3-4% of population, and lethal urinary anomalies account for 10% of termination of pregnancy. Methods: A study was done to know the incidence of congenital anomalies at birth for the period of 4 months from May 99 - Sept 99 at Cheluvamba hospital attached to Mysore medical college. Congenital anomalies in the still births, live births and aborted fetuses >20 weeks were studied along with the case history and ultrasound reports. Aborted fetuses and still born babies were collected for autopsy after the consent of parents. These babies were fixed in 10% formalin and autopsy was done after fixing, and anomalies were noted. Results: Total births during study period were 3000. There were 61 babies with congenital anomalies and 6 babies had anomalies of urinary system. Among the urinary system anomalies 1 baby had bilateral renal agenesis, 1 baby had unilateral renal agenesis with anophthalmia (Fraser syndrome, 2 babies had Multicystic dysplastic kidney disease (MCDK and 1 live baby had hydronephrosis due to obstruction at pelvi ureteric junction, and 1 live female baby had polycystic kidneys. Conclusion: Incidence of urinary system anomalies in the present study was 2 per 1000 births. U/S detection of urinary anomalies varies with period of gestation, amniotic fluid volume and visualisation of urinary bladder. Autopsy helps to detect renal agenesis. [Int J Res Med Sci 2015; 3(3.000: 743-748

  3. TRMM Science Highlights and Status of Precipitation Estimates on Monthly and Finder Time Scales

    Science.gov (United States)

    Adler, Robert; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has completed three years in orbit. A summary of research highlights will be presented focusing on application of TRMM data to topics ranging from climate analysis, through improving forecasts, to microphysical research. Monthly surface rainfall estimates over the ocean based on different instruments on TRMM currently differ by 20%. The difference is not surprising considering the different type of observations available for the first time from TRMM with both the passive and active microwave sensors. Resolving this difference will strengthen the validity and utility of ocean rainfall estimates and is the topic of ongoing research utilizing various facets of the TRMM validation and field experiment programs. The TRMM rainfall estimates are intercompared among themselves and with other estimates, including those of the standard, monthly Global Precipitation Climatology Project (GPCP) analysis. The GPCP analysis agrees roughly in magnitude with the passive microwave-based TRMM estimates which is not surprising considering GPCP over-ocean estimates are based on passive microwave observations. A three year TRMM rainfall climatology is presented based on the TRMM merged product, including anomaly fields related to the changing ENSO situation during the mission. Results of merging TRMM, other passive microwave observations, and geosynchronous infrared rainfall estimates into a global, tropical 3-hour time resolution analysis will also be described.

  4. Seasonality and anomalies of sea surface temperature off the coast of Nayarit, Mexico

    Science.gov (United States)

    Palacios-Hernández, Emilio; Carrillo, Laura E.; Filonov, Anatoliy; Brito-Castillo, Luis; Cabrera-Ramos, Carlos E.

    2010-02-01

    Sea surface temperature (SST) harmonic and empirical orthogonal function (EOF) analyses covering 18 years were performed for the area located from 114° to 105° W and from 18° to 25° N. The results indicate that the influence of the annual signal predominates over the semi-annual signal, and the closer to the coast, the stronger the annual harmonic. Several interannual anomalies arose that are connected with the main global indexes, especially the Oceanic Niño Index. Pearson correlations between the first temporal mode of the SST and regional rainfalls in Nayarit indicate that maximum correlations ( r > 0.7) are observed when there is a +1-month lag between the series. However, this result indicates that SST is delayed with 1 month after rainfall occurrence, which shows that the dominant influence in this relationship is not the SST forcing.

  5. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions

    Directory of Open Access Journals (Sweden)

    S. Yin

    2015-05-01

    Full Text Available Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and maximum 30 min intensity of individual events. However, these data are often unavailable in many areas of the world. The purpose of this study was to develop models that relate more commonly available rainfall data resolutions, such as daily or monthly totals, to rainfall erosivity. Eleven stations with one-minute temporal resolution rainfall data collected from 1961 through 2000 in the eastern water-erosion areas of China were used to develop and calibrate 21 models. Seven independent stations, also with one-minute data, were utilized to validate those models, together with 20 previously published equations. Results showed that models in this study performed better or similar to models from previous research to estimate rainfall erosivity for these data. Prediction capabilities, as determined using symmetric mean absolute percentage errors and Nash–Sutcliffe model efficiency coefficients, were demonstrated for the 41 models including those for estimating erosivity at event, daily, monthly, yearly, average monthly and average annual time scales. Prediction capabilities were generally better using higher resolution rainfall data as inputs. For example, models with rainfall amount and maximum 60 min rainfall amount as inputs performed better than models with rainfall amount and maximum daily rainfall amount, which performed better than those with only rainfall amount. Recommendations are made for choosing the appropriate estimation equation, which depend on objectives and data availability.

  6. Forecasting paediatric malaria admissions on the Kenya Coast using rainfall

    Directory of Open Access Journals (Sweden)

    Stella Wanjugu Karuri

    2016-02-01

    Full Text Available Background: Malaria is a vector-borne disease which, despite recent scaled-up efforts to achieve control in Africa, continues to pose a major threat to child survival. The disease is caused by the protozoan parasite Plasmodium and requires mosquitoes and humans for transmission. Rainfall is a major factor in seasonal and secular patterns of malaria transmission along the East African coast. Objective: The goal of the study was to develop a model to reliably forecast incidences of paediatric malaria admissions to Kilifi District Hospital (KDH. Design: In this article, we apply several statistical models to look at the temporal association between monthly paediatric malaria hospital admissions, rainfall, and Indian Ocean sea surface temperatures. Trend and seasonally adjusted, marginal and multivariate, time-series models for hospital admissions were applied to a unique data set to examine the role of climate, seasonality, and long-term anomalies in predicting malaria hospital admission rates and whether these might become more or less predictable with increasing vector control. Results: The proportion of paediatric admissions to KDH that have malaria as a cause of admission can be forecast by a model which depends on the proportion of malaria admissions in the previous 2 months. This model is improved by incorporating either the previous month's Indian Ocean Dipole information or the previous 2 months’ rainfall. Conclusions: Surveillance data can help build time-series prediction models which can be used to anticipate seasonal variations in clinical burdens of malaria in stable transmission areas and aid the timing of malaria vector control.

  7. Analysis of groundwater anomalies using GRACE over various districts of Jharkhand

    Science.gov (United States)

    Verma, Arpita; Kumar, Anant; Kumar, Sanjay

    2016-05-01

    Groundwater is an important requirement for the massive population of India. Generally the groundwater level is monitored by using monitoring wells. In this study, Gravity Recovery and Climate Experiment (GRACE) Terrestrial Water Storage (TWS), Land surface state variable GLDAS and Soil Moisture (SM) data were tested for estimating ground water information and based on these groundwater assessments were carried out over the years 2003 to 2012 for Jharkhand State. Additionally, Tropical Rainfall Measuring Mission (TRMM) accumulated rainfall data was also used for the year's 2008 to 2012.From the study over 120 months span of various districts the maximum depletion in storage of groundwater averaged over the six districts is +/-5cm/yr in the year 2010 and maximum storage year (in term of Equivalent water thickness) groundwater average over the six districts is +/-4.4cm in the year 2003. The study also utilized ground based Seasonal changes in the groundwater resource over 287 monitoring wells and estimated groundwater data using map analysis over Jharkhand. This study analyzed seasonal water level variations based on groundwater anomaly. Remote sensing generated result compared with well data shows R2 = 0.6211 and RMSE = 39.46 cm at average seasonal cycle. Also information of different time periods of rainfall (i.e., pre-monsoon and post-monsoon) was analyzed. The trend analysis of rainfall and estimated groundwater gives the basic knowledge that groundwater storage loss and gain showed similarities with increase and decrease in rainfall.

  8. Sensitivity of Horn of Africa Rainfall to Regional Sea Surface Temperature Forcing

    Directory of Open Access Journals (Sweden)

    Zewdu T. Segele

    2015-05-01

    Full Text Available The Abdus Salam International Center for Theoretical Physics (ICTP version 4.4 Regional Climate Model (RegCM4 is used to investigate the rainfall response to cooler/warmer sea surface temperature anomaly (SSTA forcing in the Indian and Atlantic Oceans. The effect of SSTA forcing in a specific ocean basin is identified by ensemble, averaging 10 individual simulations in which a constant or linearly zonally varying SSTA is prescribed in individual basins while specifying the 1971–2000 monthly varying climatological sea surface temperature (SST across the remaining model domain. The nonlinear rainfall response to SSTA amplitude also is investigated by separately specifying +1K, +2K, and +4K SSTA forcing in the Atlantic and Indian Oceans. The simulation results show that warm SSTs over the entire Indian Ocean produce drier conditions across the larger Blue Nile catchment, whereas warming ≥ +2K generates large positive rainfall anomalies exceeding 10 mm·day−1 over drought prone regions of Northeastern Ethiopia. However, the June–September rainy season tends to be wetter (drier when the SST warming (cooling is limited to either the Northern or Southern Indian Ocean. Wet rainy seasons generally are characterized by deepening of the monsoon trough, east of 40°E, intensification of the Mascarene high, strengthening of the Somali low level jet and the tropical easterly jet, enhanced zonal and meridional vertically integrated moisture fluxes, and steeply vertically decreasing moist static energy. The opposite conditions hold for dry monsoon seasons.

  9. Spatial and Temporal Variability of Rainfall in Eastern Amazon during the Rainy Season

    Science.gov (United States)

    Batista da Silva Ferreira, Douglas; Barreiros de Souza, Everaldo; Cavalcanti de Moraes, Bergson; Meira Filho, Luiz Gylvan

    2015-01-01

    Empirical orthogonal functions (EOF) and composites analysis were employed on pentad data in order to investigate the tropical atmospheric-ocean patterns over the Atlantic Ocean and the spatial-temporal characteristics of the rainfall in eastern Amazon during the peak of the rainy season (February to April). The EOF results evidenced that the Intertropical Convergence Zone (ITCZ) is the main rainfall-producing system in eastern Amazon during the rainy season. Conditions associated with the southward SST gradient in the intertropical Atlantic formed the dynamic patterns that favored the position of the ITCZ to south of the equator, thus explaining the predominance of positive precipitation anomalies in eastern Amazon, especially in the state of Maranhão and northeastern Pará during the February and April months. PMID:25793218

  10. RAINFALL AGGRESSIVENESS EVALUATION IN REGHIN HILLS USING FOURNIER INDEX

    Directory of Open Access Journals (Sweden)

    J. SZILAGYI

    2016-03-01

    Full Text Available Aggressiveness erosive force of rainfall is the express of kinetic energy and potential energy of rain water runoff on slopes. In the absence of a database for the analysis of parameters that define the torrencial rainfall, the rainfall erosivity factor was calculated by Fournier Index, Modified Fournier Index based on the monthly and annual precipitation.

  11. Predicting monthly precipitation along coastal Ecuador: ENSO and transfer function models

    Science.gov (United States)

    de Guenni, Lelys B.; García, Mariangel; Muñoz, Ángel G.; Santos, José L.; Cedeño, Alexandra; Perugachi, Carlos; Castillo, José

    2017-08-01

    It is well known that El Niño-Southern Oscillation (ENSO) modifies precipitation patterns in several parts of the world. One of the most impacted areas is the western coast of South America, where Ecuador is located. El Niño events that occurred in 1982-1983, 1987-1988, 1991-1992, and 1997-1998 produced important positive rainfall anomalies in the coastal zone of Ecuador, bringing considerable damage to livelihoods, agriculture, and infrastructure. Operational climate forecasts in the region provide only seasonal scale (e.g., 3-month averages) information, but during ENSO events it is key for decision-makers to use reliable sub-seasonal scale forecasts, which at the present time are still non-existent in most parts of the world. This study analyzes the potential predictability of coastal Ecuador rainfall at monthly scale. Instead of the discrete approach that considers training models using only particular seasons, continuous (i.e., all available months are used) transfer function models are built using standard ENSO indices to explore rainfall forecast skill along the Ecuadorian coast and Galápagos Islands. The modeling approach considers a large-scale contribution, represented by the role of a sea-surface temperature index, and a local-scale contribution represented here via the use of previous precipitation observed in the same station. The study found that the Niño3 index is the best ENSO predictor of monthly coastal rainfall, with a lagged response varying from 0 months (simultaneous) for Galápagos up to 3 months for the continental locations considered. Model validation indicates that the skill is similar to the one obtained using principal component regression models for the same kind of experiments. It is suggested that the proposed approach could provide skillful rainfall forecasts at monthly scale for up to a few months in advance.

  12. Thermal aspect of the diurnal variation of tropical convective and stratiform rainfall

    Institute of Scientific and Technical Information of China (English)

    Cui Xiao-Peng; Li Xiao-Fan

    2011-01-01

    The diurnal variation of radiation plays a key role in determining the diurnal variations of tropical oceanic convective and stratiform rainfall,and the examination of such a relationship requires a direct link between the radiation term in a heat budget and the surface rain rate in a cloud budget.Thus,the thermally related surface rainfall budgets derived from the combination of cloud and heat budgets are analysed with two-dimensional equilibrium cloud-resolving model simulation data to study the effects of sea surface temperature (SST) and cloud radiative,and microphysical processes on the diurnal variations of convective and stratiform rainfall.The results show that the increase in SST,the inclusion of diurnal variation of SST and the exclusion of cloud radiative processes increase negative diurnal anomalies of heat divergence over rainfall-free regions during the nighttime through changing the vertical structures of diurnal anomaly of radiation in the troposphere.The strengthened negative diurnal anomalies of heat divergence over rainfallfree regions enhance positive diurnal anomalies of heat divergence over convective regions,which intensifies the positive diurnal anomaly of convective rainfall.The exclusion of microphysical effects of ice clouds increases the negative diurnal anomaly of heat divergence over rainfall-free regions during the nighttime through reducing latent heat; this appears to enhance the positive diurnal anomaly of heat divergence over raining stratiform regions,and thus stratiform rainfall.

  13. Time series analysis of precipitation and vegetation to detect food production anomalies in the Horn of Africa. The case of Lower Shabelle (Somalia

    Directory of Open Access Journals (Sweden)

    M. A. Belenguer-Plomer

    2016-12-01

    Full Text Available The Horn of Africa is one of the most food-insecure locations around the world due to the continuous increase of its population and the practice of the subsistence agriculture. This causes that much of the population cannot take the minimum nutritional needs for a healthy life. Moreover, this situation of food vulnerability may be seriously affected in the coming years due to the effects of climate change. The aim of this work is combine the information about the state of the vegetation that offers the NDVI with rainfall data to detect negative anomalies in food production. This work has been used the monthly products of NDVI MOD13A3 of MODIS and the rainfall estimation product TAMSAT, both during the period 2001-2015. With these products we have calculated the average of the entire time period selected and we have detected the years whose NDVI values were further away from the average, being these 2010, 2011 and 2014. Once detected the years with major anomalies in NDVI, there has been an exclusive monthly analysis of those years, where we have analysed the relationships between the value of NDVI and monthly rainfall, obtaining a direct relationship between the two values. It also has been used crop calendar to focus the analysis in the months of agricultural production and finding that the main cause of anomalies in vegetation is a decrease in the registration of rainfall during the months of agricultural production. This reason explains the origin of the food shortages that occurred in 2010 and 2011 that generated an enormous humanitarian crisis in this area.

  14. Entropy of stable seasonal rainfall distribution in Kelantan

    Science.gov (United States)

    Azman, Muhammad Az-zuhri; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Radi, Noor Fadhilah Ahmad

    2017-05-01

    Investigating the rainfall variability is vital for any planning and management in many fields related to water resources. Climate change can gives an impact of water availability and may aggravate water scarcity in the future. Two statistics measurements which have been used by many researchers to measure the rainfall variability are variance and coefficient of variation. However, these two measurements are insufficient since rainfall distribution in Malaysia especially in the East Coast of Peninsular Malaysia is not symmetric instead it is positively skewed. In this study, the entropy concept is used as a tool to measure the seasonal rainfall variability in Kelantan and ten rainfall stations were selected. In previous studies, entropy of stable rainfall (ESR) and apportionment entropy (AE) were used to describe the rainfall amount variability during years for Australian rainfall data. In this study, the entropy of stable seasonal rainfall (ESSR) is suggested to model rainfall amount variability during northeast monsoon (NEM) and southwest monsoon (SWM) seasons in Kelantan. The ESSR is defined to measure the long-term average seasonal rainfall amount variability within a given year (1960-2012). On the other hand, the AE measures the rainfall amounts variability across the months. The results of ESSR and AE values show that stations in east coastline are more variable as compared to other stations inland for Kelantan rainfall. The contour maps of ESSR for Kelantan rainfall stations are also presented.

  15. Study on Precipitation Anomalies of North of China in April and Its relationship to Sea Surface Temperature Evolvement

    Science.gov (United States)

    Song, Y.; Li, Z.; Guan, Y.

    2012-04-01

    Using monthly precipitation data in North of China for 1960-2007, American NCEP/NCAR monthly reanalysis data and NOAA SST (sea surface temperature) data, and SST indices data in Climate System Monitoring Bulletin collected by National Climate Center, this paper studied the general circulation, large-scale weather system anomalous characteristics and SSTA evolvement with more rainfall of North of China in April. The results showed that precipitation differences between months in spring in North of China were quite obvious, and the correlation coefficients between precipitation of North of China in April and that in March and in May were not significant respectively. The linear trend of precipitation in April was out of phase with that in spring. It was meaningful to study precipitation in April solely. The space pattern of first leading mode of EOF analysis for precipitation of North of China in April indicated that rainfall changed synchronously. In years of more rainfall in April showed negative phase of EU pattern in 500hPa geopotential height field of high latitude in the Northern Hemisphere, and North of China located at where cold and warm air masses met, which availed reinforcement of south wind and ascending motion. In middle and high latitudes was latitudinal circulation, and North of China was controlled by warm ridge and latitudinal large-scale front zone; In years of less rainfall, meridional circulation prevailed and large-scale front zone located northward and presented meridional pattern, and North of China was affected by cold air mass. At the same time, water vapor was transported strongly from Pacific, South China Sea and southwest of China, and reached Northeast of China. In years of less rainfall, the water vapor transportation was quite weak. The rainfall was related closely to sea surface temperature anomalies, especially to the Indian Ocean, the middle and east of Pacific, middle and south of Pacific and northwest of Pacific where there were

  16. Investigation of summer monsoon rainfall variability in Pakistan

    Science.gov (United States)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  17. Interannual variability of summer rainfall over the northern part of China and the related circulation features

    Science.gov (United States)

    Bueh, Cholaw; Li, Yan; Lin, Dawei; Lian, Yi

    2016-08-01

    In this study, interannual variability of summer rainfall over the northern part of China (NPC) and associated circulation patterns were investigated by using long-term (1961-2013) observational and reanalysis data. Two important NPC rainfall modes were identified by empirical orthogonal function analysis: the first is characterized by an almost uniformly distributed rainfall anomaly over most parts of the NPC, while the second shows rainfall variability in Northeast China (NEC) and its out-of-phase relationship with that in North China (NC) and the northern part of Northwest China. The results also suggest that the NPC summer rainfall anomalies are also closely associated with those in some other parts of China. It is revealed that the circumglobal teleconnection pattern associated with the anomalous Indian summer monsoon (ISM) and the Polar/Eurasia (PEA) pattern work in concert to constitute the typical circulation pattern of the first rainfall mode. The cooperative engagement of the anomalous ISM circulation and the PEA pattern is fundamental in transporting water vapor to the NPC. The study emphasizes that the PEA pattern is essential for the water vapor transport to the NPC through the anomalous midlatitude westerly. In the second NPC rainfall mode, the typical circulation pattern is characterized by the anomalous surface Okhotsk high and the attendant lower tropospheric circulation anomaly over NEC. The circulation anomaly over NEC leads to a redistribution of water vapor fluxes over the NPC and constitutes an out-of-phase relationship between the rainfall anomalies over NEC and NC.

  18. Anomaly Structure of Supergravity and Anomaly Cancellation

    CERN Document Server

    Butter, Daniel

    2009-01-01

    We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1)_K transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.

  19. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    Science.gov (United States)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results

  20. Global surface temperature in relation to northeast monsoon rainfall over Tamil Nadu

    Indian Academy of Sciences (India)

    S Balachandran; R Asokan; S Sridharan

    2006-06-01

    The local and teleconnective association between Northeast Monsoon Rainfall (NEMR)over Tamil Nadu and global Surface Temperature Anomalies (STA)is examined using the monthly grid-ded STA data for the period 1901-2004.Various geographical regions which have significant tele-connective signals associated with NEMR are identi fied.During excess (deficient)NEMR years,it is observed that the meridional gradient in surface air temperature anomalies between Europe and north Africa,in the month of September is directed from the subtropics (higher latitudes)to higher latitudes (subtropics).It is also observed that North Atlantic Oscillation (NAO)during September in fluences the surface air temperature distribution over north Africa and Europe.Also,the NAO index in January shows significant inverse relationship with NEMR since recent times.The central and eastern equatorial Pacific oceanic regions have signi ficant and consistent positive correlation with NEMR while the western equatorial region has significant negative correlation with NEMR. A zonal temperature anomaly gradient index (ZTAGI)de fined between eastern equatorial Pacific and western equatorial Pacific shows stable significant inverse relationship with NEMR.

  1. No-Rainfall Origin of Melas Chasma Valley Networks by Salt Dehydration: Numerical Thermal Model

    Science.gov (United States)

    Kargel, J. S.; Furfaro, R.; Rodriguez, J. A. P.; Candelaria, P.; Prieto-Ballesteros, O.; Marion, G. M.; Crowley, J.; Hook, S.

    2009-03-01

    Salts in Melas Chasma should produce large positive thermal anomalies and warm hypersaline conditions at shallow depths. Dewatering may yield brine eruptions, and we argue that in Melas Chasma valley networks were produced this way, not by rainfall.

  2. Interannual variability of rainfall characteristics over southwestern Madagascar

    Science.gov (United States)

    Randriamahefasoa, T. S. M.; Reason, C. J. C.

    2017-04-01

    The interannual variability of daily frequency of rainfall [>1 mm/day] and heavy rainfall [>30 mm/day] is studied for the southwestern region of Madagascar, which is relatively arid compared to the rest of the island. Attention is focused on the summer rainy season from December to March at four stations (Morondava, Ranohira, Toliara and Taolagnaro), whose daily rainfall data covering the period 1970-2000 were obtained from the Madagascar Meteorological Service. El Niño Southern Oscillation (ENSO) was found to have a relatively strong correlation with wet day frequency at each station and, particularly, for Toliara in the extreme southwest. In terms of seasonal rainfall totals, most El Niño (La Niña) summers receive below (above) average amounts. An ENSO connection with heavy rainfall events was less clear. However, for heavy rainfall events, the associated atmospheric circulation displays a Southern Annular Mode-like pattern throughout the hemisphere. For ENSO years and the neutral seasons 1979/80, 1981/82 which had large anomalies in wet day frequency, regional atmospheric circulation patterns consisted of strong anomalies in low-level moisture convergence and uplift over and near southwestern Madagascar that made conditions correspondingly more or less favourable for rainfall. Dry (wet) summers in southern Madagascar were also associated with an equatorward (poleward) displacement of the ITCZ in the region.

  3. Monitoring Niger River Floods from satellite Rainfall Estimates : overall skill and rainfall uncertainty propagation.

    Science.gov (United States)

    Gosset, Marielle; Casse, Claire; Peugeot, christophe; boone, aaron; pedinotti, vanessa

    2015-04-01

    Global measurement of rainfall offers new opportunity for hydrological monitoring, especially for some of the largest Tropical river where the rain gauge network is sparse and radar is not available. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of satellite rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them into the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This paper analyses the potential of satellite rainfall products combined with hydrological modeling to monitor the Niger river floods in the city of Niamey, Niger. A dramatic increase of these floods has been observed in the last decades. The study focuses on the 125000 km2 area in the vicinity of Niamey, where local runoff is responsible for the most extreme floods recorded in recent years. Several rainfall products are tested as forcing to the SURFEX-TRIP hydrological simulations. Differences in terms of rainfall amount, number of rainy days, spatial extension of the rainfall events and frequency distribution of the rain rates are found among the products. Their impacts on the simulated outflow is analyzed. The simulations based on the Real time estimates produce an excess in the discharge. For flood prediction, the problem can be overcome by a prior adjustment of the products - as done here with probability matching - or by analysing the simulated discharge in terms of percentile or anomaly. All tested products exhibit some

  4. Rainfall simulation in education

    Science.gov (United States)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  5. Temporal correlation between malaria and rainfall in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Galappaththy Gawrie NL

    2008-05-01

    Full Text Available Abstract Background Rainfall data have potential use for malaria prediction. However, the relationship between rainfall and the number of malaria cases is indirect and complex. Methods The statistical relationships between monthly malaria case count data series and monthly mean rainfall series (extracted from interpolated station data over the period 1972 – 2005 in districts in Sri Lanka was explored in four analyses: cross-correlation; cross-correlation with pre-whitening; inter-annual; and seasonal inter-annual regression. Results For most districts, strong positive correlations were found for malaria time series lagging zero to three months behind rainfall, and negative correlations were found for malaria time series lagging four to nine months behind rainfall. However, analysis with pre-whitening showed that most of these correlations were spurious. Only for a few districts, weak positive (at lags zero and one or weak negative (at lags two to six correlations were found in pre-whitened series. Inter-annual analysis showed strong negative correlations between malaria and rainfall for a group of districts in the centre-west of the country. Seasonal inter-annual analysis showed that the effect of rainfall on malaria varied according to the season and geography. Conclusion Seasonally varying effects of rainfall on malaria case counts may explain weak overall cross-correlations found in pre-whitened series, and should be taken into account in malaria predictive models making use of rainfall as a covariate.

  6. Meteorological fields variability over the Indian seas in pre and summer monsoon months during extreme monsoon seasons

    Indian Academy of Sciences (India)

    U C Mohanty; R Bhatla; P V S Raju; O P Madan; A Sarkar

    2002-09-01

    In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30° E-120°E, 30°S-30°N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this purpose, monthly surface meteorological fields anomaly are analyzed for 42 years (1958-1999) using reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research). The statistical significance of the anomaly (difference) between the surplus and deficient monsoon years in the surface meteorological fields are also examined by Student's t-test at 95% confidence level. Significant negative anomalies of mean sea level pressure are observed over India, Arabian Sea and Arabian Peninsular in the pre-monsoon month of May and monsoon season. Significant positive anomalies in the zonal and meridional wind (at 2m) in the month of May are observed in the west Arabian Sea off Somali coast and for monsoon season it is in the central Arabian Sea that extends up to Somalia. Significant positive anomalies of the surface temperature and air temperature (at 2m) in the month of May are observed over north India and adjoining Pakistan and Afghanistan region. During monsoon season this region is replaced by significant negative anomalies. In the month of May, significant positive anomalies of cloud amount are observed over Somali coast, north Bay of Bengal and adjoining West Bengal and Bangladesh. During monsoon season, cloud amount shows positive anomalies over NW India and north Arabian Sea. There is overall reduction in the incoming shortwave radiation flux during surplus monsoon years. A higher magnitude of latent heat flux is also found in surplus monsoon years for the month of May as well as the monsoon season. The significant positive anomaly of latent heat flux in May, observed over southwest Arabian Sea, may be considered

  7. Avian influenza infection dynamics under variable climatic conditions, viral prevalence is rainfall driven in waterfowl from temperate, south-east Australia.

    Science.gov (United States)

    Ferenczi, Marta; Beckmann, Christa; Warner, Simone; Loyn, Richard; O'Riley, Kim; Wang, Xinlong; Klaassen, Marcel

    2016-02-06

    Understanding Avian Influenza Virus (AIV) infection dynamics in wildlife is crucial because of possible virus spill over to livestock and humans. Studies from the northern hemisphere have suggested several ecological and environmental drivers of AIV prevalence in wild birds. To determine if the same drivers apply in the southern hemisphere, where more irregular environmental conditions prevail, we investigated AIV prevalence in ducks in relation to biotic and abiotic factors in south-eastern Australia. We sampled duck faeces for AIV and tested for an effect of bird numbers, rainfall anomaly, temperature anomaly and long-term ENSO (El-Niño Southern Oscillation) patterns on AIV prevalence. We demonstrate a positive long term effect of ENSO-related rainfall on AIV prevalence. We also found a more immediate response to rainfall where AIV prevalence was positively related to rainfall in the preceding 3-7 months. Additionally, for one duck species we found a positive relationship between their numbers and AIV prevalence, while prevalence was negatively or not affected by duck numbers in the remaining four species studied. In Australia largely non-seasonal rainfall patterns determine breeding opportunities and thereby influence bird numbers. Based on our findings we suggest that rainfall influences age structures within populations, producing an influx of immunologically naïve juveniles within the population, which may subsequently affect AIV infection dynamics. Our study suggests that drivers of AIV dynamics in the northern hemisphere do not have the same influence at our south-east Australian field site in the southern hemisphere due to more erratic climatological conditions.

  8. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  9. Impacts of the Madden-Julian oscillation on Australian rainfall and circulation

    NARCIS (Netherlands)

    Wheeler, M.C.; Hendon, H.H.; Cleland, S.; Meinke, H.B.; Donald, A.

    2009-01-01

    Impacts of the Madden¿Julian oscillation (MJO) on Australian rainfall and circulation are examined during all four seasons. The authors examine circulation anomalies and a number of different rainfall metrics, each composited contemporaneously for eight MJO phases derived from the real-time multivar

  10. An East Asian land-sea atmospheric heat source difference index and its relation to general circulation and summer rainfall over China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Using a monthly precipitation dataset of 160 stations over China and a daily and monthly National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset from 1961 to 2006, we here define an East Asian land-sea atmospheric heat source difference index ILSQD and investigate its relationship to summer rainfall in China and East Asian general circulation. The results show that ILSQD more closely reflects the anomalous variations in summer monsoon phenomena; in the high-index (HI) cases, the strong low-level southerlies over East China and the strong high-level westerlies over middle latitudes indicate an active summer monsoon, and vice versa in the low-index (LI) cases. This index also reflects summer rainfall anomalies over East China; in the HI (LI) cases rainfall increases (decreases) over North China and at the same time decreases (increases) over the mid-lower Yangtze River valley and the southern Yangtze River. Hence, ILSQD can be utilized as a summer monsoon index. There is also remarkable correlation between ILSQD in March and the following summer rainfall over the mid-lower Yangtze River valley. Finally, the Community Atmospheric Model Version 3.1 (CAM3.1) of NCAR is used to run numerical experiments, which verify that the anomalous summer precipitation in simulations is similar to that of diagnosis analysis based on the anomalous summer atmospheric heating forcing. Similarly, the atmospheric heating rate in March can force summer rainfall anomalies in the simulations just as observed in the data.

  11. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the

  12. Statistical Analysis of 30 Years Rainfall Data: A Case Study

    Science.gov (United States)

    Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.

    2017-07-01

    Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.

  13. Interdecadal shift in the western North Pacific Summer SST anomaly in the late 1980s

    Institute of Scientific and Technical Information of China (English)

    WU BingYi; ZHANG RenHe

    2007-01-01

    An interdecadal shift in summer (June-August) sea surface temperature (SST) variations during the period of 1968―2002 was identified in the late 1980s, which is characterized by a phase alternating from negative to positive phases of the leading mode of the empirical orthogonal function (EOF) analysis of the summer monthly mean SST in the Pacific domain 100°―180°E and 0°―40°N, accounting for 30.5% of the total variance. During the period of 1968―1987, the leading mode with a mean negative phase state (mean standard deviation = -0.586) controlled SST variability in the western North Pacific. Correspondingly, negative SST anomalies occupied the western North Pacific south of Japan and Chinese marginal seas. During the period of 1988―2002, the leading mode shifted to its strong positive polarity (mean standard deviation = 0.781), thus positive SST anomalies appeared in the western North Pacific. Accompanied by the interdecadal shift in summer mean SST, summer mean rainfall increased in southern and southeastern China during the late period, particularly in southeastern China where increase in summer mean rainfall exceeded 40 mm, at the 0.05 significance level.

  14. Rainfall measurement using radio links from cellular communication networks

    NARCIS (Netherlands)

    Leijnse, H.; Uijlenhoet, R.; Stricker, J.N.M.

    2007-01-01

    We investigate the potential of radio links such as employed by commercial cellular communication companies to monitor path-averaged rainfall. We present an analysis of data collected using two 38-GHz links during eight rainfall events over a 2-month period (October¿November 2003) during mostly stra

  15. Using long-term daily satellite based rainfall data (1983-2015) to analyze spatio-temporal changes in the sahelian rainfall regime

    Science.gov (United States)

    Zhang, Wenmin; Brandt, Martin; Guichard, Francoise; Tian, Qingjiu; Fensholt, Rasmus

    2017-07-01

    The sahelian rainfall regime is characterized by a strong spatial as well as intra- and inter-annual variability. The satellite based African Rainfall Climatology Version 2 (ARC2) daily gridded rainfall estimates with a 0.1° × 0.1° spatial resolution provides the possibility for in-depth studies of seasonal changes over a 33-year period (1983-2015). Here we analyze rainfall regime variables that require daily observations: onset, cessation, and length of the wet season; seasonal rainfall amount; number of rainy days; intensity and frequency of rainfall events; number, length, and cumulative duration of dry spells. Rain gauge stations and MSWEP (Multi-Source Weighted-Ensemble Precipitation) data were used to evaluate the agreement of rainfall variables in both space and time, and trends were analyzed. Overall, ARC2 rainfall variables reliably show the spatio-temporal dynamics of seasonal rainfall over 33 years when compared to gauge and MSWEP data. However, a higher frequency of low rainfall events (spell characteristics). Most rainfall variables (both ARC2 and gauge data) show negative anomalies (except for onset of rainy season) from 1983 until the end of the 1990s, from which anomalies become mostly positive and inter-annual variability is higher. ARC2 data show a strong increase in seasonal rainfall, wet season length (caused by both earlier onset and a late end), number of rainy days, and high rainfall events (>20 mm day-1) for the western/central Sahel over the period of analysis, whereas the opposite trend characterizes the eastern part of the Sahel.

  16. Impacts of Two-Type ENSO on Rainfall over Taiwan

    OpenAIRE

    Chen-Chih Lin; Yi-Jiun Liou; Shih-Jen Huang

    2015-01-01

    Impacts of two-type ENSO (El Niño/Southern Oscillation), canonical ENSO and ENSO Modoki, on rainfall over Taiwan are investigated by the monthly mean rainfall data accessed from Taiwan Central Weather Bureau. The periods of the two-type ENSO are distinguished by Niño 3.4 index and ENSO Modoki index (EMI). The rainfall data in variously geographical regions are analyzed with the values of Niño 3.4 and EMI by correlation method. Results show that the seasonal rainfalls over Taiwan are different...

  17. Impacts of Two-Type ENSO on Rainfall over Taiwan

    OpenAIRE

    Chen-Chih Lin; Yi-Jiun Liou; Shih-Jen Huang

    2015-01-01

    Impacts of two-type ENSO (El Niño/Southern Oscillation), canonical ENSO and ENSO Modoki, on rainfall over Taiwan are investigated by the monthly mean rainfall data accessed from Taiwan Central Weather Bureau. The periods of the two-type ENSO are distinguished by Niño 3.4 index and ENSO Modoki index (EMI). The rainfall data in variously geographical regions are analyzed with the values of Niño 3.4 and EMI by correlation method. Results show that the seasonal rainfalls over Taiwan are different...

  18. A rainfall simulation model for agricultural development in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Sayedur Rahman

    2000-01-01

    Full Text Available A rainfall simulation model based on a first-order Markov chain has been developed to simulate the annual variation in rainfall amount that is observed in Bangladesh. The model has been tested in the Barind Tract of Bangladesh. Few significant differences were found between the actual and simulated seasonal, annual and average monthly. The distribution of number of success is asymptotic normal distribution. When actual and simulated daily rainfall data were used to drive a crop simulation model, there was no significant difference of rice yield response. The results suggest that the rainfall simulation model perform adequately for many applications.

  19. How El-Nino affects Ethiopian summer rainfall

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel; Viste, Ellen

    2016-04-01

    Ethiopian economy and society are strongly dependent on agriculture and therefore rainfall. Reliable forecasts for the rainy seasons are important to allow for agricultural planning and drought preparations. The operational seasonal forecasts for Ethiopia are based on analogue methods relying mainly on sea surface temperature (SST) indices. A better understanding of the physical links between Ethiopian rainfall and SST may help to improve forecasts. The highest rainfall rates are observed in the Kiremt season (defined as JJAS), which is the rainy season in Central and Northwestern Ethiopia. Kiremt rainfall shows clear negative correlation with Central Pacific SST, linking dry Ethiopian summers with ENSO-like warm SST anomalies. We use the atmosphere general circulation model Echam5.3 to investigate the physical link between Pacific SST anomalies and Kiremt rainfall. We compare a historical simulation with a T106 horizontal resolution (~ 1.125°), forced with reconstructed SST data, to gauge-based rainfall observations for the time period of 1961 to 2009. Composite analysis for model and observations show warm SST anomalies in the Central Pacific and a corresponding large-scale circulation anomaly with subsidence over Ethiopia in dry Kiremt seasons. Horizontal wind fields show a slow-down of the whole Indian monsoon system with a weaker Tropical Easterly Jet (TEJ) and a weaker East African Low-Level Jet (EALLJ) in these summers. We conducted a sensitivity experiment with El Nino like SST anomalies in the Central Pacific with the same Echam version. Its results show that warm Pacific SST anomalies cause dry summer conditions over Ethiopia. While the large-scale subsidence over East Africa is present in the experiment, there is no significant weakening of the Indian monsoon system. We rather find an anomalous circulation cell over Northern Africa with westerlies at 100-200 hPa and easterlies below 500 hPa. The anomalous easterly flow in the lower and middle

  20. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  1. Predictability of rainfall and teleconnections patterns influencing on Southwest Europe from sea surfaces temperatures

    Science.gov (United States)

    Lorenzo, M. N.; Iglesias, I.; Taboada, J. J.; Gómez-Gesteira, M.; Ramos, A. M.

    2009-04-01

    This work assesses the possibility of doing a forecast of rainfall and the main teleconnections patterns that influences climate in Southwest Europe by using sea surface temperature anomalies (SSTA). The area under study is located in the NW Iberian Peninsula. This region has a great oceanic influence on its climate and has an important dependency of the water resources. In this way if the different SST patterns are known, the different rainfall situations can be predicted. On the other hand, the teleconnection patterns, which have strong weight on rainfall, are influenced by the SSTA of different areas. In the light of this, the aim of this study is to explore the relationship between global SSTAs, rainfall and the main teleconnection patterns influencing on Europe. The SST data with a 2.0 degree resolution was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. A monthly averaged data from 1 January 1951 through December 2006 was considered. The monthly precipitation data from 1951-2006 were obtained from the database CLIMA of the University of Santiago de Compostela with data from the Meteorological State Agency (AEMET) and the Regional Government of Galicia. The teleconnection indices were taken of the Climate Prediction Center of the NOAA between 1950 and 2006. A monthly and seasonal study was analysed considering up to three months of delay in the first case and up to four seasons of delay in the second case. The Pearson product-moment correlation coefficient r was considered to quantify linear associations between SSTA and precipitation and/or SSTA and teleconnection indices. A test for field-significance was applied considering the properties of finiteness and interdependence of the spatial grid to avoid spurious correlations. Analysing the results obtained with the global SSTA and the teleconnection indices, a great number of ocean regions with high correlations can be found. The spatial patterns show very high correlations with Indian Ocean waters

  2. Rainfall deficit and excess rainfall during vegetation of early potatoes varieties in central-eastern Poland (1971-2005

    Directory of Open Access Journals (Sweden)

    Elżbieta Radzka

    2015-06-01

    Full Text Available The study was based on data collected from nine stations of the Institute of Meteoro­logy and Water Management in central-eastern Poland (1971-2005 concerning monthly precipitation total and mean monthly air temperature during the vegetation period of early potatoes (April-July. Optimal precipitation for early potato was calculated according to the Klatt indexes for medium cohesive and light soils in the successive months of the vegetation period. Rainfall deficit and excess rainfall were determined based on differences between monthly precipitation totals recorded in the years of the study and values considered to be optimal. It was found that the frequency of rainfall deficit during vegetation of early potato in each analysed location both for medium cohesive soil and for light soil exceeded the frequency of its excess. The greatest mean monthly rainfall deficit from the multiannual period in the vegetation season of early potato in all the analysed locations and for both soil types was recorded in June, while excess rainfall was observed in July. Lower values of standard deviation for rainfall deficit were calculated in the case of light soil than medium cohesive soil, while an opposite dependence was recorded for excess rainfall. The risk for early potato plantations on light soil was connected with frequent extreme deficits. They were observed most often in the south-eastern part of the study area, while they were rarest in the belt from Pułtusk towards Szepietowo. Values of the slope of the trend lines were low for all the weather stations and most of them were statistically non-significant. However, all values concerning rainfall deficit were negative, which indicates its slight increase from year to year. A significant trend for changes in rainfall deficit was observed only in Włodawa and Siedlce, while for excess rainfall it was found in Szepietowo and Białowieża.

  3. Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation

    Science.gov (United States)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Mitra, A. K.; Pandithurai, G.

    2016-11-01

    This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.

  4. THE EAST ASIAN SUBTROPICAL SUMMER MONSOON INDEX AND ITS RELATION WITH THE CLIMATE ANOMALIES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    LIU Xuan-fei; WANG-Jing

    2007-01-01

    A new East Asian subtropical summer monsoon circulation index is defined, where the barotropic and baroclinic components of circulation are included. Results show that this index can well indicate the interannual variability of summer precipitation and temperature anomalies in China. A strong monsoon is characterized by more rainfall in the Yellow River basin and northern China, less rainfall in the Yangtze River basin, and more rainfall in south and southeast China, in association with higher temperature in most areas of China. Furthermore, comparison is made between the index proposed in this paper and other monsoon indexes in representing climate anomalies in China.

  5. A Monthly Atmospheric Circulation Classification and Its Relationship with Climate in Harbin

    Institute of Scientific and Technical Information of China (English)

    JIA Liwei; LI Weijing; CHEN Deliang; AN Xiaocun

    2006-01-01

    In this study, the classification scheme developed by Jenkinson and Collison (1977) based on a typing scheme of Lamb (1950) is applied to obtain circulation types from the mean sea-level pressure on a monthly basis. Monthly mean sea-level pressure data from 1951 to 2002 are used to derive six circulation indices and to provide a circulation catalogue with 27 circulation types. Five major types (N, NW, C, CSW, and SW)which occurred most frequently are analyzed to reveal their relationships with the temperature of Harbin on various time scales. Stepwise multiple regression is used to reconstruct temperature anomaly. The monthly mean rainfall of all types occurring and the composite maps of three major types (C, CSW, and SW) relevant to Harbin's precipitation are studied. In this study, the classification scheme developed by Jenkinson and Collison (1977) based on a typing scheme of Lamb (1950) is applied to obtain circulation types from the mean sea-level pressure on a monthly basis. Monthly mean sea-level pressure data from 1951 to 2002 are used to derive six circulation indices and to provide a circulation catalogue with 27 circulation types. Five major types (N, NW, C, CSW, and SW)which occurred most frequently are analyzed to reveal their relationships with the temperature of Harbin on various time scales. Stepwise multiple regression is used to reconstruct temperature anomaly. The monthly mean rainfall of all types occurring and the composite maps of three major types (C, CSW, and SW) relevant to Harbin's precipitation are studied.

  6. Assessment of Temperature and Elevation Controls on Spatial Variability of Rainfall in Iran

    OpenAIRE

    Majid Javari

    2017-01-01

    With rainfall changes, hydrological process variability increases. This study predicts the potential effects of temperature and topography characteristics on rainfall spatial variability. Temperature and topography were considered as two effective factors that may influence monthly rainfall. This study uses rainfall and temperature data from 174 synoptic and climatic stations and 39,055 rain, elevation and temperature points extracted by ArcGIS10.3 over the 40 years (1975–2014). In this study...

  7. Long-term variability of the leading seasonal modes of rainfall in south-eastern Australia

    OpenAIRE

    Maryam Montazerolghaem; Willem Vervoort; Budiman Minasny; Alex McBratney

    2016-01-01

    Knowledge of temporal and spatial variability of climate and rainfall can improve agriculture production and can help to manage risks caused by climate variability. Available high-quality monthly rainfall data from the Australian Bureau of Meteorology for 1907–2011 was used to investigate the leading seasonal mode of the long-term rainfall variability over south-eastern and eastern Australia. Spatio-temporal variations of seasonal rainfall and their connection to oceanic-atmospheric predictor...

  8. The El Niño effect on Ethiopian summer rainfall

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel; Viste, Ellen; Korecha, Diriba

    2017-09-01

    While El Niño is known to cause failure of Kiremt (boreal summer) rainfall in Ethiopia, the mechanisms are not fully understood. Here we use the ECHAM5 Atmospheric General Circulation Model to investigate the physical link between Pacific sea surface temperature (SST) anomalies and Kiremt rainfall. We compare ECHAM5 simulations forced with reconstructed SST data, to gauge-based rainfall observations and atmospheric reanalysis for the time period of 1961-2009. We perform composite analysis and sensitivity experiments driven only with equatorial Pacific SST anomalies. Our results show warm SST anomalies in the equatorial Pacific drive a corresponding large-scale circulation anomaly with subsidence over Ethiopia in dry Kiremt seasons. Horizontal wind fields show a slow-down of the whole Indian monsoon system with a weaker Tropical Easterly Jet and a weaker East African Low-Level Jet in these summers. These changes can be seen as an anomalous circulation cell over northern Africa with westerlies at 100-200 hPa and easterlies below 500 hPa. Surface easterlies might reduce the moisture inflow from the Atlantic and Congo basin into Ethiopia. This and the general subsidence over the region could explain the reduction in Kiremt rainfall. Our results suggest up to 50% of the Kiremt rainfall anomalies is driven by equatorial Pacific SST variability.

  9. The El Niño effect on Ethiopian summer rainfall

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel; Viste, Ellen; Korecha, Diriba

    2016-11-01

    While El Niño is known to cause failure of Kiremt (boreal summer) rainfall in Ethiopia, the mechanisms are not fully understood. Here we use the ECHAM5 Atmospheric General Circulation Model to investigate the physical link between Pacific sea surface temperature (SST) anomalies and Kiremt rainfall. We compare ECHAM5 simulations forced with reconstructed SST data, to gauge-based rainfall observations and atmospheric reanalysis for the time period of 1961-2009. We perform composite analysis and sensitivity experiments driven only with equatorial Pacific SST anomalies. Our results show warm SST anomalies in the equatorial Pacific drive a corresponding large-scale circulation anomaly with subsidence over Ethiopia in dry Kiremt seasons. Horizontal wind fields show a slow-down of the whole Indian monsoon system with a weaker Tropical Easterly Jet and a weaker East African Low-Level Jet in these summers. These changes can be seen as an anomalous circulation cell over northern Africa with westerlies at 100-200 hPa and easterlies below 500 hPa. Surface easterlies might reduce the moisture inflow from the Atlantic and Congo basin into Ethiopia. This and the general subsidence over the region could explain the reduction in Kiremt rainfall. Our results suggest up to 50% of the Kiremt rainfall anomalies is driven by equatorial Pacific SST variability.

  10. Developing an automatic classification system of vegetation anomalies for early warning with the ASAP (Anomaly hot Spots of Agricultural Production) system

    Science.gov (United States)

    Meroni, M.; Rembold, F.; Urbano, F.; Lemoine, G.

    2016-12-01

    Anomaly maps and time profiles of remote sensing derived indicators relevant to monitor crop and vegetation stress can be accessed online thanks to a rapidly growing number of web based portals. However, timely and systematic global analysis and coherent interpretation of such information, as it is needed for example for SDG 2 related monitoring, remains challenging. With the ASAP system (Anomaly hot Spots of Agricultural Production) we propose a two-step analysis to provide monthly warning of production deficits in water-limited agriculture worldwide. The first step is fully automated and aims at classifying each administrative unit (1st sub-national level) into a number of possible warning levels, ranging from "none" to "watch" and up to "extended alarm". The second step involves the verification of the automatic warnings and integration into a short national level analysis by agricultural analysts. In this paper we describe the methodological development of the automatic vegetation anomaly classification system. Warnings are triggered only during the crop growing season, defined by a remote sensing based phenology. The classification takes into consideration the fraction of the agricultural and rangelands area for each administrative unit that is affected by a severe anomaly of two rainfall-based indicators (the Standardized Precipitation Index (SPI), computed at 1 and 3-month scale) and one biophysical indicator (the cumulative NDVI from the start of the growing season). The severity of the warning thus depends on the timing, the nature and the number of indicators for which an anomaly is detected. The prototype system is using global NDVI images of the METOP sensor, while a second version is being developed based on 1km Modis NDVI with temporal smoothing and near real time filtering. Also a specific water balance model is under development to include agriculture water stress information in addition to the SPI. The monthly warning classification and crop

  11. Spatial Variability of Rainfall

    DEFF Research Database (Denmark)

    Jensen, N.E.; Pedersen, Lisbeth

    2005-01-01

    As a part of a Local Area Weather Radar (LAWR) calibration exercise 15 km south of Århus, Denmark, the variability in accumulated rainfall within a single radar pixel (500 by 500 m) was measured using nine high-resolution rain gauges. The measured values indicate up to a 100% variation between...

  12. The Wageningen Rainfall Simulator

    NARCIS (Netherlands)

    Lassu, Tamas; Seeger, K.M.; Peters, P.D.; Keesstra, S.D.

    2015-01-01

    The set-up and characterisation of an indoor nozzle-type rainfall simulator (RS) at Wageningen University, the Netherlands, are presented. It is equipped with four Lechler nozzles (two nr. 460·788 and two nr. 461·008). The tilting irrigation plot is 6 m long and 2·5 m wide. An electrical pump

  13. Recurrent daily rainfall patterns over South Africa and associated dynamics during the core of the austral summer

    CSIR Research Space (South Africa)

    Cretat, J

    2010-12-01

    Full Text Available . Amongst them, one cluster looks most like the rainfall and circulation mean picture. Another one, representing 37% of the days, describes strong negative rainfall anomalies over South Africa resulting from a regional barotropic trough-ridge-trough wave...

  14. Extreme Rainfall Impacts in Fractured Permeable Catchments

    Science.gov (United States)

    Ireson, A. M.; Butler, A. P.

    2009-12-01

    Serious groundwater flooding events have occurred on Chalk catchments in both the UK and north west Europe in the last decade, causing substantial amounts of disruption and economic damage. These fractured, permeable catchments are characterized by low surface runoff, high baseflow indices and strongly attenuated streamflow hydrographs. They have a general resilience to drought and pluvial/fluvial flooding. The small pore size of the Chalk matrix (~ 1 µm) exerts a high suction, such that dynamic storage is primarily due to the fractures, and amounts to ~ 1% of the total volume. As a result, under sustained rainfall the water table can rise up to exceptional levels leading to surface water emergence from springs and valleys. Floodwater may slowly drain with the topography, or, in localized depressions, it may simply pond until the groundwater levels decline. In winter 2000/1, a sequence of individually unexceptional rainfall events over several months led to large scale flooding in the Pang catchment, Berkshire, UK. By contrast, an extreme rainfall event on 20th July 2007 in the same catchment caused a very rapid response at the water table, but due to the antecedent conditions did not lead to flooding. The objective of this study is to quantify how the water table in a fractured permeable catchment responds to different types of rainfall, and the implications of this for groundwater flooding. We make use of measurements from the Pang catchment, including: rainfall (tipping bucket gauges); actual evaporation (eddy flux correlation); soil water content (profile probes and neutron probes); near surface matric potential (tensiometers and equitensiometers); deep (>10m) matric potential (deep jacking tensiometers); and water table elevation (piezometers). Conventional treatment of recharge in Chalk aquifers considers a fixed bypass component of rainfall, normally 15%, to account for the role of the fractures. However, interpretation of the field data suggest three modes

  15. RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Celso A. G. Santos

    2016-01-01

    Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.

  16. Relationship Between South Atlantic Subtropical High and South Atlantic SST Anomalies during Extreme Precipitation Events on Southeast Brazil

    Science.gov (United States)

    Pampuch, L.; Ambrizzi, T.

    2012-12-01

    The Southeast region of Brazil comprises the states of Sao Paulo, Minas Gerais, Rio de Janeiro and Espirito Santo. It occupies 10.85% of Brazilian territory and is highly urbanized. The Southeast Brazil is the biggest geoeconomic region of the country having a strong and diverse economy. Agriculture dominates in all states of the region. The main agricultural products are sugar cane, coffee, cotton, maize, cassava, rice, beans and fruits. Livestock farming is also practiced in the region. The largest herd of cattle is found in the state of Minas Gerais. These activities are highly dependent on the amount and distribution of rainfall. Studies of extreme precipitation events over Brazil have been well emphasized in the literature over the years and their relationship with anomalies of sea surface temperature (SST) in both the Pacific and the Atlantic Ocean have been analyzed. This paper investigates the extreme events occurring in southeastern Brazil from 1982 to 2004 using the technique of quantiles. The composite technique was applied to precipitation, sea level pressure anomaly (SLP) and sea surface temperature anomaly (SST) data in order to investigate the characteristics of rainfall patterns, the position and intensity of South Atlantic subtropical high (SASH) and SST anomalies in the Southern Atlantic Ocean (SAO) in the occurrence of these events and to make a distinction between dry and wet extremes. Analyzing the precipitation patterns, it was noticed that the composition of dry events throughout the Southeast Brazil has negative precipitation anomalies. Particularly, in the southern part of the region there is a large precipitation deficit, having an average of 50mm in the winter months. The composition for the wet events shows that, on average, positive precipitation anomalies with the southern region containing the highest cumulative average, reaching a positive anomaly of 100mm. The composition of SLP in the case of dry events indicates a positive anomaly

  17. Rainfall Intra-Seasonal Variability and Vegetation Growth in the Ferlo Basin (Senegal

    Directory of Open Access Journals (Sweden)

    Soukèye Cissé

    2016-01-01

    Full Text Available During the monsoon season, the spatiotemporal variability of rainfall impacts the growth of vegetation in the Sahel. This study evaluates this effect for the Ferlo basin in central northern Senegal. Relationships between rainfall, soil moisture (SM, and vegetation are assessed using remote sensing data (TRMM3B42 and RFE 2.0 for rainfall, ESA-CCI.SM for soil moisture and MODIS Leaf Area Index (LAI. The principal objective was to analyze the response of vegetation growth to water availability during the rainy season using statistical criteria at the scale of homogeneous vegetation-soil zones. The study covers the period from June to September for the years 2000 to 2010. The surface SM is well correlated with both rainfall products. On ferruginous soils, better correlation of intra-seasonal variations and stronger sensitivity of the vegetation to rainfall are found compared to lithosols soils. LAI responds, on average, two to three weeks after a rainfall anomaly. Moreover, dry spells (negative anomalies of seven days’ length (three days for SM anomaly significantly affect vegetation growth (maximum LAI within the season. A strong and significant link is also found between total precipitation and the number of dry spells. These datasets proved to be sufficiently reliable to assess the impacts of rainfall variability on vegetation dynamics.

  18. Teleconnections between Ethiopian summer rainfall and sea surface temperature: Part I - observation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Diro, G.T. [The Abdus salam International Centre for Theoretical Physics, Earth System Physics section, Trieste (Italy); University of Reading, Department of Meteorology, Reading (United Kingdom); Grimes, D.I.F.; Black, E. [University of Reading, Department of Meteorology, Reading (United Kingdom)

    2011-07-15

    In this study, the oceanic regions that are associated with anomalous Ethiopian summer rains were identified and the teleconnection mechanisms that give rise to these associations have been investigated. Because of the complexities of rainfall climate in the horn of Africa, Ethiopia has been subdivided into six homogeneous rainfall zones and the influence of SST anomalies was analysed separately for each zone. The investigation made use of composite analysis and modelling experiments. Two sets of composites of atmospheric fields were generated, one based on excess/deficit rainfall anomalies and the other based on warm/cold SST anomalies in specific oceanic regions. The aim of the composite analysis was to determine the link between SST and rainfall in terms of large scale features. The modelling experiments were intended to explore the causality of these linkage. The results show that the equatorial Pacific, the midlatitude northwest Pacific and the Gulf of Guinea all exert an influence on the summer rainfall in various part of the country. The results demonstrate that different mechanisms linked to sea surface temperature control variations in rainfall in different parts of Ethiopia. This has important consequences for seasonal forecasting models which are based on statistical correlations between SST and seasonal rainfall totals. It is clear that such statistical models should take account of the local variations in teleconnections. (orig.)

  19. MR imaging of paediatric uterovaginal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Lang, I.M.; Babyn, P. [Hospital for Sick Children, Toronto, ON (Canada). Dept. of Diagnostic Imaging; Oliver, G.D. [Hospital for Sick Children, Toronto, ON (Canada). Dept. of Gynaecology

    1999-03-01

    Background. Transabdominal ultrasound (US) has not proved completely reliable in Muellerian duct anomalies. One study has shown it useful in obstructed uterovaginal anomalies. We are unaware of a study that has used endovaginal ultrasound in children to investigate uterovaginal anomalies. Magnetic resonance imaging (MRI) is now gaining wide acceptance in imaging congenital abnormalities of the genital tract. Objective. To identify the problems and potential pitfalls of using MRI to evaluate the female genital tract in paediatric patients. Materials and methods. A retrospective review of the MRI scans of 19 patients, aged 3 months to 19 years (mean 14 years), with uterovaginal anomalies. Results. The uterovaginal anomalies were categorised into three groups: (1) congenital absence of the Muellerian ducts, or the Mayer-Rokitansky-Kuster-Hauser syndrome (n = 7), (2) disorders of vertical fusion (n = 2) and (3) disorders of lateral fusion (n = 10). Conclusions. MRI is a reliable method for evaluating paediatric uterovaginal anomalies, but should be analysed in conjunction with other imaging modalities (US and genitography). Previous surgery makes interpretation more difficult and, if possible, MRI should be carried out prior to any surgery. An accurate MRI examination can be extremely helpful prior to surgery and it is important for the radiologist to have knowledge of how these complex anomalies are managed and what pitfalls to avoid. (orig.) With 7 figs., 4 tabs., 24 refs.

  20. The Winter Rainfall of Malaysia

    National Research Council Canada - National Science Library

    Chen, Tsing-Chang; Tsay, Jenq-Dar; Yen, Ming-Cheng; Matsumoto, Jun

    2013-01-01

    .... The major cause of the rainfall maximum of Peninsular Malaysia is cold surge vortices (CSVs) and heavy rainfall/flood (HRF) events propagating from the Philippine area and Borneo. In contrast, the major cause of the rainfall maximum of Borneo is these rain-producing disturbances trapped in Borneo. Disturbances of the former group are formed by the cold sur...

  1. Competing Orders and Anomalies

    Science.gov (United States)

    Moon, Eun-Gook

    2016-08-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  2. Anomaly-induced baryogenesis

    CERN Document Server

    Kobakhidze, A

    2004-01-01

    We propose a new mechanism for dynamical generation of the observed baryon asymmetry within the minimal Standard model extended by massive Majorana neutrinos and non-vanishing electroweak Chern-Simons term. We show that electroweak Chern-Simons number is produced in the expanding universe due to the conformal anomaly and subsequently converted into baryon number through the triangle anomaly.

  3. Competing Orders and Anomalies.

    Science.gov (United States)

    Moon, Eun-Gook

    2016-08-08

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  4. Continuous rainfall generation for a warmer climate using observed temperature sensitivities

    Science.gov (United States)

    Wasko, Conrad; Sharma, Ashish

    2017-01-01

    Continuous rainfall sequences are often used as inputs in hydrologic modeling, particularly where a probabilistic assessment is required. Continuous rainfall sequences provide a means for accounting of all aspects of rainfall that produce flooding, for example, not just the design rainfall event but also the rainfall prior to the extreme rainfall event. With the advent of climate change, higher temperatures have been associated with changes in rainfall, in particular intensifying rainfall extremes with less uniform temporal patterns. Given these demonstrated changes to extreme rainfall with temperature rise, there is a need to modify continuous rainfall generators to account for current and likely future changes in temperature. In this work we propose a novel method for simulating continuous rainfall sequences for a future warmer climate by conditioning parameters on their historical sensitivity with temperature. To demonstrate the proposed technique we use a one-dimensional Neyman-Scott Rectangular Pulses model at two locations across Australia. The statistics used in the parameter estimation are conditioned on their historical sensitivity to average monthly temperature to simulate rainfall for a change in temperature. The results are validated by comparing the simulated rainfall against observations originating from differing temperatures and it is shown that the model captures the relative difference in the mean monthly rainfall and monthly maxima. Encouraged by these results we simulate rainfall for higher temperatures and capture expected changes to annual maxima and design temporal patterns for a warmer climate. While we demonstrate our methodology in the simulation of sub-daily rainfall using a specific model, the approach presented here can be applied to all weather generation schemes for projection in a warmer climate.

  5. Relationships between Rainy Days, Mean Daily Intensity, and Seasonal Rainfall over the Koyna Catchment during 1961–2005

    Science.gov (United States)

    Nandargi, S.; Mulye, S. S.

    2012-01-01

    There are limitations in using monthly rainfall totals in studies of rainfall climatology as well as in hydrological and agricultural investigations. Variations in rainfall may be considered to result from frequency changes in the daily rainfall of the respective regime. In the present study, daily rainfall data of the stations inside the Koyna catchment has been analysed for the period of 1961–2005 to understand the relationship between the rain and rainy days, mean daily intensity (MDI) and seasonal rainfall over the catchment on monthly as well as seasonal scale. Considering the topographical location of the catchment, analysis of seasonal rainfall data of 8 stations suggests that a linear relationship fits better than the logarithmic relationship in the case of seasonal rainfall versus mean daily intensity. So far as seasonal rainfall versus number of rainy days is considered, the logarithmic relationship is found to be better. PMID:22654646

  6. Relationships between Rainy Days, Mean Daily Intensity, and Seasonal Rainfall over the Koyna Catchment during 1961–2005

    Directory of Open Access Journals (Sweden)

    S. Nandargi

    2012-01-01

    Full Text Available There are limitations in using monthly rainfall totals in studies of rainfall climatology as well as in hydrological and agricultural investigations. Variations in rainfall may be considered to result from frequency changes in the daily rainfall of the respective regime. In the present study, daily rainfall data of the stations inside the Koyna catchment has been analysed for the period of 1961–2005 to understand the relationship between the rain and rainy days, mean daily intensity (MDI and seasonal rainfall over the catchment on monthly as well as seasonal scale. Considering the topographical location of the catchment, analysis of seasonal rainfall data of 8 stations suggests that a linear relationship fits better than the logarithmic relationship in the case of seasonal rainfall versus mean daily intensity. So far as seasonal rainfall versus number of rainy days is considered, the logarithmic relationship is found to be better.

  7. Distribuição temporal da precipitação pluvial mensal observada no Posto Meteorológico do Instituto Agronômico, em Campinas, SP Monthly rainfall temporal distribution observed in the Agronomic Institute Weather Station at Campinas, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2007-01-01

    rainfall temporal distribution at Campinas, São Paulo State, from 1890 to 2005. In order to detect possible trends in the precipitation series, the 116 years were divided in four equally spaced periods (P1, P2, P3 e P4 which were compared among themselves then using the gama probability density function for 48 data sets (4 periods of each 12 months. The skewness level of the monthly precipitation series showed that the consistency of climatic water balance that uses monthly precipitations arithmetic means can be questioned in no significant trends were detected on the monthly rainfall time distribution at Campinas.

  8. 461 TIME SERIES ANALYSES OF MEAN MONTHLY RAINFALL ...

    African Journals Online (AJOL)

    Osondu

    tests (trend, cycle, seasonal and decomposition analyses) using additive and multiplicative modeling approach. ... period under review. ... alone (including desertification and soil erosion) ... than one meter co-dominate (Davis 1982 p12).

  9. Downscaling summer rainfall in the UK from North Atlantic ocean temperatures

    Directory of Open Access Journals (Sweden)

    R. L. Wilby

    2001-01-01

    Full Text Available Annual series of three stochastic rainfall model parameters — the seasonal wet day amount (or intensity, the conditional dry–day probability (or dry–spell persistence, and the conditional wet-day probability (or wet-spell persistence — were examined using daily rainfall records for ten UK stations for the period 1901–1995. The purpose was first, to determine the extent to which these indices of summer (June–August rainfall were correlated with empirical orthogonal functions (EOFs of summer North Atlantic sea surface temperature (SST anomalies: second, to evaluate the skill of EOFs of preceding winter (December–February SSTs for summer rainfall forecasting and downscaling.Correlation analyses suggest that observed increases in summer dry-spell persistence since the 1970s coincided with positive SST anomalies in the North Atlantic. In contrast, wet-spell persistence and intensities were relatively weakly correlated with the same patterns, implying that the use of SSTs is justifiable for conditioning occurrence but not intensity parameters. Furthermore, the correlation strengths were greater for EOFs of SSTs than those reported for area-average SST anomalies, indicating that the pattern of SST anomalies conveys important information about seasonal rainfall anomalies across the UK. When EOFs of winter SSTs were used to forecast summer rainfall in Cambridge, the skill was once again greater for dry-spells than either wet-spells or intensities. However, even for dry–spells, the correlation with observations — whilst statistically significant — was still rather modest (r Keywords: North Atlantic, ocean temperatures, downscaling, rainfall, forecasting, UK

  10. Association between Australian rainfall and the Southern Annular Mode

    Science.gov (United States)

    Meneghini, Belinda; Simmonds, Ian; Smith, Ian N.

    2007-01-01

    In this study, we explore the relationships between seasonal Australian rainfall and the Southern Annular Mode (SAM). We produce two seasonal indices of the SAM: the Antarctic Oscillation Index (AOI), and an Australian regional version (AOIR) using ERA-40 mean sea-level pressure (MSLP) reanalysis data. The seasonal rainfall data are based on gridded monthly rainfall provided by the Australian Bureau of Meteorology.For the period 1958-2002 a significant inverse relationship is found between the SAM and rainfall in southern Australia, while a significant in-phase relationship is found between the SAM and rainfall in northern Australia. Furthermore, widespread significant inverse relationships in southern Australia are only observed in winter, and only with the AOIR. The AOIR accounts for more of the winter rainfall variability in southwest Western Australia, southern South Australia, western and southern Victoria, and western Tasmania than the Southern Oscillation Index. Overall, our results suggest that changes in the SAM may be partly responsible for the current decline in winter rainfall in southern South Australia, Victoria, and Tasmania, but not the long-term decline in southwest Western Australian winter rainfall.

  11. Impacts of Two-Type ENSO on Rainfall over Taiwan

    Directory of Open Access Journals (Sweden)

    Chen-Chih Lin

    2015-01-01

    Full Text Available Impacts of two-type ENSO (El Niño/Southern Oscillation, canonical ENSO and ENSO Modoki, on rainfall over Taiwan are investigated by the monthly mean rainfall data accessed from Taiwan Central Weather Bureau. The periods of the two-type ENSO are distinguished by Niño 3.4 index and ENSO Modoki index (EMI. The rainfall data in variously geographical regions are analyzed with the values of Niño 3.4 and EMI by correlation method. Results show that the seasonal rainfalls over Taiwan are different depending on the effects of two-type ENSO. In canonical El Niño episode, the rainfall increases in winter and spring while it reduces in summer and autumn. On the contrary, the rainfall increases in summer and autumn but reduces in winter and spring in El Niño Modoki episode. Nevertheless, two types of La Niña cause similar effects on the rainfall over Taiwan. It increases in autumn only. The rainfall variations in different types of ENSO are mainly caused by the monsoon and topography.

  12. The asymmetry of rainfall process

    Institute of Scientific and Technical Information of China (English)

    YU RuCong; YUAN WeiHua; LI Jian

    2013-01-01

    Using hourly station rain gauge data in the warm season (May-October) during 1961-2006,the climatological features of the evolution of the rainfall process are analyzed by compositing rainfall events centered on the maximum hourly rainfall amount of each event.The results reveal that the rainfall process is asymmetric,which means rainfall events usually reach the maximum in a short period and then experience a relatively longer retreat to the end of the event.The effects of rainfall intensity,duration and peak time,as well as topography,are also considered.It is found that the asymmetry is more obvious in rainfall events with strong intensity and over areas with complex terrain,such as the eastern margin of the Tibetan Plateau,the Hengduan Mountains,and the Yungui Plateau.The asymmetry in short-duration rainfall is more obvious than that in long-duration rainfall,but the regional differences are weaker.The rainfall events that reach the maximum during 14:00-02:00 LST exhibit the strongest asymmetry and those during 08:00-14:00 LST show the weakest asymmetry.The rainfall intensity at the peak time stands out,which means that the rainfall intensity increases and decreases quickly both before and after the peak.These results can improve understanding of the rainfall process and provide metrics for the evaluation of climate models.Moreover,the strong asymmetry of the rainfall process should be highly noted when taking measures to defending against geological hazards,such as collapses,landslides and debris flows throughout southwestern China.

  13. Reconstruction of rainfall in Zafra (southwest Spain from 1750 to 1840 from documentary sources

    Directory of Open Access Journals (Sweden)

    M. I. Fernández-Fernández

    2011-11-01

    Full Text Available This work presents the first high-resolution reconstruction of rainfall in southwestern Spain during the period 1750–1840. The weather descriptions used are weekly reports describing the most relevant events that occurred in the Duchy of Feria. An index was defined to characterise the weekly rainfall. Monthly indices were obtained by summing the corresponding weekly indices, obtaining cumulative monthly rainfall indices. The reconstruction method consisted of establishing a linear correlation between the monthly rainfall index and monthly instrumental data (1960–1990. The correlation coefficients were greater than 0.80 for all months. The rainfall reconstruction showed major variability similar to natural variability. The reconstructed rainfall series in Zafra was compared with the rainfall series of Cadiz, Gibraltar and Lisbon for the period 1750–1840, with all four series found to have a similar pattern. The influence of the North Atlantic Oscillation (NAO on the winter rainfall reconstruction was found to behave similarly to that of modern times. Other studies described are of the SLP values over the entire North Atlantic in the months with extreme values of rainfall, and unusual meteorological events (hail, frost, storms and snowfall in the reports of the Duchy of Feria.

  14. Observed Change in Sahel Rainfall, Circulations, African Easterly Waves, and Atlantic Hurricanes Since 1979

    OpenAIRE

    Shih-Yu Wang; Gillies, Robert R.

    2011-01-01

    Here, we examine the dynamic properties associated with the recent increase in the Sahel rainfall using an ensemble of five global reanalysis datasets (1979–2010). The rainfall that has been observed to be increasing over the Sahel is accounted for by enhancements in both the tropical easterly jet and the African easterly jet, both of which are known to induce wet anomalies. Moreover, positional shifts in the African easterly jet and African easterly waves (AEWs) accompanied the northward m...

  15. Anomalies on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard

    2001-03-16

    We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.

  16. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  17. Biennial relationship of rainfall variability between Central America and equatorial South America

    Science.gov (United States)

    Wu, Renguang; Zhang, Li

    2010-04-01

    Observations indicate that equatorial South American rainfall anomalies in boreal winter are preceded by the same sign Central American rainfall anomalies in boreal summer and tend to be succeeded by opposite sign Central American rainfall anomalies in the following summer. The in-phase relationship from summer to winter rainfall is attributed to direct effects of El Niño-Southern Oscillation (ENSO). Anomalous convection associated with warm ENSO events induces anomalous descent and suppresses precipitation along the convection region that migrates southeastward from Central America in boreal summer to tropical South America in boreal winter. The out-of-phase relationship from winter to summer rainfall is related to tropical North Atlantic sea surface temperature (SST) anomalies induced by wind-evaporation and cloud-radiation changes in response to ENSO-generated anomalous convection over tropical South America. In years when ENSO switches its phase from winter to summer, the direct effects of ENSO can also lead to the out-of-phase relationship.

  18. Theoretically Optimal Distributed Anomaly Detection

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel general framework for distributed anomaly detection with theoretical performance guarantees is proposed. Our algorithmic approach combines existing anomaly...

  19. Spatial and inter-seasonal behaviour of rainfall in the Soutpansberg region of South Africa as attributed to the changing climate

    Science.gov (United States)

    Kephe, Priscilla Ntuchu; Petja, Brilliant Mareme; Kabanda, Tibangayuka Abbas

    2016-10-01

    The inter-seasonal behaviour of rainfall in the Soutpansberg region of South Africa was assessed in relation to changing climate with an attempt to diagnose some of the contributing external factors. Seasonal rainfall data from 1970 to 2009 was characterised for the Soutpansberg using 23 rainfall stations distributed over the mountain range. The normality of rainfall data was quality-controlled using the Pearson correlation coefficient and a double mass curve. Composite rainfall and standardised anomaly index for the region were calculated in order to assess seasonal variability of rainfall. The results showed that the range experienced a decline in seasonal rainfall, from east to west. The North West (NW) part of the region experienced its lowest rainfall in 1985, with a standardised anomaly index (SAI) of -0.94, and its highest rainfall was experienced in 1978, with an SAI of 0.5. The North East (NE) recorded lowest rainfall in 1985 with an SAI of -1, and the highest rainfall was observed in the years ranging from 1977 to 1980 with an SAI of 1. The South East (SE) experienced lowest rainfall in 1985 with a value of -1.25 below the mean, and its highest rainfall (1.25) was experienced in 1976. The study showed that seasonal rainfall in the north-facing slope was lower than the rainfall in the south-facing slope. Trend line analysis indicated that the NW part of the Soutpansberg experienced the most substantial decrease in rainfall. The NW region was followed by the NE, SW, SE and the Central East (CE) respectively in terms of the decline in rainfall. Such behaviour and trends which varies across space and time is a cause for concern in the period of study. This period was characterised by increase in anthropogenic activities, as earlier studies prior to 1970 demonstrated a near stable pattern in terms of the cyclic activity of rainfall.

  20. Anomaly Detection in Sequences

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a set of novel algorithms which we call sequenceMiner, that detect and characterize anomalies in large sets of high-dimensional symbol sequences that...

  1. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    Sandip Pakvasa

    2000-01-01

    I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the `conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.

  2. Scattering anomaly in optics

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    In time-reversal invariant electronic systems the scattering matrix is anti-symmetric. This property enables an effect, designated here as "scattering anomaly", such that the electron transport does not suffer from back reflections, independent of the specific geometry of the propagation path or the presence of time-reversal invariant defects. In contrast, for a generic time-reversal invariant photonic system the scattering matrix is symmetric and there is no similar anomaly. Here, it is theoretically proven that despite these fundamental differences there is a wide class of photonic platforms - in some cases formed only by time-reversal invariant media - in which the scattering anomaly can occur. It is shown that an optical system invariant under the action of the composition of the time-reversal, parity and duality operators is characterized by an anti-symmetric scattering matrix. Specific examples of photonic platforms wherein the scattering anomaly occurs are given, and it is demonstrated with full wave n...

  3. A gênese da escassez de chuva em Maringá, Estado do Paraná, Brasil, durante os meses de maio de 2003 e maio de 2005 = The genesis of scanty rainfall in Maringá, Paraná State, Brazil, during the months of May 2003 and May 2005

    Directory of Open Access Journals (Sweden)

    Leonor Marcon da Silveira

    2010-01-01

    Full Text Available O presente estudo teve por objetivo identificar os sistemas atmosféricos geradores da escassez de chuvas durante os meses de maio de 2003 e maio de 2005, em Maringá, Estado do Paraná, Brasil. Para atingir os objetivos propostos, utilizaram-se dados meteorológicos de superfície referentes às variações diárias dos elementos climáticos, com os quais se elaborou uma tabela para cada um dos meses em estudo, eleitos como amostragem de meses de maio secos. Para identificar os sistemas atmosféricos promotores dos diferentes tipos de tempo, tais tabelas foram analisadas concomitantemente à análise de cartas sinóticas meteorológicas de superfície, também diárias, e de imagens de satélite. Constatou-se que a escassez de chuva em Maringá durante os períodos estudados decorreu da atuação de anticiclones frios, que penetraram na retaguarda dos sistemas frontais, e da atuação do Sistema Tropical Atlântico sobre o continente, o qual geralmente bloqueava as frentes frias próximo à latitude de 30°S, de modo que estas se deslocavam para o Atlântico antes de alcançarem a área em estudo. The atmospheric systems accountable for scanty rainfall during May 2003 and May 2005 in Maringá, Paraná State, Brazil, are identified. Surface meteorological data on daily variables of climatic elements have been employed for the creation of a table for each month under analysis. They were chosen as dry May samplings. Tables were analyzed concomitantly with an investigation on daily surface meteorological synoptic charts and on satellite photos, so that the atmosphericsystems causing different types of climate might be identified. Results show that scanty rainfall in Maringá during the periods under analysis was caused by cold anti-cyclone activities which followed after frontal systems and by the activities of Atlantic TropicalSystem on the South American subcontinent. The latter normally blocks out cold fronts near latitude 30°S which, in turn

  4. Climate Prediction Center (CPC) Zonally Average 500 MB Temperature Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 500-hPa temperature anomalies averaged over the latitude band 20oN ? 20oS. The anomalies are...

  5. The Pioneer Anomaly

    CERN Document Server

    de Diego, Jose A

    2008-01-01

    Analysis of the radio-metric data from Pioneer 10 and 11 spacecrafts has indicated the presence of an unmodeled acceleration starting at 20 AU, which has become known as the Pioneer anomaly. The nature of this acceleration is uncertain. In this paper we give a description of the effect and review some relevant mechanisms proposed to explain the observed anomaly. We also discuss on some future projects to investigate this phenomenon.

  6. DREDed Anomaly Mediation

    CERN Document Server

    Boyda, E; Pierce, A T; Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron

    2002-01-01

    We offer a guide to dimensional reduction (DRED) in theories with anomaly mediated supersymmetry breaking. Evanescent operators proportional to epsilon arise in the bare Lagrangian when it is reduced from d=4 to d= (4-2 epsilon) dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity.

  7. Anomalies and gravity

    CERN Document Server

    Mielke, E W

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j_5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four--form F^ F= dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed.

  8. SADM potentiometer anomaly investigations

    Science.gov (United States)

    Wood, Brian; Mussett, David; Cattaldo, Olivier; Rohr, Thomas

    2005-07-01

    During the last 3 years Contraves Space have been developing a Low Power (1-2kW) Solar Array Drive Mechanism (SADM) aimed at small series production. The mechanism was subjected to two test programmes in order to qualify the SADM to acceptable levels. During the two test programmes, anomalies were experienced with the Potentiometers provided by Eurofarad SA and joint investigations were undertaken to resolve why these anomalies had occurred. This paper deals with the lessons learnt from the failure investigation on the two Eurofarad (rotary) Potentiometer anomaly. The Rotary Potentiometers that were used were fully redundant; using two back to back mounted "plastic tracks". It is a pancake configuration mounted directly to the shaft of the Slip Ring Assembly at the extreme in-board end of the SADM. It has no internal bearings. The anomaly initially manifested itself as a loss of performance in terms of linearity, which was first detected during Thermal Vacuum testing. A subsequent anomaly manifested itself by the complete failure of the redundant potentiometer again during thermal vacuum testing. This paper will follow and detail the chain of events following this anomaly and identifies corrective measures to be applied to the potentiometer design and assembly process.

  9. Evolution of the rainfall regime in the United Arab Emirates

    Science.gov (United States)

    Ouarda, T. B. M. J.; Charron, C.; Niranjan Kumar, K.; Marpu, P. R.; Ghedira, H.; Molini, A.; Khayal, I.

    2014-06-01

    Arid and semiarid climates occupy more than 1/4 of the land surface of our planet, and are characterized by a strongly intermittent hydrologic regime, posing a major threat to the development of these regions. Despite this fact, a limited number of studies have focused on the climatic dynamics of precipitation in desert environments, assuming the rainfall input - and their temporal trends - as marginal compared with the evaporative component. Rainfall series at four meteorological stations in the United Arab Emirates (UAE) were analyzed for assessment of trends and detection of change points. The considered variables were total annual, seasonal and monthly rainfall; annual, seasonal and monthly maximum rainfall; and the number of rainy days per year, season and month. For the assessment of the significance of trends, the modified Mann-Kendall test and Theil-Sen’s test were applied. Results show that most annual series present decreasing trends, although not statistically significant at the 5% level. The analysis of monthly time series reveals strong decreasing trends mainly occurring in February and March. Many trends for these months are statistically significant at the 10% level and some trends are significant at the 5% level. These two months account for most of the total annual rainfall in the UAE. To investigate the presence of sudden changes in rainfall time-series, the cumulative sum method and a Bayesian multiple change point detection procedure were applied to annual rainfall series. Results indicate that a change point happened around 1999 at all stations. Analyses were performed to evaluate the evolution of characteristics before and after 1999. Student’s t-test and Levene’s test were applied to determine if a change in the mean and/or in the variance occurred at the change point. Results show that a decreasing shift in the mean has occurred in the total annual rainfall and the number of rainy days at all four stations, and that the variance has

  10. Downscaled TRMM Rainfall Time-Series for Catchment Hydrology Applications

    Science.gov (United States)

    Tarnavsky, E.; Mulligan, M.

    2009-04-01

    Hydrology in semi-arid regions is controlled, to a large extent, by the spatial and temporal distribution of rainfall defined in terms of rainfall depth and intensity. Thus, appropriate representation of the space-time variability of rainfall is essential for catchment-scale hydrological models applied in semi-arid regions. While spaceborne platforms equipped with remote sensing instruments provide information on a range of variables for hydrological modelling, including rainfall, the necessary spatial and temporal detail is rarely obtained from a single dataset. This paper presents a new dynamic model of dryland hydrology, DryMOD, which makes best use of free, public-domain remote sensing data for representation of key variables with a particular focus on (a) simulation of spatial rainfall fields and (b) the hydrological response to rainfall, particularly in terms of rainfall-runoff partitioning. In DryMOD, rainfall is simulated using a novel approach combining 1-km spatial detail from a climatology derived from the TRMM 2B31 dataset (mean monthly rainfall) and 3-hourly temporal detail from time-series derived from the 0.25-degree gridded TRMM 3B42 dataset (rainfall intensity). This allows for rainfall simulation at the hourly time step, as well as accumulation of infiltration, recharge, and runoff at the monthly time step. In combination with temperature, topography, and soil data, rainfall-runoff and soil moisture dynamics are simulated over large dryland regions. In order to investigate the hydrological response to rainfall and variable catchment characteristics, the model is applied to two very different catchments in the drylands of North and West Africa. The results of the study demonstrate the use of remote sensing-based estimates of precipitation intensity and volume for the simulation of critical hydrological parameters. The model allows for better spatial planning of water harvesting activities, as well as for optimisation of agricultural activities

  11. Cyclical components of local rainfall data

    Science.gov (United States)

    Mentz, R. P.; D'Urso, M. A.; Jarma, N. M.; Mentz, G. B.

    2000-02-01

    This paper reports on the use of a comparatively simple statistical methodology to study local short time series rainfall data. The objective is to help in agricultural planning, by diminishing the risks associated with some uncertainties affecting this business activity.The analysis starts by assuming a model of unobservable components, trend, cycle, seasonal and irregular, that is well known in many areas of application. When series are in the realm of business and economics, the statistical methods popularized by the US Census Bureau US National Bureau of Economic Research are used for seasonal and cyclical estimation, respectively. The flexibility of these methods makes them good candidates to be applied in the meteorological context, and this is done in this paper for a selection of monthly rainfall time series.Use of the results to help in analysing and forecasting cyclical components is emphasized. The results are interesting. An agricultural entrepreneur, or a group of them located in a single geographical region, will profit by systematically collecting information (monthly in our work) about rainfall, and adopting the scheme of analysis described in this paper.

  12. Seasonal Variability and Anomalies in Precipitation over Pakistan; a study of 2010 - 2014 Floods

    Science.gov (United States)

    Minallah, S.; Ivanov, V. Y.

    2015-12-01

    The study is concerned with understanding and analyzing the meteorological parameter of precipitation in the region of Pakistan to establish correlation between the consecutive five year (2010 - 2014) flooding and precipitation anomalies. Temporal and spatial variations in the rainfall pattern were studied and time series analysis for one region, which was most affected by the floods, was carried out. Two precipitation products, Global Precipitation Climatology Project (GPCP) and Climate Prediction Center Merged Analysis of Precipitation (CMAP), were used for the period of January 1979 till December 2014 which showed similar patterns albeit with slightly different magnitudes. It was found that there was a strong seasonal trend in the precipitation corresponding to the summer Monsoons and winter Western Disturbances phenomenon; that there were high spatial variations across the country; and that the changing rainfall pattern and intensity caused massive flooding in the five year period under consideration. The case study for the selected region also showed that while there is a downward trend in the annual precipitation, specific months corresponding to the Monsoon period showed an upward trend and the intensity and occurrence of anomalous events have increased.

  13. Aquifer responses to climate anomalies in the Loddon River catchment, Southeastern Australia

    Science.gov (United States)

    Manamperi, S.; Webb, J.

    2013-12-01

    Numerous studies suggest that climate change will lead to changes in the seasonality of surface water availability, thereby changing the recharge pattern in groundwater aquifers. Climate modelling predicts an increasing trend of extreme events such as floods and droughts in much of Southeastern Australia in the future. The present study provides a long-term compilation and analysis of the water table response to the last 30 years of climate in the Loddon River catchment, southeastern Australia, in order to evaluate the underlying mechanisms, and determine the response of the Loddon aquifers to past and future climate variability. There are three main aquifers in the catchment (Newer Volcanics, Shepparton Formation and Calivil Formation, in stratigraphic order). Using 215 groundwater monitoring bores with 10 or more years of data, coupled with 8 stream gauges and 8 rainfall gauging stations, several statistical analyses were performed. The monitoring bore data was used to define 7 different hydrogeomorphic units based on topography and aquifer characteristics. Groundwater trends were calculated as normalized anomalies (difference from the mean / standard deviation) and compared to regional rainfall and stream flow anomalies, to understand the sensitivity of the aquifer systems to change. Changes in groundwater storage during the periods that show a significantly high anomaly were calculated using the water level fluctuation method. Results suggest that, regionally, the Loddon aquifers respond strongly to episodic flooding events and decade-long droughts. The highest anomalies in each data set were observed during 2010/11, the highest recorded river flow and rainfall in the last 30 years, accompanied by extensive flooding in the Lower Loddon. However, the aquifers in the Lower Loddon show diverse trends in water level response to this event. The shallow Shepparton Formation aquifer showed a rapid response to flooding with a decreasing trend after few months, whereas

  14. Elucidating the role of topological pattern discovery and support vector machine in generating predictive models for Indian summer monsoon rainfall

    Science.gov (United States)

    Chattopadhyay, Manojit; Chattopadhyay, Surajit

    2016-10-01

    The present paper reports a study, where growing hierarchical self-organising map (GHSOM) has been applied to achieve a visual cluster analysis to the Indian rainfall dataset consisting of 142 years of Indian rainfall data so that the yearly rainfall can be segregated into small groups to visualise the pattern of clustering behaviour of yearly rainfall due to changes in monthly rainfall for each year. Also, through support vector machine (SVM), it has been observed that generation of clusters impacts positively on the prediction of the Indian summer monsoon rainfall. Results have been presented through statistical and graphical analyses.

  15. Influence of satellite-derived rainfall patterns on plague occurrence in northeast Tanzania.

    Science.gov (United States)

    Debien, Annekatrien; Neerinckx, Simon; Kimaro, Didas; Gulinck, Hubert

    2010-12-13

    In the tropics, rainfall data are seldom accurately recorded, and are often discontinuous in time. In the scope of plague-research in northeast Tanzania, we adapted previous research to reconstruct rainfall patterns at a suitable resolution (1 km), based on time series of NDVI: more accurate satellite imagery was used, in the form of MODIS NDVI, and rainfall data were collected from the TRMM sensors instead of in situ data. First, we established a significant relationship between monthly rainfall and monthly composited MODIS NDVI. The established linear relationship was then used to reconstruct historic precipitation patterns over a mountainous area in northeastern Tanzania. We validated the resulting precipitation estimates with in situ rainfall time series of three meteorological stations located in the study area. Taking the region's topography into account, a correlation coefficient of 0.66 was obtained for two of the three meteorological stations. Our results suggest that the adapted strategy can be applied fruitfully to estimate rainfall variability and seasonality, despite the underestimation of overall rainfall rates. Based on this model, rainfall in previous years (1986) is modelled to obtain a dataset with which we can compare plague occurrence in the area. A positive correlation of 82% is obtained between high rainfall rates and plague incidence with a two month lag between rainfall and plague cases. We conclude that the obtained results are satisfactory in support of the human plague research in which this study is embedded, and that this approach can be applied in other studies with similar goals.

  16. Spatial-Temporal Variation and Prediction of Rainfall in Northeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Umar M. Bibi

    2014-09-01

    Full Text Available In Northeastern Nigeria seasonal rainfall is critical for the availability of water for domestic use through surface and sub-surface recharge and agricultural production, which is mostly rain fed. Variability in rainfall over the last 60 years is the main cause for crop failure and water scarcity in the region, particularly, due to late onset of rainfall, short dry spells and multi-annual droughts. In this study, we analyze 27 years (1980–2006 of gridded daily rainfall data obtained from a merged dataset by the National Centre for Environmental Prediction and Climate Research Unit reanalysis data (NCEP-CRU for spatial-temporal variability of monthly amounts and frequency in rainfall and rainfall trends. Temporal variability was assessed using the percentage coefficient of variation and temporal trends in rainfall were assessed using maps of linear regression slopes for the months of May through October. These six months cover the period of the onset and cessation of the wet season throughout the region. Monthly rainfall amount and frequency were then predicted over a 24-month period using the Auto Regressive Integrated Moving Average (ARIMA Model. The predictions were evaluated using NCEP-CRU data for the same period. Kolmogorov Smirnov test results suggest that despite there are some months during the wet season (May–October when there is no significant agreement (p < 0.05 between the monthly distribution of the values of the model and the corresponding 24-month NCEP-CRU data, the model did better than simply replicating the long term mean of the data used for the prediction. Overall, the model does well in areas and months with lower temporal rainfall variability. Maps of the coefficient of variation and regression slopes are presented to indicate areas of high rainfall variability and water deficit over the period under study. The implications of these results for future policies on Agriculture and Water Management in the region are

  17. Rainfall Analyses of Coonoor Hill Station of Nilgiris District for Landslide Studies

    Science.gov (United States)

    Ramani Sujatha, Evangelin; Suribabu, C. R.

    2017-07-01

    The most common triggering factor of landslides in a hill terrain is rainfall. Assessment of the extreme and antecedent rainfall events and its quantum is imperative to evaluate the temporal occurrence of landslides. It also plays a vital role in the choice of the preventive measures to be adopted. This study focuses on an in-depth rainfall analysis of Coonoor hill station. The analysis includes the study of monthly, seasonal and annual rainfall patterns for a period of 80 years, between 1935 and 2013. Further, one day maximum, 5 day and more antecedent rainfall and its amount is calculated for the years between 2007-2012, 2014 and 2015.The result of the study indicates an increase in the normal rainfall based on the mean of 30 years of data (for the recent decades) and erratic pattern of rainfall during pre-monsoon, post-monsoon south-west monsoon periods. A detailed analysis of daily rainfall for the selected period indicates that extreme highest daily rainfall of more than 300 mm above occurred after consecutive rainfall trigged massive landslides comparing highest rainfall amount around 100 to 180 mm rainfall events.

  18. A diagnosis of rainfall over South America during 1997/98 El Niño and 1998/99 La Niña events: Comparison between TRMM PR and GPCP rainfall estimates

    Indian Academy of Sciences (India)

    Sergio H Franchito; V Brahmananda Rao; Ana C Vasques; Clovis M E Santo; Jorge C Conforte

    2009-06-01

    A comparison between TRMM PR rainfall estimates and rain gauge data from ANEEL and combined gauge/satellite data from GPCP over South America (SA)is made.In general,the annual and seasonal regional characteristics of rainfall over SA are qualitatively well reproduced by TRMM PR and GPCP.It is found that over most of SA GPCP exceeds TRMM PR rainfall.The largest positive differences between GPCP and TRMM PR data occur in the north SA,northwestern and central Amazonia.However,there are regions where GPCP rainfall is lower than TRMM PR,particularly in the Pacific coastal regions and in southern Brazil.We suggest that the cause for the positive differences GPCP minus TRMM PR rainfall are related to the fact that satellite observations based on infrared radiation and outgoing longwave radiance sensors overestimate convective rainfall in GPCP and the cause for the negative differences are due to the random errors in TRMM PR.Rainfall differences in the latter phases of the 1997/98 El Niño and 1998/99 La Niña are analyzed.The results showed that the rainfall anomalies are generally higher in GPCP than in TRMM PR,however,as in the mean annual case,there are regions where the rainfall in GPCP is lower than in TRMM PR.The higher positive (negative)differences between the rainfall anomalies in GPCP and TRMM PR,which occur in the central Amazonia (southern Brazil),are reduced (increased) in the El Niño event.This is due to the fact that during the El Niño episode the rainfall decreases in the central Amazonia and increases in the southern Brazil.Consequently,the overestimation of the convective rainfall by GPCP is reduced and the overestimation of the rainfall by TRMM PR is increased in these two regions,respectively.

  19. Influence of Northwest Cloudbands on Southwest Australian Rainfall

    Directory of Open Access Journals (Sweden)

    Nicola Telcik

    2014-01-01

    Full Text Available Northwest cloudbands are tropical-extratropical feature that crosses the Australian continent originating from Australia’s northwest coast and develops in a NW-SE orientation. In paper, atmospheric and oceanic reanalysis data (NCEP and Reynolds reconstructed sea surface temperature data were used to examine northwest cloudband activity across the Australian mainland. An index that reflected the monthly, seasonal, and interannual activity of northwest cloudbands between 1950 and 1999 was then created. Outgoing longwave radiation, total cloud cover, and latent heat flux data were used to determine the number of days when a mature northwest cloudband covered part of the Australian continent between April and October. Regional indices were created for site-specific investigations, especially of cloudband-related rainfall. High and low cloudband activity can affect the distribution of cloudbands and their related rainfall. In low cloudband activity seasons, cloudbands were mostly limited to the south and west Australian coasts. In high cloudband activity seasons, cloudbands penetrated farther inland, which increased the inland rainfall. A case study of the southwest Australian region demonstrated that, in a below average rainfall year, cloudband-related rainfall was limited to the coast. In an above average rainfall year, cloudband-related rainfall occurred further inland.

  20. Application of artificial neural networks to rainfall forecasting in Queensland, Australia

    Science.gov (United States)

    Abbot, John; Marohasy, Jennifer

    2012-07-01

    In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.

  1. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    Science.gov (United States)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    , the critical rainfall threshold of the slope can be obtained by the coupled analysis of rainfall, infiltration, seepage, and slope stability. Taking the slope located at 50k+650 on Tainan county road No 174 as an example, it located at Zeng-Wun river watershed in the southern Taiwan, is an active landslide due to typhoon events. Coordinates for the case study site are 194925, 2567208 (TWD97). The site was selected as the results of previous reports and geological survey. According to the Central Weather Bureau, the annual precipitation is about 2,450 mm, the highest monthly value is in August with 630 mm, and the lowest value is in November with 13 mm. The results show that the critical rainfall threshold of the study case is around 640 mm. It means that there should be alarmed when the accumulated rainfall over 640 mm. Our preliminary results appear to be useful for rainfall-induced landslide hazard assessments. The findings are also a good reference to establish an early warning system of landslides and develop strategies to prevent so much misfortune from happening in the future.

  2. Monthly errors

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2006 monthly average statistical metrics for 2m Q (g kg-1) domain-wide for the base and MODIS WRF simulations against MADIS observations. This dataset is...

  3. Theoretical framework to estimate spatially averaged rainfalls conditional on river discharges and point rainfall measurements from a single location: an application to Western Greece

    Directory of Open Access Journals (Sweden)

    A. Langousis

    2012-11-01

    Full Text Available We focus on the special case of catchments covered by a single raingauge, and develop a theoretical framework to obtain estimates of spatial rainfall averages conditional on rainfall measurements from a single location, and the flow conditions at the catchment outlet. In doing so we use: (a statistical tools to identify and correct inconsistencies between daily rainfall occurrence and amount and the flow conditions at the outlet of the basin, (b concepts from multifractal theory to relate the fraction of wet intervals in point rainfall measurements and that in spatial rainfall averages, while accounting for the shape and size of the catchment, the size, lifetime and advection velocity of rainfall generating features and the location of the raingauge inside the basin, and (c semi-theoretical arguments to assure consistency between rainfall and runoff volumes at an inter-annual level, implicitly accounting for spatial heterogeneities of rainfall caused by orographic influences. In an application study, using point rainfall records from Glafkos river basin in Western Greece, we find the suggested approach to demonstrate significant skill in resolving rainfall-runoff incompatibilities at a daily level, while reproducing the statistics of spatial rainfall averages at both monthly and annual time scales, independently of the location of the raingauge and the magnitude of the observed deviations between point rainfall measurements and spatial rainfall averages. The developed scheme should serve as an important tool for the effective calibration of rainfall-runoff models in basins covered by a single raingauge and, also, improve hydrologic impact assessment at a river basin level under changing climatic conditions.

  4. Analysis of rainfall seasonality from observations and climate models

    CERN Document Server

    Pascale, Salvatore; Feng, Xue; Porporato, Amilcare; Hasson, Shabeh-ul

    2014-01-01

    Precipitation seasonality of observational datasets and CMIP5 historical simulations are analyzed using novel quantitative measures based on information theory. Two new indicators, the relative entropy (RE) and the dimensionless seasonality index (DSI), together with the mean annual rainfall, are evaluated on a global scale for recently updated precipitation gridded datasets and for historical simulations from coupled atmosphere-ocean general circulation models. The RE provides a measure of how peaked the shape of the annual rainfall curve is whereas the DSI quantifies the intensity of the rainfall during the wet season. The global monsoon regions feature the largest values of the DSI. For precipitation regimes featuring one maximum in the monthly rain distribution the RE is related to the duration of the wet season. We show that the RE and the DSI are measures of rainfall seasonality fairly independent of the time resolution of the precipitation data, thereby allowing objective metrics for model intercompari...

  5. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  6. Anomalies without Massless Particles

    CERN Document Server

    Gurlanik, Z

    1994-01-01

    Baryon and lepton number in the standard model are violated by anomalies, even though the fermions are massive. This problem is studied in the context of a two dimensional model. In a uniform background field, fermion production arise from non-adiabatic behavior that compensates for the absence of massless modes. On the other hand, for localized instanton-like configurations, there is an adiabatic limit. In this case, the anomaly is produced by bound states which travel across the mass gap. The sphaleron corresponds to a bound state at the halfway point.

  7. Classical Trace Anomaly

    OpenAIRE

    Farhoudi, M.

    1995-01-01

    We seek an analogy of the mathematical form of the alternative form of Einstein's field equations for Lovelock's field equations. We find that the price for this analogy is to accept the existence of the trace anomaly of the energy-momentum tensor even in classical treatments. As an example, we take this analogy to any generic second order Lagrangian and exactly derive the trace anomaly relation suggested by Duff. This indicates that an intrinsic reason for the existence of such a relation sh...

  8. Congenital laryngeal anomalies,

    Directory of Open Access Journals (Sweden)

    Michael J. Rutter

    2014-12-01

    Full Text Available Introduction: It is essential for clinicians to understand issues relevant to the airway management of infants and to be cognizant of the fact that infants with congenital laryngeal anomalies are at particular risk for an unstable airway. Objectives: To familiarize clinicians with issues relevant to the airway management of infants and to present a succinct description of the diagnosis and management of an array of congenital laryngeal anomalies. Methods: Revision article, in which the main aspects concerning airway management of infants will be analyzed. Conclusions: It is critical for clinicians to understand issues relevant to the airway management of infants.

  9. Can SAPHIR Instrument Onboard MEGHATROPIQUES Retrieve Hydrometeors and Rainfall Characteristics ?

    Science.gov (United States)

    Goyal, J. M.; Srinivasan, J.; Satheesh, S. K.

    2014-12-01

    MEGHATROPIQUES (MT) is an Indo-French satellite launched in 2011 with the main intention of understanding the water cycle in the tropical region and is a part of GPM constellation. MADRAS was the primary instrument on-board MT to estimate rainfall characteristics, but unfortunately it's scanning mechanism failed obscuring the primary goal of the mission.So an attempt has been made to retrieve rainfall and different hydrometeors using other instrument SAPHIR onboard MT. The most important advantage of using MT is its orbitography which is specifically designed for tropical regions and can reach up to 6 passes per day more than any other satellite currently in orbit. Although SAPHIR is an humidity sounder with six channels centred around 183 GHz channel, it still operates in the microwave region which directly interacts with rainfall, especially wing channels and thus can pick up rainfall signatures. Initial analysis using radiative transfer models also establish this fact .To get more conclusive results using observations, SAPHIR level 1 brightness temperature (BT) data was compared with different rainfall products utilizing the benefits of each product. SAPHIR BT comparison with TRMM 3B42 for one pass clearly showed that channel 5 and 6 have a considerable sensitivity towards rainfall. Following this a huge database of more than 300000 raining pixels of spatially and temporally collocated 3B42 rainfall and corresponding SAPHIR BT for an entire month was created to include all kinds of rainfall events, to attain higher temporal resolution collocated database was also created for SAPHIR BT and rainfall from infrared sensor on geostationary satellite Kalpana 1.These databases were used to understand response of various channels of SAPHIR to different rainfall regimes . TRMM 2A12 rainfall product was also used to identify capabilities of SAPHIR to retrieve cloud and ice water path which also gave significant correlation. Conclusively,we have shown that SAPHIR has

  10. Abdominal aortic surgery and renal anomalies

    Directory of Open Access Journals (Sweden)

    Ilić Nikola

    2011-01-01

    Full Text Available Introduction. Kidney anomalies present a challenge even for the most experienced vascular surgeon in the reconstruction of the aortoilliac segment. The most significant anomalies described in the surgery of the aortoilliac segment are a horse-shoe and ectopic kidney. Objective. The aim of this retrospective study was to analyze experience on 40 patients with renal anomalies, who underwent surgery of the aortoilliac segment and to determine attitudes on conventional surgical treatment. Methods. In the period from 1992 to 2009, at the Clinic for Vascular Surgery of the Clinical Centre of Belgrade we operated on 40 patients with renal anomalies and aortic disease (aneurysmatic and obstructive. The retrospective analysis involved standard epidemiological data of each patient (gender, age, risk factors for atherosclerosis, type of anomaly, type of aortic disease, presurgical parameter values of renal function, type of surgical approach (laparatomy or retroperitoneal approach, classification of the renal isthmus, reimplantation of renal arteries and perioperative morbidity and mortality. Results. Twenty patients were males In 30 (70% patients we diagnosed a horse-shoe kidney and in 10 (30% ectopic kidney. In the cases of ruptured aneurysm of the abdominal aorta the diagnosis was made by ultrasound findings. Pre-surgically, renal anomalies were confirmed in all patients, except in those with a ruptured aneurysm who underwent urgent surgery. In all patients we applied medial laparatomy, except in those with a thoracoabdominal aneurysm type IV, when the retroperitonal approach was necessary. On average the patients were under follow-up for 6.2 years (from 6 months to 17 years. Conclusion. Under our conditions, the so-called double clamp technique with the preservation of the kidney gave best results in the patients with renal anomalies and aortic disease.

  11. Rainfall erosivity in the Fukushima Prefecture: implications for radiocesium mobilization and migration

    Science.gov (United States)

    Laceby, J. Patrick; Chartin, Caroline; Degan, Francesca; Onda, Yuichi; Evrard, Olivier; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 led to the fallout of predominantly radiocesium (137Cs and 134Cs) on soils of the Fukushima Prefecture. This radiocesium was primarily fixated to fine soil particles. Subsequently, rainfall and snow melt run-off events result in significant quantities of radiocesium being eroded and transported throughout the coastal catchments and ultimately exported to the Pacific Ocean. Erosion models, such as the Universal Soil Loss Equation (USLE), relate rainfall directly to soil erosion in that an increase in rainfall one month will directly result in a proportional increase in sediment generation. Understanding the rainfall regime of the region is therefore fundamental to modelling and predicting long-term radiocesium export. Here, we analyze rainfall data for ~40 stations within a 100 km radius of the FDNPP. First we present general information on the rainfall regime in the region based on monthly and annual rainfall totals. Second we present general information on rainfall erosivity, the R-factor of the USLE equation and its relationship to the general rainfall data. Third we examine rainfall trends over the last 100 years at several of the rainfall stations to understand temporal trends and whether ~20 years of data is sufficient to calculate the R-factor for USLE models. Fourth we present monthly R-factor maps for the Fukushima coastal catchments impacted by the FDNPP accident. The variability of the rainfall in the region, particularly during the typhoon season, is likely resulting in a similar variability in the transfer and migration of radiocesium throughout the coastal catchments of the Fukushima Prefecture. Characterizing the region's rainfall variability is fundamental to modelling sediment and the concomitant radiocesium migration and transfer throughout these catchments and ultimately to the Pacific Ocean.

  12. A synoptic decomposition of rainfall over the Cape south coast of South Africa

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2015-05-01

    Full Text Available anomalies for the period 1979–2011. This coastal region receives rainfall all-year round with slight peaks during March–April and with more pronounced peaks during August and October–November. The synoptic forcing responsible for this annual multi...

  13. A first-order assessment of climate change effects on rainfall erosivity and soil erosion in New South Wales, Australia

    Science.gov (United States)

    Yu, Bofu; Murphy, Brian; Vaze, Jai; Rawson, Andrew

    2010-05-01

    Rainfall has shown considerable secular variation and statistically significant change on the time scale of decades in New South Wales (NSW), Australia. The climate change predictions seem to suggest an increased rainfall intensity for the region. To assess the likely impact of climate change on rainfall erosivity for 13 sites in NSW, a daily rainfall erosivity model was used to compare rainfall erosivity values using historical rainfall data and adjusted rainfall data representing future climate scenarios. To use the rainfall erosivity model, 6-min rainfall intensity data from the 13 sites were used to calibrate the model. The historical rainfall data were available for the period of 112 years (1895 - 2006) for the 13 sites. Adjusted rainfall data for 112 years were provided based on output from Global Climate Models, namely CSIRO-MK3.0 (CSIRO, Australia), MIROC-M (Centre for Climate Research, Japan); MIUB (Meteorological Institute of the University of Bonn, Germany); MRI (Meteorological Research Institute, Japan). The rainfall erosivity model was run for each of the 13 sites, and mean annual, seasonal rainfall erosivity values were contrasted for the present and future climate scenarios. In addition, rainfall erosivity values were compared for average recurrence intervals of 2, 10, and 100 years so that changes to rainfall erosivity during extreme erosive events can be assessed. The results show rainfall erosivity would increase by about 4.6% on average, and the increase occurs mostly in summer (December-January-February). Output from all 4 models suggests that rainfall erosivity would decrease in winter months. Spatially, the change to rainfall erosivity is quite variable, with greater increase mostly occurring along the coast with a temperate climate. As mean annual soil loss is linearly proportional to rainfall erosion, impact on soil loss of a similar magnitude is therefore implied for the 13 sites in NSW.

  14. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  15. Bolivian Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Bouguer anomaly grid for the country of Bolivia.Number of columns is 550 and number of rows is 900. The order of the data is from the lower left to the...

  16. Minnesota Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1.5 kilometer Bouguer anomaly grid for the state of Minnesota. Number of columns is 404 and number of rows is 463. The order of the data is from the lower left to...

  17. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  18. Calendar anomalies in the Ukrainian stock market

    Directory of Open Access Journals (Sweden)

    Guglielmo Maria Caporale

    2017-03-01

    Full Text Available This paper is a comprehensive investigation of calendar anomalies in the Ukrainian stock market. It employs various statistical techniques (average analysis, Student’s t-test, ANOVA, the Kruskal-Wallis test, and regression analysis with dummy variables and a trading simulation approach to test for the presence of the following anomalies: day-of-the-week effect; turn-of-the-month effect; turn-of-the-year effect; month-of-the-year effect; January effect; holiday effect; Halloween effect. The results suggest that in general calendar anomalies are not present in the Ukrainian stock market, but there are a few exceptions, i.e. the turn-of-the-year and Halloween effect for the PFTS index, and the month-of-the-year effect for UX futures. However, the trading simulation analysis shows that only trading strategies based on the turn-of-the-year effect for the PFTS index and the month-of-the-year effect for the UX futures can generate exploitable profit opportunities that can be interpreted as evidence against market efficiency.

  19. Spatial analysis of rainfall trends in the region of Valencia (east Spain)

    Science.gov (United States)

    de Luís, M.; Raventós, J.; González-Hidalgo, J. C.; Sánchez, J. R.; Cortina, J.

    2000-10-01

    This paper examines the spatial and temporal rainfall characteristics of the region of Valencia, Western Mediterranean Basin (east Spain), during the World Meteorological Organization (WMO) normal period 1961-1990. The study used a dense and homogeneous daily precipitation database comprising 97 rain-gauge stations. Total and monthly rainfall concentrations have been studied in the context of their mean values, interannual variability and spatial diversification. Trends have been analysed using both parametric and non-parametric tests. In order to establish the spatial distribution of rainfall patterns and to detect homogeneous areas with similar rainfall evolution, a statistic based on the Cramér-von Mises test is proposed. The kriging interpolation methods for characterizing the magnitude of observed changes is used.Areas with contrasting rainfall evolution are identified. In more humid areas, a significant decrease in annual rainfall associated with significant increases in interannual rainfall variability is observed. In inland zones, decreases in total annual rainfall and increases in interannual variability are less clear, but there are indications of an increase in monthly rainfall concentration. In these inland zones, where more forest and woodland areas are located and forest fires are frequent, the observed trends could greatly affect desertification through changes in the disturbance regime. In more arid areas, local variability in rainfall evolution is higher and no significant changes can be defined.

  20. Application of Geographic Information Systems (GIS) in Analysing Rainfall Distribution Patterns in Batu Pahat District

    Science.gov (United States)

    Kadir, A. A.; Kaamin, M.; Azizan, N. S.; Sahat, S.; Bukari, S. M.; Mokhtar, M.; Ngadiman, N.; Hamid, N. B.

    2016-07-01

    Rainfall forecasting reports are crucial to provide information and warnings to the population in a particular location. The Malaysian Meteorology Department (MMD) is a department that plays an important role in monitoring the situation and issued the statement of changes in weather and provides services such as weather advisories and gives warnings when the situation requires. Uncertain weather situations normally have created panic situation, especially in big cities because of flash floods due to poor drainage management. Usually, local authorities provided rainfall data in tables, and it is difficult to analyse to acquire the rainfall trend. Therefore, Geographic Information System (GIS) applications are commonly used to generate rainfall patterns in visual formation with a combination of characteristics of rainfall data and then can be used by stakeholders to facilitate the process of analysis and forecasting rainfall. The objective of this study is to determine the pattern of rainfall distribution using GIS applications in Batu Pahat district to assist interested parties to understand and easy to analyse the rainfall data in visual form or mapping form. Rainfall data for a period of 10 years (2004-2013) and monthly data (Dec 2006 - Feb 2007) are provided by the Department of Irrigation and Drainage (DID) for 12 stations in the district of Batu Pahat, and rainfall maps in each year was obtained using the interpolation Inverse Distance Weighted (IDW) method was used in this research. The rainfall map was then analyzed to identify the highest rainfall that was received during the period of study. For the conclusion, this study has proved that rainfall analysis using GIS application is efficient to be used in gaining information of rainfall patterns as the results show that the highest rainfall occurred in 2006 and 2007, and it were the years of major floods occurrence in Batu Pahat district.

  1. Astrometric solar system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LABORATORY

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  2. The Pioneer Anomaly

    Directory of Open Access Journals (Sweden)

    Viktor T. Toth

    2010-09-01

    Full Text Available Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 × 10–9 Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of aP = (8.74 ± 1.33 × 10–10 m/s2. This apparent violation of the Newton's gravitational inverse square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.

  3. Rainfall as proxy for evapotranspiration predictions

    Science.gov (United States)

    Collischonn, Bruno; Collischonn, Walter

    2016-10-01

    In this work, we evaluated the relationship between evapotranspiration and precipitation, based on the data recently made available by the Brazilian Meteorological Institute. ETP tend to be lower in rainy periods and vice-versa. This relationship was assessed both in physical and statistical ways, identifying the contribution of each explaining variable of ETP. We derived regression equations between monthly rainfall and ETP, which can be useful in studies where ETP time series are not available, such as reservoir design, irrigation management and flow forecast.

  4. Rainfall Characterization In An Arid Area

    OpenAIRE

    Bazaraa, A. S.; Ahmed, Shamim

    1991-01-01

    The objective of this work is to characterize the rainfall in Doha which lies in an arid region. The rainfall data included daily rainfall depth since 1962 and the hyetographs of the individual storms since 1976. The rainfall is characterized by high variability and severe thunderstorms which are of limited geographical extent. Four probability distributions were used to fit the maximum rainfall in 24 hours and the annual rainfall depth. The extreme value distribution was found to have the be...

  5. Spatio-temporal variability of rainfall regime in the Brahmaputra valley of North East India

    Science.gov (United States)

    Deka, R. L.; Mahanta, C.; Nath, K. K.; Dutta, M. K.

    2016-05-01

    Monthly rainfall data, spanning over 110 years (1901-2010), were utilized for trend analysis at different spatial and temporal scales over the Brahmaputra valley, India. The Mann-Kendall statistic and Sen's slope model were used to identify the trends and estimate the magnitude of change, respectively. Statistical significance of the decadal shifts in rainfall from the overall mean was estimated by using Cramer's test. The analysis revealed decrease in annual as well as monsoon rainfall in the Brahmaputra valley during the last 110 years with large spatial and temporal variations. These decreasing trends of rainfall in the eastern part of the valley were statistically significant. Significant decreasing trend of monsoon rainfall during the recent 30-year period was due to significant decrease of July and September rainfall, and this trend was found to be consistent at different spatial scales. In the last decade (2001-2010) in particular, monsoon rainfall exhibited significant negative deviation from the normal due to three deficient years and absence of excess rainfall years. On the contrary, contribution of pre-monsoon and post-monsoon rainfall to annual total in the Brahmaputra valley increased during the recent 30-year period. Winter rainfall in the valley decreased during the last 30 years due to significant decrease of December rainfall in the eastern and central parts.

  6. Evaluation of the impacts of the Madden-Julian Oscillation on rainfall and hurricanes in Central and South America and the Atlantic Ocean using ICI-RAFT

    Science.gov (United States)

    Giovannettone, J. P.

    2013-12-01

    Based on the method of Regional Frequency Analysis (RFA) and L-moments (Hosking & Wallis, 1997), a tool was developed to estimate the frequency/intensity of a rainfall event of a particular duration using ground-based rainfall observations. Some of the code used to develop this tool was taken from the FORTRAN code provided by Hosking & Wallis and rewritten in Visual Basic 2010. This tool was developed at the International Center for Integrated Water Resources Management (ICIWaRM) and is referred to as the ICIWaRM Regional Analysis of Frequency Tool (ICI-RAFT) (Giovannettone & Wright, 2012). In order to study the effectiveness of ICI-RAFT, three case studies were selected for the analysis. The studies take place in selected regions within Argentina, Nicaragua, and Venezuela. Rainfall data were provided at locations throughout each country; total rainfall for specific periods were computed and analyzed with respect to several global climate indices using lag times ranging from 1 to 6 months. Each analysis attempts to identify a global climate index capable of predicting above or below average rainfall several months in advance, qualitatively and using an equation that is developed. The index that had the greatest impact was the MJO (Madden-Julian Oscillation), which is the focus of the current study. The MJO is considered the largest element of intra-seasonal (30 - 90 days) variability in the tropical atmosphere and, unlike other indices, is characterized by the eastward propagation of large areas of convective anomalies near the equator, propagating from the Indian Ocean east into the Pacific Ocean. The anomalies are monitored globally using ten different indices located on lines of longitude near the equator, with seven in the eastern hemisphere and three in the western hemisphere. It has been found in previous studies that the MJO is linked to summer rainfall in Southeast China (Zhang et al., 2009) and southern Africa (Pohl et al., 2007) and to rainfall patterns

  7. Rainfall erosivity in New Zealand

    Science.gov (United States)

    Klik, Andreas; Haas, Kathrin; Dvorackova, Anna; Fuller, Ian

    2014-05-01

    Rainfall and its kinetic energy expressed by the rainfall erosivity is the main driver of soil erosion processes by water. The Rainfall-Runoff Erosivity Factor (R) of the Revised Universal Soil Loss Equation is one oft he most widely used parameters describing rainfall erosivity. This factor includes the cumulative effects of the many moderate-sized storms as well as the effects oft he occasional severe ones: R quantifies the effect of raindrop impact and reflects the amopunt and rate of runoff associated with the rain. New Zealand is geologically young and not comparable with any other country in the world. Inordinately high rainfall and strong prevailing winds are New Zealand's dominant climatic features. Annual rainfall up to 15000 mm, steep slopes, small catchments and earthquakes are the perfect basis for a high rate of natural and accelerated erosion. Due to the multifacted landscape of New Zealand its location as island between the Pacific and the Tasmanian Sea there is a high gradient in precipitation between North and South Island as well as between West and East Coast. The objective of this study was to determine the R-factor for the different climatic regions in New Zealand, in order to create a rainfall erosivity map. We used rainfall data (breakpoint data in 10-min intervals) from 34 gauging stations for the calcuation of the rainfall erosivity. 15 stations were located on the North Island and 19 stations on the South Island. From these stations, a total of 397 station years with 12710 rainstorms were analyzed. The kinetic energy for each rainfall event was calculated based on the equation by Brown and Foster (1987), using the breakpoint precipitation data for each storm. On average, a mean annual precipitation of 1357 mm was obtained from the 15 observed stations on the North Island. Rainfall distribution throughout the year is relatively even with 22-24% of annual rainfall occurring in spring , fall and winter and 31% in summer. On the South Island

  8. XYY chromosome anomaly and schizophrenia.

    Science.gov (United States)

    Rajagopalan, M; MacBeth, R; Varma, S L

    1998-02-07

    Sex chromosome anomalies have been associated with psychoses, and most of the evidence is linked to the presence of an additional X chromosome. We report a patient with XYY chromosome anomaly who developed schizophrenia.

  9. Discrete R Symmetries and Anomalies

    OpenAIRE

    Michael Dine(Santa Cruz Institute for Particle Physics and Department of Physics, Santa Cruz CA 95064, U.S.A.); Angelo Monteux(Santa Cruz Institute for Particle Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, U.S.A.)

    2012-01-01

    We comment on aspects of discrete anomaly conditions focussing particularly on $R$ symmetries. We review the Green-Schwarz cancellation of discrete anomalies, providing a heuristic explanation why, in the heterotic string, only the "model-independent dilaton" transforms non-linearly under discrete symmetries; this argument suggests that, in other theories, multiple fields might play a role in anomaly cancellations, further weakening any anomaly constraints at low energies. We provide examples...

  10. Methods to determine the impact of rainfall on fuels and burned area in southern African savannas

    CSIR Research Space (South Africa)

    Archibald, S

    2010-11-01

    Full Text Available of the models by up to 30% compared with indices that only used the previous year’s rainfall. Up to 56% of the variance in burned area between years could be explained by an 18-month accumulated rainfall index. Linear models and probit models performed equally...

  11. Influence of internal decadal variability on the summer rainfall in Eastern China as simulated by CCSM4

    Science.gov (United States)

    Zhu, Yali; Wang, Tao; Ma, Jiehua

    2016-06-01

    The combined impact of the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) on the summer rainfall in eastern China was investigated using CCSM4. The strongest signals occur with the combination of a positive PDO and a negative AMO (+PDO-AMO), as well as a negative PDO and a positive AMO (-PDO+AMO). For the +PDO-AMO set, significant positive rainfall anomalies occur over the lower reaches of the Yangtze River valley (YR), when the East Asian summer monsoon becomes weaker, while the East Asian westerly jet stream becomes stronger, and ascending motion over the YR becomes enhanced due to the jet-related secondary circulation. Contrary anomalies occur over East Asia for the -PDO+AMO set. The influence of these two combinations of PDO and AMO on the summer rainfall in eastern China can also be observed in the two interdecadal rainfall changes in eastern China in the late 1970s and late 1990s.

  12. The Interdependence between Rainfall and Temperature: Copula Analyses

    Directory of Open Access Journals (Sweden)

    Rong-Gang Cong

    2012-01-01

    Full Text Available Rainfall and temperature are important climatic inputs for agricultural production, especially in the context of climate change. However, accurate analysis and simulation of the joint distribution of rainfall and temperature are difficult due to possible interdependence between them. As one possible approach to this problem, five families of copula models are employed to model the interdependence between rainfall and temperature. Scania is a leading agricultural province in Sweden and is affected by a maritime climate. Historical climatic data for Scania is used to demonstrate the modeling process. Heteroscedasticity and autocorrelation of sample data are also considered to eliminate the possibility of observation error. The results indicate that for Scania there are negative correlations between rainfall and temperature for the months from April to July and September. The student copula is found to be most suitable to model the bivariate distribution of rainfall and temperature based on the Akaike information criterion (AIC and Bayesian information criterion (BIC. Using the student copula, we simulate temperature and rainfall simultaneously. The resulting models can be integrated with research on agricultural production and planning to study the effects of changing climate on crop yields.

  13. Comparative Analysis of Data Mining Techniques for Malaysian Rainfall Prediction

    Directory of Open Access Journals (Sweden)

    Suhaila Zainudin

    2016-12-01

    Full Text Available Climate change prediction analyses the behaviours of weather for a specific time. Rainfall forecasting is a climate change task where specific features such as humidity and wind will be used to predict rainfall in specific locations. Rainfall prediction can be achieved using classification task under Data Mining. Different techniques lead to different performances depending on rainfall data representation including representation for long term (months patterns and short-term (daily patterns. Selecting an appropriate technique for a specific duration of rainfall is a challenging task. This study analyses multiple classifiers such as Naïve Bayes, Support Vector Machine, Decision Tree, Neural Network and Random Forest for rainfall prediction using Malaysian data. The dataset has been collected from multiple stations in Selangor, Malaysia. Several pre-processing tasks have been applied in order to resolve missing values and eliminating noise. The experimental results show that with small training data (10% from 1581 instances Random Forest correctly classified 1043 instances. This is the strength of an ensemble of trees in Random Forest where a group of classifiers can jointly beat a single classifier.

  14. Changing patterns in rainfall extremes in South Australia

    Science.gov (United States)

    Kamruzzaman, Mohammad; Beecham, Simon; Metcalfe, Andrew V.

    2017-02-01

    Daily rainfall records from seven stations in South Australia, with record lengths from 50 to 137 years and a common period of 36 years, are investigated for evidence of changes in the statistical distribution of annual total and annual average of monthly daily maxima. In addition, the monthly time series of monthly totals and monthly daily maxima are analysed for three stations for which records exceed 100 years. The monthly series show seasonality and provide evidence of a reduction in rainfall when the Southern Oscillation Index (SOI) is negative, which is modulated by the Pacific Decadal Oscillation (PDO). However, the monthly series do not provide any evidence of a consistent trend or of any changes in the seasonal pattern. Multivariate analyses, typically used in statistical quality control (SQC), are applied to time series of yearly totals and of averages of the 12 monthly daily maxima, during the common 36-year period. Although there are some outlying points in the charts, there is no evidence of any trend or step changes. However, some supplementary permutation tests do provide weak evidence of an increase of variability of rainfall measures. Furthermore, a factor analysis does provide some evidence of a change in the spatial structure of extremes. The variability of a factor which represents the difference between extremes in the Adelaide Hills and the plains increases in the second 18 years relative to the first 18 years. There is also some evidence that the mean of this factor has increased in absolute magnitude.

  15. Anomaly-safe discrete groups

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mu-Chun, E-mail: muchunc@uci.edu [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States); Fallbacher, Maximilian, E-mail: m.fallbacher@tum.de [Physik–Department T30, Technische Universität München, James–Franck–Straße 1, 85748 Garching (Germany); Ratz, Michael, E-mail: michael.ratz@tum.de [Physik–Department T30, Technische Universität München, James–Franck–Straße 1, 85748 Garching (Germany); Trautner, Andreas, E-mail: andreas.trautner@tum.de [Physik–Department T30, Technische Universität München, James–Franck–Straße 1, 85748 Garching (Germany); Excellence Cluster Universe, Boltzmannstraße 2, 85748 Garching (Germany); Vaudrevange, Patrick K.S., E-mail: patrick.vaudrevange@tum.de [Excellence Cluster Universe, Boltzmannstraße 2, 85748 Garching (Germany); TUM Institute for Advanced Study, Lichtenbergstraße 2a, 85748 Garching (Germany); Arnold Sommerfeld Center for Theoretical Physics, Ludwig–Maximilians–Universität München, Theresienstraße 37, 80333 München (Germany)

    2015-07-30

    We show that there is a class of finite groups, the so-called perfect groups, which cannot exhibit anomalies. This implies that all non-Abelian finite simple groups are anomaly-free. On the other hand, non-perfect groups generically suffer from anomalies. We present two different ways that allow one to understand these statements.

  16. Anomaly-safe discrete groups

    Directory of Open Access Journals (Sweden)

    Mu-Chun Chen

    2015-07-01

    Full Text Available We show that there is a class of finite groups, the so-called perfect groups, which cannot exhibit anomalies. This implies that all non-Abelian finite simple groups are anomaly-free. On the other hand, non-perfect groups generically suffer from anomalies. We present two different ways that allow one to understand these statements.

  17. Craniofacial anomalies in twins.

    Science.gov (United States)

    Keusch, C F; Mulliken, J B; Kaplan, L C

    1991-01-01

    Studies of twins provide insight into the relative contribution of genetic and environmental factors in the causality of structural anomalies. Thirty-five affected twin pairs were identified from a group of 1114 patients with congenital craniofacial deformities evaluated from 1972 to 1989. Forty-three of these 70 twins exhibited one or more craniofacial anomalies; these were analyzed for dysmorphic characteristics, zygosity, concordance, and family history. The anomalies were categorized into two groups: malformations and deformations. The malformations (n = 36) included hemifacial microsomia (n = 10), cleft lip and palate (n = 8), cleft palate (n = 4), rare facial cleft (n = 2), craniosynostosis (n = 2), Binder syndrome (n = 2), Treacher Collins syndrome (n = 2), craniopagus (n = 2), CHARGE association (n = 1), frontonasal dysplasia (n = 2), and constricted ears (n = 1). The deformations (n = 7) included plagiocephaly (n = 5), hemifacial hypoplasia (n = 1), and micrognathia (n = 1). Twenty-one monozygotic and 14 dizygotic twin pairs were identified. The concordance rate was 33 percent for monozygotic twins and 7 percent for dizygotic twins.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. What rainfall events trigger landslides on the West Coast US?

    Science.gov (United States)

    Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia

    2016-04-01

    A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.

  19. Spatial and temporal variability of rainfall erosivity factor for Switzerland

    Directory of Open Access Journals (Sweden)

    A. Steel

    2011-09-01

    Full Text Available Rainfall erosivity, considering rainfall amount and intensity, is an important parameter for soil erosion risk assessment under future land use and climate change. Despite its importance, rainfall erosivity is usually implemented in models with a low spatial and temporal resolution. The purpose of this study is to assess the temporal- and spatial distribution of rainfall erosivity (R-factor in Switzerland. Time series of 22 yr for rainfall (10 min resolution and temperature (1 h resolution data were analysed for 71 automatic gauging stations distributed throughout Switzerland. Multiple regression was used to interpolate the erosivity values of single stations and to generate a map for Switzerland. Latitude, longitude, average annual precipitation, biogeographic units (Jura, Midland, etc., aspect and elevation were used as covariates, of which average annual precipitation, elevation and the biographic unit (Western Alps were significant predictors. The mean value of long-term rainfall erosivity is 1323 MJ mm ha−1 h−1 yr−1 with a range of lowest values of 124 MJ mm ha−1 h−1 yr−1 at an elevated station in Grisons to highest values of 5611 MJ mm ha−1 h−1 yr−1 in Ticino. All stations have highest erosivity values from July to August and lowest values in the winter month. Swiss-wide the month May to October show significantly increasing trends of erosivity (p<0.005. Only in February a significantly decreasing trend of rainfall erosivity is found (p<0.01. The increasing trends of erosivity in May, September and October when vegetation cover is susceptible are likely to enhance soil erosion risk for certain agricultural crops and alpine grasslands in Switzerland.

  20. An Indian Ocean precursor for Indian summer monsoon rainfall variability

    Science.gov (United States)

    Sreejith, O. P.; Panickal, S.; Pai, S.; Rajeevan, M.

    2015-11-01

    The Indian summer monsoon rainfall (ISMR) depicts large interannual variability strongly linked with El Niño-Southern Oscillation (ENSO). However, many of the El Niño years were not accompanied by deficient ISMR. The results from the study reveal the significant role of coupled air-sea interaction over the tropical Indian Ocean (IO) in modifying the ENSO-ISMR association. The IO warm water volume (WWV), a measure of heat content variations in the equatorial IO has strong influence on ISMR. A deepening (shoaling) of thermocline in the eastern equatorial IO (EEIO) during late boreal spring (April-May) accompanied by increase (decrease) in WWV anomalies weaken (enhance) the ISMR by enhancing (suppressing) the convection over EEIO resulting in the below (above) normal ISMR. Thus, the changes in the WWV anomalies in the EEIO along with ENSO conditions during boreal spring can be considered as a precursor for the performance of subsequent ISMR.

  1. Rainfall variability modelling in Rwanda

    Science.gov (United States)

    Nduwayezu, E.; Kanevski, M.; Jaboyedoff, M.

    2012-04-01

    Support to climate change adaptation is a priority in many International Organisations meetings. But is the international approach for adaptation appropriate with field reality in developing countries? In Rwanda, the main problems will be heavy rain and/or long dry season. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). The spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front » mechanism. The torrential rainfall that occurs every year in Rwanda disturbs the circulation for many days, damages the houses and, more seriously, causes heavy losses of people. All districts are affected by bad weather (heavy rain) but the costs of such events are the highest in mountains districts. The objective of the current research is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical predictions and simulations, machine learning algorithm (different types of neural networks) and GIS. The research will include rainfalls variability mapping and probabilistic analyses of extreme events.

  2. Trend analysis and forecast of precipitation, reference evapotranspiration, and rainfall deficit in the Blackland Prairie of eastern Mississippi

    Science.gov (United States)

    Gary Feng; Stacy Cobb; Zaid Abdo; Daniel K. Fisher; Ying Ouyang; Ardeshir Adeli; Johnie N. Jenkins

    2016-01-01

    Trend analysis and estimation of monthly and annual precipitation, reference evapotranspiration ET, and rainfall deficit are essential for water-resources management and cropping-system design. Rainfall, ET, and water-deficit patterns and trends at Macon in eastern Mississippi for a 120-yr period (1894-2014) were analyzed for annual, seasonal, and monthly...

  3. Spatial and temporal variability of rainfall erosivity factor for Switzerland

    Directory of Open Access Journals (Sweden)

    K. Meusburger

    2012-01-01

    Full Text Available Rainfall erosivity, considering rainfall amount and intensity, is an important parameter for soil erosion risk assessment under future land use and climate change. Despite its importance, rainfall erosivity is usually implemented in models with a low spatial and temporal resolution. The purpose of this study is to assess the temporal- and spatial distribution of rainfall erosivity in form of the (Revised Universal Soil Loss Equation R-factor for Switzerland. Time series of 22 yr for rainfall (10 min resolution and temperature (1 h resolution data were analysed for 71 automatic gauging stations distributed throughout Switzerland. Regression-kriging was used to interpolate the rainfall erosivity values of single stations and to generate a map for Switzerland. Latitude, longitude, average annual precipitation, biogeographic units (Jura, Midland, etc., aspect and elevation were used as covariates, of which average annual precipitation, elevation and the biographic unit (Western Central Alps were significant (p<0.01 predictors. The mean value of long-term rainfall erosivity is 1330 MJ mm ha−1 h−1 yr−1 with a range of lowest values of 124 MJ mm ha−1 h−1 yr−1 at an elevated station in Grisons to highest values of 5611 MJ mm ha−1 h−1 yr−1 in Ticino. All stations have highest erosivity values from July to August and lowest values in the winter months. Swiss-wide the month May to October show significantly increasing trends of rainfall erosivity for the observed period (p<0.005. Only in February a significantly decreasing trend of rainfall erosivity is found (p<0.01. The increasing trends of rainfall erosivity in May, September and October when vegetation cover is scarce are likely to enhance soil erosion risk for certain agricultural crops and alpine grasslands in Switzerland.

  4. Modelling Ecuador's rainfall distribution according to geographical characteristics.

    Science.gov (United States)

    Tobar, Vladimiro; Wyseure, Guido

    2017-04-01

    It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting

  5. Mallows statistic in the selection of models to predict the monthly and annual average rainfall in Rio Grande do Sul, Brazil. = Estatística de Mallows na seleção de modelos de predição da precipitação média mensal e anual no Rio Grande do Sul.

    Directory of Open Access Journals (Sweden)

    Claudia Fernanda Almeida Teixeira

    2013-08-01

    Full Text Available The Mallows Cp statistic can be used in the selection of the best subsets in hydrological modeling, especially in cases where many variables are used. Besause there are, in many cases, the interest in estimating the monthly and annual average rainfall based on geographic coordinates of latitude and longitude, and altitude. Consequently, the aim of this study was to verify the information gain when applied to statistical Cp Mallows in the selection of the best subsets of multiple linear regression to predict the precipitation of some municipalities in the state of Rio Grande do Sul. Daily precipitation data from 26 meteorological stations, in addition to seven others, used to validation of the proposed linear models, belonging to seven mesoregions of Rio Grande do Sul were collected and analyzed. After the formation of the series, precipitation values were adjusted from linear models, using multiple linear regression in which the dependent variable was the precipitation and independent variables, the geographic coordinates of latitude and longitude, and altitude. The Cp statistic was used in the selection of sets and, subsequently applied statistical indexes mean square error, standard error of prediction bias factor wereused to obtain the accuracy factor for comparison between observed versus predicted precipitation. From the results obtained itcan be concluded that, from the point of view of parsimony, the statistic proposed by Mallows proved adequate in the selectionof models for prediction of monthly and annual rainfall of the stations analyzed. = A estatística Cp de Mallows pode ser utilizada na seleção de melhores subconjuntos na modelagem hidrológica,principalmente nos casos em que são utilizadas muitas variáveis. Com base no fato de que há, em muitos casos, o interesse em estimar a precipitação média mensal e anual baseada nas coordenadas geográficas latitude e longitude, e altitude, objetivouse com este trabalho verificar o

  6. Comparison of Two Stochastic Daily Rainfall Models and their Ability to Preserve Multi-year Rainfall Variability

    Science.gov (United States)

    Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George; Kiem, Anthony; Parana Manage, Nadeeka

    2016-04-01

    Stochastic simulation of rainfall is often required in the simulation of streamflow and reservoir levels for water security assessment. As reservoir water levels generally vary on monthly to multi-year timescales, it is important that these rainfall series accurately simulate the multi-year variability. However, the underestimation of multi-year variability is a well-known issue in daily rainfall simulation. Focusing on this issue, we developed a hierarchical Markov Chain (MC) model in a traditional two-part MC-Gamma Distribution modelling structure, but with a new parameterization technique. We used two parameters of first-order MC process (transition probabilities of wet-to-wet and dry-to-dry days) to simulate the wet and dry days, and two parameters of Gamma distribution (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. We found that use of deterministic Gamma parameter values results in underestimation of multi-year variability of rainfall depths. Therefore, we calculated the Gamma parameters for each month of each year from the observed data. Then, for each month, we fitted a multi-variate normal distribution to the calculated Gamma parameter values. In the model, we stochastically sampled these two Gamma parameters from the multi-variate normal distribution for each month of each year and used them to generate rainfall depth in wet days using the Gamma distribution. In another study, Mehrotra and Sharma (2007) proposed a semi-parametric Markov model. They also used a first-order MC process for rainfall occurrence simulation. But, the MC parameters were modified by using an additional factor to incorporate the multi-year variability. Generally, the additional factor is analytically derived from the rainfall over a pre-specified past periods (e.g. last 30, 180, or 360 days). They used a non-parametric kernel density process to simulate the wet day rainfall depths. In this study, we have compared the performance of our

  7. Rainfall intensity characteristics at coastal and high altitude stations in Kerala

    Indian Academy of Sciences (India)

    V Sasi Kumar; S Sampath; P V S S K Vinayak; R Harikumar

    2007-10-01

    Rainfall intensities measured at a few stations in Kerala during 2001 –2005 using a disdrometer were found to be in reasonable agreement with the total rainfall measured using a manual rain gauge. The temporal distributions of rainfall intensity at different places and during different months show that rainfall is of low intensity (> 10 mm/hr),65%to 90%of the time.This could be an indication of the relative prevalence of stratiform and cumuliform clouds.Rainfall was of intensity > 5 mm/hr for more than 95%of the time in Kochi in July 2002,which was a month seriously deficient in rainfall,indicating that the deficiency was probably due to the relative absence of cumuliform clouds.Cumulative distribution graphs are also plotted and fitted with the Weibull distribution.The fit parameters do not appear to have any consistent pattern. The higher intensities also contributed signi ficantly to total rainfall most of the time,except in Munnar (a hill station). In this analysis also,the rainfall in Kochi in July 2002 was found to have less presence of high intensities. This supports the hypothesis that the rainfall de ficiency was probably caused by the absence of conditions that favoured the formation of cumuliform clouds.

  8. Toxicity of parking lot runoff after application of simulated rainfall.

    Science.gov (United States)

    Greenstein, D; Tiefenthaler, L; Bay, S

    2004-08-01

    Stormwater runoff is an important source of toxic substances to the marine environment, but the effects of antecedent dry period, rainfall intensity, and duration on the toxicity of runoff are not well understood. In this study, simulated rainfall was applied to parking lots to examine the toxicity of runoff while controlling for antecedent period, intensity, and duration of rainfall. Parking areas were divided into high and low use and maintained and unmaintained treatments. The parking stalls were cleaned by pressure washing at time zero. Simulated rainfall was then applied to subplots of the parking lots so that antecedent periods of 1, 2, and 3 months were achieved, and all of the runoff was collected for analysis. On a separate parking lot, rainfall was applied at a variety of intensities and durations after a 3-month antecedent period. Runoff samples were tested for toxicity using the purple sea urchin fertilization test. Every runoff sample tested was found to be toxic. Mean toxicity for the sea urchin fertilization test ranged from 2.0 to 12.1 acute toxic units. The toxicity increased rapidly during the first month but then decreased approximately to precleaning levels and remained there. No difference in toxicity was found between the different levels of use or maintenance treatments. The intensity and duration of rainfall were inversely related to degree of toxicity. For all intensities tested, toxicity was always greatest in the first sampling time interval. Dissolved zinc was most likely the primary cause of toxicity based on toxicant characterization of selected runoff samples.

  9. Assessment of Seasonal and Annual Rainfall Trends and Variability in Sharjah City, UAE

    Directory of Open Access Journals (Sweden)

    Tarek Merabtene

    2016-01-01

    Full Text Available Although a few studies on rainfall spatial and temporal variability in the UAE have been carried out, evidence of the impact of climate change on rainfall trends has not been reported. This study aims at assessing the significance of long-term rainfall trends and temporal variability at Sharjah City, UAE. Annual rainfall and seasonal rainfall extending over a period of 81 years (1934–2014 recorded at Sharjah International Airport have been analyzed. To this end, several parametric and nonparametric statistical measures have been applied following systematic data quality assessment. The analyses revealed that the annual rainfall trend decreased from −3 mm to −9.4 mm per decade over the study periods. The decreasing annual rainfall trend is mainly driven by the significant drop in winter rainfall, particularly during the period from 1977 to 2014. The results also indicate that high probability extreme events have shifted toward low frequency (12.7 years with significant variations in monthly rainfall patterns and periodicity. The findings of the present study suggest reevaluating the derivation of design rainfall for infrastructure of Sharjah City and urge developing an integrated framework for its water resources planning and risk under climate change impacts scenarios.

  10. FREQUENCY STRUCTURE OF MAJOR RAINFALL EVENTS IN THE NORTH-EASTERN PART OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    RAQUIBUL ALAM

    2012-12-01

    Full Text Available The amount of rainfall received over an area is an important factor in assessing availability of water to meet various demands for agriculture, industry, irrigation, generation of hydroelectricity and other human activities. The distribution of rainfall in time and space is, therefore, an important factor for the economic development of a country. Due to rapid urbanization in various parts of the north-eastern region of Bangladesh, there is a growing need to study the rainfall pattern, and also frequency of the heavy rainfall events. This study was checked monthly average rainfall from daily records of last 50 years for this region. In order to check the major events, time history of monthly rainfall data were transformed into frequency domain using the Fast Fourier Transform (FFT. Estimated peak frequency (11.98 month depicts that major rainfall events of a year are occurring earlier than the previous year. The variability of rainfall in time scale was also checked from filtered signals, which is very useful for long-term water resources planning, agricultural development and disaster management for Bangladesh.

  11. Research on the Fine-Scale Spatial Uniformity of Natural Rainfall and Rainfall from a Rainfall Simulator with a Rotary Platform (RSRP)

    National Research Council Canada - National Science Library

    Bo Liu; Xiaolei Wang; Lihua Shi; Xichuan Liu; Zhaojing Kang; Zhentao Chen

    2017-01-01

    ... and the rainfall uniformity was evaluated using the Christiansen Uniformity Coefficient (CU). Simultaneously, factors influencing the spatial uniformity of natural rainfall, including the average rainfall accumulation (RA...

  12. Rainfall Characteristics and Regionalization in Peninsular Malaysia Based on a High Resolution Gridded Data Set

    Directory of Open Access Journals (Sweden)

    Chee Loong Wong

    2016-11-01

    Full Text Available Daily gridded rainfall data over Peninsular Malaysia are delineated using an objective clustering algorithm, with the objective of classifying rainfall grids into groups of homogeneous regions based on the similarity of the rainfall annual cycles. It has been demonstrated that Peninsular Malaysia can be statistically delineated into eight distinct rainfall regions. This delineation is closely associated with the topographic and geographic characteristics. The variation of rainfall over the Peninsula is generally characterized by bimodal variations with two peaks, i.e., a primary peak occurring during the autumn transitional period and a secondary peak during the spring transitional period. The east coast zones, however, showed a single peak during the northeast monsoon (NEM. The influence of NEM is stronger compared to the southwest monsoon (SWM. Significantly increasing rainfall trends at 95% confidence level are not observed in all regions during the NEM, with exception of northwest zone (R1 and coastal band of west coast interior region (R3. During SWM, most areas have become drier over the last three decades. The study identifies higher variation of mean monthly rainfall over the east coast regions, but spatially, the rainfall is uniformly distributed. For the southwestern coast and west coast regions, a larger range of coefficients of variation is mostly obtained during the NEM, and to a smaller extent during the SWM. The inland region received least rainfall in February, but showed the largest spatial variation. The relationship between rainfall and the El Niño Southern Oscillation (ENSO was examined based on the Multivariate ENSO Index (MEI. Although the concurrent relationships between rainfall in the different regions and ENSO are generally weak with negative correlations, the rainfall shows stronger positive correlation with preceding ENSO signals with a time lag of four to eight months.

  13. Detecting Patterns of Anomalies

    Science.gov (United States)

    2009-03-01

    detect anomalies in the dataset is used in [Leung and Leckie, 2005] and [Eskin et al., 2002]. One-class SVMs [Li et al., 2003, Heller et al., 2003] and...IEE Proceedings F, 140(2): 107–113, 1993. J.D.F. Habbema, J. Hermans , and K. Vandenbroek. A stepwise discriminant analysis pro- gram using density...Technometrics, 29(4):409–412, 1987. K.A. Heller , K.M. Svore, A. Keromytis, and S.J. Stolfo. One class support vector machines for detecting anomalous

  14. Chiral supergravity and anomalies

    CERN Document Server

    Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.

    1999-01-01

    Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.

  15. Low Risk Anomalies?

    DEFF Research Database (Denmark)

    Schneider, Paul; Wagner, Christian; Zechner, Josef

    This paper shows theoretically and empirically that beta- and volatility-based low risk anomalies are driven by return skewness. The empirical patterns concisely match the predictions of our model that endogenizes the role of skewness for stock returns through default risk. With increasing downside...... of betting against beta/volatility among low skew firms compared to high skew firms is economically large. Our results suggest that the returns to betting against beta or volatility do not necessarily pose asset pricing puzzles but rather that such strategies collect premia that compensate for skew risk...

  16. Detecting Biosphere anomalies hotspots

    Science.gov (United States)

    Guanche-Garcia, Yanira; Mahecha, Miguel; Flach, Milan; Denzler, Joachim

    2017-04-01

    The current amount of satellite remote sensing measurements available allow for applying data-driven methods to investigate environmental processes. The detection of anomalies or abnormal events is crucial to monitor the Earth system and to analyze their impacts on ecosystems and society. By means of a combination of statistical methods, this study proposes an intuitive and efficient methodology to detect those areas that present hotspots of anomalies, i.e. higher levels of abnormal or extreme events or more severe phases during our historical records. Biosphere variables from a preliminary version of the Earth System Data Cube developed within the CAB-LAB project (http://earthsystemdatacube.net/) have been used in this study. This database comprises several atmosphere and biosphere variables expanding 11 years (2001-2011) with 8-day of temporal resolution and 0.25° of global spatial resolution. In this study, we have used 10 variables that measure the biosphere. The methodology applied to detect abnormal events follows the intuitive idea that anomalies are assumed to be time steps that are not well represented by a previously estimated statistical model [1].We combine the use of Autoregressive Moving Average (ARMA) models with a distance metric like Mahalanobis distance to detect abnormal events in multiple biosphere variables. In a first step we pre-treat the variables by removing the seasonality and normalizing them locally (μ=0,σ=1). Additionally we have regionalized the area of study into subregions of similar climate conditions, by using the Köppen climate classification. For each climate region and variable we have selected the best ARMA parameters by means of a Bayesian Criteria. Then we have obtained the residuals by comparing the fitted models with the original data. To detect the extreme residuals from the 10 variables, we have computed the Mahalanobis distance to the data's mean (Hotelling's T^2), which considers the covariance matrix of the joint

  17. When do anomalies begin?

    Science.gov (United States)

    Lightman, Alan; Gingerich, Owen

    1992-02-01

    The present historical and methodological consideration of scientific anomalies notes that some of these are recognized as such, after long neglect, only after the emergence of compelling explanations for their presence in the given theory in view of an alternative conceptual framework. These cases of 'retrorecognition' are indicative not merely of a significant characteristic of the process of conceptual development and scientific discovery, but of the bases for such process in human psychology. Attention is given to the illustrative cases of the 'flatness problem' in big bang theory, the perigee-opposition problem in Ptolemaic astronomy, the continental-fit problem in geology, and the equality of inertial and gravitational mass.

  18. The diphoton anomaly

    Science.gov (United States)

    Nardecchia, M.

    2017-07-01

    In December 2015, the ATLAS and CMS Collaborations presented results from data taken at the LHC with pp collisions at the center-of-mass energy of √{s} = 13{ TeV} . In the search for resonances decaying into two photons, both experiments observed a tantalising excess of events at an invariant mass of the photon pair of 750GeV. In this contribution, I will summarise some of the main phenomenological and theoretical aspects of this anomaly in terms of New Physics.

  19. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

    Science.gov (United States)

    Dou, Juan; Wu, Zhiwei; Zhou, Yefan

    2016-10-01

    El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO-ISMR relationship has become weak in recent years. It's essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in June-July (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air-sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an "ocean bridge" role to "prolong" the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole and May SAM. The hindcast is carried out for the period 1979-2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR

  20. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

    Science.gov (United States)

    Dou, Juan; Wu, Zhiwei; Zhou, Yefan

    2017-08-01

    El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO-ISMR relationship has become weak in recent years. It's essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in June-July (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air-sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an "ocean bridge" role to "prolong" the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole and May SAM. The hindcast is carried out for the period 1979-2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR

  1. Stochastic generation of daily rainfall events based on rainfall pattern classification and Copula-based rainfall characteristics simulation

    Science.gov (United States)

    Xu, Y. P.; Gao, C.

    2016-12-01

    To deal with the problem of having no or insufficiently long rainfall record, developing a stochastic rainfall model is very essential. This study first proposed a stochastic model of daily rainfall events based on classification and simulation of different rainfall patterns, and copula-based joint simulation of rainfall characteristics. Compared with current stochastic rainfall models, this new model not only keeps the dependence structure of rainfall characteristics by using copula functions, but also takes various rainfall patterns that may cause different hydrological responses to watershed into consideration. In order to determine the appropriate number of representative rainfall patterns in an objective way, we also introduced clustering validation measures to the stochastic model. Afterwards, the developed stochastic rainfall model is applied to 39 gauged meteorological stations in Zhejiang province, East China, and is then extended to ungauged stations for validation by applying the self-organizing map (SOM) method. The final results show that the 39 stations can be classified into seven regions that further fall into three categories based on rainfall generation mechanisms, i.e., plum-rain control region, typhoon-rain control region and typhoon-plum-rain compatible region. Rainfall patterns of each station can be classified into five or six types based on clustering validation measures. This study shows that the stochastic rainfall model is robust and can be applied to both gauged and ungauged stations for generating long rainfall record.

  2. Evaluation of Satellite Rainfall Products over NASA's Iowa Flood Studies (IFloodS) Domain

    Science.gov (United States)

    ElSaadani, Mohamed; Quintero, Felipe; Krajewski, Witold F.; Goska, Radoslaw; Seo, Bongchul

    2014-05-01

    Iowa Flood Studies (IFloodS) is a NASA Global Precipitation Measurement (GPM) Mission to provide better understanding of the strengths and limitations of satellite products in the context of hydrologic applications. IFloodS took place in the central to north eastern part of Iowa in Midwestern United States during the months of April-June, 2013. Quantifying the physical characteristics, space/time variability and assessing satellite rainfall retrieval uncertainties at instantaneous to daily time scales are of the main objectives of IFloodS field experiment beside assessing hydrologic predictive skills as a function of space/time scales and discerning the relative roles of rainfall quantities in flood genesis. The errors of rainfall estimation of three satellite rainfall products (TRMM's TMPA 3B42 V7, CPC's CMORPH and CHRS at UCI's PERSIANN) have been characterized in space and time using NCEP Stage IV radar-rainfall product as a benchmark for comparison. The satellite rainfall products used in this study represent 3 hourly, quarter degree, rainfall accumulation. The benchmark rainfall accumulation has an hourly, four kilometers, resolutions in time and space respectively. We also investigate the adequacy of satellite rainfall products as inputs for hydrological modeling. To this end, these products were used as forcing for the Iowa Flood Center (IFC) hydrological model and produced discharge simulations in a high-resolution drainage network. The IFC hydrological model has been validated using radar rainfall product and thus, the hydrological outputs becomes the reference of comparison for the other rainfall products. We evaluated the hydrological performance of the rainfall products at different spatial scales, ranging from 2 to 14,000 square miles using stream discharge information from USGS gauges network. We discuss the adequacy of the rainfall products for flood forecasting at different spatial scales.

  3. Long-term variability of the leading seasonal modes of rainfall in south-eastern Australia

    Directory of Open Access Journals (Sweden)

    Maryam Montazerolghaem

    2016-09-01

    Full Text Available Knowledge of temporal and spatial variability of climate and rainfall can improve agriculture production and can help to manage risks caused by climate variability. Available high-quality monthly rainfall data from the Australian Bureau of Meteorology for 1907–2011 was used to investigate the leading seasonal mode of the long-term rainfall variability over south-eastern and eastern Australia. Spatio-temporal variations of seasonal rainfall and their connection to oceanic-atmospheric predictors were analysed. The links between the first two Principal Components of rainfall of each season with lagged Southern Oscillation Index (SOI, Indian Ocean Dipole (IOD and Southern Annular Mode (SAM were season-dependent. The relationship between these climatic indices changed within both inter-seasonal and decadal time scales. Spring and winter rainfalls were continuously positively correlated with lagged (SOI. However, summer rainfall variations indicated negative correlations with lagged SOI which increase from 1970. The correlations between lagged SOI and autumn variations were weak and change to a stronger relationship from 1990. Correlations between lagged (IOD which varied across all seasons have recently been increasing. Variations in rainfall across all seasons were highly correlated with Southern Annular Mode (SAM with different signs. Overall, the relationship between predictors and seasonal rainfall has changed after 1970. The results of running correlations between leading modes of seasonal rainfall and lagged SOI, SAM, and IOD indices indicates non-stationary in these links. The relationships of climatic indices and leading modes of seasonal rainfall changed since 1970, with stronger evidence in case of IOD. Recent changes in the relationships between climatic indices and rainfall need to be considered in climate prediction systems. The results of this study suggests that improvement in statistical regional rainfall forecast system with fixed

  4. Differences between dynamics factors for interannual and decadal variations of rainfall over the Yangtze River valley during flood seasons

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rainfall over the Yangtze River valley during flood seasons (June to July) shows both interannual and decadal variations. The rainfall has been increasing since 1990, showing a decadal signal. The variations of rainfall are influenced by the multi-scale interactions in the atmosphere-ocean coupled climate system. The rainfall, SST, and circulation are analyzed with the Chinese 160 station data, and other observational/reanalysis data, respectively. The separation between the interannual and decadal variations is carried out. The key areas affecting the Yangtze rainfall are the western Pacific warm pool on the interannual time scale and the EINO3 area on the decadal time scale, respectively. The circulation anomaly associated with the interannual variation occurs in the upper troposphere whereas that associated with the decadal variation appears in the lower troposphere.

  5. A Regenerative Prediction Algorithm for Indian Rainfall Prediction

    Directory of Open Access Journals (Sweden)

    SEEMA MAHAJAN

    2013-11-01

    Full Text Available Rainfall forecasting is critical for the crop planning and water management strategies. Proposed study presents a novel approach for modelling time series precipitation data. The 51 years of Indian rainfall data is used for the development of the model. We use nonlinear predictive code based on 11th order with 240 coefficients. Coefficients are optimized using gradient descendent algorithm. Algorithm is tested using 40 years of rainfall training data. Prediction error tested outside training period is found less than1% for few months. Prediction period is extended to one year by including progressive predicted values in input samples using regenerative feedback algorithm. This model is applied for different training and testing periods with average error of 2% to 10%.

  6. ENSO cycle and climate anomaly in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Yongli; ZHAO Yongping; FENG Junqiao; WANG Fan

    2012-01-01

    The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni(n)o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA).The relationship between the ENSO and the climate of China was revealed.The main results indicated the following:1) there are two ENSO modes acting on the subsurface tropical Pacific.The first mode is related to the mature phase of ENSO,which mainly appears during winter.The second mode is associated with a transition stage of the ENSO developing or decaying,which mainly occurs during summer; 2) during the mature phase of El Ni(n)o,the meridionality of the atmosphere in the mid-high latitude increases,the Aleutian low and high pressure ridge over Lake Baikal strengthens,northerly winds prevail in northern China,and precipitation in northern China decreases significantly.The ridge of the Ural High strengthens during the decaying phase of El Ni(n)o,as atmospheric circulation is sustained during winter,and the northerly wind anomaly appears in northern China during summer.Due to the ascending branch of the Walker circulation over the western Pacific,the western Pacific Subtropical High becomes weaker,and south-southeasterly winds prevail over southern China.As a result,less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia.The flood disaster that occurred south of Changjiang River can be attributed to this.The La Ni(n)a event causes an opposite,but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport.This is known as the "atmospheric-bridge",where the energy anomaly within the tropical Pacific

  7. Chapman Conference on Rainfall Fields

    Science.gov (United States)

    Gupta, V. K.

    The Chapman Conference on Rainfall Fields, sponsored by AGU, was the first of its kind; it was devoted to strengthening scientific interaction between the North American and Latin American geophysics communities. It was hosted by Universidad Simon Bolivar and Instituto Internacional de Estudios Avanzados, in Caracas, Venezuela, during March 24-27, 1986. A total of 36 scientists from Latin America, the United States, Canada, and Europe participated. The conference, which was convened by I. Rodriguez-Iturbe (Universidad Simon Bolivar) and V. K. Gupta (University of Mississippi, University), brought together hydrologists, meteorologists, and mathematicians/statisticians in the name of enhancing an interdisciplinary focus on rainfall research.

  8. Rainfall simulation for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, D.S.; Abner, C.H.; Mann, L.K.

    1977-08-01

    Rain simulation systems have been designed for field and greenhouse studies which have the capability of reproducing the physical and chemical characteristics of natural rainfall. The systems permit the simulation of variations in rainfall and droplet size similar to that of natural precipitation. The systems are completely automatic and programmable, allowing unattended operation for periods of up to one week, and have been used to expose not only vegetation but also soils and engineering materials, making them versatile tools for studies involving simulated precipitation.

  9. Vitellointestinal Duct Anomalies in Infancy

    Science.gov (United States)

    Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep

    2016-01-01

    Background: Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5–9 of intrauterine life. Methods: This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Results: Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: patent VID in 9 (56.25%) patients, umbilical cyst in 2(12.25%), umbilical granuloma in 2 (12.25%), and Meckel diverticulum as content of hernia sac in obstructed umbilical hernia in 1 (6.25%) patient. Two patients with umbilical fistula had severe electrolyte disturbance and died without surgical intervention. Conclusion: Persistent VID may have varied presentations in infancy. High output umbilical fistula and excessive bowel prolapse demand urgent surgical intervention to avoid morbidity and mortality. PMID:27433448

  10. Quivers via anomaly chains

    Energy Technology Data Exchange (ETDEWEB)

    Casero, Roberto [Dipartimento di Fisica, Universita di Milano-Bicocca, Piazza della Scienza, 3, 20126 Milan (Italy)]. E-mail: roberto.casero@mib.infn.it; Trincherini, Enrico [Dipartimento di Fisica, Universita di Milano-Bicocca, Piazza della Scienza, 3, 20126 Milan (Italy)

    2003-09-01

    We study quivers in the context of matrix models. We introduce chains of generalized Konishi anomalies to write the quadratic and cubic equations that constrain the resolvents of general affine A-circumflex{sub n-1} and non-affine A{sub n} quiver gauge theories, and give a procedure to calculate all higher-order relations. For these theories we also evaluate, as functions of the resolvents, VEV's of chiral operators with two and four bi-fundamental insertions. As an example of the general procedure we explicitly consider the two simplest quivers A{sub 2} and A-circumflex{sub 1}, obtaining in the first case a cubic algebraic curve, and for the affine theory the same equation as that of U(N) theories with adjoint matter, successfully reproducing the RG cascade result. (author)

  11. Quivers via anomaly chains

    CERN Document Server

    Casero, R; Casero, Roberto; Trincherini, Enrico

    2003-01-01

    We study quivers in the context of matrix models. We introduce chains of generalized Konishi anomalies to write the quadratic and cubic equations that constrain the resolvents of general affine and non-affine quiver gauge theories, and give a procedure to calculate all higher-order relations. For these theories we also evaluate, as functions of the resolvents, VEV's of chiral operators with two and four bifundamental insertions. As an example of the general procedure we explicitly consider the two simplest quivers A2 and A1(affine), obtaining in the first case a cubic algebraic curve, and for the affine theory the same equation as that of U(N) theories with adjoint matter, successfully reproducing the RG cascade result.

  12. Low Risk Anomalies?

    DEFF Research Database (Denmark)

    Schneider, Paul; Wagner, Christian; Zechner, Josef

    risk, the standard capital asset pricing model (CAPM) increasingly overestimates expected equity returns relative to firms' true (skew-adjusted) market risk. Empirically, the profitability of betting against beta/volatility increases with firms' downside risk, and the risk-adjusted return differential...... of betting against beta/volatility among low skew firms compared to high skew firms is economically large. Our results suggest that the returns to betting against beta or volatility do not necessarily pose asset pricing puzzles but rather that such strategies collect premia that compensate for skew risk......This paper shows theoretically and empirically that beta- and volatility-based low risk anomalies are driven by return skewness. The empirical patterns concisely match the predictions of our model that endogenizes the role of skewness for stock returns through default risk. With increasing downside...

  13. Cubic anomalies in WMAP

    CERN Document Server

    Land, K; Land, Kate; Magueijo, Joao

    2004-01-01

    We perform a frequentist analysis of the bispectrum of WMAP first year data. We find clear signal domination up to l=200, with overall consistency with Gaussianity except for the following features. There is a flat patch (i.e. a low chi-squared region) in the same-l components of the bispectrum spanning the range l=32-62; this may be interpreted as ruling out Gaussianity at the 99.6% confidence level. There is also an asymmetry between the North and South inter-l bispectrum components at the 99% confidence level. The preferred asymmetry axis correlates well with the (l,b)=(57,10) direction quoted in the literature for asymmetries in the power spectrum and three-point correlation function. However our analysis of the quadrupole (its bispectrum and principal axes) fail to make contact with previously claimed anomalies.

  14. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010.

    Science.gov (United States)

    Mukabutera, Assumpta; Thomson, Dana; Murray, Megan; Basinga, Paulin; Nyirazinyoye, Laetitia; Atwood, Sidney; Savage, Kevin P; Ngirimana, Aimable; Hedt-Gauthier, Bethany L

    2016-08-05

    Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff) but had no impact among children in household with improved toilets. Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.

  15. Research on the Fine-Scale Spatial Uniformity of Natural Rainfall and Rainfall from a Rainfall Simulator with a Rotary Platform (RSRP)

    OpenAIRE

    Bo Liu; Xiaolei Wang; Lihua Shi; Xichuan Liu; Zhaojing Kang; Zhentao Chen

    2017-01-01

    Abstract: The accurate production of a rainfall environment similar to natural rainfall by a rainfall simulator (RS) is a crucial and challenging task in rainfall instrument testing or calibration. Although the spatial uniformity of rainfall accumulation is a key parameter of an RS, the spatial uniformity comparison between simulated rainfall and natural rainfall, and the spatial uniformity improvements for an RS are scant in the literature. In this study, a fine-scale natural rainfall experi...

  16. Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean

    Science.gov (United States)

    Raicich, Fabio; Pinardi, Nadia; Navarra, Antonio

    2003-02-01

    The teleconnections with Indian monsoon and Sahel rainfall indices are investigated here on an interannual time scale in terms of meteorological and marine dynamics over the Mediterranean area. Sea-level pressure from gridded data sets and from individual stations, together with sea-level data from stations all around the Mediterranean coastlines, are used.In summer (July-August-September, JAS) the sea-level pressure field over the eastern Mediterranean anticorrelates with the Indian monsoon index (correlation coefficient C = -0.5 on average). A Mediterranean pressure index (MPI), defined as the standardized difference between sea-level atmospheric pressure at Mersa Matruh (southeastern Mediterranean) and Marseille (northwestern Mediterranean) stations, anticorrelates with Indian monsoon index even more (C = -0.68). The MPI is proportional to the mean geostrophic surface flow field across an imaginary line joining the two stations and turns out to be significantly correlated with the meridional wind component over the eastern Mediterranean, known as the low-level Etesian wind regime. This wind regime represents the inflow surface field into the African inter-tropical convergence zone and, therefore, has an association with the Indian monsoon regime. The ocean response, evident by sea-level anomalies at coastal stations, shows a maximum anticorrelation with Indian monsoon index in late summer and autumn (September-October-November, SON).The Sahel index anticorrelates with sea-level pressure, with the maximum absolute value in June-July-August. This may be interpreted as a tendency of the Mediterranean sea-level pressure anomalies to precede those of Sahel precipitation, which is characterized by maximum rainfall in July-September. The MPI anticorrelates with Sahel index during and before JAS, indicating that the Etesian wind regime intensity is connected to Sahel rainfall. The sea level again anticorrelates with the Sahel index, with the maximum absolute value in

  17. Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s

    Science.gov (United States)

    Yim, So-Young; Wang, Bin; Kwon, MinHo

    2014-03-01

    East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May-June, MJ) and late summer (July-August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979-1994) to a tripole-like pattern in post-95 epoch (1995-2010); the prevailing period of the corresponding principal component has also changed from 3-5 to 2-3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.

  18. Performance of ICTP's RegCM4 in Simulating the Rainfall Characteristics over the CORDEX-SEA Domain

    Science.gov (United States)

    Neng Liew, Ju; Tangang, Fredolin; Tieh Ngai, Sheau; Chung, Jing Xiang; Narisma, Gemma; Cruz, Faye Abigail; Phan Tan, Van; Thanh, Ngo-Duc; Santisirisomboon, Jerasron; Milindalekha, Jaruthat; Singhruck, Patama; Gunawan, Dodo; Satyaningsih, Ratna; Aldrian, Edvin

    2015-04-01

    The performance of the RegCM4 in simulating rainfall variations over the Southeast Asia regions was examined. Different combinations of six deep convective parameterization schemes, namely i) Grell scheme with Arakawa-Schubert closure assumption, ii) Grell scheme with Fritch-Chappel closure assumption, iii) Emanuel MIT scheme, iv) mixed scheme with Emanuel MIT scheme over the Ocean and the Grell scheme over the land, v) mixed scheme with Grell scheme over the land and Emanuel MIT scheme over the ocean and (vi) Kuo scheme, and three ocean flux treatments were tested. In order to account for uncertainties among the observation products, four different gridded rainfall products were used for comparison. The simulated climate is generally drier over the equatorial regions and slightly wetter over the mainland Indo-China compare to the observation. However, simulation with MIT cumulus scheme used over the land area consistently produces large amplitude of positive rainfall biases, although it simulates more realistic annual rainfall variations. The simulations are found less sensitive to treatment of ocean fluxes. Although the simulations produced the rainfall climatology well, all of them simulated much stronger interannual variability compare to that of the observed. Nevertheless, the time evolution of the inter-annual variations was well reproduced particularly over the eastern part of maritime continent. Over the mainland Southeast Asia (SEA), unrealistic rainfall anomalies processes were simulated. The lacking of summer season air-sea interaction results in strong oceanic forcings over the regions, leading to positive rainfall anomalies during years with warm ocean temperature anomalies. This incurs much stronger atmospheric forcings on the land surface processes compare to that of the observed. A score ranking system was designed to rank the simulations according to their performance in reproducing different aspects of rainfall characteristics. The result suggests

  19. Using qflux to constrain modeled Congo Basin rainfall in the CMIP5 ensemble

    Science.gov (United States)

    Creese, A.; Washington, R.

    2016-11-01

    Coupled models are the tools by which we diagnose and project future climate, yet in certain regions they are critically underevaluated. The Congo Basin is one such region which has received limited scientific attention, due to the severe scarcity of observational data. There is a large difference in the climatology of rainfall in global coupled climate models over the basin. This study attempts to address this research gap by evaluating modeled rainfall magnitude and distribution amongst global coupled models in the Coupled Model Intercomparison Project 5 (CMIP5) ensemble. Mean monthly rainfall between models varies by up to a factor of 5 in some months, and models disagree on the location of maximum rainfall. The ensemble mean, which is usually considered a "best estimate" of coupled model output, does not agree with any single model, and as such is unlikely to present a possible rainfall state. Moisture flux (qflux) convergence (which is assumed to be better constrained than parameterized rainfall) is found to have a strong relationship with rainfall; strongest correlations occur at 700 hPa in March-May (r = 0.70) and 850 hPa in June-August, September-November, and December-February (r = 0.66, r = 0.71, and r = 0.81). In the absence of observations, this relationship could be used to constrain the wide spectrum of modeled rainfall and give a better understanding of Congo rainfall climatology. Analysis of moisture transport pathways indicates that modeled rainfall is sensitive to the amount of moisture entering the basin. A targeted observation campaign at key Congo Basin boundaries could therefore help to constrain model rainfall.

  20. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India

    Science.gov (United States)

    Pai, D. S.; Bhate, Jyoti; Sreejith, O. P.; Hatwar, H. R.

    2011-01-01

    The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler-Hendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly

  1. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India

    Energy Technology Data Exchange (ETDEWEB)

    Pai, D.S.; Sreejith, O.P.; Hatwar, H.R. [India Meteorological Department, Pune (India); Bhate, Jyoti [National Atmospheric Research Laboratory, Gadnki (India)

    2011-01-15

    The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler-Hendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly

  2. Rainfall variability over southern Africa: an overview of current research using satellite and climate model data

    Science.gov (United States)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.

  3. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  4. Detecting changes in rainfall pattern and seasonality index vis-à-vis increasing water scarcity in Maharashtra

    Indian Academy of Sciences (India)

    Pulak Guhathakurta; Elizabeth Saji

    2013-06-01

    Knowledge of mean rainfall and its variability of smaller spatial scale are important for the planners in various sectors including water and agriculture. In the present work, long rainfall data series (1901–2006) of districts of Maharashtra in monthly and seasonal scales are constructed and then mean rainfall and coefficient of variability are analyzed to get the spatial pattern and variability. Significant long term changes in monthly rainfall in the district scale are identified by trend analysis of rainfall time series. The seasonality index which is the measure of distribution of precipitation throughout the seasonal cycle is used to classify the different rainfall regime. Also long term changes of the seasonality index are identified by the trend analysis. The state Maharashtra which is to the northwest of peninsular India is highly influenced by the southwest monsoon and the state is facing water scarcity almost every year. This study will help to find out possible reason for the increasing water scarcity in Maharashtra.

  5. Teleconnections between Ethiopian rainfall variability and global SSTs: observations and methods for model evaluation

    Science.gov (United States)

    Degefu, Mekonnen Adnew; Rowell, David P.; Bewket, Woldeamlak

    2017-04-01

    Rainfall variability in Ethiopia has significant effects on rainfed agriculture and hydropower, so understanding its association with slowly varying global sea surface temperatures (SSTs) is potentially important for prediction purposes. We provide an overview of the seasonality and spatial variability of these teleconnections across Ethiopia. A quasi-objective method is employed to define coherent seasons and regions of SST-rainfall teleconnections for Ethiopia. We identify three seasons (March-May, MAM; July-September, JAS; and October-November, ON), which are similar to those defined by climatological rainfall totals. We also identify three new regions (Central and western Ethiopia, CW-Ethiopia; Southern Ethiopia, S-Ethiopia; and Northeast Ethiopia, NE-Ethiopia) that are complementary to those previously defined here based on distinct SST-rainfall teleconnections that are useful when predicting interannual anomalies. JAS rainfall over CW-Ethiopia is negatively associated with SSTs over the equatorial east Pacific and Indian Ocean. New regional detail is added to that previously found for the whole of East Africa, in particular that ON rainfall over S-Ethiopia is positively associated with equatorial east Pacific SSTs and with the Indian Ocean Dipole (IOD). Also, SST-to-rainfall correlations for other season-regions, and specifically for MAM in all regions, are found to be negligible. The representation of these teleconnections in the HadGEM2 and HadGEM3-GA3.0 coupled climate models shows mixed skill. Both models poorly represent the statistically significant teleconnections, except that HadGEM2 and the low resolution (N96) version of HadGEM3-GA3.0 better represent the association between the IOD and S-Ethiopian ON rainfall. Additionally, both models are able to represent the lack of SST-rainfall correlation in other seasons and other parts of Ethiopia.

  6. Teleconnections between Ethiopian rainfall variability and global SSTs: observations and methods for model evaluation

    Science.gov (United States)

    Degefu, Mekonnen Adnew; Rowell, David P.; Bewket, Woldeamlak

    2016-06-01

    Rainfall variability in Ethiopia has significant effects on rainfed agriculture and hydropower, so understanding its association with slowly varying global sea surface temperatures (SSTs) is potentially important for prediction purposes. We provide an overview of the seasonality and spatial variability of these teleconnections across Ethiopia. A quasi-objective method is employed to define coherent seasons and regions of SST-rainfall teleconnections for Ethiopia. We identify three seasons (March-May, MAM; July-September, JAS; and October-November, ON), which are similar to those defined by climatological rainfall totals. We also identify three new regions (Central and western Ethiopia, CW-Ethiopia; Southern Ethiopia, S-Ethiopia; and Northeast Ethiopia, NE-Ethiopia) that are complementary to those previously defined here based on distinct SST-rainfall teleconnections that are useful when predicting interannual anomalies. JAS rainfall over CW-Ethiopia is negatively associated with SSTs over the equatorial east Pacific and Indian Ocean. New regional detail is added to that previously found for the whole of East Africa, in particular that ON rainfall over S-Ethiopia is positively associated with equatorial east Pacific SSTs and with the Indian Ocean Dipole (IOD). Also, SST-to-rainfall correlations for other season-regions, and specifically for MAM in all regions, are found to be negligible. The representation of these teleconnections in the HadGEM2 and HadGEM3-GA3.0 coupled climate models shows mixed skill. Both models poorly represent the statistically significant teleconnections, except that HadGEM2 and the low resolution (N96) version of HadGEM3-GA3.0 better represent the association between the IOD and S-Ethiopian ON rainfall. Additionally, both models are able to represent the lack of SST-rainfall correlation in other seasons and other parts of Ethiopia.

  7. Quantifying uncertainty in observational rainfall datasets

    Science.gov (United States)

    Lennard, Chris; Dosio, Alessandro; Nikulin, Grigory; Pinto, Izidine; Seid, Hussen

    2015-04-01

    rainfall datasets available over Africa on monthly, daily and sub-daily time scales as appropriate to quantify spatial and temporal differences between the datasets. We find regional wet and dry biases between datasets (using the ensemble mean as a reference) with generally larger biases in reanalysis products. Rainfall intensity is poorly represented in some datasets which demonstrates some datasets should not be used for rainfall intensity analyses. Using 10 CORDEX models we show in east Africa that the spread between observed datasets is often similar to the spread between models. We recommend that specific observational rainfall datasets datasets be used for specific investigations and also that where many datasets are applicable to an investigation, a probabilistic view be adopted for rainfall studies over Africa. Endris, H. S., P. Omondi, S. Jain, C. Lennard, B. Hewitson, L. Chang'a, J. L. Awange, A. Dosio, P. Ketiem, G. Nikulin, H-J. Panitz, M. Büchner, F. Stordal, and L. Tazalika (2013) Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. J. Climate, 26, 8453-8475. DOI: 10.1175/JCLI-D-12-00708.1 Gbobaniyi, E., A. Sarr, M. B. Sylla, I. Diallo, C. Lennard, A. Dosio, A. Dhie ?diou, A. Kamga, N. A. B. Klutse, B. Hewitson, and B. Lamptey (2013) Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol., DOI: 10.1002/joc.3834 Hernández-Díaz, L., R. Laprise, L. Sushama, A. Martynov, K. Winger, and B. Dugas (2013) Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim. Dyn. 40, 1415-1433. DOI: 10.1007/s00382-012-1387-z Kalognomou, E., C. Lennard, M. Shongwe, I. Pinto, A. Favre, M. Kent, B. Hewitson, A. Dosio, G. Nikulin, H. Panitz, and M. Büchner (2013) A diagnostic evaluation of precipitation in CORDEX models over southern Africa. Journal of Climate, 26, 9477-9506. DOI:10

  8. Links between circulation and changes in the characteristics of Iberian rainfall

    Science.gov (United States)

    Goodess, C. M.; Jones, P. D.

    2002-11-01

    Investigation of the links between atmospheric circulation patterns and rainfall is important for the understanding of climatic variability and for the development of empirical circulation-based downscaling methods. Here, spatial and temporal variations in circulation-rainfall relationships over the Iberian Peninsula during the period 1958-97 are explored using an automated circulation classification scheme and daily rainfall totals for 18 stations. Links between the circulation classification scheme and the North Atlantic oscillation (NAO) are also considered, as are the direct links between rainfall and the NAO. Trends in rainfall and circulation-type frequency are explored. A general tendency towards decreasing mean seasonal rainfall over the peninsula, with the exception of the southeastern Mediterranean coast, hides larger changes in wet day amount and rainfall probability. There is a tendency towards more, less-intensive rain days across much of Iberia, with a tendency towards more, more-intensive rain days along the southeastern Mediterranean coast, both of which are reflected in changes in rainfall amount quantiles. A preliminary analysis indicates that these changes may have occurred systematically across all circulation types. Comparison of the trends in rainfall and in circulation-type frequency suggests possible links. These links are supported by linear regression analyses using circulation-type frequencies as predictor variables and rainfall totals for winter months as the predictands. The selected predictor variables reflect the main circulation features influencing winter rainfall across the peninsula, i.e. the strong influence of Atlantic westerly and southwesterly airmasses over much of the peninsula, of northerly and northwesterly surface flow over northern/northwestern Spain and northern Portugal and the stronger effect of Mediterranean rather than Atlantic influences in southeastern Spain. The observed rainfall changes cannot, however, be

  9. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s' shift in East China summer rainfall

    Science.gov (United States)

    zhu, yali

    2016-04-01

    Based on our previous study, the interdecadal changes in summer rainfall over East China in the late 1990s are further explored here. The increased local rising motion is implicated as the dominant factor of increased rainfall in the lower Huang-Huai River valley (LHR). Both the observation and numerical experiments using Community Atmosphere Model, version 4 suggest that the negative Pacific Decadal Oscillation (PDO) mode can result in rising anomalies and thus more rainfall in the LHR. The East Asian westerly jet stream (EAWJS) is suggested as a bridge to link the Pacific sea surface temperature anomalies and East Asian summer rainfall. Model results reveal that the negative PDO mode can lead to significant easterly anomalies over East Asia. As a result, the EAWJS is weakened and shifts poleward, which coincides with observed changes in EAWJS after the late 1990s. In addition, weakened and poleward shifted EAWJS can result in an anomalous ascending motion to its south (in the LHR) by modulating the jet-related secondary meridional-vertical circulation. Consequently, rainfall increased in the LHR after the late 1990s. Besides, the positive Atlantic Meridional Oscillation can only induce insignificant changes over East Asia and partly counteract the negative PDO effect there.

  10. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning

    Science.gov (United States)

    Parra, Antonio; Ramírez, David A.; Resco, Víctor; Velasco, Ángel; Moreno, José M.

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  11. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Juan Mañes; Raymond Stora; Bruno Zumino

    2012-06-01

    The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. Some of the techniques used in the study of the anomaly are improved or generalized, including a systematic way of generating towers of ‘descent equations’.

  12. Anomaly mediation deformed by axion

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Kazunori, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583 (Japan); Yanagida, Tsutomu T. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583 (Japan)

    2013-05-13

    We show that in supersymmetric axion models the axion supermultiplet obtains a sizable F-term due to a non-supersymmetric dynamics and it generally gives the gaugino masses comparable to the anomaly mediation contribution. Thus the gaugino mass relation predicted by the anomaly mediation effect can be significantly modified in the presence of axion to solve the strong CP problem.

  13. What is a Timing Anomaly?

    DEFF Research Database (Denmark)

    Cassez, Franck; Hansen, Rene Rydhof; Olesen, Mads Chr.

    2012-01-01

    Timing anomalies make worst-case execution time analysis much harder, because the analysis will have to consider all local choices. It has been widely recognised that certain hardware features are timing anomalous, while others are not. However, defining formally what a timing anomaly is, has bee...

  14. Seismic data fusion anomaly detection

    Science.gov (United States)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Dynamic Height

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Dynamic Height data (a measure of the elevation of the sea level, calculated by integrating the specific volume anomaly of the sea water...

  16. Regional relationship between the Jiang-Huai Meiyu and the equatorial surface-subsurface temperature anomalies

    Institute of Scientific and Technical Information of China (English)

    QIAN WeiHong; ZHU Jiang; WANG YongGuang; FU JiaoLan

    2009-01-01

    The Jiang-Huai Meiyu rainy season can be distinguished into the Jiangnan Meiyu spell and the Huaihe Meiyu spell. The Jiangnan Meiyu spell appears on the last ten days in June and the Huaihe Meiyu spell lasts from early July to middle July. An inter-decadal transition was observed in 1998 respectively from the anomalies of Jiangnan Meiyu rainfall, the sea surface temperature (SST), and the subsurface tem-perature in the equatorial Pacific. Since the beginning of the 21 st century, opposite trends and biennial oscillations of the Meiyu rainfall are observed in the Jiangnan and Huaihe basins. Before the strong La Nina of 1999-2000, the positive SST anomalies usually occurred in the eastern equatorial Pacific. Since the beginning of the 21st century, a precursory warming signal of SST anomaly comes from the subsurface temperature which is centrally exposed near the dateline in the central equatorial Pacific. The above-normal Meiyu rainfall in 2003, 2005 and 2007 over the Huaihe basin followed the prior winter-spring positive SST anomaly near the dateline. A relationship shows that the more Jiangnan (Huaihe) Meiyu follows the winter-spring warm water in the eastern (central) equatorial Pacific.

  17. Spatial and Temporal Variability of Rainfall in the Gandaki River Basin of Nepal Himalaya

    Directory of Open Access Journals (Sweden)

    Jeeban Panthi

    2015-03-01

    Full Text Available Landslides, floods, and droughts are recurring natural disasters in Nepal related to too much or too little water. The summer monsoon contributes more than 80% of annual rainfall, and rainfall spatial and inter-annual variation is very high. The Gandaki River, one of the three major rivers of Nepal and one of the major tributaries of the Ganges River, covers all agro-ecological zones in the central part of Nepal. Time series tests were applied for different agro-ecological zones of the Gandaki River Basin (GRB for rainfall trends of four seasons (pre-monsoon, monsoon, post-monsoon and winter from 1981 to 2012. The non-parametric Mann-Kendall and Sen’s methods were used to determine the trends. Decadal anomalies relative to the long-term average were analyzed using the APHRODITE precipitation product. Trends in number of rainy days and timing of the monsoon were also analyzed. We found that the post-monsoon, pre-monsoon and winter rainfalls are decreasing significantly in most of the zones but monsoon rainfall is increasing throughout the basin. In the hill region, the annual rainfall is increasing but the rainy days do not show any trend. There is a tendency toward later departure of monsoon from Nepal, indicating an increase in its duration. These seasonally and topographically variable trends may have significant impacts for the agriculture and livestock smallholders that form the majority of the population in the GRB.

  18. Right Lung Agenesis; Isolated and with Accompanied Anomalies

    Directory of Open Access Journals (Sweden)

    Yakup Canıtez

    2013-12-01

    Full Text Available Right lung agenesis is a rare anomaly that can be isolated or accompanied by system anomalies such as cardiac, skeletal or urinary systems. Case 1, a four-month-old girl, was brought because of respiratory distress. Patient had polydactyly, syndactyly of right thumb, right mandibular hypoplasia and low-set dysmorphic ears. Lung x-ray and thorax computerized tomography (CT were consistent with right pulmonary agenesis and butterfly vertebra was evident in the 7th thoracic level. Thoracic CT angiography revealed narrowing of the left main bronchus and esophagus due to compression of aorta, left pulmonary artery and right atrium. In bronchoscopy, narrowing due to compression at the carina level was seen and right main bronchus was not seen. In abdominal ultrasonography, right kidney placement anomaly (pelvic ectopia was present and renal scintigraphy revealed fusion in both kidneys. With these findings, it was found that right pulmonary agenesis was accompanied by ipsilateral radial ray anomaly, renal anomaly, vertebral anomaly and hemifacial microsomia. Case 2, a fifteen-year-old male patient, was diagnosed as pulmonary agenesis via chest x-ray, pulmonary CT and bronchoscopy after a wheezing episode when he was 2 months old. Patient had no complaint except for exhaustion that is aggravated by exercise during last year. In physical examination, he had a mild scoliosis toward right, respiratory sounds were diminished on right hemithorax and heart sounds were heard on right side. Chest x-ray and thoracic CT were consistent with right lung agenesis. No abnormality was found in echocardiography and abdominal ultrasonography was normal. Accompanied cardiovascular anomalies, distortions of intrathoracic structures and recurrent infections are main factors that affect mortality and morbidity. Here, two cases with right lung agenesis, isolated and accompanied by multiple anomalies, were presented. (Jo­ur­nal of Cur­rent Pe­di­at­rics 2013; 11: 134-7

  19. Stochastic modelling of daily rainfall sequences

    NARCIS (Netherlands)

    Buishand, T.A.

    1977-01-01

    Rainfall series of different climatic regions were analysed with the aim of generating daily rainfall sequences. A survey of the data is given in I, 1. When analysing daily rainfall sequences one must be aware of the following points:
    a. Seasonality. Because of seasonal variation

  20. Sampling errors for satellite-derived tropical rainfall - Monte Carlo study using a space-time stochastic model

    Science.gov (United States)

    Bell, Thomas L.; Abdullah, A.; Martin, Russell L.; North, Gerald R.

    1990-01-01

    Estimates of monthly average rainfall based on satellite observations from a low earth orbit will differ from the true monthly average because the satellite observes a given area only intermittently. This sampling error inherent in satellite monitoring of rainfall would occur even if the satellite instruments could measure rainfall perfectly. The size of this error is estimated for a satellite system being studied at NASA, the Tropical Rainfall Measuring Mission (TRMM). First, the statistical description of rainfall on scales from 1 to 1000 km is examined in detail, based on rainfall data from the Global Atmospheric Research Project Atlantic Tropical Experiment (GATE). A TRMM-like satellite is flown over a two-dimensional time-evolving simulation of rainfall using a stochastic model with statistics tuned to agree with GATE statistics. The distribution of sampling errors found from many months of simulated observations is found to be nearly normal, even though the distribution of area-averaged rainfall is far from normal. For a range of orbits likely to be employed in TRMM, sampling error is found to be less than 10 percent of the mean for rainfall averaged over a 500 x 500 sq km area.

  1. Spatiotemporal Scaling Effect on Rainfall Network Design Using Entropy

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2014-08-01

    Full Text Available Because of high variation in mountainous areas, rainfall data at different spatiotemporal scales may yield potential uncertainty for network design. However, few studies focus on the scaling effect on both the spatial and the temporal scale. By calculating the maximum joint entropy of hourly typhoon events, monthly, six dry and wet months and annual rainfall between 1992 and 2012 for 1-, 3-, and 5-km grids, the relocated candidate rain gauges in the National Taiwan University Experimental Forest of Central Taiwan are prioritized. The results show: (1 the network exhibits different locations for first prioritized candidate rain gauges for different spatiotemporal scales; (2 the effect of spatial scales is insignificant compared to temporal scales; and (3 a smaller number and a lower percentage of required stations (PRS reach stable joint entropy for a long duration at finer spatial scale. Prioritized candidate rain gauges provide key reference points for adjusting the network to capture more accurate information and minimize redundancy.

  2. Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables.

    Science.gov (United States)

    Maniquiz, Marla C; Lee, Soyoung; Kim, Lee-Hyung

    2010-01-01

    Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long-term monitoring is needed to gather more data that can be used for the development of estimation models.

  3. Anomaly Mediation and Cosmology

    CERN Document Server

    Basboll, A; Jones, D R T

    2011-01-01

    We consider an extension of the MSSM wherein anomaly mediation is the source of supersymmetry-breaking, and the tachyonic slepton problem is solved by a Fayet-Iliopoulos (FI) $D$-term associated with an additional $U(1)$ symmetry, which also facilitates the see-saw mechanism for neutrino masses and a natural source for the Higgs $\\mu$-term. We explore the cosmological consequences of the model, showing that the model naturally produces a period of hybrid inflation, terminating in the production of cosmic strings. In spite of the presence of a $U(1)$ with an FI term, inflation is effected by the $F$-term, with a $D$-flat tree potential (the FI term being cancelled by non-zero squark and slepton fields). Calculating the 1-loop corrections to the inflaton potential, we estimate the constraints on the parameters of the model from Cosmic Microwave Background data. We briefly discuss the mechanisms for baryogenesis via conventional leptogenesis, the out-of-equilibrium production of neutrinos from the cosmic strings...

  4. Radiological evaluation congenital gastrointestinal tract anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Hee; Kim, Ock [Hanil Hospital, Seoul (Korea, Republic of); Jang, Jung Wha [Seoul Nationl Hospital, Seoul (Korea, Republic of)

    1983-06-15

    With the improvements, during recent years, in the control of the infections and nutritional diseases the subject of congenital malformation becomes of increasing importance. The radiologic signs are crucial for prompt diagnosis of anomalies of alimentary tract and with early identification of resulting complication, surgical therapy is usually life-saving. 30 cases of congenital anomalies of alimentary tract in infants were reviewed in respect of age, sex, incidence and radiological findings. The results are summarized as follows; 1, The most common lesion was hypertrophic pyloric stenosis, followed by congenital megacolon and anorectal anomaly, tracheoesophageal fistula, intestinal atresia. 2. Male outnumbered female in most congenital anomalies of alimentary tract. 25 cases were under the age of 1 month. 3. Common symptoms of upper gastrointestinal tract obstruction are vomiting and abdominal distension. In the obstruction of lower gastrointestinal tract, abdominal distension and failure of meconium passage were noted. 4. Roentgenologic findings were as follows, a. Chest A-P and lateral view: In tracheoesophageal fistula, saccular dilatation of upper esophagus and displacement of trachea anterolaterally were the most common finding. b. Simple abdomen: Obstructive pattern of proximal portion of duodenum shows in 11 cases, of distal bowel shows in 16 cases. Duodenal atresia showed 'double bubble' sign, hypertrophic pyloric stenosis showed marked gastric distension, paucity of air in small bowel and increases gastric peristalsis were the most common findings. Hirschsprung's disease showed absenced of rectal gas almostly. The variable length between blind hindgut to anus was seen in anorectal anomalies. c. Esophagogram: Blind sac of upper esophagus was seen at the 4th thoracic spinal level and displacement of trachea anterolaterally. 1 case of tracheoesophageal fistula had an intact esophageal lumen. d. Upper G-I series: In hypertrophic pyloric

  5. Developing An Explanatory Prediction Model Based On Rainfall Patterns For Cholera Outbreaks In Africa

    Science.gov (United States)

    van der Merwe, M. R.; Du Preez, M.

    2012-12-01

    Cholera has become endemic in coastal and inland areas within the tropics as well as areas outside of the tropics in Africa. Climate conditions and weather patterns differ between areas reporting cholera cases in Africa. Some areas experience two rainfall seasons compared to areas with only one rainfall season in a year. Further, climate variability or ENSO events affect local weather conditions differently. La Niña, i.e. cold events lead to higher than normal rainfall in areas in southern Africa compared to areas close to the equator in eastern Africa which report less than normal rainfall. Time series analysis of cholera cases and rainfall data at different spatial resolutions highlight the overlap of the rainfall season with the reporting of cholera cases. Cholera cases are also reported in between rainy seasons in different areas but the incidence is significantly less compared to the rainy season. An increase in the intensity of outbreaks is also noted during the rainy season following a drier than normal 'dry' season. This necessitates the understanding of the reasons for the observed correlation between rainfall season and cholera outbreaks in order to develop a prediction model which can accurately predict the likelihood of an outbreak. Due to the complexities associated with accurately predicting weather data more than seven days ahead of time it is necessary to identify global drivers with a lagged effect on local rainfall patterns. Climate variability, i.e. ENSO is investigated at different temporal scales; spatial locations and time lags. Sea surface temperature anomalies (SSTa) measured closed to the equator and in the southern parts of the Indian Ocean are more closely associated with rainfall anomalies at specific time lags in equatorial, East African, south East African and central African areas compared to SSTa measured in different regions in the Pacific Ocean. An explanatory prediction model is developed for conditions in Mozambique (coastal

  6. On the spatial coherence of rainfall over the Saloum delta (Senegal from seasonal to decadal time scales

    Directory of Open Access Journals (Sweden)

    Malick eWADE

    2015-06-01

    Full Text Available A paleoreconstruction of the length and intensity of the rainy season over western Africa has been recently proposed, using analysis of fossil mollusk shells from the Saloum delta region, in western Senegal. In order to evaluate the significance of local long-term reconstructions of precipitations from paleoclimate proxies, and to better characterize the spatial homogeneity of rainfall distribution in northern Africa, we analyze here the spatial representativeness of rainfall in this region, from seasonal to decadal timescales. The spatial coherence of winter episodic rainfall events is relatively low and limited to surrounding countries. On the other hand, the summer rainfall, associated with the West African Monsoon, shows extended spatial coherence. At seasonal timescales, local rainfall over the Saloum is significantly correlated with rainfall in the whole western half of the Sahel. At interannual and longer timescales, the spatial coherence extends as far as the Red Sea, covering the full Sahel region. This spatial coherence is mainly associated to the zonal extension of the Inter Tropical Convergence Zone. Coherently, summer rainfalls appear to be driven by SST anomalies mainly in the Pacific, the Indian Ocean, the Mediterranean basin, and the North Pacific. A more detailed analysis shows that consistency of the spatial rainfall coherence is reduced during the onset season of the West African Monsoon.

  7. Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño

    Science.gov (United States)

    Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.

    2016-06-01

    In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the

  8. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests

    Science.gov (United States)

    Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.

    2015-12-01

    We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.

  9. Interannual variability of seasonal rainfall over the Cape south coast of South Africa and synoptic type association

    Science.gov (United States)

    Engelbrecht, Christien J.; Landman, Willem A.

    2016-07-01

    The link between interannual variability of seasonal rainfall over the Cape south coast of South Africa and different synoptic types as well as selected teleconnections is explored. Synoptic circulation over the region is classified into different synoptic types by employing a clustering technique, the self-organizing map (SOM), on daily circulation data for the 33-year period from 1979 to 2011. Daily rainfall data are used to investigate interannual variability of seasonal rainfall within the context of the identified synoptic types. The anomalous frequency of occurrence of the different synoptic types for wet and for dry seasons differs significantly within the SOM space, except for austral spring. The main rainfall-producing synoptic types are to a large extent consistent for wet and dry seasons. The main rainfall-producing synoptic types have a notable larger contribution to seasonal rainfall totals during wet seasons than during dry seasons, consistent with a higher frequency of occurrence of the main rainfall-producing synoptic types during wet seasons compared to dry seasons. Dry seasons are characterized by a smaller contribution to seasonal rainfall totals by all the different synoptic types, but with the largest negative anomalies associated with low frequencies of the main rainfall-producing synoptic types. The frequencies of occurrence of specific configurations of ridging high pressure systems, cut-off lows and tropical-temperate troughs associated with rainfall are positively linked to interannual variability of seasonal rainfall. It is also shown that the distribution of synoptic types within the SOM space is linked to the Southern Annular Mode and El Niño Southern Oscillation, implying some predictability of intraseasonal variability at the seasonal time scale.

  10. Anomalies of the South American summer monsoon associated with the 1997-99 El Niño-southern oscillation

    Science.gov (United States)

    Lau, K.-M.; Zhou, Jiayu

    2003-04-01

    We describe the rainfall and circulation anomalies of the South American summer monsoon (SASM) during December-January-February (DJF) of 1997-98 (El Niño) and 1998-99 (La Niña). The most pronounced rainfall signals in DJF 1997-98 include (a) excessive rainfall over northern Peru and Ecuador, (b) deficient rainfall over northern and central Brazil, and (c) above-normal rainfall over southeastern subtropical South America. The rainfall anomalies in (a) and (b) are associated with the excitation of an anomalous east-west overturning cell with rising motion and low-level westerlies over the equatorial eastern Pacific, coupled to sinking motion and low-level easterlies over northern Brazil. The easterlies turn sharply southeastward on encountering the steep topography of the Andes, enhancing the summertime low-level jet (LLJ) along the eastern foothills of the Andes near 15-20° S, possibly contributing to the increased rainfall in (c).During DJF 1997-98, the sea-surface temperature-induced warming spreads and expands over the entire tropical troposphere. The eastward expansion of a warm upper tropospheric geopotential and temperature ridge from the Niño-3 region, across subtropical South America to the southeast Atlantic, enhances warming over the Altiplano Plateau, hydrostatically strengthening the Bolivia high. Similar to previous warming events, the South Pacific high is weakened, and the South Atlantic high is strengthened. During DJF 1998-99, as cold water develops over the equatorial central Pacific, the SASM anomalies in the tropics are weaker and less organized and appear to be in transition to the opposite phase to those found in DJF 97-98. In the subtropics, notable features include a weakening of the LLJ, a rainfall pattern associated with a poleward shift of the South Atlantic convergence zone, and development of the Pacific-South America teleconnection pattern. Published in 2003 by John Wiley & Sons, Ltd.

  11. Nonlinear responses of southern African rainfall to forcing from Atlantic SST in a high-resolution regional climate model

    Science.gov (United States)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes

  12. Spatial variability and rainfall characteristics of Kerala

    Indian Academy of Sciences (India)

    Anu Simon; K Mohankumar

    2004-06-01

    Geographical regions of covariability in precipitation over the Kerala state are exposed using factor analysis. The results suggest that Kerala can be divided into three unique rainfall regions, each region having a similar covariance structure of annual rainfall. Stations north of 10°N (north Kerala) fall into one group and they receive more rainfall than stations south of 10°N (south Kerala). Group I stations receive more than 65% of the annual rainfall during the south-west monsoon period, whereas stations falling in Group II receive 25-30% of annual rainfall during the pre-monsoon and the north-east monsoon periods. The meteorology of Kerala is profoundly influenced by its orographical features, however it is difficult to make out a direct relationship between elevation and rainfall. Local features of the state as reflected in the rainfall distribution are also clearly brought out by the study.

  13. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia

    Science.gov (United States)

    Villafuerte, Marcelino, II; Matsumoto, Jun

    2014-05-01

    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  14. ENSO teleconnections with Australian rainfall in coupled model simulations of the last millennium

    Science.gov (United States)

    Brown, Josephine R.; Hope, Pandora; Gergis, Joelle; Henley, Benjamin J.

    2016-07-01

    El Niño-Southern Oscillation is the major source of interannual rainfall variability in the Australian region, with the strongest influence over eastern Australia. The strength of this regional ENSO-rainfall teleconnection varies in the observational record. Climate model simulations of the "last millennium" (850-1850 C.E.) can be used to quantify the natural variability of the relationship between ENSO and Australian rainfall on decadal and longer time scales, providing a baseline for evaluating future projections. In this study, historical and last millennium (LM) simulations from six models were obtained from the Coupled Model Intercomparison Project Phase 5 and Palaeoclimate Modelling Intercomparison Project Phase 3. All models reproduce the observed negative correlation between September to February (SONDJF) eastern Australian rainfall and the NINO3.4 index, with varying skill. In the LM simulations, all models produce decadal-scale cooling over eastern Australia in response to volcanic forcing, as well as a long-term cooling trend. Rainfall variability over the same region is not strongly driven by external forcing, with each model simulating rainfall anomalies of different phase and magnitude. SONDJF eastern Australian rainfall is strongly correlated with ENSO in the LM simulations for all models, although some models simulate periods when the teleconnection weakens substantially for several decades. Changes in ENSO variance play a role in modulating the teleconnection strength, but are not the only factor. The long-term average spatial pattern of the ENSO-Australian rainfall teleconnection is similar in the LM and historical simulations, although the spatial pattern varies over time in the LM simulations.

  15. Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe

    Science.gov (United States)

    Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.

    2016-04-01

    In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.

  16. Modelling rainfall amounts using mixed-gamma model for Kuantan district

    Science.gov (United States)

    Zakaria, Roslinazairimah; Moslim, Nor Hafizah

    2017-05-01

    An efficient design of flood mitigation and construction of crop growth models depend upon good understanding of the rainfall process and characteristics. Gamma distribution is usually used to model nonzero rainfall amounts. In this study, the mixed-gamma model is applied to accommodate both zero and nonzero rainfall amounts. The mixed-gamma model presented is for the independent case. The formulae of mean and variance are derived for the sum of two and three independent mixed-gamma variables, respectively. Firstly, the gamma distribution is used to model the nonzero rainfall amounts and the parameters of the distribution (shape and scale) are estimated using the maximum likelihood estimation method. Then, the mixed-gamma model is defined for both zero and nonzero rainfall amounts simultaneously. The formulae of mean and variance for the sum of two and three independent mixed-gamma variables derived are tested using the monthly rainfall amounts from rainfall stations within Kuantan district in Pahang Malaysia. Based on the Kolmogorov-Smirnov goodness of fit test, the results demonstrate that the descriptive statistics of the observed sum of rainfall amounts is not significantly different at 5% significance level from the generated sum of independent mixed-gamma variables. The methodology and formulae demonstrated can be applied to find the sum of more than three independent mixed-gamma variables.

  17. The Effectiveness of Canopy Trees to Reduce Rainfall Acidity in the Industrial Area at Medan

    Directory of Open Access Journals (Sweden)

    Tyas Mutiara Basuki

    2004-01-01

    Full Text Available The term of acid rain is referred to the mean rainfall with a pH less than 5,65. The element of Sox and Nox are the major sources of aid rain. These two elements are oxidized into SO4 and NO3 respectively in the air. Sulfate and Nitrate are water soluble and the primary sources of hydrogen ions in acid precipitation. Rain passing through a tree canopy may lose or gain mineral elements trough some combination of natural process of absorption and leaching. By this process, the canopy may reduce rainfall acidity and negatif effects of the acid rain which will enter into the soil. Due to characteristic differences among tree canopies, a study to evaluate effectiveness of the trees in reducing rainfall acidity was done. In this study, rainfall and troughfall were collected every single rain and the pH measure by portable pH-meter. Based on data collection during 3 months in Medan Industrial Estate, it found that the mean pH of rainfall was 5,15. The highest pH of throughfall was found from Gnetum gnemon, that was 5,70; following by Mimusops elengi, Filicium decipiens, Acacia mangium, and the lowest was Nephelium lappacum. G. Gnemon was able to reduce 11% of rainfall acidity, but N. Lappacum caused 13% increasing rainfall acidity. In this study, the main source of rainfall acidity was hidrogen from sulfate acid (54%, following by chloride acid (30%, and nitrate acid (16%.

  18. Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan

    Indian Academy of Sciences (India)

    Kamal Ahmed; Shamsuddin Shahid; Sobri Bin Haroon; Wang Xiao-Jun

    2015-08-01

    Downscaling rainfall in an arid region is much challenging compared to wet region due to erratic and infrequent behaviour of rainfall in the arid region. The complexity is further aggregated due to scarcity of data in such regions. A multilayer perceptron (MLP) neural network has been proposed in the present study for the downscaling of rainfall in the data scarce arid region of Baluchistan province of Pakistan, which is considered as one of the most vulnerable areas of Pakistan to climate change. The National Center for Environmental Prediction (NCEP) reanalysis datasets from 20 grid points surrounding the study area were used to select the predictors using principal component analysis. Monthly rainfall data for the time periods 1961–1990 and 1991–2001 were used for the calibration and validation of the MLP model, respectively. The performance of the model was assessed using various statistics including mean, variance, quartiles, root mean square error (RMSE), mean bias error (MBE), coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE). Comparisons of mean monthly time series of observed and downscaled rainfall showed good agreement during both calibration and validation periods, while the downscaling model was found to underpredict rainfall variance in both periods. Other statistical parameters also revealed good agreement between observed and downscaled rainfall during both calibration and validation periods in most of the stations.

  19. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha(-1) h(-1) yr(-1) till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  20. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  1. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  2. ALP hints from cooling anomalies

    CERN Document Server

    Giannotti, Maurizio

    2015-01-01

    We review the current status of the anomalies in stellar cooling and argue that, among the new physics candidates, an axion-like particle would represent the best option to account for the hinted additional cooling.

  3. Notes on Anomaly Induced Transport

    CERN Document Server

    Landsteiner, Karl

    2016-01-01

    Chiral anomalies give rise to dissipationless transport phenomena such as the chiral magnetic and vortical effects. In these notes I review the theory from a quantum field theoretic, hydrodynamic and holographic perspective. A physical interpretation of the otherwise somewhat obscure concepts of consistent and covariant anomalies will be given. Vanishing of the CME in strict equilibrium will be connected to the boundary conditions in momentum space imposed by the regularization. The role of the gravitational anomaly will be explained. That it contributes to transport in an unexpectedly low order in the derivative expansion can be easiest understood via holography. Anomalous transport is supposed to play also a key role in understanding the electronics of advanced materials, the Dirac- and Weyl (semi)metals. Anomaly related phenomena such as negative magnetoresistivity, anomalous Hall effect, thermal anomalous Hall effect and Fermi arcs can be understood via anomalous transport. Finally I briefly review a holo...

  4. Interpolation of daily rainfall using spatiotemporal models and clustering

    KAUST Repository

    Militino, A. F.

    2014-06-11

    Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

  5. Climate Prediction Center (CPC)Equatorial Zonally-Averaged 50-hPa Zonal Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 50-hPa zonal wind anomalies averaged over the Equator. The anomalies are departures from the...

  6. Climate Prediction Center (CPC) Area-average 200-hPa Zonal Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 200-hPa zonal wind anomalies averaged over the area 5oN ? 5oS, 165oW-110oW. The anomalies are...

  7. Climate Prediction Center (CPC)Equatorial Zonally-averaged 30-hPa Zonal Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 30-hPa zonal wind anomalies averaged over the Equator. The anomalies are departures from the...

  8. Renormalization group flows and anomalies

    CERN Document Server

    Komargodski, Zohar

    2015-01-01

    This chapter reviews various aspects of renormalization group flows and anomalies. The chapter considers specific Euclidean two-dimensional theories. Namely, the theories are invariant under translations and rotations in the two space directions. Here the chapter studies theories where, if possible, certain equations hold in fact also at coincident points. In other words, the chapter looks at theories where there is no local gravitational anomaly.

  9. Situs anomalies on prenatal MRI.

    Science.gov (United States)

    Nemec, Stefan F; Brugger, Peter C; Nemec, Ursula; Bettelheim, Dieter; Kasprian, Gregor; Amann, Gabriele; Rimoin, David L; Graham, John M; Prayer, Daniela

    2012-04-01

    Situs anomalies refer to an abnormal organ arrangement, which may be associated with severe errors of development. Due regard being given to prenatal magnetic resonance imaging (MRI) as an adjunct to ultrasonography (US), this study sought to demonstrate the in utero visualization of situs anomalies on MRI, compared to US. This retrospective study included 12 fetuses with situs anomalies depicted on fetal MRI using prenatal US as a comparison modality. With an MRI standard protocol, the whole fetus was assessed for anomalies, with regard to the position and morphology of the following structures: heart; venous drainage and aorta; stomach and intestines; liver and gallbladder; and the presence and number of spleens. Situs inversus totalis was found in 3/12 fetuses; situs inversus with levocardia in 1/12 fetuses; situs inversus abdominis in 2/12 fetuses; situs ambiguous with polysplenia in 3/12 fetuses, and with asplenia in 2/12 fetuses; and isolated dextrocardia in 1/12 fetuses. Congenital heart defects (CHDs), vascular anomalies, and intestinal malrotations were the most frequent associated malformations. In 5/12 cases, the US and MRI diagnoses were concordant. Compared to US, in 7/12 cases, additional MRI findings specified the situs anomaly, but CHDs were only partially visualized in six cases. Our initial MRI results demonstrate the visualization of situs anomalies and associated malformations in utero, which may provide important information for perinatal management. Using a standard protocol, MRI may identify additional findings, compared to US, which confirm and specify the situs anomaly, but, with limited MRI visualization of fetal CHDs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Anomaly detection on cup anemometers

    Science.gov (United States)

    Vega, Enrique; Pindado, Santiago; Martínez, Alejandro; Meseguer, Encarnación; García, Luis

    2014-12-01

    The performances of two rotor-damaged commercial anemometers (Vector Instruments A100 LK) were studied. The calibration results (i.e. the transfer function) were very linear, the aerodynamic behavior being more efficient than the one shown by both anemometers equipped with undamaged rotors. No detection of the anomaly (the rotors’ damage) was possible based on the calibration results. However, the Fourier analysis clearly revealed this anomaly.

  11. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  12. Projected impact of twenty-first century ENSO changes on rainfall over Central America and northwest South America from CMIP5 AOGCMs

    Science.gov (United States)

    Steinhoff, Daniel F.; Monaghan, Andrew J.; Clark, Martyn P.

    2015-03-01

    Due to the importance that the El Niño-Southern Oscillation (ENSO) has on rainfall over the tropical Americas, future changes in ENSO characteristics and teleconnections are important for regional hydroclimate. Projected changes to the ENSO mean state and characteristics, and the resulting impacts on rainfall anomalies over Central America, Colombia, and Ecuador during the twenty-first century are explored for several forcing scenarios using a suite of coupled atmosphere-ocean global climate models (AOGCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Mean-state warming of eastern tropical Pacific sea surface temperatures, drying of Central America and northern Colombia, and wetting of southwest Colombia and Ecuador are consistent with previous studies that used earlier versions of the AOGCMs. Current and projected future characteristics of ENSO (frequency, duration, amplitude) show a wide range of values across the various AOGCMs. The magnitude of ENSO-related rainfall anomalies are currently underestimated by most of the models, but the model ensembles generally simulate the correct sign of the anomalies across the seasons around the peak ENSO effects. While the models capture the broad present-day ENSO-related rainfall anomalies, there is not a clear sense of projected future changes in the precipitation anomalies.

  13. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Xianghu Li

    2013-11-01

    Full Text Available Local dry/wet conditions are of great concern in regional water resource and floods/droughts disaster risk management. Satellite-based precipitation products have greatly improved their accuracy and applicability and are expected to offer an alternative to ground rain gauges data. This paper investigated the capability of Tropical Rainfall Measuring Mission (TRMM rainfall data for monitoring the temporal and spatial variation of dry/wet conditions in Poyang Lake basin during 1998–2010, and validated its reliability with rain gauges data from 14 national meteorological stations in the basin. The results show that: (1 the daily TRMM rainfall data does not describe the occurrence and contribution rates of precipitation accurately, but monthly TRMM data have a good linear relationship with rain gauges rainfall data; (2 both the Z index and Standardized Precipitation Index (SPI based on monthly TRMM rainfall data oscillate around zero and show a consistent interannual variability as compared with rain gauges data; (3 the spatial pattern of moisture status, either in dry months or wet months, based on both the Z index and SPI using TRMM data, agree with the observed rainfall. In conclusion, the monthly TRMM rainfall data can be used for monitoring the variation and spatial distribution of dry/wet conditions in Poyang Lake basin.

  14. Modelling and Simulation of Seasonal Rainfall Using the Principle of Maximum Entropy

    Directory of Open Access Journals (Sweden)

    Jonathan Borwein

    2014-02-01

    Full Text Available We use the principle of maximum entropy to propose a parsimonious model for the generation of simulated rainfall during the wettest three-month season at a typical location on the east coast of Australia. The model uses a checkerboard copula of maximum entropy to model the joint probability distribution for total seasonal rainfall and a set of two-parameter gamma distributions to model each of the marginal monthly rainfall totals. The model allows us to match the grade correlation coefficients for the checkerboard copula to the observed Spearman rank correlation coefficients for the monthly rainfalls and, hence, provides a model that correctly describes the mean and variance for each of the monthly totals and also for the overall seasonal total. Thus, we avoid the need for a posteriori adjustment of simulated monthly totals in order to correctly simulate the observed seasonal statistics. Detailed results are presented for the modelling and simulation of seasonal rainfall in the town of Kempsey on the mid-north coast of New South Wales. Empirical evidence from extensive simulations is used to validate this application of the model. A similar analysis for Sydney is also described.

  15. A study of associated congenital anomalies with biliary atresia

    Directory of Open Access Journals (Sweden)

    Lucky Gupta

    2016-01-01

    Full Text Available Background/Purpose: This study aims to analyze the incidence and type of various associated anomalies among infants with extrahepatic biliary atresia (EHBA, compare their frequency with those quoted in the existing literature and assess their role in the overall management. Materials and Methods: A retrospective study was performed on 137 infants who underwent the Kasai procedure for EHBA during the past 12 years. The medical records were reviewed for the incidence and type of associated anomalies in addition to the details of the management of the EHBA. Results: Of the137 infants, 40 (29.2% were diagnosed as having 58 anomalies. The majority of patients had presented in the 3 rd month of life; mean age was 81 ± 33 days (range = 20-150 days. There were 32 males and 8 females; boys with EHBA had a higher incidence of associated anomalies. Of these 40 patients, 22 (37.9% had vascular anomalies, 13 patients (22.4% had hernias (umbilical-10, inguinal-3, 7 patients (12.1% had intestinal malrotation, 4 patients (6.8% had choledochal cyst, 1 patient (1.7% had Meckel′s diverticulum, 3 patients (5% had undergone prior treatment for jejunoileal atresias (jejunal-2, ileal-1, 2 patients (3.4% had undergone prior treatment for esophageal atresia and tracheoesophageal fistula, 2 patients (3.4% had spleniculi, and 2 patients (3.4% were diagnosed as having situs inversus. Conclusions: The most common associated anomalies in our study were related to the vascular variation at the porta hepatis and the digestive system. The existence of anomalies in distantly developing anatomic regions in patients with EHBA supports the possibility of a "generalized" insult during embryogenesis rather than a "localized" defect. In addition, male infants were observed to have significantly more associated anomalies as compared with the female infants in contrast to earlier reports.

  16. Time and Space Variability of Rainfall in Central-East Argentina.

    Science.gov (United States)

    Krepper, Carlos M.; Scian, Beatriz V.; Pierini, Jorge O.

    1989-01-01

    Climatic variability of monthly rainfall data over a period of 30 yr is analyzed. Twenty-three precipitation locations of the central pampa region of Argentina were used. They are spread over the transition zone between wet and dry pampa. The variance contribution for three frequency bands were emphasized using spectral analysis. They include interannual, annual and intraannual variability. Temporal variability for high frequency (that of periods up to 5 months) accounts for 60% of the total variance. Space variability for monthly, three-month, seasonal, and annual periods are analyzed by empirical orthogonal functions. An axis of maximum mean monthly rainfall variability is found oriented from Sierra de la Ventana towards the NE. Spectral contributions for the monthly temporal coefficients of the first two eigenvalues show main peaks with 12-, 6- and 7-month periods.

  17. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop

  18. First branchial cleft anomalies: presentation, variability and safe surgical management.

    Science.gov (United States)

    Magdy, Emad A; Ashram, Yasmine A

    2013-05-01

    First branchial cleft (FBC) anomalies are uncommon. The aim of this retrospective clinical study is to describe our experience in dealing with these sporadically reported lesions. Eighteen cases presenting with various FBC anomalies managed surgically during an 8-year period at a tertiary referral medical institution were included. Ten were males (56 %) and eight females (44 %) with age range 3-18 years. Anomaly was right-sided in 12 cases (67 %). None were bilateral. Nine patients (50 %) had prior abscess incision and drainage procedures ranging from 1 to 9 times. Two also had previous unsuccessful surgical excisions. Clinical presentations included discharging tract openings in external auditory canal/conchal bowl (n = 9), periauricular (n = 6), or upper neck (n = 4); cystic postauricular, parotid or upper neck swellings (n = 5); and eczematous scars (n = 9). Three distinct anatomical types were encountered: sinuses (n = 7), fistulas (n = 6), and cysts (n = 5). Complete surgical excision required superficial parotidectomy in 11 patients (61 %). Anomaly was deep to facial nerve (FN) in three cases (17 %), in-between its branches in two (11 %) and superficial (but sometimes adherent to the nerve) in remaining cases (72 %). Continuous intraoperative electrophysiological FN monitoring was used in all cases. Two cases had postoperative temporary lower FN paresis that recovered within 2 months. No further anomaly manifestation was observed after 49.8 months' mean postoperative follow-up (range 10-107 months). This study has shown that awareness of different presentations and readiness to identify and protect FN during surgery is essential for successful management of FBC anomalies. Intraoperative electrophysiological FN monitoring can help in that respect.

  19. Coronary Artery Anomalies in Animals

    Directory of Open Access Journals (Sweden)

    Brian A. Scansen

    2017-04-01

    Full Text Available Coronary artery anomalies represent a disease spectrum from incidental to life-threatening. Anomalies of coronary artery origin and course are well-recognized in human medicine, but have received limited attention in veterinary medicine. Coronary artery anomalies are best described in the dog, hamster, and cow though reports also exist in the horse and pig. The most well-known anomaly in veterinary medicine is anomalous coronary artery origin with a prepulmonary course in dogs, which limits treatment of pulmonary valve stenosis. A categorization scheme for coronary artery anomalies in animals is suggested, dividing these anomalies into those of major or minor clinical significance. A review of coronary artery development, anatomy, and reported anomalies in domesticated species is provided and four novel canine examples of anomalous coronary artery origin are described: an English bulldog with single left coronary ostium and a retroaortic right coronary artery; an English bulldog with single right coronary ostium and transseptal left coronary artery; an English bulldog with single right coronary ostium and absent left coronary artery with a prepulmonary paraconal interventricular branch and an interarterial circumflex branch; and a mixed-breed dog with tetralogy of Fallot and anomalous origin of all coronary branches from the brachiocephalic trunk. Coronary arterial fistulae are also described including a coronary cameral fistula in a llama cria and an English bulldog with coronary artery aneurysm and anomalous shunting vessels from the right coronary artery to the pulmonary trunk. These examples are provided with the intent to raise awareness and improve understanding of such defects.

  20. Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident

    Science.gov (United States)

    Laceby, J. Patrick; Chartin, Caroline; Evrard, Olivier; Onda, Yuichi; Garcia-Sanchez, Laurent; Cerdan, Olivier

    2016-06-01

    The Fukushima Daiichi nuclear power plant (FDNPP) accident in March 2011 resulted in the fallout of significant quantities of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is quickly bound to fine soil particles. Thereafter, rainfall and snowmelt run-off events transfer particle-bound radiocesium downstream. Characterizing the precipitation regime of the fallout-impacted region is thus important for understanding post-deposition radiocesium dynamics. Accordingly, 10 min (1995-2015) and daily precipitation data (1977-2015) from 42 meteorological stations within a 100 km radius of the FDNPP were analyzed. Monthly rainfall erosivity maps were developed to depict the spatial heterogeneity of rainfall erosivity for catchments entirely contained within this radius. The mean average precipitation in the region surrounding the FDNPP is 1420 mm yr-1 (SD 235) with a mean rainfall erosivity of 3696 MJ mm ha-1 h-1 yr-1 (SD 1327). Tropical cyclones contribute 22 % of the precipitation (422 mm yr-1) and 40 % of the rainfall erosivity (1462 MJ mm ha-1 h-1 yr-1 (SD 637)). The majority of precipitation (60 %) and rainfall erosivity (82 %) occurs between June and October. At a regional scale, rainfall erosivity increases from the north to the south during July and August, the most erosive months. For the remainder of the year, this gradient occurs mostly from northwest to southeast. Relief features strongly influence the spatial distribution of rainfall erosivity at a smaller scale, with the coastal plains and coastal mountain range having greater rainfall erosivity than the inland Abukuma River valley. Understanding these patterns, particularly their spatial and temporal (both inter- and intraannual) variation, is important for contextualizing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of tropical cyclones will be important for managing sediment and sediment-bound contaminant

  1. The influence of El Niño-Southern Oscillation on boreal winter rainfall over Peninsular Malaysia

    Science.gov (United States)

    Richard, Sandra; Walsh, Kevin J. E.

    2017-09-01

    Multi-scale interactions between El Niño-Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north-south disparity. Thus, we suggest that the key factor which might explain the north-south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.

  2. Sea surface height anomaly and upper ocean temperature over the Indian Ocean during contrasting monsoons

    Science.gov (United States)

    Gera, Anitha; Mitra, A. K.; Mahapatra, D. K.; Momin, I. M.; Rajagopal, E. N.; Basu, Swati

    2016-09-01

    Recent research emphasizes the importance of the oceanic feedback to monsoon rainfall over the Asian landmass. In this study, we investigate the differences in the sea surface height anomaly (SSHA) and upper ocean temperature over the tropical Indian Ocean during multiple strong and weak monsoons. Analysis of satellite derived SSHA, sea surface temperature (SST) and ocean reanalysis data reveals that patterns of SSHA, SST, ocean temperature, upper ocean heat content (UOHC) and propagations of Kelvin and Rossby waves differ during strong and weak monsoon years. During strong monsoons positive SSH, SST and UOHC anomalies develop over large parts of north Indian Ocean whereas during weak monsoons much of the north Indian Ocean is covered with negative anomalies. These patterns can be used as a standard tool for evaluating the performance of coupled and ocean models in simulating & forecasting strong and weak monsoons. The rainfall over central India is found to be significantly correlated with SSHA over the regions (Arabian Sea and West central Indian Ocean and Bay of Bengal) where SSHA is positively large during strong monsoons. The SST-SSHA correlation is also very strong over the same area. The study reveals that much convection takes place over these regions during strong monsoons. In contrast during weak monsoons, convection takes place over eastern equatorial region. These changes in SST are largely influenced by oceanic Kelvin and Rossby waves. The Rossby waves initiated in spring at the eastern boundary propagate sub-surface heat content in the ocean influencing SST in summer. The SST anomalies modulate the Hadley circulation and the moisture transport thereby contributing to rainfall over central India. Therefore oceanic Kelvin and Rossby waves influence the rainfall over central India.

  3. On the significance of mechanisms of disastrous rainfall triggered landslides

    Science.gov (United States)

    Alcántara-Ayala, Irasema; Garnica-Peña, Ricardo Javier; Borja-Baeza, Roberto Carlos

    2010-05-01

    Rainfall triggered landslides have caused major disasters worldwide. As such, human and economic losses have had a considerable impact in different regions of the planet, but they have been particularly severe in developing countries. During the fall of 1998, due to the intense rainfall caused by hurricane Mitch, a complex mass movement -rock fall-avalanche- took place in the South flank of Casita Volcano, in Nicaragua; the towns of El Porvenir and Rolando Rodríguez were completely swept away and around 1600 people died. A year later, in the Sierra Norte de Puebla, Mexico, dozens of landslides triggered by an extreme rainfall event caused approximately 200 victims. A month after, in December, 1999, Northern Venezuela suffered the loss of more than 10,000 people as a result of flash floods and debris flows. In 2006, the village of Guinsaugon in St. Bernard, Southern Leyte, Philippines, was buried by a mudslide that killed about 1,000 inhabitants, among which there were 246 students and 7 teachers of an elementary school. In this paper, a review of both, landslides mechanisms -hazards-, and conditions of the exposed populations -vulnerability- was undertaken in order to analyse the factors that control the occurrence of disasters and their associated magnitude and impact. Preliminary results indicated that while magnitude is derived by landslides mechanisms, impact of disasters associated to rainfall induced landslides is determined by the vulnerability of the population groups. It is suggested that in order to prevent disasters, findings from vulnerability analysis need to be always considered for risk assessment and management. Key words: Landslides mechanisms, rainfall triggered, vulnerability, disasters.

  4. Monitoring early-flood season intraseasonal oscillations and persistent heavy rainfall in South China

    Science.gov (United States)

    Gao, Jianyun; Lin, Hai; You, Lijun; Chen, Si

    2016-12-01

    Rainfall variability during the early-flood season (April-June) in South China is largely controlled by both the 10-20 and 20-70-day intraseasonal oscillations (ISO). In this study, a method is described to monitor the ISO and persistent heavy rainfall in South China. Three existing daily real-time 20-70-day ISO indices are compared. It is found that the regional East Asia-western North Pacific (EAWNP) ISO index best represents the early-flood season 20-70-day ISO in South China. A new bivariate boreal summer ISO index is designed to describe the 10-20-day ISO in the EAWNP region. Composite analysis shows that the rainfall anomaly in South China is well captured by the northward propagation of both the 10-20 and 20-70-day ISO. With different phase combinations of the 10-20 and 20-70-day EAWNP ISO, nine conditions are defined ranging from those favorable to those unfavorable to heavy rainfall in South China that can be used to effectively monitor the early-flood season ISO and persistent heavy rainfall in South China.

  5. Radar Estimation of Intense Rainfall Rates through Adaptive Calibration of the Z-R Relation

    Directory of Open Access Journals (Sweden)

    Andrea Libertino

    2015-10-01

    Full Text Available Rainfall intensity estimation from weather radar is still significantly uncertain, due to local anomalies, radar beam attenuation, inappropriate calibration of the radar reflectivity factor (Z to rainfall rate (R relationship, and sampling errors. The aim of this work is to revise the use of the power-law equation commonly adopted to relate radar reflectivity and rainfall rate to increase the estimation quality in the presence of intense rainfall rates. We introduce a quasi real-time procedure for an adaptive in space and time estimation of the Z-R relation. The procedure is applied in a comprehensive case study, which includes 16 severe rainfall events in the north-west of Italy. The study demonstrates that the technique outperforms the classical estimation methods for most of the analysed events. The determination coefficient improves by up to 30% and the bias values for stratiform events decreases by up to 80% of the values obtained with the classical, non-adaptive, Z-R relations. The proposed procedure therefore shows significant potential for operational uses.

  6. Different impacts of mega-ENSO and conventional ENSO on the Indian summer rainfall: developing phase

    Science.gov (United States)

    Zhang, Lei; Wu, Zhiwei; Zhou, Yefan

    2016-04-01

    Mega-El Niño-Southern Oscillation (ENSO), a boarder version of conventional ENSO, is found to be a main driving force of Northern Hemisphere summer monsoon rainfall including the Indian summer rainfall (ISR). The simultaneous impacts of "pure" mega-ENSO and "pure" conventional ENSO events on the ISR in its developing summer remains unclear. This study examines the different linkages between mega-ENSO-ISR and conventional ENSO-ISR. During the developing summer of mega-El Niño, negative rainfall anomalies are seen over the northeastern Indian subcontinent, while the anomalous rainfall pattern is almost the opposite for mega-La Niña; as for the conventional ENSO, the approximate "linear opposite" phenomenon vanishes. Furthermore, the global zonal wave trains anomalous are found at mid-latitude zones, with a local triple circulation pattern over the central-east Eurasia during mega-ENSO events, which might be an explanation of corresponding rainfall response over the Indian Peninsula. Among 106-year historical run (1900-2005) of 9 state-of-the-art models from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), HadGEM2-ES performs a promising skill in simulating the anomalous circulation pattern over mid-latitude and central-east Eurasia while CanESM2 cannot. Probably, it is the models' ability of capturing the mega-ENSO-ISR linkage and the characteristic of mega-ENSO that make the difference.

  7. Multi-model ensemble schemes for predicting northeast monsoon rainfall over peninsular India

    Indian Academy of Sciences (India)

    Nachiketa Acharya; S C Kar; Makarand A Kulkarni; U C Mohanty; L N Sahoo

    2011-10-01

    The northeast (NE) monsoon season (October, November and December) is the major period of rainfall activity over south peninsular India. This study is mainly focused on the prediction of northeast monsoon rainfall using lead-1 products (forecasts for the season issued in beginning of September) of seven general circulation models (GCMs). An examination of the performances of these GCMs during hindcast runs (1982–2008) indicates that these models are not able to simulate the observed interannual variability of rainfall. Inaccurate response of the models to sea surface temperatures may be one of the probable reasons for the poor performance of these models to predict seasonal mean rainfall anomalies over the study domain. An attempt has been made to improve the accuracy of predicted rainfall using three different multi-model ensemble (MME) schemes, viz., simple arithmetic mean of models (EM), principal component regression (PCR) and singular value decomposition based multiple linear regressions (SVD). It is found out that among these three schemes, SVD based MME has more skill than other MME schemes as well as member models.

  8. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  9. Contribution of water-limited regions to their own supply of rainfall during wet and dry years

    Science.gov (United States)

    Miralles, Diego; Nieto, Raquel; McDowell, Nathan; Dorigo, Wouter; Verhoest, Niko; Liu, Yi; Teuling, Adriaan; Dolman, Han; Good, Stephen; Gimeno, Luis

    2017-04-01

    The occurrence of wet and dry spells in water-limited regions remains poorly understood. When these precipitation anomalies happen during the growing season, they can impact carbon and water budgets and hinder the regional management of natural resources. The difficulties to understand and predict these anomalies are partly owed to the complex role that water-limited ecoregions play in the genesis of their own rainfall: the increases in biomass and transpiration during the growing season are expected to influence the local input of rainfall. In this presentation, we unravel the origin and immediate drivers of growing-season rainfall in the ten major water-limited ecoregions on Earth. We use novel satellite data of vegetation water content and transpiration, combined with Langrangian atmospheric trajectory modelling. The extent to which these ecoregions themselves contribute to their own supply of rainfall is analyzed for dry and wet years separately. Results show that persistent anomalies in growing-season precipitation—and subsequent biomass impacts—are caused by a complex interplay of anomalies in land and ocean evaporation, air circulation and local atmospheric stability. Nonetheless, the specific drivers vary depending on the region of interest. For instance, in Kalahari and Australia, local atmospheric instability and evaporation in the surrounding regions play a central role. In these regions, the volumes of moisture recycling decline in dry years, providing an overall positive feedback that intensifies dry conditions. Despite these declines in the volumes of recycled rainfall, recycling ratios increase over 40% during dry times. This implies that transpiration in periods of water stress partly offsets the decreases in incoming precipitation that are mainly triggered by external conditions. Findings highlight the need to adequately represent vegetation-atmosphere feedbacks in models to predict biomass changes and simulate the fate of water-limited regions

  10. Possible Impacts of the Arctic Oscillation on the Interdecadal Variation of Summer Monsoon Rainfall in East Asia

    Institute of Scientific and Technical Information of China (English)

    JU Jianhua; L(U) Junmei; CAO Jie; REN Juzhang

    2005-01-01

    The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.

  11. Prediction of Tropical Rainfall by Local Phase Space Reconstruction.

    Science.gov (United States)

    Waelbroeck, H.; López-Pea, R.; Morales, T.; Zertuche, F.

    1994-11-01

    The authors propose a weather prediction model based on a local reconstruction of the dynamics in phase space, using an 11-year dataset from Tlaxcala, Mexico. A vector in phase space corresponds to T consecutive days of data; the best predictions are found for T = 14. The prediction for the next day, x0 fL(x0), is based on a local reconstruction of the dynamical map f in an ball centered at x0. The high dimensionality of the phase space implies a large optimal value of , so that the number of points in an ball is sufficient to reconstruct the local map. The local approximation fL f is therefore not very good and the prediction skill drops off quickly at first, with a timescale of 2 days. On the other hand, the authors find useful skill in the prediction of 10-day rainfall accumulations, which reflects the persistence of weather patterns. The mean-squared error in the prediction of the rainfall anomaly for the year 1992 was 64% of the variance, and the early beginning of the rain season was correctly predicted.

  12. An assessment of spatial and temporal rainfall variability and its implications to Molapo farming in the Okavango Delta, Botswana

    Science.gov (United States)

    Dikgola, Kobamelo; Mazvimavi, Dominic

    2013-04-01

    This paper assesses the variability of rainfall on the entire Okavango Delta. Due to the effects of climate change as a result of global warming there is a concern of possibility of decline of rainfall over Southren Africa. Rainfall is a very important component driving the hydrological cycle and therefore the understanding of rainfall spatial and temporal variation is crucial for agricultural production and general water resources management. Time series of individual months, continuous month- to month, total rainfall for the early part ofthe rainy season, October-November-December (OND), the mid to end of the rainy season, January-February-March JFM) andannual rainfall, for 16 stations spread on the entire Okavango Delta are analysed and assessed for correlations and any significant trends to proof any changes in rainfall. A homogeneity test was conducted using four different methods; the Standard Normal Homogeneity, the Buishand Range, the Pettit and the Von Neuman ratio to examine the possible existence of change or break-pointsin the rainfall time series.Spatial rainfall variability was investigated using the spatial correlation function.The Mann-Kendall trend test was used to investigate existence of trends. The results showed a fluctuation from one months to another in existence of trend; e,g October a more negative trend for all stations, then a more positive trend for November and so on and so forth. For a seasonal series half of the stations were showing a negative trend while the other half was positive. The annual series also followed the same order as seasonal. The trends were statistically non-significant.A linear regression and quantile regression were used for further investigation of trends. The spatial rainfall correlation amongst stations and the indication of trends has implications on distribution and yields of molapo farming in the Okavango Delta.

  13. Normalised monthly shortage curves: a contribution for a better understanding of monthly rain deficit in Western Europe

    Science.gov (United States)

    Martínez, M. D.; Lana, X.; Burgueño, A.; Serra, C.

    2012-05-01

    A new approach to the statistics of rainfall shortage at monthly scale in Western Europe is obtained from precipitation records of 115 gauges over the twentieth century. In this paper, a month is considered to have rainfall deficit when its rain amount is below the 50th percentile of the respective calendar month. The monthly shortage, MS, for every month with deficit is then computed as the absolute value of the difference between its monthly amount and the corresponding truncation level. The cumulative distributions of monthly shortage, CMS, and number of shortage months, CNM, constitute a new description of the monthly rainfall deficit. Both CMS and CNM distributions fit well to a Weibull model. Using the analogy to the normalised daily rainfall curves formulation, NRC, the relationship between CMS and CNM, named as normalised shortage curve, NSC, is modelled by the same function applied to NRCs. Similarly to NRCs, the behaviour of the NSCs strongly depends on the coefficient of variation of the monthly shortage, CVMS. Four coordinates characterising every NSC are then introduced: the CMS percentile associated with the median of CNM; the CNM percentile related to the median of CMS; and the percentiles of CMS and CNM for the average monthly shortage. In this way, the degree of asymmetric distribution of the monthly deficit is quantified. With the aim of performing a clustering process based on these four coordinates, a principal component analysis, is previously applied to remove redundancies, being obtained two uncorrelated principal components, PCs, characterising every NSC. An average linkage algorithm is then applied to these two PCs, leading to obtain spatially coherent groups of gauges with very similar NSC patterns. This clustering process permits to discard latitude and vicinity to the Atlantic Ocean or the Mediterranean Sea as main factors conditioning the monthly shortage regime.

  14. Rainfall-runoff temporal variability in Kermanshah province, Iran and distinguishing anthropogenic effects from climatic effects

    Science.gov (United States)

    Ghafarian, P.; Gholami, S.; Owlad, E.; Gerivani, H.

    2016-08-01

    Investigation of changes in rainfall and runoff patterns in various regions and determining their relationship in the sense of hydrology and climatology are of great importance, considering those patterns efficiently reveal the human and natural factors in this variability. One of the mathematical methods to recognise and model these fluctuations is Wavelet Analysis. This is a spectral method used in multivariate analysis and also tracing fluctuations in temporal series. In this study, continuous wavelet transformation is used to identify temporal changes in rainfall-runoff patterns. The hydrological and rain gauge data were collected from in situ measurements of Kermanshah province located in the western border of Iran. Precipitation anomalies were reconsidered in a number of stations, including Kermanshah, for a period of 55 years (1955-2010) and discharge of Gamasiab River in Polchehr station, discharge of Khoram Rood River in Aran-Gharb station and discharge of Gharasoo River in Polekohne station. In addition, anomalies of the climatic teleconnections were studied to emphasise the climatological effects on the runoff pattern in the region. The role of natural and anthropogenic effects (land use changes) has been distinguished and identified, using the comparison of the teleconnections and hydrological data. The results achieved from three stations show that there was an approximate correlation between rainfall, runoff and teleconnections until the year 1995; however, after 1995, a great difference appeared among them, specifically for the Aran-Gharb station (Khoram Rood River). The post-1995 slope of cumulative standardised anomaly is much steeper in the case of runoff compared to rainfall. As there were no significant climate changes in the region, it could be concluded that the runoff decrease is not caused by climate changes, but by anthropogenic effects, human interventions and extra water usage from the surface and underground water resources for

  15. Changes in the interannual SST-forced signals on West African rainfall. AGCM intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Mohino, Elsa [LOCEAN/IPSL, Universite Pierre et Marie Curie, Paris Cedex 05 (France); Universidad de Sevilla, Sevilla (Spain); Rodriguez-Fonseca, Belen [Universidad Complutense de Madrid, Dpto. Geofisica y Meteorologia, Madrid (Spain); Instituto de Geociencias (CSIC-UCM), Madrid (Spain); Losada, Teresa [Universidad Complutense de Madrid, Dpto. Geofisica y Meteorologia, Madrid (Spain); Gervois, Sebastien [LOCEAN/IPSL, Universite Pierre et Marie Curie, Paris Cedex 05 (France); Janicot, Serge [LOCEAN/IPSL, IRD, Universite Pierre et Marie Curie, Paris (France); Bader, Juergen [Bjerknes Centre for Climate Research, Bergen (Norway); Ruti, Paolo [Progetto Speciale Clima Globale, Ente Nazionale per le Nuove Tecnologie, l' Energia e l' Ambiente, Rome (Italy); Chauvin, Fabrice [GAME/CNRM, Meteo-France/CNRS, Toulouse (France)

    2011-11-15

    Rainfall over West Africa shows strong interannual variability related to changes in Sea Surface Temperature (SST). Nevertheless, this relationship seem to be non-stationary. A particular turning point is the decade of the 1970s, which witnessed a number of changes in the climatic system, including the climate shift of the late 1970s. The first aim of this study is to explore the change in the interannual variability of West African rainfall after this shift. The analysis indicates that the dipolar features of the rainfall variability over this region, related to changes in the Atlantic SST, disappear after this period. Also, the Pacific SST variability has a higher correlation with Guinean rainfall in the recent period. The results suggest that the current relationship between the Atlantic and Pacific El Nino phenomena is the principal responsible for these changes. A fundamental goal of climate research is the development of models simulating a realistic current climate. For this reason, the second aim of this work is to test the performance of Atmospheric General Circulation models in simulating rainfall variability over West Africa. The models have been run with observed SSTs for the common period 1957-1998 as part of an intercomparison exercise. The results show that the models are able to reproduce Guinean interannual variability, which is strongly related to SST variability in the Equatorial Atlantic. Nevertheless, problems in the simulation of the Sahelian interannual variability appear: not all models are able to reproduce the observed negative link between rainfall over the Sahel and El Nino-like anomalies in the Pacific, neither the positive correlation between Mediterranean SSTs and Sahelian rainfall. (orig.)

  16. Aerosol and rainfall variability over the Indian monsoon region. Distributions, trends and coupling

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, R. [Maryland Univ., Baltimore County, MD (United States). Goddard Earth Science and Technology Center; NASA Goddard Space Flight Center, Greenbelt, MD (United States). Lab. for Atmospheres; Hsu, N.C.; Lau, K.M. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Lab. for Atmospheres; Kafatos, M. [Chapman Univ., Orange, CA (United States). Center of Excellence in Earth Observing

    2009-07-01

    Aerosol solar absorption over the Indian monsoon region has a potential role of modulating the monsoon circulation and rainfall distribution as suggested by recent studies based on model simulations. Prior to the onset of the monsoon, northern India is influenced by significant dust transport that constitutes the bulk of the regional aerosol loading over the Gangetic-Himalayan region. In this paper, a multi-sensor characterization of the increasing pre-monsoon aerosol loading over northern India, in terms of their spatial, temporal and vertical distribution is presented. Aerosol transport from the northwestern arid regions into the Indo-Gangetic Plains and over the foothills of the Himalayas is found to be vertically extended to elevated altitudes (up to 5 km) as observed from the space-borne lidar measurements (CALIPSO). In relation with the enhanced pre-monsoon aerosol loading and the associated solar absorption effects on tropospheric temperature anomalies, this paper investigates the monsoon rainfall variability over India in recent past decades from an observational viewpoint. It is found that the early summer monsoon rainfall over India is on the rise since 1950s, as indicated by historical rainfall data, with over 20% increase for the period 1950-2004. This large sustained increase in the early summer rainfall is led by the observed strengthening of the pre-monsoon tropospheric land-sea thermal gradient over the Indian monsoon region as indicated by microwave satellite measurements (MSU) of tropospheric temperatures from 1979-2007. Combined analysis of changes in tropospheric temperatures and summer monsoon rainfall in the past three decades, suggest a future possibility of an emerging rainfall pattern of a wetter monsoon over South Asia in early summer followed by a drier period. (orig.)

  17. Application of Artificial Neural Networks to Rainfall Forecasting in Queensland, Australia

    Institute of Scientific and Technical Information of China (English)

    John ABBOT; Jennifer MAROHASY

    2012-01-01

    In this study,the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland,Australia,was assessed by inputting recognized climate indices,monthly historical rainfall data,and atmospheric temperatures into a prototype stand-alone,dynamic,recurrent,time-delay,artificial neural network.Outputs,as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009,were compared with observed rainfall data using time-series plots,root mean squared error (RMSE),and Pearson correlation coefficients.A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared.The application of artificial neural networks to rainfall forecasting was reviewed.The prototype design is considered preliminary,with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.

  18. Shortening Anomalies in Supersymmetric Theories

    CERN Document Server

    Gomis, Jaume; Ooguri, Hirosi; Seiberg, Nathan; Wang, Yifan

    2016-01-01

    We present new anomalies in two-dimensional ${\\mathcal N} =(2, 2)$ superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background super-fields in short representations. Therefore, standard results that follow from ${\\mathcal N} =(2, 2)$ spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond ${\\mathcal N} =(2, 2)$. These anomalies explain why the conformal manifolds of the K3 and $T^4$ sigma models are not K\\"ahler and do not factorize into chiral and twisted chiral moduli spaces and why there are no ${\\mathcal N} =(2, 2)$ gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.

  19. Boundary terms of conformal anomaly

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2016-01-01

    Full Text Available We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons–Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  20. Multiple Visceral and Peritoneal Anomalies

    Directory of Open Access Journals (Sweden)

    Gayathri Prabhu S

    2016-07-01

    Full Text Available Visceral and peritoneal anomalies are frequently encountered during cadaveric dissections and surgical procedures of abdomen. A thorough knowledge of the same is required for the success of diagnostic, surgical and radiological procedures of abdomen. We report multiple peritoneal and visceral anomalies noted during dissection classes for medical undergraduates. The anomalies were found in an adult male cadaver aged approximately 70 years. The right iliac fossa was empty due to the sub-hepatic position of caecum and appendix. The sigmoid colon formed an inverted “U” shaped loop above the sacral promontory in the median position. It entered the pelvis from the right side and descended along the lateral wall of the pelvis. The sigmoid mesocolon was attached obliquely to the posterior abdominal wall, just above the sacral promontory. Further there was a cysto-colic fold of peritoneum extending from the right colic flexure. We discuss the clinical significance of the variations.

  1. Electromagnetic Duality and Entanglement Anomalies

    CERN Document Server

    Donnelly, William; Wall, Aron

    2016-01-01

    Duality is an indispensable tool for describing the strong-coupling dynamics of gauge theories. However, its actual realization is often quite subtle: quantities such as the partition function can transform covariantly, with degrees of freedom rearranged in a nonlocal fashion. We study this phenomenon in the context of the electromagnetic duality of abelian $p$-forms. A careful calculation of the duality anomaly on an arbitrary $D$-dimensional manifold shows that the effective actions agree exactly in odd $D$, while in even $D$ they differ by a term proportional to the Euler number. Despite this anomaly, the trace of the stress tensor agrees between the dual theories. We also compute the change in the vacuum entanglement entropy under duality, relating this entanglement anomaly to the duality of an "edge mode" theory in two fewer dimensions. Previous work on this subject has led to conflicting results; we explain and resolve these discrepancies.

  2. Conformal Anomalies and Gravitational Waves

    CERN Document Server

    Meissner, Krzysztof A

    2016-01-01

    We argue that the presence of conformal anomalies in gravitational theories can lead to observable modifications to Einstein's equations via the induced anomalous effective actions, whose non-localities can overwhelm the smallness of the Planck scale. The fact that no such effects have been seen in recent cosmological or gravitational wave observations therefore imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. We then show that, among presently known theories, a complete cancellation of conformal anomalies in $D=4$ for both the $C^2$ invariant and the Euler (Gauss-Bonnet) invariant $E_4$ can only be achieved for $N$-extended supergravities with $N\\geq 5$, as well as for M theory compactified to four dimensions.

  3. Boundary terms of conformal anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr

    2016-01-10

    We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons–Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  4. Diagnostic statistics of daily rainfall variability in an evolving climate

    Directory of Open Access Journals (Sweden)

    D. Panagoulia

    2006-01-01

    Full Text Available To investigate the character of daily rainfall variability under present and future climate described via global warming a suite of diagnostic statistics was used. The rainfall was modeled as a stochastic process coupled with atmospheric circulation. In this study we used an automated objective classification of daily patterns based on optimized fuzzy rules. This kind of classification method provided circulation patterns suitable for downscaling of General Circulation Model (GCM-generated precipitation. The precipitation diagnostics included first and second order moments, wet and dry-day renewal process probabilities and spell lengths as well as low-frequency variability via the standard deviation of monthly totals. These descriptors were applied to nine elevation zones and entire area of the Mesochora mountainous catchment in Central Greece for observed, 1×CO2 and 2×CO2 downscaled precipitation. The statistics' comparison revealed significant differences in the most of the daily diagnostics (e.g. mean wet-day amount, 95th percentile of wet-day amount, dry to wet probability, spell statistics (e.g. mean wet/dry spell length, and low-frequency diagnostic (standard deviation of monthly precipitation total between warm (2×CO2 and observed scenario in a progressive rate from lower to upper zone. The differences were very greater for the catchment area. In the light of these results, an increase in rainfall occurrence with diminished rainfall amount and a sequence of less consecutive dry days could describe the behaviour of a possible future climate on the examined catchment.

  5. Divergent ecological effects of oceanographic anomalies on terrestrial ecosystems of the Mexican Pacific coast.

    Science.gov (United States)

    Caso, Margarita; González-Abraham, Charlotte; Ezcurra, Exequiel

    2007-06-19

    Precipitation pulses are essential for the regeneration of drylands and have been shown to be related to oceanographic anomalies. However, whereas some studies report increased precipitation in drylands in northern Mexico during El Niño years, others report increased drought in the southern drylands. To elucidate the effect of oceanographic/atmospheric anomalies on moisture pulses along the whole Pacific coast of Mexico, we correlated the average Southern Oscillation Index values with total annual precipitation for 117 weather stations. We also analyzed this relationship for three separate rainfall signals: winter-spring, summer monsoon, and fall precipitation. The results showed a distinct but divergent seasonal pattern: El Niño events tend to bring increased rainfall in the Mexican northwest but tend to increase aridity in the ecosystems of the southern tropical Pacific slope. The analysis for the separated rainfall seasons showed that El Niño conditions produce a marked increase in winter rainfall above 22 degrees latitude, whereas La Niña conditions tend to produce an increase in the summer monsoon-type rainfall that predominates in the tropical south. Because these dryland ecosystems are dependent on rainfall pulses for their renewal, understanding the complex effect of ocean conditions may be critical for their management in the future. Restoration ecology, grazing regimes, carrying capacities, fire risks, and continental runoff into the oceans could be predicted from oceanographic conditions. Monitoring the coupled atmosphere-ocean system may prove to be important in managing and mitigating the effects of large-scale climatic change on coastal drylands in the future.

  6. Intraseasonal responses of the East Asia summer rainfall to anthropogenic aerosol climate forcing

    Science.gov (United States)

    Chen, Guoxing; Yang, Jing; Bao, Qing; Wang, Wei-Chyung

    2017-04-01

    The WRF Model is used to investigate intraseasonal responses of the summer rainfall to aerosol direct and cloud-adjustment effects over East Asia, where the anthropogenic aerosol loading has been increasing in the past few decades. The responses are evaluated by comparing two cases for each year during 2002-2008: a control case imposing the observed aerosol optical depth of the corresponding year and a sensitivity case having anthropogenic components of the control case reduced by 75%. Analyses of multiple-year simulations reveal that aerosol-induced changes of rainfall and circulation exhibit strong intraseasonal variability, and that the spatial pattern of changes in the monthly rainfall is related to the intensification and westward extension of the western North-Pacific subtropical high (WNPSH) by increased aerosols. This perturbation of the WNPSH induces surface air divergence over the southeast China and convergence over regions to the north and west of the WNPSH, causing, respectively, decreased and increased rainfall. As the WNPSH migration path varies year by year, however, the variability of rainfall changes over subregions of the eastern China (e.g., North China) is large within the decade. Meanwhile, the pattern of summer-gross rainfall changes also shows large interannual variation, but the general pattern of wetter in the west and dryer in the east persists. Results also suggest that the aerosol increase tends to reduce the number of Tibet Plateau vortices, which indirectly influence summer rainfall over the eastern China.

  7. Analysis of Rainfall Probabilities for Strategic Crop Planning in Raipur District of Chhattisgarh State

    Directory of Open Access Journals (Sweden)

    Sanjay Bhelawe

    2015-04-01

    Full Text Available Rainfall data of recent forty three years (1971-2013 of Labhandi station, Indira Gandhi Krishi Vishwavidhyalaya Raipur, Chhattisgarh was analysed with the method of incomplete gamma probability. The data revealed that the average rainfall of labhandi station is 1202 mm spread over 61 rainy days. Out of this 1055, 68, 53 and 27 mm received from south west monsoon (June-September, north east (October-December, summer (March-May and winter season (January -February respectively. Probability for receiving more than 100 mm of rainfall can be expected only at 25% probability level and that too in four weeks which is leading to the interpretation that rainfed rice production is a challenging task in this region. it has been found that at 75 per cent assured probability level rainfall of more than 200 mms can be expected only in July and August months and this rainfall is hardly sufficient for meeting the water requirement in upland situations. However at 50 per cent probability which is equivalent to average condition, cultivation of rice is possible under well water management conditions. On seasonal basis rainfall at assured probability level of 75% is not sufficient as the quantity is 795 mm rainfall in south-western monsoon season.

  8. River catchment rainfall series analysis using additive Holt–Winters method

    Indian Academy of Sciences (India)

    Yan Jun Puah; Yuk Feng Huang; Kuan Chin Chua; Teang Shui Lee

    2016-03-01

    Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfalltrends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt–Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10%missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010–2012. Most of the forecasts are acceptable.

  9. EFFECTS OF ENSO ON THE RELATIONSHIP BETWEEN IOD AND SUMMER RAINFALL IN CHINA

    Institute of Scientific and Technical Information of China (English)

    LIU Xuan-fei; YUAN Hui-zhen; GUAN Zhao-yong

    2009-01-01

    Based on the data of 1950 - 1999 monthly global SST from Hadley Center. NCAR/NCEP reanalysis data and rainfall over 160 weather stations in China,investigation is conducted into the difference of summer rainfall in China (hereafter referred to as the "CS rainfall") between the years with the Indian Ocean Dipole (IOD) occurring independently and those with IOD occurring along with ENSO so as to study the effects of El Ni(n)o - Southern Oscillation (ENSO) on the relationship between IOD and the CS rainfall. It is shown that CS rainfall will be more than normal in South China (centered in Hunan province) in the years of positive IOI) occurring independently; the CS rainfall will be less (more) than normal in North China (Southeast China) in the years of positive IOI) occurring together with ENSO. The effect of ENSO is offsetting (enhancing) the relationship between IOD and summer rainfall in Southwest China,the region joining the Yangtze River basin with the ttuaihe River basin (hereafter referred to as the "Yangtze-Huaihe basin") and North China (Southeast China). The circulation field is also examined for preliminary causes of such an influence.

  10. Application of ATOVS Microwave Radiance Assimilation to Rainfall Prediction in Summer 2004

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases.The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China.

  11. Identification of homogeneous rainfall regimes in parts of Western Ghats region of Karnataka

    Indian Academy of Sciences (India)

    B Venkatesh; Mathew K Jose

    2007-08-01

    In view of the ongoing environmental and ecological changes in the Western Ghats, it is important to understand the environmental parameters pertaining to the sustenance of the region. Rainfall is one such parameter governing the hydrological processes crucial to agriculture planning, afforestation and eco-system management. Therefore, it is essential to understand rainfall distribution and its variation in relevance to such activities. The present study is an attempt to gain in-depth understanding in this direction. The study area comprises of one coastal district and its adjoining areas in Karnataka State. Mean annual rainfall data of 93 rain gauge stations distributed over the study area for a period of 10–50 years are used for the study. In order to assess the variation of rainfall across the ghats, several bands were constructed parallel to the latitudes to facilitate the analysis. The statistical analyses conducted included cluster analysis and analysis of variance. The study revealed that there exist three distinct zones of rainfall regimes in the study area, namely, Coastal zone, Transition zone and Malanad zone. It is observed that, the maximum rainfall occurs on the windward side ahead of the geographical peak. Further, mean monthly rainfall distribution over the zones has been depicted to enable agricultural planning in the study area.

  12. Relationship of Rainfall Distribution and Water Level on Major Flood 2014 in Pahang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Nur Hishaam Sulaiman

    2017-01-01

    Full Text Available Climate change gives impact on extreme hydrological events especially in extreme rainfall. This article discusses about the relationship of rainfall distribution and water level on major flood 2014 in Pahang River Basin, Malaysia in helping decision makers to flood management system. Based on DID Malaysia rainfall station, 56 stations have being use as point in this research and it is including Pahang, Terengganu, Kelantan and Perak. Data set for this study were analysed with GIS analysis using interpolation method to develop Isohyet map and XLstat statistical software for PCA and SPC analyses. The results that were obtained from the Isohyet Map for three months was mid-November, rainfall started to increase about in range of 800mm-1200mm and the intensity keep increased to 2200mm at mid-December 2014. The high rainfall intensity sense at highland that is upstream of Pahang River. The PCA and SPC analysis also indicates the high relationship between rainfall and water level of few places at Pahang River. The Sg. Yap station and Kg. Serambi station obtained the high relationship of rainfall and water level with factor loading value at 0.9330 and 0.9051 for each station. Hydrological pattern and trend are extremely affected by climate such as north east monsoon season that occurred in South China Sea and affected Pahang during November to March. The findings of this study are important to local authorities by providing basic data as guidelines to the integrated river management at Pahang River Basin.

  13. Extreme Rainfall Events and Associated Natural Hazards in Alaknanda Valley, Indian Himalayan Region

    Institute of Scientific and Technical Information of China (English)

    JOSHI Varun; KUMAR Kireet

    2006-01-01

    Entire Himalayan region is vulnerable to rain-induced (torrential rainfall) hazards in the form of flash flood, cloudburst or glacial lake outburst flood. Flash floods and cloudburst are generally caused by high intensity rainfall followed by debris flow or landslide often resulting into blockade of river channels. The examples of some major disasters caused by torrential rainfall events in last fifty years are the flash floods of 1968 in Teesta valley, in 1993 and 20o0 in Sntlej valley, in 1978 in Bhagirathi and in 197o in Alaknanda river valleys. The formation of landslide dams and subsequent breaching is also associated with such rainfall events. These dams may persist for years or may burst within a short span of its formation. Due to sudden surge of water level in the river valleys, havoc and panic are created in the down stream. In Alaknanda valley, frequencies of such extreme rainfall events are found to be increasing in last two decades. However, the monthly trend of extreme rainfall events has partly indicated this increase. In most of the years extreme rainfall events and cloudburst disaster were reported in August during the later part of the monsoon season.

  14. Spatially-Aware Temporal Anomaly Mapping of Gamma Spectra

    CERN Document Server

    Reinhart, Alex; Biegalski, Steven

    2014-01-01

    For security, environmental, and regulatory purposes it is useful to continuously monitor wide areas for unexpected changes in radioactivity. We report on a temporal anomaly detection algorithm which uses mobile detectors to build a spatial map of background spectra, allowing sensitive detection of any anomalies through many days or months of monitoring. We adapt previously-developed anomaly detection methods, which compare spectral shape rather than count rate, to function with limited background data, allowing sensitive detection of small changes in spectral shape from day to day. To demonstrate this technique we collected daily observations over the period of six weeks on a 0.33 square mile research campus and performed source injection simulations.

  15. Boundary Anomalies and Correlation Functions

    CERN Document Server

    Huang, Kuo-Wei

    2016-01-01

    It was shown recently that boundary terms of conformal anomalies recover the universal contribution to the entanglement entropy and also play an important role in the boundary monotonicity theorem of odd-dimensional quantum field theories. Motivated by these results, we investigate relationships between boundary anomalies and the stress tensor correlation functions in conformal field theories. In particular, we focus on how the conformal Ward identity and the renormalization group equation are modified by boundary central charges. Renormalized stress tensors induced by boundary Weyl invariants are also discussed, with examples in spherical and cylindrical geometries.

  16. An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa

    Directory of Open Access Journals (Sweden)

    Ceccato Pietro

    2005-01-01

    Full Text Available Abstract Periodic epidemics of malaria are a major public health problem for many sub-Saharan African countries. Populations in epidemic prone areas have a poorly developed immunity to malaria and the disease remains life threatening to all age groups. The impact of epidemics could be minimized by prediction and improved prevention through timely vector control and deployment of appropriate drugs. Malaria Early Warning Systems are advocated as a means of improving the opportunity for preparedness and timely response. Rainfall is one of the major factors triggering epidemics in warm semi-arid and desert-fringe areas. Explosive epidemics often occur in these regions after excessive rains and, where these follow periods of drought and poor food security, can be especially severe. Consequently, rainfall monitoring forms one of the essential elements for the development of integrated Malaria Early Warning Systems for sub-Saharan Africa, as outlined by the World Health Organization. The Roll Back Malaria Technical Resource Network on Prevention and Control of Epidemics recommended that a simple indicator of changes in epidemic risk in regions of marginal transmission, consisting primarily of rainfall anomaly maps, could provide immediate benefit to early warning efforts. In response to these recommendations, the Famine Early Warning Systems Network produced maps that combine information about dekadal rainfall anomalies, and epidemic malaria risk, available via their Africa Data Dissemination Service. These maps were later made available in a format that is directly compatible with HealthMapper, the mapping and surveillance software developed by the WHO's Communicable Disease Surveillance and Response Department. A new monitoring interface has recently been developed at the International Research Institute for Climate Prediction (IRI that enables the user to gain a more contextual perspective of the current rainfall estimates by comparing them to

  17. An Analysis of Thermally-Related Surface Rainfall Budgets Associated with Convective and Stratiform Rainfall

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yushu; Xiaofan LI

    2011-01-01

    Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.

  18. The all-year rainfall region of South Africa: Satellite rainfall-estimate perspective

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2012-09-01

    Full Text Available Climate predictability and variability studies over South Africa typically focus on the summer rainfall region and to a lesser extent on the winter rainfall region. The all-year rainfall region of South Africa, a narrow strip located along the Cape...

  19. Trend analysis of rainfall and temperature and its relationship over India

    Science.gov (United States)

    Subash, N.; Sikka, A. K.

    2014-08-01

    This study investigated the trends in rainfall and temperature and the possibility of any rational relationship between the trends over the homogeneous regions over India. Annual maximum temperature shows an increasing trend in all the homogeneous temperature regions and corresponding annual rainfall also follow the same pattern in all the regions, except North East. As far as monthly analysis is concerned, no definite pattern has been observed between trends in maximum and minimum temperature and rainfall, except during October. Increasing trends of maximum and minimum temperature during October accelerate the water vapor demand and most of the lakes, rivers, ponds and other water bodies with no limitation of water availability during this time fulfills the water vapor demand and shows an increasing trend of rainfall activity. This study shows there exists no direct relationship between increasing rainfall and increasing maximum temperature when monthly or seasonal pattern is concerned over meteorological subdivisions of India, however we can make a conclusion that the relation between the trends of rainfall and temperature have large scale spatial and temporal dependence.

  20. Detection of Urban-Induced Rainfall Anomalies in Houston, Texas: A New Perspective from Space

    Science.gov (United States)

    Shepherd, J. Marshall; Burian, Steven J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Urban heat islands (UHIs) are caused by the heat-retaining properties of surfaces usually found in urban cities like asphalt and concrete. The UHI can typically be observed on the evening TV weather map as warmer temperatures over the downtown of major cities and cooler temperatures in the suburbs and surrounding rural areas. The UHI has now become a widely acknowledged, observed, and researched phenomenon because of its broad environmental and societal implications. Interest in the UHI will intensify in the future as existing urban areas expand and rural areas urbanize. By the year 2025, more than 60% of the world's population will live in cities, with higher percentages expected in developed nations. The urban growth rate in the United States, for example, is estimated to be 12.5%, and the recent 2000 Census found that more than 80% of the population currently lives in urban areas. Furthermore, the U.S. population is not only growing but is tending to concentrate more in urban areas within the environmentally sensitive coastal zones. Urban growth creates unique and often contentious issues for policymakers related to land use zoning, transportation planning, agricultural production, housing and development, pollution, and natural resources protection. Urban expansion and its associated UHIs also have measurable impacts on weather and climate processes. The UHI has been documented to affect local and regional temperature, wind patterns, and air quality.

  1. Surgical treatment of hand vascular anomalies: A case report

    Directory of Open Access Journals (Sweden)

    Kozarski Jefta

    2014-01-01

    Full Text Available Background. Vascular anomalies in the hand do not occur frequently. Their presence in the metacarpal region can cause different functional disorders. The extent of such disorders directly depends on the localization and size of vascular anomalies, duration and the nature of the anomaly growth as well as on eventual secondary complications such as ulceration or bleeding. The aim of this case report was to show the specifics in the clinical picture, pathogenesis and evolution of such anomalies, applied diagnostic procedures (radiography, ultrasound, magnetic resonance, electromyography and surgical treatment as well as postoperative functional results. Case report. In the Clinic for Plastic Surgery and Burns, Military Medical Academy Belgrade, two patients were treated surgically for vascular anomalies of the middle palmar region of the hand. The first patient, a 36-year-old male, a former active sportsman (professional handball player was treated for acute increase in the vascular anomaly of hand in the metacarpal region and proximal phalange of III and IV fingers of his right hand. The anomaly was detected 6 months prior to his hospitalization while two weeks before the hospitalization there was a sudden growth and increase in the change. The second case, a 15-year-old male patient actively pursuing a career in professional basketball was treated for a tumor localized in the metacarpal zone of his left hand. According to the information provided by his parents, the anomaly had been present since his birth. Initially, the anomaly manifested itself as a discoloration of the skin with a marked capillary drawing, gradually increasing throughout the last five years to the present dimension. The growth of the malformation was noticed to coincide in both patients with more active pursuit of their professional sports career. Conclusion. The clinical picture of hand vascular anomalies is dominated by the symptoms of compression of neurovascular

  2. The Relationship of Highly Reflective Clouds to Tropical Climate Anomalies.

    Science.gov (United States)

    Hastenrath, Stefan

    1990-03-01

    The interannual variability of tropical convection related to the Southern Oscillation (SO) and regional climate anomalies is studied from satellite-derived estimates of highly reflective clouds (HRC) during 1971-87. The novel HRC data bank provides a particularly useful measure of tropical convection for the purposes of climate diagnostics, because of its length and continuity of record. For the first time, maps are presented of the patterns of correlation between the SO, as well as regional rainfall anomalies, and convection over the global tropics.Throughout the year, the SO (high SO phase defined by anomalously high/low pressure at Tahiti/Darwin) exhibits a highly significant negative correlation with HRC in the equatorial Pacific but a much weaker positive correlation with Indonesia. The SO is correlated positively with HRC in the Amazon basin in boreal winter but negatively with HRC over central Africa throughout most of the year. The three equatorial convection centers tend to vary in unison, in particular those over the Amazon basin and central Africa, while the positive correlations of any of these centers with the SO are much weaker. Copious precipitation during the March-April rainy season of northeast Brazil is associated with a southward displaced low-pressure trough and embedded wind confluence, as well as a southward shift of the convection belt in the sector extending from South America across the Atlantic into equatorial Africa. During abundant Nordeste rainy seasons, as in the high SO phase, convective activity tends to be enhanced over Indonesia but reduced in the equatorial Pacific. Copious rainfall in Subsaharan West Africa (Sahel) tends to be associated with the high SO phase and thus intense convection over Indonesia and reduced convective activity in the equatorial central Pacific. Another new finding is the strong inverse relationship of Sahel rainfall with the convection over central Africa. Abundant Indian summer monsoon rainfall is

  3. Statistical Seasonal Rainfall Forecast in the Neuquén River Basin (Comahue Region, Argentina

    Directory of Open Access Journals (Sweden)

    Marcela Hebe González

    2015-05-01

    Full Text Available A detailed statistical analysis was performed at the Neuquén river basin using precipitation data for 1980–2007. The hydrological year begins in March with a maximum in June associated with rainfall and another relative maximum in October derived from snow-break. General features of the rainy season and the excess or deficits thereof are analyzed using standardized precipitation index (SPI for a six-month period in the basin. The SPI has a significant cycle of 14.3 years; the most severe excess (SPI greater than 2 has a return period of 25 years, while the most severe droughts (SPI less than −2 have a return period of 10 years. The SPI corresponding to the rainy season (April–September (SPI9 has no significant trend and is used to classify wet/dry years. In order to establish the previous circulation patterns associated with interannual SPI9 variability, the composite fields of wet and dry years are compared. There is a tendency for wet (dry periods to take place during El Niño (La Niña years, when there are positive anomalies of precipitable water over the basin, when the zonal flow over the Pacific Ocean is weakened (intensified and/or when there are negative pressure anomalies in the southern part of the country and Antarctic sea. Some prediction schemes using multiple linear regressions were performed. One of the models derived using the forward stepwise method explained 42% of the SPI9 variance and retained two predictors related to circulation over the Pacific Ocean: one of them shows the relevance of the intensity of zonal flow in mid-latitudes, and the other is because of the influence of low pressure near the Neuquén River basin. The cross-validation used to prove model efficiency showed a correlation of 0.41 between observed and estimated SPI9; there was a probability of detection of wet (dry years of 80% (65% and a false alarm relation of 25% in both cases.

  4. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    Science.gov (United States)

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.

    2017-08-01

    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  5. Modelling rainfall interception in unlogged and logged forest areas of Central Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    C. Asdak

    1998-01-01

    Full Text Available Rainfall interception losses were monitored for twelve months and related to vegetation and rainfall characteristics at the Wanariset Sangai on the upper reaches of the Mentaya river, Central Kalimantan. The rainfall interception losses were quantified for one hectare each of unlogged and logged humid tropical rainforests. The results show that interception loss is higher in the unlogged forest (11% of total gross rainfall than in the logged forest (6%. Interception loss was also simulated by the modified Rutter model and Gash's original and revised models. Both the Rutter and revised Gash models predicted total interception loss over a long period adequately, and resulted in estimates of the interception loss that deviated by 6 to 14% of the measured values, for both the unlogged and logged plots.

  6. Effect of soil warming and rainfall patterns on soil N cycling in northern Europe

    DEFF Research Database (Denmark)

    Patil, Raveendra Hanumantagoud; Lægdsmand, Mette; Olesen, Jørgen Eivind

    2010-01-01

    With climate change northern Europe is expected to experience extreme increase in air temperatures, particularly during the winter months, influencing soil temperatures in these regions. Climate change is also projected to influence the rainfall amount, and its inter- and intra-annual variability...... temperate climates, which is a major source of N pollution. An open-field lysimeter study was carried out during 2008-2009 in Denmark on loamy sand soil (Typic Hapludult) with three factors: number of rainy days, rainfall amount and soil warming. Number of rainy days included the mean monthly rainy days...

  7. Exploring changes in rainfall intensity and seasonal variability in the Southeastern U.S.: Stakeholder engagement, observations, and adaptation

    Directory of Open Access Journals (Sweden)

    Daniel R. Dourte

    2015-01-01

    Full Text Available The distribution of rainfall has major impacts in agriculture, affecting the soil, hydrology, and plant health in agricultural systems. The goal of this study was to test for recent changes in rainfall intensity and seasonal rainfall variability in the Southeastern U.S. by exploring the data collaboratively with agricultural stakeholders. Daily rainfall records from the Global Historical Climatology Network were used to analyze changes in rain intensity and seasonal rainfall variability. During the last 30 years (1985–2014, there has been a significant change (53% increase in the number of extreme rainfall days (>152.4 mm/day and there have been significant decreases in the number of moderate intensity (12.7–25.4 mm/day and heavy (25.4–76.2 mm/day rainfall days in the Southeastern U.S., when compared to the previous 30-year period (1955–1984. There have also been significant decreases in the return period of months in which greater than half of the monthly total rain occurred in a single day; this is an original, stakeholder-developed rainfall intensity metric. The variability in spring and summer rainfall increased during the last 30 years, but winter and fall showed less variability in seasonal totals in the last 30 years. In agricultural systems, rainfall is one of the leading factors affecting yield variability; so it can be expected that more variable rainfall and more intense rain events could bring new challenges to agricultural production. However, these changes can also present opportunities for producers who are taking measures to adjust management strategies to make their systems more resilient to increased rain intensity and variability.

  8. Future rainfall variability in Indonesia under different ENSO and IOD composites based on decadal predictions of CMIP5 datasets

    Science.gov (United States)

    Bilhaqqi Qalbi, Harisa; Faqih, Akhmad; Hidayat, Rahmat

    2017-01-01

    El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are amongst important climate drivers that play a significant role in driving rainfall variability in Indonesia, especially on inter-annual timescales. The phenomena are suggested to have an association with interdecadal climate variability through the modulation of their oscillations. This study aims to analyse the characteristics of future rainfall variability in Indonesia during different condition of ENSO and IOD events based on decadal predictions of near-term climate change CMIP5 GCM data outputs up to year 2035. Monthly data of global rainfall data with 5x5 km grid resolutions of CHIRPS dataset is used in this study to represent historical rainfall variability as well to serve as a reference for future rainfall predictions. The current and future rainfall and sea surface temperature data have been bias corrected before performing the analysis. Given the comparison between rainfall composites during El-Nino and positive IOD events, the study showed that the future rainfall conditions in Indonesia will become drier than the historical condition resulted from the same composite approach. In general, this study showed the Indonesian rainfall variability in the future is expected to respond differently to a different combination of ENSO and IOD conditions.

  9. Vector Autoregression (Var Model for Rainfall Forecast and Isohyet Mapping in Semarang – Central Java – Indonesia

    Directory of Open Access Journals (Sweden)

    Adi Nugroho

    2014-11-01

    Full Text Available Agricultural and plantation activities in Indonesia, especially in Semarang, Central Java, Indonesia rely on water supply from the rainfall. The rainfall in the future is basically influenced by rainfall patterns, humidity and temperature in the past. In this case, Vector Autoregression (VAR multivariate model is applied to forecast the rainfall in the future, in which all along Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG generally uses ARIMA model (Autoregressive Integrated Moving Average to carry out the same thing. The study applied the data, comprising the data of rainfall, humidity and temperature taken on a monthly basis during 2001-2013 periods from 5 measurement stations. Plotting of rainfall forecast result with VAR method is portrayed in the form of isohyet contour map to see the correlation between rainfall and coordinates of the area of the rainfall. The forecast result shows that VAR method is quite accurate to use for rainfall forecast in the study area as well as better than ARIMA method to forecast the same thing as having smaller Mean Absolute Error (MAE and Mean Absolute Percentage Error(MAPE.

  10. An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s

    Science.gov (United States)

    Chen, Jiepeng; Wen, Zhiping; Wu, Renguang; Wang, Xin; He, Chao; Chen, Zesheng

    2016-03-01

    The intensity of interannual variability (IIV) in southern China (SC) summer rainfall experienced a remarkable increase in early 1990s, concurrent with the interdecadal increase in SC summer rainfall. Two factors are proposed for this interdecadal change. One is the interdecadal increase of IIV in tropical eastern Indian Ocean (TEIO) sea surface temperature (SST) after early 1990s. Anomalous warmer (cooler) TEIO SST triggers anomalous ascending (descending) motion and lower-level cyclonic (anticyclone) circulation in situ, which in turn induces anomalous descent (ascent) over SC through an anomalous meridional vertical circulation. This contributes to interannual summer rainfall variability over SC. The increase in the amplitude of TEIO SST anomalies in early 1990s led to an intensified interannual variability of summer rainfall over SC. The other is the strengthened influence of a coupled mode of the North Atlantic Oscillation (NAO) and North Atlantic triple SST anomaly on interannual variability in summer rainfall over SC after early 1990s. The leading EOF mode of the North Atlantic SST is characterized by a stripe pattern during 1979-1992, while during 1993-2008 the dominant mode of the North Atlantic SST is a triple pattern. The triple pattern of North Atlantic SST may exert positive effect on the NAO after early 1990s. Compared to the period 1979-1992, the relationship between the NAO and interannual summer rainfall over SC is enhanced during 1993-2008. The NAO coupled with North Atlantic SST triple exerts an important impact on SC summer rainfall variability through Eurasian wave-like train.

  11. The influence of moderate ENSO on summer rainfall in eastern China and its comparison with strong ENSO

    Institute of Scientific and Technical Information of China (English)

    XUE Feng; LIU ChangZheng

    2008-01-01

    The 6 major ENSO events since 1979 are classified into the strong and moderate ENSO based on in-tensity. The composite analysis is performed to reveal the influence of ENSO on East Asian summer monsoon (EASM) and summer rainfall in eastern China. It is shown that the influence is changed with the seasonal cycle in summer, with a weaker influence in June and a stronger influence in August, in-dicating a long lagged effect of ENSO on EASM. Besides, the circulation and rainfall anomalies caused by the strong ENSO are also stronger with an earlier starting time, while the influence of the moderate ENSO is evident in August. The composite summer rainfall in eastern China for the moderate ENSO exhibits a northern rainfall pattern, which is totally different from the classical ENSO-type rainfall pat-tern. Based on the composite analysis, two moderate ENSO years with a similar intensity (i.e., 1995 and 2003) are compared, The result shows that, the response of EASM to the moderate ENSO during June and July is, to a certain degree, modulated by the circulation systems in mid-high latitudes of Eurasia and in the Southern Hemisphere, thereby inducing a different rainfall distribution in eastern China. In comparison with the strong ENSO in 1983, it is further revealed that, the strong ENSO plays a dominant role in summer rainfall anomalies in eastern China as well as in controlling the influence of the other factors on EASM. The strong ENSO is therefore different with the moderate ENSO.

  12. An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s

    Science.gov (United States)

    Chen, Jiepeng; Wen, Zhiping; Wu, Renguang; Wang, Xin; He, Chao; Chen, Zesheng

    2017-01-01

    The intensity of interannual variability (IIV) in southern China (SC) summer rainfall experienced a remarkable increase in early 1990s, concurrent with the interdecadal increase in SC summer rainfall. Two factors are proposed for this interdecadal change. One is the interdecadal increase of IIV in tropical eastern Indian Ocean (TEIO) sea surface temperature (SST) after early 1990s. Anomalous warmer (cooler) TEIO SST triggers anomalous ascending (descending) motion and lower-level cyclonic (anticyclone) circulation in situ, which in turn induces anomalous descent (ascent) over SC through an anomalous meridional vertical circulation. This contributes to interannual summer rainfall variability over SC. The increase in the amplitude of TEIO SST anomalies in early 1990s led to an intensified interannual variability of summer rainfall over SC. The other is the strengthened influence of a coupled mode of the North Atlantic Oscillation (NAO) and North Atlantic triple SST anomaly on interannual variability in summer rainfall over SC after early 1990s. The leading EOF mode of the North Atlantic SST is characterized by a stripe pattern during 1979-1992, while during 1993-2008 the dominant mode of the North Atlantic SST is a triple pattern. The triple pattern of North Atlantic SST may exert positive effect on the NAO after early 1990s. Compared to the period 1979-1992, the relationship between the NAO and interannual summer rainfall over SC is enhanced during 1993-2008. The NAO coupled with North Atlantic SST triple exerts an important impact on SC summer rainfall variability through Eurasian wave-like train.

  13. The tropical Pacific-Indian Ocean temperature anomaly mode and its effect

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; JIA Xiaolong; LI Chongyin

    2006-01-01

    Temperature anomaly in the Indian Ocean is closely related to that in the Pacific Ocean because of the Walker circulation and the Indonesian throughflow. So only the El Ni(n)o/Southern Oscillation (ENSO) in the Pacific cannot entirely explain the influence of sea surface temperature anomaly (SSTA)on climate variation. The tropical Pacific-Indian Ocean temperature anomaly mode (PIM) is presented based on the comprehensive research on the pattern and feature of SSTA in both Indian Ocean and Pacific Ocean. The features of PIM and ENSO mode and their influences on the climate in China and the rainfall in India are further compared. For proving the observation results, numerical experiments of the global atmospheric general circulation model are conducted. The results of observation and sensitivity experiments show that presenting PIM and studying its influence are very important for short-range climate prediction.

  14. Global gravitational anomalies and transport

    Science.gov (United States)

    Chowdhury, Subham Dutta; David, Justin R.

    2016-12-01

    We investigate the constraints imposed by global gravitational anomalies on parity odd induced transport coefficients in even dimensions for theories with chiral fermions, gravitinos and self dual tensors. The η-invariant for the large diffeomorphism corresponding to the T transformation on a torus constraints the coefficients in the thermal effective action up to mod 2. We show that the result obtained for the parity odd transport for gravitinos using global anomaly matching is consistent with the direct perturbative calculation. In d = 6 we see that the second Pontryagin class in the anomaly polynomial does not contribute to the η-invariant which provides a topological explanation of this observation in the `replacement rule'. We then perform a direct perturbative calculation for the contribution of the self dual tensor in d = 6 to the parity odd transport coefficient using the Feynman rules proposed by Gaumé and Witten. The result for the transport coefficient agrees with that obtained using matching of global anomalies.

  15. Anomalies and noncommutative index theory

    CERN Document Server

    Perrot, D

    2006-01-01

    These are the notes of a lecture given during the summer school "Geometric and Topological Methods for Quantum Field Theory", Villa de Leyva, Colombia, july 11 - 29, 2005. We review basic facts concerning gauge anomalies and discuss the link with the Connes-Moscovici index formula in noncommutative geometry.

  16. Bony anomaly of Meckel's cave.

    Science.gov (United States)

    Tubbs, R Shane; Salter, E George; Oakes, W Jerry

    2006-01-01

    This study describes the seemingly rare occurrence of bone formation within the proximal superior aspect of Meckel's cave thus forming a bony foramen for the proximal trigeminal nerve to traverse. The anatomy of Meckel's cave is reviewed and the clinical potential for nerve compression from this bony anomaly discussed.

  17. Conformal anomalies and gravitational waves

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2017-09-01

    We argue that the presence of conformal anomalies in gravitational theories can lead to observable modifications to Einstein's equations via the induced anomalous effective actions, whose non-localities can overwhelm the smallness of the Planck scale. The fact that no such effects have been seen in recent cosmological or gravitational wave observations therefore imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. We then show that a complete cancellation of conformal anomalies in D = 4 for both the C2 invariant and the Euler (Gauss-Bonnet) invariant E4 can only be achieved for N-extended supergravity multiplets with N ⩾ 5, as well as for M theory compactified to four dimensions. Although there remain open questions, in particular concerning the true significance of conformal anomalies in non-conformal theories, as well as their possible gauge dependence for spin s ⩾3/2, these cancellations suggest a hidden conformal structure of unknown type in these theories.

  18. Connecting Stratospheric and Ionospheric Anomalies

    Science.gov (United States)

    Spraggs, M. E.; Goncharenko, L. P.; Zhang, S.; Coster, A. J.; Benkevitch, L. V.

    2014-12-01

    This study investigates any relationship between lunar phases and ionospheric anomalies that appear at low latitudes concurrently with sudden stratospheric warmings (SSWs). The study utilizes World-wide GPS Receiver Network Total Electron Content (TEC) data spanning 13 years (2001-2014) and focuses on the changes in the equatorial ionization anomaly the Western hemisphere. TEC is highly variable due to the influences of solar flux, geomagnetic activity, and seasonal variation and these influences are removed by the use of model. This empirical TEC model is a combination of linear dependencies of solar flux (F10.7) and geomagnetic activity (Ap3) with a third degree polynomial dependency for day-of-year (DOY). With such dependencies removed, the remaining TEC variation could be resolved and attributed to an appropriate mechanism. Lunar phase and apside was investigated in particular, especially the new and full moon phases during perigees when tidal forcing would be most powerful. Lunar tidal forcing on planetary waves is also examined as being physically responsible for setting up conditions that may give rise to SSWs and ionospheric anomalies. Preliminary results suggest that such anomalies may be enhanced in intensity during the full or new moon and even more so during perigee by different amounts depending on whether the SSW is a major (40-60%) or minor (20-45%) event.

  19. Thermal anomalies in stressed Teflon.

    Science.gov (United States)

    Lee, S. H.; Wulff, C. A.

    1972-01-01

    In the course of testing polytetrafluoroethylene (Teflon) as a calorimetric gasketing material, serendipity revealed a thermal anomaly in stressed film that occurs concomitantly with the well-documented 25 C transition. The magnitude of the excess energy absorption - about 35 cal/g - is suggested to be related to the restricted thermal expansion of the film.

  20. On Rainfall Modification by Major Urban Areas. Part 1; Observations from Space-borne Rain Radar Aboard TRMM

    Science.gov (United States)

    Shepherd, J. Marshell; Starr, David OC. (Technical Monitor)

    2001-01-01

    A novel approach is introduced to correlating urbanization and rainfall modification. This study represents one of the first published attempts (possibly the first) to identify and quantify rainfall modification by urban areas using satellite-based rainfall measurements. Previous investigations successfully used rain gauge networks and around-based radar to investigate this phenomenon but still encountered difficulties due to limited, specialized measurements and separation of topographic and other influences. Three years of mean monthly rainfall rates derived from the first space-based rainfall radar, Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of data at half-degree latitude resolution enables identification of rainfall patterns around major metropolitan areas of Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Preliminary results reveal an average increase of 5.6% in monthly rainfall rates (relative to a mean upwind CONTROL area) over the metropolis but an average increase of approx. 28%, in monthly rainfall rates within 30-60 kilometers downwind of the metropolis. Some portions of the downwind area exhibit increases as high as 51%. It was also found that maximum rainfall rates found in the downwind impact area exceeded the mean value in the upwind CONTROL area by 48%-116% and were generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are quite consistent studies of St. Louis (e.g' METROMEX) and Chicago almost two decades ago and more recent studies in the Atlanta and Mexico City areas.

  1. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  2. Modelling persistence in annual Australia point rainfall

    Directory of Open Access Journals (Sweden)

    J. P. Whiting

    2003-01-01

    Full Text Available Annual rainfall time series for Sydney from 1859 to 1999 is analysed. Clear evidence of nonstationarity is presented, but substantial evidence for persistence or hidden states is more elusive. A test of the hypothesis that a hidden state Markov model reduces to a mixture distribution is presented. There is strong evidence of a correlation between the annual rainfall and climate indices. Strong evidence of persistence of one of these indices, the Pacific Decadal Oscillation (PDO, is presented together with a demonstration that this is better modelled by fractional differencing than by a hidden state Markov model. It is shown that conditioning the logarithm of rainfall on PDO, the Southern Oscillation index (SOI, and their interaction provides realistic simulation of rainfall that matches observed statistics. Similar simulation models are presented for Brisbane, Melbourne and Perth. Keywords: Hydrological persistence,hidden state Markov models, fractional differencing, PDO, SOI, Australian rainfall

  3. Testing of January Anomaly at ISE-100 Index with Power Ratio Method

    Directory of Open Access Journals (Sweden)

    Şule Yüksel Yiğiter

    2015-12-01

    Full Text Available AbstractNone of investors that can access all informations in the same ratio is not possible to earn higher returns according to Efficient Market Hypothesis. However, it has been set forth effect of time on returns in several studies and reached conflicting conclusions with hypothesis. In this context, one of the most important existing anomalies is also January month anomaly. In this study, it has been researched that if there is  January effect in BIST-100 index covering 2008-2014 period by using power ratio method. The presence of January month anomaly in BIST-100 index within specified period determined by analysis results.Keywords: Efficient Markets Hypothesis, January Month Anomaly, Power Ratio MethodJEL Classification Codes: G1,C22

  4. A large sample investigation of temporal scale-invariance in rainfall over the tropical urban island of Singapore

    Science.gov (United States)

    Mandapaka, Pradeep V.; Qin, Xiaosheng

    2015-11-01

    Scaling behavior of rainfall time series is characterized using monofractal, spectral, and multifractal frameworks. The study analyzed temporal scale-invariance of rainfall in the tropical island of Singapore using a large dataset comprising 31 years of hourly and 3 years of 1-min rainfall measurements. First, the rainfall time series is transformed into an occurrence-non-occurrence binary series, and its scaling behavior is analyzed using box-counting analysis. The results indicated that the rainfall support displays fractal structure, but within a limited range of scales. The rainfall support has a fractal dimension ( D f ) of 0.56 for scales ranging from 1 min to 1.5 h and a D f of 0.37 from 1.5 h to 1.5 days. The results further showed that the fractal dimension decreases with the increase in the threshold used to define binary series. Spectral analysis carried out on the rainfall time series and the corresponding binary series showed three distinct scaling regimes of 4 min-2 h, 2-24 h, and 24 h-1 month. In all the scaling regimes, the spectral exponents for the rainfall series were smaller than those for the binary series. The study then investigated the presence of multiscaling behavior in rainfall time series using moment scaling analysis. The results confirmed that the rainfall fluctuations display a multiscaling structure, which was modeled in the framework of universal multifractals. The results from this study would not only improve our understanding of the temporal rainfall structure in Singapore and the surrounding Maritime Continent but also help us build and parameterize parsimonious models and statistical downscaling techniques for rainfall in this region.

  5. Variability of East African rainfall based on multi-year RegCM3 simulations

    Science.gov (United States)

    Anyah, R.; Semazzi, F.

    2009-04-01

    The International Center for Theoretical Physics(ICTP) regional climate model version 3(ICTP-RegCM3) multi-year simulations of East Africa rainfall during the October-December, short rains season are evaluated. Two parallel runs; based on NCEP reanalysis and NASA FvGCM lateral boundary conditions are performed. The simulated monthly and seasonal rainfall climatology as well as the inter-annual variability are found to be fairly consistent with observations. The model climatology over specific homogeneous climate sub-regions, except central Kenya highlands, also reasonably agree with the observed. The latitude-time evolution(intra-seasonal variability) of the simulated seasonal rainfall exhibits two distinct modes of behavior. The first is a quasi-stationary mode associated with high rainfall throughout the season within the equatorial belt between; 1oS and 2oN. The second mode is associated with the ITCZ-driven southward migration of regions of rainfall maxima as the season progresses, which is also consistent with the observed. Furthermore, observed rainfall variability over distinct homogeneous climate sub-regions is also fairly reproduced by the model, except over central Kenya Highlands and northeastern parts of Kenya. The spatial correlation between simulated seasonal rainfall and some of the global teleconnections(DMI and Nino3.4 indices) show that the regional model conserves some of the observed regional ‘hot spots' where rainfall-ENSO/DMI association are strong. At the same, unlike observations, the model reveals that along the East Africa Rift Valley and over western parts of Lake Victoria Basin, the association is weak, perhaps an indication that non-linear interactions between local forcing (captured by the model) and large scale systems either suppresses or obscures the dominant influence of the teleconnections on rainfall over certain parts.

  6. On the dust load and rainfall relationship in South Asia: an analysis from CMIP5

    Science.gov (United States)

    Singh, Charu; Ganguly, Dilip; Dash, S. K.

    2017-03-01

    This study is aimed at examining the consistency of the relationship between load of dust and rainfall simulated by different climate models and its implication for the Indian summer monsoon system. Monthly mean outputs of 12 climate models, obtained from the archive of the Coupled Model Intercomparison Project phase 5 (CMIP5) for the period 1951-2004, are analyzed to investigate the relationship between dust and rainfall. Comparative analysis of the model simulated precipitation with the India Meteorological Department (IMD) gridded rainfall, CRU TS3.21 and GPCP version 2.2 data sets show significant differences between the spatial patterns of JJAS rainfall as well as annual cycle of rainfall simulated by various models and observations. Similarly, significant inter-model differences are also noted in the simulation of load of dust, nevertheless it is further noted that most of the CMIP5 models are able to capture the major dust sources across the study region. Although the scatter plot analysis and the lead-lag pattern correlation between the dust load and the rainfall show strong relationship between the dust load over distant sources and the rainfall in the South Asian region in individual models, the temporal scale of this association indicates large differences amongst the models. Our results caution that it would be pre-mature to draw any robust conclusions on the time scale of the relationship between dust and the rainfall in the South Asian region based on either CMIP5 results or limited number of previous studies. Hence, we would like to emphasize upon the fact that any conclusions drawn on the relationship between the dust load and the South Asian rainfall using model simulation is highly dependent on the degree of complexity incorporated in those models such as the representation of aerosol life cycle, their interaction with clouds, precipitation and other components of the climate system.

  7. Simulation of extreme rainfall and projection of future changes using the GLIMCLIM model

    Science.gov (United States)

    Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir

    2016-08-01

    In this study, the performance of the Generalized LInear Modelling of daily CLImate sequence (GLIMCLIM) statistical downscaling model was assessed to simulate extreme rainfall indices and annual maximum daily rainfall (AMDR) when downscaled daily rainfall from National Centers for Environmental Prediction (NCEP) reanalysis and Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCM) (four GCMs and two scenarios) output datasets and then their changes were estimated for the future period 2041-2060. The model was able to reproduce the monthly variations in the extreme rainfall indices reasonably well when forced by the NCEP reanalysis datasets. Frequency Adapted Quantile Mapping (FAQM) was used to remove bias in the simulated daily rainfall when forced by CMIP5 GCMs, which reduced the discrepancy between observed and simulated extreme rainfall indices. Although the observed AMDR were within the 2.5th and 97.5th percentiles of the simulated AMDR, the model consistently under-predicted the inter-annual variability of AMDR. A non-stationary model was developed using the generalized linear model for local, shape and scale to estimate the AMDR with an annual exceedance probability of 0.01. The study shows that in general, AMDR is likely to decrease in the future. The Onkaparinga catchment will also experience drier conditions due to an increase in consecutive dry days coinciding with decreases in heavy (>long term 90th percentile) rainfall days, empirical 90th quantile of rainfall and maximum 5-day consecutive total rainfall for the future period (2041-2060) compared to the base period (1961-2000).

  8. Rainfall and temperature changes and variability in the Upper East Region of Ghana

    Science.gov (United States)

    Issahaku, Abdul-Rahaman; Campion, Benjamin Betey; Edziyie, Regina

    2016-08-01

    The aim of the research was to assess the current trend and variation in rainfall and temperature in the Upper East Region, Ghana, using time series moving average analysis and decomposition methods. Meteorological data obtained from the Ghana Meteorological Agency in Accra, Ghana, from 1954 to 2014 were used in the models. The additive decomposition model was used to analyze the rainfall because the seasonal variation was relatively constant over time, while the multiplicative model was used for both the daytime and nighttime temperatures because their seasonal variations increase over time. The monthly maximum and the minimum values for the entire period were as follows: rainfall 455.50 and 0.00 mm, nighttime temperature 29.10°C and 13.25°C and daytime temperature 41.10°C and 26.10°C, respectively. Also, while rainfall was decreasing, nighttime and daytime temperatures were increasing in decadal times. Since both the daytime and nighttime temperatures were increasing and rainfall was decreasing, climate extreme events such as droughts could result and affect agriculture in the region, which is predominantly rain fed. Also, rivers, dams, and dugouts are likely to dry up in the region. It was also observed that there was much variation in rainfall making prediction difficult. Day temperatures were generally high with the months of March and April have been the highest. The months of December recorded the lowest night temperature. Inhabitants are therefore advised to sleep in well-ventilated rooms during the warmest months and wear protective clothing during the cold months to avoid contracting climate-related diseases.

  9. EVALUATION OF RAINFALL-RUNOFF EROSIVITY FACTOR FOR CAMERON HIGHLAND, PAHANG, MALAYSIA

    Directory of Open Access Journals (Sweden)

    Abdulkadir Taofeeq Sholagberu

    2016-07-01

    Full Text Available Rainfall-runoff is the active agent of soil erosion which often resulted in land degradation and water quality deterioration. Its aggressiveness to induce erosion is usually termed as rainfall erosivity index or factor (R. R-factor is one of the factors to be parameterized in the evaluation of soil loss using the Universal Soil Loss Equation and its reversed versions (USLE/RUSLE. The computation of accurate R-factor for a particular watershed requires high temporal resolution rainfall (pluviograph data with less than 30-minutes intensities for at least 20 yrs, which is available only in a few regions of the world. As a result, various simplified models have been proposed by researchers to evaluate R-factor using readily available daily, monthly or annual precipitation data. This study is thus aimed at estimating R-factor and to establish an approximate relationship between R-factor and rainfall for subsequent usage in the estimation of soil loss in Cameron highlands watershed. The results of the analysis showed that the least and peak (critical R-factors occurred in the months of January and April with 660.82 and 2399.18 MJ mm ha-1 h-1year-1 respectively. Also, it was observed that erosivity power starts to increase from the month of January through April before started falling in the month of July. The monthly and annual peaks (critical periods may be attributed to increased rainfall amount due to climate change which in turn resulted to increased aggressiveness of rains to cause erosion in the study area. The correlation coefficient of 0.985 showed that there was a strong relationship rainfall and R-factor.

  10. Heavy daily-rainfall characteristics over the Gauteng Province

    African Journals Online (AJOL)

    2009-02-09

    Feb 9, 2009 ... Department of Geography, Geoinformatics and Meteorology, Geography Building 2-12, University of .... An example of heavy rainfall 'climatology' in the scientific .... rainfall stations in the calculation of the area-average rainfall.

  11. Topographic relationships for design rainfalls over Australia

    Science.gov (United States)

    Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.

    2016-02-01

    Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as

  12. [Frequency of congenital anomalies at the Instituto Materno Infantil, Bogota, Colombia].

    Science.gov (United States)

    García, Herbert; Salguero, Gustavo Andrés; Moreno, Jeffer; Arteaga, Clara; Giraldo, Alejandro

    2003-06-01

    At the Instituto Materno Infantil (IMI) in Bogotá (Colombia), 5,686 births (5,597 live births and 89 stillbirths) were analyzed during two periods: from October, 1997, to April, 1998, and from July to November, 2000 (12 months). Congenital anomalies were detected in 4.4% of live newborn babies and in 7.8% of stillbirths. Major anomalies corresponded to 69% and mild anomalies to 31% (3% and 1.4% of all live births, respectively). The newborn babies with major anomalies, in comparison to the normal controls, had higher mortality at hospital discharge (p = 0.0001), lower average birth weight (p = 0.003), and family history of congenital anomalies (p = 0.0001). The only significant association for mild anomalies was with family history of congenital anomalies (p = 0.0001). The frequency of congenital anomalies was similar to that in other studies, although certain kinds of anomalies showed noticeable frequency differences. This may be a consequence of differences in record keeping or in detection methods.

  13. Regionalized rainfall-runoff model to estimate low flow indices

    Science.gov (United States)

    Garcia, Florine; Folton, Nathalie; Oudin, Ludovic

    2016-04-01

    Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate

  14. Unstable ENSO Relationship with Indian regional rainfall

    Science.gov (United States)

    Kane, R. P.

    2006-05-01

    In earlier years, El Niños had a strong association with droughts in India. However, in recent years, this relationship seems to have weakened, and even the strong event of 1997-1998 did not produce the expected effects. In the 133-year data, only about 60% of the El Niño and La Niña are effective, and the magnitudes of the anomalies are not in good correlations with the strength of the ENSO. This weakening of ENSO effects in recent years is known to meteorologists. The Indian Meteorological Department (IMD) scientists have formulated prediction schemes, but these are not fully satisfactory. The public and the press are still swayed only by possible El Niño effects, as happened in 2005 when Pacific warming occurred in February. The meteorologists had to assure the press that this was a case of an aborted El Niño, with quiet conditions expected to return by the end of 2005. Considering the experience of the 1997-1998 El Niño, when a strong El Niño developed suddenly, a prediction of a quiet 2005 can be hazardous. More importantly, even if an El Niño develops in the next few months, the press should be told that the chance of strong El Niño effects (droughts) is only about 60%, and these too may be very different in different regions of India.

  15. Anomaly detection in online social networks

    CERN Document Server

    Savage, David; Yu, Xinghuo; Chou, Pauline; Wang, Qingmai

    2016-01-01

    Anomalies in online social networks can signify irregular, and often illegal behaviour. Anomalies in online social networks can signify irregular, and often illegal behaviour. Detection of such anomalies has been used to identify malicious individuals, including spammers, sexual predators, and online fraudsters. In this paper we survey existing computational techniques for detecting anomalies in online social networks. We characterise anomalies as being either static or dynamic, and as being labelled or unlabelled, and survey methods for detecting these different types of anomalies. We suggest that the detection of anomalies in online social networks is composed of two sub-processes; the selection and calculation of network features, and the classification of observations from this feature space. In addition, this paper provides an overview of the types of problems that anomaly detection can address and identifies key areas of future research.

  16. Focal skin defect, limb anomalies and microphthalmia.

    NARCIS (Netherlands)

    Jackson, K.E.; Andersson, H.C.

    2004-01-01

    We describe two unrelated female patients with congenital single focal skin defects, unilateral microphthalmia and limb anomalies. Growth and psychomotor development were normal and no brain malformation was detected. Although eye and limb anomalies are commonly associated, clinical anophthalmia and

  17. Some characteristics of very heavy rainfall over Orissa during summer monsoon season

    Indian Academy of Sciences (India)

    M Mohapatra; U C Mohanty

    2005-02-01

    Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features of very heavy rainfall (24 hours rainfall ≥ 125mm) over Orissa during summer monsoon season (June-September) by analysing 20 years (1980-1999) daily rainfall data of different stations in Orissa. The principal objective of this study is to find out the role of synoptic scale monsoon disturbances in spatial and temporal variability of very heavy rainfall over Orissa. Most of the very heavy rainfall events occur in July and August. The region, extending from central part of coastal Orissa in the southeast towards Sambalpur district in the northwest, experiences higher frequency and higher intensity of very heavy rainfall with less interannual variability. It is due to the fact that most of the causative synoptic disturbances like low pressure systems (LPS) develop over northwest (NW) Bay of Bengal with minimum interannual variation and the monsoon trough extends in west-northwesterly direction from the centre of the system. The very heavy rainfall occurs more frequently with less interannual variability on the western side of Eastern Ghat during all the months and the season except September. It occurs more frequently with less interannual variability on the eastern side of Eastern Ghat during September. The NW Bay followed by Gangetic West Bengal/Orissa is the most favourable region of LPS to cause very heavy rainfall over different parts of Orissa except eastern side of Eastern Ghat. The NW Bay and west central (WC) Bay are equally favourable regions of LPS to cause very heavy rainfall over eastern side of Eastern Ghat. The frequency of very heavy rain-fall does not show any significant trend in recent years over Orissa except some places in north-east Orissa which exhibit significant rising trend in all the

  18. Rainfall Simulation: methods, research questions and challenges

    Science.gov (United States)

    Ries, J. B.; Iserloh, T.

    2012-04-01

    In erosion research, rainfall simulations are used for the improvement of process knowledge as well as in the field for the assessment of overland flow generation, infiltration, and erosion rates. In all these fields of research, rainfall experiments have become an indispensable part of the research methods. In this context, small portable rainfall simulators with small test-plot sizes of one square-meter or even less, and devices of low weight and water consumption are in demand. Accordingly, devices with manageable technical effort like nozzle-type simulators seem to prevail against larger simulators. The reasons are obvious: lower costs and less time consumption needed for mounting enable a higher repetition rate. Regarding the high number of research questions, of different fields of application, and not least also due to the great technical creativity of our research staff, a large number of different experimental setups is available. Each of the devices produces a different rainfall, leading to different kinetic energy amounts influencing the soil surface and accordingly, producing different erosion results. Hence, important questions contain the definition, the comparability, the measurement and the simulation of natural rainfall and the problem of comparability in general. Another important discussion topic will be the finding of an agreement on an appropriate calibration method for the simulated rainfalls, in order to enable a comparison of the results of different rainfall simulator set-ups. In most of the publications, only the following "nice" sentence can be read: "Our rainfall simulator generates a rainfall spectrum that is similar to natural rainfall!". The most substantial and critical properties of a simulated rainfall are the drop-size distribution, the fall velocities of the drops, and the spatial distribution of the rainfall on the plot-area. In a comparison of the most important methods, the Laser Distrometer turned out to be the most up

  19. Heavy rainfall equations for Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2011-12-01

    Full Text Available Knowledge of intensity-duration-frequency (IDF relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.

  20. Monthly Meteorological Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly forms that do not fit into any regular submission. Tabulation sheets and generic monthly forms designed to capture miscellaneous monthly observations.

  1. WRF model performance under flash-flood associated rainfall

    Science.gov (United States)

    Mejia-Estrada, Iskra; Bates, Paul; Ángel Rico-Ramírez, Miguel

    2017-04-01

    Understanding the natural processes that precede the occurrence of flash floods is crucial to improve the future flood projections in a changing climate. Using numerical weather prediction tools allows to determine one of the triggering conditions for these particularly dangerous events, difficult to forecast due to their short lead-time. However, simulating the spatial and temporal evolution of the rainfall that leads to a rapid rise in river levels requires determining the best model configuration without compromising the computational efficiency. The current research involves the results of the first part of a cascade modeling approach, where the Weather Research and Forecasting (WRF) model is used to simulate the heavy rainfall in the east of the UK in June 2012 when stationary thunderstorms caused 2-hour accumulated values to match those expected in the whole month of June over the city of Newcastle. The optimum model set-up was obtained after extensive testing regarding physics parameterizations, spin-up times, datasets used as initial conditions and model resolution and nesting, hence determining its sensitivity to reproduce localised events of short duration. The outputs were qualitatively and quantitatively assessed using information from the national weather radar network as well as interpolated rainfall values from gauges, respectively. Statistical and skill score values show that the model is able to produce reliable accumulated precipitation values while explicitly solving the atmospheric equations in high resolution domains as long as several hydrometeors are considered with a spin-up time that allows the model to assimilate the initial conditions without going too far back in time from the event of interest. The results from the WRF model will serve as input to run a semi-distributed hydrological model to determine the rainfall-runoff relationship within an uncertainty assessment framework that will allow evaluating the implications of assumptions at

  2. A monsoon-like Southwest Australian circulation and its relation with rainfall in Southwest Western Australia

    Science.gov (United States)

    Feng, Juan; Li, Jianping; Li, Yun

    2010-05-01

    Using the NCEP/NCAR, ERA-40 reanalysis, and precipitation data from CMAP and Australian Bureau of Meteorology, the variability and circulation features influencing the southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is termed as the southwest Australian circulation (SWAC) for its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land-sea thermal contrast. The seasonal march of the SWAC in extended winter (May to October) is demonstrated by pentad data. An index based on the dynamics normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May to July) and late (August to October) winter. In weaker winter SWAC years there is an anti-cyclonic anomaly over southern Indian Ocean resulting in weaker westerlies and northerlies which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter, but also the long term drying trend over SWWA in early winter. The well-coupled SWAC-SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the Southern Hemisphere Annular Mode (SAM), El Niño/Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA.

  3. A multi-scale analysis of Namibian rainfall over the recent decade – comparing TMPA satellite estimates and ground observations

    Directory of Open Access Journals (Sweden)

    Xuefei Lu

    2016-12-01

    New hydrological insights for the region: The agreement between ground and satellite rainfall data was generally good at annual/monthly scales but large variations were observed at the daily scale. Results showed a spatial variability of rainfall trends across the rainfall gradient. We observed significant changes in frequency along with insignificant changes in intensity and no changes in total amount for the driest location, but no changes in any of the rainfall parameters were observed for the three wetter locations. The results also showed increased rainfall variability for the driest location. This study provided a useful approach of using TMPA data associated with trend analysis to extend the data record for ecohydrological studies for similar data scarce conditions. The results of this study will also help constrain IPCC predictions in this region.

  4. Prevalence of dental anomalies in orthodontic patients.

    Science.gov (United States)

    Thongudomporn, U; Freer, T J

    1998-12-01

    The prevalence of dental anomalies including agenesis, crown shape, tooth position, root shape, and invagination were examined in 111 orthodontic patients; 74.77 per cent of the patients exhibited at least one dental anomaly. Invagination was found to be the most prevalent anomaly, whereas supernumerary teeth and root dilaceration were the least frequent anomalies. Dental invagination and short or blunt roots were significantly more prevalent in females than in males. Implications for orthodontic treatment planning are discussed.

  5. Mapping the world's tropical cyclone rainfall contribution over land using TRMM satellite data: precipitation budget and extreme rainfall

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.

    2012-12-01

    A study was performed to characterize over-land precipitation associated with tropical cyclones (TCs) for basins around the world gathered in the International Best Track Archive for Climate Stewardship (IBTrACS). From 1998 to 2010, rainfall data from TRMM 3B42, showed that TCs accounted for 8-, 11-, 7-, 10-, and 12-% of the annual over-land precipitation for North America, East Asia, Northern Indian Ocean, Australia, and South-West Indian Ocean respectively, and that TC-contribution decreased importantly within the first 150-km from the coast. At the local scale, TCs contributed on average to more than 40% and up to 77% of the annual precipitation budget over very different climatic areas with arid or tropical characteristics. The East Asia domain presented the higher and most constant TC-rain (170±23%-mm/yr) normalized over the area impacted, while the Southwest Indian domain presented the highest variability (130±48%-mm/yr), and the North American domain displayed the lowest average TC-rain (77±27%-mm/yr) despite a higher TC-activity. The maximum monthly TC-contribution (11-15%) was found later in the TC-season and was a conjunction between the peak of TC-activity, TC-rainfall, and the domain annual antagonism between dry and wet regimes if any. Furthermore, TC-days that accounted globally for 2±0.5% of all precipitation events for all basins, represented between 11-30% of rainfall extremes (>101.6mm/day). Locally, TC-rainfall was linked with the majority (>70%) or the quasi-totality (≈100%) of extreme rainfall. Finally, because of their importance in terms of rainfall amount, the contribution of tropical cyclones is provided for a selection of fifty urban areas experiencing cyclonic activity. Cases studies conducted at the regional scale will focus on the link between TC-activity, water resources, and hydrohazards such as floods and droughts.

  6. Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake

    DEFF Research Database (Denmark)

    Tonetta, Denise; Staehr, Peter Anton; Petrucio, Mauricio Mello

    2017-01-01

    We investigated the implications of low rainfall and reduced water level for changes in nutrients and chlorophyll-a in a subtropical lake, and how these changes affected levels and atmospheric fluxes of CO2. Based on nine consecutive years of monthly monitoring of pH, alkalinity, oxygen, and temp......We investigated the implications of low rainfall and reduced water level for changes in nutrients and chlorophyll-a in a subtropical lake, and how these changes affected levels and atmospheric fluxes of CO2. Based on nine consecutive years of monthly monitoring of pH, alkalinity, oxygen......, and temperature, we calculated the pCO(2) and CO2 flux and related these to environmental drivers. Variations in annual rainfall, with extreme low levels along 2012-2014 caused the water level to decrease up to 1 m. Low water levels were associated with higher concentrations of chlorophyll-a and organic carbon...

  7. Spatial Coherence of Tropical Rainfall

    Science.gov (United States)

    Ratan, Ram; Venugopal, V.; Sukhatme, Jai; Murtugudde, Raghu

    2014-05-01

    We characterise the spatial coherence of tropical rain and its wet spells from observations (TRMM) and assess if models (CMIP5) are able to reproduce the observed features. Based on 15 years (1998-2012) of TRMM 3B42 (V7) 1-degree, daily rainfall, we estimate the spatial decorrelation scale (e-folding distance) of rain at each location in the tropics. A ratio of zonal to meridional spatial scales clearly illustrates that while rain patterns tend to be anisotropic (ratio of 4) over tropical ocean regions (particularly over Pacific ITCZ); over land regions, rain tends to be mostly isotropic. This contrast between ocean and land appears to be reasonably well captured by CMIP5 models, although the anisotropy (ratio) over ocean is much higher than in observations. A very curious behaviour in observations is the presence of a coherent band of spatial decorrelation lengths straddling the equator, in the East Pacific, reminiscent of a double ITCZ that some models tend to simulate. A similar analysis of wet spells of different durations suggests that the decorrelation scale is largely independent of the duration of wet spell.

  8. Meso-scale distribution of summer monsoon rainfall near the Western Ghats (India)

    Science.gov (United States)

    Patwardhan, S. K.; Asnani, G. C.

    2000-04-01

    The spatial distribution of southwest monsoon rainfall is studied over Maharashtra State (India), which includes part of the well-known Western Ghats mountain range, near its western boundary, running almost from north to south, perpendicular to the summer monsoon current in the lower troposphere. Meso-scale analysis of daily rainfall is performed for Maharashtra State, including the Western Ghats, for the two mid-monsoon months of July and August, during the 10-year period of 1971-1980. Strong and weak monsoon days were identified for the 5-year period of 1976-1980. The meso-scale pattern of average daily rainfall is obtained separately for strong and for weak monsoon conditions.All these average patterns show the following features: (i) the rainfall increases rapidly from the Arabian Sea coast close to the line of maximum height of the Western Ghats; (ii) there are two rainfall maxima corresponding to the two mountain peaks parallel to the coast line; (iii) between the two mountain peaks, there is a valley which is narrow at the western end (upwind end), broadening towards the east (on the downwind side). Ground contour height of the valley rises eastwards and ends as a part of the Deccan Plateau east of the Ghats. Here the valley opens out like a funnel with higher mountains flanking its two sides. In the valley, the rainfall increases from the coast up to the line of maximum height of the Ghats, and then decreases eastwards towards the plateau. The rainfall isopleths also take a funnel-shaped configuration. An interesting feature is that near the wider section of the valley funnel, there is a rainfall minimum and then the rainfall increases further eastwards on the downwind side. This feature of rainfall minimum is somewhat similar to the rainfall minimum reported by Asnani and Kinuthia (personal communication); Asnani (Asnani GC. 1993. Tropical Meteorology, Vol. I. Prof. G.C. Asnani: Pune, India; 603) attributed the rainfall minimum to the Bernoulli effect. A

  9. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia

    Indian Academy of Sciences (India)

    Olaniya Olusegun Mayowa; Sahar Hadi Pour; Shamsuddin Shahid; Morteza Mohsenipour; Sobri Bin Harun; Arien Heryansyah; Tarmizi Ismail

    2015-12-01

    The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfallrelated extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971–2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann–Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.

  10. Simulation and prediction of blocking in the Australian region and its influence on intra-seasonal rainfall in POAMA-2

    Science.gov (United States)

    Marshall, A. G.; Hudson, D.; Hendon, H. H.; Pook, M. J.; Alves, O.; Wheeler, M. C.

    2014-06-01

    We assess the depiction and prediction of blocking at 140°E and its impact on Australian intra-seasonal climate variability in the Bureau of Meteorology's dynamical intra-seasonal/seasonal forecast model Predictive Ocean Atmosphere Model for Australia version 2 (POAMA-2). The model simulates well the strong seasonality of blocking but underestimates its strength and frequency increasingly with lead time, particularly after the first fortnight of the hindcast, in connection with the model's drifting basic state. POAMA-2 reproduces well the large-scale structure of weekly-mean blocking anomalies and associated rainfall anomalies over Australia; the depiction of total blocking in POAMA-2 may be improved with the reduction of biases in the distribution of Indian Ocean rainfall via a tropical-extratropical wave teleconnection linking blocking activity at 140°E with tropical variability near Indonesia. POAMA-2 demonstrates the ability to skilfully predict the daily blocking index out to 16 days lead time for the ensemble mean hindcast, surpassing the average predictive skill of the individual hindcast members (5 days), the skill obtained from persistence of observed (2 days), and the decorrelation timescale of blocking (3 days). This skilful prediction of the blocking index, together with effective simulation of blocking rainfall anomalies, translates into higher skill in forecasting rainfall in weeks 2 and 3 over much of Australia when blocking is high at the initial time of the hindcast, compared to when the blocking index is small. POAMA-2 is thus capable of providing forecast skill for blocking rainfall on the intra-seasonal timescale to meet the needs of Australian farming communities, whose management practises often rely upon decisions being made a few weeks ahead.

  11. The spatio-temporal structures and role of low- and high-frequency intraseasonal modes in Indian Summer monsoon rainfall observed in TRMM data

    Science.gov (United States)

    Karmakar, Nirupam; Chakraborty, Arindam; Nanjundiah, Ravi S.

    2016-05-01

    This study uses precipitation estimates from the Tropical Rainfall Measuring Mission to estimate the intensity and examine the spatiotemporal patterns in the modes found in intraseasonal timescale over the Indian monsoon region during boreal summer. Here, using multichannel singular spectrum analysis, two dominant modes of oscillations are found in the intraseasonal timescale with periodicity of 10-20-days and 20-60-days, respectively. 20-60-days mode shows northward propagation from the equatorial Indian Ocean linked with the eastward propagating modes of convective systems over the tropics. 10-20-days mode shows very complex structure with a northwestward propagating anomaly pattern emanating from the Indonesian coast moving towards central India. This pattern is found to have a possible interaction with a structure emerging from higher latitudes propagating southeastwards. The two intraseasonal modes contribute comparable amount to the total rainfall variability. The intensity of the 20-60-days (10-20-days) mode show significantly strong inverse (direct) relationship with all- India June-September rainfall and both the modes exhibit profound variability in their intensity in interannual scale. This study also establishes that the probability of getting good amount of rainfall (no rainfall) over central India increases significantly if the two intraseasonal modes exhibit positive (negative) anomalies over the region. Relation between the ISO intensities and sea surface temperature is also discussed. This study points towards the fact that the knowledge of ISO phases can increase the skill in the probabilistic forecasting of rainfall over India.

  12. A point rainfall model and rainfall intensity-duration-frequency analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Chul-Sang; Jung, Kwang-Sik [Korea University, Jochiwon(Korea); Kim, Nam-Won [Korea Institute of Construction Technology, Koyang(Korea)

    2001-12-31

    This study proposes a theoretical methodology for deriving a rainfall intensity-duration-frequency(I-D-F) curve using a simple rectangular pulses Poisson process model. As the I-D-F curve derived by considering the model structure is dependent on the rainfall model parameters estimated using the observed first and second order statistics, it becomes less sensitive to the unusual rainfall events than that derived using the annual maxima rainfall series. This study has been applied to the rainfall data at Seoul and Incheon stations to check its applicability by comparing the two I-D-F curves from the model and the data. The results obtained are as followed. (1) As the duration becomes longer, the overlap probability increases significantly. However, its contribution to the rainfall intensity decreases a little. (2) When considering the overlap of each rainfall event, especially for large duration and return period, we could see obvious increases of rainfall intensity. This result is normal as the rainfall intensity is calculated by considering both the overlap probability and return period. Also, the overlap effect for Seoul station is found much higher than that for Incheon station, which is mainly due to the different overlap probabilities calculated using different rainfall model parameter sets. (3) As the rectangular pulses Poisson processes model used in this study cannot consider the clustering characteristics of rainfall, the derived I-D-F curves show less rainfall intensities than those from the annual maxima series. However, overall pattern of both I-D-F curves are found very similar, and the difference is believed to be overcome by use of a rainfall model with the clustering consideration. (author). 14 refs., 6 tabs., 2 figs.

  13. Physical simulation of urban rainfall infiltration

    Institute of Scientific and Technical Information of China (English)

    LI Jie; ZENG Bing; WANG Yan-xia; SHEN Lei

    2008-01-01

    To meet the demand of urban rainwater integrated management, we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters. We discuss the feasibility of quantitative regulations of urban underlying surface rainfall infiltration conditions and a practical application of a simulated experimental system. In a comprehensive analysis of the composition of an effective rainwater harvesting system and selection of water storage material, we simulated the major parameters of an experimental area rainfall, soil moisture and water storage capacity by providing an effective regulation of the experimental area runoff coefficient, obtained from basic data.

  14. Detecting Rainfall Onset Using Sky Images

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based sky cameras (popularly known as Whole Sky Imagers) are increasingly used now-a-days for continuous monitoring of the atmosphere. These imagers have higher temporal and spatial resolutions compared to conventional satellite images. In this paper, we use ground-based sky cameras to detect the onset of rainfall. These images contain additional information about cloud coverage and movement and are therefore useful for accurate rainfall nowcast. We validate our results using rain gauge measurement recordings and achieve an accuracy of 89% for correct detection of rainfall onset.

  15. [Ectopia cordis and cardiac anomalies].

    Science.gov (United States)

    Cabrera, Alberto; Rodrigo, David; Luis, María Teresa; Pastor, Esteban; Galdeano, José Miguel; Esteban, Susana

    2002-11-01

    Ectopia cordis is a rare disease that occurs in 5.5 to 7.9 per million live births. Only 267 cases had been reported as of 2001, most (95%) associated with other cardiac anomalies. We studied the cardiac malformations associated in 6 patients with ectopia cordis. Depending on where the defect was located, the cases of ectopia were classified into four groups: cervical, thoracic, thoraco-abdominal, and abdominal. All 6 patients died before the third day of life, 4 during delivery. Three of the patients were included in the thoracic group, whereas the other 3 belonged to the thoraco-abdominal group. All the patients had associated ventricular septal defects, 3 double-outlet right ventricle (50%) and the rest (50%) tetralogy of Fallot-pulmonary atresia. Two patients with double-outlet right ventricle presented mitral-valve pathology, a parachute valve and an atresic mitral valve. None of these cardiac anomalies have been reported to date.

  16. On Anomaly Mediated SUSY Breaking

    CERN Document Server

    de Alwis, S P

    2008-01-01

    A discrepancy between the Anomaly Mediated Supersymmetry Breaking (AMSB) gaugino mass calculated from the work of Kaplunovsky and Louis (hep-th/9402005) (KL) and other calculations in the literature is explained, and it is argued that the KL expression is the correct one relevant to the Wilsonian action. Furthermore it is argued that the AMSB contribution to the squark and slepton masses should be replaced by the contribution pointed out by Dine and Seiberg (DS) which has nothing to do with Weyl anomalies. This is not in general equivalent to the AMSB expression, and it is shown that there are models in which the usual AMSB expression would vanish but the DS one is non-zero. In fact the latter has aspects of both AMSB and gauge mediated SUSY breaking. In particular like the latter, it gives positive squared masses for sleptons.

  17. Survey of