WorldWideScience

Sample records for monthly precipitation totals

  1. Monthly Total Precipitation Observation for Climate Prediction Center (CPC)Forecast Divisions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This ASCII dataset contains monthly total precipitation for 102 Forecast Divisions within the conterminous U.S. It is derived from the monthly NCDC climate division...

  2. Global Precipitation Climatology Project (GPCP) - Monthly, Version 2.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products with the two primary products being the monthly satellite-gauge and associated...

  3. A model for estimating rains' area, using the dependence of the time correlation of sites' monthly precipitation totals on the distance between sites

    Science.gov (United States)

    Walanus, Adam; Cebulska, Marta; Twardosz, Robert

    2016-05-01

    Based on the monthly precipitation series from 16 sites (in the Polish Carpathian Mountains), of 132 years' length, a relatively precise scatterplot of correlation coefficients between sites versus distance between sites is obtained. The "rains" of Gaussian shape, in the spatial sense, are a good model, which produces a scatterplot very closely resembling the observed one. The essential parameter of the model is the area covered by the modeled rains, which results to be of order 30-50 km, though with about a twice lower value for the N-S direction.

  4. Correlation between total precipitable water and precipitation over East Asia

    Science.gov (United States)

    Keum, Wangho; Lim, Gyu-Ho

    2017-04-01

    The precipitation rate(PR) and the total precipitable water(TPW) interact with various physical mechanisms. The correlation of two variables changes with difference of domain resolution and characteristics of the region. This poster analyzes the correlation between PR and TPW over East Asia using Cyclostationary Empirical Orthogonal Function(CSEOF) which is one of the PCA analysis. The CSEOF is useful to search a periodic pattern of the data. The anomalies which is subtracted climatological mean from the original data are used to represent annual cycles. Two variances of ERA-Interim Monthly Total Column Water vapor and GPCP monthly precipitation amounts with 372 time since January, 1984 to December, 2014 are decomposed into several modes separately. The first mode which explain largest variance are used in analysis. PC of both PR and TPW increase recently on mean value and amplitude, and they show considerable correlation on phase. The correlation coefficient of PR and TPW is 0.61 and maintains the same values by month. The result of harmonic analysis shows 2 to 6 year oscillations. As result of decomposed modes of two variables, there is the relationship between TPW PC series and horizontal moisture gradient. The Horizontal moist gradient can change affect moisture flux convergence which is one of important variable of rainfall events.

  5. NESDIS Blended Total Precipitable Water (TPW) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Total Precipitable Water (TPW) product is derived from multiple sensors/satellites. The Percentage of TPW normal (PCT), or TPW anomaly, shows the...

  6. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  7. Trends in monthly precipitation over the northwest of Iran (NWI)

    Science.gov (United States)

    Asakereh, Hossein

    2016-08-01

    Increasing global temperatures during the last century have had their own effects on other climatic conditions, particularly on precipitation characteristics. This study was meant to investigate the spatial and temporal monthly trends of precipitation using the least square error (LSE) approach for the northwest of Iran (NWI). To this end, a database was obtained from 250 measuring stations uniformly scattered all over NWI from 1961 to 2010. The spatial average of annual precipitation in NWI during the period of study was approximately 220.9-726.7 mm. The annual precipitation decreased from southwest to northeast, while the large amount of precipitation was concentrated in the south-west and in the mountainous areas. All over NWI, the maximum and minimum precipitation records occurred from March to May and July to September, respectively. The coefficient of variation (CV) is greater than 44 % in all of NWI and may reach over 76 % in many places. The greatest range of CV, for instance, occurred during July. The spatial variability of precipitation was consistent with a tempo-spatial pattern of precipitation trends. There was a considerable difference between the amounts of change during the months, and the negative trends were mainly attributed to areas concentrated in eastern and southern parts of NWI far from the western mountain ranges. Moreover, limited areas with positive precipitation trends can be found in very small and isolated regions. This is observable particularly in the eastern half of NWI, which is mostly located far from Westerlies. On the other hand, seasonal precipitation trends indicated a slight decrease during winter and spring and a slight increase during summer and autumn. Consequently, there were major changes in average precipitation that occurred negatively in the area under study during the observation period. This finding is in agreement with those findings by recent studies which revealed a decreasing trend of around 2 mm/year over NWI

  8. The Contribution of Extreme Precipitation to the Total Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.

  9. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  10. Interpolation of monthly precipitation amounts in mountainous catchments with sparse precipitation networks

    Directory of Open Access Journals (Sweden)

    Alexandra P Jacquin

    2013-12-01

    Full Text Available Most studies dealing with the interpolation of precipitation gauge data have focused in areas where the meteorological network is relatively dense, implying that it is still unknown what interpolation methods are more appropriate in the case of mountain catchments with scarce gauge data. This study evaluates the applicability of Kriging with External Drift (KED and the Optimal Interpolation Method (OIM for interpolation of monthly precipitation in these situations. Thiessen Polygons (TP are used as benchmark. The study area corresponds to the upper subcatchment of Aconcagua River, Central Chile. Cross-validation experiments revealed that all these methods show similar performance in the lower zone of the study area, but OIM outperforms TP and KED at high elevations. Optimal Interpolation Method generally produces the smallest bias in the Andean zone of the study area, with mean errors whose absolute values are smaller than 9% of mean monthly precipitation. From April to September, the root mean squared errors of OIM are between 14% and 33% smaller than those of TP and KED in this zone. Although KED achieves a good agreement to mean monthly values at high elevations (mean errors smaller than 19% in absolute value, its performance is comparable to that of TP in terms of root mean squared errors. Long-term water balances did not provide evidence against the applicability of KED and OIM. Nevertheless, the results of the cross-validation experiments indicate that OIM is a better alternative than KED for the interpolation of monthly precipitation in the study area.

  11. Monthly Mean Precipitation Sums at Russian Arctic Stations, 1966-1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly mean precipitation sums from Russian arctic stations. Precipitation measurements were acquired using a Tretyakov precipitation gauge....

  12. Anomalously heavy monthly and seasonal precipitation in the Polish Carpathian Mountains and their foreland during the years 1881-2010

    Science.gov (United States)

    Twardosz, Robert; Cebulska, Marta; Walanus, Adam

    2016-10-01

    The paper addresses the frequency, amount and geographic coverage of anomalously heavy precipitation in southern Poland in relation to atmospheric circulation at the monthly and seasonal scales between 1881 and 2010. The Carpathian Mountains and their foreland were selected for the study as an area known for its high precipitation totals and frequent precipitation-triggered natural disasters, such as floods and landslides. Records from 18 stations were used to identify anomalously heavy precipitation (AHP) defined for the purposes of the study, as the top quartile ( Q 75 %) plus 1.5 times the interquartile gap (H) of the precipitation total ( P ≥ Q 75 % + 1.5 H). The study found that most cases of AHP were recorded at one single station each. This suggests that, in addition, to the influence of circulation, local factors also play a major role in the formation of particularly heavy precipitation. The greatest absolute anomalously high precipitation totals were recorded in two disparate parts of the study area: (i) its western part exposed to wet air masses from over the Atlantic Ocean brought in by the dominant western circulation in the temperate zone and (ii) elevated parts of its south-eastern part. Two months with AHP (AHP months) occurred over the entire area (18 stations) in May 1940 and 2010. The latter case had both the greatest absolute totals (over 500 mm) and relative totals defined as their ratio to the long-term average (500 %), and it triggered a catastrophic flood in the Upper Vistula basin.

  13. Climate Prediction Center (CPC) One Month Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a probabilistic one-month precipitation outlook for the United States twice a month. CPC issues an initial monthly outlook...

  14. Climate Prediction Center (CPC)Monthly Precipitation Reconstruction (PREC) Spatial Resolution of 2.5 degree

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  15. Climate Prediction Center (CPC)Monthly Precipitation Reconstruction (PREC) at Spatial Resolution of 1 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  16. Development of a Global Historic Monthly Mean Precipitation Dataset

    Institute of Scientific and Technical Information of China (English)

    杨溯; 徐文慧; 许艳; 李庆祥

    2016-01-01

    Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to

  17. Development of a global historic monthly mean precipitation dataset

    Science.gov (United States)

    Yang, Su; Xu, Wenhui; Xu, Yan; Li, Qingxiang

    2016-04-01

    Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to

  18. Average historical annual total precipitation, projected total precipitation (inches), and relative change in total precipitation (% change from baseline) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual total precipitation, projected total precipitation, and relative change in total precipitation for the northern portion of...

  19. Average historical annual total precipitation, projected total precipitation (mm), and relative change in total precipitation (% change from baseline) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual total precipitation, projected total precipitation, and relative change in total precipitation for the northern portion of...

  20. Average historical annual total precipitation, projected total precipitation (inches), and relative change in total precipitation (% change from baseline) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual total precipitation, projected total precipitation, and relative change in total precipitation for the northern portion of...

  1. Average historical annual total precipitation, projected total precipitation (mm), and relative change in total precipitation (% change from baseline) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual total precipitation, projected total precipitation, and relative change in total precipitation for the northern portion of...

  2. A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China

    Directory of Open Access Journals (Sweden)

    Wenlong Jing

    2016-10-01

    Full Text Available Environmental monitoring of Earth from space has provided invaluable information for understanding land–atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation–land surface characteristics. Daytime land surface temperature, nighttime land surface temperature, and day–night land surface temperature differences were introduced as variables in addition to the Normalized Difference Vegetation Index (NDVI, the Digital Elevation Model (DEM, and geolocation (longitude, latitude. Four machine learning regression algorithms, the classification and regression tree (CART, the k-nearest neighbors (k-NN, the support vector machine (SVM, and random forests (RF, were implemented to downscale monthly TRMM 3B43 V7 precipitation data from 25 km to 1 km over North China for the purpose of comparison of algorithm performance. The downscaled results were validated based on observations from meteorological stations and were also compared to a previous downscaling algorithm. According to the validation results, the RF-based model produced the results with the highest accuracy. It was followed by SVM, CART, and k-NN, but the accuracy of the downscaled results using SVM relied greatly on residual correction. The downscaled results were well correlated with the observations during the year, but the accuracies were relatively lower in July to September. Downscaling errors increase as monthly total precipitation increases, but the RF model was less affected by this proportional effect between errors and observation compared with the other algorithms. The variable importances of the land surface temperature (LST feature variables were higher than those of NDVI, which indicates the significance of considering the precipitation–land surface temperature

  3. Climate Prediction Center (CPC) Three Month Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a series of thirteen probabilistic three-month precipitation outlooks for the United States. CPC issues the thirteen...

  4. Monthly Precipitation Input Data for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly precipitation for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an approximate 50,000...

  5. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  6. Climate Prediction Center (CPC) Monthly U.S. Selected Cities Precipitation Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly U.S. reported precipitation amounts in hundredths of inches (ex 100 is 1.00 inches) generated from the GTS metar(hourly) and synoptic(6-hourly)observations...

  7. High resolution reconstruction of monthly autumn and winter precipitation of Iberian Peninsula for last 150 years.

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; González-Hidalgo, J. C.; Ramos, A.

    2012-04-01

    Precipitation over Iberian Peninsula (IP) presents large values of interannual variability and large spatial contrasts between wet mountainous regions in the north and dry regions in the southern plains. Unlike other European regions, IP was poorly monitored for precipitation during 19th century. Here we present a new approach to fill this gap. A set of 26 atmospheric circulation weather types (Trigo R.M. and DaCamara C.C., 2000) derived from a recent SLP dataset, the EMULATE (European and North Atlantic daily to multidecadal climate variability) Project, was used to reconstruct Iberian monthly precipitation from October to March during 1851-1947. Principal Component Regression Analysis was chosen to develop monthly precipitation reconstruction back to 1851 and calibrated over 1948-2003 period for 3030 monthly precipitation series of high-density homogenized MOPREDAS (Monthly Precipitation Database for Spain and Portugal) database. Validation was conducted over 1920-1947 at 15 key site locations. Results show high model performance for selected months, with a mean coefficient of variation (CV) around 0.6 during validation period. Lower CV values were achieved in western area of IP. Trigo, R. M., and DaCamara, C.C., 2000: "Circulation weather types and their impact on the precipitation regime in Portugal". Int. J. Climatol., 20, 1559-1581.

  8. High resolution reconstruction of monthly precipitation of Iberian Peninsula using circulation weather types

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; Gonzalez-Hidalgo, J. C.; Ramos, A. M.

    2012-06-01

    Precipitation over the Iberian Peninsula (IP) is highly variable and shows large spatial contrasts between wet mountainous regions, to the north, and dry regions in the inland plains and southern areas. In this work, a high-density monthly precipitation dataset for the IP was coupled with a set of 26 atmospheric circulation weather types (Trigo and DaCamara, 2000) to reconstruct Iberian monthly precipitation from October to May with a very high resolution of 3030 precipitation series (overall mean density one station each 200 km2). A stepwise linear regression model with forward selection was used to develop monthly reconstructed precipitation series calibrated and validated over 1948-2003 period. Validation was conducted by means of a leave-one-out cross-validation over the calibration period. The results show a good model performance for selected months, with a mean coefficient of variation (CV) around 0.6 for validation period, being particularly robust over the western and central sectors of IP, while the predicted values in the Mediterranean and northern coastal areas are less acute. We show for three long stations (Lisbon, Madrid and Valencia) the comparison between model and original data as an example to how these models can be used in order to obtain monthly precipitation fields since the 1850s over most of IP for this very high density network.

  9. Improvement of ECMWF monthly forecasts of precipitation over France with an analog method

    Science.gov (United States)

    Berthelot, M.; Dubus, L.; Gailhard, J.

    2010-09-01

    Optimal operation of hydro-power plants requires accurate forecasts of precipitation which are then integrated into hydrological models to forecast river flows and water volumes in reservoirs. Precipitation is a difficult parameter to forecast, especially at long lead times (monthly and over) one of the reasons being the too coarse resolution of numerical weather prediction systems. In this study, we evaluate ECMWF's monthly forecasts of precipitation over 9 important basins in France. The deterministic approach shows that forecasts are useless over week 1. Using the probabilistic approach allows to get useful information for some events (lower and upper terciles for instance), up to week 3, but the overall scores are quite low, and hardly better than climatological scores. In a second step, EDF's analog method, currently used in operations for D+7 forecasts, has been adapted to ECWMF's monthly forecasts. It uses Z700 and Z1000 fields over North Atlantic and Europe to get local precipitations. For the nine catchments studied here and for the four weeks, results show an overall improvement of analog precipitation forecasts compared to raw forecasts. Improvement is also identified with respect to climatology in more than half of the catchments. The prediction skill is mostly pronounced for extreme events (low and heavy precipitations). The analog method thus presents significant performance, suited for operational use. Improvements can also be expected with some optimization of the method (mix of predictors, new similarity criterion…)

  10. Interpolation of monthly precipitation in mountainous areas with limited gauge data using Universal Kriging

    Science.gov (United States)

    Paz Jacquin, Alexandra

    2013-04-01

    Because orography can strongly affect the spatial distribution of precipitation, precipitation fields in mountainous areas are not likely to be spatially homogenous, as traditional interpolation methods used in hydrology, such as Thiessen Polygons, implicitly assume. Universal Kriging (UKr) is a geostatistical interpolation method that is able to account for the existence of an external drift, i.e. a large-scale trend in the long-term expectation of precipitation. The function m that defines precipitation expectation at each location x is supposed to be a linear combination of basis functions. The application of UKr requires a prior assumption on the nature of these basis functions, a decision that may be difficult if the precipitation network is too sparse to confidently prescribe a choice merely based on regression analysis. This study describes the process of selection of an appropriate external drift model for the application of UKr to the interpolation of monthly precipitation in the Andes of Central Chile, a region where precipitation is strongly influenced by elevation and very limited gauge data is available. The study area is located in the Aconcagua River catchment. Monthly data from nine stations in the period April 1965-March 2001 are used. These stations are located between 640[m.a.s.l.] and 2765[m.a.s.l.] Considering that precipitation in the area is seasonal with respect to both precipitation amounts and their spatial dependence structure, as indicated by the variograms of monthly precipitation, data from each month of the year are treated separately. In order to account for the relationship between long-term mean monthly precipitation and elevation z shown by field data, the following external drift models m(z(x)) are tested: linear, parabolic and logarithmic trend models. The goodness of fit of precipitation estimates is evaluated by means of leave one out cross validation experiments. Root mean squared error and mean error statistics are

  11. FRACTAL ANALYSIS OF MONTHLY EVAPORATION AND PRECIPITATION TIME SERIES AT CENTRAL MEXICO

    Directory of Open Access Journals (Sweden)

    Rafael Magallanes Quintanar

    2015-09-01

    Full Text Available Advances on climate change research, as well as the assessment of the potential impacts of climate change on water resources, would allow the understanding of the spatial and temporal variability of land-surface precipitation and evaporation time series at local and regional levels. In the present study, the spectral analysis approach was applied on monthly evaporation and precipitation anomaly time series with the aim of estimating their self-affinity statistics. The behavior of estimated fractal dimension values of evaporation time series throughout Zacatecas State territory is irregular, and noise in all the evaporation anomaly time series tends to have a persistent behavior. On the other hand, the behavior of estimated fractal dimension values of most of the precipitation time series throughout Zacatecas State territory tends to be like the Brownian motion. Self-affinity statistics of monthly evaporation or precipitation anomaly time series and geographic coordinates of 32 stations were used to estimate correlation coefficients; the results are compelling evidence concerning monthly precipitation anomaly behavior tends to be more regular toward North of Zacatecas State territory, that is, toward driest areas.

  12. Statistical significance of trends in monthly heavy precipitation over the US

    KAUST Repository

    Mahajan, Salil

    2011-05-11

    Trends in monthly heavy precipitation, defined by a return period of one year, are assessed for statistical significance in observations and Global Climate Model (GCM) simulations over the contiguous United States using Monte Carlo non-parametric and parametric bootstrapping techniques. The results from the two Monte Carlo approaches are found to be similar to each other, and also to the traditional non-parametric Kendall\\'s τ test, implying the robustness of the approach. Two different observational data-sets are employed to test for trends in monthly heavy precipitation and are found to exhibit consistent results. Both data-sets demonstrate upward trends, one of which is found to be statistically significant at the 95% confidence level. Upward trends similar to observations are observed in some climate model simulations of the twentieth century, but their statistical significance is marginal. For projections of the twenty-first century, a statistically significant upwards trend is observed in most of the climate models analyzed. The change in the simulated precipitation variance appears to be more important in the twenty-first century projections than changes in the mean precipitation. Stochastic fluctuations of the climate-system are found to be dominate monthly heavy precipitation as some GCM simulations show a downwards trend even in the twenty-first century projections when the greenhouse gas forcings are strong. © 2011 Springer-Verlag.

  13. An improved parameterization of the mean monthly precipitation in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V. M; Oda, B; Adem, J [Centro de Ciencias de la Atmosfera, Mexico, D.F. (Mexico)

    2001-01-01

    A mean monthly precipitation parameterization is given. It is developed by a multiple linear regression equation in terms of the temperature and the horizontal wind. Using a period of eleven years, from January 1982 to December 1992, for the anomalies of the mean monthly precipitation, temperature, zonal and meridional wind, and vorticity of the wind as variable data, we have obtained a skill above 80% in the estimation of the mean monthly precipitation anomalies with the Adems Thermodynamic Model, or with any others energy balance or general circulation models, as well as to compute monthly precipitation anomalies from observed anomalies of temperature and horizontal wind data. [Spanish] Se presenta una parametrizacion de la precipitacion media mensual desarrollada en una ecuacion de regresion linear multiple en funcion de la temperatura y del viento horizontal. En el calculo de los coeficientes de la ecuacion se usaron los datos de un periodos de once anos, de enero de 1982 a diciembre de 1992, de las anomalias medias mensuales de la precipitacion con el modelo termodinamico de Adem, u otros modelos de balance de energia o de circulacion general de la atmosfera, asi como para calcular anomalias mensuales de precipitacion a partir de datos de anomalias de temperatura y viento observados.

  14. Climate Prediction Center (CPC) Monthly Precipitation Reconstruction of Ocean(PRECO)at Spatial Resolution of 2.5 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  15. Climate Prediction Center(CPC) Monthly Precipitation Reconstruction (PREC)at Spatial Resolution of 0.5 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  16. An automatic method to homogenize trends in long-term monthly precipitation series

    Science.gov (United States)

    Rustemeier, E.; Kapala, A.; Mächel, H.; Meyer-Christoffer, A.; Schneider, U.; Ziese, M.; Venema, V.; Becker, A.; Simmer, C.

    2012-04-01

    Lack of homogeneity of long-term series of in-situ precipitation observations is a known problem and requires time consuming manual data correction in order to allow for a robust trend analysis. This work is focused on the development of an algorithm for automatic data correction of multiple stations. The algorithm relies on the similarity of climate signals between close stations. It consists of three steps: 1) Construction of networks of comparable precipitation behaviour; 2) Detection of breakpoints; 3) Trend correction. Detection and correction are based on the homogenization software (Prodige) adopted from Météo France (Caussinus and Mestre 2004). The networks are constructed based on monthly accumulated precipitation and several indices. For the classification, principal component analysis in S-mode is applied followed by a VARIMAX rotation. Within each network, a segmentation method is used to detect the breaks. In order to develop a fully automatic method, scaled time series are combined to create the reference series. The monthly correction applied is a multiple linear regression as described in Mestre, 2004 which also conserves the annual cycle. At present, the algorithm has been used to homogenize 100 years of precipitation records from stations in Germany, without any missing values. The data has been digitized recently by the Meteorological Institute of the University of Bonn and the Deutscher Wetterdienst. The resulting networks correspond well to the German geographical regions. The number of detected breaks varies between 0 ~7 breaks per station. The majority of breaks is very small (below ±10 mm per year) despite a few high (up to ±200 mm) ones. In future, the algorithm will be used to generate a homogenous global precipitation data set HOMPRA for the period 1951-2005 using more than 16000 stations in collaboration with the Global Precipitation Climatology Centre (GPCC, Becker et al., 2012).

  17. Predicting monthly precipitation along coastal Ecuador: ENSO and transfer function models

    Science.gov (United States)

    de Guenni, Lelys B.; García, Mariangel; Muñoz, Ángel G.; Santos, José L.; Cedeño, Alexandra; Perugachi, Carlos; Castillo, José

    2017-08-01

    It is well known that El Niño-Southern Oscillation (ENSO) modifies precipitation patterns in several parts of the world. One of the most impacted areas is the western coast of South America, where Ecuador is located. El Niño events that occurred in 1982-1983, 1987-1988, 1991-1992, and 1997-1998 produced important positive rainfall anomalies in the coastal zone of Ecuador, bringing considerable damage to livelihoods, agriculture, and infrastructure. Operational climate forecasts in the region provide only seasonal scale (e.g., 3-month averages) information, but during ENSO events it is key for decision-makers to use reliable sub-seasonal scale forecasts, which at the present time are still non-existent in most parts of the world. This study analyzes the potential predictability of coastal Ecuador rainfall at monthly scale. Instead of the discrete approach that considers training models using only particular seasons, continuous (i.e., all available months are used) transfer function models are built using standard ENSO indices to explore rainfall forecast skill along the Ecuadorian coast and Galápagos Islands. The modeling approach considers a large-scale contribution, represented by the role of a sea-surface temperature index, and a local-scale contribution represented here via the use of previous precipitation observed in the same station. The study found that the Niño3 index is the best ENSO predictor of monthly coastal rainfall, with a lagged response varying from 0 months (simultaneous) for Galápagos up to 3 months for the continental locations considered. Model validation indicates that the skill is similar to the one obtained using principal component regression models for the same kind of experiments. It is suggested that the proposed approach could provide skillful rainfall forecasts at monthly scale for up to a few months in advance.

  18. Homogeneity of monthly precipitation series from 1932 to 2010 in the Souss Massa Region-Morocco

    Science.gov (United States)

    Abahous, Houria; Ronchail, Josyane; Sifeddine, Abdelfattah; Kenny, Lahcen; Bouchaou, Lhoussaine

    2017-04-01

    Water resources are vulnerable to precipitation fluctuations, especially in arid area such as the Souss-Massa region. Therefore, the analysis and the simulation of the regional rainfall characteristics at decadal scale are of great importance. The availability of long-term time series is often limited by their quality. A network of local meteorological stations recording monthly precipitations from 1932 to 2010 is provided by the Hydraulic basin of Souss Massa Agency. A dataset of 19 selected stations is undergoing an interative process of quality control and homogeneity assessment using ProclimDB/Anclim and Homer softwares. Suspicious monthly data are identified with a combination of criterions. We analyse the standardized precipitation index to better distinguish real climate events from erroneous data in the analyzed series. Statistically significant annual change-points are detected with both absolute and relative methods by using a criterion of validation. The temporal distribution of outliers shows an annual cycle and a decrease of their occurence since the eighties. We also assess the year of 1973 as a change point related to climate in Western High Atlas Mountains stations.

  19. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  20. A comparison of total precipitation values estimated from measurements and a 1D cloud model

    Directory of Open Access Journals (Sweden)

    Z. Aslan

    Full Text Available The purpose of this study is to establish a relation between observed total precipitation values and estimations from a one-dimensional diagnostic cloud model. Total precipitation values estimated from maximum liquid water content, maximum vertical velocity, cloud top height, and temperature excess are also used to provide an equation for the total precipitation prediction. Data for this study were collected in Istanbul during the autumns of 1987 and 1988. The statistical models are developed with multiple regression technique and then comparatively verified with independent data for 1990. The multiple regression coefficients are in the range of 75% to 80% in the statistical models. Results of the test showed that total precipitation values estimated from the above techniques are in good agreement, with correlation coefficient between 40% and 46% based on test data for 1990.

  1. Mapping the mean monthly precipitation of a small island using kriging with external drifts

    Science.gov (United States)

    Cantet, Philippe

    2015-09-01

    This study focuses on the spatial distribution of mean annual and monthly precipitation in a small island (1128 km2) named Martinique, located in the Lesser Antilles. Only 35 meteorological stations are available on the territory, which has a complex topography. With a digital elevation model (DEM), 17 covariates that are likely to explain precipitation were built. Several interpolation methods, such as regression-kriging (MLRK, PCRK,and PLSK) and external drift kriging (EDK) were tested using a cross-validation procedure. For the regression methods, predictors were chosen by established techniques whereas a new approach is proposed to select external drifts in a kriging which is based on a stepwise model selection by the Akaike Information Criterion (AIC). The prediction accuracy was assessed at validation sites with three different skill scores. Results show that using methods with no predictors such as inverse distance weighting (IDW) or universal kriging (UK) is inappropriate in such a territory. EDK appears to outperform regression methods for any criteria, and selecting predictors by our approach improves the prediction of mean annual precipitation compared to kriging with only elevation as drift. Finally, the predicting performance was also studied by varying the size of the training set leading to less conclusive results for EDK and its performance. Nevertheless, the proposed method seems to be a good way to improve the mapping of climatic variables in a small island.

  2. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Monthly Precipitation, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous...

  3. An assessment of the isotopic (2H/18O) integrity of water samples collected and stored by unattended precipitation totalizers

    Science.gov (United States)

    Terzer, Stefan; Wassenaar, Leonard I.; Douence, Cedric; Araguas-Araguas, Luis

    2016-04-01

    The IAEA-WMO Global Network of Isotopes in Precipitation (GNIP) provides worldwide δ18O and δ2H data for numerous hydrological and climatological studies. The traditional GNIP sample collection method relies on weather station operators to accumulate precipitation obtained from manual rain gauges. Over the past decades, widespread weather station automatization resulted in the increased use of unattended precipitation totalizers that accumulate and store the rainwater in the field for up to one month. Several low-tech measures were adopted to prevent in situ secondary evaporative isotopic enrichment (SEE) of totalized water samples (i.e. disequilibrium isotopic fractionation after precipitation is stored in the collection device). These include: (a) adding a 0.5-1 cm floating layer of paraffin oil to the totalizer bottle, (b) using an intake tube leading from the collection funnel and submerged to the bottom of the totalizer bottle, or (c) placing a table tennis ball in the funnel aiming to reduce evaporation of the collected water from the receiving bottle to the atmosphere. We assessed the isotopic integrity of stored rainwater samples for three totalizers under controlled settings: each aforementioned totalizer was filled with a 100 or 500 mL of isotopically known water and installed in the field with the intake funnels sheltered to prevent rainwater collection. Potential evapotranspiration (PET) was obtained from on-site meteorological recordings. Stored evaporative loss from each totalizer was evaluated on a monthly basis; gravimetrically and by analysing δ18O and δ2H of the stored water, for a period of 6 months and a cumulative PET of ˜500 mm. The gravimetric and isotope results revealed that for smaller water volumes (100 ml, corresponding to ca. 5 mm of monthly precipitation), negligible isotope enrichment (δ18O) was observed in the paraffin-oil based totalizer, whereas unacceptable evaporative isotope effects were observed for the ball

  4. Mapping the mean monthly precipitation of a small island using kriging with external drifts

    Science.gov (United States)

    Cantet, Philippe

    2017-01-01

    This study focuses on the spatial distribution of mean annual and monthly precipitation in a small island (1128 km2) named Martinique, located in the Lesser Antilles. Only 35 meteorological stations are available on the territory, which has a complex topography. With a digital elevation model (DEM), 17 covariates that are likely to explain precipitation were built. Several interpolation methods, such as regression-kriging (𝖬𝖫𝖱𝖪, 𝖯𝖢𝖱𝖪, and 𝖯𝖫𝖲𝖪) and external drift kriging (𝖤𝖣𝖪) were tested using a cross-validation procedure. For the regression methods, predictors were chosen by established techniques whereas a new approach is proposed to select external drifts in a kriging which is based on a stepwise model selection by the Akaike Information Criterion (AIC). The prediction accuracy was assessed at validation sites with three different skill scores. Results show that using methods with no predictors such as inverse distance weighting (𝖨𝖣𝖶) or universal kriging (𝖴𝖪) is inappropriate in such a territory. 𝖤𝖣𝖪 appears to outperform regression methods for any criteria, and selecting predictors by our approach improves the prediction of mean annual precipitation compared to kriging with only elevation as drift. Finally, the predicting performance was also studied by varying the size of the training set leading to less conclusive results for 𝖤𝖣𝖪 and its performance. Nevertheless, the proposed method seems to be a good way to improve the mapping of climatic variables in a small island.

  5. Global Precipitation Variations and Long-term Changes Derived from the GPCP Monthly Product

    Science.gov (United States)

    Adler, Robert F.; Gu, Guojun; Huffman, George; Curtis, Scott

    2005-01-01

    Global and large regional rainfall variations and possible long-term changes are examined using the 25-year (1979-2004) monthly dataset from the Global Precipitation Climatology Project (GPCP). The emphasis is to discriminate among the variations due to ENSO, volcanic events and possible long-term changes. Although the global change of precipitation in the data set is near zero, the data set does indicate an upward trend (0.13 mm/day/25yr) and a downward trend (-0.06 mm/day/25yr) over tropical oceans and lands (25S-25N), respectively. This corresponds to a 4% increase (ocean) and 2% decrease (land) during this time period. Techniques are applied to attempt to eliminate variations due to ENSO and major volcanic eruptions. The impact of the two major volcanic eruptions over the past 25 years is estimated to be about a 5% reduction in tropical rainfall. The modified data set (with ENSO and volcano effect removed) retains the same approximate change slopes, but with reduced variance leading to significance tests with results in the 90-95% range. Inter-comparisons between the GPCP, SSWI (1988-2004), and TRMM (1998-2004) rainfall products are made to increase or decrease confidence in the changes seen in the GPCP analysis.

  6. An exploratory study of spatial annual maximum of monthly precipitation in the northern region of Portugal

    Science.gov (United States)

    Prata Gomes, D.; Neves, M. M.; Moreira, E.

    2016-08-01

    Adequately analyzing and modeling the extreme rainfall events is of great importance because of the effects that their magnitude and frequency can have on human life, agricultural productivity and economic aspects, among others. A single extreme event may affect several locations, and their spatial dependence has to be appropriately taken into account. Classical geostatistics is a well-developed field for dealing with location referenced data, but it is largely based on Gaussian processes and distributions, that are not appropriate for extremes. In this paper, an exploratory study of the annual maximum of monthly precipitation recorded in the northern area of Portugal from 1941 to 2006 at 32 locations is performed. The aim of this paper is to apply max-stable processes, a natural extension of multivariate extremes to the spatial set-up, to briefly describe the models considered and to estimate the required parameters to simulate prediction maps.

  7. TRMM Science Highlights and Status of Precipitation Estimates on Monthly and Finder Time Scales

    Science.gov (United States)

    Adler, Robert; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has completed three years in orbit. A summary of research highlights will be presented focusing on application of TRMM data to topics ranging from climate analysis, through improving forecasts, to microphysical research. Monthly surface rainfall estimates over the ocean based on different instruments on TRMM currently differ by 20%. The difference is not surprising considering the different type of observations available for the first time from TRMM with both the passive and active microwave sensors. Resolving this difference will strengthen the validity and utility of ocean rainfall estimates and is the topic of ongoing research utilizing various facets of the TRMM validation and field experiment programs. The TRMM rainfall estimates are intercompared among themselves and with other estimates, including those of the standard, monthly Global Precipitation Climatology Project (GPCP) analysis. The GPCP analysis agrees roughly in magnitude with the passive microwave-based TRMM estimates which is not surprising considering GPCP over-ocean estimates are based on passive microwave observations. A three year TRMM rainfall climatology is presented based on the TRMM merged product, including anomaly fields related to the changing ENSO situation during the mission. Results of merging TRMM, other passive microwave observations, and geosynchronous infrared rainfall estimates into a global, tropical 3-hour time resolution analysis will also be described.

  8. United States Historical Climatology Network (US HCN) monthly temperature and precipitation data

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R.C. [ed.] [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment and Resources Center; Boden, T.A. [ed.] [Oak Ridge National Lab., TN (United States); Easterling, D.R.; Karl, T.R.; Mason, E.H.; Hughes, P.Y.; Bowman, D.P. [National Climatic Data Center, Asheville, NC (United States)

    1996-01-11

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have been used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.

  9. ON STRONG SIGNALS OF MONTHLY PRECIPITATION ANOMALIES IN EARLY RAINING SEASON OF GUANGDONG AND CONCEPTUAL MODELS OF PREDICTION

    Institute of Scientific and Technical Information of China (English)

    林爱兰

    2002-01-01

    Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).

  10. Trends and variability in total and extreme precipitation over mainland Portugal, 1941-2012

    Science.gov (United States)

    de Lima, Isabel P.; Espírito Santo, Fátima; Silva, Álvaro; Cunha, Sofia

    2014-05-01

    Changes in the climate are expected to affect the occurrence of extreme weather and climate events that might influence significantly the distribution, availability and sustainability of regional water resources. The location of mainland Portugal on the Northeast Atlantic Ocean region, in South-western Europe, together with other geographical features, makes this territory highly vulnerable to extreme hydrological events, such as floods and droughts, driven by the strong variability in precipitation. To study changes in the total and extreme precipitation in this area, at the annual and seasonal scales, 27 daily precipitation time series for the period 1941-2012 were analysed. We applied 8 selected precipitation-related indices of "moderate" extremes that include duration, threshold, absolute and percentile indices. In general, the results found in this study are in agreement with other studies that inspected changes in precipitation in western Iberia. Since the 1980s, it is notable the occurrence of long drought spells, as well as the more intense precipitation events on record; these events distressed more the centre and southern regions of mainland Portugal, which are the most vulnerable and the more affected by these types of events. Moreover, results show regional differences in the indices' trends and also point out to a greater asymmetry in the temporal distribution of precipitation and variations in the intensity, persistence and frequency of extreme events at various scales, which may influence the risk associated with floods and droughts. Overall, while contributing to the increased understanding of local and regional specificities in the study area, and in the context of the Iberian Peninsula, results can also be useful for disaster risk management and definition of adaptation and mitigation measures to climate change.

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Total Heat Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Total Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  12. Gridded Mean Monthly Temperature and Precipitation Data for Alaska, British Columbia, and Yukon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To aid in better understanding the temperature and precipitation data of the spatially variable climate of Alaska and Northwest Canada, this dataset was created via...

  13. Modeling the Spatial and Temporal Variation of Monthly and Seasonal Precipitation on the Nevada Test Site and Vicinity, 1960-2006

    Science.gov (United States)

    Blainey, Joan B.; Webb, Robert H.; Magirl, Christopher S.

    2007-01-01

    The Nevada Test Site (NTS), located in the climatic transition zone between the Mojave and Great Basin Deserts, has a network of precipitation gages that is unusually dense for this region. This network measures monthly and seasonal variation in a landscape with diverse topography. Precipitation data from 125 climate stations on or near the NTS were used to spatially interpolate precipitation for each month during the period of 1960 through 2006 at high spatial resolution (30 m). The data were collected at climate stations using manual and/or automated techniques. The spatial interpolation method, applied to monthly accumulations of precipitation, is based on a distance-weighted multivariate regression between the amount of precipitation and the station location and elevation. This report summarizes the temporal and spatial characteristics of the available precipitation records for the period 1960 to 2006, examines the temporal and spatial variability of precipitation during the period of record, and discusses some extremes in seasonal precipitation on the NTS.

  14. Postprocessing of simulated precipitation for impact research in West Africa. Part I: model output statistics for monthly data

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, Heiko [University of Wuerzburg, Institute of Geography, Wuerzburg (Germany)

    2011-04-15

    Rainfall represents an important factor in agriculture and food security, particularly, in the low latitudes. Climatological and hydrological studies which attempt to diagnose the hydrological cycle, require high-quality precipitation data. In West Africa, like in many parts of the world, the density of observational data is low and climate models are needed in order to perform homogeneous and complete data sets. However, climate models tend to produce systematic errors, especially, in terms of rainfall and cloud processes, which are usually approximated by physical parameterizations. In this study, a 25-year climatology of monthly precipitation in West Africa is presented, derived from a regional climate model simulation, and evaluated with respect to observational data. It is found that the model systematically underestimates the rainfall amount and variability and does not capture some details of the seasonal cycle in sub-Saharan West Africa. Thus, in its present form the precipitation climatology is not appropriate to draw a realistic picture of the hydrological cycle in West Africa nor to serve as input data for impact research. Therefore, a statistical model is developed in order to adjust the simulated rainfall data to the characteristics of observed precipitation. Assuming that the regional climate model is much more reliable in terms of atmospheric circulation and thermodynamics, model output statistics is used to correct simulated rainfall by means of other simulated parameters of the near-surface climate like temperature, sea level pressure and wind components. Monthly data is adjusted by a cross-validated multiple regression model. The resulting adjusted rainfall climatology reveals a substantial improvement in terms of the model deficiencies mentioned above. In part II of this publication, the characteristics of simulated daily precipitation is adapted to station data by applying a weather generator. Once the postprocessing approach is trained, it can

  15. Validation and uncertainty analysis for monthly and extreme precipitation in the ERA-20C reanalysis based on the WZN in-situ measurements

    Science.gov (United States)

    Rustemeier, Elke; Ziese, Markus; Raykova, Kristin; Meyer-Christoffer, Anja; Schneider, Udo; Finger, Peter; Becker, Andreas

    2017-04-01

    FDD-V1 based on ETCCDI diagnoses were detected particularly in regions with large precipitation totals especially in Africa in the ITCZ area and in Indonesia. The overall comparison reveals geo-spatially heterogeneous results with areas of similar precipitation characteristics, but also areas that still remain challenging for the reanalysis' fidelity to represent the FDM-V7 and FDD-F1 based diagnostics. The results serve good guidance where improvements of the future IFS model versions should be most effective. Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A. and Plummer, N. (2001): Report on the activities of the working group on climate change detection and related rapporteurs. Geneva: World Meteorological Organization. Poli, P., H. Hersbach, D. Tan, D. Dee, J.-N. Thépaut, A. Simmons, C. Peubey, P. Laloy-aux, T. Komori, P. Berrisford, R. Dragani, Y. Trémolet, E. H ´lm, M. Bonavita, L. Isaksen und M. Fisher (2013): The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C), ERA Report Series 14, http://www.ecmwf.int/publications/library/do/references/show?id=90833) Schneider, Udo, Andreas Becker, Peter Finger, Anja Meyer-Christoffer, Bruno Rudolf und Markus Ziese (2015): GPCC Full Data Reanalysis Version 7.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. DOI: 10.5676/DWD_GPCC/FD_M_V7_100

  16. Takotsubo cardiomyopathy precipitated by negative pressure pulmonary oedema following total thyroidectomy

    Directory of Open Access Journals (Sweden)

    K S Bharathi

    2016-01-01

    Full Text Available 'Takotsubo cardiomyopathy (TCM' or 'stress cardiomyopathy' is a reversible cardiomyopathy that is precipitated by intense emotional or physical stress. This syndrome is characterised by symptoms mimicking acute coronary syndrome with transient systolic dysfunction associated with regional wall motion abnormalities, which extend beyond a single coronary vascular bed in the absence of obstructive coronary vascular disease. The presentation of TCM and myocardial infarction is similar with sudden onset of chest pain, breathlessness as well as abnormalities in both the electrocardiogram and cardiac enzymes. It is difficult to differentiate between the two until cardiac catheterisation establishes the diagnosis. We report a case of TCM in a post-menopausal female, precipitated by negative pressure pulmonary oedema following total thyroidectomy in whom timely cardiac catheterisation established the diagnosis and influenced the management. Heightened awareness of this unique cardiomyopathy is essential to have a high index of suspicion in at-risk population for the prompt diagnosis of stress-related cardiomyopathy syndromes occurring in the perioperative period.

  17. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  18. Mapping mean total annual precipitation in Belgium, by investigating the scale of topographic control at the regional scale

    Science.gov (United States)

    Meersmans, J.; Van Weverberg, K.; De Baets, S.; De Ridder, F.; Palmer, S. J.; van Wesemael, B.; Quine, T. A.

    2016-09-01

    Accurate precipitation maps are essential for ecological, environmental, element cycle and hydrological models that have a spatial output component. It is well known that topography has a major influence on the spatial distribution of precipitation and that increasing topographical complexity is associated with increased spatial heterogeneity in precipitation. This means that when mapping precipitation using classical interpolation techniques (e.g. regression, kriging, spline, inverse distance weighting, etc.), a climate measuring network with higher spatial density is needed in mountainous areas in order to obtain the same level of accuracy as compared to flatter regions. In this study, we present a mean total annual precipitation mapping technique that combines topographical information (i.e. elevation and slope orientation) with average total annual rain gauge data in order to overcome this problem. A unique feature of this paper is the identification of the scale at which topography influences the precipitation pattern as well as the direction of the dominant weather circulation. This method was applied for Belgium and surroundings and shows that the identification of the appropriate scale at which topographical obstacles impact precipitation is crucial in order to obtain reliable mean total annual precipitation maps. The dominant weather circulation is determined at 260°. Hence, this approach allows accurate mapping of mean annual precipitation patterns in regions characterized by rather high topographical complexity using a climate data network with a relatively low density and/or when more advanced precipitation measurement techniques, such as radar, aren't available, for example in the case of historical data.

  19. Forecasting monthly precipitation in Central Chile: a self-organizing map approach using filtered sea surface temperature

    Science.gov (United States)

    Rivera, Diego; Lillo, Mario; Uvo, Cintia B.; Billib, Max; Arumí, José Luis

    2012-01-01

    Western South America is subject to considerable inter-annual variability due to El Niño-Southern Oscillation (ENSO) so forecasting inter-annual variations associated with ENSO would provide an opportunity to tailor management decisions more appropriately to the season. On one hand, the self-organizing maps (SOM) method is a suitable technique to explore the association between sea surface temperature and precipitation fields. On the other hand, Wavelet transform is a filtering technique, which allows the identification of relevant frequencies in signals, and also allows localization on time. Taking advantage of both methods, we present a method to forecast monthly precipitation using the SOM trained with filtered SST anomalies. The use of the SOM to forecast precipitation for Chillan showed good agreement between forecasted and measured values, with correlation coefficients ( r 2) ranging from 0.72 to 0.91, making the combined use filtered SST fields and SOM a suitable tool to assist water management, for example in agricultural water management. The method can be easily tailored to be applied in other stations or to other variables.

  20. Predictors of pain and physical function at 3 and 12 months after total hip arthroplasty

    DEFF Research Database (Denmark)

    Plews, Sarah; Løvlund Nielsen, Randi; Overgaard, Søren;

    Background: Few studies have combined preoperative patient-reported and objective outcome measures to predict outcomes after total hip arthroplasty (THA). Purpose / Aim of Study: to identify predictors of outcome 3 and 12 months after THA Materials and Methods: A cohort of 107 consecutive patients...... with primary hip osteoarthritis responded to Hip dysfunction and Osteoarthritis Outcome Score (HOOS) questionnaires prior to and 3 and 12 months after THA. Preoperative pain intensity; joint space width (JSW), age, gender, and body mass index (BMI) were used to predict changes in pain and physical function....... Conclusions: Preoperative pain predicted changes in pain and physical function up to one year after THA. Such knowledge should be taken into consideration, when assessing OA patients prior to surgery. This study provides useful insight for clinicians, regarding the overall improvement patients can expect...

  1. Total lymphoid irradiation therapy in refractory rheumatoid arthritis. Fifteen- to forty-month followup

    Energy Technology Data Exchange (ETDEWEB)

    Brahn, E.; Helfgott, S.M.; Belli, J.A.; Anderson, R.J.; Reinherz, E.L.; Schlossman, S.F.; Austen, K.F.; Trentham, D.E.

    1984-05-01

    Twelve patients with refractory rheumatoid arthritis were treated with total lymphoid irradiation (TLI) to a total cumulative dose of 3,000 rads. Post-TLI morbidity/mortality included 8 patients with xerostomia, 4 with weight loss of greater than 10 kg, 3 with loss of 4 or more teeth, 3 with herpes zoster, 4 with bacterial infection that was fatal in 2, 3 with hypothyroidism, 1 with cutaneous vasculitis, and death from myocardial infarction in 1 patient and cardiorespiratory arrest in another. Ten of the patients were reevaluated 15-40 months (mean +/- SE, 30 +/- 2) after completion of TLI, and significant improvement was noted in several disease parameters including number of swollen joints, duration of morning stiffness, and 50-foot walking time. Blood lymphopenia and a decrease in helper T cells (T4) were also noted. These data suggest that changes in immunoregulation induced by TLI can produce longlasting alterations in rheumatoid arthritis, although adverse effects may limit its efficacy.

  2. Temporal disaggregation of satellite-derived monthly precipitation estimates and the resulting propagation of error in partitioning of water at the land surface

    Directory of Open Access Journals (Sweden)

    S.A. Margulis

    2001-01-01

    Full Text Available Global estimates of precipitation can now be made using data from a combination of geosynchronous and low earth-orbit satellites. However, revisit patterns of polar-orbiting satellites and the need to sample mixed-clouds scenes from geosynchronous satellites leads to the coarsening of the temporal resolution to the monthly scale. There are prohibitive limitations to the applicability of monthly-scale aggregated precipitation estimates in many hydrological applications. The nonlinear and threshold dependencies of surface hydrological processes on precipitation may cause the hydrological response of the surface to vary considerably based on the intermittent temporal structure of the forcing. Therefore, to make the monthly satellite data useful for hydrological applications (i.e. water balance studies, rainfall-runoff modelling, etc., it is necessary to disaggregate the monthly precipitation estimates into shorter time intervals so that they may be used in surface hydrology models. In this study, two simple statistical disaggregation schemes are developed for use with monthly precipitation estimates provided by satellites. The two techniques are shown to perform relatively well in introducing a reasonable temporal structure into the disaggregated time series. An ensemble of disaggregated realisations was routed through two land surface models of varying complexity so that the error propagation that takes place over the course of the month could be characterised. Results suggest that one of the proposed disaggregation schemes can be used in hydrological applications without introducing significant error. Keywords: precipitation, temporal disaggregation, hydrological modelling, error propagation

  3. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales

    Science.gov (United States)

    Katiraie-Boroujerdy, Pari-Sima; Akbari Asanjan, Ata; Hsu, Kuo-lin; Sorooshian, Soroosh

    2017-09-01

    In the first part of this paper, monthly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Tropical Rainfall Measuring Mission 3B42 algorithm Version 7 (TRMM-3B42V7) are evaluated over Iran using the Generalized Three-Cornered Hat (GTCH) method which is self-sufficient of reference data as input. Climate Data Unit (CRU) is added to the GTCH evaluations as an independent gauge-based dataset thus, the minimum requirement of three datasets for the model is satisfied. To ensure consistency of all datasets, the two satellite products were aggregated to 0.5° spatial resolution, which is the minimum resolution of CRU. The results show that the PERSIANN-CDR has higher Signal to Noise Ratio (SNR) than TRMM-3B42V7 for the monthly rainfall estimation, especially in the northern half of the country. All datasets showed low SNR in the mountainous area of southwestern Iran, as well as the arid parts in the southeast region of the country. Additionally, in order to evaluate the efficacy of PERSIANN-CDR and TRMM-3B42V7 in capturing extreme daily-precipitation amounts, an in-situ rain-gauge dataset collected by the Islamic Republic of the Iran Meteorological Organization (IRIMO) was employed. Given the sparsity of the rain gauges, only 0.25° pixels containing three or more gauges were used for this evaluation. There were 228 such pixels where daily and extreme rainfall from PERSIANN-CDR and TRMM-3B42V7 could be compared. However, TRMM-3B42V7 overestimates most of the intensity indices (correlation coefficients; R between 0.7648-0.8311, Root Mean Square Error; RMSE between 3.29mm/day-21.2mm/5day); PERSIANN-CDR underestimates these extremes (R between 0.6349-0.7791 and RMSE between 3.59mm/day-30.56mm/5day). Both satellite products show higher correlation coefficients and lower RMSEs for the annual mean of consecutive dry spells than wet spells. The results show that TRMM-3B42V7

  4. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: Implications on bacterial contributions to atmospheric organic matter

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem; Kim, Jeonghyun; Jeong, Yu-Sik; Kim, Young Il

    2015-03-01

    We analyzed dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved enantiomeric amino acids in precipitation samples collected at two sites in Korea over a one-year period. The average concentrations of DOC, DON, and total hydrolyzable amino acids at Seoul (an inland urban area) were lower than those at Uljin (a coastal rural area). The different bulk compositions of dissolved organic matter (DOM) at these two sites (reflected by qualitative indicators) were mainly attributed to differences in contributing sources. The D-enantiomers of four individual amino acids (aspartic acid, glutamic acid, serine, and alanine) were ubiquitously present, with average enantiomeric (D/L) ratios of 0.34, 0.26, 0.21, and 0.61 for Seoul, and 0.18, 0.11, 0.09, and 0.31 for Uljin, respectively. The much higher D/L ratios observed at Seoul than at Uljin might result from more advanced diagenetic stages as well as higher contributions from bacteria inhabiting terrestrial environments. The C- and N-normalized yields of D-alanine in DOM of our samples were found to be comparable to literature values reported for aquatic systems, where a significant portion of DOM was suggested to be of bacterial origin. Our study suggests that bacteria and their remnants might constitute an important fraction of OM in the atmosphere, contributing significantly to the quality of atmospheric OM and its post-depositional bioavailability in the surface ecosystems.

  5. The comparison of IR and MW ground-based measurements of total precipitable water

    Science.gov (United States)

    Berezin, I. A.; Virolainen, Ya. A.; Timofeyev, Yu. M.; Poberovskii, A. V.

    2016-05-01

    Water vapor is one of the basic climate gases playing a key role in various processes at different altitudes of the Earth's atmosphere. An intercomparison and validation of different total precipitable water (TPW) measurement methods are important for determining the true accuracy of these methods, the shared use of data from multiple sources, the creation of data archives of different measurements, etc. In this paper, the TPW values obtained from measurements of solar IR spectral radiation (~8-9 μm absorption band) and thermal MW radiation of the atmosphere (1.35 cm absorption line) for 138 days of observation are compared. Measurements have been carried out from March 2013 to June 2014 at Peterhof station of the St. Petersburg State University in (59.88° N, 29.82° E). It is shown that MW measurements usually give higher TPW values than IR measurements. The bias between the two methods varies from 1 to 8% for small and large TPW values, respectively. With increasing TPW values, the bias reduces and for TPW > 1 cm it is ~1%. Standard deviation (SD) between the two methods reaches 7% for TPW 1 cm. These data show the high quality of both remote sensing methods. Moreover, the IR measurements have a higher accuracy than MW measurements for small TPW values.

  6. The Fine Spatial Distribution of Mean Precipitation and the Estimation of Total Precipitation in Heihe River Basin%黑河流域气候平均降水的精细化分布及总量计算

    Institute of Scientific and Technical Information of China (English)

    孙佳; 江灏; 王可丽; 雒新萍; 朱庆亮

    2011-01-01

    . The relative errors of fitting monthly precipitation are very small in the upper and middle reaches. Based on the relationship model of precipitation and geographical and topographic indexes, using the high-resolution DEM data, the 100 m× 100 m fine distribution of the climatic mean annual precipitation and monthly precipitation are obtained for the Heihe River basin.The results indicate that the fine distribution of precipitation can show more details about the topographic and topographic, which are better than the results analyzed only by using meteorological data from observation stations. Based on the space fine distribution of the climatic mean precipitation in the Heihe River basin, for the area of 5.08 million km2 in the upper and middle reaches, it is calculated that the climatic mean annual precipitation amount is about 150.6 × 108 m3. The precipitation mainly concentrates in the period from May to September and the total precipitation reaches about 133.9 ×1O8 m3.

  7. Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System

    Science.gov (United States)

    Ninyerola, M.; Pons, X.; Roure, J. M.

    2007-07-01

    In this study, spatial interpolation techniques have been applied to develop an objective climatic cartography of precipitation in the Iberian Peninsula (583,551 km2). The resulting maps have a 200 m spatial resolution and a monthly temporal resolution. Multiple regression, combined with a residual correction method, has been used to interpolate the observed data collected from the meteorological stations. This method is attractive as it takes into account geographic information (independent variables) to interpolate the climatic data (dependent variable). Several models have been developed using different independent variables, applying several interpolation techniques and grouping the observed data into different subsets (drainage basin models) or into a single set (global model). Each map is provided with its associated accuracy, which is obtained through a simple regression between independent observed data and predicted values. This validation has shown that the most accurate results are obtained when using the global model with multiple regression mixed with the splines interpolation of the residuals. In this optimum case, the average R 2 (mean of all the months) is 0.85. The entire process has been implemented in a GIS (Geographic Information System) which has greatly facilitated the filtering, querying, mapping and distributing of the final cartography.

  8. Ammonium sulphate precipitation of recombinant adenovirus from culture medium: an easy method to increase the total virus yield.

    Science.gov (United States)

    Schagen, F H; Rademaker, H J; Rabelink, M J; van Ormondt, H; Fallaux, F J; van der Eb, A J; Hoeben, R C

    2000-09-01

    In the majority of the methods for purifying and concentrating recombinant adenoviruses (rAds) the virus that is associated with the helper cells is harvested, while the virus that is present in the cell-culture medium is discarded. During routine propagation of adenovirus type-5 vectors at optimised conditions we noted that, on average, 47% of the total amount of virus is present in the culture medium. To recover and concentrate these rAds from the medium, we devised a method, which is based on ammonium sulphate ((NH4)2SO4) precipitation. At 40% (NH4)2SO4 saturation, 95 +/- 6% of the available virus precipitates from the medium, while the majority of the protein (85%) remains in solution. In contrast to adenovirus precipitation with polyethylene glycol, the (NH4)2SO4 precipitation technique allows collection of precipitated rAds by filtration. We demonstrate here that (NH4)2SO4 precipitation of rAds from cell-culture medium is a simple and fast technique that can be used in combination with standard virus isolation methods to increase the yields of rAds.

  9. Parmelia sulcata lichen transplants positioning towards wind direction (Part I): precipitation volumes, total element deposition and lichen element content

    NARCIS (Netherlands)

    Marques, A.P.; Freitas, M.C.; Wolterbeek, H. Th.; Verburg, T.

    2009-01-01

    Parmelia sulcata transplants were used in three different exposure systems, focused on three different influxes: free influx, horizontal influx and vertical influx. The total element deposition and the precipitation volumes were found to be positively correlated for Fe and Ni only. The element conte

  10. Land-total and Ocean-total Precipitation and Evaporation from a Community Atmosphere Model version 5 Perturbed Parameter Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)

    2016-03-02

    This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.

  11. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schmoyer, R.L. [Oak Ridge National Lab., TN (United States); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. [National Climatic Data Center, Asheville, NC (United States); Eischeid, J.K. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the ``best`` data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  12. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center); Schmoyer, R.L. (Oak Ridge National Lab., TN (United States)); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. (National Climatic Data Center, Asheville, NC (United States)); Eischeid, J.K. (Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences)

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the best'' data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  13. Twelve months follow-up after retrograde recanalization of superficial femoral artery chronic total occlusion

    Directory of Open Access Journals (Sweden)

    Joanna Wojtasik-Bakalarz

    2017-03-01

    Full Text Available Introduction : Fifty percent of cases of peripheral artery disease are caused by chronic total occlusion (CTO of the superficial femoral artery (SFA. Ten–fifteen percent of percutaneous SFA recanalization procedures are unsuccessful. In those cases the retrograde technique can increase the success rate of the procedure, but the long-term follow-up of such procedures is still unknown. Aim : To assess the efficacy and clinical outcomes during long-term follow-up after retrograde recanalization of the SFA. Material and methods: We included patients after at least one unsuccessful percutaneous antegrade recanalization of the SFA. Patients were evaluated for the procedural and clinical follow-up of mean time 13.9 months. Results: The study included 17 patients (7 females, 10 males who underwent percutaneous retrograde recanalization of the SFA from June 2011 to June 2015. The mean age of patients was 63 ±7 years. Retrograde puncture of the distal SFA was successful in all cases. A retrograde procedure was performed immediately after antegrade failure in 4 (23.5% patients and after a previously failed attempt in 13 (76.5% patients. The procedure was successful in 15 (88.2% patients, and unsuccessful in 2 (11.8% patients. Periprocedural complications included 1 peripheral distal embolization (successfully treated with aspiration thrombectomy, 1 bleeding event from the puncture site and 7 puncture site hematomas. During follow-up the all-cause mortality rate was 5.8% (1 patient, non-cardiac death. The primary patency rate at 12 months was 88.2% and secondary patency 100%. Conclusions : The retrograde SFA puncture seems to be a safe and successful technique for CTO recanalization and is associated with a low rate of perioperative and long-term follow-up complications.

  14. Monthly distribution of diurnal total column ozone based on the 2011 satellite data in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Jasim M. Rajab

    2013-06-01

    Full Text Available Ozone (O3 is a radiatively active trace gas, and naturally present in our atmosphere, that plays a prominent role in atmosphere heating rates due to its good capability to absorb the infrared radiation. O3 occurs both naturally in the Earth’s upper atmosphere and at the ground level. As we breathe the air on Earth, O3 causes damage to the lung tissue and plants as it is an injurious pollutant; it is a major constituent of smog. The atmospheric O3 observations can only be made on global and continental scales by remote sensing instruments situated in the space. The satellite-borne sensor, namely the Atmospheric Infrared Sounder (AIRS included on the EOS Aqua satellite, was employed to investigate the spatial and temporal variations of diurnal total column Ozone burden over Peninsular Malaysia for the year 2011. The analysis of O3 above five dispersed stations in the study area shows the seasonal variation in the O3 fluctuated considerably observed between NEM and SWM seasons. The mean and the standard deviation of monthly O3 was 244.7 ± 26.8 DU for the entire period, and O3 values strongly correlated with weather conditions. The highest O3 values occurred over industrial and congested urban zones (271.5 DU on May at Johor. The lowest O3 values were observed during NEM in the pristine coastal environment on December at Kuantan (217 DU; at 3.45°N, 103.20°E. The O3 has an inverse relationship with the rain and positive with temperature. The monthly O3 maps were obtained from the NASA-operated Giovanni portal (http://disc.sci.gsfc.nasa.gov/giovanni. The AIRS data and the satellite measurements are able to measure the increase of the atmosphere O3 concentrations over different areas.

  15. Determinants of return to work 12 months after total hip and knee arthroplasty.

    Science.gov (United States)

    Leichtenberg, C S; Tilbury, C; Kuijer, Ppfm; Verdegaal, Shm; Wolterbeek, R; Nelissen, Rghh; Frings-Dresen, Mhw; Vliet Vlieland, Tpm

    2016-07-01

    Introduction A substantial number of patients undergoing total hip or knee arthroplasty (THA or TKA) do not or only partially return to work. This study aimed to identify differences in determinants of return to work in THA and TKA. Methods We conducted a prospective, observational study of working patients aged return to work 12 months postoperatively. Factors analysed included preoperative sociodemographic and work characteristics, alongside the Hip Disability and Osteoarthritis Outcome Score (HOOS)/Knee Injury and Osteoarthritis Outcome Score (KOOS), and Oxford Hip and Knee Scores. Results Of 67 THA and 56 TKA patients, 9 (13%) and 10 (19%), respectively, returned partially and 5 (7%) and 6 (11%), respectively, did not return to work 1 year postoperatively. Preoperative factors associated with partial or no return to work in THA patients were self-employment, absence from work and a better HOOS Activities of Daily Living (ADL) subscale score, whereas only work absence was relevant in TKA patients. Type of surgery modified the impact of ADL scores on return to work. Conclusions In both THA and TKA, absence from work affected return to work, whereas self-employment and better preoperative ADL subscale scores were also associated in THA patients. The impact of ADL scores on return to work was modified by type of surgery. These results suggest that strategies aiming to influence modifiable factors should consider THA and TKA separately.

  16. Spatial and temporal distributions of total and methyl mercury in precipitation in core urban areas, Chongqing, China

    Directory of Open Access Journals (Sweden)

    Y. M. Wang

    2012-04-01

    Full Text Available The spatial and temporal distribution patterns of mercury (Hg in precipitation were investigated in the core urban areas of Chongqing, China. During the period form July 2010 to June 2011, total mercury (THg and methyl mercury (MeHg concentrations in precipitation were analyzed from three sampling sites. Our results suggest that the volume-weight mean THg and MeHg concentrations in precipitation were 30.67 ng l−1 and 0.31 ng l−1, respectively. The proportion of MeHg in THg ranged from 0.1% to 7.6% with a mean value of 1.3%. THg and MeHg concentrations showed seasonal variations, while the highest THg value was measured in winter. Contrarily, the highest MeHg concentration was observed in autumn. Additionally, a geographically gradual decline of THg concentration in precipitation was observed from the city center to the suburb, then to the exurb. 5 mm rainfall might be a threshold for the full wash-out capability. Rainfall above 5 mm may have a diluting effect for the concentrations of Hg. Moreover, the current research implies that the coal combustion and motor vehicles could be the dominant sources for Hg in the precipitation.

  17. Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60 years?

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Heimann, Martin; Lange, Holger; Mahecha, Miguel D.; van Oldenborgh, Geert Jan; Otto, Friederike E. L.; Reichstein, Markus

    2017-01-01

    Daily precipitation extremes and annual totals have increased in large parts of the global land area over the past decades. These observations are consistent with theoretical considerations of a warming climate. However, until recently these trends have not been shown to consistently affect dry regions over land. A recent study, published by Donat et al. (2016), now identified significant increases in annual-maximum daily extreme precipitation (Rx1d) and annual precipitation totals (PRCPTOT) in dry regions. Here, we revisit the applied methods and explore the sensitivity of changes in precipitation extremes and annual totals to alternative choices of defining a dry region (i.e. in terms of aridity as opposed to precipitation characteristics alone). We find that (a) statistical artifacts introduced by data pre-processing based on a time-invariant reference period lead to an overestimation of the reported trends by up to 40 %, and that (b) the reported trends of globally aggregated extremes and annual totals are highly sensitive to the definition of a dry region of the globe. For example, using the same observational dataset, accounting for the statistical artifacts, and based on different aridity-based dryness definitions, we find a reduction in the positive trend of Rx1d from the originally reported +1.6 % decade-1 to +0.2 to +0.9 % decade-1 (period changes for 1981-2010 averages relative to 1951-1980 are reduced to -1.32 to +0.97 % as opposed to +4.85 % in the original study). If we include additional but less homogenized data to cover larger regions, the global trend increases slightly (Rx1d: +0.4 to +1.1 % decade-1), and in this case we can indeed confirm (partly) significant increases in Rx1d. However, these globally aggregated estimates remain uncertain as considerable gaps in long-term observations in the Earth's arid and semi-arid regions remain. In summary, adequate data pre-processing and accounting for uncertainties regarding the definition of dryness are

  18. GPS Zenith Total Delays and Precipitable Water in comparison with special meteorological observations in Verona (Italyduring MAP-SOP

    Directory of Open Access Journals (Sweden)

    S. Corradini

    2002-06-01

    Full Text Available Continuous meteorological examination of the Pre-Alpine zones in Northern Italy (Po Valleyis important for determination of atmospheric water cycles connected with floods and rainfalls.During a special meteorological observing period (MAP-SOP,radiosounding and other measurements were made in the site of Verona (Italy. This paper deals with Zenith Total Delay (ZTDand Precipitable Water (PWcomparisons obtained by GPS, radiosounding and other meteorological measurements.PW and ZTD from ground-based GPS data in comparisonwith classical techniques (e.g.,WVR,radiosoundingfrom recent literature present an accurate tool for use in meteorology applications (e.g.,assimilation in Numerical Weather Prediction (NWPmodels on short-range precipitation forecasts.Comparison of such ZTD for MAP-SOP showed a standard deviation of 16.1 mm and PW comparison showed a standard deviation of 2.7 mm,confirming the accuracy of GPS measurements for meteorology applications.In addition,PW data and its time variation are also matched with time series of meteorological situations.Those results indicate that changes in PW values could be connected to changes in air masses,i.e.to passages of both cold and warm fronts.There is also a correlation between precipitation, forthcoming increase and the following decrease of PW.A good agreement between oscillation of PW and precipitation and strong cyclonic activities is found.

  19. Average historical total precipitation (inches) in winter (December - February) and projected relative change in total precipitation (% change from baseline) Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average winter total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps,...

  20. Average historical total precipitation (mm) in winter (December - February) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average winter total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps,...

  1. Average historical total precipitation (inches) in winter (December - February) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average winter total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps,...

  2. Average historical total precipitation (mm) in winter (December - February) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average winter total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps,...

  3. Average historical total precipitation (inches) in summer (June - August) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average summer total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps,...

  4. Average historical annual total precipitation (inches) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual total precipitation and projected change in precipitation for the northern portion of Alaska. The Alaska portion of the Arctic...

  5. Average historical total precipitation (inches) in summer (June - August) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average summer total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps,...

  6. Average historical total precipitation (mm) in summer (June - August) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average summer total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps,...

  7. Average historical annual total precipitation (mm) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual total precipitation and projected change in precipitation for the northern portion of Alaska. The Alaska portion of the Arctic...

  8. Average historical annual total precipitation (mm) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual total precipitation and projected change in precipitation for the northern portion of Alaska. The Alaska portion of the Arctic...

  9. Average historical total precipitation (mm) in summer (June - August) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average summer total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps,...

  10. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis

    Science.gov (United States)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    2012-10-01

    In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.

  11. Precipitation Reconstruction over Land (PREC/L)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists files of 3 resolutions of monthly averaged precipitation totals. The global analyses are defined by interpolation of gauge observations...

  12. Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia

    Science.gov (United States)

    Deo, Ravinesh C.; Şahin, Mehmet

    2015-07-01

    The forecasting of drought based on cumulative influence of rainfall, temperature and evaporation is greatly beneficial for mitigating adverse consequences on water-sensitive sectors such as agriculture, ecosystems, wildlife, tourism, recreation, crop health and hydrologic engineering. Predictive models of drought indices help in assessing water scarcity situations, drought identification and severity characterization. In this paper, we tested the feasibility of the Artificial Neural Network (ANN) as a data-driven model for predicting the monthly Standardized Precipitation and Evapotranspiration Index (SPEI) for eight candidate stations in eastern Australia using predictive variable data from 1915 to 2005 (training) and simulated data for the period 2006-2012. The predictive variables were: monthly rainfall totals, mean temperature, minimum temperature, maximum temperature and evapotranspiration, which were supplemented by large-scale climate indices (Southern Oscillation Index, Pacific Decadal Oscillation, Southern Annular Mode and Indian Ocean Dipole) and the Sea Surface Temperatures (Nino 3.0, 3.4 and 4.0). A total of 30 ANN models were developed with 3-layer ANN networks. To determine the best combination of learning algorithms, hidden transfer and output functions of the optimum model, the Levenberg-Marquardt and Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton backpropagation algorithms were utilized to train the network, tangent and logarithmic sigmoid equations used as the activation functions and the linear, logarithmic and tangent sigmoid equations used as the output function. The best ANN architecture had 18 input neurons, 43 hidden neurons and 1 output neuron, trained using the Levenberg-Marquardt learning algorithm using tangent sigmoid equation as the activation and output functions. An evaluation of the model performance based on statistical rules yielded time-averaged Coefficient of Determination, Root Mean Squared Error and the Mean Absolute

  13. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India

    Science.gov (United States)

    Mahmood, Rashid; Babel, Mukand S.

    2013-07-01

    The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91-3.15 °C, 0.93-2.63 °C, and 6-12 %, and under H3B2, the values of change are 0.69-1.92 °C, 0.56-1.63 °C, and 8-14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.

  14. Variations in the concentration of total human milk proteins in the first month of lactation

    Directory of Open Access Journals (Sweden)

    Mladenović Marija

    2007-01-01

    Full Text Available Introduction. Human milk proteins are maximally adapted to physiological needs of a neonate. Thus, depending on the speed of the neonatal growth and development, the content of milk proteins changes, both in quantity and quality. Objective. The study was conducted in order to determine variations of total protein concentrations in milk in the first and third lactation week in lactating mothers of term and preterm neonates. Also, we analyzed the influence of the mode of delivery, neonatal Apgar score and parity on the concentration of human milk proteins in both lactation phases. Method. The study aims were evaluated on the sample of 48 women, of whom 33 were mothers of term neonates and 15 of neonates born between the 34th to 37th gestational weeks. Total protein level of the lactation milk from the middle phase was determined using the standard laboratory method (Lowry et al., 1951, and the obtained differences were analyzed by t-test. Results. Total protein concentration in term colostrum was 17.60-45.17 g/l (X=24.71±5.19, while in preterm colostrum it was 28.39-73.30 g/l (X=39.17±11.08. The total protein level of mature milk in women who had term delivery was 11.90-22.11 g/l (X=16.39±2.96, while in women who had preterm delivery it was 14.50-44.19 g/l (X=23.25±8.96. The obtained results indicated that total protein concentration in women who had preterm delivery was significantly higher than that of women who had term delivery, both in the colostral and mature phase of lactation. (p<0.01. Also, the difference in the protein concentration was statistically highly significant (p<0.01 in the colostral and mature phase of lactation, both in women who had term and preterm delivery. Variations in the total protein level of human milk were not significant, depending on the prematurity stage, the mode and severity of delivery and parity, both in the first and third week of lactation. Conclusion. Our results show that total protein concentration

  15. The Impacts of Satellite Remotely Sensed Winds and Total Precipitable Vapour in WRF Tropical Cyclone Track Forecasts

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2016-01-01

    Full Text Available This study assesses the impact assimilating the scatterometer near-surface wind observations and total precipitable water from the SSMI, into WRF on genesis and track forecasting of four tropical cyclones (TCs. These TCs are selected to be representative of different intensity categories and basins. Impact is via a series of data denial experiments that systematically exclude the remote sensed information. Compared with the control case, in which only the final analysis atmospheric variables are used to initialize and provide the lateral boundary conditions, the data assimilation runs performed consistently better, but with very different skill levels for the different TCs. Eliassen-Palm flux analyses are employed. It is confirmed that if a polar orbital satellite footprint passes over the TC’s critical genesis region, the forecast will profit most from assimilating the remotely sensed information. If the critical genesis region lies within an interorbital gap then, regardless of how strong the TC later becomes (e.g., Katrina 2005, the improvement from assimilating near-surface winds and total precipitable water in the model prediction is severely limited. This underpins the need for a synergy of data from different scatterometers/radiometers. Other approaches are suggested to improve the accuracy in the prediction of TC genesis and tracks.

  16. Attributes for MRB_E2RF1 Catchments by Major Rivers Basins in the Conterminous United States: Total Precipitation, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the catchment-average total precipitation in millimeters multiplied by 100 for 2002, compiled for every MRB_E2RF1 catchment of...

  17. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region.

    Science.gov (United States)

    Nguyen, Duc Luong; Kim, Jin Young; Shim, Shang-Gyoo; Ghim, Young Sung; Zhang, Xiao-Shan

    2016-12-01

    The first ever shipboard measurements for atmospheric particulate mercury (Hg(p)) over the Yellow Sea and ground measurements for atmospheric Hg(p) and total mercury (THg) in precipitation at the remote sites (Deokjeok and Chengshantou) and the urban sites (Seoul and Ningbo) surrounding the Yellow Sea were carried out during 2007-2008. The Hg(p) regional background concentration of 56.3 ± 55.6 pg m(-3) over the Yellow Sea region is much higher than the typical background concentrations of Hg(p) in terrestrial environments (mercury emission sources from East Asia. The episodes of highly elevated Hg(p) concentrations at the Korean remote site were influenced through long-range transport from source regions in the Liaoning Province - one of China's most mercury-polluted regions and in the western region of North Korea. Interestingly, wet scavenging of atmospheric Hg(p) is the predominant mechanism regulating concentration of THg in precipitation at the Chinese sites; whereas, wet scavenging of gaseous oxidized mercury (GOM) might play the more important role than that of Hg(p) at the Korean sites. The highest annual wet and dry deposition fluxes of Hg were found at the Ningbo site. The comparison between wet and dry deposition fluxes suggested that dry deposition might play the more important role than wet deposition in Chinese urban areas (source regions); whereas, wet deposition is more important in Korean areas (downwind regions).

  18. A new tool for spatiotemporal pattern decomposition based on empirical mode decomposition: A case study of monthly mean precipitation in Taihu Lake Basin, China

    Science.gov (United States)

    Chenhua, Shen; Yani, Yan

    2017-02-01

    We present a new tool for spatiotemporal pattern decomposition and utilize this new tool to decompose spatiotemporal patterns of monthly mean precipitation from January 1957 to May 2015 in Taihu Lake Basin, China. Our goal is to show that this new tool can mine more hidden information than empirical orthogonal function (EOF). First, based on EOF and empirical mode decomposition (EMD), the time series which is an average over the study region is decomposed into a variety of intrinsic mode functions (IMFs) and a residue by means of EMD. Then, these IMFs are supposed to be explanatory variables and a time series of precipitation in every station is considered as a dependent variable. Next, a linear multivariate regression equation is derived and corresponding coefficients are estimated. These estimated coefficients are physically interpreted as spatial coefficients and their physical meaning is an orthogonal projection between IMF and a precipitation time series in every station. Spatial patterns are presented depending on spatial coefficients. The spatiotemporal patterns include temporal patterns and spatial patterns at various timescales. Temporal pattern is obtained by means of EMD. Based on this temporal pattern, spatial patterns at various timescales will be gotten. The proposed tool has been applied in decomposition of spatiotemporal pattern of monthly mean precipitation in Taihu Lake Basin, China. Since spatial patterns are associated with intrinsic frequency, the new and individual spatial patterns are detected and explained physically. Our analysis shows that this new tool is reliable and applicable for geophysical data in the presence of nonstationarity and long-range correlation and can handle nonstationary spatiotemporal series and has the capacity to extract more hidden time-frequency information on spatiotemporal patterns.

  19. Total ozone column, aerosol optical depth and precipitable water effects on solar erythemal ultraviolet radiation recorded in Malta.

    Science.gov (United States)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro

    2013-04-01

    The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at

  20. El-Niño/Southern Oscillation (ENSO) influences on monthly NO 3 load and concentration, stream flow and precipitation in the Little River Watershed, Tifton, Georgia (GA)

    Science.gov (United States)

    Keener, V. W.; Feyereisen, G. W.; Lall, U.; Jones, J. W.; Bosch, D. D.; Lowrance, R.

    2010-02-01

    SummaryAs climate variability increases, it is becoming increasingly critical to find predictable patterns that can still be identified despite overall uncertainty. The El-Niño/Southern Oscillation is the best known pattern. Its global effects on weather, hydrology, ecology and human health have been well documented. Climate variability manifested through ENSO has strong effects in the southeast United States, seen in precipitation and stream flow data. However, climate variability may also affect water quality in nutrient concentrations and loads, and have impacts on ecosystems, health, and food availability in the southeast. In this research, we establish a teleconnection between ENSO and the Little River Watershed (LRW), GA., as seen in a shared 3-7 year mode of variability for precipitation, stream flow, and nutrient load time series. Univariate wavelet analysis of the NINO 3.4 index of sea surface temperature (SST) and of precipitation, stream flow, NO 3 concentration and load time series from the watershed was used to identify common signals. Shared 3-7 year modes of variability were seen in all variables, most strongly in precipitation, stream flow and nutrient load in strong El Niño years. The significance of shared 3-7 year periodicity over red noise with 95% confidence in SST and precipitation, stream flow, and NO 3 load time series was confirmed through cross-wavelet and wavelet-coherence transforms, in which common high power and co-variance were computed for each set of data. The strongest 3-7 year shared power was seen in SST and stream flow data, while the strongest co-variance was seen in SST and NO 3 load data. The strongest cross-correlation was seen as a positive value between the NINO 3.4 and NO 3 load with a three-month lag. The teleconnection seen in the LRW between the NINO 3.4 index and precipitation, stream flow, and NO 3 load can be utilized in a model to predict monthly nutrient loads based on short-term climate variability

  1. The effect of ambient air temperature and precipitation on monthly counts of salmonellosis in four regions of Kazakhstan, Central Asia, in 2000-2010.

    Science.gov (United States)

    Grjibovski, A M; Kosbayeva, A; Menne, B

    2014-03-01

    We studied associations between monthly counts of laboratory-confirmed cases of salmonellosis, ambient air temperature and precipitation in four settings in Kazakhstan. We observed a linear association between the number of cases of salmonellosis and mean monthly temperature during the same months only in Astana: an increase of 1°C was associated with a 5·5% [95% confidence interval (CI) 2·2-8·8] increase in the number of cases. A similar association, although not reaching the level of significance was observed in the Southern Kazakhstan region (3·5%, 95% CI -2·1 to 9·1). Positive association with precipitation with lag 2 was found in Astana: an increase of 1 mm was associated with a 0·5% (95% CI 0·1-1·0) increase in the number of cases. A similar association, but with lag 0 was observed in Southern Kazakhstan region (0·6%, 95% CI 0·1-1·1). The results may have implications for the future patterns of salmonellosis in Kazakhstan with regard to climate change.

  2. Total and Conceptual Vocabulary in Spanish–English Bilinguals From 22 to 30 Months: Implications for Assessment

    Science.gov (United States)

    Core, Cynthia; Hoff, Erika; Rumiche, Rosario; Señor, Melissa

    2015-01-01

    Purpose Vocabulary assessment holds promise as a way to identify young bilingual children at risk for language delay. This study compares 2 measures of vocabulary in a group of young Spanish–English bilingual children to a single-language measure used with monolingual children. Method Total vocabulary and conceptual vocabulary were used to measure mean vocabulary size and growth in 47 Spanish–English bilingually developing children from 22 to 30 months of age based on results from the MacArthur–Bates Communicative Development Inventory (CDI; Fenson et al., 1993) and the Inventario del Desarrollo de Habilidades Comunicativas (Jackson-Maldonado et al., 2003). Bilingual children’s scores of total vocabulary and conceptual vocabulary were compared with CDI scores for a control group of 56 monolingual children. Results The total vocabulary measure resulted in mean vocabulary scores and average rate of growth similar to monolingual growth, whereas conceptual vocabulary scores were significantly smaller and grew at a slower rate than total vocabulary scores. Total vocabulary identified the same proportion of bilingual children below the 25th percentile on monolingual norms as the CDI did for monolingual children. Conclusion These results support the use of total vocabulary as a means of assessing early language development in young bilingual Spanish–English speaking children. PMID:24023382

  3. Differences in gait characteristics between total hip, knee, and ankle arthroplasty patients: a six-month postoperative comparison

    Science.gov (United States)

    2013-01-01

    Background The recovery of gait ability is one of the primary goals for patients following total arthroplasty of lower-limb joints. The aim of this study was to objectively compare gait differences of patients after unilateral total hip arthroplasty (THA), total knee arthroplasty (TKA) and total ankle arthroplasty (TAA) with a group of healthy controls. Methods A total of 26 TAA, 26 TKA and 26 THA patients with a mean (± SD) age of 64 (± 9) years were evaluated six months after surgery and compared with 26 matched healthy controls. Subjects were asked to walk at self-selected normal and fast speeds on a validated pressure mat. The following spatiotemporal gait parameters were measured: walking velocity, cadence, single-limb support (SLS) time, double-limb support (DLS) time, stance time, step length and step width. Results TAA and TKA patients walked slower than controls at normal (pTKA>THA). THA patients demonstrated no gait differences compared with controls. In contrast, TAA and TKA patients still demonstrated gait differences compared to controls, with slower walking velocity and reduced SLS in the involved limb. In addition, TAA patients presented marked side-to-side asymmetries in gait characteristics. PMID:23731906

  4. Preoperative hypoalgesia after cold pressor test and aerobic exercise is associated with pain relief six months after total knee replacement

    DEFF Research Database (Denmark)

    Vaegter, Henrik Bjarke; Handberg, Gitte; Emmeluth, Claus

    2017-01-01

    OBJECTIVES: Chronic pain after total knee replacement (TKR) is not uncommon. Preoperative impaired conditioning pain modulation (CPM) has been used to predict chronic postoperative pain. Interestingly, exercises reduce pain sensitivity in patients with knee osteoarthritis. This pilot study...... investigated the association between exercise-induced hypoalgesia (EIH) and CPM on post-TKR pain relief. METHODS: Before and six months post-TKR, 14 patients with chronic knee osteoarthritis performed the cold pressor test on the non-affected leg and two exercise conditions (bicycling and isometric knee...... at the affected leg improved post-TKR compared with pre-TKR (PCPM and bicycling EIH assessed by the increase in cPTT correlated with reduction in NRS pain scores post-TKR (PCPM and EIH responses after TKR were significantly correlated with reduction in NRS pain scores...

  5. Monthly values of the standardized precipitation index in the State of São Paulo, Brazil: trends and spectral features under the normality assumption

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2012-01-01

    Full Text Available The aim of this study was to describe monthly series of the Standardized Precipitation Index obtained from four weather stations of the State of São Paulo, Brazil. The analyses were carried out by evaluating the normality assumption of the SPI distributions, the spectral features of these series and, the presence of climatic trends in these datasets. It was observed that the Pearson type III distribution was better than the gamma 2-parameter distribution in providing monthly SPI series closer to the normality assumption inherent to the use of this standardized index. The spectral analyses carried out in the time-frequency domain did not allow us to establish a dominant mode in the analyzed series. In general, the Mann-Kendall and the Pettitt tests indicated the presence of no significant trend in the SPI series. However, both trend tests have indicated that the temporal variability of this index, observed at the months of October over the last 60 years, cannot be seen as the result of a purely random process. This last inference is due to the concentration of decreasing trends, with a common beginning (1983/84 in the four locations of the study.

  6. MODIS/Terra Total Precipitable Water Vapor 5-Min L2 Swath 1km and 5km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 data collection contains derived precipitable column water vapor amounts, during daytime using a near-infrared over clear land areas and above clouds...

  7. Exploiting an ensemble of regional climate models to provide robust estimates of projected changes in monthly temperature and precipitation probability distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Tapiador, Francisco J.; Sanchez, Enrique; Romera, Raquel (Inst. of Environmental Sciences, Univ. of Castilla-La Mancha (UCLM), 45071 Toledo (Spain)). e-mail: francisco.tapiador@uclm.es

    2009-07-01

    Regional climate models (RCMs) are dynamical downscaling tools aimed to improve the modelling of local physical processes. Ensembles of RCMs are widely used to improve the coarse-grain estimates of global climate models (GCMs) since the use of several RCMs helps to palliate uncertainties arising from different dynamical cores and numerical schemes methods. In this paper, we analyse the differences and similarities in the climate change response for an ensemble of heterogeneous RCMs forced by one GCM (HadAM3H), and one emissions scenario (IPCC's SRES-A2 scenario). As a difference with previous approaches using PRUDENCE database, the statistical description of climate characteristics is made through the spatial and temporal aggregation of the RCMs outputs into probability distribution functions (PDF) of monthly values. This procedure is a complementary approach to conventional seasonal analyses. Our results provide new, stronger evidence on expected marked regional differences in Europe in the A2 scenario in terms of precipitation and temperature changes. While we found an overall increase in the mean temperature and extreme values, we also found mixed regional differences for precipitation

  8. Study of total column atmospheric aerosol optical depth, ozone and precipitable water content over Bay of Bengal during BOBMEX-99

    Indian Academy of Sciences (India)

    K K Dani; R S Maheskumar; P C S Devara

    2003-06-01

    The spatial and temporal variations in aerosols and precursor gases over oceanic regions have special importance in the estimation of radiative forcing parameters and thereby in the refinement of general circulation models. Extensive observations of the columnar aerosol optical depth (AOD), total column ozone (TCO) and precipitable water content (PWC) have been carried out using the on-line, multi-band solar radiometers onboard ORV Sagar Kanya (Cruise#SK 147B) over Bay of Bengal during 11th-28th August 1999. Aerosol optical and physical properties (optical depth and angstrom parameter) have been estimated at six wavelengths covering from UV to NIR (380-1020 nm) while TCO and PWC have been determined using the UV band around 300nm and NIR band around 940 nm, respectively. Added, concurrent meteorological and satellite observations during this field phase of BOBMEX-99 have been utilized to investigate spectral-temporal variations of AOD, TCO and PWC in marine environment. The results indicate lower AODs (around 0.4 at characteristic wavelength of 500 nm) and size distributions with abundance of coarse-mode particles as compared to those aerosols of typical land origin. An interesting result that is found in the present study is the significant reduction in AOD at all wavelengths from initial to later part of observation period due to cloud-scavenging and rain-washout effects as well as signature of coastal aerosol loading. The clear-sky daytime diurnal variation of TCO shows gradual increase during post-sunrise hours, broad maximum during afternoon hours and gradual decrease during pre-sunset hours, which is considered to be due to photochemical reactions. The diurnal variation curve of PWC showed maximum (∼4cm) during morning hours and gradual decrease (∼3.5cm) towards evening hours, which are found to be greater as compared to typical values over land. Another interesting feature observed is that although the PWC values are very high, there was no proportionate

  9. Early changes in muscle strength after total knee arthroplasty. A 6-month follow-up of 30 knees

    DEFF Research Database (Denmark)

    Lorentzen, J S; Petersen, M M; Brot, C

    1999-01-01

    to surgery, and after 3 and 6 months, isokinetic and isometric muscle strength in both legs were measured, using a Cybex 6000 dynamometer. Isokinetic tests showed a bilateral, significant, and progressive increase (30-53%) in flexor muscle strength most pronounced in the operated legs. Isokinetic extensor...... to the preoperative level. No significant change in isometric strength was observed in the contralateral legs. The knee pain during the muscle strength measurements decreased significantly from the preoperative level, which may indicate that the substantial pain relief within 3 months after a TKA is an important...... factor for evaluation of muscle strength....

  10. Total Dust Deposition Flux During Precipitation in Toyama, Japan, in the Spring of 2009: A Sensitivity Analysis with the NASA GEOS-5 Model

    Science.gov (United States)

    Yasunari, Teppei J.; Colarco, Peter R.; Lau, William K. M.; Osada, Kazuo; Kido, Mizuka; Mahanama, Sarith P. P.; Kim, Kyu-Myong; Da Silva, Arlindo M.

    2015-01-01

    We compared the observed total dust deposition fluxes during precipitation (TDP) mainly at Toyama in Japan during the period January - April 2009 with results available from four NASA GEOS-5 global model experiments. The modeled results were obtained from three previous experiments and carried out in one experiment, which were all driven by assimilated meteorology and simulating aerosol distributions for the time period. We focus mainly on the observations of two distinct TDP events, which were reported in Osada et al. (2011), at Toyama, Japan, in February (Event B) and March 2009 (Event C). Although all of our GEOS-5 simulations captured aspects of the observed TDP, we found that our low horizontal spatial resolution control experiment performed generally the worst. The other three experiments were run at a higher spatial resolution, with the first differing only in that respect from the control, the second adding imposed a prescribed corrected precipitation product, and the final experiment adding as well assimilation of aerosol optical depth based on MODIS observations. During Event C, the increased horizontal resolution could increase TDP with precipitation increase. There was no significant improvement, however, due to the imposition of the corrected precipitation product. The simulation that incorporated aerosol data assimilation performed was by far the best for this event, but even so could only reproduce less than half of the observed TDP despite the significantly increased atmospheric dust mass concentrations. All three of the high spatial resolution experiments had higher simulated precipitation at Toyama than was observed and that in the lower resolution control run. During Event B, the aerosol data assimilation run did not perform appreciably better than the other higher resolution simulations, suggesting that upstream conditions (i.e., upstream cloudiness), or vertical or horizontal misplacement of the dust plume did not allow for significant

  11. Comparable three months' outcome of total arterial revascularization versus conventional coronary surgery: Copenhagen Arterial Revascularization Randomized Patency and Outcome trial

    DEFF Research Database (Denmark)

    Damgaard, S.; Lund, J.T.; Lilleor, N.B.;

    2008-01-01

    .9 in the conventional group (P = .004). Three months' follow-up for the arterial versus conventional groups showed the following: deaths: 1 (0.6%) versus 0; stroke: 3 (1.9%) versus 3 (1.8%); myocardial infarction: 6 (3.7%) versus 4 (2.4%); sternal wound reoperation: 4 (2.5%) versus 0 (P = .054); arm and leg wound...

  12. Preoperative hypoalgesia after cold pressor test and aerobic exercise is associated with pain relief six months after total knee replacement

    DEFF Research Database (Denmark)

    Vaegter, Henrik Bjarke; Handberg, Gitte; Emmeluth, Claus

    2017-01-01

    PPT) and subsequently the pain tolerance threshold (cPTT). 2) Manual pressure pain thresholds (PPTs) at the legs, arm and shoulder. Clinical pain intensity (numerical rating scale) and psychological distress (questionnaires) were assessed. RESULTS: Clinical pain intensity, psychological distress, cPPT and PPT...... investigated the association between exercise-induced hypoalgesia (EIH) and CPM on post-TKR pain relief. METHODS: Before and six months post-TKR, 14 patients with chronic knee osteoarthritis performed the cold pressor test on the non-affected leg and two exercise conditions (bicycling and isometric knee...... post-TKR (Passociated with pain relief six months after TKR. EIH as a novel preoperative screening tool should be further investigated...

  13. 长江上游月降水人工神经网络预测模型%ARTIFICIAL NEURAL NETWORK MODELS FOR FORECASTING MONTHLY PRECIPITATION IN THE UPPER YANGTZE RIVER

    Institute of Scientific and Technical Information of China (English)

    冯亚文; 任国玉; 张丽; 罗华超

    2011-01-01

    Monthly precipitation forecast for the upper Yangtze River is very essential to the water resources management for the entire Yangtze River basin. Three typical meteorological stations were selected respectively in three different climatic zones. All the selected stations contained nearly 60 years of monthly precipitation records in the upper Yangtze River. This paper estimated the month of precipitation and precipitation time delay parameter, and established monthly precipitation forecasting model using back-propagation neural network, radial basis function neural network, generalized regression neural network and multiple linear regression method respectively, to predict the precipitation of coming month. Then, the mean square error and coefficient of determination were used to verify the simulation accuracy of various models and the model simulation results. The results show that artificial neural network prediction model is superior to multiple linear regression in general. Especially, the performance of the back-propagation neural network is better than the others. It can be determined as an effective monthly precipitation methods for the upper Yangtze River after determining reasonable input variables and network structure.%长江上游月降水量预测对于三峡库区及整个长江流域水资源管理具有重要意义.根据长江上游不同气候区降水差异,选取玉树、九龙和宜宾3个代表性气象站点近60 a的月降水量数据,运用反向传播神经网络、径向基函数神经网络、广义回归神经网络和多元线性回归法,确定降水时滞和降水月份,建立月降水预测模型,来预测未来一个月的降水量,并采用均方误差和判定系数来验证和对比各种模型的模拟效果.结果显示:人工神经网络模型总体上优于多元线性回归,特别是反向传播种经网络的模拟结果各站表现较好,在确定合理的输入变量和网络结构后,可以尝试作为长江上游各站月降水预测模型.

  14. The clinical efficacy of Colgate Total Plus Whitening Toothpaste containing a special grade of silica and Colgate Total Fresh Stripe Toothpaste in the control of plaque and gingivitis: a six-month clinical study.

    Science.gov (United States)

    Allen, Donald R; Battista, Guido W; Petrone, Dolores M; Petrone, Margaret E; Chaknis, Patricia; DeVizio, William; Volpe, Anthony R

    2002-01-01

    The objective of this six-month, placebo-controlled, double-blind clinical study, conducted in harmony with American Dental Association guidelines, was to provide an assessment of the effectiveness of a new dentifrice formulation of Colgate Total Toothpaste containing a special grade of silica (Colgate Total Plus Whitening Toothpaste), vs. Colgate Total Fresh Stripe Toothpaste as a control, and a placebo dentifrice without triclosan and the copolymer, for the control of supragingival dental plaque and gingivitis. Adult male and female subjects from the state of New Jersey were entered into the study, and stratified into three treatment groups which were balanced for baseline Quigley-Hein Plaque Index scores and baseline Löe-Silness Gingival Index scores. Subjects received an oral prophylaxis, and were instructed to brush their teeth twice daily (morning and evening) for one minute with their assigned dentifrice, using a soft-bristled toothbrush. Examinations for supragingival plaque and gingivitis were conducted after three-months' and again after six-months' participation in the study. One-hundred ten (110) subjects complied with the protocol and completed the entire six-month clinical study. At both the three- and six-month study examinations, the Colgate Total Plus Whitening Toothpaste group and the Colgate Total Fresh Stripe Toothpaste group exhibited statistically significantly less supragingival plaque and gingivitis than did the placebo toothpaste group. At the six-month examination, the magnitude of these differences exceeded 23.0% for all four parameters measured in the Colgate Total Plus Whitening Toothpaste group (29.9% for Plaque Index, 59.2% for Plaque Severity Index, 23.2% for Gingival Index, and 75.1% for Gingivitis Severity Index). Also, at the six-month examination, the magnitude of these differences exceeded 21.0% for each of the four parameters measured in the Colgate Total Fresh Stripe Toothpaste group (27.9% for Plaque Index, 54.9% for Plaque

  15. The Effect of a Physical Activity Program on the Total Number of Primary Care Visits in Inactive Patients: A 15-Month Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Maria Giné-Garriga

    Full Text Available Effective promotion of exercise could result in substantial savings in healthcare cost expenses in terms of direct medical costs, such as the number of medical appointments. However, this is hampered by our limited knowledge of how to achieve sustained increases in physical activity.To assess the effectiveness of a Primary Health Care (PHC based physical activity program in reducing the total number of visits to the healthcare center among inactive patients, over a 15-month period.Randomized controlled trial.Three hundred and sixty-two (n = 362 inactive patients suffering from at least one chronic condition were included. One hundred and eighty-three patients (n = 183; mean (SD; 68.3 (8.8 years; 118 women were randomly allocated to the physical activity program (IG. One hundred and seventy-nine patients (n = 179; 67.2 (9.1 years; 106 women were allocated to the control group (CG. The IG went through a three-month standardized physical activity program led by physical activity specialists and linked to community resources.The total number of medical appointments to the PHC, during twelve months before and after the program, was registered. Self-reported health status (SF-12 version 2 was assessed at baseline (month 0, at the end of the intervention (month 3, and at 12 months follow-up after the end of the intervention (month 15.The IG had a significantly reduced number of visits during the 12 months after the intervention: 14.8 (8.5. The CG remained about the same: 18.2 (11.1 (P = .002.Our findings indicate that a 3-month physical activity program linked to community resources is a short-duration, effective and sustainable intervention in inactive patients to decrease rates of PHC visits.ClinicalTrials.gov NCT00714831.

  16. Total and Conceptual Vocabulary in Spanish-English Bilinguals from 22 to 30 Months: Implications for Assessment

    Science.gov (United States)

    Core, Cynthia; Hoff, Erika; Rumiche, Rosario; Senor, Melissa

    2013-01-01

    Purpose: Vocabulary assessment holds promise as a way to identify young bilingual children at risk for language delay. This study compares 2 measures of vocabulary in a group of young Spanish-English bilingual children to a single-language measure used with monolingual children. Method: Total vocabulary and conceptual vocabulary were used to…

  17. Total and Conceptual Vocabulary in Spanish-English Bilinguals from 22 to 30 Months: Implications for Assessment

    Science.gov (United States)

    Core, Cynthia; Hoff, Erika; Rumiche, Rosario; Senor, Melissa

    2013-01-01

    Purpose: Vocabulary assessment holds promise as a way to identify young bilingual children at risk for language delay. This study compares 2 measures of vocabulary in a group of young Spanish-English bilingual children to a single-language measure used with monolingual children. Method: Total vocabulary and conceptual vocabulary were used to…

  18. Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60 years?

    CERN Document Server

    Sippel, Sebastian; Heimann, Martin; Lange, Holger; Mahecha, Miguel D; van Oldenborgh, Geert Jan; Otto, Friederike E L; Reichstein, Markus

    2016-01-01

    Daily rainfall extremes and annual totals have increased in large parts of the global land area over the last decades. These observations are consistent with theoretical considerations of a warming climate. However, until recently these global tendencies have not been shown to consistently affect land regions with limited moisture availability. A recent study, published by Donat et al. (2016, Nature Climate Change, doi:10.1038/nclimate2941), now identified rapid increases in globally aggregated dry region daily extreme rainfall and annual rainfall totals. Here, we reassess the respective analysis and find that a) statistical artifacts introduced by the choice of the reference period prior to data standardization lead to an overestimation of the reported trends by up to 40%, and also that b) the definition of `dry regions of the globe' affect the reported globally aggregated trends in extreme rainfall. Using the same observational dataset, but accounting for the statistical artifacts and using alternative, wel...

  19. Achilles tendon Total Rupture Score at 3 months can predict patients' ability to return to sport 1 year after injury

    DEFF Research Database (Denmark)

    Hansen, Maria Swennergren; Christensen, Marianne; Budolfsen, Thomas;

    2016-01-01

    PURPOSE: To investigate how the Achilles tendon Total Rupture Score (ATRS) at 3 months and 1 year after injury is associated with a patient's ability to return to work and sports as well as to investigate whether sex and age influence ATRS after 3 months and 1 year. METHOD: This is a retrospective...... study analysing the data from the Danish Achilles tendon Database. A total of 366 patients were included. Logistic regression was conducted to describe the effect of ATRS on return to work and sports. The effect of age and sex on ATRS was analysed by linear regression. RESULTS: Three months after injury...... patients had a significantly increased chance of return to sport after 1 year with an increased ATRS (OR 1.06, p = 0.001) but a non-significant effect on return to work. After 1 year, patients had a significantly increased probability of having returned to sport (OR 1.11, p

  20. Recovery in horizontal gait after hip resurfacing vs. total hip arthroplasty at 6-month follow-up - a RCT study

    DEFF Research Database (Denmark)

    Jensen, Carsten; Aagaard, Per; Overgaard, Søren

    2012-01-01

    and hip muscle strength were positively associated with gait speed, step length and cadence during maximal walking (R2= 0.13-0.37, P ...-dimensional gait data were collected at self-selected normal and maximal walking speed. Primary outcome was gait speed while secondary outcomes comprised selected temporospatial and kinematic parameters obtained during horizontal walking. Explorative outcome was the relationship between isolated mechanical hip...... and knee muscle performance and horizontal gait function in younger THA patients 56 ± 6 years (range 44-64). Data was collected pre-operatively, 2 and 6 months post-operatively Results: There was no effect of treatment on horizontal self-selected normal speed, however an effect of treatment was observed...

  1. Changes in lipid metabolism during last month of pregnancy and first two months of lactation in primiparous cows - analysis of apolipoprotein expression pattern and changes in concentration of total cholesterol, HDL, LDL, triglycerides.

    Science.gov (United States)

    Kurpińska, A K; Jarosz, A; Ożgo, M; Skrzypczak, W F

    2015-01-01

    The final weeks of pregnancy and period of increasing lactation abound with adaptive changes in the intensity of metabolic processes. Maintaining the homeostasis of an organism in prepartum and postpartum periods is the key condition in maintaining the health of the mother and the fetus/calf. The aim of the study was to analyze physiological changes in lipid metabolism in cows during the last month of first pregnancy and in the first two months of lactation, based on the expression of identified apolipoproteins and changes in selected parameters of the lipid metabolism in peripheral blood plasma. Statistically significant changes in the expression of identified apolipoproteins were observed for apolipoprotein A-1 precursor, apolipoprotein A-IV precursor, apolipoprotein E precursor and apolipoprotein J precursor. The lowest expression of the apolipoproteins was noted around parturition and higher expression was observed during the final weeks of pregnancy and during lactation. Tendencies of changes in the concentration of total cholesterol, HDL and LDL were similar in blood plasma from analyzed cows - in the last month of pregnancy a decrease was observed and subsequently an increase in the first two months of lactation was noted. In contrast to abrupt changes observed for total cholesterol, HDL and LDL, changes in concentration of triglycerides were not that extensive and during lactation this parameter was rather stable. Evaluation of changes in the analyzed parameters may contribute to a better understanding of the changes in lipid metabolism occurring in the body of pregnant and lactating young cows.

  2. Monthly and seasonal variation in the amount of total lipid and fatty acid in the muscle of a silurid cat fish Wallagu attu

    Directory of Open Access Journals (Sweden)

    Pinak Dutta

    2014-09-01

    Full Text Available Monthly and seasonal variation in the amount of total lipid and fatty acid in the muscle tissues of W. attu growing wild in large ponds was studied. The result depicts that both the amounts of total lipid and fatty acid varied monthly and thus seasonally in this fish species (boal belonging to the family of fresh water silurid cat fishes. The percentage of total lipid value reaches its minimum in May and starts increasing from June to October. During breeding season the amount of total fatty acid also shows the same tendency to decrease till May when it reaches its minimum. From June onwards the total fatty acid increases significantly. At the end of the reproductive season, i.e. during the commencement of the nutritional season, the fishes start the process of storing energy in the form of lipids / fatty acids for future use i.e. during reproduction season or during scarcity of food. This is what is reflected in the study that, during the monsoon months in West Bengal the lipid / fatty acid content in the muscle tissues of boal rises to the maximum. This starts decreasing in the winter season as the reproduction period approaches and reaches its minimum in summer.

  3. Long-Term Changes of the Ultraviolet Radiation in China and its Relationship with Total Ozone and Precipitation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The new version (version 8) TOMS (Total Ozone Mapping Spectrometer) ozone and noontime erythemal ultraviolet (UV) irradiance products are used to analyze their long-term changes in this paper.It is shown that the summer UV irradiance has increased significantly from Central China to the northern and western parts of China, especially in Central China near Chongqing, Shaanxi, and Hubei provinces;whereas the UV irradiance has decreased significantly in the southern part of China, especially in South China. In July, when UV irradiance is at its maximum and hence when the most serious potential damage may happen, the results indicate an increase in the UV irradiance in Central China and the Yangtze RiverHuaihe River valley and a decrease in South China and the eastern part of North China. At the same time, the total ozone amount is lower over China in summer with the most serious depletion occurring in Northeast China and Northwest China. It is found that the thinning of the ozone layer is not the main reason for the UV irradiance trend in the eastern and southern parts of China, but that the rainfall and the related cloud variations may dominate the long-term changes of the UV irradiance there. In addition,the future UV irradiance trend in China is also estimated.

  4. MM1-type sporadic Creutzfeldt-Jakob disease with 1-month total disease duration and early pathologic indicators.

    Science.gov (United States)

    Iwasaki, Yasushi; Kato, Hiroko; Ando, Tetsuo; Mimuro, Maya; Kitamoto, Tetsuyuki; Yoshida, Mari

    2017-10-01

    A 62-year-old man presented with abnormal behavior and cognitive impairment. Diffusion-weighted images (DWI) obtained on MRI showed extensive hyperintense regions in the cerebral cortex and striatum. Myoclonus was recognized, and the patient died 1 month after the onset; his condition did not reach the akinetic mutism state. The brain weighed 1300 g and showed no apparent atrophy. Extensive spongiform changes were observed in the cerebral neocortex, striatum, thalamus and cerebellar cortex, but gliosis was mild or absent. Neuropil rarefaction and neuron loss were not apparent. Mild proliferation of anti- GFAP-positive astrocytes was observed in the cerebral cortex, but unaffected regions were noted. Regions without spongiform changes and GFAP-positive astrocytes included the hippocampal formation and subiculum. PrP immunostaining showed extensive diffuse synaptic-type PrP deposition in the gray matter, including the hippocampal region, but it was also mild. PrP gene analysis revealed no mutation with methionine homozygosity at polymorphic codon 129. Western blot analysis of proteinase K-resistant PrP indicated type 1 PrP(Sc) . The clinicopathological findings of the present case confirm several hypotheses: (i) the earliest pathologic evidence observed by HE staining in CJD are spongiform changes; (ii) DWI hyperintense regions indicate these spongiform changes; and (iii) regions without spongiform changes, gliosis and proliferation of GFAP-positive astrocytes, but with PrP deposition, exist in the early disease stage. © 2017 Japanese Society of Neuropathology.

  5. The efficacy of modified direct lateral versus posterior approach on gait function and hip muscle strength after primary total hip arthroplasty at 12months follow-up

    DEFF Research Database (Denmark)

    Rosenlund, Signe; Broeng, Leif; Overgaard, Søren;

    2016-01-01

    -seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo...... in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. METHODS: Forty......-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. FINDINGS: Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group...

  6. Sampling Errors in Monthly Rainfall Totals for TRMM and SSM/I, Based on Statistics of Retrieved Rain Rates and Simple Models

    Science.gov (United States)

    Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.

  7. MONTHLY VARIABILITY OF TOTAL SUSPENDED MATTER (TSM) MAPPING USING MODIS 250M TO SUPPORT MARINE CULTURE AT MOROTAI ISLAND, NORTH MALUKU

    OpenAIRE

    KOMANG IWAN SUNIADA

    2015-01-01

    This study was conducted to provide an information of Total Suspended Matter concentration and its monthly variability using dialy data of Terra/ Aqua MOD IS level 1 b with spatial resolution 250m imagery at Morotai Island, Northern Maluku. TSM is one of the water quality key parameter to support finding suitable area which is an important step for marine culture activity. Dialy Aqua/Terra MODIS level lb, 250m dataset was downloaded freely from Goddard Space Flight Center, LAADS Web (http ://...

  8. Variation in stable isotope ratios of monthly rainfall in the Douala and Yaounde cities, Cameroon: local meteoric lines and relationship to regional precipitation cycle

    Science.gov (United States)

    Wirmvem, Mengnjo Jude; Ohba, Takeshi; Kamtchueng, Brice Tchakam; Taylor, Eldred Tunde; Fantong, Wilson Yetoh; Ako, Ako Andrew

    2017-09-01

    Hydrogen (D) and oxygen (18O) stable isotopes in precipitation are useful tools in groundwater recharge and climatological investigations. This study investigated the isotopes in rainfall during the 2013 and 2014 hydrological years in the Douala and Yaounde urban cities. The objectives were to generate local meteoric water lines (LMWLs), define the spatial-temporal variations of the isotopes in rainwater and their relationship to the regional precipitation cycle, and determine the factors controlling the isotopic variation. The LWMLs in Douala and Yaounde were δD = 7.92δ18O + 12.99 and δD = 8.35δ18O + 15.29, respectively. The slopes indicate isotopic equilibrium conditions during rain formation and negligible evaporation effect during rainfall. Precipitation showed similar wide ranges in δ18O values from -5.26 to -0.75 ‰ in Douala and -5.8 to +1.81 ‰ in Yaounde suggesting a common moisture source from the Atlantic Ocean. Enriched weighted mean δ18O (wδ18O) values during the low pre- and post-monsoon showers coincided with low convective activity across the entire region. Enriched isotopic signatures also marked the West African monsoon transition phase during each hydrological year. Abrupt wδ18O depletion after the transition coincided with the monsoon onset in the region. Peak periods of monsoonal rainfall, associated with high convective activities, were characterised by the most depleted wδ18O values. Controls on isotopic variations are the amount effect and moisture recycling. The stable isotope data provide a tool for groundwater recharge studies while the isotopic correlation with regional rainfall cycle demonstrate their use as markers of moisture circulation and detecting climatic changes in precipitation.

  9. Variation in stable isotope ratios of monthly rainfall in the Douala and Yaounde cities, Cameroon: local meteoric lines and relationship to regional precipitation cycle

    Science.gov (United States)

    Wirmvem, Mengnjo Jude; Ohba, Takeshi; Kamtchueng, Brice Tchakam; Taylor, Eldred Tunde; Fantong, Wilson Yetoh; Ako, Ako Andrew

    2016-04-01

    Hydrogen (D) and oxygen (18O) stable isotopes in precipitation are useful tools in groundwater recharge and climatological investigations. This study investigated the isotopes in rainfall during the 2013 and 2014 hydrological years in the Douala and Yaounde urban cities. The objectives were to generate local meteoric water lines (LMWLs), define the spatial-temporal variations of the isotopes in rainwater and their relationship to the regional precipitation cycle, and determine the factors controlling the isotopic variation. The LWMLs in Douala and Yaounde were δD = 7.92δ18O + 12.99 and δD = 8.35δ18O + 15.29, respectively. The slopes indicate isotopic equilibrium conditions during rain formation and negligible evaporation effect during rainfall. Precipitation showed similar wide ranges in δ18O values from -5.26 to -0.75 ‰ in Douala and -5.8 to +1.81 ‰ in Yaounde suggesting a common moisture source from the Atlantic Ocean. Enriched weighted mean δ18O (wδ18O) values during the low pre- and post-monsoon showers coincided with low convective activity across the entire region. Enriched isotopic signatures also marked the West African monsoon transition phase during each hydrological year. Abrupt wδ18O depletion after the transition coincided with the monsoon onset in the region. Peak periods of monsoonal rainfall, associated with high convective activities, were characterised by the most depleted wδ18O values. Controls on isotopic variations are the amount effect and moisture recycling. The stable isotope data provide a tool for groundwater recharge studies while the isotopic correlation with regional rainfall cycle demonstrate their use as markers of moisture circulation and detecting climatic changes in precipitation.

  10. 全球地面降水月值历史数据集研制%Development of a global historic monthly mean precipitation dataset

    Institute of Scientific and Technical Information of China (English)

    杨溯; 徐文慧; 许艳; 李庆祥

    2016-01-01

    全球降水历史数据是开展气候、水循环等研究的基础。收集整理全球12个数据源降水历史月值资料,通过站号、站名甄别不同数据源中相同台站,对344个通过相关系数、一致率、均值 t 检验、方差 F 检验的台站多源资料进行拼接,尽可能多地融合各套数据产品优势,最终形成全球降水历史月值数据集(CMA Global PrecipitationV1.0,CGP)。数据集重点解决当前国际数据产品在东亚地区站点稀少、同时应用多套数据应用门槛较高等问题。数据集收录3.1万个台站共计1.87×107组月降水记录,4152个台站序列长度达百年。与美国大气海洋局(NOAA)的全球降水数据集(GHCN-M V2.0)对比,CGP 新增1万个站点、0.5×107组有效观测记录和1030条百年序列,其中141条百年序列通过多源整合技术获取。CGP 的站点和数据量优势主要体现在东亚、东欧、西伯利亚等站点稀疏地区。基于 CGP 分析的全球降水时空特征与国际同类产品的结果较一致。新增的数据虽然没有改变全球降水分布的总体特征,但对区域性的百年降水变化检测有一定影响。基于 CGP 的全球降水百年序列结果显示,20世纪前半叶全球降水量偏小,近20年是1900年以来全球降水量最大的时期,各纬度带、各个国家或地区的降水长期变化趋势呈现显著的差异。%Global historic precipitation dataset is the base for climate and water cycle research.There have been several global historic land surface precipitation datasets developed by international data centers such as NCDC (National Climatic Data Cen-ter),ECA&D (European Climate Assessment & Dataset)project team,and Met Office etc.,but so far there are no such data-sets developed by any research institute in China.In addition,each dataset has its own focus of study region,and the existing global precipitation datasets only contain sparse

  11. The use of partial thickness method and zero wet bulb temperature for discriminating precipitation type during winter months at the Ebro basin in Spain

    Science.gov (United States)

    Buisan, S.; Revuelto, J.

    2010-09-01

    The forecast office of the State Meteorological Agency of Spain (AEMET) which is located in the city of Zaragoza provides weather forecast, warnings and aviation forecast products for Aragón, Navarra and La Rioja regions. This area of Spain lies mainly on the Ebro river basin. Although the likelihood of snowfall in this territory is low, a forecasting of snow-depth higher than 5cm for low elevations activates the orange warning which must be issued to local emergency management and civil protection authorities. Zero wet bulb temperature has been historically the main tool for forecasting the altitude of snow-rain boundary at the forecast office; it shows the freezing level limit due to evaporational cooling when lower troposphere is saturated from aloft. This work adds two new parameters, the 1000-850 mb and the 850-700 mb thickness in order to characterize the thermal structure of surface based cold air and atmospheric mid-levels. The three main airports in this area Zaragoza-Aragón, Logroño-La Rioja and Pamplona-Navarra are located at altitudes below 500 m. They are thus suitable for this study. In addition, more than 16 years of meteorological observations every hour, known as METAR (Meteorological Aerodrome Report), are available at these locations. These observations were analysed and the predominant precipitation type during a six-hour period was characterized. The 00h, 06h, 12h and 18h analysis time of the ECMWF Forecast model were employed in order to get the parameters at the day and time when the precipitation took place. The most representative grid point of the model for each airport was chosen in order to illustrate the atmospheric conditions. A correlation between precipitation type and zero wet bulb temperature, 1000-850 mb and the 850-700 mb thickness was done for more than 230 different situations during a 16 year period. As a result, we plotted a series of site specific charts for each airport based on these parameters, in order to describe the

  12. Achilles tendon Total Rupture Score at 3 months can predict patients' ability to return to sport 1 year after injury.

    Science.gov (United States)

    Hansen, Maria Swennergren; Christensen, Marianne; Budolfsen, Thomas; Østergaard, Thomas Friis; Kallemose, Thomas; Troelsen, Anders; Barfod, Kristoffer Weisskirchner

    2016-04-01

    To investigate how the Achilles tendon Total Rupture Score (ATRS) at 3 months and 1 year after injury is associated with a patient's ability to return to work and sports as well as to investigate whether sex and age influence ATRS after 3 months and 1 year. This is a retrospective study analysing the data from the Danish Achilles tendon Database. A total of 366 patients were included. Logistic regression was conducted to describe the effect of ATRS on return to work and sports. The effect of age and sex on ATRS was analysed by linear regression. Three months after injury patients had a significantly increased chance of return to sport after 1 year with an increased ATRS (OR 1.06, p = 0.001) but a non-significant effect on return to work. After 1 year, patients had a significantly increased probability of having returned to sport (OR 1.11, p < 0.001) and also having returned to work (OR 1.05, p = 0.007) with an increased ATRS. Men had an average 7 (p = 0.006) points higher ATRS at 3 months and an average 22 (p = 0.006) points higher at 1 year. ATRS is associated with patients' ability to return to sports and work. ATRS at 3 months can be used as a predictor of the patient's ability to return to sports after 1 year. Hereby, ATRS might help to individualise rehabilitation by identifying patients who do not respond adequately to the chosen treatment. II.

  13. Effects of perioperative factors and hip geometry on hip abductor muscle strength during the first 6 months after anterolateral total hip arthroplasty

    Science.gov (United States)

    Ikeda, Takashi; Jinno, Tetsuya; Aizawa, Junya; Masuda, Tadashi; Hirakawa, Kazuo; Ninomiya, Kazunari; Suzuki, Kouji; Morita, Sadao

    2017-01-01

    [Purpose] The importance and effect of hip joint geometry on hip abductor muscle strength are well known. In addition, other perioperative factors are also known to affect hip abductor muscle strength. This study examined the relative importance of factors affecting hip abductor muscle strength after total hip arthroplasty. [Subjects and Methods] The subjects were 97 females with osteoarthritis scheduled for primary unilateral THA. The following variables were assessed preoperatively and 2 and 6 months after surgery: isometric hip abductor strength, radiographic analysis (Crowe class, postoperative femoral offset (FO)), Frenchay Activities Index, compliance rate with home exercise, Japanese Orthopaedic Association Hip-Disease Evaluation Questionnaire (JHEQ), and demographic data. Factors related to isometric hip abductor muscle strength 2 and 6 months after surgery were examined. [Results] Significant factors related to isometric hip abductor muscle strength at 2 and 6 months after surgery were, in extraction order: 1. isometric hip abductor muscle strength in the preoperative period; 2. BMI; and 3. the JHEQ mental score at 2 and 6 months after surgery. [Conclusion] Preoperative factors and postoperative mental status were related to postoperative isometric hip abductor strength. FO was not extracted as a significant factor related to postoperative isomeric hip abductor strength. PMID:28265161

  14. Total knee arthroplasties performed with a mini-incision or a standard incision. Similar results at six months follow-up

    Directory of Open Access Journals (Sweden)

    Noriega-Fernandez Alfonso

    2010-02-01

    Full Text Available Abstract Background Minimal invasion surgery (MIS is a recent technique recommended for Total knee arthroplasty (TKA but demands an effort of the surgeons and the learning curve may be long. Methods Twenty six MIS-TKA were matched to 36 standard TKA with respect to age, sex, body mass index or preoperative score. All patients suffered from knee osteoarthritis, which had not improved with medical treatment and which presented a less than 10° deformity in the coronal and sagittal radiographic projections. At six months after the surgery a specific questionnaire was completed as well as the KSS (Knee Society rating scale, the generic short-form health questionnaire (SF-12 and a visual analogue scale (VAS. Results The MIS technique required more time of surgery (p Conclusions Minimal invasion surgery in total knee arthroplasty showed no improvement over a standard approach.

  15. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  16. Multidisciplinary predialysis education reduced the inpatient and total medical costs of the first 6 months of dialysis in incident hemodialysis patients.

    Science.gov (United States)

    Yu, Yu-Jen; Wu, I-Wen; Huang, Chun-Yu; Hsu, Kuang-Hung; Lee, Chin-Chan; Sun, Chio-Yin; Hsu, Heng-Jung; Wu, Mai-Szu

    2014-01-01

    The multidisciplinary pre-dialysis education (MPE) retards renal progression, reduce incidence of dialysis and mortality of CKD patients. However, the financial benefit of this intervention on patients starting hemodialysis has not yet been evaluated in prospective and randomized trial. We studied the medical expenditure and utilization incurred in the first 6 months of dialysis initiation in 425 incident hemodialysis patients who were randomized into MPE and non-MPE groups before reaching end-stage renal disease. The content of the MPE was standardized in accordance with the National Kidney Foundation Dialysis Outcomes Quality Initiative guidelines. The mean age of study patients was 63.8±13.2 years, and 221 (49.7%) of them were men. The mean serum creatinine level and estimated glomerular filtration rate was 6.1±4.0 mg/dL and 7.6±2.9 mL⋅min(-1)⋅1.73 m(-2), respectively, at dialysis initiation. MPE patients tended to have lower total medical cost in the first 6 months after hemodialysis initiation (9147.6±0.1 USD/patient vs. 11190.6±0.1 USD/patient, p = 0.003), fewer in numbers [0 (1) vs. 1 (2), pcatheter at initiation of hemodialysis. Participation of multidisciplinary education in pre-dialysis period was independently associated with reduction in the inpatient and total medical expenditures of the first 6 months post-dialysis owing to decreased inpatient service utilization secondary to cardiovascular causes and vascular access-related surgeries. ClinicalTrials.gov NCT00644046.

  17. An assessment of El Niño and La Niña impacts focused on monthly and seasonal rainfall and extreme dry/precipitation events in mountain regions of Colombia and México

    Science.gov (United States)

    Pinilla Herrera, María Carolina; Andrés Pinzón Correa, Carlos

    2016-03-01

    The influence of El Niño and La Niña on monthly and seasonal rainfall over mountain landscapes in Colombia and México was assessed based on the Oceanic Niño Index (ONI). A statistical analysis was develop to compare the extreme dry/precipitation events between El Niño, La Niña and Neutral episodes. For both areas, it was observed that El Niño and La Niña episodes are associated with important increases or decreases in rainfall. However, Neutral episodes showed the highest occurrence of extreme precipitation/dry events. For a better understanding of the impact of El Niño and La Niña on seasonal precipitation, we did a compound and a GIS analyses to define the high/low probability of above, below or normal seasonal precipitation under El Niño, La Niña and cold/warm Neutral episodes. In San Vicente, Colombia the below-normal seasonal rainfall was identified during El Niño and Neutral episodes in the dry season JJA. In this same municipality we also found above-normal seasonal rainfall during La Niña and Neutral episodes, especially in the dry season DJF. In Tancítaro México the below-normal seasonal rainfall was identified during La Niña winters (DJF) and El Niño summers (JJA), the above-normal seasonal rainfall was found during La Niña summers (JJA) and El Niño winters (DJF).

  18. Multidisciplinary predialysis education reduced the inpatient and total medical costs of the first 6 months of dialysis in incident hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Yu

    Full Text Available The multidisciplinary pre-dialysis education (MPE retards renal progression, reduce incidence of dialysis and mortality of CKD patients. However, the financial benefit of this intervention on patients starting hemodialysis has not yet been evaluated in prospective and randomized trial.We studied the medical expenditure and utilization incurred in the first 6 months of dialysis initiation in 425 incident hemodialysis patients who were randomized into MPE and non-MPE groups before reaching end-stage renal disease. The content of the MPE was standardized in accordance with the National Kidney Foundation Dialysis Outcomes Quality Initiative guidelines.The mean age of study patients was 63.8±13.2 years, and 221 (49.7% of them were men. The mean serum creatinine level and estimated glomerular filtration rate was 6.1±4.0 mg/dL and 7.6±2.9 mL⋅min(-1⋅1.73 m(-2, respectively, at dialysis initiation. MPE patients tended to have lower total medical cost in the first 6 months after hemodialysis initiation (9147.6±0.1 USD/patient vs. 11190.6±0.1 USD/patient, p = 0.003, fewer in numbers [0 (1 vs. 1 (2, p<0.001] and length of hospitalization [0 (15 vs. 8 (27 days, p<0.001], and also lower inpatient cost [0 (2617.4 vs. 1559,4 (5019.6 USD/patient, p<0.001] than non-MPE patients, principally owing to reduced cardiovascular hospitalization and vascular access-related surgeries. The decreased inpatient and total medical cost associated with MPE were independent of patients' demographic characteristics, concomitant disease, baseline biochemistry and use of double-lumen catheter at initiation of hemodialysis.Participation of multidisciplinary education in pre-dialysis period was independently associated with reduction in the inpatient and total medical expenditures of the first 6 months post-dialysis owing to decreased inpatient service utilization secondary to cardiovascular causes and vascular access-related surgeries.ClinicalTrials.gov NCT00644046.

  19. MONTHLY VARIABILITY OF TOTAL SUSPENDED MATTER (TSM MAPPING USING MODIS 250M TO SUPPORT MARINE CULTURE AT MOROTAI ISLAND, NORTH MALUKU

    Directory of Open Access Journals (Sweden)

    KOMANG IWAN SUNIADA

    2015-05-01

    Full Text Available This study was conducted to provide an information of Total Suspended Matter concentration and its monthly variability using dialy data of Terra/ Aqua MOD IS level 1 b with spatial resolution 250m imagery at Morotai Island, Northern Maluku. TSM is one of the water quality key parameter to support finding suitable area which is an important step for marine culture activity. Dialy Aqua/Terra MODIS level lb, 250m dataset was downloaded freely from Goddard Space Flight Center, LAADS Web (http ://ladsweb.nascom.nasa.gov/ and its contains information of calibrated radiance dan reflectance. TSM concentration derived using algorithm proposed by Trisakti et al, TSM (mg/I = 72743 (bl+b22 ·3551, where bl is remote sensing reflectance band 1 and b2 is remote sensing reflectance band 2. Further process is daily TSM data composited to produce monthly data to define the variability. GIS application technique based on apropriate environment condition for fish comodity are used to mapping suitable area concerning of TSM parameter. Suspended sediment concentrations derived from satellite data showed that the average range of 40-90 mg/I, with the highest suspended sediment concentration occurred in January and lowest in June

  20. The emergency and delay management in total talus extrusion: Case report and review of literature after 24 months of follow up

    Directory of Open Access Journals (Sweden)

    Luigi Piscitelli

    2016-07-01

    Full Text Available Total talus extrusion is a rare and severe injury. It is burdened by many complications as avascular necrosis and osteomyelitis even if a proper debridement of extruded talus is performed. Few case reports or case series were published, and because of the rarity of this event, there are no guidelines for treatment. We report the first case on an octogenarian man providing a long-term follow-up performing contrast enhanced magnetic resonances. The authors report the case of an octogenarian man who fell from an olive tree reporting a total talus extrusion associated with the fracture of the medial malleolus. After an accurate debridement and washing of the wound, the talus was anatomically repositioned and the fracture was treated with an external fixator. The wound healed with difficulty after 12 months and the patient developed a chronic osteomyelitis of the talar dome and avascular necrosis of talar head. We followed the patient for 24 months performing contrast enhanced magnetic resonances and evaluating the development of the avascular necrosis. Even if we encountered these complications, the treatment allowed the patient to walk without pain, using a talus type shoe and one crutch. Although the literature suggests that an anatomic replacement of talus allows avoiding main complications, we deem that the patient's age is an important biological feature to consider in the prognostic stratification. Moreover, primary talectomy and tibio-calcaneal fusion should be reserved as a salvage procedure. Talus replacement allows an overall good outcome for the patients, retaining height, and allowing a good quality of life.

  1. Storage Gage Precipitation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A storage gage is a precipitation gage that requires reading and maintenance only monthly or seasonal intervals. This library includes reports from such gages,...

  2. Missing data analysis and homogeneity test for Turkish precipitation series

    Indian Academy of Sciences (India)

    Mahmut Firat; Fatih Dikbas; A Cem Koç; Mahmud Gungor

    2010-12-01

    In this study, missing value analysis and homogeneity tests were conducted for 267 precipitation stations throughout Turkey. For this purpose, the monthly and annual total precipitation records at stations operated by Turkish State Meteorological Service (DMI) from 1968 to 1998 were considered. In these stations, precipitation records for each month was investigated separately and the stations with missing values for too many years were eliminated. The missing values of the stations were completed by Expectation Maximization (EM) method by using the precipitation records of the nearest gauging station. In this analysis, 38 stations were eliminated because they had missing values for more than 5 years, 161 stations had no missing values and missing precipitation values were completed in the remaining 68 stations. By this analysis, annual total precipitation data were obtained by using the monthly values. These data should be hydrologically and statistically reliable for later hydrological, meteorological, climate change modelling and forecasting studies. For this reason, Standard Normal Homogeneity Test (SNHT), (Swed–Eisenhart) Runs Test and Pettitt homogeneity tests were applied for the annual total precipitation data at 229 gauging stations from 1968 to 1998. The results of each of the testing methods were evaluated separately at a significance level of 95% and the inhomogeneous years were determined. With the application of the aforementioned methods, inhomogeneity was detected at 50 stations of which the natural structure was deteriorated and 179 stations were found to be homogeneous.

  3. Commissioners' Monthly Case Activity Report

    Data.gov (United States)

    Occupational Safety and Health Review Commission — Total cases pending at the beginning of the month, total cases added to the docket during the month, total cases disposed of during the month, and total cases...

  4. 以质量月报推动全面质量管理体系改进%Improvement of Total Quality Management System through Monthly Quality Report

    Institute of Scientific and Technical Information of China (English)

    李枝国; 程湘晖; 周蓉; 曾路

    2012-01-01

    以ISO9000质量管理体系八大原则为基准,结合医院质量管理要求和服务特性,建立了质量管理月报制度并严格执行,对存在的问题进行科学管理,并对结果进行综合评价,实现了问题管理的程序化、整改措施的针对化、问题解决的系统化、评价激励的人性化,提升了医疗质量与服务水平.%Based on the eight principles of ISO9000 quality management, combined with the hospital quality management requirements and services features, A monthly report rules on quality management was established. The problems in total quality management were orderly and scientific managed, and the results were comprehensive evaluated, which achieved the procedural management of hospitals problems, systematic problem - solving and human motivation evaluation, improved health care quality and service level.

  5. Effects of perinatal exposure to organochlorine pesticides, PCBs and dioxins on total development in 10-month-old Japanese male and female infants

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, J.; Shiraha, A.; Yanagawa, T. [Kyushu Univ., Fukuoka (Japan); Fukushige, J. [Fukuoka Children' s Hospital, Fukuoka (Japan); Iida, T.; Nakagawa, R.; Matsueda, T.; Hirakawa, H. [Fukuoka Inst. of Health and Environmental Sciences, Fukuoka (Japan); Watanabe, T. [Watanabe O.B.G.Y. Clinic, Fukuoka (Japan)

    2004-09-15

    Introduction Organochlorine pesticides such as hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethane (DDT), dieldrin, heptachlor and chlordane, and polychlorinated biphenyls (PCBs) have been banned to use in late 1960s and in early 1970s in Japan, because of their persistence and bioaccumulation in the environment, their appearance in animal and human tissue, and their toxicity. However, these chemicals and their metabolites still have been contaminating our environment, food and human beings. Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and coplanar PCBs (Co-PCBs), highly toxic organochlorine compounds and so-called dioxins, are also determined in human beings. Consequently, the chemicals mentioned above and their metabolites have been measured in Japanese breast milk, which indicates Japanese mothers are also contaminated with these compounds. These compounds in Japanese mothers may cause some deleterious effects on the developmental condition of Japanese infants. Therefore, we investigated the relationship between perinatal exposure to the organochlorine pesticides, PCBs and dioxins and the total developmental condition at about 10 months of age in Japanese male and female infants.

  6. Measurement of neonatal equine immunoglobulins for assessment of colostral immunoglobulin transfer: comparison of single radial immunodiffusion with the zinc sulfate turbidity test, serum electrophoresis, refractometry for total serum protein, and the sodium sulfite precipitation test.

    Science.gov (United States)

    Rumbaugh, G E; Ardans, A A; Ginno, D; Trommershausen-Smith, A

    1978-02-01

    Four procedures for assessment of adequacy of colostral immunoglobulin (Ig) transfer in foals were evaluated. Results of zinc sulfate turbidity test, serum electrophoresis, total serum protein refractometry, and sodium sulfite precipitation test were compared with immunoglobulin G content determined by single radial immunodiffusion. The zinc sulfate turbidity test gave acceptable results for IgG, except that hemolyzed serum samples gave higher than expected values. A correction factor for hemolyzed serum was found to be useful. Serum electrophoresis was a satisfactory method of estimating IgG content. Total serum protein values may not be a valid basis for estimating IgG content, inasmuch as postsuckling total protein values were found to decrease in some foals in which passive transfer of IgG had been adequate. Sodium sulfite precipitation reactions were too unpredictable to be of value for determination of neonatal IgG concentration.

  7. Variability of summer-time precipitation in Danube plain, Bulgaria

    Directory of Open Access Journals (Sweden)

    Nikolova Nina

    2005-01-01

    Full Text Available Over the recent years the climate extremes like as drought and floods become more often and have negative impact on human society. That is way it is very important to know the peculiarities of precipitation variability. The paper investigates precipitation variability during summer time in one of the most important agriculture region in Bulgaria - Danube Plain. The summer-time is determined for the period May - October. The study is based on monthly precipitation total for the period 1961-2005. The precipitation variability is analyzed by comparison with the period 1961-1990, determined by World Meteorological Organization as "contemporary climate". In order to investigate the precipitation variability the various indices lake as Percent of Normal, Rainfall Anomaly Index and Cumulative Anomaly have been calculated. Two wet spells (1865-1983 and 1993-2005 and one dry spell (1983-1993 have been identified. The Kriging interpolation has been applied for presenting special distribution of precipitation variability.

  8. CPC Merged Analysis of Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists of two files containing global monthly averaged precipitation rate values at a 2.5x2.5 resolution starting in 1979. Values are obtained...

  9. Modelagem estatística da precipitação mensal e anual e no período seco para o estado de Minas Gerais Statistical modeling of monthly, annual and dry season mean precipitation for the State of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Carlos R. de Mello

    2009-02-01

    Full Text Available Objetivou-se, com o presente estudo, ajustar modelos lineares para predição da precipitação média mensal (no período úmido e anual e no período seco, baseados nas coordenadas geográficas (latitude e longitude e altitude para o Estado de Minas Gerais. Aplicaram-se dados diários de precipitação, provenientes da Agência Nacional de Águas (ANA de 209 estações meteorológicas, das quais 197 foram usadas para ajuste dos modelos e 12 para sua validação final. O coeficiente de determinação ajustado (r², o erro médio absoluto (%, a tendência das estimativas (% e significância dos parâmetros, foram considerados na avaliação dos modelos. De maneira geral, os modelos apresentaram bons parâmetros estatísticos de validação, com r² maior que 0,70, erro médio menor que 10% e tendência não significativa (This study aimed at adjusting statistical linear models for prediction of total mean precipitation associated to monthly (in the wet season, annual and dry season periods, based on geographical coordinates (latitude and longitude and altitude for the State of Minas Gerais, Brazil. Daily precipitation data from the "Agência Nacional de Águas" (ANA for 209 pluviometric stations were applied, 197 for modeling adjustment and 12 for final validation. Coefficient of determination adjusted (r², mean absolute error (%, prediction bias (% and estimated parameters significance were considered for evaluation of models. The monthly and annual precipitation models presented good statistical validation coefficients, with r² greater than 0.70, mean error smaller than 10% and bias not significant (< 2% in relation to mean value. However, the dry season model presented an overestimation of precipitation, showing that more variables associated to topographic characteristics would be necessary to produce a more accurate model. Nevertheless, the adjusted models present good conditions for practical applications, forming an important tool for

  10. Precipitation and temperature effects on mortality and lactation parameters of dairy cattle in California.

    Science.gov (United States)

    Stull, C L; McV Messam, L L; Collar, C A; Peterson, N G; Castillo, A R; Reed, B A; Andersen, K L; VerBoort, W R

    2008-12-01

    Data from 3 commercial rendering companies located in different regions of California were analyzed from September 2003 through August 2005 to examine the relationship of dairy calf and cow mortality to monthly average daily temperature and total monthly precipitation respectively. Yearly average mortality varied between rendering regions from 2.1 to 8.1% for mature cows. The relationship between cow and calf monthly mortality and monthly average daily temperature was U-shaped. Overall, months with average daily temperatures less than 14 and greater than 24 degrees C showed substantial increases in both calf and cow mortality with calf mortality being more sensitive to changes in these temperature ranges than cow mortality. Temperature changes were reflected in a 2-fold difference between the minimum and maximum mortality in cows and calves. Precipitation showed a weak effect with calf mortality and no effect with cow mortality. Data from Dairy Herd Improvement Association were used from 112 California herds tested over a 24-mo period to examine the relationship of milk production and quality with monthly average daily temperature and monthly precipitation. Somatic cell count and percent milk fat were either weakly or not associated with monthly average daily temperature and total monthly precipitation. However, total monthly precipitation was negatively associated with test day milk per milking cow regardless of the dairy's geographical location. Housing-specific associations for test day milk per milking cow were greater for total monthly precipitation than monthly average daily temperature, with the strongest negative association seen for dairies that do not provide shelter for cows. This suggests that providing suitable housing for lactating dairy cattle may ameliorate the precipitation-associated decrease in test day milk per milking cow.

  11. Three-month treatment with pioglitazone reduces circulating C1q-binding adiponectin complex to total-adiponectin ratio, without changes in body mass index, in people with type 2 diabetes.

    Science.gov (United States)

    Nakatsuji, Hideaki; Kishida, Ken; Kobayashi, Hironori; Funahashi, Tohru; Shimomura, Iichiro

    2013-01-01

    We measured circulating C1q-binding adiponectin (C1q-APN) levels before and after 3-month treatment with pioglitazone in people with type 2 diabetes. The results indicate 3-month treatment with pioglitazone reduces circulating levels of C1q-APN/total-adiponectin ratio without changes in body mass index.

  12. Impacts of Urban Development on Precipitation in the Tropical Maritime Climate of Puerto Rico

    Directory of Open Access Journals (Sweden)

    Ángel Torres-Valcárcel

    2014-04-01

    Full Text Available Water is critical for sustaining natural and managed ecosystems, and precipitation is a key component in the water cycle. To understand controls on long-term changes in precipitation for scientific and environmental management applications it is necessary to examine whether local land use and land cover change (LULCC has played a significant role in changing historical precipitation patterns and trends. For the small tropical island of Puerto Rico, where maritime climate is dominant, we used long-term precipitation and land use and land cover data to assess whether there were any detectable impacts of LULCC on monthly and yearly precipitation patterns and trends over the past century. Particular focus was given to detecting impacts from the urban landscape on mesoscale climates across Puerto Rico. We found no statistical evidence for significant differences between average monthly precipitation in urban and non-urban areas directly from surface stations, but, after subdividing by Holdridge Ecological Life Zones (HELZs in a GIS, there were statistically significant differences (α = 0.05 in yearly average total precipitation between urban and non-urban areas in most HELZs. Precipitation in Puerto Rico has been decreasing over the past century as a result of a decrease in precipitation during periods (months or years of low rain. However, precipitation trends at particular stations contradict synoptic-scale long-term trends, which suggests that local land use/land cover effects are driving precipitation variability at local scales.

  13. Modelación de valores extremos: Un análisis preliminar de la precipitación mensual en La Habana; Extreme-value modelling: A preliminary analysis of monthly precipitation at Havana

    Directory of Open Access Journals (Sweden)

    Jesper Ryden

    2011-02-01

    Full Text Available El análisis estadístico de valores extremos es de suma importancia en muchos campos de la ingeniería.Este trabajo es una breve introducción a la modelación con distribución  de valores extremos. Consisteen la presentación de dos métodos básicos comúnmente empleados en el modelado de valores extremospara analizar el problema típico de estimación de valores de retorno. Como ilustración de los métodos,se investiga un conjunto de datos de la precipitación mensual en La Habana. Statistical analysis of extreme values is of importance in many fields of engineering. This paper willserve as a brief introduction to modelling with extreme-value distributions. A presentation of two common,basic methods is given to analyse the standard problem in extreme-value modelling of estimation of returnvalues. As an illustration of the methods, a data set of monthly precipitation at Havana is investigated.

  14. Precipitates in electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Keith [Development and Market Research, Cogent Power Limited, Corporation Road, Newport, South Wales NP19 OXT (United Kingdom)], E-mail: keith.jenkins@cogent-power.com; Lindenmo, Magnus [Development and Market Research, Cogent Power Limited, Corporation Road, Newport, South Wales NP19 OXT (United Kingdom)

    2008-10-15

    Precipitates heavily influence the magnetic properties of electrical steels, either as a key controlled requirement as part of the manufacturing process or as an unwanted harmful residual in the final product. In this current work copper-manganese sulphides precipitates are the primary inhibitor species in the conventional grain-oriented (CGO) steels examined and grain boundary pinning is effective at a mean precipitate size of 30-70 nm. The growth of CuMnS has been studied and the results show that a precipitate size above {approx}100 nm allows the onset of secondary recrystallisation in the heating conditions applied. The effect of precipitates on the magnetic properties of both grain-oriented and non-oriented steels in their final product form is then examined. Examples of grain-oriented material still containing large numbers of precipitates clearly show the detrimental effects with increases in total power loss of 40% or more. Loss deterioration by about 20% is also seen in samples of high silicon non-oriented material in which titanium carbo-nitride precipitates have been observed. In this case the precipitates are believed to have formed during cooling after final annealing. Finally a grain-oriented steel with a large number of very small precipitates, which do not seem to have any harmful effect on the magnetic properties, is demonstrated.

  15. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data

    Science.gov (United States)

    Bordi, Isabella; Zhu, Xiuhua; Fraedrich, Klaus

    2016-01-01

    Monthly means of ground-based GPS measurements of precipitable water vapor (PWV) from six stations in the USA covering the period January 2007-December 2012 are analyzed to investigate their usefulness for monitoring meteorological wet/dry spells. For this purpose, the relationship between PWV and the Standardized Precipitation Index (SPI) on 1-month timescale is investigated. The SPI time series at grid points close to the stations are computed using gridded precipitation records from the NOAA Climate Prediction Center (CPC) unified precipitation dataset (January 1948-April 2012). GPS measurements are first verified against PWV data taken from the latest ECMWF reanalysis ERA-Interim; these PWV reanalysis data, which extend back to 1979, are then used jointly with CPC precipitation to compute precipitation efficiency (PE), defined as the percentage of total water vapor content that falls onto the surface as measurable precipitation in a given time period. The overall results suggest that (i) PWV time series are dominated by the seasonal cycle with maximum values during summer months, (ii) the comparison between GPS and ERA-Interim PWV monthly data shows good agreement with differences less than 4 mm, (iii) at all stations and for almost all months, PWV is only poorly correlated with recorded precipitation and the SPI, while PE correlates highly with the SPI, providing an estimate of the water availability at a given location and useful information on wet/dry spell occurrence, and (iv) long data records would allow, for each month of the year, the identification of PE thresholds associated with different SPI classes that, in turn, have potential for forecasting meteorological wet/dry spells. Thus, it is through PE that ground-based GPS measurements appear of relevance for assessing wet/dry spells, although there is not a direct relationship between PWV and SPI.

  16. 极值指数估计在太原站月降水频率分析中的应用研究%Research on the Application of Extreme Value Index Estimation in the Monthly Precipitation Frequency Analysis of Taiyuan Station

    Institute of Scientific and Technical Information of China (English)

    李扬

    2015-01-01

    This paper studied the extreme value index estimation methods and their application in monthly precipitation frequency analysis .Based on the introduction of extreme value theory and discrimination method of heavy-tailed distribu-tion ,three kinds of EVI estimators were selected .Monthly precipitation series of Taiyuan station in Shanxi province was chosen as an example for application of extreme value index estimation methods in monthly precipitation frequency analy-sis .The results showed that the distribution of monthly precipitation series of Taiyuan station was heavy-tailed distribu-tion .Heavy precipitation section of series was best fitted by Moment estimator .Simple in calculation ,high in accuracy , Moment estimator can provide reference for monthly precipitation frequency analysis in Taiyuan .%在介绍极值理论基础、重尾分布判别方法的基础上,选用3种常用极值指数估计量,以山西省太原站月降水序列为例研究极值指数估计方法在月降水频率分析中的应用。结果表明:太原站月降水序列的样本分布属于重尾分布;选取序列强降水部分进行拟合时,Moment估计量对该段经验点据的拟合效果相对最佳,且计算简便,可为当地月降水序列的频率分析提供参考。

  17. Immediate loading of bimaxillary total fixed prostheses supported by five flapless-placed implants with machined surfaces: A 6-month follow-up prospective single cohort study.

    Science.gov (United States)

    Cannizzaro, Gioacchino; Felice, Pietro; Loi, Ignazio; Viola, Paolo; Ferri, Vittorio; Leone, Michele; Collivasone, Dario; Esposito, Marco

    2016-01-01

    To evaluate the clinical outcome of fully edentulous patients rehabilitated with immediately loaded bimaxillary screw-retained metal-resin prostheses supported by five implants placed flapless: two in the mandible and three in the maxillae. Twenty-five consecutively treated patients were recruited. To be immediately loaded, implants had to be inserted with a minimum torque of 80 Ncm. Outcome measures were prosthesis and implant failures, and complications. Six months after loading no patients dropped out and no prosthesis or implant failed. Two maxillary prostheses were loaded early at 8 weeks because implants were inserted with a torque inferior to 45 Ncm. Three complications occurred in two patients but they were all successfully treated. Six months after loading, immediately loaded bimaxillary cross-arch prostheses can be supported by only two mandibular and three maxillary flapless-placed dental implants. Longer follow-ups of approximately 10 years are needed to understand the prognosis of this treatment modality.

  18. Precipitation Reconstruction (PREC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The PREC data set is an analysis of monthly precipitation constructed on a 2.5(o)lat/lon grid over the global for the period from 1948 to the present. The land...

  19. A randomized trial of a standard dose of Edmonston-Zagreb measles vaccine given at 4.5 months of age: effect on total hospital admissions.

    Science.gov (United States)

    Martins, Cesario L; Benn, Christine S; Andersen, Andreas; Balé, Carlito; Schaltz-Buchholzer, Frederik; Do, Vu An; Rodrigues, Amabelia; Aaby, Peter; Ravn, Henrik; Whittle, Hilton; Garly, May-Lill

    2014-06-01

    Observational studies and trials from low-income countries indicate that measles vaccine has beneficial nonspecific effects, protecting against non-measles-related mortality. It is not known whether measles vaccine protects against hospital admissions. Between 2003 and 2007, 6417 children who had received the third dose of diphtheria, tetanus, and pertussis vaccine were randomly assigned to receive measles vaccine at 4.5 months or no measles vaccine; all children were offered measles vaccine at 9 months of age. Using hospital admission data from the national pediatric ward in Bissau, Guinea-Bissau, we compared admission rates between enrollment and the 9-month vaccination in Cox models, providing admission hazard rate ratios (HRRs) for measles vaccine versus no measles vaccine. All analyses were conducted stratified by sex and reception of neonatal vitamin A supplementation (NVAS). Before enrollment the 2 groups had similar admission rates. Following enrollment, the measles vaccine group had an admission HRR of 0.70 (95% confidence interval [CI], .52-.95), with a ratio of 0.53 (95% CI, .32-.86) for girls and 0.86 (95% CI, .58-1.26) for boys. For children who had not received NVAS, the admission HRR was 0.53 (95% CI, .34-.84), with an effect of 0.30 (95% CI, .13-.70) for girls and 0.73 (95% CI, .42-1.28) for boys (P = .08, interaction test). The reduction in admissions was separately significant for measles infection (admission HRR, 0 [95% CI, 0-.24]) and respiratory infections (admission HRR, 0.37 [95% CI, .16-.89]). Early measles vaccine may have major benefits for infant morbidity patterns and healthcare costs. Clinical trials registration NCT00168558.

  20. No positive effect of autologous platelet gel after total knee arthroplasty A double-blind randomized controlled trial: 102 patients with a 3-month follow-up

    NARCIS (Netherlands)

    Peerbooms, J.C.; de Wolf, G.S.; Colaris, J.W.; Bruijn, D.J.; Verhaar, J.A.N.

    2009-01-01

    Background and purpose Activated platelets release a cocktail of growth factors, some of which are thought to stimulate repair. We investigated whether the use of autologous platelet gel (PG) in total knee arthroplasty (TKA) would improve wound healing and knee function, and reduce blood loss and th

  1. No positive effect of autologous platelet gel after total knee arthroplasty: A double-blind randomized controlled trial: 102 patients with a 3-month follow-up

    NARCIS (Netherlands)

    J.C. Peerbooms (Joost); G.S. de Wolf (Gideon); J.W. Colaris (Joost); D.J. Bruijn (Danil); J.A.N. Verhaar (Jan)

    2009-01-01

    textabstractBackground and purpose Activated platelets release a cocktail of growth factors, some of which are thought to stimulate repair. We investigated whether the use of autologous platelet gel (PG) in total knee arthroplasty (TKA) would improve wound healing and knee function, and reduce blood

  2. The effect of prenatal exposure on total IgE at birth and sensitization at twelve months and four years of age : The PIAMA study

    NARCIS (Netherlands)

    Kerkhof, M; Wijga, A; Smit, HA; de Jongste, JC; Aalberse, RC; Brunekreef, B; Gerritsen, J; Postma, DS

    2005-01-01

    There is increasing evidence that the development of the fetal immune system can be influenced by environmental exposure in utero. We investigated whether prenatal exposure is associated with a high neonatal total IgE level and sensitization at the age of 1 and 4 yr. Data from 1027 infants were coll

  3. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  4. Walking ability following knee arthroplasty: a prospective pilot study of factors affecting the maximal walking distance in 18 patients before and 6 months after total knee arthroplasty.

    Science.gov (United States)

    Rosenberg, N; Nierenberg, G; Lenger, R; Soudry, M

    2007-12-01

    Functional assessment of patients before and after prosthetic knee arthroplasty is based on clinical examination, which is usually summarized in various knee scores. The present study proposes a different and more subject orientated assessment for functional grading of these patients by measuring their maximal distance of walking ability, which is not apparent from the conventional outcome scores. Eighteen consecutive patients with knee osteoarthritis were evaluated for their knee and knee functional scores (The Knee Society clinical rating system) and for the maximal distance of their walking ability before and 6 months after knee arthroplasty. Specially designed walking ability grading was used for evaluation of walking on walkway. The pre- and post-operative knee scores and maximal walking distance and grading were statistically compared. A significant improvement in the knee and functional scores following surgery was observed. But the maximal walking ability grades and distances did not change significantly following surgery, showing a high relation between pre- and post-operative values. The limitation in post-operative walking was due to the revealed additional health disabilities, not related to the affected knee. Therefore we suggest that pre-operative evaluation of walking abilities should be taken into consideration both for patients' selection and timing of surgery and also for matching of patients' expectation from outcome of prosthetic knee arthroplasty.

  5. Critical load of acid precipitations. Mapping of Italian regions; Mappa dei carichi critici di acidita' totale riferita al territorio italiano

    Energy Technology Data Exchange (ETDEWEB)

    Bonanni, P.; Brini, S.; Delmonaco, G.; Liburdi, R.; Trocciola, A.; Vetrella, G. [ENEA Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Ambiente

    1999-07-01

    In this report the mapping of critical loads of acidity for the Italian terrestrial ecosystems is presented. The level O method (Stockholm Environment Institute) has been used to determine sensitivity to acid deposition; this semi-quantitative method has been modified to address some Italian characteristics. The results show that the sensitivity of the Italian soils to acidification is not particularly elevated: there are really only few small areas with poor tolerance to acid depositions. These areas are in the north-east of Italy, in Alpine and Prealpine region. [Italian] Nel rapporto vengono riportati i risultati della mappatura, riferita agli ecosistemi terrestri del territorio italiano, dei carichi critici per l'acidita' totale. Il calcolo dei carichi critici e' stato eseguito sulla base della metodologia messa a punto dallo Stokholm Environment Institute; a questo metodo semi-quantitativo sono state apportate alcune modifiche per meglio adattarlo alle caratteristiche del territorio italiano. Dall'analisi dei risultati ottenuti, si evince come la sensibilita' dei suoli italiani all'acidificazione non sia particolarmente elevata: sono state riscontrate infatti solo alcune aree, peraltro con superficie limitata, con una scarsa tolleranza alle deposizioni acide. Tali aree sono localizzate nell'Italia nord-orientale, in zona alpina e prealpina.

  6. Precipitation and Solubility of Calcium Hydrogenurate Hexahydrate.

    Science.gov (United States)

    Babić-Ivančić, V; Füredi-Milhofer, H; Brničević, N; Marković, M

    1992-01-01

    Solid phases formed in the quaternary system: uric acid-calcium hydroxide -hydrochloric acid-water aged for 2 months at 310 K were studied to determine conditions for calcium hydrogenurate hexahydrate, Ca(C5H3N4O)2 · 6H2O precipitation. The precipitates were identified by chemical and thermogravimetric analyses, x-ray powder diffraction, infrared spectroscopy, light microscopy, and scanning electron microscopy. In the precipitation diagram the concentration region in which calcium hydrogenurate hexahydrate precipitated as a single solid phase was established. The solubility of calcium hydrogenurate hexahydrate was investigated in the pH range from 6.2 to 10.1 at different temperatures. The total soluble and ionic concentration of calcium (atomic absorption spectroscopy and Ca-selective electrode), total urate concentration (spectrophotometry), and pH were determined in equilibrated solutions. The data are presented in the form of tables and chemical potential diagrams. By using these data the thermodynamic solubility products of calcium hydrogenurate hexahydrate, Ks = a(Ca(2+)) · a(2)(C5H3N4O3(-)), were determined: [Formula: see text]The formation of calcium hydrogenurate hexahydrate crystals in urinary tract of patients with pathologically high concentrations of calcium and urates (hypercalciuria and hyperuricosiuria) is possible.

  7. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  8. Extreme precipitation event over North China in August 2010: observations, monthly forecasting, and link to intra-seasonal variability of the Silk-Road wave-train across Eurasia

    Science.gov (United States)

    Orsolini, Yvan; Zhang, Ling; Peters, Dieter; Fraedrich, Klaus

    2014-05-01

    Forecast of regional precipitation events at the sub-seasonal timescale remains a big challenge for operational global prediction systems. Over the Far East in summer, climate and precipitation are strongly influenced by the fluctuating western Pacific subtropical high (WPSH) and strong precipitation is often associated with southeasterly low-level wind that brings moist-laden air from the southern China seas. The WPSH variability is partly influenced by quasi-stationary wave-trains propagating eastwards from Europe across Asia along the two westerly jets: the Silk-Road wave-train along the Asian jet at mid-latitudes and, on a more northern route, the polar wave-train along the sub-polar jet. While the Silk-Road wave-train appears as a robust, internal mode of variability in seasonal predictions models, its predictability is very low on the sub-seasonal to seasonal time scale. A case in point is the unusual summer of 2010, when China experienced its worst seasonal flooding for a decade, triggered by unusually prolonged and severe monsoonal rains. In addition that summer was also characterized by record-breaking heat wave over Eastern Europe and Russia as well as catastrophic monsoonal floods in Pakistan 2010. The impact of the latter circulation anomalies on the precipitation further east over China, has been little explored. Here, we examine the role and the actual predictability of the Silk-Road wave-train, and its impact on precipitation over Northeastern China throughout August 2010, using the high-resolution IFS forecast model of ECMWF, realistic initialized and run in an ensemble mode. We demonstrate that the forecast failure with regard to flooding and extreme precipitation over Northeastern China in August 2010 is linked to the failure to represent intra-seasonal variations of the Silk-Road wave-train and the associated intensification of the WPSH.

  9. Characteristic features of winter precipitation and its variability over northwest India

    Indian Academy of Sciences (India)

    R K Yadav; K Rupa Kumar; M Rajeevan

    2012-06-01

    Northwestern parts of India receive considerable amount of precipitation during the winter months of December–March. Although, it is only about 15% of the annual precipitation, the precipitation is very important for rabi crops and to maintain the glaciers extend in the Himalaya, which melt and supply water to the rivers during other seasons. The precipitation is mainly associated with the sequence of synoptic systems known as ‘western disturbances’. The precipitation has considerable spatial and temporal variability, with maximum precipitation occurring particularly over northern hilly regions, with decreasing influence southwards. The spatially coherent winter precipitation series has been prepared for the largest possible area comprising nine meteorological subdivisions of northwest India, which constitute about 32% of the total area of the country, having similar precipitation characteristics. The precipitation series has been statistically analysed to understand its characteristics and variability. The seasonal precipitation series is found to be homogeneous, Gaussian (normal) distributed and free from persistence. The precipitation variability has increased during the most recent three decades with more excess and deficient years.

  10. Influence of Precipitation on Maize Yield in the Eastern United States

    Directory of Open Access Journals (Sweden)

    Chengyi Huang

    2015-05-01

    Full Text Available Most General Circulation Models predict more infrequent but larger precipitation events in the eastern United States combined with a warmer climate. This could have a negative effect on maize production. To understand the sensitivity of maize production to future changes in precipitation, we analyzed growing season precipitation and average state maize yields in the eastern United States for the period 1963–2011. Growing season precipitation did not show a strong trend during this period. However, crop yields increased at 3.90% in the southern, 2.62% in the central, and 2.31% in the northern part of the eastern United States, which we attributed to technology and management. To separate technology and management effects from precipitation variability, we corrected maize yields for these yield trends. We then correlated maize yield corrected for advances in technology and management with total growing season precipitation and precipitation in the critical month of pollination, from the regional to state scale. Maize yield - precipitation relationships showed that moisture shortage rather than excess determined maize yield in the Eastern United States. The relationship between total growing season precipitation-maize yield was stronger in the southeastern than in the northeastern U.S., but the critical month precipitation-maize yield relationship was stronger in the northeastern than in the southeastern U.S. If climate model predictions are accurate and total growing season precipitation will not decrease in this region but variability will, it is likely that maize yields in the northeastern U.S. will be more significantly affected.

  11. Kinetics of asphaltene precipitation from crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, T.; Hussein, I.A.; Fogler, H.S. [Michigan Univ., Ann Arbor (United States). Dept. of Chemical Engineering

    2008-07-01

    The kinetics of asphaltene precipitation from crude oils was investigated using n-alkane precipitants. Recent studies have shown that there is a kinetic phenomenon associated with asphaltene precipitation. This study showed that the time needed to precipitate the asphaltenes can vary from a few minutes to several months, depending on the amount of n-alkane precipitant added. As such, the onset of asphaltene precipitation is a function of the concentration of precipitant and time. A technique to quantify the amount of asphaltenes precipitated as a function of time and precipitant concentration was presented. This study also investigated the kinetic effects caused by various precipitants. Optical microscopy was used to monitor the growth of asphaltene aggregates with time. Refractive index measurements provided further insight into the kinetics of asphaltene precipitation. Polarity based fractionation and dielectric constant measurements were used to compare the nature of asphaltenes precipitated early in the precipitation process with the asphaltenes precipitated at later times. It was concluded that asphaltenes precipitating at different times from the same crude oil-precipitant mixture are different from one another. 3 refs.

  12. Verification of precipitation forecasts by the DWD limited area model LME over Cyprus

    Directory of Open Access Journals (Sweden)

    K. Savvidou

    2007-01-01

    Full Text Available A comparison is made between the precipitation forecasts by the non-hydrostatic limited area model LME of the German Weather Service (DWD and observations from a network of rain gauges in Cyprus. This is a first attempt to carry out a preliminary verification and evaluation of the LME precipitation forecasts over the area of Cyprus. For the verification, model forecasts and observations were used covering an eleven month period, from 1/2/2005 till 31/12/2005. The observations were made by three Automatic Weather Observing Systems (AWOS located at Larnaka and Paphos airports and at Athalassa synoptic station, as well as at 6, 6 and 8 rain gauges within a radius of about 30 km around these stations, respectively. The observations were compared with the model outputs, separately for each of the three forecast days. The "probability of detection" (POD of a precipitation event and the "false alarm rate" (FAR were calculated. From the selected cases of the forecast precipitation events, the average forecast precipitation amounts in the area around the three stations were compared with the measured ones. An attempt was also made to evaluate the model's skill in predicting the spatial distribution of precipitation and, in this respect, the geographical position of the maximum forecast precipitation amount was contrasted to the position of the corresponding observed maximum. Maps with monthly precipitation totals observed by a local network of 150 rain gauges were compared with the corresponding forecast precipitation maps.

  13. Sensitivity of a prairie wetland to increased temperature and seasonal precipitation changes

    Energy Technology Data Exchange (ETDEWEB)

    Poiani, K.A. [Cornell Univ., Ithaca, NY (United States); Johnson, W.C. [South Dakota State Univ., Brookings, SD (United States); Kittel, T.G.F. [Univ. Corp. for Atmospheric Research, Boulder, CO (United States)]|[Colorado State Univ., Fort Collins, CO (United States)

    1995-04-01

    We assessed the potential effects of increased temperature and changes in amount and seasonal timing of precipitation on the hydrology and vegetation of a semi-permanent prairie wetland in North Dakota using a spatially-defined, rule-based simulation model. Simulations were run with increased temperatures of 2{degree}C combined with a 10 percent increase or decrease in total growing season precipitation. Changes in precipitation were applied either evenly across all months or to individual seasons (spring, summer, or fall). The response of semi-permanent wetland P1 was relatively similar under most of the seasonal scenarios. A 10 percent increase in total growing season precipitation applied to summer months only, to fall months only, and over all months produced lower water levels compared to those resulting from the current climate due to increased evapotranspiration. Wetland hydrology was most affected by changes in spring precipitation and runoff. Vegetation response was relatively consistent across scenarios. Seven of the eight seasonal scenarios produced drier conditions with no open water and greater vegetation cover compared to those resulting from the current climate. Only when spring precipitation increased did the wetland maintain an extensive open water area (49 percent). 36 refs., 3 figs., 3 tabs.

  14. Monthly errors

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2006 monthly average statistical metrics for 2m Q (g kg-1) domain-wide for the base and MODIS WRF simulations against MADIS observations. This dataset is...

  15. Changes in annual precipitation over the Earth's land mass excluding Antarctica from the 18th century to 2013

    Science.gov (United States)

    van Wijngaarden, W. A.; Syed, A.

    2015-12-01

    Precipitation measurements made at nearly 1000 stations located in 114 countries were studied. Each station had at least 100 years of observations resulting in a dataset comprising over 1½ million monthly precipitation amounts. Data for some stations extend back to the 1700s although most of the data exist for the period after 1850. The total annual precipitation was found if all monthly data in a given year were present. The percentage annual precipitation change relative to 1961-90 was plotted for 6 continents; as well as for stations at different latitudes and those experiencing low, moderate and high annual precipitation totals. The trends for precipitation change together with their 95% confidence intervals were found for various periods of time. Most trends exhibited no clear precipitation change. The global changes in precipitation over the Earth's land mass excluding Antarctica relative to 1961-90 were estimated to be: -1.2 ± 1.7, 2.6 ± 2.5 and -5.4 ± 8.1% per century for the periods 1850-2000, 1900-2000 and 1950-2000, respectively. A change of 1% per century corresponds to a precipitation change of 0.09 mm/year.

  16. Variability of Radiosonde-Observed Precipitable Water in the Baltic Region

    Energy Technology Data Exchange (ETDEWEB)

    Jakobson, Erko; Ohvril, H.; Okulov, O.; Laulainen, Nels S.

    2005-06-01

    The total mass of columnar water vapor (precipitable water, W) is an important parameter of atmospheric thermodynamic and radiative models. In this work radiosonde observations from 17 aerological stations in the Baltic region during 14 years, 1989?2002, were used to examine the variability of precipitable water. A table of monthly and annual means of W for the stations is given. Seasonal and annual means of W are expressed as linear functions of geographical latitude. Linear formulas are also derived for parameterization of precipitable water as function of surface water vapor pressure at each station.

  17. Health-Related Quality-of-Life and Functional Outcomes in Short-Stem Versus Standard-Stem Total Hip Arthroplasty: An 18-Month Follow-Up Cohort Study

    Science.gov (United States)

    Henry, Brandon Michael; Wrażeń, Waldemar; Hynnekleiv, Leif; Kłosiński, Michał; Pękala, Przemysław A.; Kucharska, Ewa; Golec, Edward B.; Tomaszewski, Krzysztof A.; Pąchalska, Maria

    2016-01-01

    Background Osteoarthritis (OA) progressively produces symptoms and disability that may significantly reduce health-related quality of life (HRQoL). Total hip arthroplasty (THA) is an important treatment for symptomatic OA. An alternative to standard-stem THA for younger patients is short-stem THA. The aim of this study was to investigate potential HRQoL and functional outcome differences between these patient groups to provide additional data that will be clinically useful in the decision making between the types of prosthesis. Material/Methods In an 18-month follow-up longitudinal cohort study, we conducted Harris Hip Score (HHS) evaluations and SF-36 questionnaires in a study group and a control group undergoing short-stem and standard-stem THA preoperatively and during follow-up at 1, 3, 6, 12, and 18 months. Effect size was calculated to estimate the size of changes in scores during follow-up between chosen time intervals. Results A total of 168 patients were included in the study. The total HHS score was significantly increased postoperatively from 46.9 to 87.0 in the standard-stem group, and from 42.7 to 85.1 in the short-stem group. All SF-36 scores improved after THA in both groups. No HRQoL or functional differences were found in the use of either surgical option in the HHS or SF-36 score results (all p>0.05). Conclusions As there were no differences in HRQoL in the two groups, we strongly recommend considering short-stem THA, especially in younger patients, due to the benefit of future revision options and a minimally invasive approach. PMID:27853130

  18. Impact of deep convection on the isotopic amount effect in tropical precipitation

    Science.gov (United States)

    Tharammal, Thejna; Bala, Govindasamy; Noone, David

    2017-02-01

    The empirical "amount effect" observed in the distribution of stable water isotope ratios in tropical precipitation is used in several studies to reconstruct past precipitation. Recent observations suggest the importance of large-scale organized convection systems on amount effect. With a series of experiments with Community Atmospheric Model version 3.0 with water isotope tracers, we quantify the sensitivity of amount effect to changes in modeled deep convection. The magnitude of the regression slope between long-term monthly precipitation amount and isotope ratios in precipitation over tropical ocean reduces by more than 20% with a reduction in mean deep convective precipitation by about 60%, indicating a decline in fractionation efficiency. Reduced condensation in deep convective updrafts results in enrichment of lower level vapor with heavier isotope that causes enrichment in total precipitation. However, consequent increases in stratiform and shallow convective precipitation partially offset the reduction in the slope of amount effect. The net result is a reduced slope of amount effect in tropical regions except the tropical western Pacific, where the effects of enhanced large-scale ascent and increased stratiform precipitation prevail over the influence of reduced deep convection. We also find that the isotope ratios in precipitation are improved over certain regions in the tropics with reduced deep convection, showing that analyses of isotope ratios in precipitation and water vapor are powerful tools to improve precipitation processes in convective parameterization schemes in climate models. Further, our study suggests that the precipitation types over a region can alter the fractionation efficiency of isotopes with implications for the reconstructions of past precipitation.

  19. Uncertainties in Arctic Precipitation

    Science.gov (United States)

    Majhi, I.; Alexeev, V. A.; Cherry, J. E.; Cohen, J. L.; Groisman, P. Y.

    2012-12-01

    Arctic precipitation is riddled with measurement biases; to address the problem is imperative. Our study focuses on comparison of various datasets and analyzing their biases for the region of Siberia and caution that is needed when using them. Five sources of data were used ranging from NOAA's product (RAW, Bogdanova's correction), Yang's correction technique and two reanalysis products (ERA-Interim and NCEP). The reanalysis dataset performed better for some months in comparison to Yang's product, which tends to overestimate precipitation, and the raw dataset, which tends to underestimate. The sources of bias vary from topography, to wind, to missing data .The final three products chosen show higher biases during the winter and spring season. Emphasis on equations which incorporate blizzards, blowing snow and higher wind speed is necessary for regions which are influenced by any or all of these factors; Bogdanova's correction technique is the most robust of all the datasets analyzed and gives the most reasonable results. One of our future goals is to analyze the impact of precipitation uncertainties on water budget analysis for the Siberian Rivers.

  20. Climatology of extreme daily precipitation in Colorado and its diverse spatial and seasonal variability

    Science.gov (United States)

    Mahoney, Kelly M.; Ralph, F. Martin; Walter, Klaus; Doesken, Nolan; Dettinger, Michael; Gottas, Daniel; Coleman, Timothy; White, Allen

    2015-01-01

    The climatology of Colorado’s historical extreme precipitation events shows a remarkable degree of seasonal and regional variability. Analysis of the largest historical daily precipitation totals at COOP stations across Colorado by season indicates that the largest recorded daily precipitation totals have ranged from less than 60 mm day−1 in some areas to more than 250 mm day−1 in others. East of the Continental Divide, winter events are rarely among the top 10 events at a given site, but spring events dominate in and near the foothills; summer events are most common across the lower-elevation eastern plains, while fall events are most typical for the lower elevations west of the Divide. The seasonal signal in Colorado’s central mountains is complex; high-elevation intense precipitation events have occurred in all months of the year, including summer, when precipitation is more likely to be liquid (as opposed to snow), which poses more of an instantaneous flood risk. Notably, the historic Colorado Front Range daily rainfall totals that contributed to the damaging floods in September 2013 occurred outside of that region’s typical season for most extreme precipitation (spring–summer). That event and many others highlight the fact that extreme precipitation in Colorado has occurred historically during all seasons and at all elevations, emphasizing a year-round statewide risk.

  1. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany.

    Science.gov (United States)

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.

  2. drought assessment using Standard precipitation Index in semi arid conditions

    Science.gov (United States)

    Bargaoui, Zoubeida

    2015-04-01

    The Gamma distribution is classically fitted at monthly resolution to assess drought occurrence with respect to precipitation series. SPI estimation reports deviations from normal situations and allows the classification of months from extremely wet to extremely dry. However in case where time series contain zeros (no rainfall observed for some months) the choice of Gamma distribution is not appropriate. The objective of this study is compare Gamma distribution results to the loi des fuites distribution as alternative (Ref : Parent et al., Rev. Statistique Appliquée, 2006, LIV (4), 85-111 ). A network composed by 43 rainfall stations from the extreme North region of Tunisia (Mediterranean façade) using long series records (exceeding 30 years) is adopted to develop the methodology. the distributions for the 1- month, 3-months totals as well as 6 months totals and 12-months totals are adjusted station by station for both distributions and SPI-1, SPI-3, SPI-6 , SPI-12 are computed. It is found that especially for SPI-1 and SPI-3 that reflect meteorological drought, the decision status is well related to the underlined distribution which results in many operational concerns.

  3. Heavy precipitation episodes and cosmic rays variation

    Directory of Open Access Journals (Sweden)

    A. Mavrakis

    2006-01-01

    Full Text Available In this paper an attempt is made to investigate the possible temporal correlation between heavy precipitation episodes and cosmic rays' activity, on various time scales. Cosmic rays measurements are sparse and cover less extended periods than those of precipitation. Precipitation is largely influenced by local climatic and even physiographic conditions, while cosmic rays' distribution is far more uniform over an area. Thus, in an effort to cover a larger range of climatic characteristics, each cosmic rays station was correlated with several nearby precipitation stations. Selected statistical methods were employed for the data processing. The analysis was preformed on annual, seasonal, monthly and daily basis whenever possible. Wet and dry regions and/or seasons seem to present a different response of precipitation to cosmic rays variations. Also Forbush decreases in most cases will not lead to heavy precipitation, yet this might be sensitive to precipitable water availability.

  4. 中国华东及其周边地区NDVI对气温和降水的月际响应特征%Inter-monthly Response Characteristics of NDVI to the Variation of Temperature and Precipitation in East China and Its Surrounding Areas

    Institute of Scientific and Technical Information of China (English)

    崔林丽; 史军

    2011-01-01

    利用SPOT VGT-NDVI数据和气象站点的气温和降水资料,分析了1998—2010年期间我国华东及其周边地区NDVI对气温和降水变化的时空响应特征。结果表明,在整个研究区,NDVI对当月气温和前1月降水变化响应最为强烈。空间上,NDVI对气温变化的响应在整个研究区差异不明显,而对降水变化的响应在北部地区较在中部和南部强。NDVI在多数地区都同步响应于当月气温变化,在北部和南部一些地区对气温变化滞后响应1个月左右。NDVI对降水变化在北部地区滞后响应1个月左右,而在南部地区滞后响应2~3个月。研究区NDVI对气温和降水响应的时间特征、空间分布及总体滞后期与已有的研究结果基本一致,但在南部地区NDVI对降水变化的响应滞后期较已有的研究结果长。不同的数据源、研究范围、气候和植被类型及土壤特性的差异等都有可能造成研究结果的差异。%The interaction between vegetation and atmosphere is important in global climate change and natural resource management and has become a research focus of geosciences in recent years.Spatial and temporal response characteristics of NDVI to the variations of temperature and precipitation in East China and its surrounding areas were analyzed based on the SPOT VGT-DN data from Flemish Institute for Technological Research(VITO),Belgium,and monthly temperature and precipitation data from 135 meteorological stations during 1998-2010.The results indicate that in the whole study area,NDVI has the maximum response to the temperature of the same month,and has the maximum response to the precipitation of previous one month.Spatially,the response of NDVI to temperature has no significant difference among the whole study area,and the response of NDVI to precipitation in the northern part is stronger than that in the middle and southern part of the study area.In the middle part of the study area,NDVI synchronously

  5. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble.

    Science.gov (United States)

    Jiang, Mingkai; Felzer, Benjamin S; Sahagian, Dork

    2016-07-18

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950-2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040-2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment.

  6. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble

    Science.gov (United States)

    Jiang, Mingkai; Felzer, Benjamin S.; Sahagian, Dork

    2016-07-01

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950-2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040-2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment.

  7. Monthly Climatic Data for the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Publication of monthly mean temperature, pressure, precipitation, vapor pressure, and hours of sunshine for approximately 2,000 surface data collection stations...

  8. Influence of Climate Oscillations on Extreme Precipitation in Texas

    Science.gov (United States)

    Bhatia, N.; Singh, V. P.; Srivastav, R. K.

    2016-12-01

    Much research in the field of hydroclimatology is focusing on the impact of climate variability on hydrologic extremes. Recent studies show that the unique geographical location and the enormous areal extent, coupled with extensive variations in climate oscillations, have intensified the regional hydrologic cycle of Texas. The state-wide extreme precipitation events can actually be attributed to sea-surface pressure and temperature anomalies, such as Bermuda High and Jet Streams, which are further triggered by such climate oscillations. This study aims to quantify the impact of five major Atlantic and Pacific Ocean related climate oscillations: (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI), on extreme precipitation in Texas. Their respective effects will be determined for both climate divisions delineated by the National Climatic Data Centre (NCDC) and climate regions defined by the Köppen Climate Classification System. This study will adopt a weighted correlation approach to attain the robust correlation coefficients while addressing the regionally variable data outliers for extreme precipitation. Further, the variation of robust correlation coefficients across Texas is found to be related to the station elevation, historical average temperature, and total precipitation in the months of extremes. The research will shed light on the relationship between precipitation extremes and climate variability, thus aiding regional water boards in planning, designing, and managing the respective systems as per the future climate change.

  9. PRECIPITATION OF PLUTONOUS PEROXIDE

    Science.gov (United States)

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  10. Benchmarking monthly homogenization algorithms

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2011-08-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  11. The dynamics of questing ticks collected for 164 consecutive months off the vegetation of two landscape zones in the Kruger National Park (1988-2002). Part I. Total ticks, Amblyomma hebraeum and Rhipicephalus decoloratus.

    Science.gov (United States)

    Horak, Ivan G; Gallivan, Gordon J; Spickett, Arthur M

    2011-02-23

    Despite a large number of studies on tick biology, there is limited information on long- term changes in tick populations. This study thus aimed to assess the long-term population dynamics of questing ixodid ticks in two landscape zones of the Kruger National Park (KNP). Questing ixodid ticks were collected in the KNP from August 1988 to March 2002 by monthly dragging of the vegetation in three habitats (grassland, woodland and gully) at two sites (Nhlowa Road and Skukuza). Findings pertaining to total tick numbers and Amblyomma hebraeum and Rhipicephalus decoloratus specifically are presented here. Fourteen tick species were collected, as well as four others that could be identified only to generic level. More ticks (211 569 vs 125 810) were collected at Nhlowa Road than at Skukuza. Larvae were the most commonly collected stage of all the major tick species. A. hebraeum was the most commonly collected tick (63.6%) at Nhlowa Road, whereas R. decoloratus accounted for 15.3% of the ticks collected there. At Skukuza, 31.6% and 27.1% of the collected ticks were R. decoloratus and A. hebraeum respectively. Most A. hebraeum larvae were collected in summer and the fewest in winter and early spring, mostly in woodland and least often in grassland habitats. Most R. decoloratus larvae were collected in spring and the fewest in autumn and winter, and were more frequently collected in woodland and grassland than in gullies. The largest collections of most tick species were made during the early 1990 s, while numbers were lowest in the mid-1990 s after a drought during 1991 and 1992 and then increased towards the late 1990 s, followed by a final decrease. The changes in tick numbers over time probably reflect differences in their host communities at the two sites and the effect of climatic conditions on both hosts and free-living ticks. The population dynamics of questing ticks reflect a complex interaction between ticks, their hosts and the environment.

  12. Pharmacokinetics of gestodene and ethinylestradiol in 14 women during three months of treatment with a new tri-step combination oral contraceptive: serum protein binding of gestodene and influence of treatment on free and total testosterone levels in the serum.

    Science.gov (United States)

    Kuhnz, W; Baumann, A; Staks, T; Dibbelt, L; Knuppen, R; Jütting, G

    1993-10-01

    The pharmacokinetics of gestodene (GEST) and ethinylestradiol (EE2) were determined in 14 healthy women (age 18 to 32 years) during a treatment period of three months with a new tri-step combination oral contraceptive (Milvane). Prior to this treatment period, the same women received a single administration of a coated tablet containing 0.1 mg GEST together with 0.03 mg EE2. There was a wash-out phase of one week between both treatments. Following single dose administration, a mean terminal half-life of 18 h was observed for GEST. The total clearance was 0.9 ml x min-1 x kg-1 and the volume of distribution was 84 l. During a treatment cycle, GEST levels in the serum accumulated by a factor of 8 as compared to single dose administration. Steady-state drug levels were reached during the second half of each cycle. As compared to single dose administration, the following changes were observed for GEST at the end of treatment cycles one and three: prolonged terminal half-life (20 to 22 h), reduced total (0.16 ml x min-1 x kg-1) and free clearance (ca. 27 ml x min-1 x kg-1), reduced volume of distribution (ca. 18 l). A concomitant EE2-induced increase in the SHBG concentrations by a factor of three as compared to pretreatment values was observed during a treatment cycle and appeared to be mainly responsible for the changes in the pharmacokinetics of GEST. Marked changes were also seen for the serum protein binding of GEST. After single dose administration, the free fraction of GEST was 1.3% and the fractions bound to SHBG and albumin were 69.4% and 29.3%, respectively. At the end of cycle one, the free fraction was only 0.6% and the fractions bound to SHBG and albumin were 81.4% and 18.0%, respectively. There was no difference in corresponding pharmacokinetic parameters and in the serum protein binding of GEST at the end of cycles one and three. On the last day of treatment cycles one and three, the AUC(0-4h) values of EE2 were 299.2 and 278.1 pg x ml-1 x h, respectively

  13. Tritium time series in precipitation of Rm. Valcea, Romania.

    Science.gov (United States)

    Varlam, Carmen; Duliu, Octavian G; Faurescu, Ionut; Vagner, Irina; Faurescu, Denisa

    2016-01-01

    Following tritium concentration records in precipitation for the period 1999-2013 and tritium concentration behaviour during this period for the Ramnicu Valcea (Rm. Valcea) location, the tritium level of individual precipitations of the late spring and summer for the 2009-2013 period was investigated. Despite good correlation between monthly mean tritium concentrations and monthly mean precipitations over the 15-year period of observations (Pearson coefficient 0.87), the individual precipitations had no linear correlation between the tritium concentration and the amount of precipitation.

  14. Bias Corrected Spatially Downscaled Monthly CMIP5 Climate Projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This archive contains 234 projections of monthly BCSD CMIP5 projections of precipitation and monthly means of daily-average, daily maximum and daily minimum...

  15. Correlating GRACE with Standardized Precipitation Indices and Precipitation Gauges for the High Plains Aquifer

    Science.gov (United States)

    Miller, K. A.; Clancy, K.

    2016-12-01

    The NASA and German Aerospace Center Gravity Recovery and Climate Experiment (GRACE) detects monthly changes in the gravity of the earth assumed to be water storage using the distance between two satellites, GRACE A and GRACE B, as a phase change. We will use level 3 GRACE Tellus data from the NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (PO.DAAC). The data have a resolution of 9 km2 and are available for 2002 to 2015. We examine GRACE data for the High Plains aquifer (Texas, Oklahoma, Wyoming, Nebraska, Kansas, New Mexico, Colorado and South Dakota) and compare changes to monthly averaged precipitation gauges, standardized precipitation indices for one, three, six, and twelve-months. We hypothesize that GRACE data will correlate best with 1) three-month standardized precipitation indices; 2) regions with natural land cover; 3) and in years where precipitation is at or above average.

  16. Metal particle's precipitation behavior in direct reading ferrography precipitator tube

    Institute of Scientific and Technical Information of China (English)

    尹凤福; 李谋渭

    2004-01-01

    A new metal particle monitoring instrument was developed by improving the traditional direct reading ferrography. The precipitation behaviors of sub-magnetic particles, magnetic particles, and the mixture of these particles were examined with the instrument. The results show that the precipitation behavior of sub-magnetic metal particles of copper and aluminum is not random as it was believed previously. The sub-magnetic particles show a distribution in the precipitator tube, almost the same as the deposition curves as the magnetic particles have. The deposition amount of particles is increased in the oil which consists of several different kinds of particles. On the base of these experiments, a new index used for the total quantity of wear was redefined.

  17. Reanalysis of monthly precipitation fields in Colombian territory

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Hurtado-Montoya

    2014-01-01

    Full Text Available Se presenta la reconstrucción de los campos históricos de precipitación mensual en Colombia para el periodo 1975 – 2006, a una resolución espacial de 5 minutos de arco (aproximadamente 9,3 km. Cada uno de los 384 mapas fue estimado mediante la integración óptima de la información disponible de pluviómetros, con las series mensuales de campos distribuidos provenientes de mediciones satelitales y con estudios globales de reconstrucción disponibles en diferentes periodos de tiempo y a variadas resoluciones espaciales. Para incorporar el efecto de la topografía se desarrolló una variante del modelo PRISM [1] que tiene en cuenta la existencia de lo óptimos pluviográficos, ausentes en el modelo original por ser esta una característica propia de las zonas tropicales. Como el efecto topográfico es de mayor relevancia para explicar la variabilidad espacial de la lluvia, se dividió la zona de estudio en regiones homogéneas para representar adecuadamente la presencia del óptimo pluviográfico y la variabilidad temporal impuesta por la zona de convergencia intertropical (ZCIT.

  18. ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months.

    Science.gov (United States)

    Heinlein, Bernd; Kutzner, Ines; Graichen, Friedmar; Bender, Alwina; Rohlmann, Antonius; Halder, Andreas M; Beier, Alexander; Bergmann, Georg

    2009-05-01

    Detailed information about the loading of the knee joint is required for various investigations in total knee replacement. Up to now, gait analysis plus analytical musculo-skeletal models were used to calculate the forces and moments acting in the knee joint. Currently, all experimental and numerical pre-clinical tests rely on these indirect measurements which have limitations. The validation of these methods requires in vivo data; therefore, the purpose of this study was to provide in vivo loading data of the knee joint. A custom-made telemetric tibial tray was used to measure the three forces and three moments acting in the implant. This prosthesis was implanted into two subjects and measurements were obtained for a follow-up of 6 and 10 months, respectively. Subjects performed level walking and going up and down stairs using a self-selected comfortable speed. The subjects' activities were captured simultaneously with the load data on a digital video tape. Customized software enabled the display of all information in one video sequence. The highest mean values of the peak load components from the two subjects were as follows: during level walking the forces were 276%BW (percent body weight) in axial direction, 21%BW (medio-lateral), and 29%BW (antero-posterior). The moments were 1.8%BW*m in the sagittal plane, 4.3%BW*m (frontal plane) and 1.0%BW*m (transversal plane). During stair climbing the axial force increased to 306%BW, while the shear forces changed only slightly. The sagittal plane moment increased to 2.4%BW*m, while the frontal and transversal plane moments decreased slightly. Stair descending produced the highest forces of 352%BW (axial), 35%BW (medio-lateral), and 36%BW (antero-posterior). The sagittal and frontal plane moments increased to 2.8%BW*m and 4.6%BW*m, respectively, while the transversal plane moment changed only slightly. Using the data obtained, mechanical simulators can be programmed according to realistic load profiles. Furthermore

  19. Experimental Marvin Windshield Effects on Precipitation Records in Leadville, Colorado

    Science.gov (United States)

    Jarrett, Robert D.; Crow, Loren W.

    1988-01-01

    An evaluation of the Leadville, Colorado, precipitation records that include a reported record-breaking storm (and flood) at higher elevations in the Rocky Mountains has indicated that the use of an experimental Marvin windshield (designed to decrease the effects of wind on precipitation-gage catchment of snow during winter) resulted in substantially overregistered summer precipitation for 1919 to 1938. The July monthly precipitation for these years was over-registered by an average of 157 percent of the long-term July monthly precipitation at Leadville. The cause of the overregistration of precipitation was the almost 4-foot-top-diameter cone-shaped windshield that had the effect of 'funneling' hail and rain splash into the rain gage. Other nearby precipitation gages, which did not use this Marvin windshield, did not have this trend of increased precipitation for the same period. Streamflow records from the Leadville area also do not indicate an increase in streamflow from 1919 to 1938.

  20. Gap Filling of Precipitation Data by SSA - Singular Spectrum Analysis

    Science.gov (United States)

    Filho, A. S. F.; Lima, G. A. R.

    2016-10-01

    From the macroscopic standpoint, the precipitation time series is obtained from observation of natural systems rather than in the laboratory. These time series are often full of gaps (missing values) due to the conditions under which the measurements are made. Missing values give rise to various problems in spectral estimation, inhibit statistical analysis and in specifying boundary conditions for numerical models. Hence, gap filling is necessary in environmental science. The aim of this study is to highlight the application of the SSA forecasting algorithm to fill in missing values to real-life time series. It was applied to several monthly precipitation time series recorded over a large savannah area in Brazil. The results are promising and the accuracy and reliability depend on the pattern and relative length of the gaps with respect to the total length of the time series and presence of noise.

  1. Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas

    Energy Technology Data Exchange (ETDEWEB)

    Barros, A.P.; Lettenmaier, D.P. (Univ. of Washington, Seattle (United States))

    1993-04-01

    Precipitation in remote mountainous areas dominates the water balance of many water-short areas of the globe, such as western North America. The inaccessibility of such environments prevents adequate measurement of the spatial distribution of precipitation and, hence, direct estimation of the water balance from observations of precipitation and runoff. Resolution constraints in atmospheric models can likewise result in large biases in prediction of the water balance for grid cells that include highly diverse topography. Modeling of the advection of moisture over topographic barriers at a spatial be sufficient to resolve the dominant topographic features offers one method of better predicting the spatial distribution of precipitation in mountainous areas. A model is described herein that simulates Lagrangian transport of moist static energy and total water through a 3D finite-element grid, where precipitation is the only scavenging agent of both variables. The model is aimed primarily at the reproduction of the properties of high-elevation precipitation for long periods of time, but it operates at a time scale (during storm periods) of 10 min to 1 h and, therefore, is also able to reproduce the distribution of storm precipitation with an accuracy that may make it appropriate for the forecasting of extreme events. The model was tested by application to the Olympic Mountains, Washington, for a period of eight years (1967-74). Areal average precipitation, estimated through use of seasonal and annual runoff, was reproduced with errors in the 10%-15% range. Similar accuracy was achieved using point estimates of monthly precipitation from snow courses and low-elevation precipitation gauges. 36 refs., 15 figs., 6 tabs.

  2. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901-2002), West Bengal, India

    Science.gov (United States)

    Chatterjee, Soumendu; Khan, Ansar; Akbari, Hashem; Wang, Yupeng

    2016-12-01

    This paper intended to investigate spatio-temporal monotonic trend and shift in concentration of monsoon precipitation across West Bengal, India, by analysing the time series of monthly precipitation from 18 weather stations during the period from 1901 to 2002. In dealing with, the inhomogeneity in the precipitation series, RHtestsV4 software package is used to detect, and adjust for, multiple change points (shifts) that could exist in data series. Finally, the cumulative deviation test was applied at 5% significant level to check the homogeneity (presence of historic changes by cumulative deviations test). Afterward, non-parametric Mann-Kendall (MK) test and Theil-Sen estimator (TSE) was applied to detect of nature and slope of trends; and, Sequential Mann Kendall (SQMK) test was applied for detection of turning point and magnitude of change in trends. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation in precipitation data series. Four indices- precipitation concentration index (PCI), precipitation concentration degree (PCD), precipitation concentration period (PCP) and fulcrum (centre of gravity) were used to detect precipitation concentration and the spatial pattern in it. The application of the above-mentioned procedures has shown very notable statewide monotonic trend for monsoon precipitation time series. Regional cluster analysis by SQMK found increasing precipitation in mountain and coastal regions in general, except during the non- monsoon seasons. The results show that higher PCI values were mainly observed in South Bengal, whereas lower PCI values were mostly detected in North Bengal. The PCI values are noticeably larger in places where both monsoon total precipitation and span of rainy season are lower. The results of PCP reveal that precipitation in Gangetic Bengal mostly occurs in summer (monsoon season), and the rainy season arrives earlier in North Bengal than South Bengal

  3. Water-soluble primary amine compounds in rural continental precipitation

    Science.gov (United States)

    Gorzelska, Krystyna; Galloway, James N.; Watterson, Karen; Keene, William C.

    Procedures for collecting, storing and analysing precipitation samples for organic nitrogen studies were developed. These procedures preserve chemical integrities of the species of interest, allow for up to 3 months storage and quantitative determination of water-soluble primary amine compounds, with the overall error at the 2 nM detection limit of less than 30%. This methodology was applied to study amino compounds in precipitation samples collected over a period of one year in central Virginia. Nitrogen concentrations of 13 amino acids and 3 aliphatic amines were summed to calculate the total amine nitrogen (TAN). The concentration of TAN ranged from below our detection level to 6658 nM, and possibly reflected a seasonal variation in the source strength of the atmospheric amines. Overall, the most commonly occurring amino compounds were methyl amine, ethyl amine, glutamic acid, glycine and serine. On average, the highest overall contribution to the TAN came from arginine, asparagine, glutamine, methyl amine, serine and alanine. However, large qualitative and quantitative variations observed among samples warrant caution in interpretation and application of the averaged values. TAN in Charlottesville precipitation contributed from less than 1 to ca 10% of the ammonium nitrogen level. However, our estimates show that amino compounds may contribute significantly to reduced nitrogen budget in precipitation in remote regions.

  4. Towards Quantitative Ocean Precipitation Validation

    Science.gov (United States)

    Klepp, C.; Bakan, S.; Andersson, A.

    2009-04-01

    A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding and successful modelling of the global climate system as it is an important component of the water cycle. However, reliable detection of quantitative precipitation over the global oceans, especially at high latitudes during the cold season remains a challenging task for remote sensing and model based estimates. Quantitative ship validation data using reliable instruments for measuring rain and snowfall hardly exist but are highly demanded for ground validation of such products. The satellite based HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) climatology contains fields of precipitation, evaporation and the resulting freshwater flux along with 12 additional atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables are calculated from SSM/I passive microwave radiometer measurements. HOAPS contains three main data subsets that originate from one common pixel-level data source. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. Especially for North Atlantic mid-latitude mix-phase precipitation, the HOAPS precipitation retrieval has been investigated in some depth. This analysis revealed that the HOAPS retrieval qualitatively well represents cyclonic and intense mesoscale precipitation in agreement with ship observations and Cloudsat data, while GPCP, ECMWF forecast, ERA-40 and regional model data miss mesoscale precipitation substantially. As the differences between the investigated data sets are already large under mix-phase precipitation conditions, further work is carried out on snowfall validation during the cold season at high-latitudes. A Norwegian Sea field campaign in winter 2005 was carried out using an optical disdrometer capable of measuring quantitative amounts of snowfall over the ocean

  5. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  6. Heavy precipitation in the southwest of Iran: association with the Madden-Julian Oscillation and synoptic scale analysis

    Science.gov (United States)

    Jafar Nazemosadat, M.; Shahgholian, K.

    2017-01-01

    Some important characteristics of the November-April heavy precipitation in southwestern parts of Iran and their linkages to the Madden-Julian Oscillation (MJO) were assessed for the period of 1975-2011. Daily precipitation data in nine meteorological stations spread in various parts of the study area and the corresponding MJO indices were analyzed. For each station, precipitation data were sorted in descending order and those values that fell within 5% of the highest records were categorized as the heavy precipitation. Besides this, the 10% threshold was also analyzed as an axillary assessment. The considered heavy precipitation data (5% threshold) accounted from about 26-35% of total annual precipitation. About half of the heavy precipitation occurred during December-January period and the other half distributed within the months of March, February, November and April by about 17, 14, 13and 6%, respectively. The highest frequency of heavy precipitation was related to the MJO phase 8. After this, the more frequent precipitation events were respectively associated to the phases 2, 7, 1, 6, 5 and 4 of the MJO. For the phases 1, 2, 7 and 8 frequency of the heavy precipitation statistically increased when the MJO amplitude was greater than unity. In contrast, for phases 4 and 5, heavy precipitation was generally linked to the spells that the amplitude size was lower than unity. Formation of a strong north-south oriented cold front mainly in Saudi Arabia and west-east oriented warm fronts in the southwest of Iran were realized as the key elements for initiating heavy precipitation over the study area. Although development of the Mediterranean-based cyclonic circulation is essential for the formation of these fronts, moisture transport mostly originates from northern parts of the Arabian Sea, southern parts of the Red Sea and the Persian Gulf.

  7. Potential Impacts of Climate Change on Precipitation over Lake Victoria, East Africa, in the 21st Century

    Directory of Open Access Journals (Sweden)

    Mary Akurut

    2014-08-01

    Full Text Available Precipitation over Lake Victoria in East Africa greatly influences its water balance. Over 30 million people rely on Lake Victoria for food, potable water, hydropower and transport. Projecting precipitation changes over the lake is vital in dealing with climate change impacts. The past and future precipitation over the lake were assessed using 42 model runs obtained from 26 General Circulation Models (GCMs of the newest generation in the Coupled Model Intercomparison Project (CMIP5. Two CMIP5 scenarios defined by Representative Concentration Pathways (RCP, namely RCP4.5 and RCP8.5, were used to explore climate change impacts. The daily precipitation over Lake Victoria for the period 1962–2002 was compared with future projections for the 2040s and 2075s. The ability of GCMs to project daily, monthly and annual precipitation over the lake was evaluated based on the mean error, root mean square error and the frequency of occurrence of extreme precipitation. Higher resolution models (grid size <1.5° simulated monthly variations better than low resolution models (grid size >2.5°. The total annual precipitation is expected to increase by less than 10% for the RCP4.5 scenario and less than 20% for the RCP8.5 scenario over the 21st century, despite the higher (up to 40% increase in extreme daily intensities.

  8. The Global Precipitation Measurement Mission

    Science.gov (United States)

    Jackson, Gail

    2014-05-01

    Goddard Space Flight Center. It was shipped to Japan in November 2012 for launch on a Japanese H-IIA rocket from Tanegashima Island, Japan. The launch has been officially scheduled for 1:07 p.m. to 3:07 p.m. EST Thursday, February 27, 2014 (3:07 a.m. to 5:07 a.m. JST Friday, February 28). The day that the GPM Core was shipped to Japan was the day that GPM's Project Scientist, Dr. Arthur Hou passed away after a year-long battle with cancer. Dr. Hou truly made GPM a global effort with a global team. He excelled in providing scientific oversight for achieving GPM's many science objectives and application goals, including delivering high-resolution precipitation data in near real time for better understanding, monitoring and prediction of global precipitation systems and high-impact weather events such as hurricanes. Dr. Hou successfully forged international partnerships to collect and validate space-borne measurements of precipitation around the globe. He served as a professional mentor to numerous junior and mid-level scientists. His presence, leadership, generous personality, and the example he set for all of us as a true "team-player" will be greatly missed. The GPM mission will be described, Arthur's role as Project Scientist for GPM, and early imagery of GPM's retrievals of precipitation will be presented if available at the end of April 2014 (2 months after launch).

  9. Impact of Precipitation Fluctuation on Desert-Grassland ANPP

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2016-11-01

    Full Text Available Precipitation change has significantly influenced annual net primary productivity (ANPP at either annual or seasonal scales in desert steppes in arid and semi-arid regions. In order to reveal the process of precipitation driving ANPP at different time scales, responses of different ANPP levels to the inter-annual and intra-annual precipitation fluctuations were analyzed. ANPP was reversed by building a ground reflectance spectrum model, from 2000 to 2015, using the normalized differential vegetation index of the Moderate-Resolution Imaging Spectroradiometer (MODIS-NDVI data at 250 m × 250 m spatial resolution. Since the description of the differently expressing forms of precipitation are not sufficient in former studies in order to overcome the deficiency of former studies, in this study, intra-annual precipitation fluctuations were analyzed not only with precipitation of May–August, June–August, July–August, and August, respectively, which have direct influence on vegetation productivity within the year, but quantitative description, vector precipitation (R, concentration ratio (Cd, and concentration period (D, were also used to describe the overall characteristics of intra-annual precipitation fluctuations. The concentration ratio and the maximum precipitation period of the intra-annual precipitation were represented by using monthly precipitation. The results showed that: (1 in the period from 1971 to 2015, the maximum annual precipitation is 3.76 times that of the minimum in the Urat desert steppe; (2 vector precipitation is more significantly related to ANPP (r = 0.7724, p = 0.000 compared to meteorological annual precipitation and real annual precipitation influence; and (3 annual precipitation is almost concentrated in 5–8 months and monthly precipitation accumulation has significantly effected ANPP, especially in the period of June–August, since the vegetation composition in the study area was mainly sub-shrubs and perennial

  10. Relative importance of precipitation frequency and intensity in inter-annual variation of precipitation in Singapore during 1980-2013

    Science.gov (United States)

    Li, Xin; Babovic, Vladan

    2017-04-01

    Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have

  11. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations

    Energy Technology Data Exchange (ETDEWEB)

    Mehran, Ali [Univ. of California, Irvine, CA (United States). Dept. of Civil and Environmental Engineering; AghaKouchak, Amir [Univ. of California, Irvine, CA (United States). Dept. of Civil and Environmental Engineering; Phillips, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-02-25

    Numerous studies have emphasized that climate simulations are subject to various biases and uncertainties. The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies and biases for both entire data distributions and their upper tails. The results of the Volumetric Hit Index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas, but that their replication of observed precipitation over arid regions and certain sub-continental regions (e.g., northern Eurasia, eastern Russia, central Australia) is problematical. Overall, the VHI of the multi-model ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (e.g., the 75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g. western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, inter-model variations in bias over Australia and Amazonia are considerable. The Quantile Bias (QB) analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. Lastly, we found that a simple mean-field bias removal improves the overall B and VHI values, but does not make a significant improvement in these model performance metrics at high quantiles of precipitation.

  12. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.; Phillips, T. J.

    2014-02-01

    The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies, and biases for both entire distributions and their upper tails. The results of the volumetric hit index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas but that their replication of observed precipitation over arid regions and certain subcontinental regions (e.g., northern Eurasia, eastern Russia, and central Australia) is problematical. Overall, the VHI of the multimodel ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and Central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g., western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, intermodel variations in bias over Australia and Amazonia are considerable. The quantile bias analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. It is found that a simple mean field bias removal improves the overall B and VHI values but does not make a significant improvement at high quantiles of precipitation.

  13. Comparison of five gridded precipitation products at climatological scales over West Africa

    Science.gov (United States)

    Akinsanola, A. A.; Ogunjobi, K. O.; Ajayi, V. O.; Adefisan, E. A.; Omotosho, J. A.; Sanogo, S.

    2016-12-01

    The paper aimed at assessing the capabilities and limitations of five different precipitation products to describe rainfall over West Africa. Five gridded precipitation datasets of the Tropical Rainfall Measurement Mission (TRMM) Multi-Platform Analysis (TMPA 3B43v7); University of Delaware (UDEL version 3.01); Climatic Research Unit (CRU version 3.1); Global Precipitation Climatology Centre (GPCC version 7) and African Rainfall Climatology (ARC version 2) were compared and validated with reference ground observation data from 81 stations spanning a 19-year period, from January 1990 to December 2008. Spatial investigation of the precipitation datasets was performed, and their capability to replicate the inter-annual and intra-seasonal variability was also assessed. The ability of the products to capture the El Nino and La Nina events were also assessed. Results show that all the five datasets depicted similar spatial distribution of mean rainfall climatology, although differences exist in the total rainfall amount for each precipitation dataset. Further analysis shows that the three distinct phases of the mean annual cycle of the West Africa Monsoon precipitation were well captured by the datasets. However, CRU, GPCC and UDEL failed to capture the little dry season in the month of August while UDEL and GPCC underestimated rainfall amount in the Sahel region. Results of the inter-annual precipitation anomalies shows that ARC2 fail to capture about 46% of the observed variability while the other four datasets exhibits a greater performance (r > 0.9). All the precipitation dataset except ARC2 were consistent with the ground observation in capturing the dry and wet conditions associated with El Nino and La Nina events, respectively. ARC2 tends to overestimate the El Nino event and failed to capture the La Nina event in all the years considered. In general GPCC, CRU and TRMM were found to be the most outstanding datasets and can, therefore, be used for precipitation

  14. A Bayesian kriging approach for blending satellite and ground precipitation observations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Funk, Chris

    2015-02-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  15. MAXIS Balloon Observations of Electron Microburst Precipitation

    Science.gov (United States)

    Millan, R. M.; Hunter, A. E.; McCarthy, M. P.; Lin, R. P.; Smith, D. M.

    2003-12-01

    Quantifying and understanding losses is an integral part of understanding relativistic electron variability in the radiation belts. SAMPEX observations indicate that electron microburst precipitation is a major loss mechanism during active periods; the loss of relativistic electrons during a six hour period due to microburst precipitation was recently estimated to be comparable to the total number of trapped electrons in the outer zone (Lorentzen et al., 2001). Microburst precipitation was first observed from a balloon (Anderson and Milton, 1964), but these early measurements were only sensitive to MAXIS 2000 long duration balloon campaign. MAXIS was launched from McMurdo Station in Antarctica carrying a germanium spectrometer, a BGO scintillator and two X-ray imagers designed to measure the bremsstrahlung produced by precipitating electrons. The balloon circumnavigated the south pole in 18 days covering magnetic latitudes ranging from 58o-90o South. During the week following a moderate geomagnetic storm (with Dst reaching -91 nT), MAXIS detected a total of over 16 hours of microburst precipitation. We present high resolution spectra obtained with the MAXIS germanium spectrometer which allow us to determine the precipitating electron energy distribution. The precipitating distribution will then be compared to the trapped distribution measured by the GPS and LANL satellites. We also examine the spatial distribution of the precipitation.

  16. Repair of periprosthetic fractures after total knee arthroplasty:9-month follow-up%全膝关节置换后假体周围骨折的修复:9个月随访

    Institute of Scientific and Technical Information of China (English)

    旭合热提•吾提库尔; 哈巴西•卡肯; 王利; 赵喜滨; 袁宏

    2015-01-01

    fracture happened, it may have high incidence of complications and revision operation, and its treatment is also a big problem in orthopedics. OBJECTIVE: To explore the repair method and effect of periprosthetic fractures after total knee arthroplasty. METHODS:Nine patients had periprosthetic fractures around the knee joint and visited the Xinjiang Uygur Autonomous Region People’s Hospital from January 2007 to December 2012. There were six cases with femur fractures and three with tibia fractures. Al the patients had consultations before operation to make sure the type of the prosthesis we used: PFC Sigma Depuy in three cases, and BIOMET Company’s Vanguard in six cases. From the X-ray, we used Kim Classify for femur fracture and used Felix Classify for tibia fracture. Three cases used locking compression plate. Three cases used intramedulary nail. Three cases used LISS system for internal fixation. Folow-up was conducted after treatment. New York Hospital for Special Surgery knee score was used to assess knee function. The occurrence of complications was recorded. RESULTS AND CONCLUSION: Al nine patients had osteoporosis, and their wound was healed in one stage. Patients were folowed up for 9-34 months. Fractures were healed in al patients in averagely 9.4 weeks. There was no deep vein thrombosis in limbs. No infection or loosening appeared. After repair, New York Hospital for Special Surgery knee score was utilized to assess knee function: excelent in five cases, good in three cases, and average in one case. After repair, early exercise was done in patients, and complications were less. These results indicate that periprosthetic fractures can be healed in one stage, and painless knee joint can be obtained. Suitable fixation manner can be obtained in the clinic according to the type of prosthesis and type of fractures.

  17. Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada

    Science.gov (United States)

    Pan, Xicai; Yang, Daqing; Li, Yanping; Barr, Alan; Helgason, Warren; Hayashi, Masaki; Marsh, Philip; Pomeroy, John; Janowicz, Richard J.

    2016-10-01

    This study assesses a filtering procedure on accumulating precipitation gauge measurements and quantifies the effects of bias corrections for wind-induced undercatch across four ecoclimatic regions in western Canada, including the permafrost regions of the subarctic, the Western Cordillera, the boreal forest, and the prairies. The bias corrections increased monthly precipitation by up to 163 % at windy sites with short vegetation and sometimes modified the seasonal precipitation regime, whereas the increases were less than 13 % at sites shielded by forest. On a yearly basis, the increase of total precipitation ranged from 8 to 20 mm (3-4 %) at sites shielded by vegetation and 60 to 384 mm (about 15-34 %) at open sites. In addition, the bias corrections altered the seasonal precipitation patterns at some windy sites with high snow percentage ( > 50 %). This study highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate-hydrology models.

  18. The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx)

    Science.gov (United States)

    Petersen, Walter A.; L'Ecuyer, Tristan; Moisseev, Dmitri

    2011-01-01

    Ground-based measurements of cool-season precipitation at mid and high latitudes (e.g., above 45 deg N/S) suggest that a significant fraction of the total precipitation volume falls in the form of light rain, i.e., at rates less than or equal to a few mm/h. These cool-season light rainfall events often originate in situations of a low-altitude (e.g., lower than 2 km) melting level and pose a significant challenge to the fidelity of all satellite-based precipitation measurements, especially those relying on the use of multifrequency passive microwave (PMW) radiometers. As a result, significant disagreements exist between satellite estimates of rainfall accumulation poleward of 45 deg. Ongoing efforts to develop, improve, and ultimately evaluate physically-based algorithms designed to detect and accurately quantify high latitude rainfall, however, suffer from a general lack of detailed, observationally-based ground validation datasets. These datasets serve as a physically consistent framework from which to test and refine algorithm assumptions, and as a means to build the library of algorithm retrieval databases in higher latitude cold-season light precipitation regimes. These databases are especially relevant to NASA's CloudSat and Global Precipitation Measurement (GPM) ground validation programs that are collecting high-latitude precipitation measurements in meteorological systems associated with frequent coolseason light precipitation events. In an effort to improve the inventory of cool-season high-latitude light precipitation databases and advance the physical process assumptions made in satellite-based precipitation retrieval algorithm development, the CloudSat and GPM mission ground validation programs collaborated with the Finnish Meteorological Institute (FMI), the University of Helsinki (UH), and Environment Canada (EC) to conduct the Light Precipitation Validation Experiment (LPVEx). The LPVEx field campaign was designed to make detailed measurements of

  19. An Investigation of the Effects of Black Carbon on Precipitation in the Western United States

    Science.gov (United States)

    Tseng, Hsien-Liang Rose

    Black carbon (BC), the byproduct of incomplete combustion, is considered to be the second most important anthropogenic climate forcing agent after carbon dioxide. BC warms the atmosphere by absorbing solar radiation (direct effect), alters cloud and precipitation formation by acting as cloud condensation nuclei (indirect effect), and modifies cloud distribution via cloud burn-off (semi-direct effect). Currently, there are large discrepancies in general circulation model estimates of the influence of BC on precipitation. Even less known is how BC changes precipitation on regional scales. In the drought-stricken western United States (WUS), where BC emissions are known to affect the hydrological cycle, an investigation on how BC influences precipitation is warranted. In this study, we employ the Weather Research and Forecasting-Chemistry (WRF Chem) model (version 3.6.0) with the newly chemistry- and microphysics-coupled Fu-Liou-Gu radiation scheme to study how black carbon affects precipitation by separating BC-related effects into direct and semi-direct, and indirect effects. In this three-part study, we use a recent wet year (2005) to investigate black carbon effects. We first examine BC effects during a heavy wintertime heavy precipitation event (7-11 January 2005), a heavy summertime precipitation week for comparison to the wintertime event (20-24 July 2005), and finally, examine these same effects for the months of January to June 2005 to investigate month-long trends. We find that BC suppresses precipitation, predominantly through its direct and semi-direct effects. The direct and semi-direct effects warm the air aloft, and cool the lower levels of the atmosphere (surface dimming) through the reduction of downward shortwave radiation flux at the surface. These changes in vertical temperature increase the stability of the atmosphere and reduce convective precipitation. Convective precipitation reduction accounts for approximately 60 75% of the total

  20. The Precipitation Characteristics of ISCCP Tropical Weather States

    Science.gov (United States)

    Lee, Dongmin; Oreopoulos, Lazaros; Huffman, George J.; Rossow, William B.; Kang, In-Sik

    2011-01-01

    We examine the daytime precipitation characteristics of the International Satellite Cloud Climatology Project (ISCCP) weather states in the extended tropics (35 deg S to 35 deg N) for a 10-year period. Our main precipitation data set is the TRMM Multisatellite Precipitation Analysis 3B42 data set, but Global Precipitation Climatology Project daily data are also used for comparison. We find that the most convective weather state (WS1), despite an occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing both the largest mean precipitation rates when present and the largest percent contribution to the total precipitation of the tropical zone of our study; yet, even this weather state appears to not precipitate about half the time. WS1 exhibits a modest annual cycle of domain-average precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation rates of the other weather states tend to be stronger when occurring before or after WS1. The relative contribution of the various weather states to total precipitation is different between ocean and land, with WS1 producing more intense precipitation on average over ocean than land. The results of this study, in addition to advancing our understanding of the current state of tropical precipitation, can serve as a higher order diagnostic test on whether it is distributed realistically among different weather states in atmospheric models.

  1. Inconsistency in precipitation measurements across Alaska and Yukon border

    Directory of Open Access Journals (Sweden)

    L. Scaff

    2015-07-01

    Full Text Available This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (NWS 8-in gauge and Nipher gauge, and the bias-corrected data to account for wind effect on the gauge catch, wetting loss and trace events. The bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. Monthly corrections increase solid precipitation by 135 % in January, 20 % for July at the Barter Island in Alaska, and about 31 % for January and 4 % for July at the Yukon stations. Regression analyses of the monthly precipitation data show a stronger correlation for the warm months (mainly rainfall than for cold month (mainly snowfall between the station pairs, and small changes in the precipitation relationship due to the bias corrections. Double mass curves also indicate changes in the cumulative precipitation over the study periods. This change leads to a smaller and inverted precipitation gradient across the border, representing a significant modification in the precipitation pattern over the northern region. Overall, this study discovers significant inconsistency in the precipitation measurements across the US and Canada border. This discontinuity is greater for snowfall than for rainfall, as gauge snowfall observations have large errors in the windy and cold conditions. This result will certainly impact regional, particularly cross borders, climate and hydrology investigations.

  2. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  3. [Dynamics of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan].

    Science.gov (United States)

    Yin, Guangcai; Zhou, Guoyi; Zhang, Deqiang; Wang, Xu; Chu, Guowei; Liu, Yan

    2005-09-01

    The total flux and concentration of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan were measured from July 2002 to July 2003. The results showed that the TOC input by precipitation was 41.80 kg x hm(-2) x yr(-1), while its output by surface runoff and groundwater (soil solution at 50 cm depth) was 17.54 and 1.80 kg x hm(-2) x yr(-1), respectively. The difference between input and output was 22.46 kg x hm(-2) x yr(-1), indicating that the ecosystem TOC was in positive balance. The monthly variation of TOC flux in hydrological processes was very similar to that in precipitation. The mean TOC concentration in precipitation was 3.64 mg x L(-1), while that in throughfall and stemflow increased 6.10 and 7.39 times after rain passed through the tree canopies and barks. The mean TOC concentration in surface runoff and in soil solution at 25 and 50 cm depths was 12.72, 7.905 and 3.06 mg x L(-1), respectively. The monthly TOC concentration in throughfall and stemflow had a similar changing tendency, showing an increase at the beginning of growth season (March), a decrease after September, and a little increase in December. The TOC concentration in runoff was much higher during high precipitation months. No obvious monthly variation was observed in soil solution TOC concentration (25 and 50 cm below the surface). Stemflow TOC concentration differed greatly between different tree species. The TOC concentration in precipitation, throughfall, and soil solution (25 and 50 cm depths) decreased with increasing precipitation, and no significant relationship existed between the TOC concentrations in stemflow, surface runoff and precipitation. The TOC concentrations in the hydrological processes fluctuated with precipitation intensity, except for that in stemflow and soil solutions.

  4. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  5. Effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model output

    Science.gov (United States)

    Jacquin, A. P.

    2012-04-01

    This study analyses the effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model's discharge estimates. Prediction uncertainty bounds are derived using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation (at a single station within the catchment) and a precipitation factor FPi. Thus, these factors provide a simplified representation of the spatial variation of precipitation, specifically the shape of the functional relationship between precipitation and height. In the absence of information about appropriate values of the precipitation factors FPi, these are estimated through standard calibration procedures. The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. Monte Carlo samples of the model output are obtained by randomly varying the model parameters within their feasible ranges. In the first experiment, the precipitation factors FPi are considered unknown and thus included in the sampling process. The total number of unknown parameters in this case is 16. In the second experiment, precipitation factors FPi are estimated a priori, by means of a long term water balance between observed discharge at the catchment outlet, evapotranspiration estimates and observed precipitation. In this case, the number of unknown parameters reduces to 11. The feasible ranges assigned to the precipitation factors in the first experiment are slightly wider than the range of fixed precipitation factors used in the second experiment. The mean squared error of the Box-Cox transformed discharge during the calibration period is used for the evaluation of the

  6. Monthly Meteorological Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly forms that do not fit into any regular submission. Tabulation sheets and generic monthly forms designed to capture miscellaneous monthly observations.

  7. Drought analysis for Kuwait using standardized precipitation index.

    Science.gov (United States)

    Almedeij, Jaber

    2014-01-01

    Implementation of adequate measures to assess and monitor droughts is recognized as a major matter challenging researchers involved in water resources management. The objective of this study is to assess the hydrologic drought characteristics from the historical rainfall records of Kuwait with arid environment by employing the criterion of Standardized Precipitation Index (SPI). A wide range of monthly total precipitation data from January 1967 to December 2009 is used for the assessment. The computation of the SPI series is performed for intermediate- and long-time scales of 3, 6, 12, and 24 months. The drought severity and duration are also estimated. The bivariate probability distribution for these two drought characteristics is constructed by using Clayton copula. It has been shown that the drought SPI series for the time scales examined have no systematic trend component but a seasonal pattern related to rainfall data. The results are used to perform univariate and bivariate frequency analyses for the drought events. The study will help evaluating the risk of future droughts in the region, assessing their consequences on economy, environment, and society, and adopting measures for mitigating the effect of droughts.

  8. 118 anos de dados mensais do Índice Padronizado de Precipitação: série meteorológica de Campinas, estado de São Paulo 118 years of monthly Standardized Precipitation Index data: meteorological series of Campinas, state of São Paulo

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2011-03-01

    Full Text Available O Índice Padronizado de Precipitação (SPI é utilizado em programas estaduais e nacionais no monitoramento das condições de seca de diversas regiões brasileiras. Com base na hipótese de que a análise de longas séries temporais do SPI pode auxiliar a adoção de políticas de mitigação e combate a essa anomalia climática, o objetivo desse trabalho foi analisar a variabilidade do SPI mensal, na localidade de Campinas-SP, entre os anos de 1890 a 2007. Por meio de análises espectrais e testes não paramétricos verificou-se uma variabilidade na escala de três a quatro anos. Contudo, não foi possível observar marcante influência do fenômeno El Niño/Oscilação Sul nas condições mensais de variabilidade climática na localidade de Campinas. Com respeito à tendência de longo prazo, enquanto uma tendência de intensificação nas condições de déficit de precipitação pluvial foi detectada em agosto, nos demais meses não houve alterações significativas. Sob o ponto de vista acadêmico o tratamento probabilístico e padronizado dos déficits/excesso de precipitação pluvial empregado no cálculo do SPI, o torna um interessante índice alternativo na investigação de forçantes climáticas condicionantes/moduladoras do clima de determinada região.The Standard Precipitation Index (SPI is used in state and national monitoring programs of the drought conditions in several Brazilian regions. Based on the hypothesis that the analysis of long term SPI time series might help on the adoption of policies of mitigation and facing climate anomalies, this work aims to analyze the variability of monthly SPI, in Campinas (SP during the years from 1890 to 2007. From spectral analyses and non-parametric tests, a variability of three to four years scale was noted for this index. However, a remarkable influence of the El Niño/Southern Oscillation on the variability of monthly climate conditions in Campinas was not seen. Concerning the long

  9. Monthly values of the standardized precipitation index in the State of São Paulo, Brazil: trends and spectral features under the normality assumption Valores mensais do índice padronizado de precipitação pluvial no Estado de São Paulo, Brasil: tendência e características espectrais sob o pressuposto da normalidade

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2012-01-01

    Full Text Available The aim of this study was to describe monthly series of the Standardized Precipitation Index obtained from four weather stations of the State of São Paulo, Brazil. The analyses were carried out by evaluating the normality assumption of the SPI distributions, the spectral features of these series and, the presence of climatic trends in these datasets. It was observed that the Pearson type III distribution was better than the gamma 2-parameter distribution in providing monthly SPI series closer to the normality assumption inherent to the use of this standardized index. The spectral analyses carried out in the time-frequency domain did not allow us to establish a dominant mode in the analyzed series. In general, the Mann-Kendall and the Pettitt tests indicated the presence of no significant trend in the SPI series. However, both trend tests have indicated that the temporal variability of this index, observed at the months of October over the last 60 years, cannot be seen as the result of a purely random process. This last inference is due to the concentration of decreasing trends, with a common beginning (1983/84 in the four locations of the study.O objetivo do trabalho foi descrever séries mensais do Índice Padronizado de Precipitação (SPI, obtidas a partir de quatro estações meteorológicas do Estado de São Paulo, Brasil (1951-2010. As análises foram realizadas avaliando-se o pressuposto de normalidade das distribuições do SPI, as características espectrais dessas séries e a presença de tendências climáticas nessas amostras. Observou-se que a distribuição Pearson tipo III foi melhor que a gama 2-parâmetros em prover séries mensais do SPI mais próximas ao pressuposto de normalidade inerente ao uso desse índice padronizado. As análises espectrais realizadas no domínio tempo-frequência não permitiram o estabelecimento de modo (de frequência dominante nas séries analisadas. De forma geral, os testes de Mann-Kendall e

  10. In situ ultrasound-assisted preparation of Fe3O4@MnO2 core-shell nanoparticles integrated with ion co-precipitation for multielemental analysis by total reflection X-ray fluorescence

    Science.gov (United States)

    Nourbala-Tafti, Elaheh; Romero, Vanesa; Lavilla, Isela; Dadfarnia, Shayesteh; Bendicho, Carlos

    2017-05-01

    In this work, a new analytical approach based on in situ ultrasound-assisted preparation of manganese dioxide coated magnetite nanoparticles (Fe3O4@MnO2 NPs) was applied for extraction and preconcentration of Ni, Cu, Zn, Tl, Pb, Bi and Se. The Fe3O4@MnO2 core-shell nanocomposite was synthesized by application of high-intensity sonication to an aqueous reaction medium in the presence of the target analytes, which are trapped during NPs formation. In this way, synthesis of the nanosorbent and extraction can be simultaneously accomplished within only 30 s. After the extraction step, the resulting Fe3O4@MnO2 NPs enriched with the target analytes were separated by an external magnetic field, so that filtration or centrifugation steps were unnecessary. A 10 μL aliquot of the solid phase was deposited onto a sample carrier (quartz reflector) and directly analyzed by total-reflection X-ray fluorescence (TXRF) without the need for an elution step. A comprehensive characterization of the Fe3O4@MnO2 NPs was carried out by transmission electron microscopy and TXRF. Detection limits ranged from 0.19 to 0.98 μg L- 1 depending on the analyte. Enrichment factors in the range of 402-540 were obtained. The repeatability expressed as relative standard deviation was around 1.7% (N = 5). The accuracy of the proposed method was assessed by analyzing the certified reference material BCR®-610 (groundwater). An effective, simple, rapid and sensitive procedure for multielemental analysis of water samples was accomplished.

  11. WPA Precipitation Tabulations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly precipitation data tabulated under the Work Projects Administration (WPA), a New Deal program created to reduce unemployment during the Great Depression....

  12. Chemisorption And Precipitation Reactions

    Science.gov (United States)

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  13. GPM, GMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  14. GPM, GMI Level 3 Monthly GPROF Profiling VV03C

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  15. GPM, GMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  16. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  17. Characterization of Strain-Induced Precipitation in Inconel 718 Superalloy

    Science.gov (United States)

    Calvo, Jessica; Penalva, Mariluz; Cabrera, José María

    2016-08-01

    Inconel 718 presents excellent mechanical properties at high temperatures, as well as good corrosion resistance and weldability. These properties, oriented to satisfy the design requirements of gas turbine components, depend on microstructural features such as grain size and precipitation. In this work, precipitation-temperature-time diagrams have been derived based on a stress relaxation technique and the characterization of precipitates by scanning electron microscopy. By using this methodology, the effect of strain accumulation during processing on the precipitation kinetics can be determined. The results show that the characteristics of precipitation are significantly modified when plastic deformation is applied, and the kinetics are slightly affected by the amount of total plastic deformation.

  18. Atmospheric circulation controls on the inter-annual variability in precipitation isotope ratio in Japan

    Directory of Open Access Journals (Sweden)

    N. Kurita

    2014-10-01

    Full Text Available This study explored the primary driver of variations of precipitation isotopes at multiple temporal scales (event, seasonal and inter-annual scales to provide a greater depth of interpretation for isotope proxy records in Japan. A one-year record of the isotopic composition of event-based precipitation at Nagoya in central Japan showed less seasonal variation, but there is large isotopic variability on a storm-to-storm basis. In the summer, southerly flows transport isotopically enriched moisture from subtropical marine regions with the result that the rainfall produced by the subtropical air, or warm rainfall, was relatively enriched in heavy isotopes in comparison with the other rainfall events. In the winter, storm tracks are the dominant driver of storm-to-storm isotopic variation, and relatively lower isotopic values occurred when northerly winds in association with extratropical cyclones passing off the south coast of Japan (Nangan cyclone brings cold precipitation. Using the historical 17 year record of monthly isotopes in precipitation at Tokyo station, we explored if the factors controlling event-scale isotopic variability can account for inter-annual isotopic variability. The relatively higher isotopes in summer precipitation were attributed to the higher contribution of the warm rainfall to the total summer precipitation. On the other hand, year-to-year variation of isotopic values in winter precipitation was negatively correlated with the relative ratio of the Nangan cyclone rainfall to the total winter precipitation. The 17 year precipitation history demonstrates that event-scale isotopic variability related to changes in meridional moisture transport is the primary driver of inter-annual isotopic variability in winter and summer precipitation. The meridional moisture transport to central Japan is likely linked to the activity of the western North Pacific subtropical high in summer and the intensity of the East Asian winter monsoon

  19. Improving High-resolution Spatial Estimates of Precipitation in the Equatorial Americas

    Science.gov (United States)

    Verdin, A.; Rajagopalan, B.; Funk, C. C.

    2013-12-01

    Drought and flood management practices require accurate estimates of precipitation in space and time. However, data is sparse in regions with complicated terrain (such as the Equatorial Americas), often in valleys (where people farm), and of poor quality. Consequently, extreme precipitation events are poorly represented. Satellite-derived rainfall data is an attractive alternative in such regions and is being widely used, though it too suffers from problems such as underestimation of extreme events (due to its dependency on retrieval algorithms) and the indirect relationship between satellite radiation observations and precipitation intensities. Thus, it seems appropriate to blend satellite-derived rainfall data of extensive spatial coverage with rain gauge data in order to provide a more robust estimate of precipitation. To this end, in this research we offer three techniques to blend rain gauge data and the Climate Hazards group InfraRed Precipitation (CHIRP) satellite-derived precipitation estimate for Central America and Colombia. In the first two methods, the gauge data is assigned to the closest CHIRP grid point, where the error is defined as r = Yobs - Ysat. The spatial structure of r is then modeled using physiographic information (Easting, Northing, and Elevation) by two methods (i) a traditional Cokriging approach whose variogram is calculated in Euclidean space and (ii) a nonparametric method based on local polynomial functional estimation. The models are used to estimate r at all grid points, which is then added to the CHIRP, thus creating an improved satellite estimate. We demonstrate these methods by applying them to pentadal and monthly total precipitation fields during 2009. The models' predictive abilities and their ability to capture extremes are investigated. These blending methods significantly improve upon the satellite-derived estimates and are also competitive in their ability to capture extreme precipitation. The above methods assume

  20. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity.

    Science.gov (United States)

    Gherardi, Laureano A; Sala, Osvaldo E

    2015-12-01

    Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6-year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant. Functional diversity showed a positive response to increased variability due to increased evenness. Dominant grasses decreased and rare plant functional types increased in abundance because grasses showed a hump-shaped response to precipitation with a maximum around modal precipitation, whereas rare species peaked at high precipitation values. Increased functional diversity ameliorated negative effects of precipitation variability on primary production. Rare species buffered the effect of precipitation variability on the variability in total productivity because their variance decreases with increasing precipitation variance.

  1. Generation of a stochastic precipitation model for the tropical climate

    Science.gov (United States)

    Ng, Jing Lin; Abd Aziz, Samsuzana; Huang, Yuk Feng; Wayayok, Aimrun; Rowshon, MK

    2017-06-01

    A tropical country like Malaysia is characterized by intense localized precipitation with temperatures remaining relatively constant throughout the year. A stochastic modeling of precipitation in the flood-prone Kelantan River Basin is particularly challenging due to the high intermittency of precipitation events of the northeast monsoons. There is an urgent need to have long series of precipitation in modeling the hydrological responses. A single-site stochastic precipitation model that includes precipitation occurrence and an intensity model was developed, calibrated, and validated for the Kelantan River Basin. The simulation process was carried out separately for each station without considering the spatial correlation of precipitation. The Markov chains up to the fifth-order and six distributions were considered. The daily precipitation data of 17 rainfall stations for the study period of 1954-2013 were selected. The results suggested that second- and third-order Markov chains were suitable for simulating monthly and yearly precipitation occurrences, respectively. The fifth-order Markov chain resulted in overestimation of precipitation occurrences. For the mean, distribution, and standard deviation of precipitation amounts, the exponential, gamma, log-normal, skew normal, mixed exponential, and generalized Pareto distributions performed superiorly. However, for the extremes of precipitation, the exponential and log-normal distributions were better while the skew normal and generalized Pareto distributions tend to show underestimations. The log-normal distribution was chosen as the best distribution to simulate precipitation amounts. Overall, the stochastic precipitation model developed is considered a convenient tool to simulate the characteristics of precipitation in the Kelantan River Basin.

  2. Trends in daily temperature and precipitation extremes over Georgia, 1971–2010

    Directory of Open Access Journals (Sweden)

    I. Keggenhoff

    2014-08-01

    Full Text Available Annual changes to climate extreme indices in Georgia (Southern Caucasus from 1971 to 2010 are studied using homogenized daily minimum and maximum temperature and precipitation series. Fourteen extreme temperature and 11 extreme precipitation indices are selected from the list of core climate extreme indices recommended by the World Meteorological Organization – Commission for Climatology (WMO-CCL and the research project on Climate Variability and Predictability (CLIVAR of the World Climate Research Programme (WCRP. Trends in the extreme indices are studied for 10 minimum and 11 maximum temperature and 24 precipitation series for the period 1971–2010. Between 1971 and 2010 most of the temperature extremes show significant warming trends. In 2010 there are 13.3 fewer frost days than in 1971. Within the same time frame there are 13.6 more summer days and 7.0 more tropical nights. A large number of stations show significant warming trends for monthly minimum and maximum temperature as well as for cold and warm days and nights throughout the study area, whereas warm extremes and night-time based temperature indices show greater trends than cold extremes and daytime indices. Additionally, the warm spell duration indicator indicates a significant increase in the frequency of warm spells between 1971 and 2010. Cold spells show an insignificant increase with low spatial coherence. Maximum 1-day and 5-day precipitation, the number of very heavy precipitation days, very wet and extremely wet days as well as the simple daily intensity index all show an increase in Georgia, although all trends manifest a low spatial coherence. The contribution of very heavy and extremely heavy precipitation to total precipitation increased between 1971 and 2010, whereas the number of wet days decreases.

  3. as the Strengthening Precipitates

    Science.gov (United States)

    Lu, Qi; Xu, Wei; van der Zwaag, Sybrand

    2014-12-01

    Generally, Laves phase and M23C6 are regarded as undesirable phases in creep-resistant steels due to their very high-coarsening rates and the resulting depletion of beneficial alloying elements from the matrix. In this study, a computational alloy design approach is presented to develop martensitic steels strengthened by Laves phase and/or M23C6, for which the coarsening rates are tailored such that they are at least one order of magnitude lower than those in existing alloys. Their volume fractions are optimized by tuning the chemical composition in parallel. The composition domain covering 10 alloying elements at realistic levels is searched by a genetic algorithm to explore the full potential of simultaneous maximization of the volume fraction and minimization of the precipitates coarsening rate. The calculations show that Co and W can drastically reduce the coarsening rate of Laves and M23C6 and yield high-volume fractions of precipitates. Mo on the other hand was shown to have a minimal effect on coarsening. The strengthening effects of Laves phase and M23C6 in the newly designed alloys are compared to existing counterparts, showing substantially higher precipitation-strengthening contributions especially after a long service time. New alloys were designed in which both Laves phase and M23C6 precipitates act as strengthening precipitates. Successfully combining MX and M23C6 was found to be impossible.

  4. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation

    Science.gov (United States)

    Peterson, P.; Funk, C. C.; Husak, G. J.; Pedreros, D. H.; Landsfeld, M.; Verdin, J. P.; Shukla, S.

    2013-12-01

    CHIRP and CHIRPS are new quasi-global precipitation products with daily to seasonal time scales, a 0.05° resolution, and a 1981 to near real-time period of record. Developed by the Climate Hazards Group at UCSB and scientists at the U.S. Geological Survey Earth Resources Observation and Science Center specifically for drought early warning and environmental monitoring, CHIRPS provides moderate latency precipitation estimates that place observed hydrologic extremes in their historic context. Three main types of information are used in the CHIRPS: (1) global 0.05° precipitation climatologies, (2) time-varying grids of satellite-based precipitation estimates, and (3) in situ precipitation observations. CHIRP: The global grids of long-term (1980-2009) average precipitation were estimated for each month based on station data, averaged satellite observations, and physiographic parameters. 1981-present time-varying grids of satellite precipitation were derived from spatially varying regression models based on pentadal cold cloud duration (CCD) values and TRMM V7 training data. The CCD time-series were derived from the CPC and NOAA B1 datasets. Pentadal CCD-percent anomaly values were multiplied by pentadal climatology fields to produce low bias pentadal precipitation estimates. CHIRPS: The CHG station blending procedure uses the satellite-observed spatial covariance structure to assign relative weights to neighboring stations and the CHIRP values. The CHIRPS blending procedure is based on the expected correlation between precipitation at a given target location and precipitation at the locations of the neighboring observation stations. These correlations are estimated using the CHIRP fields. The CHG has developed an extensive archive of in situ daily, pentadal and monthly precipitation totals. The CHG database has over half a billion daily rainfall observations since 1980 and another half billion before 1980. Most of these observations come from four sets of global

  5. Precipitation chemistry in central Amazonia

    Science.gov (United States)

    Andreae, M. O.; Talbot, R. W.; Berresheim, H.; Beecher, K. M.

    1990-01-01

    Rain samples from three sites in central Amazonia were collected over a period of 6 weeks during the 1987 wet season and analyzed for ionic species and dissolved organic carbon. A continuous record of precipitation chemistry and amount was obtained at two of these sites, which were free from local or regional pollution, for a time period of over 1 month. The volume-weighted mean concentrations of most species were found to be about a factor of 5 lower during the wet season compared with previous results from the dry season. Only sodium, potassium, and chloride showed similar concentrations in both seasons. When the seasonal difference in rainfall amount is taken into consideration, the deposition fluxes are only slightly lower for most species during the wet season than during the dry season, again with the exception of chloride, potassium, and sodium. Sodium and chloride are present in the same ratio as in sea salt; rapid advection of air masses of marine origin to the central Amazon Basin during the wet season may be responsible for the observed higher deposition flux of these species. Statistical analysis suggests that sulfate is, to a large extent, of marine (sea salt and biogenic) origin, but that long-range transport of combustion-derived aerosols also makes a significant contribution to sulfate and nitrate levels in Amazonian rain. Organic acid concentrations in rain were responsible for a large fraction of the observed precipitation acidity; their concentration was strongly influenced by gas/liquid interactions.

  6. Nordic Seas Precipitation Ground Validation Project

    Science.gov (United States)

    Klepp, Christian; Bumke, Karl; Bakan, Stephan; Andersson, Axel

    2010-05-01

    A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding of the water cycle in the global climate system. However, reliable detection of precipitation over the global oceans, especially of solid precipitation, remains a challenging task. This is true for both, passive microwave remote sensing and reanalysis based model estimates. The satellite based HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) climatology contains fields of precipitation, evaporation and the resulting freshwater flux along with 12 additional atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables are calculated from SSM/I passive microwave radiometer measurements. HOAPS contains three main data subsets that originate from one common pixel-level data source. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. The optical disdrometer ODM 470 is a ground validation instrument capable of measuring rain and snowfall on ships even under high wind speeds. It was used for the first time over the Nordic Seas during the LOFZY 2005 campaign. A dichotomous verification for these snowfall events resulted in a perfect score between the disdrometer, a precipitation detector and a shipboard observer's log. The disdrometer data is further point-to-area collocated against precipitation from three satellite derived climatologies, HOAPS-3, the Global Precipitation Climatology Project (GPCP) one degree daily (1DD) data set, and the Goddard Profiling algorithm, version 2004 (GPROF 2004). Only the HOAPS precipitation turns out to be overall consistent with the disdrometer data resulting in an accuracy of 0.96. The collocated data comprises light precipitation events below 1 mm/h. Therefore two LOFZY case studies with high precipitation rates are presented that still indicate plausible results. Overall, this

  7. The Role of CO2 Physiological Forcing in Driving Future Precipitation Variability and Precipitation Extremes

    Science.gov (United States)

    Skinner, C. B.; Poulsen, C. J.

    2015-12-01

    Transpired water contributes roughly 25% to total precipitation over the Earth's land surface. In addition to transpiration's impact on climatological mean precipitation, recent work suggests that transpiration reduces daily and intraseasonal precipitation variability in tropical forest regions. Projected increases in the concentration of CO2 are expected to reduce transpiration through changes in plant physiology (termed the CO2 physiological effect). Here, we use an ensemble of climate model experiments to assess the potential contribution of the CO2 physiological effect to future changes in precipitation variability and extreme precipitation events. Within our model simulations, precipitation responses to the physiological effects of increased CO2 concentrations are greatest throughout the tropics. In most tropical forest regions CO2 physiological forcing increases the annual number of dry (less than 0.1 mm/day) and extremely wet (rainfall exceeds 95th percentile) days. Changes in precipitation are primarily driven by an increase in surface temperature and subsequent changes in atmospheric stability and moisture convergence over vegetated tropical land regions. Our results suggest that the plant physiological response to CO2 forcing may serve as an important contributor to future precipitation variability in the tropics, and that future work should aim to reduce uncertainty in the response of plant physiology to changes in climate.

  8. Precipitating factors of asthma.

    Science.gov (United States)

    Lee, T H

    1992-01-01

    Asthma is characterised by bronchial hyperresponsiveness. This feature of the asthmatic diathesis predisposes patients to wheezing in response to a number of different factors. These precipitating factors include specific allergen acting via sensitised mediator cells through an IgE-dependent mechanism. There are irritants which may work through a non-specific manner, or stimuli such as exercise and hyperventilation, which probably also act through mediator release via a non-IgE-dependent manner. The mechanism whereby physical stimuli such as exercise induce bronchoconstriction is of interest, because it increases the context in which the mast cell may participate in acute asthmatic bronchoconstriction. Respiratory infections also commonly provoke asthma, especially in infants and may, indeed, precipitate the asthmatic state itself. Finally, drugs can often trigger asthma attacks and the mechanisms of asthma precipitated by non-steroidal anti-inflammatory drugs such as aspirin have been the subject of recent research.

  9. Average monthly and annual climate maps for Bolivia

    KAUST Repository

    Vicente-Serrano, Sergio M.

    2015-02-24

    This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control and temporal homogenization procedure. Monthly average maps at the spatial resolution of 1 km were modeled by means of a regression-based approach using topographic and geographic variables as predictors. The monthly average maximum and minimum temperatures, precipitation and potential exoatmospheric solar radiation under clear sky conditions are used to estimate the monthly average atmospheric evaporative demand by means of the Hargreaves model. Finally, the average water balance is estimated on a monthly and annual scale for each 1 km cell by means of the difference between precipitation and atmospheric evaporative demand. The digital layers used to create the maps are available in the digital repository of the Spanish National Research Council.

  10. Precipitation-Regulated Feedback

    Science.gov (United States)

    Voit, Mark

    2016-07-01

    Star formation in the central galaxies of galaxy clusters appears to be fueled by precipitation of cold clouds out of hot circumgalactic gas via thermal instability. I will present both observational and theoretical support for the precipitation mode in large galaxies and discuss how it can be implemented in cosmological simulations of galaxy evolution. Galaxy cluster cores are unique laboratories for studying the astrophysics of thermal instability and may be teaching us valuable lessons about how feedback works in galaxies spanning the entire mass spectrum.

  11. A New Method for Near Real Time Precipitation Estimates Using a Derived Statistical Relationship between Precipitable Water Vapor and Precipitation

    Science.gov (United States)

    Roman, J.

    2015-12-01

    The IPCC 5th Assessment found that the predicted warming of 1oC would increase the risk of extreme events such as heat waves, droughts, and floods. Weather extremes, like floods, have shown the vulnerability and susceptibility society has to these extreme weather events, through impacts such as disruption of food production, water supply, health, and damage of infrastructure. This paper examines a new way of near-real time forecasting of precipitation. A 10-year statistical climatological relationship was derived between precipitable water vapor (PWV) and precipitation by using the NASA Atmospheric Infrared Sounder daily gridded PWV product and the NASA Tropical Rainfall Measuring Mission daily gridded precipitation total. Forecasting precipitation estimates in real time is dire for flood monitoring and disaster management. Near real time PWV observations from AIRS on Aqua are available through the Goddard Earth Sciences Data and Information Service Center. In addition, PWV observations are available through direct broadcast from the NASA Suomi-NPP ATMS/CrIS instrument, the operational follow on to AIRS. The derived climatological relationship can be applied to create precipitation estimates in near real time by utilizing the direct broadcasting capabilities currently available in the CONUS region. The application of this relationship will be characterized through case-studies by using near real-time NASA AIRS Science Team v6 PWV products and ground-based SuomiNet GPS to estimate the current precipitation potential; the max amount of precipitation that can occur based on the moisture availability. Furthermore, the potential contribution of using the direct broadcasting of the NUCAPS ATMS/CrIS PWV products will be demonstrated. The analysis will highlight the advantages of applying this relationship in near-real time for flash flood monitoring and risk management. Relevance to the NWS River Forecast Centers will be discussed.

  12. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  13. Proposing Chinese Pharmacists Month

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Dear Pharmacists: Today I would like to share with you about the American Pharmacists Month which is celebrated in October every year.This month-long observance is promoted by American Pharmacist Association.

  14. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    1993-01-01

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of distri

  15. Reaction systems with precipitation

    Directory of Open Access Journals (Sweden)

    Marek Rogalski

    2015-04-01

    Full Text Available This article proposes expanding Reaction Systems of Ehrenfeucht and Rozenberg by incorporating precipitation reactions into it. This improves the computing power of Reaction Systems by allowing us to implement a stack. This addition enables us to implement a Deterministic Pushdown Automaton.

  16. Responses of Soil CO2 Emissions to Extreme Precipitation Regimes: a Simulation on Loess Soil in Semi-arid Regions

    Science.gov (United States)

    Wang, R.; Zhao, M.; Hu, Y.; Guo, S.

    2016-12-01

    Responses of soil CO2 emission to natural precipitation play an essential role in regulating regional C cycling. With more erratic precipitation regimes, mostly likely of more frequent heavy rainstorms, projected into the future, extreme precipitation would potentially affect local soil moisture, plant growth, microbial communities, and further soil CO2 emissions. However, responses of soil CO2 emissions to extreme precipitation have not yet been systematically investigated. Such performances could be of particular importance for rainfed arable soil in semi-arid regions where soil microbial respiration stress is highly sensitive to temporal distribution of natural precipitation.In this study, a simulated experiment was conducted on bare loess soil from the semi-arid Chinese Loess Plateau. Three precipitation regimes with total precipitation amounts of 150 mm, 300 mm and 600 mm were carried out to simulate the extremely dry, business as usual, and extremely wet summer. The three regimes were individually materialized by wetting soils in a series of sub-events (10 mm or 150 mm). Co2 emissions from surface soil were continuously measured in-situ for one month. The results show that: 1) Evident CO2 emission pulses were observed immediately after applying sub-events, and cumulative CO2 emissions from events of total amount of 600 mm were greater than that from 150 mm. 3) In particular, for the same total amount of 600 mm, wetting regimes by applying four times of 150 mm sub-events resulted in 20% less CO2 emissions than by applying 60 times of 10 mm sub-events. This is mostly because its harsh 150 mm storms introduced more over-wet soil microbial respiration stress days (moisture > 28%). As opposed, for the same total amount of 150 mm, CO2 emissions from wetting regimes by applying 15 times of 10 mm sub-events were 22% lower than by wetting at once with 150 mm water, probably because its deficiency of soil moisture resulted in more over-dry soil microbial respiration

  17. CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS at PSD: Gridded Monthly Values. Monthly Values after 2006 are from the real time files (RT)

  18. Quantification of the impact of precipitation spatial distribution uncertainty on predictive uncertainty of a snowmelt runoff model

    Science.gov (United States)

    Jacquin, A. P.

    2012-04-01

    This study is intended to quantify the impact of uncertainty about precipitation spatial distribution on predictive uncertainty of a snowmelt runoff model. This problem is especially relevant in mountain catchments with a sparse precipitation observation network and relative short precipitation records. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment's glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation at a station and a precipitation factor FPi. If other precipitation data are not available, these precipitation factors must be adjusted during the calibration process and are thus seen as parameters of the model. In the case of the fifth zone, glaciers are seen as an inexhaustible source of water that melts when the snow cover is depleted.The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. The model's predictive uncertainty is measured in terms of the output variance of the mean squared error of the Box-Cox transformed discharge, the relative volumetric error, and the weighted average of snow water equivalent in the elevation zones at the end of the simulation period. Sobol's variance decomposition (SVD) method is used for assessing the impact of precipitation spatial distribution, represented by the precipitation factors FPi, on the models' predictive uncertainty. In the SVD method, the first order effect of a parameter (or group of parameters) indicates the fraction of predictive uncertainty that could be reduced if the true value of this parameter (or group) was known. Similarly, the total effect of a parameter (or group) measures the fraction of predictive uncertainty that would remain if the true value of this parameter (or group) was unknown, but all the remaining model parameters could be fixed

  19. Cloud and precipitation properties from ground-based remote sensing instruments in East Antarctica

    Directory of Open Access Journals (Sweden)

    I. V. Gorodetskaya

    2014-07-01

    Full Text Available A new comprehensive cloud-precipitation-meteorological observatory has been established at Princess Elisabeth base, located in the escarpment zone of Dronning Maud Land, East Antarctica. The observatory consists of a set of ground-based remote sensing instruments (ceilometer, infrared pyrometer and vertically profiling precipitation radar combined with automatic weather station measurements of near-surface meteorology, radiative fluxes, and snow accumulation. In this paper, the observatory is presented and the potential for studying the evolution of clouds and precipitating systems is illustrated by case studies. It is shown that the synergetic use of the set of instruments allows for distinguishing ice, mixed-phase and precipitating clouds, including some information on their vertical extent. In addition, wind-driven blowing snow events can be distinguished from deeper precipitating systems. Cloud properties largely affect the surface radiative fluxes, with liquid-containing clouds dominating the radiative impact. A statistical analysis of all measurements (in total 14 months mainly occurring in summer/autumn indicates that these liquid-containing clouds occur during as much as 20% of the cloudy periods. The cloud occurrence shows a strong bimodal distribution with clear sky conditions 51% of the time and complete overcast conditions 35% of the time. Snowfall occurred 17% of the cloudy periods with a predominance of light precipitation and only rare events with snowfall > 1 mm h−1 water equivalent (w.e.. Three of such intensive snowfall events occurred during 2011 contributing to anomalously large annual snow accumulation. This is the first deployment of a precipitation radar in Antarctica allowing to assess the contribution of the snowfall to the local surface mass balance. It is shown that on the one hand large accumulation events (>10 mm w.e. day−1 during the measurement period of 26 months were always associated with snowfall, but that

  20. A feasibility study on precipitation regime classification by meteorological states

    Science.gov (United States)

    Hamada, A.; Takayabu, Y. N.

    2012-04-01

    Appropriate microphysical models of rainfall systems are essential for accurate precipitation retrievals from satellite measurements. For a better estimate of rainfall from the microwave imager satellites in Global Satellite Mapping of Precipitation (GSMaP), Takayabu (2008, GEWEX Newsletter; hereinafter T08) produced 3-monthly maps of dominant rainfall systems, utilizing TRMM Precipitation Radar (PR) and Lightning Imaging Sensor (LIS) data. It is worthwhile if we can classify different type of rainfall systems not from satellite rainfall data themselves but from the environmental meteorological states. In this feasibility study, precipitation regime classification over the oceans is performed by constructing a look-up-table (LUT) for estimating precipitation types in terms of local state of the atmosphere and ocean. This time, we chose four variables to construct the LUTs; sea surface temperature (SST), pressure vertical velocity at 500hPa (ω500), lower-tropospheric baroclinicity at 900hPa (dT900/dy), and lower-tropospheric stability (LTS), obtained from ERA-interim and OISST. The LUTs are trained with the precipitation types defined by T08. The four-dimensional probability density functions for each precipitation types were utilized to reconstruct precipitation types at each point. The constructed four-dimensional LUT is shown to have a reasonably good skill in estimation over the oceans. The possibility of detection (POD) is above 60% up to 90% for all seasons. The estimation skill is less dependent on months despite that the LUT was trained with only one month climatology, indicating the choice of these state variables is reasonable. The LUT can also describe interannual variations of precipitation regimes, e.g., those differences in El Niño and La Niña periods. The way of separation by selected environmental states is mostly meteorologically reasonable, although some representative variables have some room for improvements especially in the midlatitudes. We

  1. A statistically based seasonal precipitation forecast model with automatic predictor selection and its application to central and south Asia

    Science.gov (United States)

    Gerlitz, Lars; Vorogushyn, Sergiy; Apel, Heiko; Gafurov, Abror; Unger-Shayesteh, Katy; Merz, Bruno

    2016-11-01

    The study presents a statistically based seasonal precipitation forecast model, which automatically identifies suitable predictors from globally gridded sea surface temperature (SST) and climate variables by means of an extensive data-mining procedure and explicitly avoids the utilization of typical large-scale climate indices. This leads to an enhanced flexibility of the model and enables its automatic calibration for any target area without any prior assumption concerning adequate predictor variables. Potential predictor variables are derived by means of a cell-wise correlation analysis of precipitation anomalies with gridded global climate variables under consideration of varying lead times. Significantly correlated grid cells are subsequently aggregated to predictor regions by means of a variability-based cluster analysis. Finally, for every month and lead time, an individual random-forest-based forecast model is constructed, by means of the preliminary generated predictor variables. Monthly predictions are aggregated to running 3-month periods in order to generate a seasonal precipitation forecast. The model is applied and evaluated for selected target regions in central and south Asia. Particularly for winter and spring in westerly-dominated central Asia, correlation coefficients between forecasted and observed precipitation reach values up to 0.48, although the variability of precipitation rates is strongly underestimated. Likewise, for the monsoonal precipitation amounts in the south Asian target area, correlations of up to 0.5 were detected. The skill of the model for the dry winter season over south Asia is found to be low. A sensitivity analysis with well-known climate indices, such as the El Niño- Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the East Atlantic (EA) pattern, reveals the major large-scale controlling mechanisms of the seasonal precipitation climate for each target area. For the central Asian target areas, both

  2. Numerical simulations of significant orographic precipitation in Madeira island

    Science.gov (United States)

    Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João

    2016-03-01

    High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.

  3. Characteristics of Spatial Structural Patterns and Temporal Variability of Annual Precipitation in Ningxia

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of a...

  4. Hydrochemical and isotopic investigation of atmospheric precipitation in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuanzheng, E-mail: diszyz@163.com [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875 (China); Wang, Jinsheng, E-mail: wangjs@bnu.edu.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875 (China); Zhang, Yang [College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Teng, Yanguo; Zuo, Rui; Huan, Huan [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875 (China)

    2013-07-01

    Precipitation water samples were collected at an urban site in Beijing in a hydrological cycle (July 2008–July 2009), and analyzed for TDS, total alkalinity, total hardness, free CO{sub 2}, soluble SiO{sub 2}, bromide, sulfide, phosphate, major ions (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, NH{sub 4}{sup +}, HCO{sub 3}{sup −}, Cl{sup −}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −}), trace elements (CO{sub 3}{sup 2−}, Mn, Sr{sup 2+}, Fe{sup 2+}, Fe{sup 3+}, Al, F{sup −}, NO{sub 2}{sup −}), stable isotopes ({sup 2}H and {sup 18}O), and radioactive isotope ({sup 3}H). In addition, available published hydrochemical and isotopic data of precipitation of Beijing in the past were also collected and conjointly analyzed. Most of the parameters of samples tested varied considerably in the hydrological cycle. In general, HCO{sub 3}{sup −} and SO{sub 4}{sup 2−}, and Ca{sup 2+} and NH{sub 4}{sup +} are the dominant anions and cations, respectively. Using Na{sup +} as an indicator of marine origin, and Al for the terrestrial inputs, the proportions of major elements from sea salt and terrestrial sources were estimated by using the combination of statistical analysis methods and analogy method. More than 70.1% of Cl{sup −}, 98.1% of Ca{sup 2+}, and 93.6% of K{sup +} were non-sea-salt origin, while more than 98.4% of Na{sup +} was from marine sources. The LMWL (Local Meteoric Water Line) was obtained with an equation of δ{sup 2}H = 7.0181δ{sup 18}O + 3.5231 (‰, R{sup 2} = 0.86, n = 36), which was similar to GMWL (Global Meteoric Water Line). δ{sup 2}H, δ{sup 18}O and Δ-excess changed radically with month and season, but had no apparent seasonal effect, precipitation amount effect, and temperature effect. The annual mean values of Δ-excess for 1979 (16.5‰) and 1980 (16.3‰) were much bigger than that for 2007 (7.2‰), 2008 (2.1‰) and 2009 (4.5‰). The composition of {sup 2}H and {sup 18}O was probably intrinsically determined by the sources of water

  5. Bias Adjusted Precipitation Threat Scores

    Directory of Open Access Journals (Sweden)

    F. Mesinger

    2008-04-01

    Full Text Available Among the wide variety of performance measures available for the assessment of skill of deterministic precipitation forecasts, the equitable threat score (ETS might well be the one used most frequently. It is typically used in conjunction with the bias score. However, apart from its mathematical definition the meaning of the ETS is not clear. It has been pointed out (Mason, 1989; Hamill, 1999 that forecasts with a larger bias tend to have a higher ETS. Even so, the present author has not seen this having been accounted for in any of numerous papers that in recent years have used the ETS along with bias "as a measure of forecast accuracy".

    A method to adjust the threat score (TS or the ETS so as to arrive at their values that correspond to unit bias in order to show the model's or forecaster's accuracy in extit{placing} precipitation has been proposed earlier by the present author (Mesinger and Brill, the so-called dH/dF method. A serious deficiency however has since been noted with the dH/dF method in that the hypothetical function that it arrives at to interpolate or extrapolate the observed value of hits to unit bias can have values of hits greater than forecast when the forecast area tends to zero. Another method is proposed here based on the assumption that the increase in hits per unit increase in false alarms is proportional to the yet unhit area. This new method removes the deficiency of the dH/dF method. Examples of its performance for 12 months of forecasts by three NCEP operational models are given.

  6. Hourly Precipitation Data (HPD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly Precipitation Data (HPD) Publication is archived and available from the National Climatic Data Center (NCDC). This publication contains hourly precipitation...

  7. Hispanic Heritage Month

    Science.gov (United States)

    York, Sherry

    2004-01-01

    Hispanic heritage month is from September 15 to October 15. One problem that arises when grouping people into categories such as Hispanic or Latino is stereotyping, stereotypes can be promoted or used in this Hispanic month to promote a greater understanding of Latino cultures.

  8. Progress report, 24 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    The work performed during the past 12 months (months 13 – 24) of the project has included the conclusion of Task 1 – Fundamental Studies and Task 2 – Multimirror Cutting Head Design. Work on Task 3 – Compact Cutting Head Design, and Task 4 – Interface Design has been carried out and the tests...... of the multimirror cutting head have been started....

  9. Progress report, 36 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    The work performed during the past 12 months (months 13 – 24) of the project has included the conclusion of Task 1 – Fundamental Studies and Task 2 – Multimirror Cutting Head Design. Work on Task 3 – Compact Cutting Head Design, and Task 4 – Interface Design has been carried out and the tests...... of the multimirror cutting head have been started....

  10. Progress report, 36 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    The work performed during the past 12 months (months 13 – 24) of the project has included the conclusion of Task 1 – Fundamental Studies and Task 2 – Multimirror Cutting Head Design. Work on Task 3 – Compact Cutting Head Design, and Task 4 – Interface Design has been carried out and the tests of ...

  11. Progress report, 24 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    The work performed during the past 12 months (months 13 – 24) of the project has included the conclusion of Task 1 – Fundamental Studies and Task 2 – Multimirror Cutting Head Design. Work on Task 3 – Compact Cutting Head Design, and Task 4 – Interface Design has been carried out and the tests of ...

  12. Kaolinite dissolution and precipitation kinetics at 22oC and pH 4

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Yang, L.; Steefel, C.I.

    2008-04-01

    Dissolution and precipitation rates of low defect Georgia kaolinite (KGa-1b) as a function of Gibbs free energy of reaction (or reaction affinity) were measured at 22 C and pH 4 in continuously stirred flowthrough reactors. Steady state dissolution experiments showed slightly incongruent dissolution, with a Si/Al ratio of about 1.12 that is attributed to the re-adsorption of Al on to the kaolinite surface. No inhibition of the kaolinite dissolution rate was apparent when dissolved aluminum was varied from 0 and 60 {micro}M. The relationship between dissolution rates and the reaction affinity can be described well by a Transition State Theory (TST) rate formulation with a Temkin coefficient of 2 R{sub diss} (mol/m{sup 2}s) = 1.15 x 10{sup -13} [1-exp(-{Delta}G/2RT)]. Stopping of flow in a close to equilibrium dissolution experiment yielded a solubility constant for kaolinite at 22 C of 10{sup 7.57}. Experiments on the precipitation kinetics of kaolinite showed a more complex behavior. One conducted using kaolinite seed that had previously undergone extensive dissolution under far from equilibrium conditions for 5 months showed a quasi-steady state precipitation rate for 105 hours that was compatible with the TST expression above. After this initial period, however, precipitation rates decreased by an order of magnitude, and like other precipitation experiments conducted at higher supersaturation and without kaolinite seed subjected to extensive prior dissolution, could not be described with the TST law. The initial quasi-steady state rate is interpreted as growth on activated sites created by the dissolution process, but this reversible growth mechanism could not be maintained once these sites were filled. Long-term precipitation rates showed a linear dependence on solution saturation state that is generally consistent with a two dimensional nucleation growth mechanism following the equation R{sub ppt}(mol/m{sup 2}s) = 3.38 x 10{sup -14} exp[- 181776/T{sup 2} 1n

  13. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation model

  14. Precipitation, Ground-water Hydrology, and Recharge Along the Eastern Slopes of the Sandia Mountains, Bernalillo County, New Mexico

    Science.gov (United States)

    McCoy, Kurt J.; Blanchard, Paul J.

    2008-01-01

    The spatial and temporal distribution of recharge to carbonate and clastic aquifers along the eastern slopes of the Sandia Mountains was investigated by using precipitation, water-level, dissolved chloride, and specific-conductance data. The U.S. Geological Survey (USGS), in cooperation with the Bernalillo County Public Works Division, conducted a study to assess ground-water conditions and provide technical data that could be used as a basis for management and future planning of eastern Bernalillo County water resources. The intent of the investigation was to improve the current understanding of subsurface mechanisms controlling recharge dynamics in a geologically complex aquifer system. In the Sandia Mountains, precipitation events are generally limited to snowfalls in winter months and monsoon rainfall in late summer. Monthly meteorological data from weather stations in the study area indicate that monsoon rainfall during July and August constitutes close to one-third of annual precipitation totals. Following precipitation and snowmelt events, daily ground-water level data show low-amplitude, long-duration peaks in hydrographs of wells north and west of the Tijeras Fault. Hydrographs of monthly and biannual water-level data from across the study area show seasonal variation and water-level fluctuations in excess of 30 ft during a period of below-average precipitation. Water level observations in 67 percent of wells showing drought-induced water-level declines rebounded to at or near predrought conditions within 6 months of return to normal climate conditions. Cross-correlation of annual hydrologic data shows aquifer response to periods of monsoon recharge to persist from 1 to 6 months following events. The lag time between precipitation input and response of water levels or solute concentrations was largest near the Tijeras and Gutierrez Faults. These results indicate regional faults hydrologically isolate the Tijeras Graben from groundwater recharge originating

  15. Global Precipitation Climatology Project (GPCP) - Pentad, Version 2.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products. The Version 2.2 Pentad product covers the period January 1979 to the present,...

  16. Global Precipitation Climatology Project (GPCP) - Daily, Version 1.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products. The Version 1.2 Daily product covers the period October 1998 to the present,...

  17. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    Science.gov (United States)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  18. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffry M.

    2015-01-01

    We evaluated the spatial and seasonal responses of precipitation in the Ganges and Brahmaputra basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) modes using Global Precipitation Climatology Centre (GPCC) full data reanalysis of monthly global land-surface precipitation data from 1901 to 2010 with a spatial resolution of 0.5° × 0.5°. The GPCC monthly total precipitation climatology targeting the period 1951–2000 was used to compute gridded monthly anomalies for the entire time period. The gridded monthly anomalies were averaged for the years influenced by combinations of climate modes. Occurrences of El Niño alone significantly reduce (88% of the long-term average (LTA)) precipitation during the monsoon months in the western and southeastern Ganges Basin. In contrast, occurrences of La Niña and co-occurrences of La Niña and negative IOD events significantly enhance (110 and 109% of LTA in the Ganges and Brahmaputra Basin, respectively) precipitation across both basins. When El Niño co-occurs with positive IOD events, the impacts of El Niño on the basins' precipitation diminishes. When there is no active ENSO or IOD events (occurring in 41 out of 110 years), precipitation remains below average (95% of LTA) in the agriculturally intensive areas of Haryana, Uttar Pradesh, Rajasthan, Madhya Pradesh, and Western Nepal in the Ganges Basin, whereas precipitation remains average to above average (104% of LTA) across the Brahmaputra Basin. This pattern implies that a regular water deficit is likely, especially in the Ganges Basin, with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Historically, major droughts occurred during El Niño and co-occurrences of El Niño and positive IOD events, while major flooding occurred during La Niña and co-occurrences of La Niña and negative IOD events in the basins. This observational analysis will facilitate well

  19. TARP Monthly Housing Scorecard

    Data.gov (United States)

    Department of the Treasury — Treasury and the U.S. Department of Housing and Urban Development (HUD) jointly produce a Monthly Housing Scorecard on the health of the nation’s housing market. The...

  20. Lightship Monthly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Weather Observations (Monthly Form 1001) from lightship stations in the United States. Please see the 'Surface Weather Observations (1001)' library for more...

  1. Oceanographic Monthly Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Monthly Summary contains sea surface temperature (SST) analyses on both regional and ocean basin scales for the Atlantic, Pacific, and Indian Oceans....

  2. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  3. Mercury in Precipitation in Indiana, January 2001-December 2003

    Science.gov (United States)

    Risch, Martin R.

    2007-01-01

    Mercury in precipitation was monitored during 2001 through 2003 at four locations in Indiana as part of the National Atmospheric Deposition Program-Mercury Deposition Network (NADP-MDN). Monitoring stations were operated at Roush Lake near Huntington, Clifty Falls State Park near Madison, Monroe County Regional Airport near Bloomington, and Indiana Dunes National Lakeshore near Porter. At these monitoring stations, precipitation amounts were measured and weekly samples were collected for analysis of total mercury and methylmercury by low-level methods. Wet deposition was computed with the total mercury and methylmercury concentrations and the precipitation amounts.

  4. Irrigation enhances precipitation at the mountains downwind

    Directory of Open Access Journals (Sweden)

    J. Jódar

    2010-05-01

    Full Text Available Atmospheric circulation models predict an irrigation-rainfall feedback. However, actual field evidences are very weak. We present strong field evidence about an increase in rainfall at the mountains located downwind of irrigated zones. We chose two regions, located in semiarid southern Spain, where irrigation started at a well defined date, and we analyzed rainfall statistics before and after the beginning of irrigation. Analyzed statistics include the variation of (1 mean rainfall Δ P, (2 ratio of monthly precipitation to annual precipitation Δ r, and (3 number of months with minimum rainfall episodes Δ Pmin after a transition period from unirrigated to irrigated conditions. All of them show statistically significant increases. Δ P and Δ r show larger and more statistically significant variations in June and July. Their variation is proportional to the mean annual water volume applied in the neighboring upwind irrigation lands. Variations in Δ Pmin are statistically significant in the whole summer. That is, the number of months with some rain displays a relevant increase after irrigation. However, increase in rainfall while statistically significant is distributed over a broad region, so that it is of little relevance from a water resources perspective. The joint increment in Δ P and Δ Pmin after the irrigation transition period denotes a net increase in the number of months having a minimum cumulated precipitation in summer.

  5. Spatial and temporal variability of precipitation and drought in Portugal

    Directory of Open Access Journals (Sweden)

    D. S. Martins

    2012-05-01

    Full Text Available The spatial variability of precipitation and drought are investigated for Portugal using monthly precipitation from 74 stations and minimum and maximum temperature from 27 stations, covering the common period of 1941–2006. Seasonal precipitation and the corresponding percentages in the year, as well as the precipitation concentration index (PCI, was computed for all 74 stations and then used as an input matrix for an R-mode principal component analysis to identify the precipitation patterns. The standardized precipitation index at 3 and 12 month time scales were computed for all stations, whereas the Palmer Drought Severity Index (PDSI and the modified PDSI for Mediterranean conditions (MedPDSI were computed for the stations with temperature data. The spatial patterns of drought over Portugal were identified by applying the S-mode principal component analysis coupled with varimax rotation to the drought indices matrices. The result revealed two distinct sub-regions in the country relative to both precipitation regimes and drought variability. The analysis of time variability of the PC scores of all drought indices allowed verifying that there is no linear trend indicating drought aggravation or decrease. In addition, the analysis shows that results for SPI-3, SPI-12, PDSI and MedPDSI are coherent among them.

  6. Trend analysis of precipitation in Jharkhand State, India - Investigating precipitation variability in Jharkhand State

    Science.gov (United States)

    Chandniha, Surendra Kumar; Meshram, Sarita Gajbhiye; Adamowski, Jan Franklin; Meshram, Chandrashekhar

    2016-08-01

    Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901-2011) from 18 meteorological stations. Autocorrelation and Mann-Kendall/modified Mann-Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt-Mann-Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901-2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901-1949, which was reversed during the subsequent period (1950-2011).

  7. Precipitation regime classification for the Mojave Desert: Implications for Fire Occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Tagestad, Jerry D.; Brooks, Matthew L.; Cullinan, Valerie I.; Downs, Janelle L.; McKinley, Randy

    2016-01-05

    Mojave Desert ecosystem processes are dependent upon the amount and seasonality of precipitation. Multi-decadal periods of drought or above-average rainfall affect landscape vegetation condition, biomass and susceptibility to fire. The seasonality of precipitation events can also affect the likelihood of lightning, a key ignition source for fires. To develop an understanding of precipitation regimes and fire patterns we used monthly average precipitation data and GIS data representing burned areas from 1971-2010. We applied a K-means cluster analysis to the monthly precipitation data identifying three distinct precipitation seasons; winter (October – March), spring (April-June) and summer (July-September) and four discrete precipitation regimes within the Mojave ecoregion.

  8. Monthly energy review, March 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Energy production during December 1997 totaled 5.9 quadrillion Btu, a 2.8 percent increase from the level of production during December 1996. Coal production increased 9.5 percent, natural gas production increased 3.9 percent, and production of crude oil and natural gas plant liquids decreased 1.1 percent. All other forms of energy production combined were down 6.9 percent from the level of production during December 1996.

  9. Spatio-temporal characteristics of precipitation and dryness/wetness in Yangtze River Delta, eastern China, during 1960-2012

    Science.gov (United States)

    Wang, Yuefeng; Xu, Youpeng; Lei, Chaogui; Li, Guang; Han, Longfei; Song, Song; Yang, Liu; Deng, Xiaojun

    2016-05-01

    Changes in precipitation have a large effect on human society and are a key factor in the study of the patterns of hydrological and meteorological variables. Based on daily precipitation records during 1960-2012 at 24 meteorological stations in the Yangtze River Delta (YRD), the spatial and temporal variations of six extreme precipitation indices were detected by the modified Mann-Kendall test. Then, the characteristics of dryness/wetness patterns were assessed by Standardized Precipitation Index (SPI) and principal component analysis (PCA) on a 24-month time scale. For precipitation extremes, most of the precipitation indices had increasing trends, especially the annual total precipitation in wet day (PRCPTOT), which showed a significant positive trend distributed mainly in the southern part of the YRD. In contrast, decreasing trends in consecutive dry days (CDD) were detected at most stations of the YRD, with more than 20% of the stations having negative trends that were statistically significant. Additionally, three dominant geographic sub-regions of dryness/wetness pattern were identified in YRD: the central and southern, northeastern, and northwestern areas of the YRD. With respect to temporal variations of dryness/wetness conditions in each sub-region, a long-term wet tendency in the central and southern area was characterized as being stronger than the tendency in other parts of the YRD over the past 53 years, which indicates that flood disaster may become increasingly serious in the area. Furthermore, a 4 to 8-year period of variation was observed for each sub-region. The results of this study suggest that adaptive water resource measures for future water resource management and water-related disaster reduction mitigation should be considered separately for these regions in the YRD.

  10. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: a hypothesis

    Science.gov (United States)

    Daley, T. J.; Mauquoy, D.; Chambers, F. M.

    2012-02-01

    Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation and δD and δ18O values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from Tierra del Fuego (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008. In both locations, δD and δ18O values have decreased in response to quite different trends in local surface air temperature and total precipitation amount. At Ushuaia, the fall in δ18O values is associated with an increase in the mean annual amount of precipitation. At Punta Arenas, the fall in δ18O values is weakly associated with decrease in the precipitation amount and an increase in local temperatures. The pattern in both records is consistent with an increase in the zonal intensity of the southern westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. There is currently insufficient availability of suitably temporally resolved data to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations. Furthermore, the records suggest synchroneity in millennial-scale oscillations between the Northern and Southern Hemispheres.

  11. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: a hypothesis

    Directory of Open Access Journals (Sweden)

    T. J. Daley

    2012-02-01

    Full Text Available Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation and δD and δ18O values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Data from two stations in the Global Network for Isotopes in Precipitation (GNIP from Tierra del Fuego (Punta Arenas, Chile and Ushuaia, Argentina were analysed for the period 1982 to 2008. In both locations, δD and δ18O values have decreased in response to quite different trends in local surface air temperature and total precipitation amount. At Ushuaia, the fall in δ18O values is associated with an increase in the mean annual amount of precipitation. At Punta Arenas, the fall in δ18O values is weakly associated with decrease in the precipitation amount and an increase in local temperatures. The pattern in both records is consistent with an increase in the zonal intensity of the southern westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. There is currently insufficient availability of suitably temporally resolved data to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations. Furthermore, the records suggest synchroneity in millennial-scale oscillations between the Northern and Southern Hemispheres.

  12. Sub-seasonal Predictability of Heavy Precipitation Events: Implication for Real-time Flood Management in Iran

    Science.gov (United States)

    Najafi, H.; Shahbazi, A.; Zohrabi, N.; Robertson, A. W.; Mofidi, A.; Massah Bavani, A. R.

    2016-12-01

    Each year, a number of high impact weather events occur worldwide. Since any level of predictability at sub-seasonal to seasonal timescale is highly beneficial to society, international efforts is now on progress to promote reliable Ensemble Prediction Systems for monthly forecasts within the WWRP/WCRP initiative (S2S) project and North American Multi Model Ensemble (NMME). For water resources managers in the face of extreme events, not only can reliable forecasts of high impact weather events prevent catastrophic losses caused by floods but also contribute to benefits gained from hydropower generation and water markets. The aim of this paper is to analyze the predictability of recent severe weather events over Iran. Two recent heavy precipitations are considered as an illustration to examine whether S2S forecasts can be used for developing flood alert systems especially where large cascade of dams are in operation. Both events have caused major damages to cities and infrastructures. The first severe precipitation was is in the early November 2015 when heavy precipitation (more than 50 mm) occurred in 2 days. More recently, up to 300 mm of precipitation is observed within less than a week in April 2016 causing a consequent flash flood. Over some stations, the observed precipitation was even more than the total annual mean precipitation. To analyze the predictive capability, ensemble forecasts from several operational centers including (European Centre for Medium-Range Weather Forecasts (ECMWF) system, Climate Forecast System Version 2 (CFSv2) and Chinese Meteorological Center (CMA) are evaluated. It has been observed that significant changes in precipitation anomalies were likely to be predicted days in advance. The next step will be to conduct thorough analysis based on comparing multi-model outputs over the full hindcast dataset developing real-time high impact weather prediction systems.

  13. Standardized precipitation index zones for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, L.; Soto, M. [Instituto de Ecologia, A.C., Xalapa, Veracruz (Mexico); Rutherford, B.M.; Maarouf, A. [Faculty of Environmental Studies, York University, Toronto, Ontario (Canada)

    2005-01-01

    Precipitation zone systems exists for Mexico based on seasonality, quantity of precipitation, climates and geographical divisions, but none are convenient for the study of the relation of precipitation with phenomena such as El nino. An empirical set of seven exclusively Mexican and six shared zones was derived from three series of Standardized Precipitation Index (SPI) images, from 1940 through 1989: a whole year series (SPI-12) of 582 monthly images, a six month series (SPI-6) of 50 images for winter months (November through April), and a six month series (SPI-6) of 50 images for summer months (May through October). By examination of principal component and unsupervised classification images, it was found that all three series had similar zones. A set of basic training fields chosen from the principal component images was used to classify all three series. The resulting thirteen zones, presented in this article, were found to be approximately similar, varying principally at zones edges. A set of simple zones defined by just a few vertices can be used for practical operations. In general the SPI zones are homogeneous, with almost no mixture of zones and few outliers of one zone in the area of others. They are compared with a previously published map of climatic regions. Potential applications for SPI zones are discussed. [Spanish] Existen varios sistemas de zonificacion de Mexico basados en la estacionalidad, cantidad de precipitacion, climas y divisiones geograficas, pero ninguno es conveniente para el estudio de la relacion de la precipitacion con fenomenos tales como El Nino. En este trabajo se presenta un conjunto de siete zonas empiricas exclusivamente mexicanas y seis compartidas, derivadas de tres series de imagenes de SPI (Indice Estandarizado de la Precipitacion), desde 1940 a 1989: una serie de 582 imagenes mensuales (SPI-12), una series de 50 imagenes (SPI-6) de meses de invierno (noviembre a abril), y otra de 50 imagenes (SPI-6) de meses de verano

  14. Estimating Total Discharge in the Yangtze River Basin Using Satellite-Based Observations

    Directory of Open Access Journals (Sweden)

    Samuel A. Andam‑Akorful

    2013-07-01

    Full Text Available The measurement of total basin discharge along coastal regions is necessary for understanding the hydrological and oceanographic issues related to the water and energy cycles. However, only the observed streamflow (gauge-based observation is used to estimate the total fluxes from the river basin to the ocean, neglecting the portion of discharge that infiltrates to underground and directly discharges into the ocean. Hence, the aim of this study is to assess the total discharge of the Yangtze River (Chang Jiang basin. In this study, we explore the potential response of total discharge to changes in precipitation (from the Tropical Rainfall Measuring Mission—TRMM, evaporation (from four versions of the Global Land Data Assimilation—GLDAS, namely, CLM, Mosaic, Noah and VIC, and water-storage changes (from the Gravity Recovery and Climate Experiment—GRACE by using the terrestrial water budget method. This method has been validated by comparison with the observed streamflow, and shows an agreement with a root mean square error (RMSE of 14.30 mm/month for GRACE-based discharge and 20.98 mm/month for that derived from precipitation minus evaporation (P − E. This improvement of approximately 32% indicates that monthly terrestrial water-storage changes, as estimated by GRACE, cannot be considered negligible over Yangtze basin. The results for the proposed method are more accurate than the results previously reported in the literature.

  15. The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation

    Science.gov (United States)

    Norris, Jesse; Carvalho, Leila M. V.; Jones, Charles; Cannon, Forest; Bookhagen, Bodo; Palazzi, Elisa; Tahir, Adnan Ahmad

    2017-09-01

    The Weather Research and Forecasting (WRF) model is used to simulate the spatiotemporal distribution of precipitation over central Asia over the year April 2005 through March 2006. Experiments are performed at 6.7 km horizontal grid spacing, with an emphasis on winter and summer precipitation over the Himalaya. The model and the Tropical Rainfall Measuring Mission show a similar inter-seasonal cycle of precipitation, from extratropical cyclones to monsoon precipitation, with agreement also in the diurnal cycle of monsoon precipitation. In winter months, WRF compares better in timeseries of daily precipitation to stations below than above 3-km elevation, likely due to inferior measurement of snow than rain by the stations, highlighting the need for reliable snowfall measurements at high elevations in winter. In summer months, the nocturnal precipitation cycle in the foothills and valleys of the Himalaya is captured by this 6.7-km WRF simulation, while coarser simulations with convective parameterization show near zero nocturnal precipitation. In winter months, higher resolution is less important, serving only to slightly increase precipitation magnitudes due to steeper slopes. However, even in the 6.7-km simulation, afternoon precipitation is overestimated at high elevations, which can be reduced by even higher-resolution (2.2-km) simulations. These results indicate that WRF provides skillful simulations of precipitation relevant for studies of water resources over the complex terrain in the Himalaya.

  16. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar-Radiometer Retrievals

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2006-01-01

    Precipitation estimation from satellite passive microwave radiometer observations is a problem that does not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem well posed, a priori information derived from physical models or independent, high-quality observations is incorporated into the solution. In the present study, a database of precipitation profiles and associated brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM) combined radar radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager (TMI) observed. Because the observed brightness temperatures are consistent with those derived from a radiative transfer model embedded in the combined algorithm, the precipitation brightness temperature database is considered to be physically consistent. The database examined here is derived from the analysis of a month-long record of TRMM data that yields more than a million profiles of precipitation and associated brightness temperatures. These profiles are clustered into a tractable number of classes based on the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond which the reflectivity drops below 17 dBZ), and brightness temperature principal components. For each class, the mean precipitation profile, brightness temperature principal components, and probability of occurrence are determined. The precipitation brightness temperature database supports a radiometer-only algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation estimates are weighted averages of the mean precipitation values corresponding to the classes in the database, with the weights being determined according to the similarity between the observed brightness temperature principal

  17. Climate change projections for winter precipitation over Tropical America using statistical downscaling

    Science.gov (United States)

    Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    In this study the Principal Component Regression (PCR) method has been used as statistical downscaling technique for simulating boreal winter precipitation in Tropical America during the period 1950-2010, and then for generating climate change projections for 2071-2100 period. The study uses the Global Precipitation Climatology Centre (GPCC, version 6) data set over the Tropical America region [30°N-30°S, 120°W-30°W] as predictand variable in the downscaling model. The mean monthly sea level pressure (SLP) from the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR reanalysis project), has been used as predictor variable, covering a more extended area [30°N-30°S, 180°W-30°W]. Also, the SLP outputs from 20 GCMs, taken from the Coupled Model Intercomparison Project (CMIP5) have been used. The model data include simulations with historical atmospheric concentrations and future projections for the representative concentration pathways RCP2.6, RCP4.5, and RCP8.5. The ability of the different GCMs to simulate the winter precipitation in the study area for present climate (1971-2000) was analyzed by calculating the differences between the simulated and observed precipitation values. Additionally, the statistical significance at 95% confidence level of these differences has been estimated by means of the bilateral rank sum test of Wilcoxon-Mann-Whitney. Finally, to project winter precipitation in the area for the period 2071-2100, the downscaling model, recalibrated for the total period 1950-2010, was applied to the SLP outputs of the GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show that, generally, for present climate the statistical downscaling shows a high ability to faithfully reproduce the precipitation field, while the simulations performed directly by using not downscaled outputs of GCMs strongly distort the precipitation field. For future climate, the projected predictions under the RCP4

  18. Kaolinite dissolution and precipitation kinetics at 22oC and pH4

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Steefel, Carl I.

    2007-07-16

    Dissolution and precipitation rates of low defect Georgia kaolinite (KGa-1b) as a function of Gibbs free energy of reaction (or reaction affinity) were measured at 22 C and pH 4 in continuously stirred flow through reactors. Steady state dissolution experiments showed slightly incongruent dissolution, with a Si/Al ratio of about 1.12 that is attributed to the re-adsorption of Al on to the kaolinite surface. No inhibition of the kaolinite dissolution rate was apparent when dissolved aluminum was varied from 0 and 60 {micro}M. The relationship between dissolution rates and the reaction affinity can be described well by a Transition State Theory (TST) rate formulation with a Temkin coefficient of 2 R{sub diss} (mol/m{sup 2}s) = 1.15 x 10{sup -13} [1-exp(-{Delta}G/2RT)]. Stopping of flow in a close to equilibrium dissolution experiment yielded at solubility constant for kaolinite at 22 C of 10{sup 7.57}. Experiments on the precipitation kinetics of kaolinite showed a more complex behavior. One conducted using kaolinite seed that had previously undergone extensive dissolution under far from equilibrium conditions for 5 months showed a quasi-steady state precipitation rate for 105 hours that was compatible with the TST expression above. After this initial period, however, precipitation rates decreased by an order of magnitude, and like other precipitation experiments conducted at higher supersaturation and without kaolinite seed subjected to extensive prior dissolution, could not be described with the TST law. The initial quasi-steady state rate is interpreted as growth on activated sites created by the dissolution process, but this reversible growth mechanism could not be maintained once these sites were filled. Long-term precipitation rates showed a linear dependence on solution saturation state that is generally consistent with a two dimensional nucleation growth mechanism following the equation R{sub ppt}(mol/m{sup 2}s) = 3.38 x 10{sup -14} exp[181776/T{sup 2}1n

  19. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  20. A global satellite-assisted precipitation climatology

    Science.gov (United States)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  1. A global satellite assisted precipitation climatology

    Directory of Open Access Journals (Sweden)

    C. Funk

    2015-05-01

    Full Text Available Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05° global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology

  2. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  3. Petroleum supply monthly, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-30

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures in the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month based on the Weekly Petroleum Supply Reporting System; statistics based on the most recent data from the Monthly Petroleum Supply Reporting System (MPSRS); and statistics published in prior issues of the PSM and PSA. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. In most cases, the statistics are presented for several geographic areas -- the United States (50 States and the District of Columbia), five PAD Districts, and 12 Refining Districts. At the US and PAD District level, the total volume and the daily rate of activities are presented. The statistics are developed from monthly survey forms submitted by respondents to the EIA and from data provided from other sources.

  4. Petroleum supply monthly, June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-28

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures ih the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month based on the Weekly Petroleum Supply Reporting System; statistics based on the most recent data from the Monthly Petroleum Supply Reporting System (MPSRS); and statistics published in prior issues of the PSM and PSA. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. In most cases, the statistics are presented for several geographic areas - - the United States (50 States and the District of Columbia), five PAD Districts, and 12 Refining Districts. At the US and PAD District level, the total volume and the daily rate of activities are presented. The statistics are developed from monthly survey forms submitted by respondents to the EIA and from data provided firom other sources.

  5. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  6. Monthly energy review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document presents an overview of the Energy Information Administration`s (EIA) recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors.

  7. Photos of the month

    CERN Multimedia

    Claudia Marcelloni de Oliveira

    Congratulations to Adele Rimoldi, ATLAS physicist from Pavia, who ran her first marathon in New York last month. Adele completed the 42.2 km in a time of 4:49:19. She sure makes it look easy!!! The ATLAS pixel service quarter panel in SR1

  8. Monthly Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-28

    This publication presents an overview of the Energy information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief ``energy plugs`` (reviews of EIA publications) are included, as well.

  9. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    Assimilating precipitation observations by modifying the moisture and sometimes temperature profiles has been shown successful in forcing the model precipitation to be close to the observed precipitation, but only while the assimilation is taking place. After the forecast start, the model tends to "forget" the assimilation changes and lose their extra skill after few forecast hours. This suggests that this approach is not an efficient way to modify the potential vorticity field, since this is the variable that the model would remember. In this study, the ensemble Kalman filter (EnKF) method is used to effectively change the potential vorticity field by allowing ensemble members with better precipitation to receive higher weights. In addition to using an EnKF, two other changes in the precipitation assimilation process are proposed to solve the problems related to the highly non-Gaussian nature of the precipitation variable: a) transform precipitation into a Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation at the location where some ensemble members have positive precipitation. The idea is first tested by the observing system simulation experiments (OSSEs) using SPEEDY, a simplified but realistic general circulation model. When the global precipitation is assimilated in addition to conventional rawinsonde observations, both the analyses and the medium range forecasts are significantly improved as compared to only having rawinsonde observations. The improvement is much reduced when only modifying the moisture field with the same approach, which shows the importance of the error covariance between precipitation and all other model variables. The effect of precipitation assimilation is larger in the Southern Hemisphere than that in the Northern Hemisphere because the Northern Hemisphere analyses are already accurate as a result of denser rawinsonde stations. Assimilation of precipitation using a more comprehensive

  10. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  11. New and Updated Gridded Analysis Products provided by the Global Precipitation Climatology Centre (GPCC)

    Science.gov (United States)

    Ziese, Markus; Schneider, Udo; Meyer-Christoffer, Anja; Finger, Peter; Schamm, Kirstin; Rustemeier, Elke; Becker, Andreas

    2016-04-01

    Since its start in 1989 the Global Precipitation Climatology Centre (GPCC) performs global analyses of monthly precipitation for the earth's land-surface on the basis of in-situ measurements. Meanwhile, the data set has continuously grown both in temporal coverage (original start of the evaluation period was 1986), as well as extent and quality of the underlying data base. The high spatio-temporal variability of precipitation requires an accordingly high density of measurement data. Data collected from national meteorological and hydrological services are the core of the GPCC data base, supported by global and regional data collections. Also the GPCC receives SYNOP and CLIMAT reports via WMO-GTS, which are mainly applied for near-real-time products. A high quality control effort is undertaken to remove miscoded and temporal or spatial dislocated data before entry into the GPCC archive, serving the basis for further interpolation and product generation. The GPCC archive holds records from almost 100 000 stations, among those three quarters with records long enough to serve the data basis of the GPCC suite of global precipitation products, comprising near-real-time as well as non-real-time products. Near-real-time products are the 'First Guess Monthly', 'First Guess Daily', 'Monitoring Product' and 'GPCC Drought Index'. These products are based on WMO-GTS data, e.g., SYNOP and CLIMAT reports and monthly totals calculated at CPC. Non-real-time products are the 'Full Data Monthly', 'Full Data Daily', 'Climatology', and 'HOMPRA-Europe'. Data from national meteorological and hydrological services and regional and global data collections are mainly used to calculate these products. Also WMO-GTS data are used if no other data are available. The majority of the products were released in an updated version, but 'Full Data Daily' and HOMPRA-Europe' are new products provided the first time. 'Full Data Daily' is a global analysis of daily precipitation totals from 1988 to 2013

  12. Does extreme precipitation intensity depend on the emissions scenario?

    Science.gov (United States)

    Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang

    2016-04-01

    The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.

  13. Uranium (III) precipitation in molten chloride by wet argon sparging

    Science.gov (United States)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  14. Your Child's Development: 9 Months

    Science.gov (United States)

    ... For Parents MORE ON THIS TOPIC Your Baby's Growth: 9 Months Your Baby's Hearing, Vision, and Other Senses: 9 Months Your Child's Checkup: 9 Months Medical Care and Your 8- to 12-Month-Old Feeding Your 8- to 12-Month-Old Sleep and Your 8- to 12-Month-Old Contact ...

  15. Precipitation variability assessment of northeast China: Songhua River basin

    Science.gov (United States)

    Khan, Muhammad Imran; Liu, Dong; Fu, Qiang; Azmat, Muhammad; Luo, Mingjie; Hu, Yuxiang; Zhang, Yongjia; Abrar, Faiz M.

    2016-07-01

    Variability in precipitation is critical for the management of water resources. In this study, the research entropy base concept was applied to investigate spatial and temporal variability of the precipitation during 1964-2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy was applied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainy days for each selected station. Intensity entropy and apportionment entropy were used to calculate the variability over individual year and decade, respectively. Subsequently, Spearman's Rho and Mann-Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sample disorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80), April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributed significantly higher than those of other months. Overall, the contribution of the winter season was considerably high with a standard deviation of 0.10. The precipitation variability on decade basis was observed to increase from decade 1964-1973 and 1994-2003 with a mean value of decadal apportionment disorder index 0.023 and 0.053, respectively. In addition, the Mann-Kendall test value (1.90) showed a significant positive trend only at the Shangzhi station.

  16. Spatio-temporal patterns of precipitation in Serbia

    Science.gov (United States)

    Gocic, Milan; Trajkovic, Slavisa

    2014-08-01

    The monthly precipitation data from 29 synoptic stations for the period 1946-2012 were analyzed using a number of different multivariate statistical analysis methods to investigate the spatial variability and temporal patterns of precipitation across Serbia. R-mode principal component analysis was used to study the spatial variability of the precipitation. Three distinct sub-regions were identified by applying the agglomerative hierarchical cluster analysis to the two component scores: C1 includes the north and the northeast part of Serbia, while C2 includes the western part of Central Serbia and southwestern part of Serbia and C3 includes central, east, south and southeast part of Serbia. The analysis of the identified sub-regions indicated that the monthly and seasonal precipitation in sub-region C2 had the values above average, while C1 and C3 had the precipitation values under average. The analysis of the linear trend of the mean annual precipitation showed an increasing trend for the stations located in Serbia and three sub-regions. From the result of this analysis, one can plan land use, water resources and agricultural production in the region.

  17. Rising Precipitation Extremes across Nepal

    Directory of Open Access Journals (Sweden)

    Ramchandra Karki

    2017-01-01

    Full Text Available As a mountainous country, Nepal is most susceptible to precipitation extremes and related hazards, including severe floods, landslides and droughts that cause huge losses of life and property, impact the Himalayan environment, and hinder the socioeconomic development of the country. Given that the countrywide assessment of such extremes is still lacking, we present a comprehensive picture of prevailing precipitation extremes observed across Nepal. First, we present the spatial distribution of daily extreme precipitation indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI from 210 stations over the period of 1981–2010. Then, we analyze the temporal changes in the computed extremes from 76 stations, featuring long-term continuous records for the period of 1970–2012, by applying a non-parametric Mann−Kendall test to identify the existence of a trend and Sen’s slope method to calculate the true magnitude of this trend. Further, the local trends in precipitation extremes have been tested for their field significance over the distinct physio-geographical regions of Nepal, such as the lowlands, middle mountains and hills and high mountains in the west (WL, WM and WH, respectively, and likewise, in central (CL, CM and CH and eastern (EL, EM and EH Nepal. Our results suggest that the spatial patterns of high-intensity precipitation extremes are quite different to that of annual or monsoonal precipitation. Lowlands (Terai and Siwaliks that feature relatively low precipitation and less wet days (rainy days are exposed to high-intensity precipitation extremes. Our trend analysis suggests that the pre-monsoonal precipitation is significantly increasing over the lowlands and CH, while monsoonal precipitation is increasing in WM and CH and decreasing in CM, CL and EL. On the other hand, post-monsoonal precipitation is significantly decreasing across all of Nepal while winter precipitation is decreasing

  18. Trace metals in bulk precipitation and throughfall in a suburban area of Japan

    Science.gov (United States)

    Hou, H.; Takamatsu, T.; Koshikawa, M. K.; Hosomi, M.

    Throughfall and bulk precipitation samples were collected monthly for 1.5 years over bare land and under canopies of Japanese cedar ( Cryptomeria japonica), Japanese red pine ( Pinus densiflora), Japanese cypress ( Chamaecyparis obtusa), and bamboo-leafed oak ( Quercus myrsinaefolia) in a suburban area of Japan. Samples were analyzed for dissolved Al, Mn, Fe, Cu, Zn, Ag, In, Sn, Sb and Bi by ICP-AES and ICP-MS. The metal concentrations were higher in throughfall, especially that of C. japonica, than bulk precipitation. Enrichment ratios (ERs: ratios of metal concentrations in throughfall to those in bulk precipitation) ranged from 2.5 (Zn) to 5.3 (Ag) (3.9 on average), and ERs for slightly soluble metals were generally higher than those for easily soluble metals. Concentrations of Mn, Fe, Cu, and Zn accounted for 99% of the total concentration of heavy metals in rainwater, whereas those of rare metals such as Ag, In, Sn, and Bi totaled <0.23%. Average concentrations of rare metals were 0.002 and 0.010 μg l -1 for Ag, 0.001 and 0.005 μg l -1 for In, 0.062 and 0.21 μg l -1 for Sn, and 0.006 and 0.023 μg l -1 for Bi in bulk precipitation and throughfall, respectively. The metal concentrations in rainwater were negatively correlated to the volume of rainwater, indicating that washout is the main mechanism that incorporates metals into rainwater. From the enrichment factors, that is, (X/Al) rain/(X/Al) crust, metals other than Fe were shown to be more enriched in rainwater than in the Earth's crust, including those present as a result of leaching from soil dust (Mn) and from anthropogenic sources (Cu, Zn, Ag, In, Sn, Sb, and Bi).

  19. Petroleum marketing monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Petroleum Marketing Monthly (PPM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o. b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

  20. Petroleum marketing monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

  1. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  2. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  3. Total Thyroidectomy

    Directory of Open Access Journals (Sweden)

    Lopez Moris E

    2016-06-01

    Full Text Available Total thyroidectomy is a surgery that removes all the thyroid tissue from the patient. The suspect of cancer in a thyroid nodule is the most frequent indication and it is presume when previous fine needle puncture is positive or a goiter has significant volume increase or symptomes. Less frequent indications are hyperthyroidism when it is refractory to treatment with Iodine 131 or it is contraindicated, and in cases of symptomatic thyroiditis. The thyroid gland has an important anatomic relation whith the inferior laryngeal nerve and the parathyroid glands, for this reason it is imperative to perform extremely meticulous dissection to recognize each one of these elements and ensure their preservation. It is also essential to maintain strict hemostasis, in order to avoid any postoperative bleeding that could lead to a suffocating neck hematoma, feared complication that represents a surgical emergency and endangers the patient’s life.It is essential to run a formal technique, without skipping steps, and maintain prudence and patience that should rule any surgical act.

  4. HOMPRA Europe - A gridded precipitation data set from European homogenized time series

    Science.gov (United States)

    Rustemeier, Elke; Kapala, Alice; Meyer-Christoffer, Anja; Finger, Peter; Schneider, Udo; Venema, Victor; Ziese, Markus; Simmer, Clemens; Becker, Andreas

    2017-04-01

    Reliable monitoring data are essential for robust analyses of climate variability and, in particular, long-term trends. In this regard, a gridded, homogenized data set of monthly precipitation totals - HOMPRA Europe (HOMogenized PRecipitation Analysis of European in-situ data)- is presented. The data base consists of 5373 homogenized monthly time series, a carefully selected subset held by the Global Precipitation Climatology Centre (GPCC). The chosen series cover the period 1951-2005 and contain less than 10% missing values. Due to the large number of data, an automatic algorithm had to be developed for the homogenization of these precipitation series. In principal, the algorithm is based on three steps: * Selection of overlapping station networks in the same precipitation regime, based on rank correlation and Ward's method of minimal variance. Since the underlying time series should be as homogeneous as possible, the station selection is carried out by deterministic first derivation in order to reduce artificial influences. * The natural variability and trends were temporally removed by means of highly correlated neighboring time series to detect artificial break-points in the annual totals. This ensures that only artificial changes can be detected. The method is based on the algorithm of Caussinus and Mestre (2004). * In the last step, the detected breaks are corrected monthly by means of a multiple linear regression (Mestre, 2003). Due to the automation of the homogenization, the validation of the algorithm is essential. Therefore, the method was tested on artificial data sets. Additionally the sensitivity of the method was tested by varying the neighborhood series. If available in digitized form, the station history was also used to search for systematic errors in the jump detection. Finally, the actual HOMPRA Europe product is produced by interpolation of the homogenized series onto a 1° grid using one of the interpolation schems operationally at GPCC

  5. Forecasting and Analysis of Monthly Rainfalls in Ardabil Province by Arima, Autoregrressive, and Winters Models

    Directory of Open Access Journals (Sweden)

    B. Salahi

    2017-01-01

    Full Text Available Introduction: Rainfall has the highest variability at time and place scale. Rainfall fluctuation in different geographical areas reveals the necessity of investigating this climate element and suitable models to forecast the rate of precipitation for regional planning. Ardabil province has always faced rainfall fluctuations and shortage of water supply. Precipitation is one of the most important features of the environment. The amount of precipitation over time and in different places is subject to large fluctuations which may be periodical. Studies show that, due to the certain complexities of rainfall, the models which used to predict future values will also need greater accuracy and less error. Among the forecasting models, Arima has more applications and it has replaced with other models. Materials and Methods: In this research, through order 2 Autoregrressive, Winters, and Arima models, monthly rainfalls of Ardabil synoptic station (representing Ardabil province for a 31-year period (1977-2007 were investigated. To assess the presence or absence of significant changes in mean precipitation of Ardabil synoptic station, rainfall of this station was divided into two periods: 1977-1993 and 1994-2010. T-test was used to statistically examine the difference between the two periods. After adjusting the data, descriptive statistics were applied. In order to model the total monthly precipitation of Ardabil synoptic station, Winters, Autoregressive, and Arima models were used. Among different models, the best options were chosen to predict the time series including the mean absolute deviation (MAD, the mean squared errors (MSE, root mean square errors (RMSE and mean absolute percentage errors (MAPE. In order to select the best model among the available options under investigation, the predicted value of the deviation of the actual value was utilized for the months of 2006-2010. Results and Discussion: Statistical characteristics of the total monthly

  6. Changes in the seasonality of precipitation over the contiguous USA

    Science.gov (United States)

    Pryor, S. C.; Schoof, J. T.

    2008-11-01

    Consequences of possible changes in annual total precipitation are dictated, in part, by the timing of precipitation events and changes therein. Herein, we investigated historical changes in precipitation seasonality over the US using observed station precipitation records to compute a standard seasonality index (SI) and the day of year on which certain percentiles of the annual total precipitation were achieved (percentile day of year). The mean SI from the majority of stations exhibited no difference in 1971-2000 relative to 30-year periods earlier in the century. However, analysis of the day of year on which certain percentiles of annual total precipitation were achieved indicated spatially coherent patterns of change. In some regions, the mean day of the year on which the 50th percentile of annual precipitation was achieved differed by 20-30 days between 1971-2000 and both 1911-1940 and 1941-1970. Output from the 10-Atmosphere-Ocean General Circulation Models (AOGCM) simulations of 1971-2000, 2046-2065, and 2081-2100 was used to determine whether AOGCMs are capable of representing the seasonal distribution of precipitation and to examine possible future changes. Many of the AOGCMs qualitatively captured spatial patterns of seasonality during 1971-2000, but there was considerable divergence between AOGCMs in terms of future changes. In both the west and southeast, 7 of 10 AOGCMs indicated later attainment of the 50th percentile accumulation in 2047-2065, implying a possible reversal of the twentieth-century tendency toward relative increases in precipitation receipt during winter and early spring over the southeast. However, this is also a region characterized by considerable interannual variability in the percentile day of year during the historical period.

  7. Precipitated iron. A limit on gettering efficacy in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fenning, D.P.; Hofstetter, J.; Bertoni, M.I.; Buonassisi, T. [Massachusetts Institute of Technology MIT, Cambridge, Massachusetts 02139 (United States); Coletti, G. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Lai, B. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Del Canizo, C. [Instituto de Energia Solar, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2013-01-31

    A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

  8. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  9. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  10. Impact on watershed resilience due to variation of precipitation

    Science.gov (United States)

    Kaur, H.; Kumar, P.

    2013-12-01

    This study presents the variation of magnitude of precipitation as well as its seasonal distribution in Minnesota River Basin. The motivation for the study is the sediment increment in Minnesota River. The human, external and climatic changes are affecting the dynamics of Minnesota River Basin, a 44,000 km2 agriculturally-dominated watershed in the upper Midwest. The fluctuations in anthropogenic or climatic factors can influence the dynamics of watershed. We are analyzing the variation in precipitation over 110 years from 1900-2010. The hydrologic daily data is obtained from 22 gages distributed across the Minnesota River Basin. In this study we are trying to understand the shifting precipitation patterns and increase in heavy rainfall events. Soil erosion is affected by the increase in frequency and intensity of precipitation events. The variation in precipitation pattern can be the factor responsible for sediment increment and can disturb the resilience of watershed. The precipitation is considered as the Dichotomous Markov Noise with its two values as the day with precipitation and without precipitation. The transition rates for precipitation from one value to another value are obtained for 11 decades throughout the period. The probability of occurrence of precipitation event is also compared for 11 decades. The outlier precipitation events are categorized into different months for each decade. The year is divided into four seasons and all the comparisons are made seasonal as well as yearly. The low dimensional catastrophic shift model of sediment dynamics will be framed. This model will show the increase rate in sediment depending on the environmental processes such as erosion, deposition or bio stabilization. Single or multiple stable states can be obtained with this catastrophic shift model. The precipitation will act as a Dichotomous Markov Noise in affecting the sediment dynamics. The switches between the stable states can be observed depending on the

  11. Winter precipitation types and icing at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, J.; Stewart, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences

    2005-07-01

    An understanding of the physics of winter precipitation formation mechanisms is important for the forecasting of winter storms and associated icing. Empirical techniques are generally used to account for many types of precipitation. This paper proposed a microphysics scheme able to predict liquid particles, solid particles and those with a mixture of solid and liquid particles within varying environmental conditions. A revised 1-D cloud model utilizing a double-moment microphysics scheme was presented. The basic physics of liquid and semi-liquid particles formation and their interaction with the environment were outlined. A detailed evolution of precipitation types and environmental conditions was examined using typical temperature profiles and a study of other atmospheric conditions. The double microphysics scheme predicted the total concentration and mixing of various hydrometeor categories which were divided into 2 different branches: frozen and liquid. Characteristics for the categories were presented. A comparison of temperature, moisture and precipitation profiles was presented, as well as a comparison of surface precipitation types. The relationship between sounding parameters and precipitation types was examined, and ranges of temperature and depth were outlined. The study showed that the occurrence of a particular precipitation type or combinations of types can be associated with a range of atmospheric profiles. Melting and refreezing parameters exhibited variations for the same precipitation types and their combinations were not produced within a single profile. It was concluded that profiles must be very precise to simulate certain combinations. 10 refs., 1 tab., 8 figs.

  12. Spatial patterns of global precipitation in the frequency domain

    Science.gov (United States)

    Denaxa, Demetra; Markonis, Yannis

    2016-04-01

    This study examines global precipitation patterns during 1901-2014 by using the monthly CRU TS3.23 land precipitation gridded dataset, the European historical reconstruction (1500-2000 AD) of Pauling et al. (2006), and the CMIP5 model outputs. In particular, spatial features of long-term precipitation are explored for each continent, using a novel peak-detection methodology of spectral analysis. This approach estimates the statistical significance of the spectral peaks based on the structure of the spectral continuum, as determined by the autocorrelation structure. To this end, the spatial variability of the lag-one autocorrelation coefficient for the annual time scale, as well as the Hurst coefficient, have been also estimated and a global overview of them is presented. Pauling, Andreas, et al. "Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation." Climate Dynamics 26.4 (2006): 387-405.

  13. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. If you're a research professional, academic, or student, you'll learn: nucleation theory, precipitate growth, calculation of interfacial energies. advanced techniques for technologically relevant multicomponent systems and complex thermo-mechanical treatments. numerical approaches using evolution equations and discrete particle size distribu...

  14. Encoding information into precipitation structures

    Science.gov (United States)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-12-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B- → C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

  15. Three-year monitoring of stable isotopes of precipitation at Concordia Station, East Antarctica

    Science.gov (United States)

    Stenni, Barbara; Scarchilli, Claudio; Masson-Delmotte, Valerie; Schlosser, Elisabeth; Ciardini, Virginia; Dreossi, Giuliano; Grigioni, Paolo; Bonazza, Mattia; Cagnati, Anselmo; Karlicek, Daniele; Risi, Camille; Udisti, Roberto; Valt, Mauro

    2016-10-01

    Past temperature reconstructions from Antarctic ice cores require a good quantification and understanding of the relationship between snow isotopic composition and 2 m air or inversion (condensation) temperature. Here, we focus on the French-Italian Concordia Station, central East Antarctic plateau, where the European Project for Ice Coring in Antarctica (EPICA) Dome C ice cores were drilled. We provide a multi-year record of daily precipitation types identified from crystal morphologies, daily precipitation amounts and isotopic composition. Our sampling period (2008-2010) encompasses a warmer year (2009, +1.2 °C with respect to 2 m air temperature long-term average 1996-2010), with larger total precipitation and snowfall amounts (14 and 76 % above sampling period average, respectively), and a colder and drier year (2010, -1.8 °C, 4 % below long-term and sampling period averages, respectively) with larger diamond dust amounts (49 % above sampling period average). Relationships between local meteorological data and precipitation isotopic composition are investigated at daily, monthly and inter-annual scale, and for the different types of precipitation. Water stable isotopes are more closely related to 2 m air temperature than to inversion temperature at all timescales (e.g. R2 = 0.63 and 0.44, respectively for daily values). The slope of the temporal relationship between daily δ18O and 2 m air temperature is approximately 2 times smaller (0.49 ‰ °C-1) than the average Antarctic spatial (0.8 ‰ °C-1) relationship initially used for the interpretation of EPICA Dome C records. In accordance with results from precipitation monitoring at Vostok and Dome F, deuterium excess is anti-correlated with δ18O at daily and monthly scales, reaching maximum values in winter. Hoar frost precipitation samples have a specific fingerprint with more depleted δ18O (about 5 ‰ below average) and higher deuterium excess (about 8 ‰ above average) values than other precipitation

  16. Precipitation of phenyl and phenoxypenicillin from solutions using ammonium sulfate.

    Science.gov (United States)

    Luengo, J M

    1985-09-01

    An easy, rapid, and available method for separating 6-aminopenicillanic acid (6-APA), benzylpenicillin (penicillin G), and other related molecules from aqueous solutions or complex industrial broths is described. A high concentration of ammonium sulphate induces partially or totally the precipitation of the penicillin present in the solutions, while 6-APA, phenylacetic, and phenoxyacetic acid always remain in the supernatant. The filtration through No. 4 Pyrex glass-fiber filter or Whatman 3MM paper permits the separation of the compounds present in the supernatant from the other ones precipitated. The precipitated product was identified, in all cases, as ammonium penicillin. This method is described here for the first time.

  17. PRECIPITATION-REGULATED STAR FORMATION IN GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Voit, G. Mark; O’Shea, Brian W.; Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Bryan, Greg L., E-mail: voit@pa.msu.edu [Department of Astronomy, Columbia University, New York, NY (United States)

    2015-07-20

    Galaxy growth depends critically on the interplay between radiative cooling of cosmic gas and the resulting energetic feedback that cooling triggers. This interplay has proven exceedingly difficult to model, even with large supercomputer simulations, because of its complexity. Nevertheless, real galaxies are observed to obey simple scaling relations among their primary observable characteristics. Here we show that a generic emergent property of the interplay between cooling and feedback can explain the observed scaling relationships between a galaxy's stellar mass, its total mass, and its chemical enrichment level, as well as the relationship between the average orbital velocity of its stars and the mass of its central black hole. These relationships naturally result from any feedback mechanism that strongly heats a galaxy's circumgalactic gas in response to precipitation of colder clouds out of that gas, because feedback then suspends the gas in a marginally precipitating state.

  18. Forecasting Monsoon Precipitation Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.

  19. Acidic precipitation at a site within the northeastern conurbation

    Science.gov (United States)

    Jay S. Jacobson; Laurence I. Heller; Paul Van Leuken

    1976-01-01

    Rain and snow were collected in plastic beakers either manually or with a Wong sampler during 58 precipitation events in 1974 at Yonkers, New York approximately 24 km north of the center of New York City. Determinations were made of total dissolved ionic species, free hydrogen ions, total hydrogen ions, sulfate, nitrate, chloride, and fluoride. Conductivity...

  20. Extreme Precipitation and High-Impact Landslides

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.

  1. Petroleum marketing monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data.

  2. Simulations of The Extreme Precipitation Event Enhanced by Sea Surface Temperature Anomaly over the Black Sea

    Science.gov (United States)

    Hakan Doǧan, Onur; Önol, Barış

    2016-04-01

    Istanbul Technical University, Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul, Turkey In this study, we examined the extreme precipitation case over the Eastern Black Sea region of Turkey by using regional climate model, RegCM4. The flood caused by excessive rain in August 26, 2010 killed 12 people and the landslides in Rize province have damaged many buildings. The station based two days total precipitation exceeds 200 mm. One of the usual suspects for this extreme event is positive anomaly of sea surface temperature (SST) over the Black Sea where the significant warming trend is clear in the last three decades. In August 2010, the monthly mean SST is higher than 3 °C with respect to the period of 1981-2010. We designed three sensitivity simulations with RegCM4 to define the effects of the Black Sea as a moisture source. The simulation domain with 10-km horizontal resolution covers all the countries bordering the Black Sea and simulation period is defined for entire August 2010. It is also noted that the spatial variability of the precipitation produced by the reference simulation (Sim-0) is consistent with the TRMM data. In terms of analysis of the sensitivity to SST, we forced the simulations by subtracting 1 °C (Sim-1), 2 °C (Sim-2) and 3 °C (Sim-3) from the ERA-Interim 6-hourly SST data (considering only the Black Sea). The sensitivity simulations indicate that daily total precipitation for all these simulations gradually decreased based on the reference simulation (Sim-0). 3-hourly maximum precipitation rates for Sim-0, Sim-1, Sim-2 and Sim-3 are 32, 25, 13 and 10.5 mm respectively over the hotspot region. Despite the fact that the simulations signal points out the same direction, degradation of the precipitation intensity does not indicate the same magnitude for all simulations. It is revealed that 2 °C (Sim-2) threshold is critical for SST sensitivity. We also calculated the humidity differences from the simulation and these

  3. Isotopic composition of precipitation in Ljubljana (Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Vreča

    2008-12-01

    Full Text Available The stable isotopic composition of hydrogen and oxygen (δ2H and δ18O and tritium activity (3H are monitored in monthly precipitation at Ljubljana since 1981. Here we present complete set of numerical data and the statistical analysis for period 1981–2006. Seasonal variations of δ2H and δ18O are observed and are typical for continental stations of the Northern Hemisphere. The weighted mean δ2H and δ18O values are –59 ‰ and –8.6 ‰, respectively.The orthogonal Local Meteoric Water Line is δ2H = (8.06 ± 0.08δ18O + (9.84 ± 0.71, and the temperature coefficient of δ18O is 0.29 ‰/°C. Deuterium excess weighted mean value is 9.5 ‰ and indicates the prevailing influence of the Atlantic air masses. Tritium activity in monthly precipitation shows also seasonal variations which are superposed to the decreasing trend of mean annual activity.

  4. Monthly Energy Review, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report presents an overview of recent monthly energy statistics. Energy production during November 1997 totaled 5.6 quadrillion Btu, a 0.3-percent decrease from the level of production during November 1996. Natural gas production increased 2.8 percent, production of crude oil and natural gas plant liquids decreased 1.7 percent, and coal production decreased 1.6 percent. All other forms of energy production combined were down 1.1 percent from the level of production during November 1996. Energy consumption during November 1997 totaled 7.5 quadrillion Btu, 0.1 percent above the level of consumption during November 1996. Consumption of natural gas increased 1.5 percent, consumption of coal fell 0.3 percent, while consumption of petroleum products decreased 0.2 percent. Consumption of all other forms of energy combined decreased 0.8 percent from the level 1 year earlier. Net imports of energy during November 1997 totaled 1.7 quadrillion Btu, 8.6 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 6.3 percent, and net imports of natural gas were up 1.2 percent. Net exports of coal fell 17.8 percent from the level in November 1996.

  5. Contemporary changes in precipitation extremes in Poland in comparison to changes in other parts of Baltic Sea Basin

    Science.gov (United States)

    Wibig, Joanna; Jędruszkiewicz, Joanna

    2015-04-01

    The aim of the paper is detection and attribution of changes in precipitation extremes in Poland on the ground of similar changes in the rest of Baltic Sea Basin. The indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) are computed for a number of stations from Poland and surrounding countries. Among them are: Monthly maximum 1-day precipitation (Rx1day), monthly maximum consecutive 5-day precipitation (Rx5day), pricipitation intensity index(RRw,) annual number of days with daily precipitation ≥ 10mm and ≥ 20mm (R10mm and R20mm), maximum length of dry spell (CDD), maximum length of wet spell (CWD), annual total from days when daily total is equal at least 95 percentile and 99 percentile calculated in reference period 1961-1990 from daily totals equal at leat 1 mm (R95pTOT and R99pTOT). The daily precipitation records from more than hundred stations from the period 1951-2012 were used. The changes in annual values and their variability are analysed. The regions of similar changes are distinguished both for Poland and for the whole Baltic Sea Region. In the second part of the paper the attribution of large scale mechanisms causing detected changes is planned. The set of possible large scale predictors is prepared. Among them are indices of atmospheric and oceanic circulation in the European-North Atlantic Region: the North Atlantic Oscillation index, The Scandinavian index, the East Atlantic index, and the Atlantic Multiannual Oscillation. Additionally the large scale fields of sea level pressure and humidity and temperature from low troposphere are used. The records of indices were taken from NCDC (http://www.cpc.ncep.noaa.gov/data/teledoc). The large scale fields data were taken from NCAR/NCEP Reanalysis. Among the methodologies used to detect the mechanisms of precipitation extreme changes are: correlation analysis, composites and Canonical Correlation Analysis. The work is supported by grant 2012/05/B/ST10/00945 founded by

  6. Analysis on the Precipitation Characteristics in the Rainy Season in Liupanshui City in Recent 50 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the variation rule of precipitation in the rainy season in Liupanshui City in recent 50 years. [Method] Based on the monthly precipitation data from three observatories (Liuzhi, Panxian and Shuicheng) of Liupanshui City from May to September during 1960-2009, the interannual, interdecadal variation and mutation characteristics of precipitation in the rainy season in Liupanshui City in recent 50 years were analyzed by using the linear tendency estimation, sliding T-tes...

  7. Zoning vulnerability of climate change in variation of amount and trend of precipitation - Case Study: Great Khorasan province

    Science.gov (United States)

    Modiri, Ehsan; Modiri, Sadegh

    2015-04-01

    Climatic hazards have complex nature that many of them are beyond human control. Earth's climate is constantly fluctuating and trying to balance itself. More than 75% of Iran has arid and semi-arid climate thus assessment of climate change induced threats and vulnerabilities is essential. In order to investigate the reason for the changes in amount and trend of precipitation parameter, 17 synoptic stations have been selected in the interval of the establishment time of the station until 2013. These stations are located in three regions: Northern, Razavi and Southern Khorasan. For quality control of data in Monthly, quarterly and annual total precipitation of data were tested and checked by run test. Then probable trends in each of the areas was assessed by Kendall-tau test. Total annual precipitation of each station is the important factor that increase the sensitivity of vulnerability in the area with low rainfall. Annual amount of precipitation moving from north to south has been declining, though in different fields that they have different geomorphologic characteristics controversies occur. But clearly can be observed average of precipitation decline with decreasing latitude. There were positive trends in the annual precipitation in 6 stations, negative trends in 10 stations, as well as one station, has no trend. The remarkable notice is that all stations have a positive trend were in the northern region in the case study. These stations had been in ranging from none to Moderate classification of threats and vulnerability. After the initialization parameters to classify levels of risks and vulnerability, the two measures of mean annual precipitation and the trends of this fluctuation were combined together. This classification was created in five level for stations. Accordingly Golmakan, Ghochan, Torbate heydarieh, Bojnord and Mashhad were in none threat level. Khoor of Birjand and Boshruyeh have had complete stage of the threat level and had the greatest

  8. Extreme precipitation patterns reduced terrestrial ecosystem production across biomes

    Science.gov (United States)

    Zhang, Y.; Moran, S. M.; Nearing, M.; Ponce Campos, G. E.; Huete, A. R.; Buda, A. R.; Bosch, D. D.; Gunter, S. A.; Kitchen, S. G.; McNab, W.; Morgan, J. A.; McClaran, M. P.; Montoya, D. S.; Peters, D. P.; Starks, P. J.

    2012-12-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of novel climatic conditions on aboveground net primary production (ANPP) by combining a greenness index from satellite measurements and climatic records during 2000 to 2009 from 11 long-term experimental sites in multiple biomes and climates. Results showed that extreme precipitation patterns decreased the sensitivity of ANPP to total annual precipitation (PT), at the regional and decadal scales, leading to a mean 20% decrease in rain-use efficiency across biomes. Relative decreases in ANPP were greatest for arid grassland (16%) and Mediterranean forest (20%), and less for mesic grassland and temperate forest (3%). The co-occurrence of more heavy rainfall events and longer dry intervals caused greater water stress that resulted in reduced vegetation production. A new generalized model was developed to improve predictions of the ANPP response to changes in extreme precipitation patterns by using a function of both PT and an index of precipitation extremes. These findings suggest that extreme precipitation patterns have more substantial and complex effects on vegetation production across biomes, and are as important as total annual precipitation in understanding vegetation processes. With predictions of more extreme weather events, forecasts of ecosystem production should consider these non-linear responses to altered precipitation patterns associated with climate change. Figure. Relation of production across precipitation gradients for 11 sites for two groups (Low: R95p% definitions. The relations were significantly different for the two groups (F2, 106 = 18.51, P < 0.0001).

  9. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2017-03-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  10. Large-scale climatic control on European precipitation

    Science.gov (United States)

    Lavers, David; Prudhomme, Christel; Hannah, David

    2010-05-01

    Precipitation variability has a significant impact on society. Sectors such as agriculture and water resources management are reliant on predictable and reliable precipitation supply with extreme variability having potentially adverse socio-economic impacts. Therefore, understanding the climate drivers of precipitation is of human relevance. This research examines the strength, location and seasonality of links between precipitation and large-scale Mean Sea Level Pressure (MSLP) fields across Europe. In particular, we aim to evaluate whether European precipitation is correlated with the same atmospheric circulation patterns or if there is a strong spatial and/or seasonal variation in the strength and location of centres of correlations. The work exploits time series of gridded ERA-40 MSLP on a 2.5˚×2.5˚ grid (0˚N-90˚N and 90˚W-90˚E) and gridded European precipitation from the Ensemble project on a 0.5°×0.5° grid (36.25˚N-74.25˚N and 10.25˚W-24.75˚E). Monthly Spearman rank correlation analysis was performed between MSLP and precipitation. During winter, a significant MSLP-precipitation correlation dipole pattern exists across Europe. Strong negative (positive) correlation located near the Icelandic Low and positive (negative) correlation near the Azores High pressure centres are found in northern (southern) Europe. These correlation dipoles resemble the structure of the North Atlantic Oscillation (NAO). The reversal in the correlation dipole patterns occurs at the latitude of central France, with regions to the north (British Isles, northern France, Scandinavia) having a positive relationship with the NAO, and regions to the south (Italy, Portugal, southern France, Spain) exhibiting a negative relationship with the NAO. In the lee of mountain ranges of eastern Britain and central Sweden, correlation with North Atlantic MSLP is reduced, reflecting a reduced influence of westerly flow on precipitation generation as the mountains act as a barrier to moist

  11. Impact of moisture source regions on the isotopic composition of precipitation events at high-mountain continental site Kasprowy Wierch, southern Poland

    Science.gov (United States)

    Rozanski, Kazimierz; Chmura, Lukasz; Dulinski, Marek

    2016-04-01

    Five-year record of deuterium and oxygen-18 isotope composition of precipitation events collected on top of the Kasprowy Wierch mountain (49° 14'N, 19° 59'E, 1989 m a.s.l.) located in north-western High Tatra mountain ridge, southern Poland, is presented and discussed. In total 670 precipitation samples have been collected and analysed. Stable isotope composition of the analysed precipitation events varied in a wide range, from -2.9 to -26.6‰ for δ18O and from -7 to -195 ‰ for δ2H. The local meteoric water line (LMWL) defined by single events data (δ2H=(7.86±0.05)δ18O+(12.9±0.6) deviate significantly from the analogous line defined by monthly composite precipitation data available for IAEA/GNIP station Krakow-Balice (50o04'N, 19o55'E, 220 m a.s.l.), located ca. 100 km north of Kasprowy Wierch ((δ2H=(7.82±0.11)δ18O+(6.9±1.1). While slopes of those two LMWLs are statistically indistinguishable, the intercept of Kasprowy Wierch line is almost two times higher that that characterizing Krakow monthly precipitation. This is well-documented effect associated with much higher elevation of Kasprowy Wierch sampling site when compared to Krakow. The isotope data for Kasprowy Wierch correlate significantly with air temperature, with the slope of the regression line being equal 0.35±0.02 ‰oC for δ18O, whereas no significant correlation with precipitation amount could be established. The impact of moisture source regions on the isotopic composition of precipitation events collected at Kasprowy Wierch site was analysed using HYSPLITE back trajectory model. Five-days back trajectories were calculated for all analysed precipitation events and seasonal maps of trajectory distribution were produced. They illustrate changes in the prevailing transport patterns of air masses bringing precipitation to the sampling site. Back trajectories for the events yielding extreme isotopic composition of precipitation collected at Kasprowy Wierch were analyzed in detail

  12. P Division monthly report, January 1950

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.P.

    1950-02-06

    This progress report discusses the activities of the P Division for the month of January 1950. The B, D, F and H pilan operated throughout the month except for outages listed under Area Activities. Power levels were as follow: B pile -- 275 megawatts (MW) D pile -- 305 MW, F pile -- 275 MW increased to 305 MW during the month, and H pile -- 275 MW increased to 330 MW during the month. The piles operated with a time operated'' efficiency of 88.8%. A total of 53.07 tons of metal at an average of 91.2% of the current goal concentration was discharged from the piles during the month. A new record canning yield of 93.9% for 4 inch canned slugs was established during January.

  13. Investigating Satellite Microwave observations of Precipitation in Different Climate Regimes

    Science.gov (United States)

    Wang, N.; Ferraro, R. R.

    2013-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperature characteristics similar to precipitation Ongoing work by GPM microwave radiometer team is constructing databases through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The original data sets will focus on stratification by emissivity class, surface temperature and total perceptible water. We'll perform sensitivity studies to determine the potential role of ancillary data (e.g., land surface temperature, snow cover/water equivalent, etc.) to improve precipitation estimation over land in different climate regimes, including rain and snow. In other words, what information outside of the radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.

  14. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

    Directory of Open Access Journals (Sweden)

    Tarendra Lakhankar

    2013-08-01

    Full Text Available Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM 3B-43 precipitation product exhibits little mean bias and reasonable skill in giving precipitation over Nepal. Compared to station observations, the TRMM precipitation product showed an overall Nash-Sutcliffe efficiency of 0.49, which is similar to the skill of the gridded station-based product Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE. The other satellite precipitation products considered (Global Satellite Mapping of Precipitation (GSMaP, the Climate Prediction Center Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS were less skillful, as judged by Nash-Sutcliffe efficiency, and, on average, substantially underestimated precipitation compared to station observations, despite their, in some cases, higher nominal spatial resolution compared to TRMM. None of the products fully captured the dependence of mean precipitation on elevation seen in the station observations. Overall, the TRMM product is promising for use in water resources applications.

  15. Dissolved organic carbon and nitrogen in precipitation, throughfall and stemflow from Schima superba and Cunninghamia lanceolata plantations in subtropical China

    Institute of Scientific and Technical Information of China (English)

    GUO Jian-fen; YANG Yu-sheng; CHEN Guang-shui; LIN Peng

    2005-01-01

    Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two plantations of Schima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3--N, NH4+-N and total dissolved N (TDN). DON was calculated by subtracting NO3--N and NH4+-N from TDN. The results showed that the precipitation had a mean DOC concentration of 1.7 mg·L-1 and DON concentration of 0.13 mg·L-1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L-1 in the SS and 10.3 and 0.19 mg·L-1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L-1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L-1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipitation tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September-November period.

  16. Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes

    Directory of Open Access Journals (Sweden)

    N. F. Sidiropoulos

    2011-07-01

    Full Text Available We examined (peak-to-background flux ratio p/b > 20 energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km. Our statistical analysis of measurements during two 6-month periods suggests that: (a the powerful transmitter NWC causes the strongest effects on the inner radiation belts in comparison with other ground-based VLF transmitters, (b the NWC transmitter was responsible for only ~1.5 % of total electron bursts examined during the 6-month period (1 July 2008 to 31 December 2008, (c VLF transmitter-related electron bursts are accompanied by the presence of a narrow band emission centered at the radiating frequency emission, whereas the earthquake-related electron bursts are accompanied by the presence of broadband emissions from a few kHz to >20 KHz, (d daytime events are less preferable than nighttime events, but this asymmetry was found to be less evident when the powerful transmitter NWC was turned off and (d seismic activity most probably dominated the electromagnetic interactions producing the electron precipitation at middle latitudes. The results of this study support the proposal that the detection of radiation belt electron precipitation, besides other kinds of studies, is a useful tool for earthquake prediction research.

  17. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional

  18. beta-caroteno, ácido ascórbico e antocianinas totais em polpa de frutos de aceroleira conservada por congelamento durante 12 meses beta-carotene, ascorbic acid and total antocyanins in fruit pulp of the acerola tree conserved by the cold for 12 months

    Directory of Open Access Journals (Sweden)

    Paolo Germanno Lima de Araújo

    2007-03-01

    Processamento de Frutos da Embrapa Agroindústria Tropical, unpulped, the pulp was storaged in polietilin bags (100 g, frozen, kept in a freezer at -20 °C, and evaluated every 30 days for 12 months. The experiment was carried out with experimental delineament totally casualized in a factorial scheme 6 x 13 (clones x time, with 3 repetitions. The concentration of beta-carotene in the Cereja clone was stable, while the other ones were decreased during the whole time of the experiment. There was a small decrease in the ascorbic acid level in all the clones in the study during the storage, probably due to the high acidity of the pulp, which helps maintain its nutrient. The total anthocyanins level were stable in the Frutacor and Sertaneja clones, however, it decreased in the other ones. The II 47/1 clone was, among all the studied clones, the one that presented the highest levels of ascorbic acid C and total anthocyanins, keeping these characteristics during the whole storage. In conclusion, the clones that presented the lowest level of beta-carotene, showed the highest concentrations of total anthocyanins.

  19. Atrial Ectopics Precipitating Atrial Fibrillation

    OpenAIRE

    Johnson Francis

    2015-01-01

    Holter monitor tracing showing blocked atrial ectopics and atrial ectopic precipitating atrial fibrillation is being demonstrated. Initially it was coarse atrial fibrillation, which rapidly degenerated into fine atrial fibrillation.

  20. Hourly and Daily Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Precipitation reports submitted on many form types, including tabular and autographic charts. Reports are almost exclusively from the US Cooperative Observer Network.

  1. Stable isotopes in water vapor and precipitation for a coastal lagoon at mid latitudes

    Science.gov (United States)

    Zannoni, Daniele; Bergamasco, Andrea; Dreossi, Giuliano; Rampazzo, Giancarlo; Stenni, Barbara

    2016-04-01

    ) show differences in terms of δ18O up to 3‰. Isotopic ratios in rain events and water vapor are in fact dominated by a seasonal component but outliers are clearly linked to air parcel origin. The monthly measurements of δD and δ18O in precipitation of August 2015, for instance, are lower than in colder months, considering monthly average temperatures. Single rain events show a small sequence of precipitation, that leads to 40% of total precipitation of August, which lowers δ-values considerably. The sampling on event basis during occasional and discontinuous rain also allows to identify the rainout effect, which leads to lightening water during a rainfall. Statistics based on back trajectories (48 hours) show that the major part of air parcels travels across central Europe and derives from sources located in the north Atlantic, whereas, a smaller fraction of the water vapor can be attributed to Mediterranean sources.

  2. Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps

    Science.gov (United States)

    Chen, Min; Bica, Benedikt; Tüchler, Lukas; Kann, Alexander; Wang, Yong

    2017-07-01

    This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.

  3. Precipitation variability assessment of northeast China: Songhua River basin

    Indian Academy of Sciences (India)

    Muhammad Imran Khan; Dong Liu; Qiang Fu; Muhammad Azmat; Mingjie Luo; Yuxiang Hu; Yongjia Zhang; Faiz M Abrar

    2016-07-01

    Variability in precipitation is critical for the management of water resources. In this study, the researchentropy base concept was applied to investigate spatial and temporal variability of the precipitationduring 1964–2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy wasapplied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainydays for each selected station. Intensity entropy and apportionment entropy were used to calculate thevariability over individual year and decade, respectively. Subsequently, Spearman’s Rho and Mann–Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sampledisorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80),April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributedsignificantly higher than those of other months. Overall, the contribution of the winter season wasconsiderably high with a standard deviation of 0.10. The precipitation variability on decade basis wasobserved to increase from decade 1964–1973 and 1994–2003 with a mean value of decadal apportionmentdisorder index 0.023 and 0.053, respectively. In addition, the Mann–Kendall test value (1.90) showed asignificant positive trend only at the Shangzhi station.

  4. Spatial-temporal variation of precipitation concentration and structure in the Wei River Basin, China

    Science.gov (United States)

    Huang, Shengzhi; Huang, Qiang; Chen, Yutong; Xing, Li; Leng, Guoyong

    2016-07-01

    It is of significant importance to investigate precipitation structure and precipitation concentration due to their great impact on droughts, floods, soil erosion, as well as water resources management. A complete investigation of precipitation structure and its distribution pattern in the Wei River Basin was performed based on recorded daily precipitation data in this study. Two indicators were used: concentration index based on daily precipitation (CID), to assess the distribution of rainy days, and concentration index based on monthly precipitation (CIM), to estimate the seasonality of the precipitation. Besides, the modified Mann-Kendall trend test method was employed to capture the variation trends of CID and CIM. The results indicate that: (1) the 1-3-day events are the predominant precipitation events in terms of the occurrence and fractional contribution; (2) the obvious differences in the CID of various areas are found in the Wei River Basin, and the high CID values mainly concentrate in the northern basin, conversely, the southern basin has a relatively low CID value; (3) high CIM values are primarily in the western and northern basin, reflecting a remarkable seasonality of precipitation in these regions; and (4) all of the stations show a downward trend of CIM, which indicates that the monthly precipitation distribution tends to be more uniform.

  5. Annual and interannual variation of precipitation over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Prasad, T.G.

    /month, and the lowest amplitudes are found in the western Indian Ocean, especially off the Arabian and east African coasts. The INSAT and GEOS Precipitation Index (GPI) rainfall estimates correlated reasonably well with the island rainfall data, with correlation...

  6. GPM, METOP-A, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  7. GPM, F17,GMI,SSMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  8. GPM, METOP-B, GMI,MHS Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  9. GPM, METOP-A, GMI,MHS Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  10. GPM, TRMM, GMI,TMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  11. GPM, NOAA19, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  12. GPM, F17,GMI,SSMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  13. GPM, F18,GMI,SSMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  14. GPM, NOAA19, GMI,MHS Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  15. GPM, TRMM, GMI,TMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  16. GPM, F16,GMI,SSMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  17. GPM, NOAA18, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  18. GPM, F18,GMI,SSMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  19. GPM, NOAA18, GMI,MHS Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  20. GPM, F16,GMI,SSMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  1. GPM, METOP-B, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  2. Uranium (III) precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, Jean-François, E-mail: jean-francois.vigier@ec.europa.eu [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, Annabelle [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Renard, Catherine [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Miguirditchian, Manuel [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, Francis [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2016-06-15

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl{sub 2} (30–70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10{sup −4.0}, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl{sub 3} precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO{sub 2} powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation. - Highlights: • Precipitation of Uranium (III) is quantitative in molten salt LiCl-CaCl{sub 2} (30–70 mol%). • The salt is oxoacid with a water dissociation constant of 10{sup −4.0} at 705 °C. • Volatility of uranium chloride is strongly reduced in reductive conditions. • Coprecipitation of U(III) and Nd(III) leads to a consecutive precipitation of the two elements.

  3. Extreme precipitation events in the Czech Republic in the context of climate change

    Directory of Open Access Journals (Sweden)

    V. Květoň

    2008-04-01

    Full Text Available As an introduction, short survey of two analyses of long-term fluctuations of annual precipitation totals in the Czech Republic is presented. The main focus of this paper is to contribute to investigation of precipitation trends in the Czech Republic by another point of view. For every pixel of 1 km2 size, annual maxima of daily precipitation were obtained for time period of 112 years (1895–2006. Based on these time series, we were trying to answer question if there are some changes of area size/distribution of annual maximum of daily precipitation totals. Courses and trends are analyzed for some parameters of area distribution of annual maximum of daily precipitation totals in the area of the Czech Republic. No significant climate changes of tested precipitation characteristics were found.

  4. Petroleum supply monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blends, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

  5. Petroleum Supply Monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  6. COSMIC monthly progress report

    Science.gov (United States)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of May 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Nine articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) WFI - Windowing System for Test and Simulation; (2) HZETRN - A Free Space Radiation Transport and Shielding Program; (3) COMGEN-BEM - Composite Model Generation-Boundary Element Method; (4) IDDS - Interactive Data Display System; (5) CET93/PC - Chemical Equilibrium with Transport Properties, 1993; (6) SDVIC - Sub-pixel Digital Video Image Correlation; (7) TRASYS - Thermal Radiation Analyzer System (HP9000 Series 700/800 Version without NASADIG); (8) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (VAX VMS Version); and (9) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (UNIX Version). Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  7. Decadal changes in extreme daily precipitation in Greece

    Directory of Open Access Journals (Sweden)

    P. T. Nastos

    2008-04-01

    Full Text Available The changes in daily precipitation totals in Greece, during the 45-year period (1957–2001 are examined. The precipitation datasets concern daily totals recorded at 21 surface meteorological stations of the Hellenic National Meteorological Service, which are uniformly distributed over the Greek region. First and foremost, the application of Factor Analysis resulted in grouping the meteorological stations with similar variation in time. The main sub groups represent the northern, southern, western, eastern and central regions of Greece with common precipitation characteristics. For representative stations of the extracted sub groups we estimated the trends and the time variability for the number of days (% exceeding 30 mm (equal to the 95% percentile of daily precipitation for eastern and western regions and equal to the 97.5% percentile for the rest of the country and 50 mm which is the threshold for very extreme and rare events. Furthermore, the scale and shape parameters of the well fitted gamma distribution to the daily precipitation data with respect to the whole examined period and to the 10-year sub periods reveal the changes in the intensity of the precipitation.

  8. Nonparametric temporal downscaling with event-based population generating algorithm for RCM daily precipitation to hourly: Model development and performance evaluation

    Science.gov (United States)

    Lee, Taesam; Park, Taewoong

    2017-04-01

    It is critical to downscale temporally coarse GCM or RCM outputs (e.g., monthly or daily) to fine time scales, such as sub-daily or hourly. Recently, a temporal downscaling model employing a nonparametric framework (NTD) with k-nearest resampling and a genetic algorithm has been developed to preserve key statistics as well as the diurnal cycle. However, this model's usage can be limited in estimating precipitation for design storms or floods because the key statistics of annual maximum precipitation (AMP), especially for longer hourly durations, present a systematic bias that cannot be preserved due to the discontinuity of multiday consecutive precipitation events in the downscaling procedure. In the current study, we develop an approach to downscale a consecutive daily precipitation at once focusing on the reproduction of AMP totals for different durations instead of day-by-day downscaling. The proposed model has been verified with the precipitation datasets for the 60 stations across South Korea over the period 1979-2005. Additionally, two validation studies were performed with the recent datasets of 2006-2014 and nearest neighbor stations. The verification and the two validation tests conclude that the population-based NTD (PNTD) model proposed in the current study is superior to the existing NTD model in preserving the key statistics of the observed AMP series and suitable for downscaling future climate scenarios.

  9. Creating a global sub-daily precipitation dataset

    Science.gov (United States)

    Lewis, Elizabeth; Blenkinsop, Stephen; Fowler, Hayley

    2016-04-01

    Extremes of precipitation can cause flooding and droughts which can lead to substantial damages to infrastructure and ecosystems and can result in loss of life. It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. The first step towards achieving this is to construct a new global sub-daily precipitation dataset. Data collection is ongoing and already covers North America, Europe, Asia and Australasia. Comprehensive, open source quality control software is being developed to set a new standard for verifying sub-daily precipitation data and a set of global hydroclimatic indices will be produced based upon stakeholder recommendations. This will provide a unique global data resource on sub-daily precipitation whose derived indices, e.g. monthly/annual maxima, will be freely available to the wider scientific community.

  10. Creating a global sub-daily precipitation dataset

    Science.gov (United States)

    Lewis, Elizabeth; Blenkinsop, Stephen; Fowler, Hayley

    2017-04-01

    Extremes of precipitation can cause flooding and droughts which can lead to substantial damages to infrastructure and ecosystems and can result in loss of life. It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. The first step towards achieving this is to construct a new global sub-daily precipitation dataset. Data collection is ongoing and already covers North America, Europe, Asia and Australasia. Comprehensive, open source quality control software is being developed to set a new standard for verifying sub-daily precipitation data and a set of global hydroclimatic indices will be produced based upon stakeholder recommendations. This will provide a unique global data resource on sub-daily precipitation whose derived indices, e.g. monthly/annual maxima, will be freely available to the wider scientific community.

  11. Liesegang patterns: Complex formation of precipitate in an electric field

    Indian Academy of Sciences (India)

    István Lagzi

    2005-02-01

    Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald’s supersaturation model reported by Büki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of the first and the last bands () measured from the junction point of the outer and the inner electrolytes can be described by the function = 1 $_{}^{1/2}$ + 2 + 3 , where is the time elapsed until the nth band formation, 1, 2 and 3 are constants. The variation of the total number of bands with different electric field strengths () has a maximum. For higher one can observe a moving precipitation zone that becomes wider due to precipitation and reversible complex formation.

  12. Chemical Data for Precipitate Samples

    Science.gov (United States)

    Foster, Andrea L.; Koski, Randolph A.

    2008-01-01

    During studies of sulfide oxidation in coastal areas of Prince William Sound in 2005, precipitate samples were collected from onshore and intertidal locations near the Ellamar, Threeman, and Beatson mine sites (chapter A, fig. 1; table 7). The precipitates include jarosite and amorphous Fe oxyhydroxide from Ellamar, amorphous Fe oxyhydroxide from Threeman, and amorphous Fe oxyhydroxide, ferrihydrite, and schwertmannite from Beatson. Precipitates occurring in the form of loose, flocculant coatings were harvested using a syringe and concentrated in the field by repetitive decanting. Thicker accumulations were either scraped gently from rocks using a stainless steel spatula or were scooped directly into receptacles (polyethylene jars or plastic heavy-duty zippered bags). Most precipitate samples contain small amounts of sedimentary detritus. With three jarosite-bearing samples from Ellamar, an attempt was made to separate the precipitate from the heavy-mineral fraction of the sediment. In this procedure, the sample was stirred in a graduated cylinder containing deionized water. The jarosite-rich suspension was decanted onto analytical filter paper and air dried before analysis. Eleven precipitate samples from the three mine sites were analyzed in laboratories of the U.S. Geological Survey (USGS) in Denver, Colorado (table 8). Major and trace elements were determined by inductively coupled plasma-mass spectrometry following multiacid (HCl-HNO3-HClO4-HF) digestion (Briggs and Meier, 2002), except for mercury, which was analyzed by cold-vapor atomic absorption spectroscopy (Brown and others, 2002a). X-ray diffraction (XRD) analyses were performed on powdered samples (<200 mesh) by S. Sutley of the USGS. Additional details regarding sample preparation and detection limits are found in Taggert (2002). Discussions of the precipitate chemistry and associated microbial communities are presented in Koski and others (2008) and Foster and others (2008), respectively.

  13. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer.

    This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal

  14. IMPACTS OF ANTARCTIC OSCILLATION ON SUMMER MOISTURE TRANSPORT AND PRECIPITATION IN EASTERN CHINA

    Institute of Scientific and Technical Information of China (English)

    QIN Jun; WANG Pan-xing; GONG Yan

    2005-01-01

    Using NCEP/NCAR reanalysis data and monthly precipitation over 160 conventional stations in China,analyses of moisture transport characteristics and corresponding precipitation variation in the east part of China in summer are made, and studies are carried out on possible influence on moisture transport and precipitation in summer by the variation of Antarctic Oscillation (AAO). The results show that the abnormal variation of the AAO affected the summer precipitation in China significantly. The variation of AAO can cause the variation ofintension and location of Northwestern Pacific High, which in turn cause the variation of summer monsoon rainfall in the eastern China.

  15. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    Science.gov (United States)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  16. Geostatistical Study of Precipitation on the Island of Crete

    Science.gov (United States)

    Agou, Vasiliki D.; Varouchakis, Emmanouil A.; Hristopulos, Dionissios T.

    2015-04-01

    Understanding and predicting the spatiotemporal patterns of precipitation in the Mediterranean islands is an important topic of research, which is emphasized by alarming long-term predictions for increased drought conditions [4]. The analysis of records from drought-prone areas around the world has demonstrated that precipitation data are non-Gaussian. Typically, such data are fitted to the gamma distribution function and then transformed into a normalized index, the so-called Standardized Precipitation Index (SPI) [5]. The SPI can be defined for different time scales and has been applied to data from various regions [2]. Precipitation maps can be constructed using the stochastic method of Ordinary Kriging [1]. Such mathematical tools help to better understand the space-time variability and to plan water resources management. We present preliminary results of an ongoing investigation of the space-time precipitation distribution on the island of Crete (Greece). The study spans the time period from 1948 to 2012 and extends over an area of 8 336 km2. The data comprise monthly precipitation measured at 56 stations. Analysis of the data showed that the most severe drought occurred in 1950 followed by 1989, whereas the wettest year was 2002 followed by 1977. A spatial trend was observed with the spatially averaged annual precipitation in the West measured at about 450mm higher than in the East. Analysis of the data also revealed strong correlations between the precipitation in the western and eastern parts of the island. In addition to longitude, elevation (masl) was determined to be an important factor that exhibits strong linear correlation with precipitation. The precipitation data exhibit wet and dry periods with strong variability even during the wet period. Thus, fitting the data to specific probability distribution models has proved challenging. Different time scales, e.g. monthly, biannual, and annual have been investigated. Herein we focus on annual

  17. Diurnal variations of summer precipitation in Beijing

    Institute of Scientific and Technical Information of China (English)

    LI Jian; YU RuCong; WANG JianJie

    2008-01-01

    Climatic characteristics and secular trends of diurnal variations of summer precipitation in Beijing are studied using hourly self-recording rain-gauge data during 1961-2004. The results show that both rainfall amount and rainfall frequency present high values from late afternoon to early morning and reach the minima around noon. Two separate peaks can be identified in the high value period, one in the late afternoon and the other in the early morning. Taking the rainfall duration into account, it is found that the rainfall during late afternoon to midnight mainly comes from the short-duration rainfall events (an event of 1-6 hours in duration), while the rainfall during midnight to early morning is ac-cumulated mostly by the long-duration rainfall events (an event that lasts longer than 6 hours). In the recent 40 years, the summer precipitation in Beijing has been considerably restructured. The total rainfall amount of short-duration events has increased significantly, while the total rainfall amount of long-duration events has decreased.

  18. Reproducibility of summertime diurnal precipitation over northern Eurasia simulated by CMIP5 climate models

    Science.gov (United States)

    Hirota, N.; Takayabu, Y. N.

    2015-12-01

    Reproducibility of diurnal precipitation over northern Eurasia simulated by CMIP5 climate models in their historical runs were evaluated, in comparison with station data (NCDC-9813) and satellite data (GSMaP-V5). We first calculated diurnal cycles by averaging precipitation at each local solar time (LST) in June-July-August during 1981-2000 over the continent of northern Eurasia (0-180E, 45-90N). Then we examined occurrence time of maximum precipitation and a contribution of diurnally varying precipitation to the total precipitation.The contribution of diurnal precipitation was about 21% in both NCDC-9813 and GSMaP-V5. The maximum precipitation occurred at 18LST in NCDC-9813 but 16LST in GSMaP-V5, indicating some uncertainties even in the observational datasets. The diurnal contribution of the CMIP5 models varied largely from 11% to 62%, and their timing of the precipitation maximum ranged from 11LST to 20LST. Interestingly, the contribution and the timing had strong negative correlation of -0.65. The models with larger diurnal precipitation showed precipitation maximum earlier around noon. Next, we compared sensitivity of precipitation to surface temperature and tropospheric humidity between 5 models with large diurnal precipitation (LDMs) and 5 models with small diurnal precipitation (SDMs). Precipitation in LDMs showed high sensitivity to surface temperature, indicating its close relationship with local instability. On the other hand, synoptic disturbances were more active in SDMs with a dominant role of the large scale condensation, and precipitation in SDMs was more related with tropospheric moisture. Therefore, the relative importance of the local instability and the synoptic disturbances was suggested to be an important factor in determining the contribution and timing of the diurnal precipitation. Acknowledgment: This study is supported by Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology

  19. Temporal Analysis of Remotely Sensed Precipitation Products for Hydrological Applications

    Science.gov (United States)

    Tobin, K. J.; Bennett, M. E.

    2011-12-01

    No study has systematically evaluated streamflow modeling between monthly and daily timescales. This study examines streamflow from eight watersheds across the United States where five different precipitation products were used as primary input into the Soil and Water Assessment Tool to generate simulated streamflow. Timescales examined include monthly, dekad (10 day), pentad (5 day), triad (3 day), and daily. The eight basins studied are the San Pedro (Arizona); Cimarron (north-central Oklahoma); mid-Nueces (south Texas); mid-Rio Grande (south Texas and northern Mexico), Yocano (northern Mississippi); Alapaha (south Georgia); Upper Tar (North Carolina) and mid-St. Francis (eastern Arkansas). The precipitation products used to drive simulations include rain gauge, NWS Multisensor Precipitation Estimator, Tropical Rainfall Measurement Mission, Multi-Satellite (TRMM) Precipitation Analysis, TRMM 3B42-V6, and Climate Prediction Center Morphing Method (CMORPH). Understanding how streamflow varies at sub-monthly timescales is important because there are a host of hydrological applications such a flood forecast guidance and reservoir inflow forecasts that reside in a temporal domain between monthly and daily timescales. The major finding of this study is the quantification of a strong positive correlation between performance metrics and time step at which model performance deteriorates. Basically, better performing simulations, with higher Nash-Sutcliffe values of 0.80 and above can support modeling at finer timescales to at least daily and perhaps beyond into the sub-daily realm. These findings are significant in that they clearly document the ability of SWAT to support modeling at sub-monthly time steps, which is beyond the capability for which SWAT was initially designed.

  20. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  1. Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China

    Directory of Open Access Journals (Sweden)

    Hui Tao

    2016-05-01

    Full Text Available Satellite-based precipitation monitoring at high spatial resolution is crucial for assessing the water and energy cycles at the global and regional scale. Based on the recently released 7th version of the Multi-satellite Precipitation Analysis (TMPA product of the Tropical Rainfall Measuring Mission (TRMM, and the monthly precipitation data (3B43 are evaluated using observed monthly precipitation from 65 meteorological stations in Jiangsu Province, China, for the period 1998–2014. Additionally, the standardized precipitation index (SPI, which is derived by a nonparametric approach, is employed to investigate the suitability of the TRMM 3B43 precipitation data for drought monitoring in Jiangsu Province. The temporal correlations between observations and the TRMM 3B43 precipitation data show, in general, reasonable agreement for different time scales. However, in summer, only 50% of the stations present correlation coefficients that are statistically significant at the 95% confidence interval. The overall best agreement of TRMM 3B43 precipitation data at seasonal scale tends to occur in autumn (SON. The comparative analysis of the calculated SPI time series suggests that the accuracy of TRMM3B43 decreases with increasing time scale. Stations with significant correlation coefficients also become less spatially homogeneous with increasing time scale. In summary, the findings demonstrate that TRMM 3B43 precipitation data can be used for reliable short-term drought monitoring in Jiangsu province, while temporal-spatial limitations exist for longer time scales.

  2. Future changes in atmospheric circulation types and related precipitation extremes in Central Europe

    Science.gov (United States)

    Homann, Markus; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas

    2016-04-01

    The statistical evaluation of the relationships between atmospheric circulation types and areal precipitation events took place in the context of an international project called WETRAX (Weather patterns, storm tracks and related precipitation extremes). The aim of the project was to estimate the regional flooding potential in Central Europe under enhanced climate change conditions. For parts of southern Central Europe, a gridded daily precipitation set with 6km horizontal resolution has been generated for the period 1951-2006 by the Austrian Zentralanstalt für Meteorologie und Geodynamik (ZAMG). To determine regions with similar precipitation variability, a S-mode principal component analysis has been applied. Extreme precipitation events are defined by the 95% percentile, based on regional arithmetic means of daily precipitation. Large-scale atmospheric circulation types have been derived by different statistical methods and variables using the COST733 classification software and gridded daily NCEP1 reanalysis data. To evaluate the performance of a particular circulation type classification with respect to regional precipitation extremes, multiple regression models have been derived between the circulation type frequencies as predictor variables and monthly frequencies of extreme precipitation as well as monthly rainfall amounts from these events. To estimate the regional flooding potential in Central Europe under enhanced climate change conditions, multiple regression models are applied to different projected GCM predictor data. Thus, future changes in circulation type occurrence frequencies are transferred into assessments of future changes in precipitation extremes on a regional scale.

  3. Inducing mineral precipitation in groundwater by addition of phosphate

    Directory of Open Access Journals (Sweden)

    Hartmann Thomas

    2011-10-01

    Full Text Available Abstract Background Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 mL-1 added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM. Results The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing a and decreasing c lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control. Conclusions Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In

  4. Electronic Services Monthly MI Report

    Data.gov (United States)

    Social Security Administration — This electronic services monthly MI report contains monthly MI data for most public facing online online applications such as iClaim, electronic access, Mobile wage...

  5. Estimating Monthly Rainfall from Geostationary Satellite Imagery Over Amazonia, Brazil.

    Science.gov (United States)

    Cutrim, Elen Maria Camara

    The infrared regression and the grid-history satellite rainfall estimating techniques were utilized to estimate monthly rainfall in Amazonia during one month of the rainy season (March, 1980) and one month of the dry season (September, 1980). The estimates were based on 3-hourly SMS-II infrared and visible images. Three sets of coefficients for the grid history method (Marajo, Arabian Sea, and GATE) were used to estimate rainfall. The estimated rain was compared with gauge measurements over the region. The infrared regression technique overestimated by a factor of 1.5. The Marajo coefficients yielded the best estimate, especially for eastern Amazonia. In the wet month Marajo coefficients overestimated rain by 10% and in the dry month by 70%. The Arabian Sea coefficients overestimated rain and the GATE coefficients slightly underestimated rain for Amazonia. Two maps of monthly rainfall over Amazonia were constructed for March and September, 1980, combining the ground station and satellite inferred rainfall of the grid history method using the Marajo coefficients. The satellite observations and ground data were mutually compatible and were contourable on these final, composite maps. Monthly rainfall was found to be much more inhomogeneous than previously reported. In March there was a belt of high precipitation trending southwest, with higher values and sharpest gradients in the coastal area. The upper Amazon was also an area of high precipitation, both north and south of the equator. In Roraima rainfall decreased drastically to the north. In September, the area of highest precipitation was the northwestern part of Amazonas State (northern hemisphere). Rainfall elsewhere was very localized and in northeastern Amazonia varied from 0 to 150 mm. Even though the grid history method presented better results for estimating rainfall over Amazonia, the IR model could be utilized more efficiently and economically on an operational basis if the calibration were properly made

  6. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  7. Features of cross-Pacific climate shown in the variability of China and US precipitation

    Science.gov (United States)

    Li, Q.; Yang, S.; Kousky, V. E.; Higgins, R. W.; Lau, K.-M.; Xie, P.

    2005-11-01

    In this study, we have analyzed the climate features of China and the United States with a focus on the differences, similarities, connectivity, and predictability of precipitation and the relationships between precipitation and large-scale patterns of natural variability. China precipitation is characterized by large seasonality, with a maximum in summer and a minimum in winter. The seasonality of precipitation shows an increasing linear tendency in northwest China, with a change of about 20% from 1901 to 1998. A relatively weaker increasing tendency also appears in the Big Bend of Yellow River (BBYR) and the Tibetan Plateau, while southwest China experiences a decreasing tendency. Furthermore, the seasonality in the BBYR shows particularly significant interdecadal variability, while that of southern and eastern China has decreased slightly in the recent decades.Compared to China, the United States as a whole has less precipitation in summer but more precipitation in other seasons. Here, the seasonality of precipitation is only about 24% of that in China. The annual mean precipitation is 64.1 mm per month in the United States, compared to 54.6 mm per month in China. The seasonality of precipitation exhibits a decreasing tendency in the southeast, Pacific Northwest, and Gulf Coast and an increasing tendency in the Great Lakes. The seasonality in the Great Plains exhibits large interdecadal variability.The long-term variations of precipitation are highly seasonally dependent. In summer, a decreasing trend is observed in north China and an increasing trend is found in eastern-central China. However, these trends are almost opposite in spring. In addition, the fall precipitation decreases with time nearly everywhere in China except for the middle and lower reaches of the Yangtze River Valley.Results also indicate that the El Niño/Southern Oscillation (ENSO), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and

  8. Crop weather models of corn and soybeans for Agrophysical Units (APU's) in Iowa using monthly meteorological predictors

    Science.gov (United States)

    Leduc, S. (Principal Investigator)

    1982-01-01

    Models based on multiple regression were developed to estimate corn and soybean yield from weather data for agrophysical units (APU) in Iowa. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for crop reporting districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU's were selected to be more homogeneous with respect crop to production than the CRDs. The APU models are quite similar to the CRD models, similar explained variation and number of predictor variables. The APU models are to be independently evaluated and compared to the previously evaluated CRD models. That comparison should indicate the preferred model area for this application, i.e., APU or CRD.

  9. Real-time retrieval of precipitable water vapor from GPS precise point positioning

    Science.gov (United States)

    Yuan, Yubin; Zhang, Kefei; Rohm, Witold; Choy, Suelynn; Norman, Robert; Wang, Chuan-Sheng

    2014-08-01

    Sensing of precipitable water vapor (PWV) using the Global Positioning System (GPS) has been intensively investigated in the past 2 decades. However, it still remains a challenging task at a high temporal resolution and in the real-time mode. In this study the accuracy of real-time zenith total delay (ZTD) and PWV using the GPS precise point positioning (PPP) technique is investigated. GPS observations in a 1 month period from 20 globally distributed stations are selected for testing. The derived real-time ZTDs at most stations agree well with the tropospheric products from the International Global Navigation Satellite Systems Service, and the root-mean-square errors (RMSEs) are conditions. This implies that the real-time GPS PPP technique can be complementary to current atmospheric sounding systems, especially for nowcasting of extreme weather due to its real-time, all-day, and all-weather capabilities and high temporal resolutions.

  10. Your Baby's Growth: 3 Months

    Science.gov (United States)

    ... to Be Smart About Social Media Your Baby's Growth: 3 Months KidsHealth > For Parents > Your Baby's Growth: 3 Months Print A A A What's in ... months of life are a period of rapid growth. Your baby will gain about 1 to 1½ ...

  11. Monthly energy review, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Monthly Energy Review for the month of August 1997, presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors.

  12. Processing and Monthly Summaries of Downscaled Climate Data for Knoxville, Tennessee and Surrounding Region

    Energy Technology Data Exchange (ETDEWEB)

    Sylvester, Linda M [ORNL; Omitaomu, Olufemi A [ORNL; Parish, Esther S [ORNL; Allen, Melissa R [ORNL

    2016-09-01

    Oak Ridge National Laboratory (ORNL) and the City of Knoxville, Tennessee have partnered to work on a Laboratory Directed Research and Development (LDRD) project towards investigating climate change, mitigation, and adaptation measures in mid-sized cities. ORNL has statistically and dynamically downscaled ten Global Climate Models (GCMs) to both 1 km and 4 km resolutions. The processing and summary of those ten gridded datasets for use in a web-based tool is described. The summaries of each model are shown individually to assist in determining the similarities and differences between the model scenarios. The variables of minimum and maximum daily temperature and total monthly precipitation are summarized for the area of Knoxville, Tennessee for the periods of 1980-2005 and 2025-2050.

  13. Monthly Water Budget of Small Basin in Northern of Loess Plateau,China

    Institute of Scientific and Technical Information of China (English)

    HUANG Jinbai; HINOKIDANI Osamu; YASUDA Hiroshi; Kimura Reiji; ZHENG Jiyong

    2010-01-01

    The objective of this study was to analyze the water budget of a small basin in the northern of Loess Plateau. A small basin, Liudaogou in the northern Loess Plateau was chosen as the study area. The numerical calculation of surface runoff was applied to results of the field survey, and components of monthly water budget were estimated. The unit area of 1 km was selected as the index area for the estimation. A component of habitant water consumption was added to the water budget to consider the contribution of human activity. Results indicated that the water storage was negative in May, June and July while the annual amount was approximately 0.0. Evaportanspiration attained maximum in August and its annual total accounted for 74.2% of annual precipitation. Results of this study are significant for the sustainable water conservation and utilization in the northern of Loess Plateau where annual water resources are relatively deficient.

  14. Do we have to correct winter precipitation for nowcast applications?

    Science.gov (United States)

    Helfricht, Kay; Koch, Roland; Olefs, Marc

    2016-04-01

    In mountain regions like the Alps, a significant fraction of the annual precipitation falls as snow. There is an increasing demand for high-quality analysis, nowcast and short-range forecasts of snowfall. Operational services, such as traffic maintenance, real-time flood-warning systems of hydrological services and avalanche warning products, but also hydropower companies and ski resorts need reliable information on precipitation, snow depth and the corresponding snow water equivalent. However, producing accurate precipitation maps in complex terrain using only remote sensing techniques and uncorrected rain gauge data is a difficult task. In cold and windy conditions, conventional rain gauge measurements are prone to large errors when snow passes the rain gauge and sublimation occurs at heated devices. Empirical correction formulas are given by the WMO to compensate the potential undercatch (Goodison, 2008). The project pluSnow aims to combine snow depth measurements and precipitation data to minimize the error of gauge undercatch on the basis of snow depth data from 63 automatic weather stations (TAWES), operated by the Austrian Central Institute for Meteorology and Geodynamics (ZAMG). These TAWES are equipped with SHM30 laser sensors to measure snow depth with high accuracy and temporal resolution of 0.01 m and 10 minutes, respectively. The pluSnow project will contribute to existing research efforts around the globe which focus on improving the precision of solid precipitation measurements. Here we present a first study based on the original TAWES data between 2006 and 2015. The fraction of solid precipitation to total winter precipitation between November and April (NDJFMA) and the potential undercatch of measured precipitation following Goodison (2008) for all TAWES sorted by altitude are analysed. Examples of the TAWES data in the original high temporal resolution of 10 min are given. The two main parameters used for the correction of precipitation

  15. Monthly Water Balance Model Hydrology Futures

    Science.gov (United States)

    Bock, Andy; Hay, Lauren E.; Markstrom, Steven; Atkinson, R. Dwight

    2016-01-01

    A monthly water balance model (MWBM) was driven with precipitation and temperature using a station-based dataset for current conditions (1950 to 2010) and selected statistically-downscaled general circulation models (GCMs) for current and future conditions (1950 to 2099) across the conterminous United States (CONUS) using hydrologic response units from the Geospatial Fabric for National Hydrologic Modeling (http://dx.doi.org/doi:10.5066/F7542KMD). Six MWBM output variables (actual evapotranspiration (AET), potential evapotranspiration (PET), runoff (RO), streamflow (STRM), soil moisture storage (SOIL), and snow water equivalent (SWE)) and the two MWBM input variables (atmospheric temperature (TAVE) and precipitation (PPT)) were summarized for hydrologic response units and aggregated at points of interest on a stream network. Results were then organized into the Monthly Water Balance Hydrology Futures database, an open-access database using netCDF format (http://cida-eros-mows1.er.usgs.gov/thredds/dodsC/nwb_pub/).  Methods used to calibrate and parameterize the MWBM are detailed in the Hydrology and Earth System Sciences (HESS)  paper "Parameter regionalization of a monthly water balance model for the conterminous United States" by Bock and others (2016).  See the discussion paper link in the "Related External Resources" section for access.  Supplemental data files related to the plots and data analysis in Bock and others (2016) can be found in the HESS-2015-325.zip folder in the "Attached Files" section.  Detailed information on the files and data can be found in the ReadMe.txt contained within the zipped folder. Recommended citation of discussion paper:Bock, A.R., Hay, L.E., McCabe, G.J., Markstrom, S.L., and Atkinson, R.D., 2016, Parameter regionalization of a monthly water balance model for the conterminous United States: Hydrology and Earth System Sciences, v. 20, 2861-2876, doi:10.5194/hess-20-2861-2016, 2016

  16. Monthly streamflow forecasting in the Rhine basin

    Science.gov (United States)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2017-04-01

    Forecasting seasonal streamflow of the Rhine river is of societal relevance as the Rhine is an important water way and water resource in Western Europe. The present study investigates the predictability of monthly mean streamflow at lead times of zero, one, and two months with the focus on potential benefits by the integration of seasonal climate predictions. Specifically, we use seasonal predictions of precipitation and surface air temperature released by the European Centre for Medium-Range Weather Forecasts (ECMWF) for a regression analysis. In order to disentangle forecast uncertainty, the 'Reverse Ensemble Streamflow Prediction' framework is adapted here to the context of regression: By using appropriate subsets of predictors the regression model is constrained to either the initial conditions, the meteorological forcing, or both. An operational application is mimicked by equipping the model with the seasonal climate predictions provided by ECMWF. Finally, to mitigate the spatial aggregation of the meteorological fields the model is also applied at the subcatchment scale, and the resulting predictions are combined afterwards. The hindcast experiment is carried out for the period 1982-2011 in cross validation mode at two gauging stations, namely the Rhine at Lobith and Basel. The results show that monthly forecasts are skillful with respect to climatology only at zero lead time. In addition, at zero lead time the integration of seasonal climate predictions decreases the mean absolute error by 5 to 10 percentage compared to forecasts which are solely based on initial conditions. This reduction most likely is induced by the seasonal prediction of precipitation and not air temperature. The study is completed by bench marking the regression model with runoff simulations from ECMWFs seasonal forecast system. By simply using basin averages followed by a linear bias correction, these runoff simulations translate well to monthly streamflow. Though the regression model

  17. Chemical compositions of precipitation and scavenging of particles in Beijing

    Institute of Scientific and Technical Information of China (English)

    HU Min; ZHANG Jing; WU Zhijun

    2005-01-01

    Totally 23 precipitation samples were collected in Beijing from May to November in 2003. In order to investigate the chemical composition of precipitation samples, pH, conductivity, concentrations of water-soluble ions and organic acids were analyzed. The average pH of precipitations is 6.18, belonging to the neutral range; the average conductivity is 52.23 (S/cm, which indicates that precipitations in Beijing are obviously polluted; are the most abundant anions with the average concentrations of 521 and 174 μeq·L-1, respectively; the average equivalent ratio is 3.1, which decreases by about 15% compared with the result of 1994; and Ca2+ are the most abundant cations with the average concentrations of 376 and 397 μeq·L-1, respectively; formic acid, acetic acid and oxalic acid are the main organic acids with the average concentrations of 4.62, 4.60 and 1.17 μeq·L-1, respectively, accounting for 2% of the overall anions. Obvious differences between concentrations before and after precipitation are also observed by SJAC (Steam Jet Aerosol Collector), which shows the removal of particles from the atmosphere by precipitation.

  18. Using NDVI to measure precipitation in semi-arid landscapes

    Science.gov (United States)

    Birtwhistle, Amy N.; Laituri, Melinda; Bledsoe, Brian; Friedman, Jonathan M.

    2016-01-01

    Measuring precipitation in semi-arid landscapes is important for understanding the processes related to rainfall and run-off; however, measuring precipitation accurately can often be challenging especially within remote regions where precipitation instruments are scarce. Typically, rain-gauges are sparsely distributed and research comparing rain-gauge and RADAR precipitation estimates reveal that RADAR data are often misleading, especially for monsoon season convective storms. This study investigates an alternative way to map the spatial and temporal variation of precipitation inputs along ephemeral stream channels using Normalized Difference Vegetation Index (NDVI) derived from Landsat Thematic Mapper imagery. NDVI values from 26 years of pre- and post-monsoon season Landsat imagery were derived across Yuma Proving Ground (YPG), a region covering 3,367 km2 of semiarid landscapes in southwestern Arizona, USA. The change in NDVI from a pre-to post-monsoon season image along ephemeral stream channels explained 73% of the variance in annual monsoonal precipitation totals from a nearby rain-gauge. In addition, large seasonal changes in NDVI along channels were useful in determining when and where flow events have occurred.

  19. A global survey on the seasonal variation of the marginal distribution of daily precipitation

    Science.gov (United States)

    Papalexiou, Simon Michael; Koutsoyiannis, Demetris

    2016-08-01

    To characterize the seasonal variation of the marginal distribution of daily precipitation, it is important to find which statistical characteristics of daily precipitation actually vary the most from month-to-month and which could be regarded to be invariant. Relevant to the latter issue is the question whether there is a single model capable to describe effectively the nonzero daily precipitation for every month worldwide. To study these questions we introduce and apply a novel test for seasonal variation (SV-Test) and explore the performance of two flexible distributions in a massive analysis of approximately 170,000 monthly daily precipitation records at more than 14,000 stations from all over the globe. The analysis indicates that: (a) the shape characteristics of the marginal distribution of daily precipitation, generally, vary over the months, (b) commonly used distributions such as the Exponential, Gamma, Weibull, Lognormal, and the Pareto, are incapable to describe "universally" the daily precipitation, (c) exponential-tail distributions like the Exponential, mixed Exponentials or the Gamma can severely underestimate the magnitude of extreme events and thus may be a wrong choice, and (d) the Burr type XII and the Generalized Gamma distributions are two good models, with the latter performing exceptionally well.

  20. Natural gas monthly, November 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

  1. Delayed Femoral Nerve Palsy Associated with Iliopsoas Hematoma after Primary Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2016-01-01

    Full Text Available Femoral nerve neuropathy after total hip arthroplasty is rare but catastrophic complication. Pain and quadriceps muscle weakness caused by this complication can significantly affect the functional outcome. Here we present a case report, describing delayed onset femoral nerve palsy associated with iliopsoas hematoma following pseudoaneurysm of a branch of profunda femoris artery after 3 months of primary total hip arthroplasty in an 80-year-old female patient with single kidney. Hip arthroplasty was done for painful primary osteoarthritis of left hip. Diagnosis of femoral nerve palsy was made by clinical examination and computed tomography imaging of pelvis. Patient was managed by surgical evacuation of hematoma and physiotherapy. The patient’s clinical symptoms were improved after surgical evacuation of hematoma. This is the first case report of its kind in English literature regarding delayed onset femoral nerve palsy after primary total hip arthroplasty due to pseudoaneurysm of a branch of profunda femoris artery without any obvious precipitating factor.

  2. Stationary Eddies and the Zonal Asymmetry of Net Precipitation and Ocean Freshwater Forcing

    OpenAIRE

    Wills, Robert C.; Schneider, Tapio

    2015-01-01

    Transport of water vapor in the atmosphere generates substantial spatial variability of net precipitation (precipitation minus evaporation). Over half of the total spatial variability in annual-mean net precipitation is accounted for by deviations from the zonal mean. Over land, these regional differences determine differences in surface water availability. Over oceans, they account, for example, for the Pacific–Atlantic difference in sea surface salinity, with implications for th...

  3. Investigation of Microphysical Parameters within Winter and Summer Type Precipitation Events over Mountainous [Complex] Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Stalker, James R.; Bossert, James E.

    1997-12-31

    In this study we investigate complex terrain effects on precipitation with RAMS for both in winter and summer cases from a microphysical perspective. We consider a two dimensional east-west topographic cross section in New Mexico representative of the Jemez mountains on the west and the Sangre de Cristo mountains on the east. Located between these two ranges is the Rio Grande Valley. In these two dimensional experiments, variations in DSDs are considered to simulate total precipitation that closely duplicate observed precipitation.

  4. How often precipitation records break?

    Science.gov (United States)

    Papalexiou, Simon Michael; Oikonomou, Maria; Floutsakou, Athina; Bessas, Nikolaos; Mamassis, Nikos

    2016-04-01

    How often precipitation records break? Are there any factors that determine the average time needed for the next maximum to occur? In order to investigate these simple questions we use several hundreds of daily precipitation records (more than 100 years long each) and we study the time intervals between each successive maximum precipitation value. We investigate if the record breaking time interval is related (a) to the autocorrelation structure, (b) to probability dry, and (c) to the tail of the marginal distribution. For the last, we first, evaluate which type of tail is better fitted by choosing among three general types of tails corresponding to the distributions Pareto, Lognormal and Weibull; and second, we assess the heaviness of the tail based on the estimated shape parameter. The performance of each tail is evaluated in terms of return period values, i.e., we compare the empirical return periods of precipitation values above a threshold with the predicted ones by each of the three types of fitted tails.

  5. Experimental study of brushite precipitation

    Science.gov (United States)

    Arifuzzaman, S. M.; Rohani, S.

    2004-07-01

    A systematic approach was developed for the synthesis of orthophosphates in the laboratory. A set of experiments was designed to investigate the influence of initial calcium and phosphorus concentration on the precipitated phase, nucleation pH and product size distribution at 25°C. Another goal was to characterize the precipitated phase. The investigation was conducted in a batch reactor. The initial molar concentration of calcium chloride and hydrated sodium phosphate solutions was varied from 0.005 to 0.08-mole dm -3 and the solution pH was kept under 7.1. Analysis by powder XRD, FTIR and elemental P/Ca revealed that the crystals precipitated were pure brushite (dicalcium phosphate dihydrate), as expected, except in one experiment in which amorphous calcium phosphate precipitated. The brushite crystals produced had plate-like morphology as investigated by scanning electron microscopy (SEM). The nucleation pH showed a decreasing trend as the concentration of the calcium and phosphorus increased in the reactor, but the volume mean diameter of the crystals and the span of the crystal size distribution did not show any sensitivity to the changes in the initial calcium and phosphorus concentration.

  6. Electrostatic Precipitator (ESP) TRAINING MANUAL

    Science.gov (United States)

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  7. Grassland responses to precipitation extremes

    Science.gov (United States)

    Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...

  8. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

    2011-10-01

    Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments

  9. The Regional Objective Precipitation Forecast in North China and Adjacent Areas in Summer%华北及周边地区夏季分区客观降水预报

    Institute of Scientific and Technical Information of China (English)

    赵翠光; 赵声蓉

    2011-01-01

    North China is one of three major summer rainfall areas in eastern China. Precipitation over North China shows the characteristics of obvious emergency and locality. According to the statistics, 80%-90% precipitation occurs in June-August. Sometimes daily precipitation of a rainstorm can account for 50% precipitation amount of that month. Therefore, effective forecast is crucial especially for larger magnitude precipitation. Objective precipitation forecast is a difficult problem in NWP products interpretation at present. Objective precipitation forecast models are always established station by station, but larger magnitude precipitation is rare event for individual station. It is difficult to establish an effective forecast equation for an individual station. Precipitation intensity, spatial and temporal distribution over North China has its own particularity. Due to the regional characteristic, it is difficult to summarize in one model. Objective partitioning can be used in establishment of precipitation forecast model. Similar samples in the weather region are combined together. Regional forecast model is more stable than single-station forecast model, as the number of large-class precipitation samples increases.Seven weather divisions for summer precipitation over North China and adjacent areas are developed through Rotated Empirical Orthogonal Function (REOF) method, defined by the large contours of the seven REOF models. Objective precipitation forecast is based on probability regression precipitation categorical forecast. First, original precipitation is converted to 0 and 1 corresponding categories, and then forecast equations of different categories are developed to calculate each criterions. In real forecasting, the categorical precipitation will be determined through the criterion and the probability forecast of that category. Based on the daily precipitation data of station and T213 NWP products during the summer of 2006-2008, precipitation forecast

  10. Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes

    Science.gov (United States)

    Bárdossy, András; Pegram, Geoffrey

    2017-01-01

    The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this paper we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the paper is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to unsampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the subdaily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. Additionally a statistical procedure not based on a matching day by day correction is tested. In this last procedure as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving a small number of L days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these L day maxima is first iterpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest L radar based days. Of course, the timings of radar and gauge maxima can be different, so the method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated relatively continuously at

  11. Precipitation in the Central Mediterranean during the last century

    Science.gov (United States)

    Maheras, P.; Balafoutis, Ch.; Vafiadis, M.

    1992-09-01

    Monthly precipitation data from 10 stations (Patras, Corfu, Hvar, Trieste, Venice, Florence, Rome, Naples, Catania and Malta) in the Central Mediterranean area are used for a period of 95 years (1894 1988). The homogeneity of these precipitation time series is tested and their statistical characteristics are analysed. An abrupt climatic change is found at Naples and Rome. The application of Principal Component Analysis (PCA) has yielded three groups of stations where the precipitation data indicate similar fluctuations. Group A includes the stations situated along the coasts of the Ionian and Adriatic seas and the station Naples, while Group B includes the Northern Italian stations and Group C includes the stations at Catania and Malta. In all three groups maximum precipitation was observed during the 1930s. The periodicities of the scores of the significant components have been studied by spectral analysis and significant periodicities of 13.6, 3.5 and 2.2 years were found. Finally, a discussion of the relationships between these precipitation fluctuations and circulation types over the Mediterranean is presented.

  12. The Effects of Dominant Driving Forces on Summer Precipitation during Different Periods in Beijing

    Directory of Open Access Journals (Sweden)

    Fuxing Li

    2017-02-01

    Full Text Available Wavelet analysis methods (CWT, XWT, WTC were employed to evaluate the impact of dominant climatic driving factors on summer precipitation in the Beijing area based on monthly precipitation data of Beijing ranging from 1880 to 2014. The two climatic driving factors, i.e., the East Asian summer monsoon (EASM and the Northern Limit of Western Pacific Subtropical High (NWPSH were considered in particular. The relationships between summer precipitation and EASM/NWPSH were also examined. The results revealed similar periods in low-frequency oscillation (76–95 years and mid-range frequency oscillation (32–60 years for the summer precipitation in the Beijing area and EASM/NWPSH. The summer precipitation correlated positively with the NWPSH and EASM, especially for periods of 43 years and 33 years, respectively. This indicates that summer precipitation during 1880–1960 and during the years after 1960 was significantly affected by NWPSH and EASM, respectively. Based on the periodic change of 33 years for both summer precipitation and EASM, heavy precipitation can be expected to occur again in Beijing at approximately 2026. Understanding the relationships between summer precipitation and climatic factors is of significant importance for precipitation predictions and water resource variations in the Beijing area.

  13. Interpolation and Extrapolation of Precipitation Quantities in Serbia

    Directory of Open Access Journals (Sweden)

    Rastislav Stojsavljević

    2013-01-01

    Full Text Available The aim of this paper is to indicate the problems with filling the missing data in precipitation database using interpolation and extrapolation methods. Investigated periods were from 1981 to 2010 for Northern (Autonomous Province of Vojvodina and Proper Serbia and from 1971 to 2000 for Southern Serbia (Autonomous Province of Kosovo and Metohia. Database included time series from 78 meteorological stations that had less than 20% of missing data. Interpolation was performed if station had missing data for five consecutive months or less. If station had missing data for six consecutive months or more, extrapolation was performed. For every station with mising data correlation with at least three surrounding stations was performed. The lowest acceptable value of correlation coefficient for precipitation was set at 0,300

  14. Monthly Deaths Number And Concomitant Environmental Physical Activity: 192 Months Observation (1990-2005)

    Science.gov (United States)

    Stoupel, E.; Kalediene, R.; Petrauskiene, J.; Starkuviene, S.; Abramson, E.; Israelevich, P.; Sulkes, J.

    2007-12-01

    Human life and health state are dependent on many endogenous and exogenous influence factors. The aim of this study is to check the possible links between monthly deaths distribution and concomitant activity of three groups of cosmophysical factors: solar (SA), geomagnetic (GMA) and cosmic ray (CRA) activities. 192 months death number in years 1990-2005 (n=674004) at the Republic of Lithuania were analyzed. Total and both gender data were considered. In addition to the total death numbers, groups of ischemic heart disease (IHD), stroke (CVA), non-cardiovascular (NCV), accident, traffic accident and suicide-related deaths were studied. Sunspot number and solar radio flux (for SA), Ap, Cp and Am indices (for GMA) and neutron activity on the Earth s surface (for CRA) were the environmental physical activity parameters used in this study. Yearly and monthly deaths distributions were also studied. Pearson correlation coefficients (r) and their probabilities (p) were calculated. Multivariate analysis was conducted. Results revealed: 1) significant correlation of monthly deaths number with CRA (total, stroke, NCV and suicides) and inverse with SA and GMA; 2) significant correlation of monthly number of traffic accidents number with SA and GMA, and inverse with CRA; 3) a strong negative relationship between year and IHD/CVA victims number (an evidence for growing role of stroke in cardiovascular mortality); 4) significant links of rising cardiovascular deaths number at the beginning of the year and traffic accidents victims at the end of the year. It is concluded that CRA is related to monthly deaths distribution.

  15. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    Science.gov (United States)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  16. Retrieving pace in vegetation growth using precipitation and soil moisture

    Science.gov (United States)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and

  17. Precipitation-runoff relations and water-quality characteristics at edge-of-field stations, Discovery Farms and Pioneer Farm, Wisconsin, 2003-8

    Science.gov (United States)

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Peppler, Marie C.; Owens, David W.; Frame, Dennis R.

    2011-01-01

    A cooperative study between the U.S. Geological Survey, the University of Wisconsin (UW)-Madison Discovery Farms program (Discovery Farms), and the UW-Platteville Pioneer Farm program (Pioneer Farm) was developed to identify typical ranges and magnitudes, temporal distributions, and principal factors affecting concentrations and yields of sediment, nutrients, and other selected constituents in runoff from agricultural fields. Hydrologic and water-quality data were collected year-round at 23 edge-of-field monitoring stations on 5 privately owned Discovery Farms and on Pioneer Farm during water years 2003-8. The studied farms represented landscapes, soils, and farming systems typical of livestock farms throughout southern Wisconsin. Each farm employed a variety of soil, nutrient, and water-conservation practices to help minimize sediment and nutrient losses from fields and to improve crop productivity. This report summarizes the precipitation-runoff relations and water-quality characteristics measured in edge-of-field runoff for 26 "farm years" (aggregate years of averaged station data from all 6 farms for varying monitoring periods). A relatively wide range of constituents typically found in agricultural runoff were measured: suspended sediment, phosphorus (total, particulate, dissolved reactive, and total dissolved), and nitrogen (total, nitrate plus nitrite, organic, ammonium, total Kjeldahl and total Kjeldahl-dissolved), chloride, total solids, total suspended solids, total volatile suspended solids, and total dissolved solids. Mean annual precipitation was 32.8 inches for the study period, about 3 percent less than the 30-year mean. Overall mean annual runoff was 2.55 inches per year (about 8 percent of precipitation) and the distribution was nearly equal between periods of frozen ground (54 percent) and unfrozen ground (46 percent). Mean monthly runoff was highest during two periods: February to March and May to June. Ninety percent of annual runoff occurred

  18. Infant Responses to Maternal Still Face at 9 Months Predict Social Abilities at 18 Months

    OpenAIRE

    Yato, Yuko; Tanaka, Daisuke; Shinohara, Ryoji; Sugisawa, Yuka; Tanaka, Emiko; Tong, Lian; Yamakawa, Noriko; Anme, Tokie; Kawai, Masatoshi; Maeda, Tadahiko; Japan, Children's Study Group

    2010-01-01

    Background: This study investigated developmental change and stability in infant responses to the still-face (SF) situation, as well as predictive validity at age 18 months, focusing on autonomy and responsiveness.Methods: A total of 231 children (117 boys and 114 girls) and their Japanese mothers were observed in a face-to-face SF situation at two infant ages (4 and 9 months), as well as a caregiver-child teaching interaction at age 18 months. Each infant’s facial expression, gaze direction,...

  19. Precipitation regime and stable isotopes at Dome Fuji, East Antarctica

    Science.gov (United States)

    Dittmann, Anna; Schlosser, Elisabeth; Masson-Delmotte, Valérie; Powers, Jordan G.; Manning, Kevin W.; Werner, Martin; Fujita, Koji

    2016-06-01

    A unique set of 1-year precipitation and stable water isotope measurements from the Japanese Antarctic station, Dome Fuji, has been used to study the impact of the synoptic situation and the precipitation origin on the isotopic composition of precipitation on the Antarctic Plateau. The Antarctic Mesoscale Prediction System (AMPS) archive data are used to analyse the synoptic situations that cause precipitation. These situations are investigated and divided into five categories. The most common weather situation during a precipitation event is an upper-level ridge that extends onto the Antarctic Plateau and causes strong northerly advection from the ocean. Most precipitation events are associated with an increase in temperature and wind speed, and a local maximum of δ18O. During the measurement period, 21 synoptically caused precipitation events caused 60 % of the total annual precipitation, whereas the remaining 40 % were predominantly attributed to diamond dust. By combining the synoptic analyses with 5-day back-trajectories, the moisture source regions for precipitation events were estimated. An average source region around a latitude of 55° S was found. The atmospheric conditions in the source region were used as initial conditions for running a Rayleigh-type isotopic model in order to reproduce the measured isotopic composition of fresh snow and to investigate the influence of the precipitation source region on the isotope ratios. The model represents the measured annual cycle of δ18O and the second-order isotopic parameter deuterium excess reasonably well, but yields on average too little fractionation along the transport/cooling path. While simulations with an isotopic general circulation model (GCM) (ECHAM5-wiso) for Dome Fuji are on average closer to the observations, this model cannot reproduce the annual cycle of deuterium excess. In the event-based analysis, no evidence of a correlation of the measured deuterium excess with the latitude of the

  20. Kinetics of niobium carbide precipitation in ferrite; Cinetiques de precipitation du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Gendt, D

    2001-07-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  1. Trends in Precipitation Extremes over Southeast Asia

    Science.gov (United States)

    Endo, N.; Matsumoto, J.

    2010-12-01

    Trends in precipitation extremes were examined using daily precipitation data from Southeast Asian countries during 1950's to 2000's. Number of wet day, defined by a day with daily precipitation exceeding 1 mm, tends to decrease over these countries, while average precipitation intensity of wet day shows an increasing trend. Heavy precipitation indices, which are defined by precipitation amount and percentile, demonstrate that the number of stations with significant upward trend is larger than that with significant downward trend. Heavy precipitation increases in southern Vietnam, northern part of Myanmar, and the Visayas and Luzon Islands in the Philippines, while heavy precipitation decreases in northern Vietnam. Annual maximum number of consecutive dry days decreases in the region where winter monsoon precipitation dominates. Prolongation of the dry season is suggested in Myanmar.

  2. Primary total elbow arthroplasty

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2013-01-01

    Full Text Available Background: Primary total elbow arthroplasty (TEA is a challenging procedure for orthopedic surgeons. It is not performed as frequently as compared to hip or knee arthroplasty. The elbow is a nonweight-bearing joint; however, static loading can create forces up to three times the body weight and dynamic loading up to six times. For elderly patients with deformity and ankylosis of the elbow due to posttraumatic arthritis or rheumatoid arthritis or comminuted fracture distal humerus, arthroplasty is one of the option. The aim of this study is to analyze the role of primary total elbow arthroplasty in cases of crippling deformity of elbow. Materials and Methods: We analyzed 11 cases of TEA, between December 2002 and September 2012. There were 8 females and 3 males. The average age was 40 years (range 30-69 years. The indications for TEA were rheumatoid arthritis, comminuted fracture distal humerus with intraarticular extension, and posttraumatic bony ankylosis of elbow joint. The Baksi sloppy (semi constrained hinge elbow prosthesis was used. Clinico-radiological followup was done at 1 month, 3 months, 6 months, 1 year, and then yearly basis. Results: In the present study, average supination was 70° (range 60-80° and average pronation was 70° (range 60-80°. Average flexion was 135° (range 130-135°. However, in 5 cases, there was loss of 15 to 35° (average 25° of extension (45° out of 11 cases. The mean Mayo elbow performance score was 95.4 points (range 70-100. Arm length discrepancy was only in four patients which was 36% out of 11 cases. Clinico-radiologically all the elbows were stable except in one case and no immediate postoperative complication was noted. Radiolucency or loosening of ulnar stem was seen in 2 cases (18% out of 11 cases, in 1 case it was noted after 5 years and in another after 10 years. In second case, revision arthroplasty was done, in which only ulnar hinge section, hinge screw and lock screw with hexagonal head

  3. Evaluation of different interpolation schemes for precipitation and reference evapotranspiration and the impact on simulated large-scale water balance in Slovenia

    Science.gov (United States)

    He, Qianwen; Molkenthin, Frank; Wendland, Frank; Herrmann, Frank

    2016-04-01

    Precipitation and reference evapotranspiration (ET0) are two main climate input components for hydrological models, which are often recorded or calculated based on measuring stations. Interpolation schemes are implemented to regionalize data from measuring stations for distributed hydrological models. This study had been conducted for 5 months, with the aim of: (1) evaluating three interpolation schemes for precipitation and reference evapotranspiration (ET0); (2) assessing the impact of the interpolation schemes on actual evapotranspiration and total runoff simulated by a distributed large-scale water balance model - mGROWA. The study case was the Republic of Slovenia, including a high variability in topography and climatic conditions, with daily meteorological data measured in 20 stations for a period of 44 years. ET0 were computed by both FAO Penman-Monteith equation and Hargreaves equation. The former equation is recommended as the standard equation, while the ET0 calculated by the latter one for Slovenia had a certain deviation (+150 mm/a) from it. Ordinary Kriging, Regression Kriging and Linear Regression were selected to regionalize precipitation and ET0. Reliability of the three interpolation schemes had been assessed based on the residual obtained from cross-validation. Monthly regionalized precipitation and ET0 were subsequently used as climate input for mGROWA model simulation. Evaluation of the interpolation schemes showed that the application of Regression Kriging and Linear Regression led to an acceptable interpolation result for reference evapotranspiration, especially in case the FAO Penman-Monteith equation was used. On the other hand, Regression Kriging also provided a more convincing interpolated result for precipitation. Meanwhile, mGROWA simulation results were affected by climate input data sets generated by applying difference interpolation schemes. Therefore, it is essential to select an appropriate interpolation scheme, in order to generate

  4. Stochastic precipitation generator with hidden state covariates

    Science.gov (United States)

    Kim, Yongku; Lee, GyuWon

    2017-08-01

    Time series of daily weather such as precipitation, minimum temperature and maximum temperature are commonly required for various fields. Stochastic weather generators constitute one of the techniques to produce synthetic daily weather. The recently introduced approach for stochastic weather generators is based on generalized linear modeling (GLM) with covariates to account for seasonality and teleconnections (e.g., with the El Niño). In general, stochastic weather generators tend to underestimate the observed interannual variance of seasonally aggregated variables. To reduce this overdispersion, we incorporated time series of seasonal dry/wet indicators in the GLM weather generator as covariates. These seasonal time series were local (or global) decodings obtained by a hidden Markov model of seasonal total precipitation and implemented in the weather generator. The proposed method is applied to time series of daily weather from Seoul, Korea and Pergamino, Argentina. This method provides a straightforward translation of the uncertainty of the seasonal forecast to the corresponding conditional daily weather statistics.

  5. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    Science.gov (United States)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  6. Adjusted Monthly Precipitation, Snowfall and Rainfall for Canada (1874-1990)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was distributed by NSIDC until October, 2003, when it was withdrawn from distribution because it duplicates the NOAA National Climatic Data Center...

  7. Investigation of discharged aerosol nanoparticles during chemical precipitation and spray pyrolysis for developing safety measures in the nano research laboratory.

    Science.gov (United States)

    Kolesnikov, Еvgeny; Karunakaran, Gopalu; Godymchuk, Anna; Vera, Levina; Yudin, Andrey Grigorjevich; Gusev, Alexander; Kuznetsov, Denis

    2017-05-01

    Nowadays, the demands for the nanoparticles are increasing due to their tremendous applications in various fields. As a consequence, the discharge of nanoparticles into the atmosphere and environment is also increasing, posing a health threat and environmental damage in terms of pollution. Thus, an extensive research is essential to evaluate the discharge of these nanoparticles into the environment. Keeping this in mind, the present investigation aimed to analyze the discharge of aerosol nanoparticles that are synthesized in the laboratory via chemical precipitation and spray pyrolysis methods. The results indicated that the chemical precipitation method discharges a higher concentration of nanoparticles in the work site when compared to the spray pyrolysis method. The aerosol concentration also varied with the different steps involved during the synthesis of nanoparticles. The average particle's concentration in air for chemical precipitation and spray pyrolysis methods was around 1,037,476 and 883,421particles/cm(3). In addition, the average total discharge of nanoparticles in the entire laboratory was also examined. A significant variation in the concentration of nanoparticles was noticed, during the processing of materials and the concentration of particles (14-723nm) exceeding the daily allowed concentration to about 70-170 times was observed over a period of 6 months. Thus, the results of the present study will be very useful in developing safety measures and would help in organizing the rules for people working in nanotechnology laboratories to minimize the hazardous effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Principal component analysis of a river basin discharge and precipitation anomaly fields associated with the global circulation

    Science.gov (United States)

    Pandžić, K.; Trninić, D.

    1992-03-01

    The relation between mesoscale (the Kupa river catchment area, Yugoslavia) discharge and precipitation field anomalies and macroscale (European-Northern Atlantic Region) surface pressure anomalies is considered. For this purpose the principal component analysis (PCA) technique has been applied. Mesoscale monthly discharge values for 25 stream flow measurement stations, precipitation and the Palmer 'drought index' data for 18 weather stations as well as the macroscale surface pressure for 12 × 19 grid points have been used. All refer to the period 1961-1980. Two principal components (PCs) are the most significant for each mesoscale field, which describe more than 85% of total field variance. In addition to a significant correlation indicated between mesoscale discharge and precipitation anomaly and the Palmer 'drought index' PCs, five space anomaly patterns were established for each field. A pattern of the macroscale surface pressure anomaly field corresponds to each of these patterns. Thus, an interpretation of the discharge anomaly field in the Kupa river basin in terms of macrocirculation is achieved.

  9. Niobium carbide precipitation in microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, C.; Hulka, K. [Niobium Products Co. GmbH, Duesseldorf (Germany); Bleck, W. [Inst. for Ferrous Metallurgy, RWTH Aachen Univ., Aachen (Germany)

    2004-11-01

    The precipitation of niobium carbo-nitrides in the austenite phase, interphase and ferrite phase of microalloyed steel was assessed by a critical literature review and a round table discussion. This work analyses the contribution of niobium carbide precipitates formed in ferrite in the precipitation hardening of commercially hot rolled strip. Thermodynamics and kinetics of niobium carbo-nitride precipitation as well as the effect of deformation and temperature on the precipitation kinetics are discussed in various examples to determine the amount of niobium in solid solution that will be available for precipitation hardening after thermomechanical rolling in the austenite phase and successive phase transformation. (orig.)

  10. Precipitation-fire linkages in Indonesia (1997-2015)

    Science.gov (United States)

    Fanin, Thierry; van der Werf, Guido R.

    2017-09-01

    Over the past decades, fires have burned annually in Indonesia, yet the strength of the fire season is for a large part modulated by the El Niño Southern Oscillation (ENSO). The two most recent very strong El Niño years were 2015 and 1997. Both years involved high incidences of fire in Indonesia. At present, there is no consistent satellite data stream spanning the full 19-year record, thereby complicating a comparison between these two fire seasons. We have investigated how various fire and precipitation datasets can be merged to better compare the fire dynamics in 1997 and 2015 as well as in intermediary years. We combined nighttime active fire detections from the Along Track Scanning Radiometer (ATSR) World Fire Atlas (WFA) available from 1997 until 2012 and the nighttime subset of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor from 2001 until now. For the overlapping period, MODIS detected about 4 times more fires than ATSR, but this ratio varied spatially. Although the reasons behind this spatial variability remain unclear, the coefficient of determination for the overlapping period was high (R2 = 0. 97, based on monthly data) and allowed for a consistent time series. We then constructed a rainfall time series based on the Global Precipitation Climatology Project (GPCP, 1997-2015) and the Tropical Rainfall Measurement Mission Project (TRMM, 1998-2015). Relations between antecedent rainfall and fire activity were not uniform in Indonesia. In southern Sumatra and Kalimantan, we found that 120 days of rainfall accumulation had the highest coefficient of determination with annual fire intensity. In northern Sumatra, this period was only 30 days. Thresholds of 200 and 305 mm average rainfall accumulation before each active fire were identified to generate a high-incidence fire year in southern Sumatra and southern Kalimantan, respectively. The number of active fires detected in 1997 was 2.2 times higher than in 2015. Assuming the ratio between

  11. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China

    Science.gov (United States)

    Ye, Baisheng; Yang, Daqing; Ma, Lijuan

    2012-06-01

    This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959-2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increase leads to the same amount of evapotranspiration increase, since yearly runoff remains unchanged and the long-term storage change is assumed to be zero. Annual runoff and evapotranspiration coefficients change, due to precipitation bias corrections, from 0.33 and 0.67 to 0.28 and 0.72, respectively. These changes will impact the parameterization and calibration of land surface and hydrological models. The bias corrections of precipitation data also improve the relationship between annual precipitation and runoff.

  12. Performance Metrics for Climate Model Evaluation: Application to CMIP5 Precipitation Simulations

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.; Phillips, T. J.

    2013-12-01

    Validation of gridded climate model simulations is fundamental to future improvements in model developments. Among the metrics, the contingency table, which includes a number of categorical indices, is extensively used in evaluation studies. While the categorical indices offer invaluable information, they do not provide any insight into the volume of the variable detected correctly/incorrectly. In this study, the contingency table categorical metrics are extended to volumetric indices for evaluation of gridded data. The suggested indices include (a) Volumetric Hit Index (VHI): volume of correctly detected simulations relative to the volume of the correctly detected simulations and missed observations; (b) Volumetric False Alarm Ratio (VFAR): volume of false simulations relative to the sum of simulations; (c) Volumetric Miss Index (VMI): volume of missed observations relative to the sum of missed observations and correctly detected simulations; and (d) the Volumetric Critical Success Index (VCSI). The latter provides an overall measure of volumetric performance including volumetric hits, false alarms and misses. Numerous studies have emphasized that climate simulations are subject to various biases and uncertainties. The objective of this study is to cross-validate 34 Coupled Model Inter-comparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data using the proposed performance metrics, quantifying model pattern discrepancies and biases for both entire data distributions and their upper tails. The results of the Volumetric Hit Index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas, but their replication of observed precipitation over arid regions and certain sub-continental regions (e.g., northern Eurasia, eastern Russia, central Australia) is problematical. Overall, the VHI of the multi

  13. Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region

    Science.gov (United States)

    Putman, Annie L.; Feng, Xiahong; Sonder, Leslie J.; Posmentier, Eric S.

    2017-04-01

    In this study, precipitation isotopic variations at Barrow, AK, USA, are linked to conditions at the moisture source region, along the transport path, and at the precipitation site. Seventy precipitation events between January 2009 and March 2013 were analyzed for δ2H and deuterium excess. For each precipitation event, vapor source regions were identified with the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) air parcel tracking program in back-cast mode. The results show that the vapor source region migrated annually, with the most distal (proximal) and southerly (northerly) vapor source regions occurring during the winter (summer). This may be related to equatorial expansion and poleward contraction of the polar circulation cell and the extent of Arctic sea ice cover. Annual cycles of vapor source region latitude and δ2H in precipitation were in phase; depleted (enriched) δ2H values were associated with winter (summer) and distal (proximal) vapor source regions. Precipitation δ2H responded to variation in vapor source region as reflected by significant correlations between δ2H with the following three parameters: (1) total cooling between lifted condensation level (LCL) and precipitating cloud at Barrow, ΔTcool, (2) meteorological conditions at the evaporation site quantified by 2 m dew point, Td, and (3) whether the vapor transport path crossed the Brooks and/or Alaskan ranges, expressed as a Boolean variable, mtn. These three variables explained 54 % of the variance (pTcool, 3.23 ± 0.83 ‰ °C-1 (pTcool Tcool explained 3 % of the variance in δ2H, Td alone accounted for 43 %, while mtn explained 2 %. For storms with distal vapor sources (ΔTcool > 7°C), ΔTcool explained 22 %, Td explained only 1 %, and mtn explained 18 %. The deuterium excess annual cycle lagged by 2-3 months during the δ2H cycle, so the direct correlation between the two variables is weak. Vapor source region relative humidity with respect to the sea surface

  14. Natural Gas Monthly, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  15. Natural gas monthly, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

  16. Monthly energy review, January 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents an overview of recent monthly energy statistics. Major activities covered include production, consumption, trade, stocks, and prices for fossil fuels, electricity, and nuclear energy.

  17. Natural gas monthly, July 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

  18. Monthly Program Cost Report (MPCR)

    Data.gov (United States)

    Department of Veterans Affairs — The Monthly Program Cost Report (MPCR) replaces the Cost Distribution Report (CDR). The MPCR provides summary information about Veterans Affairs operational costs,...

  19. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  20. Acid precipitation; an annotated bibliography

    Science.gov (United States)

    Wiltshire, Denise A.; Evans, Margaret L.

    1984-01-01

    This collection of 1660 bibliographies references on the causes and environmental effects of acidic atmospheric deposition was compiled from computerized literature searches of earth-science and chemistry data bases. Categories of information are (1) atmospheric chemistry (gases and aerosols), (2) precipitation chemistry, (3) transport and deposition (wet and dry), (4) aquatic environments (biological and hydrological), (5) terrestrial environments, (6) effects on materials and structures, (7) air and precipitation monitoring and data collection, and (8) modeling studies. References date from the late 1800 's through December 1981. The bibliography includes short summaries of most documents. Omitted are unpublished manuscripts, publications in press, master 's theses and doctoral dissertations, newspaper articles, and book reviews. Coauthors and subject indexes are included. (USGS)

  1. Normalised monthly shortage curves: a contribution for a better understanding of monthly rain deficit in Western Europe

    Science.gov (United States)

    Martínez, M. D.; Lana, X.; Burgueño, A.; Serra, C.

    2012-05-01

    A new approach to the statistics of rainfall shortage at monthly scale in Western Europe is obtained from precipitation records of 115 gauges over the twentieth century. In this paper, a month is considered to have rainfall deficit when its rain amount is below the 50th percentile of the respective calendar month. The monthly shortage, MS, for every month with deficit is then computed as the absolute value of the difference between its monthly amount and the corresponding truncation level. The cumulative distributions of monthly shortage, CMS, and number of shortage months, CNM, constitute a new description of the monthly rainfall deficit. Both CMS and CNM distributions fit well to a Weibull model. Using the analogy to the normalised daily rainfall curves formulation, NRC, the relationship between CMS and CNM, named as normalised shortage curve, NSC, is modelled by the same function applied to NRCs. Similarly to NRCs, the behaviour of the NSCs strongly depends on the coefficient of variation of the monthly shortage, CVMS. Four coordinates characterising every NSC are then introduced: the CMS percentile associated with the median of CNM; the CNM percentile related to the median of CMS; and the percentiles of CMS and CNM for the average monthly shortage. In this way, the degree of asymmetric distribution of the monthly deficit is quantified. With the aim of performing a clustering process based on these four coordinates, a principal component analysis, is previously applied to remove redundancies, being obtained two uncorrelated principal components, PCs, characterising every NSC. An average linkage algorithm is then applied to these two PCs, leading to obtain spatially coherent groups of gauges with very similar NSC patterns. This clustering process permits to discard latitude and vicinity to the Atlantic Ocean or the Mediterranean Sea as main factors conditioning the monthly shortage regime.

  2. Global Precipitation Mission Visualization Tool

    Science.gov (United States)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  3. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: a hypothesis

    OpenAIRE

    T. J. Daley; Mauquoy, D.; F.M. Chambers

    2012-01-01

    Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation and δD and δ18O values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record w...

  4. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: an hypothesis

    OpenAIRE

    T. J. Daley; Mauquoy, D.; F.M. Chambers; Street-Perrott, F. A.; Hughes, P.D.M.; Loader, N.J.; Roland, T. P.; Bellen, S.; Garcia-Meneses, P.; S Lewin

    2012-01-01

    Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation, and δD and δ18O-values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to inves...

  5. Monthly energy review, November 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 61 tabs.

  6. Natural gas monthly, February 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  7. Monthly energy review: April 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This monthly report presents an overview of energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. A section is also included on international energy. The feature paper which is included each month is entitled ``Energy equipment choices: Fuel costs and other determinants.`` 37 figs., 59 tabs.

  8. ULTRAPLATE 30 month management report

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    2003-01-01

    In the period from month 24 to month 30 focus has been on the work-package 3 activities concerning optimisation of the newly developed ULTRAPLATE technology towards specific industrial applications. Three main application areas have been pursued: 1) High- speed plating of lead free solder contact...

  9. Your Baby's Growth: 5 Months

    Science.gov (United States)

    ... to Be Smart About Social Media Your Baby's Growth: 5 Months KidsHealth > For Parents > Your Baby's Growth: 5 Months Print A A A What's in ... your child's birth, the doctor has been recording growth in weight, length, and head size (circumference) during ...

  10. Monthly energy review, November 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 91 tabs.

  11. Natural gas monthly, November 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 27 tabs.

  12. Natural gas monthly, January 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  13. Monthly energy review, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 61 tabs.

  14. Monthly energy review, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 36 figs., 61 tabs.

  15. Monthly energy review, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 61 tabs.

  16. Monthly energy review, January 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 61 tabs.

  17. Monthly energy review, February 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 73 tabs.

  18. Monthly energy review, March 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 74 tabs.

  19. Natural gas monthly, December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  20. Left behind by Birth Month

    Science.gov (United States)

    Solli, Ingeborg Foldøy

    2017-01-01

    Utilizing comprehensive administrative data from Norway I investigate long-term birth month effects. I demonstrate that the oldest children in class have a substantially higher GPA than their younger peers. The birth month differences are larger for low-SES children. Furthermore, I find that the youngest children in class are lagging significantly…

  1. Monthly Energy Review, February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-26

    This monthly publication presents an overview of EIA`s recent monthly energy statistics, covering the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief descriptions (`energy plugs`) on two EIA publications are presented at the start.

  2. Haida Months of the Year.

    Science.gov (United States)

    Cogo, Robert

    Students are introduced to Haida vocabulary in this booklet which briefly describes the seasons and traditional seasonal activities of Southeastern Alaska Natives. The first section lists the months in English and Haida; e.g., January is "Taan Kungaay," or "Bear Hunting Month." The second section contains seasonal names in…

  3. Monthly energy review, November 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 75 tabs.

  4. Monthly energy review, July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs. 73 tabs.

  5. Advances in Satellite Microwave Precipitation Retrieval Algorithms Over Land

    Science.gov (United States)

    Wang, N. Y.; You, Y.; Ferraro, R. R.

    2015-12-01

    Precipitation plays a key role in the earth's climate system, particularly in the aspect of its water and energy balance. Satellite microwave (MW) observations of precipitation provide a viable mean to achieve global measurement of precipitation with sufficient sampling density and accuracy. However, accurate precipitation information over land from satellite MW is a challenging problem. The Goddard Profiling Algorithm (GPROF) algorithm for the Global Precipitation Measurement (GPM) is built around the Bayesian formulation (Evans et al., 1995; Kummerow et al., 1996). GPROF uses the likelihood function and the prior probability distribution function to calculate the expected value of precipitation rate, given the observed brightness temperatures. It is particularly convenient to draw samples from a prior PDF from a predefined database of observations or models. GPROF algorithm does not search all database entries but only the subset thought to correspond to the actual observation. The GPM GPROF V1 database focuses on stratification by surface emissivity class, land surface temperature and total precipitable water. However, there is much uncertainty as to what is the optimal information needed to subset the database for different conditions. To this end, we conduct a database stratification study of using National Mosaic and Multi-Sensor Quantitative Precipitation Estimation, Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Technology Microwave Sounder (ATMS) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA). Our database study (You et al., 2015) shows that environmental factors such as surface elevation, relative humidity, and storm vertical structure and height, and ice thickness can help in stratifying a single large database to smaller and more homogeneous subsets, in which the surface condition and precipitation vertical profiles are similar. It is found that the probability of detection (POD) increases

  6. European climate change experiments on precipitation change

    DEFF Research Database (Denmark)

    Beier, Claus

    Presentation of European activities and networks related to experiments and databases within precipitation change......Presentation of European activities and networks related to experiments and databases within precipitation change...

  7. Seasonal precipitation forecast skill over Iran

    CSIR Research Space (South Africa)

    Shirvani, A

    2015-07-01

    Full Text Available of the Global Precipitation Climatology Centre (GPCC) Version 6 gridded precipitation data, using model output statistics (MOS) developed through the canonical correlation analysis (CCA) option of the Climate Predictability Tool (CPT). Retroactive validations...

  8. River Forecasting Center Quantitative Precipitation Estimate Archive

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Radar indicated-rain gage verified and corrected hourly precipitation estimate on a corrected ~4km HRAP grid. This archive contains hourly estimates of precipitation...

  9. U.S. 15 Minute Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. 15 Minute Precipitation Data is digital data set DSI-3260, archived at the National Climatic Data Center (NCDC). This is precipitation data. The primary source...

  10. Circulation weather types and spatial variability of daily precipitation in the Iberian Peninsula %K circulation weather types, daily gridded precipitation, Iberian Peninsula, spatial variability, seasonal variability

    Science.gov (United States)

    Ramos, Alexandre; Cortesi, Nicola; Trigo, Ricardo

    2014-10-01

    The relationships between atmospheric circulation patterns and daily Iberian rainfall are here explored at high spatial resolution (0.2°) using the Jenkinson and Collison automated classification scheme with 26 Weather Types (WTs). The WTs were computed by means of the daily EMULATE Mean Sea Level Pressure dataset (EMSLP) while the high resolution precipitation database corresponds to the recent Iberia02 daily gridded precipitation dataset over the 1950-2003 period. Six monthly indexes relating the WTs and precipitation were analyzed: their Frequency, the Mean Precipitation, the Percentage Contribution, the Area of Influence, the Precipitation Intensity and Efficiency. Except for the Frequency of the WTs, all other indexes were evaluated studying their spatial distribution over the Iberian Peninsula, focusing on a WT and a month at time. A small number of WTs (7) was found to capture a high percentage (~70%) of monthly Iberian precipitation. The Westerly WT is the most influent one, followed by the Cyclonic, the Northwesterly and the Southwesterly WTs. Westerly flows, however, do not affect the Mediterranean fringe or the Cantabrian coast, which are dominated by the Easterly and Northerly WTs, respectively. Rainfall along the Mediterranean coastline and the Ebro basin depends on a variety of WTs, but their effects are confined to narrow areas and short temporal intervals, suggesting that local factors such as convective processes, orography and the proximity to a warm water body could play a major role in precipitation processes. We show that the use of daily gridded precipitation dataset holds the advantage of measuring the daily rainfall amount due to each WT directly instead to relying on the predicted values of the regression model as done in previous works.

  11. Spatial interpolation methods for monthly rainfalls and temperatures in Basilicata

    Directory of Open Access Journals (Sweden)

    Ferrara A

    2008-12-01

    Full Text Available Spatial interpolated climatic data on grids are important as input in forest modeling because climate spatial variability has a direct effect on productivity and forest growth. Maps of climatic variables can be obtained by different interpolation methods depending on data quality (number of station, spatial distribution, missed data etc. and topographic and climatic features of study area. In this paper four methods are compared to interpolate monthly rainfall at regional scale: 1 inverse distance weighting (IDW; 2 regularized spline with tension (RST; 3 ordinary kriging (OK; 4 universal kriging (UK. Besides, an approach to generate monthly surfaces of temperatures over regions of complex terrain and with limited number of stations is presented. Daily data were gathered from 1976 to 2006 period and then gaps in the time series were filled in order to obtain monthly mean temperatures and cumulative precipitation. Basic statistics of monthly dataset and analysis of relationship of temperature and precipitation to elevation were performed. A linear relationship was found between temperature and altitude, while no relationship was found between rainfall and elevation. Precipitations were then interpolated without taking into account elevation. Based on root mean squared error for each month the best method was ranked. Results showed that universal kriging (UK is the best method in spatial interpolation of rainfall in study area. Then cross validation was used to compare prediction performance of tree different variogram model (circular, spherical, exponential using UK algorithm in order to produce final maps of monthly precipitations. Before interpolating temperatures were referred to see level using the calculated lapse rate and a digital elevation model (DEM. The result of interpolation with RST was then set to originally elevation with an inverse procedure. To evaluate the quality of interpolated surfaces a comparison between interpolated and

  12. The effect of scale in daily precipitation hazard assessment

    Directory of Open Access Journals (Sweden)

    J. J. Egozcue

    2006-01-01

    Full Text Available Daily precipitation is recorded as the total amount of water collected by a rain-gauge in 24 h. Events are modelled as a Poisson process and the 24 h precipitation by a Generalised Pareto Distribution (GPD of excesses. Hazard assessment is complete when estimates of the Poisson rate and the distribution parameters, together with a measure of their uncertainty, are obtained. The shape parameter of the GPD determines the support of the variable: Weibull domain of attraction (DA corresponds to finite support variables as should be for natural phenomena. However, Fréchet DA has been reported for daily precipitation, which implies an infinite support and a heavy-tailed distribution. Bayesian techniques are used to estimate the parameters. The approach is illustrated with precipitation data from the Eastern coast of the Iberian Peninsula affected by severe convective precipitation. The estimated GPD is mainly in the Fréchet DA, something incompatible with the common sense assumption of that precipitation is a bounded phenomenon. The bounded character of precipitation is then taken as a priori hypothesis. Consistency of this hypothesis with the data is checked in two cases: using the raw-data (in mm and using log-transformed data. As expected, a Bayesian model checking clearly rejects the model in the raw-data case. However, log-transformed data seem to be consistent with the model. This fact may be due to the adequacy of the log-scale to represent positive measurements for which differences are better relative than absolute.

  13. The Impact of Precipitation Regimes on Forest Fires in Yunnan Province, Southwest China

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2014-01-01

    Full Text Available The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982–1988 and 1989–2008 in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I–III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.

  14. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  15. The impact of precipitation regimes on forest fires in Yunnan Province, southwest China.

    Science.gov (United States)

    Chen, Feng; Niu, Shukui; Tong, Xiaojuan; Zhao, Jinlong; Sun, Yu; He, Tengfei

    2014-01-01

    The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982-1988 and 1989-2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I-III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.

  16. Monitoring drought conditions and their uncertainties in areas with sparse precipitation data. Evaluation of different precipitation datasets in Africa.

    Science.gov (United States)

    Naumann, G.; Barbosa, P.; Carrao, H.; Singleton, A.; Vogt, J.

    2012-04-01

    Assessment of drought conditions requires understanding regional historical droughts as well as the impacts on human activities during their occurrences. Traditional methods for drought assessment are mainly based on water supply indices derived from precipitation time-series alone. Thus, the main limitation for developing effective real-time drought monitoring and early warning systems in Africa is the lack of reliable and up-to-date precipitation data in many regions of the continent. A sparse distribution of rain gauges and short or incomplete rainfall historical records pose further problems. This lack of information may lead to significant errors in the estimation of statistical parameters for deriving water supply indices from the precipitation time-series. Procedures for drought detection and assessment have a particular level of uncertainty associated to the data and models used. In order to better understand the extent, severity and impact of a drought in a region, it is first necessary to improve the quality of these procedures by using the best available data, theoretical assumptions and model formulations. The main objective of this study is to evaluate the uncertainties due to sample size associated with the estimation of the Standardized Precipitation Index (SPI) and their impact on the possible level of confidence in drought monitoring in Africa. In order to do this, four different rainfall datasets, each available on a monthly basis, were analysed over four river basins in Africa (Oum-er-Rbia, Limpopo, Niger, and Eastern Nile) as well as at continental level. The four precipitation datasets used were the Tropical Rainfall Measuring Mission (TRMM) satellite monthly rainfall product 3B43 (0.25°x0.25°), the Global Precipitation Climatology Centre (GPCC) gridded precipitation dataset V.5 (0.5°x0.5°), the Global Precipitation Climatology Project (GPCP) Global Monthly Merged Precipitation Analyses (2.5°x2.5°), and the Climate Prediction Center

  17. Validation of a homogeneous 41-year (1961-2001) winter precipitation hindcasted dataset over the Iberian Peninsula: assessment of the regional improvement of global reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sotillo, M.G. [Area de Medio Fisico, Puertos del Estado, Madrid (Spain); Martin, M.L. [Universidad de Valladolid, Dpto. Matematica Aplicada, Escuela Universitaria de Informatica, Campus de Segovia, Segovia (Spain); Valero, F. [Universidad Complutense de Madrid, Dpto. Astrofisica y CC. de la Atmosfera, Facultad de CC Fisicas, Madrid (Spain); Luna, M.Y. [Instituto Nacional de Meteorologia, Madrid (Spain)

    2006-11-15

    A 44-year (1958-2001) homogeneous, Mediterranean, high-resolution atmospheric database was generated through dynamical downscaling within the HIPOCAS (Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe) Project framework. This work attempts to provide a validation of the monthly winter HIPOCAS precipitation over the Iberian Peninsula and the Balearic Islands and to evaluate the potential improvement of these new hindcasted data versus global reanalysis datasets. The validation was performed through the comparative analysis with a precipitation database derived from 4,617 in situ stations located over Iberia and the Balearics. The statistical comparative analysis between the observed and the HIPOCAS fields highlights their very good agreement not only in terms of spatial and time distribution, but also in terms of total amount of precipitation. A principal component analysis is carried out, showing that the patterns derived from the HIPOCAS data largely capture the main characteristics of the observed field. Moreover, it is worth to note that the HIPOCAS patterns reproduce accurately the observed regional characteristics linked to the main orographic features of the study domain. The existence of high correlations between the hindcasted and observed principal component time series gives a measure of the model performance ability. An additional comparative study of the HIPOCAS winter precipitation with global reanalysis data (NCEP and ERA) is performed. This study reveals the important regional improvement in the characterization of the observed precipitation introduced by the HIPOCAS hindcast relative to the above global reanalyses. Such improvement is effective not only in terms of total amount values, but also in the spatial distribution, the observed field being much more realistically reproduced by HIPOCAS than by the global reanalysis data. (orig.)

  18. The Dynamics of Halite Precipitation in the Dead Sea: Seasonal and Spatial Variations

    Science.gov (United States)

    Lensky, Nadav G.; Sirota, Ido; Arnon, Ali

    2016-04-01

    The Dead Sea is a deep hypersaline terminal lake that actively precipitates halite as a response to the negative water balance of the lake (evaporation > inflows). From mass balance consideration, a uniform ~3 m thick halite sequence is expected to cover the lake floor following the ~30 m level drop; however such a massive layer does not exist in the shallow water. In this talk we present new insights on the dynamics of halite precipitation and dissolution in a seasonally stratified lake, based on field observations. In situ monthly observations include the depth profile of the following: (i) halite precipitation rate, (ii) temperature, (iii) salinity, (iv) halite saturation, and (v) underwater photography of the sea floor and the water column - documentation of active halite precipitation/dissolution. We found a clear relation between the thermohaline stratification of the water column and halite precipitation/dissolution. The epilimnion experiences seasonal dissolution/precipitation cycle, while the hypolimnion continuously precipitates halite. We discuss the seasonal variations of the atmospheric forcing - the heat and water fluxes, and the response of the lake - thermohaline stratification and the precipitation/dissolution of halite along the water column and lake floor. We also discuss the role of diapycnal flux on the precipitation of halite and the salt fluxes. Geological implications on the lateral extent and thickness variations of evaporitic layers in evaporitic environments are also discussed.

  19. Nickel hydroxide precipitation from aqueous sulfate media

    Science.gov (United States)

    Sist, Cinziana; Demopoulos, George P.

    2003-08-01

    Hydrometallurgical processing of laterite ores constitutes a major industrial and R&D activity in extractive metallurgy. In some of the process flowsheets, nickel hydroxide precipitation is incorporated. For these operations, the optimization of nickel hydroxide precipitation is important to assure efficiency and product quality. The main objective of this investigation was to study and improve the precipitation characteristics of Ni(OH)2 in a sulfate system using supersaturation controlled precipitation.

  20. Spatially-based quality control for daily precipitation datasets

    Science.gov (United States)

    Serrano-Notivoli, Roberto; de Luis, Martín; Beguería, Santiago; Ángel Saz, Miguel

    2016-04-01

    There are many reasons why wrong data can appear in original precipitation datasets but their common characteristic is that all of them do not correspond to the natural variability of the climate variable. For this reason, is necessary a comprehensive analysis of the data of each station in each day, to be certain that the final dataset will be consistent and reliable. Most of quality control techniques applied over daily precipitation are based on the comparison of each observed value with the rest of values in same series or in reference series built from its nearest stations. These methods are inherited from monthly precipitation studies, but in daily scale the variability is bigger and the methods have to be different. A common character shared by all of these approaches is that they made reconstructions based on the best-correlated reference series,