WorldWideScience

Sample records for monthly precipitation series

  1. Predictability of monthly temperature and precipitation using automatic time series forecasting methods

    Science.gov (United States)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2018-02-01

    We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.

  2. Occurrence Probabilities of Wet and Dry Periods in Southern Italy through the SPI Evaluated on Synthetic Monthly Precipitation Series

    Directory of Open Access Journals (Sweden)

    Tommaso Caloiero

    2018-03-01

    Full Text Available The present article investigates dry and wet periods in a large area of the Mediterranean basin. First, a stochastic model was applied to a homogeneous database of monthly precipitation values of 46 rain gauges in five regions of southern Italy. In particular, after estimating the model parameters, a set of 104 years of monthly precipitation for each rain gauge was generated by means of a Monte Carlo technique. Then, dry and wet periods were analyzed through the application of the standardized precipitation index (SPI over 3-month and 6-month timespan (short-term and 12-month and 24-month period (long-term. As a result of the SPI application on the generated monthly precipitation series, higher occurrence probabilities of dry conditions than wet conditions have been detected, especially when long-term precipitation scales are considered.

  3. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-11-01

    Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.

  4. High resolution reconstruction of monthly precipitation of Iberian Peninsula using circulation weather types

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; Gonzalez-Hidalgo, J. C.; Ramos, A. M.

    2012-06-01

    Precipitation over the Iberian Peninsula (IP) is highly variable and shows large spatial contrasts between wet mountainous regions, to the north, and dry regions in the inland plains and southern areas. In this work, a high-density monthly precipitation dataset for the IP was coupled with a set of 26 atmospheric circulation weather types (Trigo and DaCamara, 2000) to reconstruct Iberian monthly precipitation from October to May with a very high resolution of 3030 precipitation series (overall mean density one station each 200 km2). A stepwise linear regression model with forward selection was used to develop monthly reconstructed precipitation series calibrated and validated over 1948-2003 period. Validation was conducted by means of a leave-one-out cross-validation over the calibration period. The results show a good model performance for selected months, with a mean coefficient of variation (CV) around 0.6 for validation period, being particularly robust over the western and central sectors of IP, while the predicted values in the Mediterranean and northern coastal areas are less acute. We show for three long stations (Lisbon, Madrid and Valencia) the comparison between model and original data as an example to how these models can be used in order to obtain monthly precipitation fields since the 1850s over most of IP for this very high density network.

  5. Probability of occurrence of monthly and seasonal winter precipitation over Northwest India based on antecedent-monthly precipitation

    Science.gov (United States)

    Nageswararao, M. M.; Mohanty, U. C.; Dimri, A. P.; Osuri, Krishna K.

    2018-05-01

    Winter (December, January, and February (DJF)) precipitation over northwest India (NWI) is mainly associated with the eastward moving mid-latitude synoptic systems, western disturbances (WDs), embedded within the subtropical westerly jet (SWJ), and is crucial for Rabi (DJF) crops. In this study, the role of winter precipitation at seasonal and monthly scale over NWI and its nine meteorological subdivisions has been analyzed. High-resolution (0.25° × 0.25°) gridded precipitation data set of India Meteorological Department (IMD) for the period of 1901-2013 is used. Results indicated that the seasonal precipitation over NWI is below (above) the long-term mean in most of the years, when precipitation in any of the month (December/January/February) is in deficit (excess). The contribution of December precipitation (15-20%) to the seasonal (DJF) precipitation is lesser than January (35-40%) and February (35-50%) over all the subdivisions. December (0.60), January (0.57), and February (0.69) precipitation is in-phase (correlation) with the corresponding winter season precipitation. However, January precipitation is not in-phase with the corresponding December (0.083) and February (-0.03) precipitation, while December is in-phase with the February (0.21). When monthly precipitation (December or January or December-January or February) at subdivision level over NWI is excess (deficit); then, the probability of occurrence of seasonal excess (deficit) precipitation is high (almost nil). When antecedent-monthly precipitation is a deficit or excess, the probability of monthly (January or February or January + February) precipitation to be a normal category is >60% over all the subdivisions. This study concludes that the December precipitation is a good indicator to estimate the performance of January, February, January-February, and the seasonal (DJF) precipitation.

  6. HOMPRA Europe - A gridded precipitation data set from European homogenized time series

    Science.gov (United States)

    Rustemeier, Elke; Kapala, Alice; Meyer-Christoffer, Anja; Finger, Peter; Schneider, Udo; Venema, Victor; Ziese, Markus; Simmer, Clemens; Becker, Andreas

    2017-04-01

    Reliable monitoring data are essential for robust analyses of climate variability and, in particular, long-term trends. In this regard, a gridded, homogenized data set of monthly precipitation totals - HOMPRA Europe (HOMogenized PRecipitation Analysis of European in-situ data)- is presented. The data base consists of 5373 homogenized monthly time series, a carefully selected subset held by the Global Precipitation Climatology Centre (GPCC). The chosen series cover the period 1951-2005 and contain less than 10% missing values. Due to the large number of data, an automatic algorithm had to be developed for the homogenization of these precipitation series. In principal, the algorithm is based on three steps: * Selection of overlapping station networks in the same precipitation regime, based on rank correlation and Ward's method of minimal variance. Since the underlying time series should be as homogeneous as possible, the station selection is carried out by deterministic first derivation in order to reduce artificial influences. * The natural variability and trends were temporally removed by means of highly correlated neighboring time series to detect artificial break-points in the annual totals. This ensures that only artificial changes can be detected. The method is based on the algorithm of Caussinus and Mestre (2004). * In the last step, the detected breaks are corrected monthly by means of a multiple linear regression (Mestre, 2003). Due to the automation of the homogenization, the validation of the algorithm is essential. Therefore, the method was tested on artificial data sets. Additionally the sensitivity of the method was tested by varying the neighborhood series. If available in digitized form, the station history was also used to search for systematic errors in the jump detection. Finally, the actual HOMPRA Europe product is produced by interpolation of the homogenized series onto a 1° grid using one of the interpolation schems operationally at GPCC

  7. Benchmarking a geostatistical procedure for the homogenisation of annual precipitation series

    Science.gov (United States)

    Caineta, Júlio; Ribeiro, Sara; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina

    2014-05-01

    The European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), has brought to attention the importance of establishing reliable homogenisation methods for climate data. In order to achieve that, a benchmark data set, containing monthly and daily temperature and precipitation data, was created to be used as a comparison basis for the effectiveness of those methods. Several contributions were submitted and evaluated by a number of performance metrics, validating the results against realistic inhomogeneous data. HOME also led to the development of new homogenisation software packages, which included feedback and lessons learned during the project. Preliminary studies have suggested a geostatistical stochastic approach, which uses Direct Sequential Simulation (DSS), as a promising methodology for the homogenisation of precipitation data series. Based on the spatial and temporal correlation between the neighbouring stations, DSS calculates local probability density functions at a candidate station to detect inhomogeneities. The purpose of the current study is to test and compare this geostatistical approach with the methods previously presented in the HOME project, using surrogate precipitation series from the HOME benchmark data set. The benchmark data set contains monthly precipitation surrogate series, from which annual precipitation data series were derived. These annual precipitation series were subject to exploratory analysis and to a thorough variography study. The geostatistical approach was then applied to the data set, based on different scenarios for the spatial continuity. Implementing this procedure also promoted the development of a computer program that aims to assist on the homogenisation of climate data, while minimising user interaction. Finally, in order to compare the effectiveness of this methodology with the homogenisation methods submitted during the HOME project, the obtained results

  8. Climate Prediction Center (CPC) Global Precipitation Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global precipitation time series provides time series charts showing observations of daily precipitation as well as accumulated precipitation compared to normal...

  9. High resolution reconstruction of monthly autumn and winter precipitation of Iberian Peninsula for last 150 years.

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; González-Hidalgo, J. C.; Ramos, A.

    2012-04-01

    Precipitation over Iberian Peninsula (IP) presents large values of interannual variability and large spatial contrasts between wet mountainous regions in the north and dry regions in the southern plains. Unlike other European regions, IP was poorly monitored for precipitation during 19th century. Here we present a new approach to fill this gap. A set of 26 atmospheric circulation weather types (Trigo R.M. and DaCamara C.C., 2000) derived from a recent SLP dataset, the EMULATE (European and North Atlantic daily to multidecadal climate variability) Project, was used to reconstruct Iberian monthly precipitation from October to March during 1851-1947. Principal Component Regression Analysis was chosen to develop monthly precipitation reconstruction back to 1851 and calibrated over 1948-2003 period for 3030 monthly precipitation series of high-density homogenized MOPREDAS (Monthly Precipitation Database for Spain and Portugal) database. Validation was conducted over 1920-1947 at 15 key site locations. Results show high model performance for selected months, with a mean coefficient of variation (CV) around 0.6 during validation period. Lower CV values were achieved in western area of IP. Trigo, R. M., and DaCamara, C.C., 2000: "Circulation weather types and their impact on the precipitation regime in Portugal". Int. J. Climatol., 20, 1559-1581.

  10. Climate Prediction Center (CPC) Three Month Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a series of thirteen probabilistic three-month precipitation outlooks for the United States. CPC issues the thirteen...

  11. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  12. Homogenization of monthly precipitation time series in Croatia

    Czech Academy of Sciences Publication Activity Database

    Zahradníček, Pavel; Rasol, D.; Cindric, K.; Štěpánek, Petr

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3671-3682 ISSN 0899-8418 R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : homogenization * Croatia * precipitation * inhomogeneities * break points Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.157, year: 2014

  13. Homogenization of long instrumental temperature and precipitation series over the Spanish Northern Coast

    Science.gov (United States)

    Sigro, J.; Brunet, M.; Aguilar, E.; Stoll, H.; Jimenez, M.

    2009-04-01

    The Spanish-funded research project Rapid Climate Changes in the Iberian Peninsula (IP) Based on Proxy Calibration, Long Term Instrumental Series and High Resolution Analyses of Terrestrial and Marine Records (CALIBRE: ref. CGL2006-13327-C04/CLI) has as main objective to analyse climate dynamics during periods of rapid climate change by means of developing high-resolution paleoclimate proxy records from marine and terrestrial (lakes and caves) deposits over the IP and calibrating them with long-term and high-quality instrumental climate time series. Under CALIBRE, the coordinated project Developing and Enhancing a Climate Instrumental Dataset for Calibrating Climate Proxy Data and Analysing Low-Frequency Climate Variability over the Iberian Peninsula (CLICAL: CGL2006-13327-C04-03/CLI) is devoted to the development of homogenised climate records and sub-regional time series which can be confidently used in the calibration of the lacustrine, marine and speleothem time series generated under CALIBRE. Here we present the procedures followed in order to homogenise a dataset of maximum and minimum temperature and precipitation data on a monthly basis over the Spanish northern coast. The dataset is composed of thirty (twenty) precipitation (temperature) long monthly records. The data are quality controlled following the procedures recommended by Aguilar et al. (2003) and tested for homogeneity and adjusted by following the approach adopted by Brunet et al. (2008). Sub-regional time series of precipitation, maximum and minimum temperatures for the period 1853-2007 have been generated by averaging monthly anomalies and then adding back the base-period mean, according to the method of Jones and Hulme (1996). Also, a method to adjust the variance bias present in regional time series associated over time with varying sample size has been applied (Osborn et al., 1997). The results of this homogenisation exercise and the development of the associated sub-regional time series

  14. A precipitation database of station-based daily and monthly measurements for West Africa: Overview, quality control and harmonization

    Science.gov (United States)

    Bliefernicht, Jan; Waongo, Moussa; Annor, Thompson; Laux, Patrick; Lorenz, Manuel; Salack, Seyni; Kunstmann, Harald

    2017-04-01

    West Africa is a data sparse region. High quality and long-term precipitation data are often not readily available for applications in hydrology, agriculture, meteorology and other needs. To close this gap, we use multiple data sources to develop a precipitation database with long-term daily and monthly time series. This database was compiled from 16 archives including global databases e.g. from the Global Historical Climatology Network (GHCN), databases from research projects (e.g. the AMMA database) and databases of the national meteorological services of some West African countries. The collection consists of more than 2000 precipitation gauges with measurements dating from 1850 to 2015. Due to erroneous measurements (e.g. temporal offsets, unit conversion errors), missing values and inconsistent meta-data, the merging of this precipitation dataset is not straightforward and requires a thorough quality control and harmonization. To this end, we developed geostatistical-based algorithms for quality control of individual databases and harmonization to a joint database. The algorithms are based on a pairwise comparison of the correspondence of precipitation time series in dependence to the distance between stations. They were tested for precipitation time series from gages located in a rectangular domain covering Burkina Faso, Ghana, Benin and Togo. This harmonized and quality controlled precipitation database was recently used for several applications such as the validation of a high resolution regional climate model and the bias correction of precipitation projections provided the Coordinated Regional Climate Downscaling Experiment (CORDEX). In this presentation, we will give an overview of the novel daily and monthly precipitation database and the algorithms used for quality control and harmonization. We will also highlight the quality of global and regional archives (e.g. GHCN, GSOD, AMMA database) in comparison to the precipitation databases provided by the

  15. Repeated and random components in Oklahoma's monthly precipitation record

    Science.gov (United States)

    Precipitation across Oklahoma exhibits a high degree of spatial and temporal variability and creates numerous water resources management challenges. The monthly precipitation record of the Central Oklahoma climate division was evaluated in a proof-of-concept to establish whether a simple monthly pre...

  16. Detecting quasi-oscillations in the monthly precipitation regimes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    L. Morala

    2003-03-01

    Full Text Available A spectral analysis of the time series corresponding to the main monthly precipitation regimes of the Iberian Peninsula was performed using two methods, the Multi-Taper Method and Monte Carlo Singular Spectrum Analysis. The Multi-Taper Method gave a preliminary view of the presence of signals in some of the time series. Monte Carlo Singular Spectrum Analysis discriminated between potential oscillations and noise. From the results of the two methods it is concluded that there exist three significant quasi-oscillations at the 95% level of confidence: a 5.0 year quasi-oscillation and a long-term trend in the Atlantic pattern of March, a 3.2 year quasi-oscillation in the Cantabrian pattern of January, and a 4.0 year quasi-oscillation in the Catalonian pattern of February. These quasi-oscillations might be related to climatic variations with similar periodicities over the North Atlantic Ocean. The possible simultaneity of high values of precipitation generated by the significant quasi-oscillations and high sea–level pressures was studied by means of composite maps. It was found that high values of precipitation generated by the oscillations of the Atlantic patterns of January and March exist simultaneously with a specific high pressure structure over the North Atlantic Ocean, that allow cyclonic perturbations to cross the Iberian Peninsula. During the non-wet years, this high pressure structure moves northwards, keeping the track of the low pressure centers to the north, far from the Iberian Peninsula. On the other hand, high values of precipitation generated by the oscillation of the Cantabrian pattern of January exist simultaneously with a high pressure structure over the Galicia region and the Cantabrian Sea, that allow a northerly flow over the region. Also, a positive trend in the NAO index for March has been found, starting in the sixties, which is not evident for other winter months. This trend agrees with the decreasing trend found in the

  17. Adjusted monthly temperature and precipitation values for Guinea Conakry (1941-2010) using HOMER.

    Science.gov (United States)

    Aguilar, Enric; Aziz Barry, Abdoul; Mestre, Olivier

    2013-04-01

    Africa is a data sparse region and there are very few studies presenting homogenized monthly records. In this work, we introduce a dataset consisting of 12 stations spread over Guinea Conakry containing daily values of maximum and minimum temperature and accumulated rainfall for the period 1941-2010. The daily values have been quality controlled using R-Climdex routines, plus other interactive quality control applications, coded by the authors. After applying the different tests, more than 200 daily values were flagged as doubtful and carefully checked against the statistical distribution of the series and the rest of the dataset. Finally, 40 values were modified or set to missing and the rest were validated. The quality controlled daily dataset was used to produce monthly means and homogenized with HOMER, a new R-pacakge which includes the relative methods that performed better in the experiments conducted in the framework of the COST-HOME action. A total number of 38 inhomogeneities were found for temperature. As a total of 788 years of data were analyzed, the average ratio was one break every 20.7 years. The station with a larger number of inhomogeneities was Conakry (5 breaks) and one station, Kissidougou, was identified as homogeneous. The average number of breaks/station was 3.2. The mean value of the monthly factors applied to maximum (minimum) temperature was 0.17 °C (-1.08 °C) . For precipitation, due to the demand of a denser network to correctly homogenize this variable, only two major inhomogeneities in Conakry (1941-1961, -12%) and Kindia (1941-1976, -10%) were corrected. The adjusted dataset was used to compute regional series for the three variables and trends for the 1941-2010 period. The regional mean has been computed by simply averaging anomalies to 1971-2000 of the 12 time series. Two different versions have been obtained: a first one (A) makes use of the missing values interpolation made by HOMER (so all annual values in the regional series

  18. Tritium time series in precipitation of Rm. Valcea, Romania.

    Science.gov (United States)

    Varlam, Carmen; Duliu, Octavian G; Faurescu, Ionut; Vagner, Irina; Faurescu, Denisa

    2016-01-01

    Following tritium concentration records in precipitation for the period 1999-2013 and tritium concentration behaviour during this period for the Ramnicu Valcea (Rm. Valcea) location, the tritium level of individual precipitations of the late spring and summer for the 2009-2013 period was investigated. Despite good correlation between monthly mean tritium concentrations and monthly mean precipitations over the 15-year period of observations (Pearson coefficient 0.87), the individual precipitations had no linear correlation between the tritium concentration and the amount of precipitation.

  19. Monthly Mean Precipitation Sums at Russian Arctic Stations, 1966-1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly mean precipitation sums from Russian arctic stations. Precipitation measurements were acquired using a Tretyakov precipitation gauge....

  20. The linkage between geopotential height and monthly precipitation in Iran

    Science.gov (United States)

    Shirvani, Amin; Fadaei, Amir Sabetan; Landman, Willem A.

    2018-04-01

    This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly precipitation over Iran for the period 1968-2010. The monthly precipitation dataset for 50 synoptic stations distributed in different climate regions of Iran is considered as the response variable in the CCA. The monthly geopotential height reanalysis dataset over an area between 10° N and 60° N and from 20° E to 80° E is utilized as the explanatory variable in the CCA. Principal component analysis (PCA) as a pre-filter is used for data reduction for both explanatory and response variables before applying CCA. The optimal number of principal components and canonical variables to be retained in the CCA equations is determined using the highest average cross-validated Kendall's tau value. The 850 hPa geopotential height pattern over the Red Sea, Saudi Arabia, and Persian Gulf is found to be the major pattern related to Iranian monthly precipitation. The Pearson correlation between the area averaged of the observed and predicted precipitation over the study area for Jan, Feb, March, April, November, and December months are statistically significant at the 5% significance level and are 0.78, 0.80, 0.82, 0.74, 0.79, and 0.61, respectively. The relative operating characteristic (ROC) indicates that the highest scores for the above- and below-normal precipitation categories are, respectively, for February and April and the lowest scores found for December.

  1. Application study of monthly precipitation forecast in Northeast China based on the cold vortex persistence activity index

    Science.gov (United States)

    Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng

    2018-03-01

    This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.

  2. The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation.

    Science.gov (United States)

    Bertacchi Uvo, Cintia; Repelli, Carlos A.; Zebiak, Stephen E.; Kushnir, Yochanan

    1998-04-01

    The monthly patterns of northeast Brazil (NEB) precipitation are analyzed in relation to sea surface temperature (SST) in the tropical Pacific and Atlantic Oceans, using singular value decomposition. It is found that the relationships between precipitation and SST in both basins vary considerably throughout the rainy season (February-May). In January, equatorial Pacific SST is weakly correlated with precipitation in small areas of southern NEB, but Atlantic SST shows no significant correlation with regional precipitation. In February, Pacific SST is not well related to precipitation, but south equatorial Atlantic SST is positively correlated with precipitation over the northern Nordeste, the latter most likely reflecting an anomalously early (or late) southward migration of the ITCZ precipitation zone. During March, equatorial Pacific SST is negatively correlated with Nordeste precipitation, but no consistent relationship between precipitation and Atlantic SST is found. Atlantic SST-precipitation correlations for April and May are the strongest found among all months or either ocean. Precipitation in the Nordeste is positively correlated with SST in the south tropical Atlantic and negatively correlated with SST in the north tropical Atlantic. These relationships are strong enough to determine the structure of the seasonal mean SST-precipitation correlations, even though the corresponding patterns for the earlier months of the season are quite different. Pacific SST-precipitation correlations for April and May are similar to those for March. Extreme wet (dry) years for the Nordeste occur when both Pacific and Atlantic SST patterns for April and May occur simultaneously. A separate analysis reinforces previous findings in showing that SST in the tropical Pacific and the northern tropical Atlantic are positively correlated and that tropical Pacific-south Atlantic correlations are negligible.Time-lagged analyses show the potential for forecasting either seasonal mean

  3. Spatial analysis of precipitation time series over the Upper Indus Basin

    Science.gov (United States)

    Latif, Yasir; Yaoming, Ma; Yaseen, Muhammad

    2018-01-01

    The upper Indus basin (UIB) holds one of the most substantial river systems in the world, contributing roughly half of the available surface water in Pakistan. This water provides necessary support for agriculture, domestic consumption, and hydropower generation; all critical for a stable economy in Pakistan. This study has identified trends, analyzed variability, and assessed changes in both annual and seasonal precipitation during four time series, identified herein as: (first) 1961-2013, (second) 1971-2013, (third) 1981-2013, and (fourth) 1991-2013, over the UIB. This study investigated spatial characteristics of the precipitation time series over 15 weather stations and provides strong evidence of annual precipitation by determining significant trends at 6 stations (Astore, Chilas, Dir, Drosh, Gupis, and Kakul) out of the 15 studied stations, revealing a significant negative trend during the fourth time series. Our study also showed significantly increased precipitation at Bunji, Chitral, and Skardu, whereas such trends at the rest of the stations appear insignificant. Moreover, our study found that seasonal precipitation decreased at some locations (at a high level of significance), as well as periods of scarce precipitation during all four seasons. The observed decreases in precipitation appear stronger and more significant in autumn; having 10 stations exhibiting decreasing precipitation during the fourth time series, with respect to time and space. Furthermore, the observed decreases in precipitation appear robust and more significant for regions at high elevation (>1300 m). This analysis concludes that decreasing precipitation dominated the UIB, both temporally and spatially including in the higher areas.

  4. Flood triggering in Switzerland: the role of daily to monthly preceding precipitation

    Science.gov (United States)

    Froidevaux, P.; Schwanbeck, J.; Weingartner, R.; Chevalier, C.; Martius, O.

    2015-09-01

    Determining the role of different precipitation periods for peak discharge generation is crucial for both projecting future changes in flood probability and for short- and medium-range flood forecasting. In this study, catchment-averaged daily precipitation time series are analyzed prior to annual peak discharge events (floods) in Switzerland. The high number of floods considered - more than 4000 events from 101 catchments have been analyzed - allows to derive significant information about the role of antecedent precipitation for peak discharge generation. Based on the analysis of precipitation times series, a new separation of flood-related precipitation periods is proposed: (i) the period 0 to 1 day before flood days, when the maximum flood-triggering precipitation rates are generally observed, (ii) the period 2 to 3 days before flood days, when longer-lasting synoptic situations generate "significantly higher than normal" precipitation amounts, and (iii) the period from 4 days to 1 month before flood days when previous wet episodes may have already preconditioned the catchment. The novelty of this study lies in the separation of antecedent precipitation into the precursor antecedent precipitation (4 days before floods or earlier, called PRE-AP) and the short range precipitation (0 to 3 days before floods, a period when precipitation is often driven by one persistent weather situation like e.g., a stationary low-pressure system). A precise separation of "antecedent" and "peak-triggering" precipitation is not attempted. Instead, the strict definition of antecedent precipitation periods permits a direct comparison of all catchments. The precipitation accumulating 0 to 3 days before an event is the most relevant for floods in Switzerland. PRE-AP precipitation has only a weak and region-specific influence on flood probability. Floods were significantly more frequent after wet PRE-AP periods only in the Jura Mountains, in the western and eastern Swiss plateau, and at

  5. Reconstruction of tritium time series in precipitation

    International Nuclear Information System (INIS)

    Celle-Jeanton, H.; Gourcy, L.; Aggarwal, P.K.

    2002-01-01

    Tritium is commonly used in groundwaters studies to calculate the recharge rate and to identify the presence of a modern recharge. The knowledge of 3 H precipitation time series is then very important for the study of groundwater recharge. Rozanski and Araguas provided good information on precipitation tritium content in 180 stations of the GNIP network to the end of 1987, but it shows some lacks of measurements either within one chronicle or within one region (the Southern hemisphere for instance). Therefore, it seems to be essential to find a method to recalculate data for a region where no measurement is available.To solve this problem, we propose another method which is based on triangulation. It needs the knowledge of 3 H time series of 3 stations surrounding geographically the 4-th station for which tritium input curve has to be reconstructed

  6. A 305-year continuous monthly rainfall series for the island of Ireland (1711–2016

    Directory of Open Access Journals (Sweden)

    C. Murphy

    2018-03-01

    Full Text Available A continuous 305-year (1711–2016 monthly rainfall series (IoI_1711 is created for the Island of Ireland. The post 1850 series draws on an existing quality assured rainfall network for Ireland, while pre-1850 values come from instrumental and documentary series compiled, but not published by the UK Met Office. The series is evaluated by comparison with independent long-term observations and reconstructions of precipitation, temperature and circulation indices from across the British–Irish Isles. Strong decadal consistency of IoI_1711 with other long-term observations is evident throughout the annual, boreal spring and autumn series. Annually, the most recent decade (2006–2015 is found to be the wettest in over 300 years. The winter series is probably too dry between the 1740s and 1780s, but strong consistency with other long-term observations strengthens confidence from 1790 onwards. The IoI_1711 series has remarkably wet winters during the 1730s, concurrent with a period of strong westerly airflow, glacial advance throughout Scandinavia and near unprecedented warmth in the Central England Temperature record – all consistent with a strongly positive phase of the North Atlantic Oscillation. Unusually wet summers occurred in the 1750s, consistent with proxy (tree-ring reconstructions of summer precipitation in the region. Our analysis shows that inter-decadal variability of precipitation is much larger than previously thought, while relationships with key modes of climate variability are time-variant. The IoI_1711 series reveals statistically significant multi-centennial trends in winter (increasing and summer (decreasing seasonal precipitation. However, given uncertainties in the early winter record, the former finding should be regarded as tentative. The derived record, one of the longest continuous series in Europe, offers valuable insights for understanding multi-decadal and centennial rainfall variability in Ireland, and provides a

  7. Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscale entropy approach.

    Science.gov (United States)

    Roushangar, Kiyoumars; Alizadeh, Farhad; Adamowski, Jan

    2018-08-01

    Understanding precipitation on a regional basis is an important component of water resources planning and management. The present study outlines a methodology based on continuous wavelet transform (CWT) and multiscale entropy (CWME), combined with self-organizing map (SOM) and k-means clustering techniques, to measure and analyze the complexity of precipitation. Historical monthly precipitation data from 1960 to 2010 at 31 rain gauges across Iran were preprocessed by CWT. The multi-resolution CWT approach segregated the major features of the original precipitation series by unfolding the structure of the time series which was often ambiguous. The entropy concept was then applied to components obtained from CWT to measure dispersion, uncertainty, disorder, and diversification of subcomponents. Based on different validity indices, k-means clustering captured homogenous areas more accurately, and additional analysis was performed based on the outcome of this approach. The 31 rain gauges in this study were clustered into 6 groups, each one having a unique CWME pattern across different time scales. The results of clustering showed that hydrologic similarity (multiscale variation of precipitation) was not based on geographic contiguity. According to the pattern of entropy across the scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation data in each cluster. Based on the pattern of mean CWME for each cluster, a characteristic signature was assigned, which provided an estimation of the CWME of a cluster across scales of 1-2, 3-8, and 9-13 months relative to other stations. The validity of the homogeneous clusters demonstrated the usefulness of the proposed approach to regionalize precipitation. Further analysis based on wavelet coherence (WTC) was performed by selecting central rain gauges in each cluster and analyzing against temperature, wind, Multivariate ENSO index (MEI), and East Atlantic (EA) and

  8. Simulations of monthly mean nitrate concentrations in precipitation over East Asia

    International Nuclear Information System (INIS)

    Junling An; Xinjin Cheng; Ueda, Hiromasa; Kajino, Mizuo

    2002-01-01

    Monthly mean nitrate concentrations in precipitation over East Asia (10-55 o N, 75-155 o E) in April, July, September, and December of 1999 were simulated by using a regional air quality Eulerian model (RAQM) with meteorological fields four times per day taken from National Centers for Environmental Prediction. The distribution of the nitrate concentration in precipitation depends significantly on the emission patterns of nitrogen oxides (NO x =NO+NO 2 ) and volatile organic compound (VOC) and seasonal precipitation variability. The downward trend is also revealed, particularly on July and December. Highest concentrations are found in the industrialized regions, i.e., the coastal area of the Mainland of China, the Bay of the Huanghai Sea and the Bohai Sea, Korea, and Southern Japan. Long-range transport may cause elevated concentrations in remote areas downwind of the industrialized regions under favorable meteorological conditions, e.g., low precipitation. Comparison of observation and simulations indicates that the RAQM model reasonably predicts synoptic-scale changes in different months (seasons) and simulated nitrate levels in 4 months fit observed data with the discrepancy within a factor of 2. Exclusion of liquid chemistry within clouds is feasible for regional (1 o x1 o ) and long-term (monthly) nitrate simulations. The uncertainty originates mainly from that of the emission data and modeled precipitation amounts and initial and boundary conditions. (author)

  9. The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation

    Directory of Open Access Journals (Sweden)

    Danica Ciric

    2018-04-01

    Full Text Available Moisture transport from its sources to surrounding continents is one of the most relevant topics in hydrology, and its role in extreme events is crucial for understanding several processes such as intense precipitation and flooding. In this study, we considered the Mediterranean Sea as the main water source and estimated its contribution to the monthly climatological and extreme precipitation events over the surrounding continental areas. To assess the effect of the Mediterranean Sea on precipitation, we used the Multi-Source Weighted-Ensemble Precipitation (MSWEP database to characterize precipitation. The Lagrangian dispersion model known as FLEXPART was used to estimate the moisture contribution of this source. This contribution was estimated by tracking particles that leave the Mediterranean basin monthly and then calculating water loss (E − P < 0 over the continental region, which was modelled by FLEXPART. The analysis was conducted using data from 1980 to 2015 with a spatial resolution of 0.25°. The results showed that, in general, the spatial pattern of the Mediterranean source’s contribution to precipitation, unlike climatology, is similar during extreme precipitation years in the regions under study. However, while the Mediterranean Sea is usually not an important source of climatological precipitation for some European regions, it is a significant source during extreme precipitation years.

  10. The forcing of monthly precipitation variability over Southwest Asia during the Boreal cold season

    Science.gov (United States)

    Hoell, Andrew; Shukla, Shraddhanand; Barlow, Mathew; Cannon, Forest; Kelley, Colin; Funk, Christopher C.

    2015-01-01

    Southwest Asia, deemed as the region containing the countries of Afghanistan, Iran, Iraq and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during8 the boreal cold season of November-April. The forcing of Southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. Here, we examine the inter-monthly differences in precipitation variability over Southwest Asia and the atmospheric conditions directly responsible in forcing monthly November-April precipitation. Seasonally averaged November-April precipitation over Southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific Decadal Variability (PDV), the El Nino-Southern Oscillation (ENSO) and the warming trend of SST (Trend). On the contrary, the precipitation variability during individual months of November-April are unrelated and are correlated with SST signatures that include PDV, ENSO and Trend in different combinations. Despite strong inter-monthly differences in precipitation variability during November- April over Southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric waves on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean temperature gradient, resulting in temperature advection that is balanced by vertical motions over Southwest Asia. The forcing of monthly Southwest Asia precipitation by equivalent barotropic Rossby waves is different than the forcing by baroclinic Rossby waves associated with tropically-forced-only modes of climate variability.

  11. Global Precipitation Analyses at Time Scales of Monthly to 3-Hourly

    Science.gov (United States)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2002-01-01

    Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the Goodyear data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the Goodyear period. Monthly anomalies of precipitation are related to ENRON variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 degree latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based Based analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous OR observations and merges the various calibrated observations into a final, Baehr resolution map. This TRMM standard product will be available for the entire TRMM period (January Represent). A real-time version of this merged product is being produced and is available at 0.25 degree latitude-longitude resolution over the latitude range from 50 deg. N -50 deg. S. Examples will be shown, including its use in monitoring flood conditions.

  12. RECONSTRUCTION OF PRECIPITATION SERIES AND ANALYSIS OF CLIMATE CHANGE OVER PAST 500 YEARS IN NORTHERN CHINA

    Institute of Scientific and Technical Information of China (English)

    RONG Yan-shu; TU Qi-pu

    2005-01-01

    It is important and necessary to get a much longer precipitation series in order to research features of drought/flood and climate change.Based on dryness and wetness grades series of 18 stations in Northern China of 533 years from 1470 to 2002, the Moving Cumulative Frequency Method (MCFM) was developed, moving average precipitation series from 1499 to 2002 were reconstructed by testing three kinds of average precipitation, and the features of climate change and dry and wet periods were researched by using reconstructed precipitation series in the present paper.The results showed that there were good relationship between the reconstructed precipitation series and the observation precipitation series since 1954 and their relative root-mean-square error were below 1.89%, that the relation between reconstructed series and the dryness and wetness grades series were nonlinear and this nonlinear relation implied that reconstructed series were reliable and could became foundation data for researching evolution of the drought and flood.Analysis of climate change upon reconstructed precipitation series revealed that although drought intensity of recent dry period from middle 1970s of 20th century until early 21st century was not the strongest in historical climate of Northern China, intensity and duration of wet period was a great deal decreasing and shortening respectively, climate evolve to aridification situation in Northern China.

  13. Statistical significance of trends in monthly heavy precipitation over the US

    KAUST Repository

    Mahajan, Salil

    2011-05-11

    Trends in monthly heavy precipitation, defined by a return period of one year, are assessed for statistical significance in observations and Global Climate Model (GCM) simulations over the contiguous United States using Monte Carlo non-parametric and parametric bootstrapping techniques. The results from the two Monte Carlo approaches are found to be similar to each other, and also to the traditional non-parametric Kendall\\'s τ test, implying the robustness of the approach. Two different observational data-sets are employed to test for trends in monthly heavy precipitation and are found to exhibit consistent results. Both data-sets demonstrate upward trends, one of which is found to be statistically significant at the 95% confidence level. Upward trends similar to observations are observed in some climate model simulations of the twentieth century, but their statistical significance is marginal. For projections of the twenty-first century, a statistically significant upwards trend is observed in most of the climate models analyzed. The change in the simulated precipitation variance appears to be more important in the twenty-first century projections than changes in the mean precipitation. Stochastic fluctuations of the climate-system are found to be dominate monthly heavy precipitation as some GCM simulations show a downwards trend even in the twenty-first century projections when the greenhouse gas forcings are strong. © 2011 Springer-Verlag.

  14. Monthly Total Precipitation Observation for Climate Prediction Center (CPC)Forecast Divisions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This ASCII dataset contains monthly total precipitation for 102 Forecast Divisions within the conterminous U.S. It is derived from the monthly NCDC climate division...

  15. Generation of Natural Runoff Monthly Series at Ungauged Sites Using a Regional Regressive Model

    Directory of Open Access Journals (Sweden)

    Dario Pumo

    2016-05-01

    Full Text Available Many hydrologic applications require reliable estimates of runoff in river basins to face the widespread lack of data, both in time and in space. A regional method for the reconstruction of monthly runoff series is here developed and applied to Sicily (Italy. A simple modeling structure is adopted, consisting of a regression-based rainfall–runoff model with four model parameters, calibrated through a two-step procedure. Monthly runoff estimates are based on precipitation, temperature, and exploiting the autocorrelation with runoff at the previous month. Model parameters are assessed by specific regional equations as a function of easily measurable physical and climate basin descriptors. The first calibration step is aimed at the identification of a set of parameters optimizing model performances at the level of single basin. Such “optimal” sets are used at the second step, part of a regional regression analysis, to establish the regional equations for model parameters assessment as a function of basin attributes. All the gauged watersheds across the region have been analyzed, selecting 53 basins for model calibration and using the other six basins exclusively for validation. Performances, quantitatively evaluated by different statistical indexes, demonstrate relevant model ability in reproducing the observed hydrological time-series at both the monthly and coarser time resolutions. The methodology, which is easily transferable to other arid and semi-arid areas, provides a reliable tool for filling/reconstructing runoff time series at any gauged or ungauged basin of a region.

  16. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    Science.gov (United States)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  17. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    normalization and stationarity were considered. Skewness test applied to evaluate normalization of evaporation, precipitation and stream flow time series and logarithmic transformation function executed for in order to improve normalization. Stationarity of studied time series were evaluated by well-known powerful ADF and KPSS stationarity tests. Time series model's order was determined using modified AICC test and the portmanteau goodness of fit test was used to evaluate the adequacy of developed linear time series models. Man-Kendall trend analysis was also conducted for the precipitation amount, the number of rainy days, the maximum precipitation with 24 hours duration, the evaporation and stream flow in monthly and annual time scales. Results and Discussion: Inferring to the physical base of ARMA models provided by Salas et al (1998, the precipitation has been considered independently and stochastically. If this assumption is not true in a given basin, it is expected that the MA component of stream flow discharge model be eliminated or washed out. This case occurred in basins A, B and C. In these basins, the behavior of precipitation and evaporation was autoregressive. It was observed that the stream flow discharge behavior also follows autoregressive models that had greater lags than precipitation and evaporation lags. This result proved that the precipitation, evaporation, and stream flow processes in the basin were regular processes. In basin D, the behavior of precipitation was stochastic and followed the MA model, which was related to the stochastic processes. In this basin, the stochastic behavior of precipitation affected the stream flow behavior, and it was observed that the stochastic term of MA also appeared in the stream flow. Thus, this leads to decrease the memory of stream flow discharge. The fact that the MA component in the stream flow discharge was greater than the MA component in precipitation indicated that during the process of producing stream flow

  18. Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) consists of monthly satellite-gauge and associated precipitation error estimates and covers the period January...

  19. Seasonal and annual precipitation time series trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.

    2014-02-01

    The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the

  20. Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Georgiadis, Stylianos; Gregersen, Ida Bülow

    2017-01-01

    Urban water infrastructure has very long planning horizons, and planning is thus very dependent on reliable estimates of the impacts of climate change. Many urban water systems are designed using time series with a high temporal resolution. To assess the impact of climate change on these systems......, similarly high-resolution precipitation time series for future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings...... in constructing realistic climate-changed precipitation time series at the sub-hourly scale. In the present study we present a deterministic methodology to perturb historical precipitation time series at the minute scale to reflect non-linear expectations to climate change. The methodology shows good skill...

  1. Standardized precipitation index zones for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, L.; Soto, M. [Instituto de Ecologia, A.C., Xalapa, Veracruz (Mexico); Rutherford, B.M.; Maarouf, A. [Faculty of Environmental Studies, York University, Toronto, Ontario (Canada)

    2005-01-01

    Precipitation zone systems exists for Mexico based on seasonality, quantity of precipitation, climates and geographical divisions, but none are convenient for the study of the relation of precipitation with phenomena such as El nino. An empirical set of seven exclusively Mexican and six shared zones was derived from three series of Standardized Precipitation Index (SPI) images, from 1940 through 1989: a whole year series (SPI-12) of 582 monthly images, a six month series (SPI-6) of 50 images for winter months (November through April), and a six month series (SPI-6) of 50 images for summer months (May through October). By examination of principal component and unsupervised classification images, it was found that all three series had similar zones. A set of basic training fields chosen from the principal component images was used to classify all three series. The resulting thirteen zones, presented in this article, were found to be approximately similar, varying principally at zones edges. A set of simple zones defined by just a few vertices can be used for practical operations. In general the SPI zones are homogeneous, with almost no mixture of zones and few outliers of one zone in the area of others. They are compared with a previously published map of climatic regions. Potential applications for SPI zones are discussed. [Spanish] Existen varios sistemas de zonificacion de Mexico basados en la estacionalidad, cantidad de precipitacion, climas y divisiones geograficas, pero ninguno es conveniente para el estudio de la relacion de la precipitacion con fenomenos tales como El Nino. En este trabajo se presenta un conjunto de siete zonas empiricas exclusivamente mexicanas y seis compartidas, derivadas de tres series de imagenes de SPI (Indice Estandarizado de la Precipitacion), desde 1940 a 1989: una serie de 582 imagenes mensuales (SPI-12), una series de 50 imagenes (SPI-6) de meses de invierno (noviembre a abril), y otra de 50 imagenes (SPI-6) de meses de verano

  2. Modeling climate change impacts on combined sewer overflow using synthetic precipitation time series.

    Science.gov (United States)

    Bendel, David; Beck, Ferdinand; Dittmer, Ulrich

    2013-01-01

    In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations).

  3. Assessing homogeneity and climate variability of temperature and precipitation series in the capitals of northeastern Brazil

    Science.gov (United States)

    Hänsel, Stephanie; Medeiros, Deusdedit; Matschullat, Jörg; Silva, Isamara; Petta, Reinaldo

    2016-03-01

    A 51-year dataset (1961 to 2011) from nine meteorological stations in the capitals of northeastern Brazil (NEB), with daily data of precipitation totals and of mean, minimum and maximum temperatures, was statistically analyzed for data homogeneity and for signals of climate variability. The hypothesis was explored that a connection exists between inhomogeneities of the time series and the meteorological systems influencing the region. Results of the homogeneity analysis depend on the selected test variable, the test algorithm and the chosen significance level; all more or less subjective choices. Most of the temperature series was classified as "suspect", while most of the precipitation series was categorized as "useful". Displaying and visually checking the time series demonstrates the power of expertise and may allow for a deeper data analysis. Consistent changes in the seasonality of temperature and precipitation emerge over NEB despite manifold breaks in the temperature series. Both series appear to be coupled. The intra-annual temperature and precipitation ranges have increased, along with an intensified seasonal cycle. Temperature mainly increased during DJF, MAM and SON, with decreases in JJA being related to wetter conditions and more frequent heavy precipitation events. Drought conditions mostly increased in SON and DJF, depending on the timing of the local dry season.

  4. Climate Prediction Center (CPC)Monthly Precipitation Reconstruction (PREC) Spatial Resolution of 2.5 degree

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  5. Climate Prediction Center (CPC)Monthly Precipitation Reconstruction (PREC) at Spatial Resolution of 1 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  6. Atmospheric Simulations Using OGCM-Assimilation SST: Influence of the Wintertime Japan Sea on Monthly Precipitation

    Directory of Open Access Journals (Sweden)

    Masaru Yamamoto Naoki Hirose

    2010-01-01

    Full Text Available Temperature data for the Japan Sea obtained from ocean data assimilation modeling is applied to atmospheric simulations of monthly precipitation for January 2005. Because the volume of flow of the Tsushima Warm Current was large during the winter season, the sea surface temperature (SST and coastal precipitation were higher in comparison with those in 2003. In order to evaluate influence of SST on monthly precipitation, we use surface temperatures of the Japan Sea in 2003 and 2005 for comparative simulations of precipitation for January 2005. The precipitation in experiment C (using cool SST data in 2003 is smaller than that in experiment W (using warm SST data in 2005 in a large part of the sea area, since the small evaporation results from the low SST over the upstream area of northwesterly winter monsoon. In the domain of 33.67 - 45.82°N and 125.89 - 142.9°E, the averaged evaporation and precipitation in experiment C are 10% and 13% smaller than those in experiment W, respectively. About half of the difference between the precipitations observed for January 2003 and 2005 in a heavy snow area is equal to the difference between the two simulations. Our results show that the mesoscale SST difference between 2003 and 2005 is related to the local difference of monthly precipitation.

  7. Climate Prediction Center(CPC) Monthly U.S. Precipitation and Temperature Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly U.S. minimum and maximum temperatures in whole degrees Fahrenheit and reported and estimated precipitation amounts in hundredths of inches(ex 100 is 1.00...

  8. A study of regional trends in annual and seasonal precipitation and runoff series

    Energy Technology Data Exchange (ETDEWEB)

    Tveito, O.E.; Hisdal, H.

    1994-03-10

    In this study long and homogeneous time series of runoff and precipitation are studied to identify variations in time and space. The method of empirical orthogonal functions (EOF-method) is applied. Both annual observations, smoothed (using Gauss filter) and seasonal values are analyzed. The analysis shows that the temporal variations in runoff and precipitation coincide. The deviations occurring in the seasonal values are caused by snow accumulation and snow melt. In the filtered series temporal trends are found. A comparison between the different normal periods has been carried out for precipitation. The 1900-30 and 1960-90 periods differ from the 1930-60 period. This may be caused by different weather types dominating the different periods. The different weather types are reflected in different empirical orthogonal functions. This is verified by regional studies. The coinciding patterns in runoff and precipitation are important aspects in climate studies and for extrapolation purposes. 11 refs., 20 figs., 1 tab.

  9. Climate Prediction Center (CPC) Monthly U.S. Selected Cities Precipitation Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly U.S. reported precipitation amounts in hundredths of inches (ex 100 is 1.00 inches) generated from the GTS metar(hourly) and synoptic(6-hourly)observations...

  10. Climate Prediction Center(CPC) Monthly Precipitation Reconstruction (PREC)at Spatial Resolution of 0.5 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  11. Time-series Oxygen-18 Precipitation Isoscapes for Canada and the Northern United States

    Science.gov (United States)

    Delavau, Carly J.; Chun, Kwok P.; Stadnyk, Tricia A.; Birks, S. Jean; Welker, Jeffrey M.

    2014-05-01

    The present and past hydrological cycle from the watershed to regional scale can be greatly enhanced using water isotopes (δ18O and δ2H), displayed today as isoscapes. The development of water isoscapes has both hydrological and ecological applications, such as ground water recharge and food web ecology, and can provide critical information when observations are not available due to spatial and temporal gaps in sampling and data networks. This study focuses on the creation of δ18O precipitation (δ18Oppt) isoscapes at a monthly temporal frequency across Canada and the northern United States (US) utilizing CNIP (Canadian Network for Isotopes in Precipitation) and USNIP (United States Network for Isotopes in Precipitation) measurements. Multiple linear stepwise regressions of CNIP and USNIP observations alongside NARR (North American Regional Reanalysis) climatological variables, teleconnection indices, and geographic indicators are utilized to create empirical models that predict the δ18O of monthly precipitation across Canada and the northern US. Pooling information from nearby locations within a region can be useful due to the similarity of processes and mechanisms controlling the variability of δ18O. We expect similarity in the controls on isotopic composition to strengthen the correlation between δ18Oppt and predictor variables, resulting in model simulation improvements. For this reason, three different regionalization approaches are used to separate the study domain into 'isotope zones' to explore the effect of regionalization on model performance. This methodology results in 15 empirical models, five within each regionalization. A split sample calibration and validation approach is employed for model development, and parameter selection is based on demonstrated improvement of the Akaike Information Criteria (AIC). Simulation results indicate the empirical models are generally able to capture the overall monthly variability in δ18Oppt. For the three

  12. Regional climate change: Precipitation variability in mountainous part of Bulgaria

    Directory of Open Access Journals (Sweden)

    Nikolova Nina

    2007-01-01

    Full Text Available The aim of paper is to analyze temporal and spatial changes in monthly precipitation as well as extremely dry and wet months in mountainous part of Bulgaria. Study precipitation variability in mountainous part is very important because this part is the region where the rivers take its source from. Extreme values of monthly precipitation are important information for better understanding of the whole variability and trends in precipitation time series. The mean investigated period is 1951-2005 and the reference period is so called temporary climate - 1961- 1990. Extreme dry precipitation months are defined as a month whose monthly precipitation is lower than 10% of gamma distribution in the reference period 1961-1990. Extreme wet months are determined with respect to 90% percentiles of gamma distribution (monthly precipitation is higher than 90%. The result of the research show that in mountainous part of Bulgaria during 1950s and 1960s number of extremely wet months is higher than number of dry months. Decreasing of monthly precipitation is a feature for 1980s. This dry period continues till 2004. The years 2000 makes impression as driest year in high mountains with about 7 extremely dry months. The second dry year is 1993. The negative precipitation anomaly is most clearly determined during last decade at study area. The present research points out that fluctuation of precipitation in mountainous part of Bulgaria are coinciding with regional and global climate trends.

  13. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1997-present, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  14. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China

    Directory of Open Access Journals (Sweden)

    Fengrui Chen

    2016-06-01

    Full Text Available As the successor of the Tropical Rainfall Measuring Mission (TRMM, the Global Precipitation Measurement (GPM mission significantly improves the spatial resolution of precipitation estimates from 0.25° to 0.1°. The present study analyzed the error structures of Integrated Multisatellite Retrievals for GPM (IMERG monthly precipitation products over Mainland China from March 2014 to February 2015 using gauge measurements at multiple spatiotemporal scales. Moreover, IMERG products were also compared with TRMM 3B43 products. The results show that: (1 overall, IMERG can capture the spatial patterns of precipitation over China well. It performs a little better than TRMM 3B43 at seasonal and monthly scales; (2 the performance of IMERG varies greatly spatially and temporally. IMERG performs better at low latitudes than at middle latitudes, and shows worse performance in winter than at other times; (3 compared with TRMM 3B43, IMERG significantly improves the estimation accuracy of precipitation over the Xinjiang region and the Qinghai-Tibetan Plateau, especially over the former where IMERG increases Pearson correlation coefficient by 0.18 and decreases root-mean-square error by 54.47 mm for annual precipitation estimates. However, most IMERG products over these areas are unreliable; and (4 IMERG shows poor performance in winter as TRMM 3B43 even if GPM improved its ability to sense frozen precipitation. Most of them over North China are unreliable during this period.

  15. Use of the Box-Cox Transformation in Detecting Changepoints in Daily Precipitation Data Series

    Science.gov (United States)

    Wang, X. L.; Chen, H.; Wu, Y.; Pu, Q.

    2009-04-01

    This study integrates a Box-Cox power transformation procedure into two statistical tests for detecting changepoints in Gaussian data series, to make the changepoint detection methods applicable to non-Gaussian data series, such as daily precipitation amounts. The detection power aspects of transformed methods in a common trend two-phase regression setting are assessed by Monte Carlo simulations for data of a log-normal or Gamma distribution. The results show that the transformed methods have increased the power of detection, in comparison with the corresponding original (untransformed) methods. The transformed data much better approximate to a Gaussian distribution. As an example of application, the new methods are applied to a series of daily precipitation amounts recorded at a station in Canada, showing satisfactory detection power.

  16. Climate Prediction Center (CPC) One Month Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a probabilistic one-month precipitation outlook for the United States twice a month. CPC issues an initial monthly outlook...

  17. Describing temporal variability of the mean Estonian precipitation series in climate time scale

    Science.gov (United States)

    Post, P.; Kärner, O.

    2009-04-01

    Applicability of the random walk type models to represent the temporal variability of various atmospheric temperature series has been successfully demonstrated recently (e.g. Kärner, 2002). Main problem in the temperature modeling is connected to the scale break in the generally self similar air temperature anomaly series (Kärner, 2005). The break separates short-range strong non-stationarity from nearly stationary longer range variability region. This is an indication of the fact that several geophysical time series show a short-range non-stationary behaviour and a stationary behaviour in longer range (Davis et al., 1996). In order to model series like that the choice of time step appears to be crucial. To characterize the long-range variability we can neglect the short-range non-stationary fluctuations, provided that we are able to model properly the long-range tendencies. The structure function (Monin and Yaglom, 1975) was used to determine an approximate segregation line between the short and the long scale in terms of modeling. The longer scale can be called climate one, because such models are applicable in scales over some decades. In order to get rid of the short-range fluctuations in daily series the variability can be examined using sufficiently long time step. In the present paper, we show that the same philosophy is useful to find a model to represent a climate-scale temporal variability of the Estonian daily mean precipitation amount series over 45 years (1961-2005). Temporal variability of the obtained daily time series is examined by means of an autoregressive and integrated moving average (ARIMA) family model of the type (0,1,1). This model is applicable for daily precipitation simulating if to select an appropriate time step that enables us to neglet the short-range non-stationary fluctuations. A considerably longer time step than one day (30 days) is used in the current paper to model the precipitation time series variability. Each ARIMA (0

  18. Climate Prediction Center (CPC) Monthly Precipitation Reconstruction of Ocean(PRECO)at Spatial Resolution of 2.5 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  19. Cluster Analysis of Monthly Precipitation over the Western Maritime Continent under Climate Change

    Directory of Open Access Journals (Sweden)

    Saurabh K Singh

    2017-11-01

    Full Text Available Changes in climate because of global warming during the 20th and 21st centuries have a direct impact on the hydrological cycle as driven by precipitation. However, studying precipitation over the Western Maritime Continent (WMC is a great challenge, as the WMC has a complex topography and weather system. Understanding changes in precipitation patterns and their groupings is an important aspect of planning mitigation measures to minimize flood and drought risk as well as of understanding the redistribution of precipitation arising from climate change. This paper employs Ward’s hierarchical clustering on regional climate model (RCM-simulated monthly precipitation gridded data over 42 approximately evenly distributed grid stations from the years 2030 to 2060. The aim was to investigate spatial and temporal groupings over the four major landmasses in the WMC and to compare these with historical precipitation groupings. The results showed that the four large-scale islands of Java, Sumatra, Peninsular Malaysia and Borneo would experience a significant spatial redistribution of precipitation over the years 2030 to 2060, as compared to historical patterns from 1980 to 2005. The spatial groups were also compared for two future forcing scenarios, representative concentration pathways (RCPs 4.5 and 8.5, and different groupings over the Borneo region were observed.

  20. An application of sample entropy to precipitation in Paraíba State, Brazil

    Science.gov (United States)

    Xavier, Sílvio Fernando Alves; da Silva Jale, Jader; Stosic, Tatijana; dos Santos, Carlos Antonio Costa; Singh, Vijay P.

    2018-05-01

    A climate system is characterized to be a complex non-linear system. In order to describe the complex characteristics of precipitation series in Paraíba State, Brazil, we aim the use of sample entropy, a kind of entropy-based algorithm, to evaluate the complexity of precipitation series. Sixty-nine meteorological stations are distributed over four macroregions: Zona da Mata, Agreste, Borborema, and Sertão. The results of the analysis show that intricacies of monthly average precipitation have differences in the macroregions. Sample entropy is able to reflect the dynamic change of precipitation series providing a new way to investigate complexity of hydrological series. The complexity exhibits areal variation of local water resource systems which can influence the basis for utilizing and developing resources in dry areas.

  1. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    Science.gov (United States)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  2. Trend Analysis of Monthly and Annual Temperature Series of Quetta, Pakistan

    Directory of Open Access Journals (Sweden)

    Farhat Iqbal

    2014-12-01

    Full Text Available The monthly average temperature series of Quetta – Pakistan from 1950 – 2000 is examined. A straight line is fitted to the data and seasonal variation and trend in temperature for each month of the year were obtained. An overall model is constructed as large variations in the monthly slopes were observed. In order to describe the seasonal pattern and trend in temperature, corresponding to the different months, both sine/cosine waves and sine/cosine waves multiplied by the time were included in the model as independent variables. The lag-1 autocorrelation was found in the residual of the model and hence another model was fitted to the pre-whiten series that shows a good fit ( and is free from correlated residuals. Both parametric and non-parametric tests applied to each month temperature show significant trend in all months except February and March.

  3. Monthly Climate Data for Selected USGS HCDN Sites, 1951-1990

    Data.gov (United States)

    National Aeronautics and Space Administration — Time series of monthly minimum and maximum temperature, precipitation and potential evapotranspiration were derived for 1337 watersheds in the conterminous United...

  4. Monthly Climate Data for Selected USGS HCDN Sites, 1951-1990

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Time series of monthly minimum and maximum temperature, precipitation and potential evapotranspiration were derived for 1337 watersheds in the conterminous...

  5. Benchmarking homogenization algorithms for monthly data

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  6. Improving weapons fallout time series on a global basis using precipitation data

    International Nuclear Information System (INIS)

    Palsson, S.E.; Howard, B.J.; Aoyama, M.

    2004-01-01

    The fallout from the atmospheric weapons tests in the late fifties and early sixties forms the main source of man made radionuclides in the terrestrial environment. It is important to be able to distinguish global fallout from other sources of man-made radioactivity, and therefore to have good methods of quantifying the level of global fallout in areas where it has not previously been measured. Because global fallout was deposited over many years, model validation can require knowledge about deposition time series which are not available through direct measurements. This can be especially important for sparsely populated areas with vulnerable ecosystems, where high transfer of radionuclides, particularly radiocaesium, may occur. The UNSCEAR reports describe the global data and show how the deposition was dependent on latitude. Others have successfully used a model assuming a proportional relationship between deposition and precipitation (e.g. on a regional scale within the AMAP project and on a local scale in some countries, such as Iceland and Sweden). This paper describes a study where different data sets were combined to test, at a local scale to a global scale, how well the proportional relationship between precipitation and deposition holds and to what degree other effects (e.g. dependence on latitude as in the UNSCEAR model) need to be taken into account. It makes use of the Integrated Global Fallout Database of the Meteorological Research Institute of Japan which has been used previously to demonstrate the relationship between precipitation and deposition and subsequently to make an estimate of the total fallout amount of 137 Cs in the mid latitudes of the Northern Hemisphere. The study described in this paper provides a fuller description of global deposition than the latitude or precipitation based studies alone. Applied in a simple model as presented here, this enable better deposition estimation (including time dependency), especially if precipitation

  7. Characteristics of Spatial Structural Patterns and Temporal Variability of Annual Precipitation in Ningxia

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of a...

  8. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator

    Directory of Open Access Journals (Sweden)

    Kruczyk Michał

    2015-12-01

    Full Text Available This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS stations in climatologic research. Long time series of daily averaged Integrated Precipitable Water (IPW can serve as climate indicator. The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method. Author applied two modes: sinusoidal and composite (two or more oscillations. Even simple sinusoidal seasonal model (of daily IPW values series clearly represents diversity of world climates. Residuals in periods from 10 up to 17 years are searched for some long-term IPW trend – self-evident climate change indicator. Results are ambiguous: for some stations or periods IPW trends are quite clear, the following years (or the other station not visible. Method of fitting linear trend to IPW series does not influence considerably the value of linear trend. The results are mostly influenced by series length, completeness and data (e.g. meteorological quality. The longer and more homogenous IPW series, the better chance to estimate the magnitude of climatologic IPW changes.

  9. Statistical evaluation of the performance of gridded monthly precipitation products from reanalysis data, satellite estimates, and merged analyses over China

    Science.gov (United States)

    Deng, Xueliang; Nie, Suping; Deng, Weitao; Cao, Weihua

    2018-04-01

    In this study, we compared the following four different gridded monthly precipitation products: the National Centers for Environmental Prediction version 2 (NCEP-2) reanalysis data, the satellite-based Climate Prediction Center Morphing technique (CMORPH) data, the merged satellite-gauge Global Precipitation Climatology Project (GPCP) data, and the merged satellite-gauge-model data from the Beijing Climate Center Merged Estimation of Precipitation (BMEP). We evaluated the performances of these products using monthly precipitation observations spanning the period of January 2003 to December 2013 from a dense, national, rain gauge network in China. Our assessment involved several statistical techniques, including spatial pattern, temporal variation, bias, root-mean-square error (RMSE), and correlation coefficient (CC) analysis. The results show that NCEP-2, GPCP, and BMEP generally overestimate monthly precipitation at the national scale and CMORPH underestimates it. However, all of the datasets successfully characterized the northwest to southeast increase in the monthly precipitation over China. Because they include precipitation gauge information from the Global Telecommunication System (GTS) network, GPCP and BMEP have much smaller biases, lower RMSEs, and higher CCs than NCEP-2 and CMORPH. When the seasonal and regional variations are considered, NCEP-2 has a larger error over southern China during the summer. CMORPH poorly reproduces the magnitude of the precipitation over southeastern China and the temporal correlation over western and northwestern China during all seasons. BMEP has a lower RMSE and higher CC than GPCP over eastern and southern China, where the station network is dense. In contrast, BMEP has a lower CC than GPCP over western and northwestern China, where the gauge network is relatively sparse.

  10. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    Science.gov (United States)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be

  11. Evaluation of recent GRACE monthly solution series with an ice sheet perspective

    Science.gov (United States)

    Horwath, Martin; Groh, Andreas

    2016-04-01

    GRACE monthly global gravity field solutions have undergone a remarkable evolution, leading to the latest (Release 5) series by CSR, GFZ, and JPL, to new series by other processing centers, such as ITSG and AIUB, as well as to efforts to derive combined solutions, particularly by the EGSIEM (European Gravity Service for Improved Emergency Management) project. For applications, such as GRACE inferences on ice sheet mass balance, the obvious question is on what GRACE solution series to base the assessment. Here we evaluate different GRACE solution series (including the ones listed above) in a unified framework. We concentrate on solutions expanded up to degree 90 or higher, since this is most appropriate for polar applications. We empirically assess the error levels in the spectral as well as in the spatial domain based on the month-to-month scatter in the high spherical harmonic degrees. We include empirical assessment of error correlations. We then apply all series to infer Antarctic and Greenland mass change time series and compare the results in terms of apparent signal content and noise level. We find that the ITSG solutions show lowest noise level in the high degrees (above 60). A preliminary combined solution from the EGSIEM project shows lowest noise in the degrees below 60. This virtue maps into the derived ice mass time series, where the EGSIEM-based results show the lowest noise in most cases. Meanwhile, there is no indication that any of the considered series systematically dampens actual geophysical signals.

  12. Precipitation Indices Low Countries

    Science.gov (United States)

    van Engelen, A. F. V.; Ynsen, F.; Buisman, J.; van der Schrier, G.

    2009-09-01

    Since 1995, KNMI published a series of books(1), presenting an annual reconstruction of weather and climate in the Low Countries, covering the period AD 763-present, or roughly, the last millennium. The reconstructions are based on the interpretation of documentary sources predominantly and comparison with other proxies and instrumental observations. The series also comprises a number of classifications. Amongst them annual classifications for winter and summer temperature and for winter and summer dryness-wetness. The classification of temperature have been reworked into peer reviewed (2) series (AD 1000-present) of seasonal temperatures and temperature indices, the so called LCT (Low Countries Temperature) series, now incorporated in the Millennium databases. Recently we started a study to convert the dryness-wetness classifications into a series of precipitation; the so called LCP (Low Countries Precipitation) series. A brief outline is given here of the applied methodology and preliminary results. The WMO definition for meteorological drought has been followed being that a period is called wet respectively dry when the amount of precipitation is considerable more respectively less than usual (normal). To gain a more quantitative insight for four locations, geographically spread over the Low Countries area (De Bilt, Vlissingen, Maastricht and Uccle), we analysed the statistics of daily precipitation series, covering the period 1900-present. This brought us to the following definition, valid for the Low Countries: A period is considered as (very) dry respectively (very) wet if over a continuous period of at least 60 days (~two months) cq 90 days (~three months) on at least two out of the four locations 50% less resp. 50% more than the normal amount for the location (based on the 1961-1990 normal period) has been measured. This results into the following classification into five drought classes hat could be applied to non instrumental observations: Very wet period

  13. Spatiotemporal Patterns of Precipitation-Modulated Landslide Deformation From Independent Component Analysis of InSAR Time Series

    Science.gov (United States)

    Cohen-Waeber, J.; Bürgmann, R.; Chaussard, E.; Giannico, C.; Ferretti, A.

    2018-02-01

    Long-term landslide deformation is disruptive and costly in urbanized environments. We rely on TerraSAR-X satellite images (2009-2014) and an improved data processing algorithm (SqueeSAR™) to produce an exceptionally dense Interferometric Synthetic Aperture Radar ground deformation time series for the San Francisco East Bay Hills. Independent and principal component analyses of the time series reveal four distinct spatial and temporal surface deformation patterns in the area around Blakemont landslide, which we relate to different geomechanical processes. Two components of time-dependent landslide deformation isolate continuous motion and motion driven by precipitation-modulated pore pressure changes controlled by annual seasonal cycles and multiyear drought conditions. Two components capturing more widespread seasonal deformation separate precipitation-modulated soil swelling from annual cycles that may be related to groundwater level changes and thermal expansion of buildings. High-resolution characterization of landslide response to precipitation is a first step toward improved hazard forecasting.

  14. Using Multiple Monthly Water Balance Models to Evaluate Gridded Precipitation Products over Peninsular Spain

    Directory of Open Access Journals (Sweden)

    Javier Senent-Aparicio

    2018-06-01

    Full Text Available The availability of precipitation data is the key driver in the application of hydrological models when simulating streamflow. Ground weather stations are regularly used to measure precipitation. However, spatial coverage is often limited in low-population areas and mountain areas. To overcome this limitation, gridded datasets from remote sensing have been widely used. This study evaluates four widely used global precipitation datasets (GPDs: The Tropical Rainfall Measuring Mission (TRMM 3B43, the Climate Forecast System Reanalysis (CFSR, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN, and the Multi-Source Weighted-Ensemble Precipitation (MSWEP, against point gauge and gridded dataset observations using multiple monthly water balance models (MWBMs in four different meso-scale basins that cover the main climatic zones of Peninsular Spain. The volumes of precipitation obtained from the GPDs tend to be smaller than those from the gauged data. Results underscore the superiority of the national gridded dataset, although the TRMM provides satisfactory results in simulating streamflow, reaching similar Nash-Sutcliffe values, between 0.70 and 0.95, and an average total volume error of 12% when using the GR2M model. The performance of GPDs highly depends on the climate, so that the more humid the watershed is, the better results can be achieved. The procedures used can be applied in regions with similar case studies to more accurately assess the resources within a system in which there is scarcity of recorded data available.

  15. Altered Precipitation and Flow Patterns in the Dunajec River Basin

    Directory of Open Access Journals (Sweden)

    Mariola Kędra

    2017-01-01

    Full Text Available This study analyzes changes in long-term patterns of precipitation and river flow, as well as changes in their variability over the most recent 60 years (1956–2015. The study area is situated in the mountain basin of the Dunajec River, encompassing streams draining the Tatra Mountains in southern Poland. The focus of the study was to evaluate how regional warming translates into precipitation changes in the studied mountain region, and how changes in climate affect sub-regional hydrology. Monthly time series of precipitation measured at several sites were compared for two 30-year periods (1986–2015 versus 1956–1985. The significance of the difference between the periods in question was evaluated by means of the Wilcoxon signed rank test with the Bonferroni correction. The identified shifts in precipitation for 6 months are statistically significant and largely consistent with the revealed changes in river flow patterns. Moreover, significant differences in precipitation variability were noted in the study area, resulting in a significant decrease in the repeatability of precipitation over the most recent 30 years (1986–2015. Changes in the variability of the river flow studied were less visible in this particular mountain region (while significant for two months; however, the overall repeatability of river flow decreased significantly at the same rate as for precipitation.

  16. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  17. Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden

    Science.gov (United States)

    Hellström, Cecilia; Chen, Deliang

    2003-11-01

    A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.

  18. Comparison between weather station data in south-eastern Italy and CRU precipitation datasets

    Science.gov (United States)

    Miglietta, D.

    2009-04-01

    Monthly precipitation data in south-eastern Italy from 1920 to 2005 have been extensively analyzed. Data were collected in almost 200 weather stations located 10-20km apart from each other and almost uniformly distributed in Puglia and Basilicata regions. Apart from few years around world war II, time series are mostly complete and allow a reliable reconstruction of climate variability in the considered region. Statistically significant trends have been studied by applying the Mann-Kendall test to annual, seasonal and monthly values. A comparison has been made between observations and precipitation data given by the Climate Research Unit (CRU), University of East Anglia, with both low (30') and high (10') space resolution grid. In particular, rainfall records, time series behaviors and annual cycles at each station have been compared to the corresponding CRU data. CRU time series show a large negative trend for winter since 1970. Trend is not significant if the whole 20th century is considered (both for the whole year and for winter only). This might be considered as an evidence of recent acceleration towards increasingly dry conditions. However correlation between CRU data and observations is not very high and large percent errors are present mainly in the mountains regions, where observations show a large annual cycle, with intense precipitation in winter, which is not present in CRU data. To identify trends, therefore observed data are needed, even at monthly scale. In particular observations confirm the overall trend, but also indicate large spatial variability, with locations where precipitation has even increased since 1970. Daily precipitation data coming from a subset of weather stations have also been studied for the same time period. The distributions of maximum annual rainfalls, wet spells and dry spells were analyzed for each station, together with their time series. The tools of statistical analysis of extremes have been used in order to evaluate

  19. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  20. Monthly hydroclimatology of the continental United States

    Science.gov (United States)

    Petersen, Thomas; Devineni, Naresh; Sankarasubramanian, A.

    2018-04-01

    Physical/semi-empirical models that do not require any calibration are of paramount need for estimating hydrological fluxes for ungauged sites. We develop semi-empirical models for estimating the mean and variance of the monthly streamflow based on Taylor Series approximation of a lumped physically based water balance model. The proposed models require mean and variance of monthly precipitation and potential evapotranspiration, co-variability of precipitation and potential evapotranspiration and regionally calibrated catchment retention sensitivity, atmospheric moisture uptake sensitivity, groundwater-partitioning factor, and the maximum soil moisture holding capacity parameters. Estimates of mean and variance of monthly streamflow using the semi-empirical equations are compared with the observed estimates for 1373 catchments in the continental United States. Analyses show that the proposed models explain the spatial variability in monthly moments for basins in lower elevations. A regionalization of parameters for each water resources region show good agreement between observed moments and model estimated moments during January, February, March and April for mean and all months except May and June for variance. Thus, the proposed relationships could be employed for understanding and estimating the monthly hydroclimatology of ungauged basins using regional parameters.

  1. High-resolution Monthly Satellite Precipitation Product over the Conterminous United States

    Science.gov (United States)

    Hashemi, H.; Fayne, J.; Knight, R. J.; Lakshmi, V.

    2017-12-01

    We present a data set that enhanced the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) monthly product 3B43 in its accuracy and spatial resolution. For this, we developed a correction function to improve the accuracy of TRMM 3B43, spatial resolution of 25 km, by estimating and removing the bias in the satellite data using a ground-based precipitation data set. We observed a strong relationship between the bias and land surface elevation; TRMM 3B43 tends to underestimate the ground-based product at elevations above 1500 m above mean sea level (m.amsl) over the conterminous United States. A relationship was developed between satellite bias and elevation. We then resampled TRMM 3B43 to the Digital Elevation Model (DEM) data set at a spatial resolution of 30 arc second ( 1 km on the ground). The produced high-resolution satellite-based data set was corrected using the developed correction function based on the bias-elevation relationship. Assuming that each rain gauge represents an area of 1 km2, we verified our product against 9,200 rain gauges across the conterminous United States. The new product was compared with the gauges, which have 50, 60, 70, 80, 90, and 100% temporal coverage within the TRMM period of 1998 to 2015. Comparisons between the high-resolution corrected satellite-based data and gauges showed an excellent agreement. The new product captured more detail in the changes in precipitation over the mountainous region than the original TRMM 3B43.

  2. Study of lithium extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid and carbonate sodium

    Science.gov (United States)

    Sulistiyono, Eko; Lalasari, Latifa Hanum; Mayangsari, W.; Prasetyo, A. B.

    2018-05-01

    Lithium is one of the key elements in the development of batteries for electric car applications. Currently, the resources of the world's lithium are derived from brine water and lithium mineral based on spodumene rock. Indonesia which is located in the area of the ring of fire, has potential brine water resources in some area, such as brine water from Bledug Kuwu, Central Java that used in this research. The purposes of this research are to characterize brine water, Bledug Kuwu and to investigate the influence of chemical solvents on Li, Na, K, Ca, Mg, Al, B ion precipitation from brine water. This research was done with 2 times the process of chemical precipitation that runs series as follows: 5 liters of brine water were chemically precipitated using 400 ml of 12.43 N oxalic acid and followed by chemical precipitation using 400 mL of 7.07 N sodium carbonate solutions. Evaporation and filtration processes were also done twice in an effort to separate white precipitate and filtrate. The filtrate was analyzed by ICP-OES and white precipitates (salts) were analyzed by SEM, XRD, and XRF. The result shows that oxalate precipitation process extracted 32.24% Al, 23.42% B, 22.43% Ca, 14.26% Fe, 3.21 % K, 9.86% Na and 14.26% Li, the following process by carbonate precipitation process extracted 98.86% Mg, 73% Ca, 22.53% Li, 82.04% Al, 14.38% B, 12.50% K, 2.27% Na. There is 63.21% lithium is not extracted from the series process. The SEM analysis shows that the structure of granules on the precipitated salts by oxalic acid form gentle cubic-shaped solid. In the other hand, oxalate precipitation followed by sodium carbonate has various particle sizes and the shape of crystals is fragments, prism and cube look like magnesium carbonate, calcium chloride, and calcite's crystal respectively. This is in accordance with XRD analysis that phases of whewellite (CaC2O4.H2O), disodium oxalate (Na2C2O4), magnesite (MgCO3), calcium lithium aluminum (Al1.19 Ca1Li0.81), dolomite (CaCO3

  3. Climatological Modeling of Monthly Air Temperature and Precipitation in Egypt through GIS Techniques

    Science.gov (United States)

    El Kenawy, A.

    2009-09-01

    This paper describes a method for modeling and mapping four climatic variables (maximum temperature, minimum temperature, mean temperature and total precipitation) in Egypt using a multiple regression approach implemented in a GIS environment. In this model, a set of variables including latitude, longitude, elevation within a distance of 5, 10 and 15 km, slope, aspect, distance to the Mediterranean Sea, distance to the Red Sea, distance to the Nile, ratio between land and water masses within a radius of 5, 10, 15 km, the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Temperature Index (NDTI) and reflectance are included as independent variables. These variables were integrated as raster layers in MiraMon software at a spatial resolution of 1 km. Climatic variables were considered as dependent variables and averaged from quality controlled and homogenized 39 series distributing across the entire country during the period of (1957-2006). For each climatic variable, digital and objective maps were finally obtained using the multiple regression coefficients at monthly, seasonal and annual timescale. The accuracy of these maps were assessed through cross-validation between predicted and observed values using a set of statistics including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias Error (MBE) and D Willmott statistic. These maps are valuable in the sense of spatial resolution as well as the number of observatories involved in the current analysis.

  4. The Potential of Tropospheric Gradients for Regional Precipitation Prediction

    Science.gov (United States)

    Boisits, Janina; Möller, Gregor; Wittmann, Christoph; Weber, Robert

    2017-04-01

    Changes of temperature and humidity in the neutral atmosphere cause variations in tropospheric path delays and tropospheric gradients. By estimating zenith wet delays (ZWD) and gradients using a GNSS reference station network the obtained time series provide information about spatial and temporal variations of water vapour in the atmosphere. Thus, GNSS-based tropospheric parameters can contribute to the forecast of regional precipitation events. In a recently finalized master thesis at TU Wien the potential of tropospheric gradients for weather prediction was investigated. Therefore, ZWD and gradient time series at selected GNSS reference stations were compared to precipitation data over a period of six months (April to September 2014). The selected GNSS stations form two test areas within Austria. All required meteorological data was provided by the Central Institution for Meteorology and Geodynamics (ZAMG). Two characteristics in ZWD and gradient time series can be anticipated in case of an approaching weather front. First, an induced asymmetry in tropospheric delays results in both, an increased magnitude of the gradient and in gradients pointing towards the weather front. Second, an increase in ZWD reflects the increased water vapour concentration right before a precipitation event. To investigate these characteristics exemplary test events were processed. On the one hand, the sequence of the anticipated increase in ZWD at each GNSS station obtained by cross correlation of the time series indicates the direction of the approaching weather front. On the other hand, the corresponding peak in gradient time series allows the deduction of the direction of movement as well. To verify the results precipitation data from ZAMG was used. It can be deduced, that tropospheric gradients show high potential for predicting precipitation events. While ZWD time series rather indicate the orientation of the air mass boundary, gradients rather indicate the direction of movement

  5. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    International Nuclear Information System (INIS)

    Lang, Peter; Wojcik, Tomasz; Povoden-Karadeniz, Erwin; Falahati, Ahmad; Kozeschnik, Ernst

    2014-01-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed

  6. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Peter, E-mail: pl404@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS (United Kingdom); Wojcik, Tomasz [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Povoden-Karadeniz, Erwin [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Falahati, Ahmad [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria)

    2014-10-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed.

  7. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    Science.gov (United States)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  8. Monthly electric energy demand forecasting with neural networks and Fourier series

    International Nuclear Information System (INIS)

    Gonzalez-Romera, E.; Jaramillo-Moran, M.A.; Carmona-Fernandez, D.

    2008-01-01

    Medium-term electric energy demand forecasting is a useful tool for grid maintenance planning and market research of electric energy companies. Several methods, such as ARIMA, regression or artificial intelligence, have been usually used to carry out those predictions. Some approaches include weather or economic variables, which strongly influence electric energy demand. Economic variables usually influence the general series trend, while weather provides a periodic behavior because of its seasonal nature. This work investigates the periodic behavior of the Spanish monthly electric demand series, obtained by rejecting the trend from the consumption series. A novel hybrid approach is proposed: the periodic behavior is forecasted with a Fourier series while the trend is predicted with a neural network. Satisfactory results have been obtained, with a lower than 2% MAPE, which improve those reached when only neural networks or ARIMA were used for the same purpose. (author)

  9. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  10. beta Phase Growth and Precipitation in the 5xxx Series Aluminum Alloy System

    Science.gov (United States)

    Scotto D'Antuono, Daniel

    The 5xxx series aluminum alloys are commonly used for structural applications due to their high strength to weight ratio, corrosion resistance, and weldability. This material system is a non-heat treatable aluminum and derives its strength from a super saturation of magnesium (3%>), and from cold rolling. While these materials have many admiral properties, they can undergo a process known as sensitization when exposed to elevated temperatures (50-280°C) for extended periods of time. During this process, magnesium segregates toward the grain boundaries and forms the secondary precipitate β phase (Al3Mg2). When exposed to harsh environments such as sea water, a galvanic couple is formed between the Al matrix and the β phase precipitates. The precipitates become anodic to the matrix and preferentially dissolve leaving gaps along the boundary network, ultimately leading to stress corrosion cracking. While this problem has been known to occur for some time now, questions relating to nucleation sites, misorientation dependence, effect of prior strain, and preferred temperature regimes remain unanswered. The work contained in this thesis attempted to better understand the kinetics, growth, and misorientation dependence, of β phase precipitation using in situ transmission electron microscopy experiments which allowed for direct visualization of the precipitation process. Orientation imaging using a Nanomegas/ASTAR system (OIM in TEM) coupled with the in situ experiments, along with elemental STEM EELs mapping were used to better understand the diffusion of Mg and found low angle boundaries as potential sites for nucleation. The resulting STEM EELs experiments also showed that Mg is much more stable at the grain boundaries than previously thought. Concurrent bulk ex-situ studies were used to compare various heat treatments, as well as to failed in service material showing that the low temperature treatments yield the metastable β’ phase more readily than the

  11. Evaluation of Satellite and Model Precipitation Products Over Turkey

    Science.gov (United States)

    Yilmaz, M. T.; Amjad, M.

    2017-12-01

    Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products are validated over various temporal scales (daily, 3-daily, 7-daily, 10-daily and monthly) using in-situ measured precipitation observations from a network of 733 gauges from all over the Turkey. Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 and European Center of Medium-Range Weather Forecast (ECMWF) model estimates (daily, 3-daily, 7-daily and 10-daily accumulated forecast) are used in this study. Retrievals are evaluated for their mean and standard deviation and their accuracies are evaluated via bias, root mean square error, error standard deviation and correlation coefficient statistics. Intensity vs frequency analysis and some contingency table statistics like percent correct, probability of detection, false alarm ratio and critical success index are determined using daily time-series. Both ECMWF forecasts and TRMM observations, on average, overestimate the precipitation compared to gauge estimates; wet biases are 10.26 mm/month and 8.65 mm/month, respectively for ECMWF and TRMM. RMSE values of ECMWF forecasts and TRMM estimates are 39.69 mm/month and 41.55 mm/month, respectively. Monthly correlations between Gauges-ECMWF, Gauges-TRMM and ECMWF-TRMM are 0.76, 0.73 and 0.81, respectively. The model and the satellite error statistics are further compared against the gauges error statistics based on inverse distance weighting (IWD) analysis. Both the model and satellite data have less IWD errors (14

  12. Comparing the Palmer Drought Index and the Standardized Precipitation Index for Zagreb-Gric Observatory

    Science.gov (United States)

    Pandzic, Kreso

    2016-04-01

    Conventional Palmer Drought Index (PDSI) and recent Standardized Precipitation Index (SPI) are compared for Zagreb-Gric weather station. Historical time series of PDSI and SPI are compared. For that purpose monthly precipitation, air temperature and air humidity data for Zagreb-Gric Observatory and period 1862-2012 are used. The results indicate that SPI is simpler for interpretation than PDSI. On the other side, lack of temperature within SPI, make impossible use of it on climate change applications. A comparison of PDSI and SPI for the periods from 1 to 24 months indicate the best agreement between PDSI and SPI for the periods from 6 to 12 months. In addition, correlation coefficients of determination between annual corn crop per hectare and SPI 9- months time scale and PDSI from May to October are shown as significant.

  13. Inhomogeneities detection in annual precipitation time series in Portugal using direct sequential simulation

    Science.gov (United States)

    Caineta, Júlio; Ribeiro, Sara; Costa, Ana Cristina; Henriques, Roberto; Soares, Amílcar

    2014-05-01

    Climate data homogenisation is of major importance in monitoring climate change, the validation of weather forecasting, general circulation and regional atmospheric models, modelling of erosion, drought monitoring, among other studies of hydrological and environmental impacts. This happens because non-climate factors can cause time series discontinuities which may hide the true climatic signal and patterns, thus potentially bias the conclusions of those studies. In the last two decades, many methods have been developed to identify and remove these inhomogeneities. One of those is based on geostatistical simulation (DSS - direct sequential simulation), where local probability density functions (pdf) are calculated at candidate monitoring stations, using spatial and temporal neighbouring observations, and then are used for detection of inhomogeneities. This approach has been previously applied to detect inhomogeneities in four precipitation series (wet day count) from a network with 66 monitoring stations located in the southern region of Portugal (1980-2001). This study revealed promising results and the potential advantages of geostatistical techniques for inhomogeneities detection in climate time series. This work extends the case study presented before and investigates the application of the geostatistical stochastic approach to ten precipitation series that were previously classified as inhomogeneous by one of six absolute homogeneity tests (Mann-Kendall test, Wald-Wolfowitz runs test, Von Neumann ratio test, Standard normal homogeneity test (SNHT) for a single break, Pettit test, and Buishand range test). Moreover, a sensibility analysis is implemented to investigate the number of simulated realisations that should be used to accurately infer the local pdfs. Accordingly, the number of simulations per iteration is increased from 50 to 500, which resulted in a more representative local pdf. A set of default and recommended settings is provided, which will help

  14. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology.

    Science.gov (United States)

    Baisden, W Troy; Keller, Elizabeth D; Van Hale, Robert; Frew, Russell D; Wassenaar, Leonard I

    2016-01-01

    Predictive understanding of precipitation δ(2)H and δ(18)O in New Zealand faces unique challenges, including high spatial variability in precipitation amounts, alternation between subtropical and sub-Antarctic precipitation sources, and a compressed latitudinal range of 34 to 47 °S. To map the precipitation isotope ratios across New Zealand, three years of integrated monthly precipitation samples were acquired from >50 stations. Conventional mean-annual precipitation δ(2)H and δ(18)O maps were produced by regressions using geographic and annual climate variables. Incomplete data and short-term variation in climate and precipitation sources limited the utility of this approach. We overcome these difficulties by calculating precipitation-weighted monthly climate parameters using national 5-km-gridded daily climate data. This data plus geographic variables were regressed to predict δ(2)H, δ(18)O, and d-excess at all sites. The procedure yields statistically-valid predictions of the isotope composition of precipitation (long-term average root mean square error (RMSE) for δ(18)O = 0.6 ‰; δ(2)H = 5.5 ‰); and monthly RMSE δ(18)O = 1.9 ‰, δ(2)H = 16 ‰. This approach has substantial benefits for studies that require the isotope composition of precipitation during specific time intervals, and may be further improved by comparison to daily and event-based precipitation samples as well as the use of back-trajectory calculations.

  15. The Application of Box–Cox Transformation to Determine the Standardised Precipitation Index (SPI, the Standardised Discharge Index (SDI and to Identify Drought Events: Case Study in Eastern Kujawy (Central Poland

    Directory of Open Access Journals (Sweden)

    Bartczak Arkadiusz

    2014-10-01

    Full Text Available The article presents the results of research into the transformation of series of hydro-meteorological data for determining dry periods with the Standardised Precipitation Index (SPI and the Standardised Discharge Index (SDI. Time series from eight precipitation stations and five series of river discharge data in Eastern Kujawy (central Poland were analysed for 1951–2010. The frequency distribution of the series for their convergence with the normal distribution was tested with the Shapiro–Wilk test and homogeneity with the Bartlett's test. The transformation of the series was done with the Box–Cox technique, which made it possible to homogenise the series in terms of variance. In Poland, the technique has never been used to determine the SPI. After the transformation the distributions of virtually all series complied with the normal distribution and were homogeneous. Moreover, a statistically significant correlation between the δ transformation parameter and the skewness of the series of monthly precipitation was observed. It was similar for the series of mean monthly discharges in the winter half-year and the hydrological year. The analysis indicates an alternate occurrence of dry and wet periods both in case of precipitation and run-offs. Drought periods coincided with low flow periods. Thus, the fluctuations tend to affect the development of agriculture more than long-term ones.

  16. Is convective precipitation increasing? The case of Catalonia

    Science.gov (United States)

    Llasat, M. C.; Marcos, R.; Turco, M.

    2012-04-01

    A recent work (Turco and Llasat, 2011) has been performed to analyse the trends of the ETCCDI (Expert Team on Climate Change Detection and Indices) precipitation indices in Catalonia (NE Iberian Peninsula) from 1951 to 2003, calculated from a interpolated dataset of daily precipitation, namely SPAIN02, regular at 0.2° horizontal resolution. This work has showed that no general trends at a regional scale have been observed, considering the annual and the seasonal regional values, and only the consecutive dry days index (CDD) at annual scale shows a locally coherent spatial trend pattern. Simultaneously, Llasat et al (2009, 2010) have showed an important increase of flash-flood events in the same region. Although aspects related with vulnerability, exposure and changes in uses of soil have been found as the main responsible of this increase, a major knowledge on the evolution of high rainfall events is mandatory. Heavy precipitation is usually associated to convective precipitation and therefore the analysis of the latter is a good indicator of it. Particularly, in Catalonia, funding was raised to define a parameter, designated as β, related with the greater or lesser convective character of the precipitation (Llasat, 2001). This parameter estimates the contribution of convective precipitation to total precipitation using 1-min or 5-min rainfall intensities usually estimated by rain gauges and it can be also analysed by means of the meteorological radar (Llasat et al, 2007). Its monthly distribution shows a maximum in August, followed by September, which are the months with the major number of flash-floods in Catalonia. This parameter also allows distinguishing between different kinds of precipitation events taking into account the degree of convective contribution. The main problem is the lack of long rainfall rate series that allow analysing trends in convective precipitation. The second one is related with its heterogeneous spatial and temporal distribution. To

  17. MAP3S precipitation chemistry network: fourth periodic summary report (1980)

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    This, the fourth in a series of summary reports, contains complete field and chemical data from the MAP3S/RAINE (Multistate Atmospheric Power Production Pollution Studies) Precipitation Chemistry Network for the year 1980. The 1980 data were added to the previous data base, and an update of the previous statistical summary completed. Included are basic statistics, time trend analyses, and monthly averages.

  18. Calibration and combination of monthly near-surface temperature and precipitation predictions over Europe

    Science.gov (United States)

    Rodrigues, Luis R. L.; Doblas-Reyes, Francisco J.; Coelho, Caio A. S.

    2018-02-01

    A Bayesian method known as the Forecast Assimilation (FA) was used to calibrate and combine monthly near-surface temperature and precipitation outputs from seasonal dynamical forecast systems. The simple multimodel (SMM), a method that combines predictions with equal weights, was used as a benchmark. This research focuses on Europe and adjacent regions for predictions initialized in May and November, covering the boreal summer and winter months. The forecast quality of the FA and SMM as well as the single seasonal dynamical forecast systems was assessed using deterministic and probabilistic measures. A non-parametric bootstrap method was used to account for the sampling uncertainty of the forecast quality measures. We show that the FA performs as well as or better than the SMM in regions where the dynamical forecast systems were able to represent the main modes of climate covariability. An illustration with the near-surface temperature over North Atlantic, the Mediterranean Sea and Middle-East in summer months associated with the well predicted first mode of climate covariability is offered. However, the main modes of climate covariability are not well represented in most situations discussed in this study as the seasonal dynamical forecast systems have limited skill when predicting the European climate. In these situations, the SMM performs better more often.

  19. Two-stage precipitation of plutonium trifluoride

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1984-04-01

    Plutonium trifluoride was precipitated using a two-stage precipitation system. A series of precipitation experiments identified the significant process variables affecting precipitate characteristics. A mathematical precipitation model was developed which was based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter that can be used to control particle characteristics

  20. Soil response to long-term projections of extreme temperature and precipitation in the southern La Plata Basin

    Science.gov (United States)

    Pántano, Vanesa C.; Penalba, Olga C.

    2017-12-01

    Projected changes were estimated considering the main variables which take part in soil-atmosphere interaction. The analysis was focused on the potential impact of these changes on soil hydric condition under extreme precipitation and evapotranspiration, using the combination of Global Climate Models (GCMs) and observational data. The region of study is the southern La Plata Basin that covers part of Argentine territory, where rainfed agriculture production is one of the most important economic activities. Monthly precipitation and maximum and minimum temperatures were used from high quality-controlled observed data from 46 meteorological stations and the ensemble of seven CMIP5 GCMs in two periods: 1970-2005 and 2065-2100. Projected changes in monthly effective temperature and precipitation were analysed. These changes were combined with observed series for each probabilistic interval. The result was used as input variables for the water balance model in order to obtain consequent soil hydric condition (deficit or excess). Effective temperature and precipitation are expected to increase according to the projections of GCMs, with few exceptions. The analysis revealed increase (decrease) in the prevalence of evapotranspiration over precipitation, during spring (winter). Projections for autumn months show precipitation higher than potential evapotranspiration more frequently. Under dry extremes, the analysis revealed higher projected deficit conditions, impacting on crop development. On the other hand, under wet extremes, excess would reach higher values only in particular months. During December, projected increase in temperatures reduces the impact of extreme high precipitation but favours deficit conditions, affecting flower-fructification stage of summer crops.

  1. Amazon River Basin Precipitation, 1972-1992

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The precipitation data is 0.2 degree gridded monthly precipitation data based upon monthly rain data from Peru and Bolivia and daily rain data from Brazil....

  2. Generation of a stochastic precipitation model for the tropical climate

    Science.gov (United States)

    Ng, Jing Lin; Abd Aziz, Samsuzana; Huang, Yuk Feng; Wayayok, Aimrun; Rowshon, MK

    2017-06-01

    A tropical country like Malaysia is characterized by intense localized precipitation with temperatures remaining relatively constant throughout the year. A stochastic modeling of precipitation in the flood-prone Kelantan River Basin is particularly challenging due to the high intermittency of precipitation events of the northeast monsoons. There is an urgent need to have long series of precipitation in modeling the hydrological responses. A single-site stochastic precipitation model that includes precipitation occurrence and an intensity model was developed, calibrated, and validated for the Kelantan River Basin. The simulation process was carried out separately for each station without considering the spatial correlation of precipitation. The Markov chains up to the fifth-order and six distributions were considered. The daily precipitation data of 17 rainfall stations for the study period of 1954-2013 were selected. The results suggested that second- and third-order Markov chains were suitable for simulating monthly and yearly precipitation occurrences, respectively. The fifth-order Markov chain resulted in overestimation of precipitation occurrences. For the mean, distribution, and standard deviation of precipitation amounts, the exponential, gamma, log-normal, skew normal, mixed exponential, and generalized Pareto distributions performed superiorly. However, for the extremes of precipitation, the exponential and log-normal distributions were better while the skew normal and generalized Pareto distributions tend to show underestimations. The log-normal distribution was chosen as the best distribution to simulate precipitation amounts. Overall, the stochastic precipitation model developed is considered a convenient tool to simulate the characteristics of precipitation in the Kelantan River Basin.

  3. Adverse Events following 12 and 18 Month Vaccinations: a Population-Based, Self-Controlled Case Series Analysis

    OpenAIRE

    Wilson, Kumanan; Hawken, Steven; Kwong, Jeffrey C.; Deeks, Shelley; Crowcroft, Natasha S.; Van Walraven, Carl; Potter, Beth K.; Chakraborty, Pranesh; Keelan, Jennifer; Pluscauskas, Michael; Manuel, Doug

    2011-01-01

    BACKGROUND: Live vaccines have distinct safety profiles, potentially causing systemic reactions one to 2 weeks after administration. In the province of Ontario, Canada, live MMR vaccine is currently recommended at age 12 months and 18 months. METHODS: Using the self-controlled case series design we examined 271,495 12 month vaccinations and 184,312 18 month vaccinations to examine the relative incidence of the composite endpoint of emergency room visits or hospital admissions in consecutive o...

  4. Study of asphaltene precipitation by Calorimetry

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Plantier, Frédéric; Bessières, David

    2007-01-01

    Can calorimetry bring new input to the Current understanding of asphaltene precipitation? In this work, two types of precipitation were studied by means of calorimetry: addition of n-heptane into asphaltene solutions and temperature/pressure variations on a recombined live oil. The first series...... of experiments showed that weak forces determine precipitation. Indeed, isothermal titration calorimetry could not detect any clear signal although this technique can detect low-energy transitions such as liquid-liquid equilibrium and rnicellization. The second series of tests proved that precipitation caused...... by T and P variations is exothermic for this system. Furthermore, the temperature-induced precipitation is accompanied by an increase in the apparent thermal expansivity. Therefore, it seems that these two phase transitions exhibit different calorimetric behaviours and they may not be as similar...

  5. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  6. The Santander Atlantic Time-Series Station (SATS): A Time Series combination of a monthly hydrographic Station and The Biscay AGL Oceanic Observatory.

    Science.gov (United States)

    Lavin, Alicia; Somavilla, Raquel; Cano, Daniel; Rodriguez, Carmen; Gonzalez-Pola, Cesar; Viloria, Amaia; Tel, Elena; Ruiz-Villareal, Manuel

    2017-04-01

    Long-Term Time Series Stations have been developed in order to document seasonal to decadal scale variations in key physical and biogeochemical parameters. Long-term time series measurements are crucial for determining the physical and biological mechanisms controlling the system. The Science and Technology Ministers of the G7 in their Tsukuba Communiqué have stated that 'many parts of the ocean interior are not sufficiently observed' and that 'it is crucial to develop far stronger scientific knowledge necessary to assess the ongoing changes in the ocean and their impact on economies.' Time series has been classically obtained by oceanographic ships that regularly cover standard sections and stations. From 1991, shelf and slope waters of the Southern Bay of Biscay are regularly sampled in a monthly hydrographic line north of Santander to a depth of 1000 m in early stages and for the whole water column down to 2580 m in recent times. Nearby, in June 2007, the IEO deployed an oceanic-meteorological buoy (AGL Buoy, 43° 50.67'N; 3° 46.20'W, and 40 km offshore, www.boya-agl.st.ieo.es). The Santander Atlantic Time Series Station is integrated in the Spanish Institute of Oceanography Observing Sistem (IEOOS). The long-term hydrographic monitoring has allowed to define the seasonality of the main oceanographic facts as the upwelling, the Iberian Poleward Current, low salinity incursions, trends and interannual variability at mixing layer, and at the main water masses North Atlantic Central Water and Mediterranean Water. The relation of these changes with the high frequency surface conditions recorded by the Biscay AGL has been examined using also satellite and reanalysis data. During the FIXO3 Project (Fixed-point Open Ocean Observatories), and using this combined sources, some products and quality controled series of high interest and utility for scientific purposes has been developed. Hourly products as Sea Surface Temperature and Salinity anomalies, wave significant

  7. Analysis of climatic variations in seasonal precipitation and temperature in Salamanca (Spain); Analisis de las variaciones climaticas en series estacionales de temperatura y precipitacion en Salamanca (Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Casado, A.; Encinas, A.H.; Rodriguez Puebla, C. [Dpto. de Fisica General y de la Atmosfera Universidad de Salamanca, Salamanca (Spain)

    1996-12-31

    This paper describes the seasonal precipitation and temperature variability in Salamanca. The objectives of the study are: to determine the climate signals on inter annual time-scale within the time series; to redefine the series as a function of the significant oscillation components and to predict local precipitation and temperature variables. The methods used are spectral analysis to obtain the periods of the significant components, linear and nonlinear regression models to obtain the analytical functions that best fit the data. (Author) 14 refs.

  8. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  9. TEMPERATURE AND PRECIPITATION CHANGES IN TÂRGU-MURES (ROMANIA FROM PERIOD 1951-2010

    Directory of Open Access Journals (Sweden)

    O.Rusz

    2012-03-01

    Full Text Available Temperature and precipitation changes in Târgu Mures (Romania from period 1951-2010. The analysis was made based upon meteorological data collected at Târgu Mures meteorological station (Romania, Mures county, lat. 46°32’N, lon. 24°32’E, elevation 308 m, between 1951 and 2010. Several climatic parameters were studied (for instance, annual and monthly mean temperature, maximum precipitation in 24 hours, number of summer days, etc. Detected inhomogeneities are not related to instrumental causes or geographical relocation. Positive and statistical significant trends (Mann-Kendall test are indicated for: mean annual temperatures, mean temperatures of warm months, average of the maximum and minimum temperatures (annual and warm months data, number of days with mean temperature between 20.1-25.0 °C, number of days with precipitation ≥0 mm, and for all parameters of precipitation of September. The sequential version of Mann-Kendall test show a beginning of a trend in 1956 in the case of mean temperature (at same, the two and three parts regression denote this year like a moment of change, years 1965 and 1992 in the case of annual amount of precipitation. CUSUM charts indicate occurs of changes points at 1988, 2005, 2009 (mean temperature respectively at 1989, 2004 (precipitation, and at 1968, 1992 (daily temperature range. Tendencies of overlapped time series reveal a more important increase at the end of period (mainly for mean temperature. The analysis with RClimDex show for 5 extreme climate indices a significant trend: positive for summer days, warm nights, warm spell duration indicator and negative for cold nights and cold days.

  10. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  11. United States Historical Climatology Network (US HCN) monthly temperature and precipitation data

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R.C. [ed.] [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment and Resources Center; Boden, T.A. [ed.] [Oak Ridge National Lab., TN (United States); Easterling, D.R.; Karl, T.R.; Mason, E.H.; Hughes, P.Y.; Bowman, D.P. [National Climatic Data Center, Asheville, NC (United States)

    1996-01-11

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have been used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.

  12. An Improved Plutonium Trifluoride Precipitation Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    2001-06-26

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process.

  13. An Improved Plutonium Trifluoride Precipitation Flowsheet

    International Nuclear Information System (INIS)

    Harmon, H.D.

    2001-01-01

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process

  14. Changes in temperature and precipitation extremes observed in Modena, Italy

    Science.gov (United States)

    Boccolari, M.; Malmusi, S.

    2013-03-01

    Climate changes has become one of the most analysed subjects from researchers community, mainly because of the numerous extreme events that hit the globe. To have a better view of climate changes and trends, long observations time series are needed. During last decade a lot of Italian time series, concerning several surface meteorological variables, have been analysed and published. No one of them includes one of the longest record in Italy, the time series of the Geophysical Observatory of the University of Modena and Reggio Emilia. Measurements, collected since early 19th century, always in the same position, except for some months during the second world war, embrace daily temperature, precipitation amount, relative humidity, pressure, cloudiness and other variables. In this work we concentrated on the analysis of yearly and seasonal trends and climate extremes of temperature, both minimum and maximum, and precipitation time series, for the periods 1861-2010 and 1831-2010 respectively, in which continuous measurements are available. In general, our results confirm quite well those reported by IPCC and in many other studies over Mediterranean area. In particular, we found that minimum temperature has a non significant positive trend of + 0.1 °C per decade considering all the period, the value increases to 0.9 °C per decade for 1981-2010. For maximum temperature we observed a non significant + 0.1 °C trend for all the period, while + 0.8 °C for the last thirty years. On the other hand precipitation is decreasing, -6.3 mm per decade, considering all the analysed period, while the last thirty years are characterised by a great increment of 74.8 mm per decade. For both variables several climate indices have been analysed and they confirm what has been found for minimum and maximum temperatures and precipitation. In particular, during last 30 years frost days and ice days are decreasing, whereas summer days are increasing. During the last 30-year tropical nights

  15. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    Science.gov (United States)

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for

  16. Self-organizing map network-based precipitation regionalization for the Tibetan Plateau and regional precipitation variability

    Science.gov (United States)

    Wang, Nini; Yin, Jianchuan

    2017-12-01

    A precipitation-based regionalization for the Tibetan Plateau (TP) was investigated for regional precipitation trend analysis and frequency analysis using data from 1113 grid points covering the period 1900-2014. The results utilizing self-organizing map (SOM) network suggest that four clusters of precipitation coherent zones can be identified, including the southwestern edge, the southern edge, the southeastern region, and the north central region. Regionalization results of the SOM network satisfactorily represent the influences of the atmospheric circulation systems such as the East Asian summer monsoon, the south Asian summer monsoon, and the mid-latitude westerlies. Regionalization results also well display the direct impacts of physical geographical features of the TP such as orography, topography, and land-sea distribution. Regional-scale annual precipitation trend as well as regional differences of annual and seasonal total precipitation were investigated by precipitation index such as precipitation concentration index (PCI) and Standardized Anomaly Index (SAI). Results demonstrate significant negative long-term linear trends in southeastern TP and the north central part of the TP, indicating arid and semi-arid regions in the TP are getting drier. The empirical mode decomposition (EMD) method shows an evolution of the main cycle with 4 and 12 months for all the representative grids of four sub-regions. The cross-wavelet analysis suggests that predominant and effective period of Indian Ocean Dipole (IOD) on monthly precipitation is around ˜12 months, except for the representative grid of the northwestern region.

  17. Soil moisture memory at sub-monthly time scales

    Science.gov (United States)

    Mccoll, K. A.; Entekhabi, D.

    2017-12-01

    For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.

  18. Monthly Rainfall Erosivity Assessment for Switzerland

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  19. Tritium Level in Romanian Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Stefanescu, I.; Faurescu, I.; Bogdan, D.; Soare, A. [Institute for Cryogenic and Isotope Technologies, Rm. Valcea (Romania); Duliu, O. G. [Faculty of Physics, University of Bucharest, Magurele (Romania)

    2013-07-15

    Romania is one of the countries that has no station included in GNIP (Global Network of Isotopes in Precipitation) on its territory. This paper presents results regarding the tritium concentration in precipitation for the period 1999-2009. The precipitation fell at the Institute for cryogenic and Isotope technologies (geographical coordinates: altitude 237 m, latitude 45{sup o}02'07' N, longitude 24{sup o}17'03' E) an was collected both individually and as a composite average of each month. It was individually measured and the average was calculated and compared with the tritium concentration measured in the composite sample. tritium concentration levels ranged from 9.9 {+-} 2.1 TU for 2004 and 13.7 {+-} 2.2 TU for 2009. Comparing the arithmetic mean values with the weighted mean for the period of observation, it was noticed that the higher absolute values of the weighted means were constant. It was found that for the calculated monthly average for the period of observation (1999-2009), the months with the maximum tritium concentration are the same as the months with the maximum amount of precipitation. This behaviour is typical for the monitored location. (author)

  20. LIS/OTD 2.5 DEGREE LOW RESOLUTION MONTHLY TIME SERIES (LRMTS) V2.3.2013

    Data.gov (United States)

    National Aeronautics and Space Administration — The product is a 2.5 deg x 2.5 deg gridded composite of total (IC+CG) lightning bulk production, expressed as a flash rate density (fl/km2/yr) Monthly Time Series....

  1. Fluctuations in the large-scale atmospheric circulation and ocean conditions associated with the dominant modes of wintertime precipitation variability for the contiguous United States

    International Nuclear Information System (INIS)

    Mitchell, T.P.; Blier, W.

    1994-01-01

    The historical Climatic Division record of monthly- and seasonal-mean wintertime precipitation totals are analyzed to document the dominant patterns of precipitation variability for the contiguous United States. The analysis technique employed is the Rotated Principal Component analysis. Time series for the leading patterns are related to global sea-surface temperatures (SSTs), and to gridded surface and upper-air analyses for the Northern Hemisphere

  2. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales

    Science.gov (United States)

    Katiraie-Boroujerdy, Pari-Sima; Akbari Asanjan, Ata; Hsu, Kuo-lin; Sorooshian, Soroosh

    2017-09-01

    In the first part of this paper, monthly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Tropical Rainfall Measuring Mission 3B42 algorithm Version 7 (TRMM-3B42V7) are evaluated over Iran using the Generalized Three-Cornered Hat (GTCH) method which is self-sufficient of reference data as input. Climate Data Unit (CRU) is added to the GTCH evaluations as an independent gauge-based dataset thus, the minimum requirement of three datasets for the model is satisfied. To ensure consistency of all datasets, the two satellite products were aggregated to 0.5° spatial resolution, which is the minimum resolution of CRU. The results show that the PERSIANN-CDR has higher Signal to Noise Ratio (SNR) than TRMM-3B42V7 for the monthly rainfall estimation, especially in the northern half of the country. All datasets showed low SNR in the mountainous area of southwestern Iran, as well as the arid parts in the southeast region of the country. Additionally, in order to evaluate the efficacy of PERSIANN-CDR and TRMM-3B42V7 in capturing extreme daily-precipitation amounts, an in-situ rain-gauge dataset collected by the Islamic Republic of the Iran Meteorological Organization (IRIMO) was employed. Given the sparsity of the rain gauges, only 0.25° pixels containing three or more gauges were used for this evaluation. There were 228 such pixels where daily and extreme rainfall from PERSIANN-CDR and TRMM-3B42V7 could be compared. However, TRMM-3B42V7 overestimates most of the intensity indices (correlation coefficients; R between 0.7648-0.8311, Root Mean Square Error; RMSE between 3.29mm/day-21.2mm/5day); PERSIANN-CDR underestimates these extremes (R between 0.6349-0.7791 and RMSE between 3.59mm/day-30.56mm/5day). Both satellite products show higher correlation coefficients and lower RMSEs for the annual mean of consecutive dry spells than wet spells. The results show that TRMM-3B42V7

  3. Analysis of precipitation characteristics of South and North China based on the power-law tail exponents

    International Nuclear Information System (INIS)

    Feng Guolin; Zhang Daquan; Gong Zhiqiang; Zhi Rong

    2008-01-01

    Precipitation sequence is a typical nonlinear and chaotic observational series, and studies on precipitation forecasts are restricted to the use of traditional linear statistical methods, especially when analysing the regional characteristics of precipitation. In the context of 20 stations' daily precipitation series (from 1956 to 2000) in South China (SC) and North China (NC), we divide each precipitation series into many self-stationary segments by using the heuristic segmentation algorithm (briefly BG algorithm). For each station's precipitation series, we calculate the exponent of power-law tail (EPT) of the cumulative probability distribution of segments with a length larger than l for precipitation and temperature series. Our results show that the power-law decay of the cumulative probability distribution of stationary segments might be a common attribution for precipitation and other nonstationary time series; the EPT somewhat indicates the precipitation duration and its spatial distribution that might be different from area to area. The EPT in NC is larger than in SC; Meanwhile, EPT might be another effective way to study the abrupt changes in nonlinear and nonstationary time series. (geophysics, astronomy and astrophysics)

  4. A new precipitation and drought climatology based on weather patterns.

    Science.gov (United States)

    Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert

    2018-02-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.

  5. Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932-2010

    Science.gov (United States)

    Abahous, H.; Ronchail, J.; Sifeddine, A.; Kenny, L.; Bouchaou, L.

    2017-11-01

    In the context of an arid area such as Souss Massa Region, the availability of time series analysis of observed local data is vital to better characterize the regional rainfall configuration. In this paper, dataset of monthly precipitation collected from different local meteorological stations during 1932-2010, are quality controlled and analyzed to detect trend and change points. The temporal distribution of outliers shows an annual cycle and a decrease of their number since the 1980s. The results of the standard normal homogeneity test, penalized maximal t test, and Mann-Whitney-Pettit test show that 42% of the series are homogeneous. The analysis of annual precipitation in the region of Souss Massa during 1932-2010 shows wet conditions with a maximum between 1963 and 1965 followed by a decrease since 1973. The latter is identified as a statistically significant regional change point in Western High Atlas and Anti Atlas Mountains highlighting a decline in long-term average precipitation.

  6. The effect of ambient air temperature and precipitation on monthly counts of salmonellosis in four regions of Kazakhstan, Central Asia, in 2000-2010.

    Science.gov (United States)

    Grjibovski, A M; Kosbayeva, A; Menne, B

    2014-03-01

    We studied associations between monthly counts of laboratory-confirmed cases of salmonellosis, ambient air temperature and precipitation in four settings in Kazakhstan. We observed a linear association between the number of cases of salmonellosis and mean monthly temperature during the same months only in Astana: an increase of 1°C was associated with a 5·5% [95% confidence interval (CI) 2·2-8·8] increase in the number of cases. A similar association, although not reaching the level of significance was observed in the Southern Kazakhstan region (3·5%, 95% CI -2·1 to 9·1). Positive association with precipitation with lag 2 was found in Astana: an increase of 1 mm was associated with a 0·5% (95% CI 0·1-1·0) increase in the number of cases. A similar association, but with lag 0 was observed in Southern Kazakhstan region (0·6%, 95% CI 0·1-1·1). The results may have implications for the future patterns of salmonellosis in Kazakhstan with regard to climate change.

  7. Impact of Precipitation Fluctuation on Desert-Grassland ANPP

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2016-11-01

    Full Text Available Precipitation change has significantly influenced annual net primary productivity (ANPP at either annual or seasonal scales in desert steppes in arid and semi-arid regions. In order to reveal the process of precipitation driving ANPP at different time scales, responses of different ANPP levels to the inter-annual and intra-annual precipitation fluctuations were analyzed. ANPP was reversed by building a ground reflectance spectrum model, from 2000 to 2015, using the normalized differential vegetation index of the Moderate-Resolution Imaging Spectroradiometer (MODIS-NDVI data at 250 m × 250 m spatial resolution. Since the description of the differently expressing forms of precipitation are not sufficient in former studies in order to overcome the deficiency of former studies, in this study, intra-annual precipitation fluctuations were analyzed not only with precipitation of May–August, June–August, July–August, and August, respectively, which have direct influence on vegetation productivity within the year, but quantitative description, vector precipitation (R, concentration ratio (Cd, and concentration period (D, were also used to describe the overall characteristics of intra-annual precipitation fluctuations. The concentration ratio and the maximum precipitation period of the intra-annual precipitation were represented by using monthly precipitation. The results showed that: (1 in the period from 1971 to 2015, the maximum annual precipitation is 3.76 times that of the minimum in the Urat desert steppe; (2 vector precipitation is more significantly related to ANPP (r = 0.7724, p = 0.000 compared to meteorological annual precipitation and real annual precipitation influence; and (3 annual precipitation is almost concentrated in 5–8 months and monthly precipitation accumulation has significantly effected ANPP, especially in the period of June–August, since the vegetation composition in the study area was mainly sub-shrubs and perennial

  8. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    Science.gov (United States)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  9. Validation of Satellite Precipitation (trmm 3B43) in Ecuadorian Coastal Plains, Andean Highlands and Amazonian Rainforest

    Science.gov (United States)

    Ballari, D.; Castro, E.; Campozano, L.

    2016-06-01

    Precipitation monitoring is of utmost importance for water resource management. However, in regions of complex terrain such as Ecuador, the high spatio-temporal precipitation variability and the scarcity of rain gauges, make difficult to obtain accurate estimations of precipitation. Remotely sensed estimated precipitation, such as the Multi-satellite Precipitation Analysis TRMM, can cope with this problem after a validation process, which must be representative in space and time. In this work we validate monthly estimates from TRMM 3B43 satellite precipitation (0.25° x 0.25° resolution), by using ground data from 14 rain gauges in Ecuador. The stations are located in the 3 most differentiated regions of the country: the Pacific coastal plains, the Andean highlands, and the Amazon rainforest. Time series, between 1998 - 2010, of imagery and rain gauges were compared using statistical error metrics such as bias, root mean square error, and Pearson correlation; and with detection indexes such as probability of detection, equitable threat score, false alarm rate and frequency bias index. The results showed that precipitation seasonality is well represented and TRMM 3B43 acceptably estimates the monthly precipitation in the three regions of the country. According to both, statistical error metrics and detection indexes, the coastal and Amazon regions are better estimated quantitatively than the Andean highlands. Additionally, it was found that there are better estimations for light precipitation rates. The present validation of TRMM 3B43 provides important results to support further studies on calibration and bias correction of precipitation in ungagged watershed basins.

  10. Use of synthetic series of monthly flows in calculating the marginal cost of energy of the national interconnected power system of Peru

    International Nuclear Information System (INIS)

    Sarango J, D.; Velasquez B, T.

    2009-01-01

    In this research it was determined the feasibility of using synthetic series of monthly average flow for the determination of the average marginal cost of energy in the National Interconnected Electric System of Peru, SEIN, taking as a case study of implementing bar tariff setting in 2004, where it was used the PERSEO model for planning, simulation and optimization of the hydrothermal system in Peru. The model is currently used by the Deputy Manager of tariff regulation (GART) of the Agency for Supervision of Investment in Energy and Mining - OSINERGMIN. The model use as hydrological information the average monthly flow series of tributaries to the historical attractions of the 23 river basins of the SEIN, one of the main is the basin of the Junin Lake, whose water is used by the Mantaro and Restitution hydroelectric, generating almost 20% of the power of our country. With the HEC-4 program, developed by the Hydrological Engineering Center of the USA, from the time series of monthly historical flows tributary to the Junin Lake, 50 series were generated synthetic monthly flow, determined from them a dry series, a average series and a wet series, information that was used in the PERSEO model to calculate the average marginal cost of energy of SEIN for each case. The results obtained from the average marginal cost of energy with the use of synthetic series of monthly flows, for the dry case, average case and wet case, with the PERSEO model, compared to the historical event, are lower in order of 1.14, 1.55 and 0.87 US $/MWh, the results will determine a decline in energy prices for end users, such as the domestic, commercial, industrial and mining users. (author).

  11. On precipitation monitoring with theoretical statistical distributions

    Science.gov (United States)

    Cindrić, Ksenija; Juras, Josip; Pasarić, Zoran

    2018-04-01

    A common practice in meteorological drought monitoring is to transform the observed precipitation amounts to the standardised precipitation index (SPI). Though the gamma distribution is usually employed for this purpose, some other distribution may be used, particularly in regions where zero precipitation amounts are recorded frequently. In this study, two distributions are considered alongside with the gamma distribution: the compound Poisson exponential distribution (CPE) and the square root normal distribution (SRN). They are fitted to monthly precipitation amounts measured at 24 stations in Croatia in the 55-year-long period (1961-2015). At five stations, long-term series (1901-2015) are available and they have been used for a more detailed investigation. The accommodation of the theoretical distributions to empirical ones is tested by comparison of the corresponding empirical and theoretical ratios of the skewness and the coefficient of variation. Furthermore, following the common approach to precipitation monitoring (CLIMAT reports), the comparison of the empirical and theoretical quintiles in the two periods (1961-1990 and 1991-2015) is examined. The results from the present study reveal that it would be more appropriate to implement theoretical distributions in such climate reports, since they provide better evaluation for monitoring purposes than the current empirical distribution. Nevertheless, deciding on an optimal theoretical distribution for different climate regimes and for different time periods is not easy to accomplish. With regard to Croatian stations (covering different climate regimes), the CPE or SRN distribution could also be the right choice in the climatological practice, in addition to the gamma distribution.

  12. The time series variations of tritium concentration in precipitation and its relationships to the rainfall-inducing air mass

    International Nuclear Information System (INIS)

    Shimada, Jun

    1978-01-01

    The author measured the tritium concentration in precipitation of Tokyo for every ten-day period from August 1972 to May 1974. Judging from the daily synoptic weather chart, the rainfall-inducing air masses in Japan were classified into five types; polar maritime air mass (Pm), polar continental air mass (Pc), tropical maritime air mass (Tm), tropical continental air mass (Tc), and equatorial maritime air mass (Em). And the precipitation for every ten-day period sampled for tritium measurement were classified into these five types. Based on this classification, it is confirmed that there exist clear difference in the tritium concentration between the rainfall from the continental air mass and ones from the maritime air mass. It is characteristic that the tritium concentration in rainfall induced by equatorial maritime air mass such as typhoon in summer and early fall season is very low whereas the tritium concentration in rainfall and snowfall induced directly by the polar continental air mass in late winter season is very high. The regional difference of the tritium concentration in intermonthly precipitation could considerably be explained by this synoptic meteological classification of rainfall-inducing air mass. In spite of these regional difference of tritium concentration in precipitation, use of the tritium concentration of Tokyo as a representative value of Japan may be allowed because of the similarities of the changing pattern and annual mean tritium concentration. The time series variations of tritium concentration in precipitation of Tokyo from August 1972 to December 1977, Tsukuba from December 1976 to April 1978, and Nagaoka from April 1977 to March 1978 are listed. (author)

  13. Precipitation Dynamical Downscaling Over the Great Plains

    Science.gov (United States)

    Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.; Martin, Elinor; Rosendahl, Derek H.; Qiao, Lei

    2018-02-01

    Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm-season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic-scale circulations are faithfully reproduced while still allowing WRF to develop small-scale dynamics, thus effectively suppressing the large-scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980-2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans-state Oologah watershed is also achieved.

  14. Acidity of Scandinavian precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, E; Bordin, G

    1955-01-01

    Data on the pH of the total monthly precipitation at stations of a Swedish network for sampling and chemical analysis of precipitation and atmospheric aerosols during the year July 1953 to June 1954 are presented and discussed, together with the pH data from the first two months of operation of a large pan-Scandinavian net. It is found that well-defined regions of acidity and alkalinity relative to the pH of water in equilibrium with atmospheric carbon dioxide exist, and that these regions persist to such an extent that the monthly deviations from the pattern of the annual mean pH at stations unaffected by local pollution show persistently high acidity, while inland northern stations show equally persistent alkalinity. Some possible reasons for the observed distributions are considered.

  15. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    Science.gov (United States)

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds

  16. "Cool" vs. "warm" winter precipitation and its effect on streamflow in California

    OpenAIRE

    Cayan, Daniel R.

    1991-01-01

    Precipitation is a difficult variable to understand and predict. In this study, monthly precipitation in California is divided into two classes according to the monthly temperature to better diagnose the atmospheric circulation that causes precipitation, and to illustrate how temperature compounds the precipitation to runoff process.

  17. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  18. On the forecast of runoff based on the harmonic analysis of time series of precipitation in the catchment area

    Science.gov (United States)

    Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.

    2018-01-01

    It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.

  19. Variability in temperature, precipitation and river discharge in the Baltic States

    Energy Technology Data Exchange (ETDEWEB)

    Kriauciuniene, J.; Meilutyte-Barauskiene, D.; Sarauskiene, D. (Lithuanian Energy Inst., Kaunas (Lithuania), Lab. of Hydrology); Reihan, A. (Tallinn Univ. of Technology (Estonia), Inst. of Environmental Engineering); Koltsova, T.; Lizuma, L. (Latvian Hydrometeorological Agency, Riga (LV))

    2012-07-01

    The climate change impact on water resources is observed in all the Baltic States. These processes became more evident in the last decades. Although the territory of the Baltic States (Lithuania, Latvia, Estonia) is not large (175000 km2), the climatic differences are quite considerable. We performed a regionalization of the territory of the Baltic States depending on the conditions of river runoff formation which can be defined according to percentages of the river feeding sources (precipitation, snowmelt, groundwater). Long-term series of temperature (40 stations), precipitation (59 stations) and river discharge (77 stations) were used to compose ten regional series. This paper addresses: (1) variability in long-term regional series of temperature, precipitation and river discharge over a long period (1922-2007); (2) changes in regional series, comparing the periods 1991-2007 and 1931-1960 with the reference period (1961-1990), and (3) the impact of temperature and precipitation changes on regional river discharge. (orig.)

  20. Scaling of Precipitation Extremes Modelled by Generalized Pareto Distribution

    Science.gov (United States)

    Rajulapati, C. R.; Mujumdar, P. P.

    2017-12-01

    Precipitation extremes are often modelled with data from annual maximum series or peaks over threshold series. The Generalized Pareto Distribution (GPD) is commonly used to fit the peaks over threshold series. Scaling of precipitation extremes from larger time scales to smaller time scales when the extremes are modelled with the GPD is burdened with difficulties arising from varying thresholds for different durations. In this study, the scale invariance theory is used to develop a disaggregation model for precipitation extremes exceeding specified thresholds. A scaling relationship is developed for a range of thresholds obtained from a set of quantiles of non-zero precipitation of different durations. The GPD parameters and exceedance rate parameters are modelled by the Bayesian approach and the uncertainty in scaling exponent is quantified. A quantile based modification in the scaling relationship is proposed for obtaining the varying thresholds and exceedance rate parameters for shorter durations. The disaggregation model is applied to precipitation datasets of Berlin City, Germany and Bangalore City, India. From both the applications, it is observed that the uncertainty in the scaling exponent has a considerable effect on uncertainty in scaled parameters and return levels of shorter durations.

  1. Precipitation variability assessment of northeast China: Songhua ...

    Indian Academy of Sciences (India)

    Variability in precipitation is critical for the management of water resources. ... applied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainy ... 2015). As a result, such irregularities in precipitation,. i.e., droughts and floods can affect the ... (January–December), years and decades.

  2. Future projections of extreme precipitation using Advanced Weather Generator (AWE-GEN) over Peninsular Malaysia

    Science.gov (United States)

    Syafrina, A. H.; Zalina, M. D.; Juneng, L.

    2014-09-01

    A stochastic downscaling methodology known as the Advanced Weather Generator, AWE-GEN, has been tested at four stations in Peninsular Malaysia using observations available from 1975 to 2005. The methodology involves a stochastic downscaling procedure based on a Bayesian approach. Climate statistics from a multi-model ensemble of General Circulation Model (GCM) outputs were calculated and factors of change were derived to produce the probability distribution functions (PDF). New parameters were obtained to project future climate time series. A multi-model ensemble was used in this study. The projections of extreme precipitation were based on the RCP 6.0 scenario (2081-2100). The model was able to simulate both hourly and 24-h extreme precipitation, as well as wet spell durations quite well for almost all regions. However, the performance of GCM models varies significantly in all regions showing high variability of monthly precipitation for both observed and future periods. The extreme precipitation for both hourly and 24-h seems to increase in future, while extreme of wet spells remain unchanged, up to the return periods of 10-40 years.

  3. 461 TIME SERIES ANALYSES OF MEAN MONTHLY RAINFALL ...

    African Journals Online (AJOL)

    Osondu

    insidious hazard of nature that originated from a deficiency of ... as the main input into the hydrological cycle provides water for .... maritime air mass from the Atlantic Ocean and ... The forest vegetation in some parts of ... neighboring Niger Republic, while river Sokoto ..... basin by using the standardised precipitation index ...

  4. Analysis of Precipitation Characteristics during 1957-2012 in the Semi-Arid Loess Plateau, China.

    Directory of Open Access Journals (Sweden)

    Weijun Zhao

    Full Text Available Precipitation is the only water supply and most important factor affecting vegetation growth on the slopes of semi-arid Loess Plateau of China. Based on precipitation data from 7 synoptic stations in the study area over the period 1957-2012, the trends of precipitation and standardized precipitation index (SPI were analyzed by using linear regression, Mann-Kendall, and Spearman's Rho tests at the 5% significance level. The results show that (1 the precipitation fluctuation of monthly precipitation was intense (coefficients of variation> 100%, and the drier years were recorded as 1965 and 1995 at all stations. (2 The significant change trend of different stations varied on different time scales: the Changwu station had a significant decreasing trend in April (-0.488 mm/year and November (-0.249 mm/year, while Luochuan station was in April (-0.457 mm/year; Changwu station displayed a significant increasing trends in winter (0.220 mm/year and a significant decreasing trends in spring (-0.770 mm/year. The significant decreasing trends in annual precipitation were detected at the Suide (-2.034 mm/year and Yan'an (-2.129 mm/year stations. (3 The SPI-12 series analysis suggests that the drought degree of Yulin and Changwu was the lowest and that of Hengshan was the highest among the 7 synoptic stations.

  5. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change

    Science.gov (United States)

    Tsanis, I.; Tapoglou, E.

    2018-01-01

    The North Atlantic Oscillation (NAO) is responsible for the climatic variability in the Northern Hemisphere, in particular, in Europe and is related to extreme events, such as droughts. The purpose of this paper is to study the correlation between precipitation and winter (December-January-February-March (DJFM)) NAO both for the historical period (1951-2000) and two future periods (2001-2050 and 2051-2100). NAO is calculated for these three periods by using sea level pressure, while precipitation data from seven climate models following the representative concentration pathway (RCP) 8.5 are also used in this study. An increasing trend in years with positive DJFM NAO values in the future is defined by this data, along with higher average DJFM NAO values. The correlation between precipitation and DJFM NAO is high, especially in the Northern (high positive) and Southern Europe (high negative). Therefore, higher precipitation in Northern Europe and lower precipitation in Southern Europe are expected in the future. Cross-spectral analysis between precipitation and DJFM NAO time series in three different locations in Europe revealed the best coherence in a dominant cycle between 3 and 4 years. Finally, the maximum drought period in terms of consecutive months with drought is examined in these three locations. The results can be used for strategic planning in a sustainable water resources management plan, since there is a link between drought events and NAO.

  6. Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Puscas, R.; Feurdean, V. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania); Simon, V. [Babes-Bolyai University Faculty of Physics (Romania)

    2013-11-13

    The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviated from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.

  7. Average monthly and annual climate maps for Bolivia

    KAUST Repository

    Vicente-Serrano, Sergio M.

    2015-02-24

    This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control and temporal homogenization procedure. Monthly average maps at the spatial resolution of 1 km were modeled by means of a regression-based approach using topographic and geographic variables as predictors. The monthly average maximum and minimum temperatures, precipitation and potential exoatmospheric solar radiation under clear sky conditions are used to estimate the monthly average atmospheric evaporative demand by means of the Hargreaves model. Finally, the average water balance is estimated on a monthly and annual scale for each 1 km cell by means of the difference between precipitation and atmospheric evaporative demand. The digital layers used to create the maps are available in the digital repository of the Spanish National Research Council.

  8. Precipitation Reconstruction over Land (PREC/L)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists files of 3 resolutions of monthly averaged precipitation totals. The global analyses are defined by interpolation of gauge observations...

  9. TRMM Version 7 Level 3 Gridded Monthly Accumulations of GPROF Precipitation Retrievals

    Science.gov (United States)

    Stocker, E. F.; Kelley, O. A.

    2012-01-01

    In July 2011, improved versions of the retrieval algorithms were approved for TRMM. All data starting with June 2011 are produced only with the version 7 code. At the same time, version 7 reprocessing of all TRMM mission data was started. By the end of August 2011, the 14+ years of the reprocessed mission data became available online to users. This reprocessing provided the opportunity to redo and enhance upon an analysis of V7 impacts on L3 data accumulations that was presented at the 2010 EGU General Assembly. This paper will discuss the impact of algorithm changes made in th GPROF retrieval on the Level 2 swath products. Perhaps the most important change in that retrieval was to replacement of a model based a priori database with one created from Precipitation Radar (PR) and TMI brightness temperature (Tb) data. The radar pays a major role in the V7 GPROF (GPROF2010) in determining existence of rain. The level 2 retrieval algorithm also introduced a field providing the probability of rain. This combined use of the PR has some impact on the retrievals and created areas, particularly over ocean, where many areas of low-probability precipitation are retrieved whereas in version 6, these areas contained zero rain rates. This paper will discuss how these impacts get translated to the space/time averaged monthly products that use the GPROF retrievals. The level 3 products discussed are the gridded text product 3G68 and the standard 3A12 and 3B31 products. The paper provides an overview of the changes and explanation of how the level 3 products dealt with the change in the retrieval approach. Using the .25 deg x .25 degree grid, the paper will show that agreement between the swath product and the level 3 remains very high. It will also present comparisons of V6 and V7 GPROF retrievals as seen both at the swath level and the level 3 time/space gridded accumulations. It will show that the various L3 products based on GPROF level 2 retrievals are in close agreement. The

  10. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    Science.gov (United States)

    Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Graff, Benjamin

    2015-04-01

    considered to correct monthly precipitation and temperature time series. The first one applies two new analogy steps, using the sea surface temperature (SST) and the large-scale two-meter temperature. The second method is a calendar selection that keeps the closest analogue dates in the year for each target date. A sensitivity study has been performed to assess the final number of analogues dates to retain for each method. A comparison to Safran over 1958-2010 shows that biases on the interannual cycle of precipitation and temperature are strongly reduced with both methods. Using two supplementary analogy levels moreover leads to a large improvement of correlation in seasonal temperature time series. These two methods have also been validated before 1958 thanks to both raw observations and homogenized time series. The two post-processing methods come with some advantages and drawbacks. The calendar selection allows to slightly better correct for seasonal biases in precipitation and is therefore adapted in a forecasting context. The selection with two supplementary analogy levels would allow for possible season shifts and SST trends and is therefore better suited for climate reconstruction and climate change studies. Compo, G. P. et al. (2011). The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 137:1-28. doi: 10.1002/qj.776 Radanovics, S., Vidal, J.-P., Sauquet, E., Ben Daoud, A., and Bontron, G. (2013). Optimising predictor domains for spatially coherent precipitation downscaling. Hydrology and Earth System Sciences, 17:4189-4208. doi:10.5194/hess-17-4189-2013 Vidal, J.-P ., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 30:1627-1644. doi:10.1002/joc.2003

  11. Using GRACE to constrain precipitation amount over cold mountainous basins

    Science.gov (United States)

    Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.

    2017-01-01

    Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.

  12. The global historical climatology network: Long-term monthly temperature, precipitation, and pressure data

    International Nuclear Information System (INIS)

    Vose, R.S.; Schmoyer, R.L.; Peterson, T.C.; Steurer, P.M.; Heim, R.R. Jr.; Karl, T.R.; Eischeid, J.K.

    1992-01-01

    Interest in global climate change has risen dramatically during the past several decades. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, many different organizations and researchers have compiled these data sets, making it confusing and time consuming for individuals to acquire the most comprehensive data. In response to this rapid growth in the number of global data sets, DOE's Carbon Dioxide Information Analysis Center (CDIAC) and NOAA's National Climatic Data Center (NCDC) established the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for as dense a network of global stations as possible. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global data base; to subject the data to rigorous quality control; and to update, enhance, and distribute the data set at regular intervals. The purpose of this paper is to describe the compilation and contents of the GHCN data base (i.e., GHCN Version 1.0)

  13. Regionalization of monthly rainfall erosivity patternsin Switzerland

    Science.gov (United States)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of

  14. Precipitation Reconstruction (PREC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The PREC data set is an analysis of monthly precipitation constructed on a 2.5(o)lat/lon grid over the global for the period from 1948 to the present. The land...

  15. Multivariate autoregressive modelling and conditional simulation of precipitation time series for urban water models

    NARCIS (Netherlands)

    Torres-Matallana, J.A.; Leopold, U.; Heuvelink, G.B.M.

    2017-01-01

    Precipitation is the most active flux and major input of hydrological systems. Precipitation controls hydrological states (soil moisture and groundwater level), and fluxes (runoff, evapotranspiration and groundwater recharge).
    Hence, precipitation plays a paramount role in urban water systems.

  16. Future projections of extreme precipitation using Advanced Weather Generator (AWE-GEN over Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    A. H. Syafrina

    2014-09-01

    Full Text Available A stochastic downscaling methodology known as the Advanced Weather Generator, AWE-GEN, has been tested at four stations in Peninsular Malaysia using observations available from 1975 to 2005. The methodology involves a stochastic downscaling procedure based on a Bayesian approach. Climate statistics from a multi-model ensemble of General Circulation Model (GCM outputs were calculated and factors of change were derived to produce the probability distribution functions (PDF. New parameters were obtained to project future climate time series. A multi-model ensemble was used in this study. The projections of extreme precipitation were based on the RCP 6.0 scenario (2081–2100. The model was able to simulate both hourly and 24-h extreme precipitation, as well as wet spell durations quite well for almost all regions. However, the performance of GCM models varies significantly in all regions showing high variability of monthly precipitation for both observed and future periods. The extreme precipitation for both hourly and 24-h seems to increase in future, while extreme of wet spells remain unchanged, up to the return periods of 10–40 years.

  17. Probability Distribution and Projected Trends of Daily Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    CAO; Li-Ge; ZHONG; Jun; SU; Bu-Da; ZHAI; Jian-Qing; Macro; GEMMER

    2013-01-01

    Based on observed daily precipitation data of 540 stations and 3,839 gridded data from the high-resolution regional climate model COSMO-Climate Limited-area Modeling(CCLM)for 1961–2000,the simulation ability of CCLM on daily precipitation in China is examined,and the variation of daily precipitation distribution pattern is revealed.By applying the probability distribution and extreme value theory to the projected daily precipitation(2011–2050)under SRES A1B scenario with CCLM,trends of daily precipitation series and daily precipitation extremes are analyzed.Results show that except for the western Qinghai-Tibetan Plateau and South China,distribution patterns of the kurtosis and skewness calculated from the simulated and observed series are consistent with each other;their spatial correlation coefcients are above 0.75.The CCLM can well capture the distribution characteristics of daily precipitation over China.It is projected that in some parts of the Jianghuai region,central-eastern Northeast China and Inner Mongolia,the kurtosis and skewness will increase significantly,and precipitation extremes will increase during 2011–2050.The projected increase of maximum daily rainfall and longest non-precipitation period during flood season in the aforementioned regions,also show increasing trends of droughts and floods in the next 40 years.

  18. Clustering of France Monthly Precipitation, Temperature and Discharge Based on their Multiresolution Links with 500mb Geopotential Height from 1968 to 2008

    Science.gov (United States)

    Massei, N.; Fossa, M.; Dieppois, B.; Vidal, J. P.; Fournier, M.; Laignel, B.

    2017-12-01

    In the context of climate change and ever growing use of water resources, identifying how the climate and watershed signature in discharge variability changes with the geographic location is of prime importance. This study aims at establishing how 1968-2008 multiresolution links between 3 local hydrometerological variables (precipitation, temperature and discharge) and 500 mb geopotential height are structured over France. First, a methodology that allows to encode the 3D geopotential height data into its 1D conformal modulus time series is introduced. Then, for each local variable, their covariations with the geopotential height are computed with cross wavelet analysis. Finally, a clustering analysis of each variable cross spectra is done using bootstrap clustering.We compare the clustering results for each local variable in order to untangle the watershed from the climate drivers in France's rivers discharge. Additionally, we identify the areas in the geopotential height field that are responsible for the spatial structure of each local variable.Main results from this study show that for precipitation and discharge, clear spatial zones emerge. Each cluster is characterized either by different different amplitudes and/or time scales of covariations with geopotential height. Precipitation and discharge clustering differ with the later being simpler which indicates a strong low frequency modulation by the watersheds all over France. Temperature on the other hand shows less clearer spatial zones. For precipitation and discharge, we show that the main action path starts at the northern tropical zone then moves up the to central North Atlantic zone which seems to indicates an interaction between the convective cells variability and the reinforcement of the westerlies jets as one of the main control of the precipitation and discharge over France. Temperature shows a main zone of action directly over France hinting at local temperature/pressure interactions.

  19. Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition

    Science.gov (United States)

    Kim, Taereem; Shin, Ju-Young; Kim, Sunghun; Heo, Jun-Haeng

    2018-02-01

    Climate indices characterize climate systems and may identify important indicators for long-term precipitation, which are driven by climate interactions in atmosphere-ocean circulation. In this study, we investigated the climate indices that are effective indicators of long-term precipitation in South Korea, and examined their relationships based on statistical methods. Monthly total precipitation was collected from a total of 60 meteorological stations, and they were decomposed by ensemble empirical mode decomposition (EEMD) to identify the inherent oscillating patterns or cycles. Cross-correlation analysis and stepwise variable selection were employed to select the significant climate indices at each station. The climate indices that affect the monthly precipitation in South Korea were identified based on the selection frequencies of the selected indices at all stations. The NINO12 indices with four- and ten-month lags and AMO index with no lag were identified as indicators of monthly precipitation in South Korea. Moreover, they indicate meaningful physical information (e.g. periodic oscillations and long-term trend) inherent in the monthly precipitation. The NINO12 indices with four- and ten- month lags was a strong indicator representing periodic oscillations in monthly precipitation. In addition, the long-term trend of the monthly precipitation could be explained by the AMO index. A multiple linear regression model was constructed to investigate the influences of the identified climate indices on the prediction of monthly precipitation. Three identified climate indices successfully explained the monthly precipitation in the winter dry season. Compared to the monthly precipitation in coastal areas, the monthly precipitation in inland areas showed stronger correlation to the identified climate indices.

  20. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation

    Science.gov (United States)

    Peterson, P.; Funk, C. C.; Husak, G. J.; Pedreros, D. H.; Landsfeld, M.; Verdin, J. P.; Shukla, S.

    2013-12-01

    CHIRP and CHIRPS are new quasi-global precipitation products with daily to seasonal time scales, a 0.05° resolution, and a 1981 to near real-time period of record. Developed by the Climate Hazards Group at UCSB and scientists at the U.S. Geological Survey Earth Resources Observation and Science Center specifically for drought early warning and environmental monitoring, CHIRPS provides moderate latency precipitation estimates that place observed hydrologic extremes in their historic context. Three main types of information are used in the CHIRPS: (1) global 0.05° precipitation climatologies, (2) time-varying grids of satellite-based precipitation estimates, and (3) in situ precipitation observations. CHIRP: The global grids of long-term (1980-2009) average precipitation were estimated for each month based on station data, averaged satellite observations, and physiographic parameters. 1981-present time-varying grids of satellite precipitation were derived from spatially varying regression models based on pentadal cold cloud duration (CCD) values and TRMM V7 training data. The CCD time-series were derived from the CPC and NOAA B1 datasets. Pentadal CCD-percent anomaly values were multiplied by pentadal climatology fields to produce low bias pentadal precipitation estimates. CHIRPS: The CHG station blending procedure uses the satellite-observed spatial covariance structure to assign relative weights to neighboring stations and the CHIRP values. The CHIRPS blending procedure is based on the expected correlation between precipitation at a given target location and precipitation at the locations of the neighboring observation stations. These correlations are estimated using the CHIRP fields. The CHG has developed an extensive archive of in situ daily, pentadal and monthly precipitation totals. The CHG database has over half a billion daily rainfall observations since 1980 and another half billion before 1980. Most of these observations come from four sets of global

  1. On the effects of wildfires on precipitation in Southern Africa

    Science.gov (United States)

    De Sales, Fernando; Okin, Gregory S.; Xue, Yongkang; Dintwe, Kebonye

    2018-03-01

    This study investigates the impact of wildfire on the climate of Southern Africa. Moderate resolution imaging spectroradiometer derived burned area fraction data was implemented in a set of simulations to assess primarily the role of wildfire-induced surface changes on monthly precipitation. Two post-fire scenarios are examined namely non-recovering and recovering vegetation scenarios. In the former, burned vegetation fraction remains burned until the end of the simulations, whereas in the latter it is allowed to regrow following a recovery period. Control simulations revealed that the model can dependably capture the monthly precipitation and surface temperature averages in Southern Africa thus providing a reasonable basis against which to assess the impacts of wildfire. In general, both wildfire scenarios have a negative impact on springtime precipitation. September and October were the only months with statistically significant precipitation changes. During these months, precipitation in the region decreases by approximately 13 and 9% in the non-recovering vegetation scenario, and by about 10 and 6% in the recovering vegetation wildfire scenario, respectively. The primary cause of precipitation deficit is the decrease in evapotranspiration resulting from a reduction in surface net radiation. Areas impacted by the precipitation reduction includes the Luanda, Kinshasa, and Brazzaville metropolitan areas, The Angolan Highlands, which are the source of the Okavango Rive, and the Okavango Delta region. This study suggests that a probable intensification in wildfire frequency and extent resulting from projected population increase and global warming in Southern Africa could potentially exacerbate the impacts of wildfires in the region's seasonal precipitation.

  2. Probabilistic model fitting for spatio-temporal variability studies of precipitation: the Sara-Brut system - a case study

    International Nuclear Information System (INIS)

    Dorado Delgado, Jennifer; Burbano Criollo, Juan Carlos; Molina Tabares, Jose Manuel; Carvajal Escobar, Yesid; Aristizabal, Hector Fabio

    2006-01-01

    In this study, space and time variability of monthly and annual rainfall was analyzed for the downstream influence zone of a Colombian supply-regulation reservoir, Sara-Brut, located on the Cauca valley department. Monthly precipitation data from 18 gauge stations and for a 29-year record (1975-2003) were used. These data were processed by means of time series completion, consistency analyses and sample statistics computations. Theoretical probabilistic distribution models such as Gumbel, normal, lognormal and wake by, and other empirical distributions such as Weibull and Landwehr were applied in order to fit the historical precipitation data set. The fit standard error (FSE) was used to test the goodness of fit of the theoretical distribution models and to choose the best of this probabilistic function. The wake by approach showed the best goodness of fit in 89% of the total gauges taken into account. Time variability was analyzed by means of wake by estimated values of monthly and annual precipitation associated with return periods of 1,052, 1,25, 2, 10, 20 and 50 years. Precipitation space variability is presents by means of ArcGis v8.3 and using krigging as interpolation method. In general terms the results obtained from this study show significant distribution variability in precipitation over the whole area, and particularity, the formation of dry and humid nucleus over the northeastern strip and microclimates at the southwestern and central zone of the study area were observed, depending on the season of year. The mentioned distribution pattern is likely caused by the influence of pacific wind streams, which come from the Andean western mountain range. It is expected that the results from this work be helpful for future planning and hydrologic project design

  3. The estimation of probable maximum precipitation: the case of Catalonia.

    Science.gov (United States)

    Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel

    2008-12-01

    A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.

  4. co-removal with nucleated Cu(II) precipitation in continuous-flow ...

    African Journals Online (AJOL)

    A compact nucleated precipitation technology using two fluidised sand columns in series was developed to pretreat model metal-plating wastewater containing high concentrations of Cu(II) and Cr(VI). Since either Cu(II) precipitation or Cr(VI) co-removal with Cu(II) precipitation was found to be highly pH dependent in batch ...

  5. Climate change and precipitation evolution in Ifran region (Middle Atlas of Morocco).

    Science.gov (United States)

    Reddad, H.; Bakhat, M.; Damnati, B.

    2012-04-01

    Climate variability and extreme climatic events pose significant risks to human beings and generate terrestrial ecosystem dysfunctions. These effects are usually amplified by an inappropriate use of the existing natural resources. To face the new context of climate change, a rational and efficient use of these resources - particularly, water resource - on a global and regional scale must be implemented. Annual precipitation provides an overall amount of water, the assessment and management of this water is complicated due to the spatio-temporal variation of disturbance (aridity, rainfall intensity, length of dry season...). Therefore, understanding rainfall behavior would at least help to plan interventions to manage this resource and protect ecosystems that depend on it. Time-series analysis has become one of the major tools in hydrology. It is used for building mathematical models to detect trends and shifts in hydrologic records and to forecast hydrologic events. In this paper we present a case study of IFRAN region, which is situated in the Middle Atlas Mountains in Morocco. This study deals with modeling and forecasting rainfall time series using monthly rainfall data for the period 1970-2005. To determine the seasonal properties of this series we used first the Box-Jenkins methodology to build ARIMA model, and we expended the analysis with the Hylleberg-Engle-Granger-Yoo (HEGY) tests. The results of time series modeling showed the presence of significant deterministic seasonal pattern and no seasonal unit roots. This means that the series is stationary in all frequencies. The model can be used to predict rainfall in IFRAN and near sites; this prediction is not without interest in so far as any information about these random variables could provide a contribution to the researches made in domain for fighting against climate change. It doesn't give solutions to eradicate the precipitation variability phenomenon, but just to adapt to it.

  6. Reassessing the role of temperature in precipitation oxygen isotopes across the eastern and central United States through weekly precipitation-day data

    Science.gov (United States)

    Akers, Pete D.; Welker, Jeffrey M.; Brook, George A.

    2017-09-01

    Air temperature is correlated with precipitation oxygen isotope (δ18Oprcp) variability for much of the eastern and central United States, but the nature of this δ18Oprcp-temperature relationship is largely based on data coarsely aggregated at a monthly resolution. We constructed a database of 6177 weeks of isotope and precipitation-day air temperature data from 25 sites to determine how more precise data change our understanding of this classic relationship. Because the δ18Oprcp-temperature relationship is not perfectly linear, trends in the regression residuals suggest the influence of additional environmental factors such as moisture recycling and extratropical cyclone interactions. Additionally, the temporal relationships between δ18Oprcp and temperature observed in the weekly data at individual sites can explain broader spatial patterns observed across the study region. For 20 of 25 sites, the δ18Oprcp-temperature relationship slope is higher for colder precipitation than for warmer precipitation. Accordingly, northern and western sites with relatively more cold precipitation events have steeper overall relationships with higher slope values than southeastern sites that have more warm precipitation events. Although the magnitude of δ18Oprcp variability increases to the north and west, the fraction of δ18Oprcp variability explained by temperature increases due to wider annual temperature ranges, producing stronger relationships in these regions. When our δ18Oprcp-temperature data are grouped by month, we observe significant variations in the relationship from month to month. This argues against a principal causative role for temperature and suggests the existence of an alternative environmental control on δ18Oprcp values that simply covaries seasonally with temperature.

  7. Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

    Directory of Open Access Journals (Sweden)

    L. Jia

    2011-03-01

    Full Text Available Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that

  8. Application of the Standardized Precipitation Index (SPI in Greece

    Directory of Open Access Journals (Sweden)

    Christos A. Karavitis

    2011-08-01

    Full Text Available The main premise of the current effort is that the use of a drought index, such as Standardized Precipitation Index (SPI, may lead to a more appropriate understanding of drought duration, magnitude and spatial extent in semi-arid areas like Greece. The importance of the Index may be marked in its simplicity and its ability to identify the beginning and end of a drought event. Thus, it may point towards drought contingency planning and through it to drought alert mechanisms. In this context, Greece, as it very often faces the hazardous impacts of droughts, presents an almost ideal case for the SPI application. The present approach examines the SPI drought index application for all of Greece and it is evaluated accordingly by historical precipitation data. Different time series of data from 46 precipitation stations, covering the period 1947–2004, and for time scales of 1, 3, 6, 12 and 24 months, were used. The computation of the index was achieved by the appropriate usage of a pertinent software tool. Then, spatial representation of the SPI values was carried out with geo-statistical methods using the SURFER 9 software package. The results underline the potential that the SPI usage exhibits in a drought alert and forecasting effort as part of a drought contingency planning posture.

  9. Examine Precipitation Extremes in Terms of Storm Properties

    Science.gov (United States)

    Jiang, P.; Yu, Z.; Chen, L.; Gautam, M. R.; Acharya, K.

    2017-12-01

    The increasing potential of the extreme precipitation is of significant societal concern. Changes in precipitation extremes have been mostly examined using extreme precipitation indices or Intensity-Duration-Frequency (IDF) analyses, which often fail to reveal the characteristics of an integrated precipitation event. In this study, we will examine the precipitation extremes in terms of storm properties including storm duration, storm intensity, total storm precipitation, and within storm pattern. Single storm event will be identified and storm properties will be determined based on the hourly precipitation time series in the selected locations in southwest United States. Three types of extreme precipitation event will be recognized using the criteria as (1) longest storm duration; (2) Highest storm intensity; and (3) largest total precipitation over a storm. The trend and variation of extreme precipitation events will be discussed for each criterion. Based on the comparisons of the characteristics of extreme precipitation events identified using different criteria, we will provide guidelines for choosing proper criteria for extreme precipitation analysis in specific location.

  10. Conditioned empirical orthogonal functions for interpolation of runoff time series along rivers: Application to reconstruction of missing monthly records

    Science.gov (United States)

    Li, Lingqi; Gottschalk, Lars; Krasovskaia, Irina; Xiong, Lihua

    2018-01-01

    Reconstruction of missing runoff data is of important significance to solve contradictions between the common situation of gaps and the fundamental necessity of complete time series for reliable hydrological research. The conventional empirical orthogonal functions (EOF) approach has been documented to be useful for interpolating hydrological series based upon spatiotemporal decomposition of runoff variation patterns, without additional measurements (e.g., precipitation, land cover). This study develops a new EOF-based approach (abbreviated as CEOF) that conditions EOF expansion on the oscillations at outlet (or any other reference station) of a target basin and creates a set of residual series by removing the dependence on this reference series, in order to redefine the amplitude functions (components). This development allows a transparent hydrological interpretation of the dimensionless components and thereby strengthens their capacities to explain various runoff regimes in a basin. The two approaches are demonstrated on an application of discharge observations from the Ganjiang basin, China. Two alternatives for determining amplitude functions based on centred and standardised series, respectively, are tested. The convergence in the reconstruction of observations at different sites as a function of the number of components and its relation to the characteristics of the site are analysed. Results indicate that the CEOF approach offers an efficient way to restore runoff records with only one to four components; it shows more superiority in nested large basins than at headwater sites and often performs better than the EOF approach when using standardised series, especially in improving infilling accuracy for low flows. Comparisons against other interpolation methods (i.e., nearest neighbour, linear regression, inverse distance weighting) further confirm the advantage of the EOF-based approaches in avoiding spatial and temporal inconsistencies in estimated series.

  11. Arsenic precipitation from metallurgical effluents

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-01-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs

  12. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  13. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  14. The tritium content of precipitation and surface water in Austria in 1984

    International Nuclear Information System (INIS)

    Rank, D.; Rajner, V.; Lust, G.

    1985-01-01

    This report includes weighted monthly 3 H-means from 23 precipitation sampling stations, 3 H-concentrations of daily precipitation samples from the station Wien-Arsenal, and 3 H-concentrations of monthly samples from 17 surface water sampling stations. (Author)

  15. Transfer function modeling of the monthly accumulated rainfall series over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Vidal L.; Garcia, Jose A.; Serrano, Antonio; De la Cruz Gallego, Maria [Departamento de Fisica, Universidad de Extremadura, Badajoz (Spain)

    2002-10-01

    In order to improve the results given by Autoregressive Moving-Average (ARMA) modeling for the monthly accumulated rainfall series taken at 19 observatories of the Iberian Peninsula, a Discrete Linear Transfer Function Noise (DLTFN) model was applied taking the local pressure series (LP), North Atlantic sea level pressure series (SLP) and North Atlantic sea surface temperature (SST) as input variables, and the rainfall series as the output series. In all cases, the performance of the DLTFN models, measured by the explained variance of the rainfall series, is better than the performance given by the ARMA modeling. The best performance is given by the models that take the local pressure as the input variable, followed by the sea level pressure models and the sea surface temperature models. Geographically speaking, the models fitted to those observatories located in the west of the Iberian Peninsula work better than those on the north and east of the Peninsula. Also, it was found that there is a region located between 0 N and 20 N, which shows the highest cross-correlation between SST and the peninsula rainfalls. This region moves to the west and northwest off the Peninsula when the SLP series are used. [Spanish] Con el objeto de mejorar los resultados porporcionados por los modelos Autorregresivo Media Movil (ARMA) ajustados a las precipitaciones mensuales acumuladas registradas en 19 observatorios de la Peninsula Iberica se han usado modelos de funcion de transferencia (DLTFN) en los que se han empleado como variable independiente la presion local (LP), la presion a nivel del mar (SLP) o la temperatura de agua del mar (SST) en el Atlantico Norte. En todos los casos analizados, los resultados obtenidos con los modelos DLTFN, medidos mediante la varianza explicada por el modelo, han sido mejores que los resultados proporcionados por los modelos ARMA. Los mejores resultados han sido dados por aquellos modelos que usan la presion local como variable de entrada, seguidos

  16. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  17. Aluminum precipitation from Hanford DSSF

    International Nuclear Information System (INIS)

    Borgen, D.; Frazier, P.; Staton, G.

    1994-01-01

    A series of pilot scale tests using simulated Double Shell Slurry Feed (DSSF) showed that well-settled aluminum precipitate can be produced in Hanford double shell tank (DST) high level waste by slow neutralization with carbon dioxide. This pretreatment could provide an early grout feed and free tank space, as well as facilitate downstream processes such as ion exchange by providing a less caustic feed. A total of eight test runs were completed using a 10-ft tall 3-in i.d. glass column. The 10-ft height corresponds to about one third of the vertical height of a DST, hence providing a reasonable basis for extrapolating the observed precipitate settling and compaction to the actual waste tank environment. Four runs (three with a simplified simulant and one with a chemically complete simulant) produced well settled precipitates averaging 1.5 to 2 feet high. Aluminum gel rather than settled precipitate resulted from one test where neutralization was too rapid

  18. Adverse events following 12 and 18 month vaccinations: a population-based, self-controlled case series analysis.

    Directory of Open Access Journals (Sweden)

    Kumanan Wilson

    Full Text Available BACKGROUND: Live vaccines have distinct safety profiles, potentially causing systemic reactions one to 2 weeks after administration. In the province of Ontario, Canada, live MMR vaccine is currently recommended at age 12 months and 18 months. METHODS: Using the self-controlled case series design we examined 271,495 12 month vaccinations and 184,312 18 month vaccinations to examine the relative incidence of the composite endpoint of emergency room visits or hospital admissions in consecutive one day intervals following vaccination. These were compared to a control period 20 to 28 days later. In a post-hoc analysis we examined the reasons for emergency room visits and the average acuity score at presentation for children during the at-risk period following the 12 month vaccine. RESULTS: Four to 12 days post 12 month vaccination, children had a 1.33 (1.29-1.38 increased relative incidence of the combined endpoint compared to the control period, or at least one event during the risk interval for every 168 children vaccinated. Ten to 12 days post 18 month vaccination, the relative incidence was 1.25 (95%, 1.17-1.33 which represented at least one excess event for every 730 children vaccinated. The primary reason for increased events was statistically significant elevations in emergency room visits following all vaccinations. There were non-significant increases in hospital admissions. There were an additional 20 febrile seizures for every 100,000 vaccinated at 12 months. CONCLUSIONS: There are significantly elevated risks of primarily emergency room visits approximately one to two weeks following 12 and 18 month vaccination. Future studies should examine whether these events could be predicted or prevented.

  19. Do climate model predictions agree with long-term precipitation trends in the arid southwestern United States?

    Science.gov (United States)

    Elias, E.; Rango, A.; James, D.; Maxwell, C.; Anderson, J.; Abatzoglou, J. T.

    2016-12-01

    Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based upon a multimodel mean of 20 Coupled Model Intercomparison Project 5 models using a business-as-usual (Representative Concentration Pathway 8.5) trajectory, midcentury precipitation is projected to increase slightly during the monsoonal time period (July-September; 6%) and decrease slightly during the remainder of the year (October-June; -4%). We use observed long-term (1915-2015) monthly precipitation records from 16 weather stations to investigate how well measured trends corroborate climate model predictions during the monsoonal and non-monsoonal timeframe. Running trend analysis using the Mann-Kendall test for 15 to 101 year moving windows reveals that half the stations showed significant (p≤0.1), albeit small, increasing trends based on the longest term record. Trends based on shorter-term records reveal a period of significant precipitation decline at all stations representing the 1950s drought. Trends from 1930 to 2015 reveal significant annual, monsoonal and non-monsoonal increases in precipitation (Fig 1). The 1960 to 2015 time window shows no significant precipitation trends. The more recent time window (1980 to 2015) shows a slight, but not significant, increase in monsoonal precipitation and a larger, significant decline in non-monsoonal precipitation. GCM precipitation projections are consistent with more recent trends for the region. Running trends from the most recent time window (mid-1990s to 2015) at all stations show increasing monsoonal precipitation and decreasing Oct-Jun precipitation, with significant trends at 6 of 16 stations. Running trend analysis revealed that the long-term trends were not persistent throughout the series length, but depended

  20. 31 CFR 351.30 - What are interest rates and monthly accruals for Series EE bonds with issue dates of May 1, 1997...

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false What are interest rates and monthly... are interest rates and monthly accruals for Series EE bonds with issue dates of May 1, 1997, through... making up the semiannual rate period during which interest is earned at the announced rate (disregarding...

  1. Observed precipitation trends in the Yangtze river catchment from 1951 to 2002

    Institute of Scientific and Technical Information of China (English)

    SUBuda; JIANGTong; SHIYafeng; StefanBECKER; MracoGEMMER

    2004-01-01

    The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.

  2. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    Science.gov (United States)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also

  3. High-resolution precipitation database for the last two centuries in Italy: climatologies and anomalies

    Science.gov (United States)

    Crespi, Alice; Brunetti, Michele; Maugeri, Maurizio

    2017-04-01

    The availability of gridded high-resolution spatial climatologies and corresponding secular records has acquired an increasing importance in the recent years both to research purposes and as decision-support tools in the management of natural resources and economical activities. High-resolution monthly precipitation climatologies for Italy were computed by gridding on a 30-arc-second-resolution Digital Elevation Model (DEM) the precipitation normals (1961-1990) obtained from a quality-controlled dataset of about 6200 stations covering the Italian surface and part of the Northern neighbouring regions. Starting from the assumption that the precipitation distribution is strongly influenced by orography, especially elevation, a local weighted linear regression (LWLR) of precipitation versus elevation was performed at each DEM cell. The regression coefficients for each cell were estimated by selecting the stations with the highest weights in which the distances and the level of similarity between the station cells and the considered grid cell, in terms of orographic features, are taken into account. An optimisation procedure was then set up in order to define, for each month and for each grid cell, the most suitable decreasing coefficients for the weighting factors which enter in the LWLR scheme. The model was validated by the comparison with the results provided by inverse distance weighting (IDW) applied both to station normals and to the residuals of a global regression of station normals versus elevation. In both cases, the LWLR leave-one-out reconstructions show the best agreement with the observed station normals, especially when considering specific station clusters (high elevation sites for example). After producing the high-resolution precipitation climatological field, the temporal component on the high-resolution grid was obtained by following the anomaly method. It is based on the assumption that the spatio-temporal structure of the signal of a

  4. The tritium content of precipitation and surface water in Austria in 1986

    International Nuclear Information System (INIS)

    Rank, D.; Rajner, V.; Lust, G.

    1987-01-01

    This report includes weighted monthly 3 H-means for 23 precipitation sampling stations, 3 H-concentrations of daily precipitation samples from the station Wien-Arsenal, and 3 H-concentrations of monthly samples from 17 surface water sampling stations. 2 refs., 3 tabs., 18 figs. (Author)

  5. Creating a monthly time series of the potentiometric surface in the Upper Floridan aquifer, Northern Tampa Bay area, Florida, January 2000-December 2009

    Science.gov (United States)

    Lee, Terrie M.; Fouad, Geoffrey G.

    2014-01-01

    In Florida’s karst terrain, where groundwater and surface waters interact, a mapping time series of the potentiometric surface in the Upper Floridan aquifer offers a versatile metric for assessing the hydrologic condition of both the aquifer and overlying streams and wetlands. Long-term groundwater monitoring data were used to generate a monthly time series of potentiometric surfaces in the Upper Floridan aquifer over a 573-square-mile area of west-central Florida between January 2000 and December 2009. Recorded groundwater elevations were collated for 260 groundwater monitoring wells in the Northern Tampa Bay area, and a continuous time series of daily observations was created for 197 of the wells by estimating missing daily values through regression relations with other monitoring wells. Kriging was used to interpolate the monthly average potentiometric-surface elevation in the Upper Floridan aquifer over a decade. The mapping time series gives spatial and temporal coherence to groundwater monitoring data collected continuously over the decade by three different organizations, but at various frequencies. Further, the mapping time series describes the potentiometric surface beneath parts of six regionally important stream watersheds and 11 municipal well fields that collectively withdraw about 90 million gallons per day from the Upper Floridan aquifer. Monthly semivariogram models were developed using monthly average groundwater levels at wells. Kriging was used to interpolate the monthly average potentiometric-surface elevations and to quantify the uncertainty in the interpolated elevations. Drawdown of the potentiometric surface within well fields was likely the cause of a characteristic decrease and then increase in the observed semivariance with increasing lag distance. This characteristic made use of the hole effect model appropriate for describing the monthly semivariograms and the interpolated surfaces. Spatial variance reflected in the monthly

  6. North-South precipitation patterns in western North America on interannual-to-decadal timescales

    Science.gov (United States)

    Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.

    1998-01-01

    The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation

  7. Global Precipitation Measurement. Report 7; Bridging from TRMM to GPM to 3-Hourly Precipitation Estimates

    Science.gov (United States)

    Shepherd, J. Marshall; Smith, Eric A.; Adams, W. James (Editor)

    2002-01-01

    Historically, multi-decadal measurements of precipitation from surface-based rain gauges have been available over continents. However oceans remained largely unobserved prior to the beginning of the satellite era. Only after the launch of the first Defense Meteorological Satellite Program (DMSP) satellite in 1987 carrying a well-calibrated and multi-frequency passive microwave radiometer called Special Sensor Microwave/Imager (SSM/I) have systematic and accurate precipitation measurements over oceans become available on a regular basis; see Smith et al. (1994, 1998). Recognizing that satellite-based data are a foremost tool for measuring precipitation, NASA initiated a new research program to measure precipitation from space under its Mission to Planet Earth program in the 1990s. As a result, the Tropical Rainfall Measuring Mission (TRMM), a collaborative mission between NASA and NASDA, was launched in 1997 to measure tropical and subtropical rain. See Simpson et al. (1996) and Kummerow et al. (2000). Motivated by the success of TRMM, and recognizing the need for more comprehensive global precipitation measurements, NASA and NASDA have now planned a new mission, i.e., the Global Precipitation Measurement (GPM) mission. The primary goal of GPM is to extend TRMM's rainfall time series while making substantial improvements in precipitation observations, specifically in terms of measurement accuracy, sampling frequency, Earth coverage, and spatial resolution. This report addresses four fundamental questions related to the transition from current to future global precipitation observations as denoted by the TRMM and GPM eras, respectively.

  8. Regional and temporal variations of deuterium in the precipitation and atmospheric moisture of Central Europe

    International Nuclear Information System (INIS)

    Huebner, H.; Kowski, P.; Hermichen, W.D.; Richter, W.; Schuetze, H.

    1979-01-01

    Regional and temporal variations of deuterium in precipitation and in atmospheric moisture provide the opportunity to balance water cycles as additional but independent information. Variations of deuterium have been measured in precipitation samples from six stations in different zones of the German Democratic Republic since 1972. The aim of the subsequent mathematical processing was to find a functional connection between the deuterium variations and the meteorological parameters causing them. The isotopic content of atmospheric moisture in different air masses and the isotopic content of precipitation are determined by the evaporation conditions of the area of origin and by the number and intensity of evaporation and condensation (precipitation) processes en route from this area of origin to the observation point. Obviously the temperatures at which evaporation and condensation processes take place are of crucial importance. The deuterium values are correlated with the monthly mean temperature. It has been observed, for example, that the equations of regression between precipitation and atmospheric moisture (valid in the case of Leipzig station) differ only with regard to their absolute terms. This follows from the fact that the deuterium is generally enriched by up to 80 per mille in precipitation. Following the well-known fact that many meteorological phenomena show frequencies, an attempt was made to apply the Fourier analysis for the deltaD variations. Relevant harmonic parts were found in all the deltaD series studied, which are repetitious and independent of the station and the observation period. (author)

  9. Modeling winter precipitation over the Juneau Icefield, Alaska, using a linear model of orographic precipitation

    Science.gov (United States)

    Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy

    2018-03-01

    Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.

  10. 18O, 2H and 3H isotopic composition of precipitation and shallow groundwater in Olkiluoto

    International Nuclear Information System (INIS)

    Hendriksson, N.; Karhu, J.; Niinikoski, P.

    2014-12-01

    The isotopic composition of oxygen and hydrogen in local precipitation is a key parameter in the modelling of local water circulation. This study was initiated in order to provide systematic monthly records of the isotope content of atmospheric precipitation in the Olkiluoto area and to establish the relation between local rainfall and newly formed groundwater. During January 2005 - December 2012, a total of 85 cumulative monthly rainfall samples and 68 shallow groundwater samples were collected and the isotopic composition of oxygen and hydrogen was recorded for all those samples. Tritium values are available for 79 precipitation and 65 groundwater samples. Based on the 8-year monitoring, the long-term weighted annual mean isotope values of precipitation and the mean values of shallow groundwater are -11.59 per mille and -11.27 per mille for δ 18 O, - 82.3 per mille and -80.3 per mille for δ 2 H and 9.8 and 9.1 TU for tritium, respectively. Based on these data, the mean stable isotope ratios of groundwater represent the long-term mean annual isotopic composition of local precipitation. The precipitation data were used to establish the local meteoric water line (LMWL) for the Olkiluoto area. The line is formulated as: δ 2 H = 7.45 star δ 18 O + 3.82. The isotope time series reveal a change in time. The increasing trend for the δ 18 O and δ 2 H values may be related to climatic variability while the gradual decline observed in the 3 H data is attributed to the still continuing decrease in atmospheric 3 H activity in the northern hemisphere. The systematic seasonal and long-term tritium trends suggest that any potential ground-level tritium release from the Olkiluoto nuclear power plants is insignificant. The d-excess values of Olkiluoto precipitation during the summer period indicated that a notable amount of re-cycled Baltic Sea water may have contributed to precipitation in the Finnish southern coast. Preliminary estimates of the evaporated Baltic Sea water

  11. CLIMATIC CHARACTERISTICS OF TYPHOON PRECIPITATION OVER CHINA

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-mei; REN Fu-min; LI Wei-jing; WANG Xiao-ling

    2008-01-01

    The spatio-temporal characteristics of typhoon precipitation over China are analyzed in this study. The results show that typhoon precipitation covers most of central-eastern China. Typhoon precipitation gradually decreases from the southeastern coastal regions to the northwestern mainland. The maximum annual typhoon precipitation exceeds 700 mm in central-eastern Taiwan and part of Hainan, while the minimum annual typhoon precipitation occurs in parts of Inner Mongolia, Shanxi, Shaanxi and Sichuan, with values less than 10 mm. Generally, typhoons produce precipitation over China during April - December with a peak in August. The annual typhoon precipitation time series for observation stations are examined for long-term trends. The results show that decreasing trends exist in most of the stations from 1957 to 2004 and are statistically significant in parts of Taiwan, Hainan, coastal Southeast China and southern Northeast China. The anomaly of typhoon precipitation mainly results from that of the general circulation over Asia and the Walker Cell circulation over the equatorial central and eastern Pacific. Typhoon torrential rain is one of the extreme rainfall events in the southeastern coastal regions and parts of central mainland. In these regions, torrential rains are mostly caused by typhoons.

  12. Relative importance of precipitation frequency and intensity in inter-annual variation of precipitation in Singapore during 1980-2013

    Science.gov (United States)

    Li, Xin; Babovic, Vladan

    2017-04-01

    Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have

  13. A large set of potential past, present and future hydro-meteorological time series for the UK

    Science.gov (United States)

    Guillod, Benoit P.; Jones, Richard G.; Dadson, Simon J.; Coxon, Gemma; Bussi, Gianbattista; Freer, James; Kay, Alison L.; Massey, Neil R.; Sparrow, Sarah N.; Wallom, David C. H.; Allen, Myles R.; Hall, Jim W.

    2018-01-01

    Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological time series for recent past and future conditions for the United Kingdom based on weather@home 2, a modelling framework consisting of a global climate model (GCM) driven by observed or projected sea surface temperature (SST) and sea ice which is downscaled to 25 km over the European domain by a regional climate model (RCM). Sets of 100 time series are generated for each of (i) a historical baseline (1900-2006), (ii) five near-future scenarios (2020-2049) and (iii) five far-future scenarios (2070-2099). The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5) and sample the range of sea surface temperature and sea ice changes from CMIP5 (Coupled Model Intercomparison Project Phase 5) models. Validation of the historical baseline highlights good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are corrected using a linear approach. For extremes in low precipitation over a long accumulation period ( > 3 months) and shorter-duration high precipitation (1-30 days), the time series generally represents past statistics well. Future projections show small precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the most recent UK Climate Projections (UKCP09) but larger in magnitude than the latter. Both drought and high-precipitation events are projected to increase in frequency and intensity in most regions

  14. α′ precipitation in neutron-irradiated Fe–Cr alloys

    International Nuclear Information System (INIS)

    Bachhav, Mukesh; Robert Odette, G.; Marquis, Emmanuelle A.

    2014-01-01

    Graphical abstract: -- A series of model Fe–Cr alloys containing 3–18 at.% Cr was neutron irradiated at a nominal temperature of 563 K to 1.82 dpa. Solute distributions were analyzed by atom probe tomography, which revealed α′ precipitation for alloys containing more than 9 at.% Cr. Both the Cr concentration dependence of α′ precipitation and the measured matrix compositions are in agreement with the recently published Fe–Cr phase diagrams. An irradiation-accelerated precipitation process is strongly suggested

  15. Spatio-Temporal Analysis of the Accuracy of Tropical Multisatellite Precipitation Analysis 3B42 Precipitation Data in Mid-High Latitudes of China

    Science.gov (United States)

    Cai, Yancong; Jin, Changjie; Wang, Anzhi; Guan, Dexin; Wu, Jiabing; Yuan, Fenghui; Xu, Leilei

    2015-01-01

    Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS). This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998–2012. Comparative analysis at three timescales (daily, monthly and annual scale) indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%). Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these data are

  16. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China.

    Directory of Open Access Journals (Sweden)

    Yancong Cai

    Full Text Available Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS. This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998-2012. Comparative analysis at three timescales (daily, monthly and annual scale indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%. Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these

  17. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa

    Science.gov (United States)

    Zittis, G.

    2017-11-01

    The present study investigates the century-long and more recent rainfall trends over the greater region of Middle East and North Africa (MENA). Five up-to-date gridded observational datasets are employed. Besides mean annual values, trends of six indices of drought and extreme precipitation are also considered in the analysis. Most important findings include the significant negative trends over the Maghreb, Levant, Arabian Peninsula, and Sahel regions that are evident since the beginning of the twentieth century and are more or less extended to today. On the other hand, for some Mediterranean regions such as the Balkans and the Anatolian Plateau, precipitation records during the most recent decades indicate a significant increasing trend and a recovering from the dry conditions that occurred during the mid-1970s and mid-1980s. The fact that over parts of the study region the selected datasets were found to have substantial differences in terms of mean climate, trends, and interannual variability, motivated the more thorough investigation of the precipitation observational uncertainty. Several aspects, such as annual and monthly mean climatologies and also discrepancies in the monthly time-series distribution, are discussed using common methods in the field of climatology but also more sophisticated, nonparametric approaches such as the Kruskal-Wallis and Dunn's tests. Results indicate that in the best case, the data sources are found to have statistically significant differences in the distribution of monthly precipitation for about 50% of the study region extent. This percentage is increased up to 70% when particular datasets are compared. Indicatively, the range between the tested rainfall datasets is found to be more than 20% of their mean annual values for most of the extent of MENA, while locally, for the hyper-arid regions, this percentage is increased up to 100%. Precipitation observational uncertainty is also profound for parts of southern Europe. Outlier

  18. Trends in extremes of temperature, dew point, and precipitation from long instrumental series from central Europe

    Science.gov (United States)

    Kürbis, K.; Mudelsee, M.; Tetzlaff, G.; Brázdil, R.

    2009-09-01

    For the analysis of trends in weather extremes, we introduce a diagnostic index variable, the exceedance product, which combines intensity and frequency of extremes. We separate trends in higher moments from trends in mean or standard deviation and use bootstrap resampling to evaluate statistical significances. The application of the concept of the exceedance product to daily meteorological time series from Potsdam (1893 to 2005) and Prague-Klementinum (1775 to 2004) reveals that extremely cold winters occurred only until the mid-20th century, whereas warm winters show upward trends. These changes were significant in higher moments of the temperature distribution. In contrast, trends in summer temperature extremes (e.g., the 2003 European heatwave) can be explained by linear changes in mean or standard deviation. While precipitation at Potsdam does not show pronounced trends, dew point does exhibit a change from maximum extremes during the 1960s to minimum extremes during the 1970s.

  19. Changes of the Temperature and Precipitation Extremes on Homogenized Data

    Directory of Open Access Journals (Sweden)

    LAKATOS, Mónika

    2007-01-01

    Full Text Available Climate indices to detect changes have been defined in several international projects onclimate change. Climate index calculations require at least daily resolution of time series withoutinhomogeneities, such as transfer of stations, changes in observation practice. In many cases thecharacteristics of the estimated linear trends, calculated from the original and from the homogenizedtime series are significantly different. The ECA&D (European Climate Assessment & Dataset indicesand some other special temperature and precipitation indices of own development were applied to theClimate Database of the Hungarian Meteorological Service. Long term daily maximum, minimum anddaily mean temperature data series and daily precipitation sums were examined. The climate indexcalculation processes were tested on original observations and on homogenized daily data fortemperature; in the case of precipitation a complementation process was performed to fill in the gapsof missing data. Experiences of comparing the climate index calculation results, based on original andcomplemented-homogenized data, are reported in this paper. We present the preliminary result ofclimate index calculations also on gridded (interpolated daily data.

  20. Seasonal Cycle in German Daily Precipitation Extremes

    Directory of Open Access Journals (Sweden)

    Madlen Fischer

    2018-01-01

    Full Text Available The seasonal cycle of extreme precipitation in Germany is investigated by fitting statistical models to monthly maxima of daily precipitation sums for 2,865 rain gauges. The basis is a non-stationary generalized extreme value (GEV distribution variation of location and scale parameters. The negative log-likelihood serves as the forecast error for a cross validation to select adequate orders of the harmonic functions for each station. For nearly all gauges considered, the seasonal model is more appropriate to estimate return levels on a monthly scale than a stationary GEV used for individual months. The 100-year return-levels show the influence of cyclones in the western, and convective events in the eastern part of Germany. In addition to resolving the seasonality, we use a simulation study to show that annual return levels can be estimated more precisely from a monthly-resolved seasonal model than from a stationary model based on annual maxima.

  1. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2018-04-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  2. Constraining precipitation amount and distribution over cold regions using GRACE

    Science.gov (United States)

    Behrangi, A.; Reager, J. T., II; Gardner, A. S.; Fisher, J.

    2017-12-01

    Current quantitative knowledge on the amount and distribution of precipitation in high-elevation and high latitude regions is limited due to instrumental and retrieval shortcomings. Here we demonstrate how that satellite gravimetry (Gravity Recovery and Climate Experiment, GRACE) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger error. We also observed that as near surface temperature decreases products tend to underestimate accumulated precipitation retrieved from GRACE. The analysis performed using various products such as GPCP, GPCC, TRMM, and gridded station data over vast regions in high latitudes and two large endorheic basins in High Mountain Asia. Based on the analysis over High Mountain Asia it was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, GPCP showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basin.

  3. Changes of precipitation and extremes and the possible effect of urbanization in the Beijing metropolitan region during 1960-2012 based on homogenized observations

    Science.gov (United States)

    Li, Zhen; Yan, Zhongwei; Tu, Kai; Wu, Hongyi

    2015-09-01

    Daily precipitation series at 15 stations in the Beijing metropolitan region (BMR) during 1960-2012 were homogenized using the multiple analysis of series for homogenization method, with additional adjustments based on analysis of empirical cumulative density function (ECDF) regarding climate extremes. The cumulative density functions of daily precipitation series, the trends of annual and seasonal precipitation, and summer extreme events during 1960-2012 in the original and final adjusted series at Beijing station were comparatively analyzed to show the necessity and efficiency of the new method. Results indicate that the ECDF adjustments can improve the homogeneity of high-order moments of daily series and the estimation of climate trends in extremes. The linear trends of the regional-mean annual and seasonal (spring, summer, autumn, and winter) precipitation series are -10.16, 4.97, -20.04, 5.02, and -0.11 mm (10 yr)-1, respectively. The trends over the BMR increase consistently for spring/autumn and decrease for the whole year/summer; however, the trends for winter decrease in southern parts and increase in northern parts. Urbanization affects local trends of precipitation amount, frequency, and intensity and their geographical patterns. For the urban-influenced sites, urbanization tends to slow down the magnitude of decrease in the precipitation and extreme amount series by approximately -10.4% and -6.0%, respectively; enhance the magnitude of decrease in precipitation frequency series by approximately 5.7%; reduce that of extremes by approximately -8.9%; and promote the decreasing trends in the summer intensity series of both precipitation and extremes by approximately 6.8% and 51.5%, respectively.

  4. Inorganic nitrogen in precipitation and atmospheric sediments

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, D H

    1951-01-01

    In an investigation covering 18 months, daily determinations were made of the inorganic nitrogen contained in precipitation and atmospheric sediments collected at Hamilton, Ont. The nitrogen fall for the whole period averaged 5.8 lb. N per acre per year. Sixty-one per cent of the total nitrogen was collected on 25% of the days when precipitation occurred. The balance, occurring on days without precipitation, is attributable solely to the sedimentation of dust. Ammonia nitrogen averaged 56% of the total, but the proportion for individual days varied widely.

  5. Spatial and temporal variability of precipitation in Serbia for the period 1961-2010

    Science.gov (United States)

    Milovanović, Boško; Schuster, Phillip; Radovanović, Milan; Vakanjac, Vesna Ristić; Schneider, Christoph

    2017-10-01

    Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961-2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen's estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between -5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between -8 and +8 mm/decade. February precipitation trends generally ranged from -3 to +3 mm/decade.

  6. Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China

    Directory of Open Access Journals (Sweden)

    Xinyang Yu

    2017-05-01

    Full Text Available Precipitation data from nine meteorological stations in arid oases of Hexi Corridor, northwest China during 1970–2012 were analyzed to detect trends in precipitation and Standardized Precipitation Index (SPI at multiple time scales using linear regression, Mann–Kendall and Spearman’s Rho tests. The results found that annual precipitation in the observed stations was rare and fell into the arid region category according to the aridity index analysis. The monthly analysis of precipitation found that three stations showed significant increasing trends in different months, while on the annual level, only Yongchang station had a significant increasing trend. The analysis of SPI-12 found three main drought intervals, i.e., 1984–1987, 1991–1992 and 2008–2011, and an extremely dry year among the stations was recorded in 1986; the southeast and middle portions of the study area are expected to have more precipitation and less dry conditions.

  7. Geo-statistical model of Rainfall erosivity by using high temporal resolution precipitation data in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2015-04-01

    Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error

  8. Increased Kawasaki Disease Incidence Associated With Higher Precipitation and Lower Temperatures, Japan, 1991-2004.

    Science.gov (United States)

    Abrams, Joseph Y; Blase, Jennifer L; Belay, Ermias D; Uehara, Ritei; Maddox, Ryan A; Schonberger, Lawrence B; Nakamura, Yosikazu

    2018-06-01

    Kawasaki disease (KD) is an acute febrile vasculitis, which primarily affects children. The etiology of KD is unknown; while certain characteristics of the disease suggest an infectious origin, genetic or environmental factors may also be important. Seasonal patterns of KD incidence are well documented, but it is unclear whether these patterns are caused by changes in climate or by other unknown seasonal effects. The relationship between KD incidence and deviations from expected temperature and precipitation were analyzed using KD incidence data from Japanese nationwide epidemiologic surveys (1991-2004) and climate data from 136 weather stations of the Japan Meteorological Agency. Seven separate Poisson-distributed generalized linear regression models were run to examine the effects of temperature and precipitation on KD incidence in the same month as KD onset and the previous 1, 2, 3, 4, 5 and 6 months, controlling for geography as well as seasonal and long-term trends in KD incidence. KD incidence was negatively associated with temperature in the previous 2, 3, 4 and 5 months and positively associated with precipitation in the previous 1 and 2 months. The model that best predicted variations in KD incidence used climate data from the previous 2 months. An increase in total monthly precipitation by 100 mm was associated with increased KD incidence (rate ratio [RR] 1.012, 95% confidence interval [CI]: 1.005-1.019), and an increase of monthly mean temperature by 1°C was associated with decreased KD incidence (RR 0.984, 95% CI: 0.978-0.990). KD incidence was significantly affected by temperature and precipitation in previous months independent of other unknown seasonal factors. Climate data from the previous 2 months best predicted the variations in KD incidence. Although fairly minor, the effect of temperature and precipitation independent of season may provide additional clues to the etiology of KD.

  9. Spatio-temporal variation of precipitation in the Three-River Headwater Region from 1961 to 2010

    Institute of Scientific and Technical Information of China (English)

    YI Xiangsheng; LI Guosheng; YIN Yanyu

    2013-01-01

    Based on a monthly dataset of precipitation time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region (THRHR) of Qinghai Province,China,the spatio-temporal variation and abrupt change analysis of precipitation were examined by using moving average,linear regression,spline interpolation,the Mann-Kendall test and so on.Major conclusions were as follows.(1) The long-term annual and seasonal precipitation in the study area indicated an increasing trend with some oscillations during 1961-2010; however,the summer precipitation in the Lantsang (Lancang) River Headwater Region (LARHR),and the autumn precipitation in the Yangtze River Headwater Region (YERHR) of the THRHR decreased in the same period.(2) The amount of annual precipitation in the THRHR and its three sub-headwater regions was greater in the 1980s and 2000s.The springs were fairly wet after the 1970s,while the summers were relatively wet in the 1960s,1980s and 2000s.In addition,the amount of precipitation in the autumn was greater in the 1970s and 1980s,but it was relatively less for the winter precipitation,except in the 1990s.(3) The normal values of spring,summer,winter and annual precipitation in the THRHR and its three sub-headwater regions all increased,but the normal value of summer precipitation in the LARHR had a negative trend and the normal value of winter precipitation declined in general.(4) The spring and winter precipitation increased in most of the THRHR.The summer,autumn and annual precipitation increased mainly in the marginal area of the west and north and decreased in the regions of Yushu,Zaduo,Jiuzhi and Banma.(5) The spring and winter precipitation in the THRHR and its three sub-headwater regions showed an abrupt change,except for the spring precipitation in the YARHR.The abrupt changes of spring precipitation were mainly in the late 1980s and early 1990s,while the abrupt changes of winter precipitation were primary in the mid-to late 1970s

  10. Harmonic analysis of the precipitation in Greece

    Science.gov (United States)

    Nastos, P. T.; Zerefos, C. S.

    2009-04-01

    Greece is a country with a big variety of climates due to its geographical position, to the many mountain ranges and also to the multifarious and long coastline. The mountainous volumes are of such orientation that influences the distribution of the precipitation, having as a result, Western Greece to present great differentiations from Central and Eastern Greece. The application of harmonic analysis to the annual variability of precipitation is the goal of this study, so that the components, which compose the annual variability, be elicited. For this purpose, the mean monthly precipitation data from 30 meteorological stations of National Meteorological Service were used for the time period 1950-2000. The initial target is to reduce the number of variables and to detect structure in the relationships between variables. The most commonly used technique for this purpose is the application of Factor Analysis to a table having as columns the meteorological stations-variables and rows the monthly mean precipitation, so that 2 main factors were calculated, which explain the 98% of total variability of precipitation in Greece. Factor 1, representing the so-called uniform field and interpreting the most of the total variance, refers in fact to the Mediterranean depressions, affecting mainly the West of Greece and also the East Aegean and the Asia Minor coasts. In the process, the Fourier Analysis was applied to the factor scores extracted from the Factor Analysis, so that 2 harmonic components are resulted, which explain above the 98% of the total variability of each main factor, and are due to different synoptic and thermodynamic processes associated with Greece's precipitation construction. Finally, the calculation of the time of occurrence of the maximum precipitation, for each harmonic component of each one of the two main factors, gives the spatial distribution of appearance of the maximum precipitation in the Hellenic region.

  11. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  12. Extreme value theory applied to the standardized precipitation index - doi: 10.4025/actascitechnol.v36i1.17475

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2014-01-01

    Full Text Available The Standardized Precipitation Index (SPI is a mathematical algorithm developed for detecting and characterizing precipitation departures with regard to an expected regional climate condition. Thus, this study aimed to verify the possibility of using the time-independent general extreme value distribution (GEV for modeling the probability of occurrence of both SPI annual maxima (the maximum monthly SPI value; SPImax and SPI annual minima (the minimum monthly SPI value; SPImim obtained from the weather station of Campinas, State of São Paulo, Brazil (1891-2011 and to evaluate the presence of trends, temporal persistence and periodical components in these two datasets. The goodness-of-fit tests used in this study quantify the agreement between the empirical cumulative distribution and the GEV cumulative function. Our results have indicated that such parametric function can be used to assess the probability of occurrence of SPImin and SPImax values. No significant serial correlation and no trend were detected in both series. For the SPImim, the wavelet analysis has detected a dominant mode in the 4-8 year band. Future studies should focus on the development of a GEV model capable of accounting for such feature. No dominant mode was found for the annual monthly SPI maximums.

  13. Association between Precipitation and Diarrheal Disease in Mozambique.

    Science.gov (United States)

    Horn, Lindsay M; Hajat, Anjum; Sheppard, Lianne; Quinn, Colin; Colborn, James; Zermoglio, Maria Fernanda; Gudo, Eduardo S; Marrufo, Tatiana; Ebi, Kristie L

    2018-04-10

    Diarrheal diseases are a leading cause of morbidity and mortality in Africa. Although research documents the magnitude and pattern of diarrheal diseases are associated with weather in particular locations, there is limited quantification of this association in sub-Saharan Africa and no studies conducted in Mozambique. Our study aimed to determine whether variation in diarrheal disease was associated with precipitation in Mozambique. In secondary analyses we investigated the associations between temperature and diarrheal disease. We obtained weekly time series data for weather and diarrheal disease aggregated at the administrative district level for 1997-2014. Weather data include modeled estimates of precipitation and temperature. Diarrheal disease counts are confirmed clinical episodes reported to the Mozambique Ministry of Health ( n = 7,315,738). We estimated the association between disease counts and precipitation, defined as the number of wet days (precipitation > 1 mm) per week, for the entire country and for Mozambique's four regions. We conducted time series regression analyses using an unconstrained distributed lag Poisson model adjusted for time, maximum temperature, and district. Temperature was similarly estimated with adjusted covariates. Using a four-week lag, chosen a priori, precipitation was associated with diarrheal disease. One additional wet day per week was associated with a 1.86% (95% CI: 1.05-2.67%), 1.37% (95% CI: 0.70-2.04%), 2.09% (95% CI: 1.01-3.18%), and 0.63% (95% CI: 0.11-1.14%) increase in diarrheal disease in Mozambique's northern, central, southern, and coastal regions, respectively. Our study indicates a strong association between diarrheal disease and precipitation. Diarrheal disease prevention efforts should target areas forecast to experience increased rainfall. The burden of diarrheal disease may increase with increased precipitation associated with climate change, unless additional health system interventions are undertaken.

  14. Bayesian Inference of Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design

    Science.gov (United States)

    2016-03-01

    each IDF curve and subsequently used to force a calibrated and validated precipitation - runoff model. Probability-based, risk-informed hydrologic...ERDC/CHL CHETN-X-2 March 2016 Approved for public release; distribution is unlimited. Bayesian Inference of Nonstationary Precipitation Intensity...based means by which to develop local precipitation Intensity-Duration-Frequency (IDF) curves using historical rainfall time series data collected for

  15. Climate variability from isotope records in precipitation

    International Nuclear Information System (INIS)

    Grassl, H.; Latif, M.; Schotterer, U.; Gourcy, L.

    2002-01-01

    Selected time series from the Global Network for Isotopes in Precipitation (GNIP) revealed a close relationship to climate variability phenomena like El Nino - Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO) although the precipitation anomaly in the case studies of Manaus (Brazil) and Groningen (The Netherlands) is rather weak. For a sound understanding of this relationship especially in the case of Manaus, the data should include major events like the 1997/98 El Nino, however, the time series are interrupted frequently or important stations are even closed. Improvements are only possible if existing key stations and new ones (placed at 'hot spots' derived from model experiments) are supported continuously. A close link of GNIP to important scientific programmes like CLIVAR, the Climate Variability and Predictability Programme seems to be indispensable for a successful continuation. (author)

  16. Gridded Mean Monthly Temperature and Precipitation Data for Alaska, British Columbia, and Yukon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To aid in better understanding the temperature and precipitation data of the spatially variable climate of Alaska and Northwest Canada, this dataset was created via...

  17. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    Science.gov (United States)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  18. Predicting hepatitis B monthly incidence rates using weighted Markov chains and time series methods.

    Science.gov (United States)

    Shahdoust, Maryam; Sadeghifar, Majid; Poorolajal, Jalal; Javanrooh, Niloofar; Amini, Payam

    2015-01-01

    Hepatitis B (HB) is a major global mortality. Accurately predicting the trend of the disease can provide an appropriate view to make health policy disease prevention. This paper aimed to apply three different to predict monthly incidence rates of HB. This historical cohort study was conducted on the HB incidence data of Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) method based on Markov chain theory and two time series models including Holt Exponential Smoothing (HES) and SARIMA were applied on the data. The results of different applied methods were compared to correct percentages of predicted incidence rates. The monthly incidence rates were clustered into two clusters as state of Markov chain. The correct predicted percentage of the first and second clusters for WMC, HES and SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. The overall incidence rate of HBV is estimated to decrease over time. The comparison of results of the three models indicated that in respect to existing seasonality trend and non-stationarity, the HES had the most accurate prediction of the incidence rates.

  19. Evaluation of the impact of ENSO on precipitation extremes in southern Brazil considering the ODP phases

    Science.gov (United States)

    Firpo, M. A.; Sansigolo, C. A.

    2011-12-01

    One of the most important modes of interannual variability from ocean-atmosphere system is the El Niño/Southern Oscillation - ENSO. The Brazil southern region belongs to the Southeast of South America, where there is a strong signal of ENSO, especially over the precipitation. This phenomenon can be modulated by low frequency climate patterns, especially the dominant pattern of North Pacific, called Pacific Decadal Oscillation (PDO). Attempting to better understand these interactions, the objective of this study was to investigate the seasonal impact of ENSO events over the Southern Brazil precipitation, taking into account the PDO phases. The dataset used in this study, consist of monthly precipitation records of six well distributed stations from southern Brazil (Rio Grande do Sul state). From these series it was calculated a unique index, which was categorized in three classes, in order to obtain the extremes: very below normal precipitation (below the percentile 10), normal precipitation (between percentile 10 and 90) and very above normal precipitation (above the percentile 90). To characterize the ENSO events, it was applied the Trenberth (1997) criteria in the index proposed by Bunge and Clarke (2009), which corrects the inconsistencies between the conventional SST index for Niño 3.4 region and the Southern Oscillation Index before 1950, going beyond the incoherence for decadal scale. For PDO, it was used the index proposed by Mantua et al. (1997). Contingency tables were constructed to analyze the seasonal, simultaneous, and 3, 6, 9 and 12 months lagged relationships between ENSO events (El Niño, neutral, La Niña), and extreme precipitation anomalies (categories), also considering the PDO phases during the 1913-1999 period. Moreover, a wavelet analysis was used to check the coherency and phase among these 3 times series during the 1913-2006 period. The Contingency Tables analysis showed that, generally, there were more positive (negative) precipitation

  20. CHARACTERISTICS OF MEI-YU PRECIPITATION AND SVD ANALYSIS OF PRECIPITATION OVER THE YANGTZE-HUAIHE RIVERS VALLEYS AND THE SEA SURFACE TEMPERATURE IN THE NORTHERN PACIFIC OCEAN

    Institute of Scientific and Technical Information of China (English)

    MAO Wen-shu; WANG Qian-qian; PENG Jun; LI Yong-hua

    2008-01-01

    Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal function (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.

  1. Global Precipitation Responses to Land Hydrological Processes

    Science.gov (United States)

    Lo, M.; Famiglietti, J. S.

    2012-12-01

    Several studies have established that soil moisture increases after adding a groundwater component in land surface models due to the additional supply of subsurface water. However, impacts of groundwater on the spatial-temporal variability of precipitation have received little attention. Through the coupled groundwater-land-atmosphere model (NCAR Community Atmosphere Model + Community Land Model) simulations, this study explores how groundwater representation in the model alters the precipitation spatiotemporal distributions. Results indicate that the effect of groundwater on the amount of precipitation is not globally homogeneous. Lower tropospheric water vapor increases due to the presence of groundwater in the model. The increased water vapor destabilizes the atmosphere and enhances the vertical upward velocity and precipitation in tropical convective regions. Precipitation, therefore, is inhibited in the descending branch of convection. As a result, an asymmetric dipole is produced over tropical land regions along the equator during the summer. This is analogous to the "rich-get-richer" mechanism proposed by previous studies. Moreover, groundwater also increased short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth and found to be a function of water table depth. Based on the spatial distributions of the one-month-lag autocorrelation coefficients as well as Hurst coefficients, air-land interaction can occur from short (several months) to long (several years) time scales. This study indicates the importance of land hydrological processes in the climate system and the necessity of including the subsurface processes in the global climate models.

  2. Monthly Climatic Data for the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Publication of monthly mean temperature, pressure, precipitation, vapor pressure, and hours of sunshine for approximately 2,000 surface data collection stations...

  3. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional

  4. Spatial and temporal variability of precipitation and drought in Portugal

    Directory of Open Access Journals (Sweden)

    D. S. Martins

    2012-05-01

    Full Text Available The spatial variability of precipitation and drought are investigated for Portugal using monthly precipitation from 74 stations and minimum and maximum temperature from 27 stations, covering the common period of 1941–2006. Seasonal precipitation and the corresponding percentages in the year, as well as the precipitation concentration index (PCI, was computed for all 74 stations and then used as an input matrix for an R-mode principal component analysis to identify the precipitation patterns. The standardized precipitation index at 3 and 12 month time scales were computed for all stations, whereas the Palmer Drought Severity Index (PDSI and the modified PDSI for Mediterranean conditions (MedPDSI were computed for the stations with temperature data. The spatial patterns of drought over Portugal were identified by applying the S-mode principal component analysis coupled with varimax rotation to the drought indices matrices. The result revealed two distinct sub-regions in the country relative to both precipitation regimes and drought variability. The analysis of time variability of the PC scores of all drought indices allowed verifying that there is no linear trend indicating drought aggravation or decrease. In addition, the analysis shows that results for SPI-3, SPI-12, PDSI and MedPDSI are coherent among them.

  5. THE EFFECT OF SALICYLATES ON THE PRECIPITATION OF ANTIGEN WITH ANTIBODY.

    Science.gov (United States)

    Coburn, A F; Kapp, E M

    1943-02-01

    1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested.

  6. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    Science.gov (United States)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  7. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

    Science.gov (United States)

    Wang, Wen-Chuan; Chau, Kwok-Wing; Cheng, Chun-Tian; Qiu, Lin

    2009-08-01

    SummaryDeveloping a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation ( R), Nash-Sutcliffe efficiency coefficient ( E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases.

  8. {sup 18}O, {sup 2}H and {sup 3}H isotopic composition of precipitation and shallow groundwater in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Hendriksson, N. [Geological Survey of Finland, Espoo (Finland); Karhu, J.; Niinikoski, P. [Univ. of Helsinki (Finland)

    2014-12-15

    The isotopic composition of oxygen and hydrogen in local precipitation is a key parameter in the modelling of local water circulation. This study was initiated in order to provide systematic monthly records of the isotope content of atmospheric precipitation in the Olkiluoto area and to establish the relation between local rainfall and newly formed groundwater. During January 2005 - December 2012, a total of 85 cumulative monthly rainfall samples and 68 shallow groundwater samples were collected and the isotopic composition of oxygen and hydrogen was recorded for all those samples. Tritium values are available for 79 precipitation and 65 groundwater samples. Based on the 8-year monitoring, the long-term weighted annual mean isotope values of precipitation and the mean values of shallow groundwater are -11.59 per mille and -11.27 per mille for δ{sup 18}O, - 82.3 per mille and -80.3 per mille for δ{sup 2}H and 9.8 and 9.1 TU for tritium, respectively. Based on these data, the mean stable isotope ratios of groundwater represent the long-term mean annual isotopic composition of local precipitation. The precipitation data were used to establish the local meteoric water line (LMWL) for the Olkiluoto area. The line is formulated as: δ{sup 2}H = 7.45 star δ{sup 18}O + 3.82. The isotope time series reveal a change in time. The increasing trend for the δ{sup 18}O and δ{sup 2}H values may be related to climatic variability while the gradual decline observed in the {sup 3}H data is attributed to the still continuing decrease in atmospheric {sup 3}H activity in the northern hemisphere. The systematic seasonal and long-term tritium trends suggest that any potential ground-level tritium release from the Olkiluoto nuclear power plants is insignificant. The d-excess values of Olkiluoto precipitation during the summer period indicated that a notable amount of re-cycled Baltic Sea water may have contributed to precipitation in the Finnish southern coast. Preliminary estimates

  9. Data on present-day precipitation changes in the extratropical part of the northern hemisphere

    International Nuclear Information System (INIS)

    Groisman, P.Ya.

    1990-01-01

    100-year time series of spatially averaged annual precipitation and precipitation for the warm period of the year (May-September) for 12 regions of the USSR, Europe and North America are analyzed. It is shown that for land within 30-70 degree N the precipitation trend was about 6%/100 year, the increase in precipitation amount being a maximum in the Eastern Hemisphere north of 55 degree N

  10. Investigation the Concentration and Trend of Winter Precipitation of Iranian Border Stations over the Last Half Century

    Directory of Open Access Journals (Sweden)

    Keyvan Khalili

    2017-02-01

    is to specify whether an ascending or a descending trend exists in data series. Since parametric tests have some assumptions including normality, stability, and independence of variables, where most of these assumptions do not apply to hydrologic variables, the nonparametric methods are more preferred in meteorological and hydrological studies. Results and Discussion: The PCI index was calculated using the monthly precipitation of the selected stations at seasonal and winter time scales over a 50-year period. This period was then divided into two 25-year sub-periods for the investigation of changes in average values of PCI (7. In the first 25-year span, the irregular precipitation distribution has been observed in the Bandarabbas station and its surroundings in winter season. In none of the studied stations, highly irregular precipitation occurred. The highest share of PCI was relatedto the precipitation average distribution class, and the northern, northwestern, and northeastern parts of the country have a uniform precipitation distribution. In winter, within the first 25-year period, the country had ideal conditions in terms of precipitation and its concentration in the mentioned regions. Within the second 25-year period, the intensity of irregular precipitation concentration decreased, as the regions that had confronted strong precipitation irregularities wereadded to regions with uniform concentration. At the seasonal scale and in winter, the country’s share of uniform distribution diminished in the second 25 years, and overall most parts of Iran have been covered by average precipitation distribution. The uniform precipitation distribution in recent years (second 25 years has decreased in winter in such a way that no uniform distribution has been observed in the northeast of the country and uniform distribution belongedto the Caspian sea border strip, southern regions of west and east Azerbaijan stations (Urmia, Khoy and Tabriz stations along with Kermanshah

  11. A large set of potential past, present and future hydro-meteorological time series for the UK

    Directory of Open Access Journals (Sweden)

    B. P. Guillod

    2018-01-01

    Full Text Available Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological time series for recent past and future conditions for the United Kingdom based on weather@home 2, a modelling framework consisting of a global climate model (GCM driven by observed or projected sea surface temperature (SST and sea ice which is downscaled to 25 km over the European domain by a regional climate model (RCM. Sets of 100 time series are generated for each of (i a historical baseline (1900–2006, (ii five near-future scenarios (2020–2049 and (iii five far-future scenarios (2070–2099. The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5 and sample the range of sea surface temperature and sea ice changes from CMIP5 (Coupled Model Intercomparison Project Phase 5 models. Validation of the historical baseline highlights good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are corrected using a linear approach. For extremes in low precipitation over a long accumulation period ( > 3 months and shorter-duration high precipitation (1–30 days, the time series generally represents past statistics well. Future projections show small precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the most recent UK Climate Projections (UKCP09 but larger in magnitude than the latter. Both drought and high-precipitation events are projected to increase in frequency and

  12. The Shifting Seasonal Mean Autoregressive Model and Seasonality in the Central England Monthly Temperature Series, 1772-2016

    DEFF Research Database (Denmark)

    He, Changli; Kang, Jian; Terasvirta, Timo

    In this paper we introduce an autoregressive model with seasonal dummy variables in which coefficients of seasonal dummies vary smoothly and deterministically over time. The error variance of the model is seasonally heteroskedastic and multiplicatively decomposed, the decomposition being similar ...... temperature series. More specifically, the idea is to find out in which way and by how much the monthly temperatures are varying over time during the period of more than 240 years, if they do. Misspecification tests are applied to the estimated model and the findings discussed....

  13. Precipitation reconstruction using ring-width chronology

    Indian Academy of Sciences (India)

    ring samples of two adjacent homogeneous sites, has been used to reconstruct precipitation for the non-monsoon months (previous year October to concurrent May) back to AD 1171. This provides the first record of hydrological conditions for the ...

  14. Quantitative precipitation climatology over the Himalayas by using Precipitation Radar on Tropical Rainfall Measuring Mission (TRMM) and a dense network of rain-gauges

    Science.gov (United States)

    Yatagai, A.

    2010-09-01

    Quantified grid observation data at a reasonable resolution are indispensable for environmental monitoring as well as for predicting future change of mountain environment. However quantified datasets have not been available for the Himalayan region. Hence we evaluate climatological precipitation data around the Himalayas by using Precipitation Radar (PR) data acquired by the Tropical Rainfall Measuring Mission (TRMM) over 10 years of observation. To validate and adjust these patterns, we used a dense network of rain gauges collected by the Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE Water Resources) project (http://www.chikyu.ac.jp/precip/). We used more than 2600 stations which have more than 10-year monthly precipitation over the Himalayan region (75E-105E, 20-36N) including country data of Nepal, Bangladesh, Bhutan, Pakistan, India, Myanmar, and China. The region we studied is so topographically complicated that horizontal patterns are not uniform. Therefore, every path data of PR2A25 (near-surface rain) was averaged in a 0.05-degree grid and a 10-year monthly average was computed (hereafter we call PR). On the other hand, for rain-gauge, we first computed cell averages if each 0.05-degree grid cell has 10 years observation or more. Here we refer to the 0.05-degree rain-gauge climatology data as RG data. On the basis of comparisons between the RG and PR composite values, we defined the parameters of the regressions to correct the monthly climatology value based on the rain gauge observations. Compared with the RG, the PR systematically underestimated precipitation by 28-38% in summer (July-September). Significant correlation between TRMM/PR and rain-gauge data was found for all months, but the correlation is relatively low in winter. The relationship is investigated for different elevation zones, and the PR was found to underestimate RG data in most zones, except for certain zones in

  15. On the Mass Balance of Asphaltene Precipitation

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lira-Galeana, C.; Stenby, Erling Halfdan

    2001-01-01

    In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments are pe......, and that the material in the second precipitation step was often of higher apparent molecular weight anti had an increased overall absorbance coefficient.......In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments...... indicates that in temperature experiments as well as in solvent series experiments the precipitation of heavy asphaltenes affects the following precipitation of lighter asphaltenes. In both cases the mass balance using standard separation techniques cannot be closed, as less material is precipitated...

  16. African aerosol and large-scale precipitation variability over West Africa

    International Nuclear Information System (INIS)

    Huang Jingfeng; Zhang Chidong; Prospero, Joseph M

    2009-01-01

    We investigated the large-scale connection between African aerosol and precipitation in the West African Monsoon (WAM) region using 8-year (2000-2007) monthly and daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products (aerosol optical depth, fine mode fraction) and Tropical Rainfall Measuring Mission (TRMM) precipitation and rain type. These high-quality data further confirmed our previous results that the large-scale link between aerosol and precipitation in this region undergoes distinct seasonal and spatial variability. Previously detected suppression of precipitation during months of high aerosol concentration occurs in both convective and stratiform rain, but not systematically in shallow rain. This suggests the suppression of deep convection due to the aerosol. Based on the seasonal cycle of dust and smoke and their geographical distribution, our data suggest that both dust (coarse mode aerosol) and smoke (fine mode aerosol) contribute to the precipitation suppression. However, the dust effect is evident over the Gulf of Guinea while the smoke effect is evident over both land and ocean. A back trajectory analysis further demonstrates that the precipitation reduction is statistically linked to the upwind aerosol concentration. This study suggests that African aerosol outbreaks in the WAM region can influence precipitation in the local monsoon system which has direct societal impact on the local community. It calls for more systematic investigations to determine the modulating mechanisms using both observational and modeling approaches.

  17. Precipitation from Space: Advancing Earth System Science

    Science.gov (United States)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  18. Improving precipitation estimates over the western United States using GOES-R precipitation data

    Science.gov (United States)

    Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.

    2017-12-01

    Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.

  19. Interdecadal variability of winter precipitation in Southeast China

    OpenAIRE

    Zhang, L.; Zhu, X.; Fraedrich, K.; Sielmann, F.; Zhi, X.

    2014-01-01

    Interdecadal variability of observed winter precipitation in Southeast China (1961–2010) is characterized by the first empirical orthogonal function of the three-monthly Standardized Precipitation Index (SPI) subjected to a 9-year running mean. For interdecadal time scales the dominating spatial modes represent monopole features involving the Arctic Oscillation (AO) and the sea surface temperature (SST) anomalies. Dynamic composite analysis (based on NCEP/NCAR reanalyzes) reveals the followin...

  20. Study of variations of stable isotopes in precipitation: case of Antananarivo

    International Nuclear Information System (INIS)

    Randrianarivola, M.

    2014-01-01

    The isotopic signature of precipitation is the input signal in any study of hydrological cycle. The scientific objective of this work is to better understand the isotopic variations in precipitation and identify their processes. We used the network of measurement GNIP (Global Network of Isotopes in Precipitation) in which data is acquired by the International Atomic Energy Agency through isotope hydrology laboratory at INSTN-Madagascar. Analyzes stable isotopes ( 18O and 2 H), were performed at a monthly time step. We were able to confirm the relative importance of different mechanisms governing the isotopic composition of precipitation. The spatial distribution of abundance ratios of Antananarivo rain is in fact dictated by the temperature which follow indirectly from the effects of altitude and seasonal variations. At the monthly scale, local meteoric water line δ 2 H versus δ 18 O shows the specificity of Antananarivo (deuterium excess of 17.5‰ ). Additionally, seasonal variations in precipitation is related to the temperature such that in summer (d=15‰) and winter (d=18‰) [fr

  1. [Seasonality of rotavirus infection in Venezuela: relationship between monthly rotavirus incidence and rainfall rates].

    Science.gov (United States)

    González Chávez, Rosabel

    2015-09-01

    In general, it has been reported that rotavirus infection was detected year round in tropical countries. However, studies in Venezuela and Brazil suggest a seasonal behavior of the infection. On the other hand, some studies link infection with climatic variables such as rainfall. This study analyzes the pattern of behavior of the rotavirus infection in Carabobo-Venezuela (2001-2005), associates the seasonality of the infection with rainfall, and according to the seasonal pattern, estimates the age of greatest risk for infection. The analysis of the rotavirus temporal series and accumulated precipitation was performed with the software SPSS. The infection showed two periods: high incidence (November-April) and low incidence (May-October). Accumulated precipitation presents an opposite behavior. The highest frequency of events (73.8% 573/779) for those born in the period with a low incidence of the virus was recorded at an earlier age (mean age 6.5 +/- 2.0 months) when compared with those born in the station of high incidence (63.5% 568/870, mean age 11.7 +/- 2.2 months). Seasonality of the infection and the inverse relationship between virus incidence and rainfall was demonstrated. In addition, it was found that the period of birth determines the age and risk of infection. This information generated during the preaccine period will be helpful to measure the impact of the vaccine against the rotavirus.

  2. A new technique for production of yellow cake with double precipitation

    International Nuclear Information System (INIS)

    Li Jianhua; Zeng Yijun; Li Shangyuan; Kong Guiying

    1997-01-01

    The author presents a new technique for production of yellow cake with double precipitation, thus solving a series of problems for precipitating uranium with traditional double precipitation. The new technique can not only remove ferric ions and sulfate radicals but also make solid-liquid separation easy, utilize effectively the sulfuric acid produced in ferric ions precipitation process, and increase uranium concentration of leaching liquor. To take it as producing yellow cake will save investment, simplify operation, and cut down the consumption of raw materials and energies. It is more competitive than ion-exchange or solvent extraction in the process of extracting-purifying and preparing yellow cake

  3. Diagnosis of inconsistencies in multi-year gridded precipitation data over mountainous areas and related impacts on hydrologic simulations

    Science.gov (United States)

    Mizukami, N.; Smith, M. B.

    2010-12-01

    It is common for the error characteristics of long-term precipitation data to change over time due to various factors such as gauge relocation and changes in data processing methods. The temporal consistency of precipitation data error characteristics is as important as data accuracy itself for hydrologic model calibration and subsequent use of the calibrated model for streamflow prediction. In mountainous areas, the generation of precipitation grids relies on sparse gage networks, the makeup of which often varies over time. This causes a change in error characteristics of the long-term precipitation data record. We will discuss the diagnostic analysis of the consistency of gridded precipitation time series and illustrate the adverse effect of inconsistent precipitation data on a hydrologic model simulation. We used hourly 4 km gridded precipitation time series over a mountainous basin in the Sierra Nevada Mountains of California from October 1988 through September 2006. The basin is part of the broader study area that served as the focus of the second phase of the Distributed Model Intercomparison Project (DMIP-2), organized by the U.S. National Weather Service (NWS) of the National Oceanographic and Atmospheric Administration (NOAA). To check the consistency of the gridded precipitation time series, double mass analysis was performed using single pixel and basin mean areal precipitation (MAP) values derived from gridded DMIP-2 and Parameter-Elevation Regressions on Independent Slopes Model (PRISM) precipitation data. The analysis leads to the conclusion that over the entire study time period, a clear change in error characteristics in the DMIP-2 data occurred in the beginning of 2003. This matches the timing of one of the major gage network changes. The inconsistency of two MAP time series computed from the gridded precipitation fields over two elevation zones was corrected by adjusting hourly values based on the double mass analysis. We show that model

  4. How is climate change impacting precipitation?

    Science.gov (United States)

    Heidari, A.; Houser, P. R.

    2015-12-01

    Water is an integrating component of the climate, energy and geochemical cycles, regulating biological and ecological activities at all spatial and temporal scales. The most significant climate warming manifestation would be a change in the distribution of precipitation and evaporation, and the exacerbation of extreme hydrologic events. Due to this phenomenon and the fact that precipitation is the most important component of the water cycle, the assumption of its stationarity for water management and engineering design should be examined closely. The precipitation Annual Maximum Series (AMS) over some stations in Virginia based on in situ data were been used as a starting point to examine this important issue. We analyzed the AMS precipitation on NOAA data for the stations close to Fairfax VA, looked for trends in extreme values, and applied our new method of Generalized Extreme Value (GEV) theory based on quadratic forms to address changes in those extreme values and to quantify non-stationarities. It is very important to address the extreme values of precipitation based on several statistical tests to have better understanding of climate change impact on the extreme water cycle events. In our study we compared our results with the conclusion on NOAA atlas 14 Ap.3 which found no sign of precipitation non-stationarity. We then assessed the impact of this uncertainty in IDF curves on the flood map of Fairfax and compared the results with the classic IDF curves.

  5. Atmospheric precipitable water in Jos, Nigeria | Utah | Nigerian ...

    African Journals Online (AJOL)

    ... the atmosphere of Jos in the month of August has a value of 4.44±0.47cm, while the minimum of 1.54±0.47cm was found in the month of February. The regression models have been presented and discussed. Keywords: Precipitable water vapour, dew-point temperature, relative humidity. Nigerian Journal of Physics Vol.

  6. Forecasting the Reference Evapotranspiration Using Time Series Model

    Directory of Open Access Journals (Sweden)

    H. Zare Abyaneh

    2016-10-01

    Full Text Available Introduction: Reference evapotranspiration is one of the most important factors in irrigation timing and field management. Moreover, reference evapotranspiration forecasting can play a vital role in future developments. Therefore in this study, the seasonal autoregressive integrated moving average (ARIMA model was used to forecast the reference evapotranspiration time series in the Esfahan, Semnan, Shiraz, Kerman, and Yazd synoptic stations. Materials and Methods: In the present study in all stations (characteristics of the synoptic stations are given in Table 1, the meteorological data, including mean, maximum and minimum air temperature, relative humidity, dry-and wet-bulb temperature, dew-point temperature, wind speed, precipitation, air vapor pressure and sunshine hours were collected from the Islamic Republic of Iran Meteorological Organization (IRIMO for the 41 years from 1965 to 2005. The FAO Penman-Monteith equation was used to calculate the monthly reference evapotranspiration in the five synoptic stations and the evapotranspiration time series were formed. The unit root test was used to identify whether the time series was stationary, then using the Box-Jenkins method, seasonal ARIMA models were applied to the sample data. Table 1. The geographical location and climate conditions of the synoptic stations Station\tGeographical location\tAltitude (m\tMean air temperature (°C\tMean precipitation (mm\tClimate, according to the De Martonne index classification Longitude (E\tLatitude (N Annual\tMin. and Max. Esfahan\t51° 40'\t32° 37'\t1550.4\t16.36\t9.4-23.3\t122\tArid Semnan\t53° 33'\t35° 35'\t1130.8\t18.0\t12.4-23.8\t140\tArid Shiraz\t52° 36'\t29° 32'\t1484\t18.0\t10.2-25.9\t324\tSemi-arid Kerman\t56° 58'\t30° 15'\t1753.8\t15.6\t6.7-24.6\t142\tArid Yazd\t54° 17'\t31° 54'\t1237.2\t19.2\t11.8-26.0\t61\tArid Results and Discussion: The monthly meteorological data were used as input for the Ref-ET software and monthly reference

  7. Isotopic composition of precipitation at the station Ljubljana (Reaktor, Slovenia – period 2007–2010

    Directory of Open Access Journals (Sweden)

    Polona Vreča

    2014-12-01

    Full Text Available The stable isotopic composition of hydrogen and oxygen (δ2H and δ18O and the tritium activity (A were monitored in monthly collected precipitation at Ljubljana (Reaktor during the period 2007–2010. Monthly and yearly isotope variations are discussed and compared with those observed over the period 1981–2006 and with the basic meteorological parameters for Ljubljana (Bežigrad and Ljubljana (Hrastje stations for the period 2007−2010. The mean values for δ2H and δ18O, weighted by precipitation amount at Ljubljana (Reaktor, are –59.4 ‰ and –8.71 ‰. The reduced major axis local meteoric water line (LMWLRMA is δ2H = (8.19 ± 0.22×δ18O + (11.52 ± 1.97, while the precipitation weighted least square regression results in LMWLPWLSR-Re δ2H = (7.94 ± 0.21×δ18O + (9.76 ± 1.93. The lack of significant difference in the LMWL slopes indicates a relatively homogeneous distribution of monthly precipitation as well as the small number of low-amount monthly precipitation events with low deuterium excess. The deuterium excess weighted mean value is 10.3 ‰ which indicates the prevailing influence of the Atlantic air masses. The temperature coefficient of δ18O is 0.30 ‰/°C. Tritium activity in monthly precipitation shows typical seasonal variations, with a weighted mean tritium activity in this period of 8.5 TU. No decrease of mean annual activity is observed.

  8. Winter precipitation over the Iberian peninsula and its relationship to circulation indices

    Directory of Open Access Journals (Sweden)

    C. Rodríguez-Puebla

    2001-01-01

    Full Text Available Winter precipitation variability over the Iberian peninsula was investigated by obtaining the spatial and temporal patterns. Empirical Orthogonal Functions were used to describe the variance distribution and to compress the precipitation data into a few modes. The corresponding spatial patterns divide the peninsula into climatic regions according to precipitation variations. The associated time series were related to large scale circulation indices and tropical sea surface temperature anomalies by using lag cross-correlation and cross-spectrum. The major findings are: the most influential indices for winter precipitation were the North Atlantic Oscillation and the East Atlantic/West Russian pattern; coherent oscillations were detected at about eight years between precipitation and the North Atlantic Oscillation and some dynamic consequences of the circulation on precipitation over the Iberian peninsula were examined during drought and wet spells. In the end statistical methods have been proposed to downscale seasonal precipitation prediction. Keywords: Winter precipitation, circulation indices, Iberian peninsula climate, climate variations, precipitation trend

  9. Statistical attribution analysis of the nonstationarity of the annual runoff series of the Weihe River.

    Science.gov (United States)

    Xiong, Lihua; Jiang, Cong; Du, Tao

    2014-01-01

    Time-varying moments models based on Pearson Type III and normal distributions respectively are built under the generalized additive model in location, scale and shape (GAMLSS) framework to analyze the nonstationarity of the annual runoff series of the Weihe River, the largest tributary of the Yellow River. The detection of nonstationarities in hydrological time series (annual runoff, precipitation and temperature) from 1960 to 2009 is carried out using a GAMLSS model, and then the covariate analysis for the annual runoff series is implemented with GAMLSS. Finally, the attribution of each covariate to the nonstationarity of annual runoff is analyzed quantitatively. The results demonstrate that (1) obvious change-points exist in all three hydrological series, (2) precipitation, temperature and irrigated area are all significant covariates of the annual runoff series, and (3) temperature increase plays the main role in leading to the reduction of the annual runoff series in the study basin, followed by the decrease of precipitation and the increase of irrigated area.

  10. The Advantage of Using International Multimodel Ensemble for Seasonal Precipitation Forecast over Israel

    Directory of Open Access Journals (Sweden)

    Amir Givati

    2017-01-01

    Full Text Available This study analyzes the results of monthly and seasonal precipitation forecasting from seven different global climate forecast models for major basins in Israel within October–April 1982–2010. The six National Multimodel Ensemble (NMME models and the ECMWF seasonal model were used to calculate an International Multimodel Ensemble (IMME. The study presents the performance of both monthly and seasonal predictions of precipitation accumulated over three months, with respect to different lead times for the ensemble mean values, one per individual model. Additionally, we analyzed the performance of different combinations of models. We present verification of seasonal forecasting using real forecasts, focusing on a small domain characterized by complex terrain, high annual precipitation variability, and a sharp precipitation gradient from west to east as well as from south to north. The results in this study show that, in general, the monthly analysis does not provide very accurate results, even when using the IMME for one-month lead time. We found that the IMME outperformed any single model prediction. Our analysis indicates that the optimal combinations with the high correlation values contain at least three models. Moreover, prediction with larger number of models in the ensemble produces more robust predictions. The results obtained in this study highlight the advantages of using an ensemble of global models over single models for small domain.

  11. Influence of composition on precipitation behavior and stress rupture properties in INCONEL RTM740 series superalloys

    Science.gov (United States)

    Casias, Andrea M.

    Increasing demands for energy efficiency and reduction in CO2 emissions have led to the development of advanced ultra-supercritical (AUSC) boilers. These boilers operate at temperatures of 760 °C and pressures of 35 MPa, providing efficiencies close to 50 pct. However, austenitic stainless steels typically used in boiler applications do not have sufficient creep or oxidation resistance. For this reason, nickel (Ni)-based superalloys, such as IN740, have been identified as potential materials for AUSC boiler tube components. However, IN740 is susceptible to heat-affected-zone liquation cracking in the base metal of heavy section weldments. To improve weldability, IN740H was developed. However, IN740H has lower stress rupture ductility compared to IN740. For this reason, two IN740H modifications have been produced by lowering carbon content and increasing boron content. In this study, IN740, IN740H, and the two modified IN740H alloys (modified 1 and 2) were produced with equiaxed grain sizes of 90 ìm (alloys IN740, IN740H, and IN740H modified 1 alloys) and 112 µm (IN740H modified 2 alloy). An aging study was performed at 800 °C on all alloys for 1, 3, 10, and 30 hours to assess precipitation behavior. Stress rupture tests were performed at 760 °C with the goal of attaining stress levels that would yield rupture at 1000 hours. The percent reduction in area was measured after failure as a measure of creep ductility. Light optical, scanning electron, and transmission electron microscopy were used in conjunction with X-ray diffraction to examine precipitation behavior of annealed, aged, and stress rupture tested samples. The amount and type of precipitation that occurred during aging prior to stress rupture testing or in-situ during stress rupture testing influenced damage development, stress rupture life, and ductility. In terms of stress rupture life, IN740H modified 2 performed the best followed by IN740H modified 1 and IN740, which performed similarly, and IN740

  12. Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia

    Science.gov (United States)

    Llasat, Maria Carmen; Marcos, Raul; Turco, Marco; Gilabert, Joan; Llasat-Botija, Montserrat

    2016-10-01

    The aim of this paper is to analyse the potential relationship between flash flood events and convective precipitation in Catalonia, as well as any related trends. The paper starts with an overview of flash floods and their trends in the Mediterranean region, along with their associated factors, followed by the definition of, identification of, and trends in convective precipitation. After this introduction the paper focuses on the north-eastern Iberian Peninsula, for which there is a long-term precipitation series (since 1928) of 1-min precipitation from the Fabra Observatory, as well as a shorter (1996-2011) but more extensive precipitation series (43 rain gauges) of 5-min precipitation. Both series have been used to characterise the degree of convective contribution to rainfall, introducing the β parameter as the ratio between convective precipitation versus total precipitation in any period. Information about flood events was obtained from the INUNGAMA database (a flood database created by the GAMA team), with the aim of finding any potential links to convective precipitation. These flood data were gathered using information on damage where flood is treated as a multifactorial risk, and where any trend or anomaly might have been caused by one or more factors affecting hazard, vulnerability or exposure. Trend analysis has shown an increase in flash flood events. The fact that no trends were detected in terms of extreme values of precipitation on a daily scale, nor on the associated ETCCDI (Expert Team on Climate Change Detection and Indices) extreme index, could point to an increase in vulnerability, an increase in exposure, or changes in land use. However, the summer increase in convective precipitation was concentrated in less torrential events, which could partially explain this positive trend in flash flood events. The β parameter has been also used to characterise the type of flood event according to the features of the precipitation. The highest values

  13. Bias correction of daily precipitation projected by the CORDEX-Africa ensemble for a sparsely gauged region in West Africa with regionalized distribution parameters

    Science.gov (United States)

    Lorenz, Manuel; Bliefernicht, Jan; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    Reliable estimates of future climatic conditions are indispensable for the sustainable planning of agricultural activities in West Africa. Precipitation time series of regional climate models (RCMs) typically exhibit a bias in the distribution of both rainfall intensities and wet day frequencies. Furthermore, the annual and monthly sums of precipitation may remarkably vary from the observations in this region. As West Africa experiences a distinct rainy season, sowing dates are oftentimes planned based on the beginning of this rainfall period. A biased representation of the annual cycle of precipitation in the uncorrected RCMs can therefore lead to crop failure. The precipitation ensemble, obtained from the Coordinated Downscaling Experiment CORDEX-Africa, was bias-corrected for the study region in West Africa (extending approximately 343,358 km2) which covers large parts of Burkina Faso, Ghana and Benin. In oder to debias the RCM precipitation simulations, a Quantile-Mapping method was applied to the historical period 1950-2005. For the RCM future projections (2006-2100), the Double-Quantile-Mapping procedure was chosen. This method makes use of the shift in the distribution function of the future precipitation values which allows to incorporate the climate change signal of the RCM projections into the bias correction. As large areas of the study region are ungauged, the assignment of the information from the nearest station to the ungauged location would lead to sharp changes in the estimated statistics from one location to another. Thus, the distribution parameters needed for the Quantile-Mapping were estimated by Kriging the distribution parameters of the available measurement stations. This way it is possible to obtain reasonable estimates of the expected distribution of precipitation at ungauged locations. The presentation will illustrate some aspects and trade-offs in the distribution parameter interpolation as well as an analysis of the uncertainties of the

  14. IDF-curves for precipitation In Belgium

    International Nuclear Information System (INIS)

    Mohymont, Bernard; Demarde, Gaston R.

    2004-01-01

    The Intensity-Duration-Frequency (IDF) curves for precipitation constitute a relationship between the intensity, the duration and the frequency of rainfall amounts. The intensity of precipitation is expressed in mm/h, the duration or aggregation time is the length of the interval considered while the frequency stands for the probability of occurrence of the event. IDF-curves constitute a classical and useful tool that is primarily used to dimension hydraulic structures in general, as e.g., sewer systems and which are consequently used to assess the risk of inundation. In this presentation, the IDF relation for precipitation is studied for different locations in Belgium. These locations correspond to two long-term, high-quality precipitation networks of the RMIB: (a) the daily precipitation depths of the climatological network (more than 200 stations, 1951-2001 baseline period); (b) the high-frequency 10-minutes precipitation depths of the hydro meteorological network (more than 30 stations, 15 to 33 years baseline period). For the station of Uccle, an uninterrupted time-series of more than one hundred years of 10-minutes rainfall data is available. The proposed technique for assessing the curves is based on maximum annual values of precipitation. A new analytical formula for the IDF-curves was developed such that these curves stay valid for aggregation times ranging from 10 minutes to 30 days (when fitted with appropriate data). Moreover, all parameters of this formula have physical dimensions. Finally, adequate spatial interpolation techniques are used to provide nationwide extreme values precipitation depths for short- to long-term durations With a given return period. These values are estimated on the grid points of the Belgian ALADIN-domain used in the operational weather forecasts at the RMIB.(Author)

  15. Observed changes in extreme precipitation in Poland: 1991-2015 versus 1961-1990

    Science.gov (United States)

    Pińskwar, Iwona; Choryński, Adam; Graczyk, Dariusz; Kundzewicz, Zbigniew W.

    2018-01-01

    Several episodes of extreme precipitation excess and extreme precipitation deficit, with considerable economic and social impacts, have occurred in Europe and in Poland in the last decades. However, the changes of related indices exhibit complex variability. This paper analyses changes in indices related to observed abundance and deficit of precipitated water in Poland. Among studied indices are maximum seasonal 24-h precipitation for the winter half-year (Oct.-March) and the summer half-year (Apr.-Sept.), maximum 5-day precipitation, maximum monthly precipitation and number of days with intense or very intense precipitation (respectively, in excess of 10 mm or 20 mm per day). Also, the warm-seasonal maximum number of consecutive dry days (longest period with daily precipitation below 1 mm) was examined. Analysis of precipitation extremes showed that daily maximum precipitation for the summer half-year increased for many stations, and increases during the summer half-year are more numerous than those in the winter half-year. Also, analysis of 5-day and monthly precipitation sums show increases for many stations. Number of days with intense precipitation increases especially in the north-western part of Poland. The number of consecutive dry days is getting higher for many stations in the summer half-year. Comparison of these two periods: colder 1961-1990 and warmer 1991-2015, revealed that during last 25 years most of statistical indices, such as 25th and 75th percentiles, median, mean and maximum are higher. However, many changes discussed in this paper are weak and statistically insignificant. The findings reported in this paper challenge results based on earlier data that do not include 2007-2015.

  16. A Global Precipitation Perspective on Persistent Extratropical Flow Anomalies

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.

    1999-01-01

    Two globally-complete, observation-only precipitation datasets have recently been developed for the Global Precipitation Climatology Project (GPCP). Both depend heavily on a variety of satellite input, as well as gauge data over land. The first, Version 2 x 79, provides monthly estimates on a 2.5 deg x 2.5 deg lat/long grid for the period 1979 through late 1999 (by the time of the conference). The second, the One-Degree Daily (1DD), provides daily estimates on a 1 deg x 1 deg grid for the period 1997 through late 1999 (by the time of the conference). Both are in beta test preparatory to release as official GPCP products. These datasets provide a unique perspective on the hydrological effects of the various atmospheric flow anomalies that have been identified by meteorologists. In this paper we discuss the regional precipitation effects that result from persistent extratropical flow anomalies. We will focus on the Pacific-North America (PNA) and North Atlantic Oscillation (NAO) patterns. Each characteristically becomes established on synoptic time scales, but then persists for periods that can exceed a month. The onset phase of each appears to have systematic mobile features, while the mature phase tend to be more stationary. Accordingly, composites of monthly data for outstanding positive and negative events (separately) contained in the 20-year record reveal the climatological structure of the precipitation during the mature phase. The climatological anomalies of the positive, negative, and (positive-negative) composites show the expected storm-track-related shifts in precipitation, and provide the advantage of putting the known precipitation effects over land in the context of the total pattern over land and ocean. As well, this global perspective points out some unexpected areas of correlation. Day-by-day composites of daily data anchored to the onset date demonstrate the systematic features during the onset. Although the 1DD has a fairly short record, some

  17. Monitoring mass changes in the Volta River basin using GRACE satellite gravity and TRMM precipitation

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira

    Full Text Available GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annual cycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changes without rainfall in the upstream of the Volta River basin.

  18. How to re-discover lunar variation of precipitation

    Science.gov (United States)

    Hejkrlik, L.

    2003-04-01

    In the course of history of human civilization the observers of nature believed in lunar influence on weather. This plain belief changed into scientific knowledge after reasonable amount of reliable weather records had been collected and examined by statistical methods. In the 19th and 20th Centuries meteorologists tried to detect lunar component in weather data, often with varying success. In the early 1960s of the last century scientists in the USA and Australia almost simultaneously published papers demonstrating the existence of an significant and persistent synodical variation of heavy rainfall in two extensive datasets from distant parts of the world. In fact a pair of authors from Sydney, E. E. Adderley and E. G. Bowen postponed the publication of their results in fear they would not have met the right response in meteorological circles. During the next decade, however, the observed phenomenon of excessive precipitation recorded near the middle of the first and third weeks of the synodical month had been widely accepted and the proposed explanation related to meteoritic dust had even been referred to as the "Bowen hypothesis". The following years saw decline in the interest of the geophysical community in this matter. The reason might be that the effect was not observed in current precipitation series. An analysis of the daily rainfall at Prague-Clementinum in the years 1901-2002 was carried out by method similar to Bowen's. The method of superposition of epochs was applied on ever synodical sub-series during 78 sub-sequent 25-year periods. The resulting 3-dimensional picture indicates that the lunar signal, which resembled the original one until the 1930s changed significantly for the next 20 years. The important result of this analysis is that for 25-year periods which include the data since approx. 1970 is the effect even more pronounced and therefore more noticeable for people still denying its existence.

  19. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  20. Can the variability in precipitation simulations across GCMs be reduced through sensible bias correction?

    Science.gov (United States)

    Nguyen, Ha; Mehrotra, Rajeshwar; Sharma, Ashish

    2017-11-01

    This work investigates the performance of four bias correction alternatives for representing persistence characteristics of precipitation across 37 General Circulation Models (GCMs) from the CMIP5 data archive. The first three correction approaches are the Simple Monthly Bias Correction (SMBC), Equidistance Quantile Mapping (EQM), and Nested Bias Correction (NBC), all of which operate in the time domain, with a focus on representing distributional and moment attributes in the observed precipitation record. The fourth approach corrects for the biases in high- and low-frequency variability or persistence of the GCM time series in the frequency domain and is named as Frequency-based Bias Correction (FBC). The Climatic Research Unit (CRU) gridded precipitation data covering the global land surface is used as a reference dataset. The assessment focusses on current and future means, variability, and drought-related characteristics at different temporal and spatial scales. For the current climate, all bias correction approaches perform reasonably well at the global scale by reproducing the observed precipitation statistics. For the future climate, focus is drawn on the agreement of the attributes across the GCMs considered. The inter-model difference/spread of each attribute across the GCMs is used as a measure of this agreement. Our results indicate that out of the four bias correction approaches used, FBC provides the lowest inter-model spreads, specifically for persistence attributes, over most regions/ parts over the global land surface. This has significant implications for most hydrological studies where the effect of low-frequency variability is of considerable importance.

  1. Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps

    Science.gov (United States)

    Chen, Min; Bica, Benedikt; Tüchler, Lukas; Kann, Alexander; Wang, Yong

    2017-07-01

    This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.

  2. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China

    International Nuclear Information System (INIS)

    Ye Baisheng; Yang Daqing; Ma Lijuan

    2012-01-01

    This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959–2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increase leads to the same amount of evapotranspiration increase, since yearly runoff remains unchanged and the long-term storage change is assumed to be zero. Annual runoff and evapotranspiration coefficients change, due to precipitation bias corrections, from 0.33 and 0.67 to 0.28 and 0.72, respectively. These changes will impact the parameterization and calibration of land surface and hydrological models. The bias corrections of precipitation data also improve the relationship between annual precipitation and runoff. (letter)

  3. Early drought detection by spectral analysis of satellite time series of precipitation and Normalized Difference Vegetation Index (NDVI)

    NARCIS (Netherlands)

    Van Hoek, Mattijn; Jia, Li; Zhou, J.; Zheng, Chaolei; Menenti, M.

    2016-01-01

    The time lag between anomalies in precipitation and vegetation activity plays a critical role in early drought detection as agricultural droughts are caused by precipitation shortages. The aim of this study is to explore a new approach to estimate the time lag between a forcing (precipitation)

  4. Effect of Mg/Ca ratios on microbially induced carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu; Seref Sonmez, M.; Kurt, M. Ali

    2016-04-01

    Influence of Mg/Ca ratios on microbially induced carbonate mineralogy were investigated by series of experiments carried out under various environmental conditions (Mg/Ca ratio, temperature and salinity). Halophilic bacterial cultures used for biomineralization experiments were isolated from hypersaline Lake Acıgöl (Denizli, SW Turkey), displaying extreme water chemistry with an average pH around 8.6 (Balci eta l.,2015). Enriched bacterial culture used in the experiments consisted of Halomonas saccharevitans strain AJ275, Halomonas alimentaria strain L7B; Idiomarina sp. TBZ29, 98% Idiomarina seosensis strain CL-SP19. Biomineralization experiments were set up using above enriched culture with Mg/Ca ratios of 0.05, 1, 4 and 15 and salinity of 8% and 15% experiments at 30oC and 10oC. Additionally, long-term biomineralization experiments were set up to last for a year, for Mg/Ca=4 and Mg/Ca=15 experiments at 30oC. For each experimental condition abiotic experiments were also conducted. Solution chemistry throughout incubation was monitored for Na, K, Mg, Ca, bicarbonate, carbonate, ammonium and phosphate for a month. At the end of the experiments, precipitates were collected and morphology and mineralogy of the biominerals were investigated and results were evaluated using the software DIFFRAC.SUITE EVA. Overall the preliminary results showed chemical precipitation of calcite, halite, hydromagnesite and sylvite. Results obtained from biological experiments indicate that, low Mg/Ca ratios (0.05 and 1) favor chlorapatite precipitation, whereas higher Mg/Ca ratios favor struvite precipitation. Biomineralization of dolomite, huntite and magnesite is favorable at high Mg/Ca ratios (4 and 15), in the presence of halophilic bacteria. Moreover, results indicate that supersaturation with respect to Mg (Mg/Ca=15) combined with NaCl (15%) inhibits biomineralization and forms chemical precipitates. 15% salinity is shown to favor chemical precipitation of mineral phases more than

  5. Exploring the Links in Monthly to Decadal Variability of the Atmospheric Water Balance Over the Wettest Regions in ERA-20C

    Science.gov (United States)

    Nogueira, M.

    2017-10-01

    Monthly-to-decadal variability of the regional precipitation over Intertropical Convergence Zone and north-Atlantic and north-Pacific storm tracks was investigated using ERA-20C reanalysis. Satellite-based precipitation (P) and evaporation (E) climatological patterns were well reproduced by ERA-20C. Regional P and E monthly time series displayed 20% differences, but these decreased rapidly with time scale ( 10% at yearly time scales). Spectral analysis showed good scale-by-scale statistical agreement between ERA-20C and observations. Using ERA-Interim showed no improvement despite the much wider range of information assimilated (including satellites). Remarkably high Detrended Cross-Correlation Analysis coefficients (ρDCCA > 0.7 and often ρDCCA > 0.9) revealed tight links between the nonperiodic variability of P, moisture divergence (DIV), and pressure velocity (ω) at monthly-to-decadal time scales over all the wet regions. In contrast, ρDCCA was essentially nonsignificant between nonperiodic P and E or sea surface temperature (SST). Thus, the nonperiodic monthly-to-decadal variability of precipitation in these regions is almost fully controlled by dynamics and not by local E or SST (suggested by Clausius-Clapeyron relation). Analysis of regional nonperiodic standard deviations and power spectra (and respective spectral exponents, β) provided further robustness to this conclusion. Finally, clear transitions in β for P, DIV, and ω between tropical and storm track regions were found. The latter is dominated by transient storms, with energy accumulation at synoptic scales and β β values (0.2 to 0.4) were found in the tropics, implying longer-range autocorrelations and slower decreasing variability and information creation with time scale, consistent with the important forcing from internal modes of variability (e.g., El Niño-Southern Oscillation).

  6. Applications of multiscale change point detections to monthly stream flow and rainfall in Xijiang River in southern China, part I: correlation and variance

    Science.gov (United States)

    Zhu, Yuxiang; Jiang, Jianmin; Huang, Changxing; Chen, Yongqin David; Zhang, Qiang

    2018-04-01

    This article, as part I, introduces three algorithms and applies them to both series of the monthly stream flow and rainfall in Xijiang River, southern China. The three algorithms include (1) normalization of probability distribution, (2) scanning U test for change points in correlation between two time series, and (3) scanning F-test for change points in variances. The normalization algorithm adopts the quantile method to normalize data from a non-normal into the normal probability distribution. The scanning U test and F-test have three common features: grafting the classical statistics onto the wavelet algorithm, adding corrections for independence into each statistic criteria at given confidence respectively, and being almost objective and automatic detection on multiscale time scales. In addition, the coherency analyses between two series are also carried out for changes in variance. The application results show that the changes of the monthly discharge are still controlled by natural precipitation variations in Xijiang's fluvial system. Human activities disturbed the ecological balance perhaps in certain content and in shorter spells but did not violate the natural relationships of correlation and variance changes so far.

  7. Spatial variations of summer precipitation trends in South Korea, 1973-2005

    International Nuclear Information System (INIS)

    Chang, Heejun; Kwon, Won-Tae

    2007-01-01

    We have investigated the spatial patterns of trends in summer precipitation amount, intensity, and heavy precipitation for South Korea between 1973 and 2005. All stations show increasing trends in precipitation amount during the summer months, with the highest percentage of significant increase in June precipitation for the northern and central western part of South Korea. There is a significant increase in August precipitation for stations in the southeastern part of South Korea. Only a few stations exhibited significant upward trends in September precipitation. There is a weak to moderate spatial autocorrelation with the highest Moran's I value in June precipitation amount and August precipitation intensity. The number of days with daily precipitation exceeding 50 and 30 mm during the summer has increased at all stations. Observed trends are likely to be associated with changes in large-scale atmospheric circulation, sea surface temperature anomalies, and orography, but detailed causes of these trends need further investigation

  8. Chemical and environmental isotopes study of precipitation in Syria

    International Nuclear Information System (INIS)

    Al-Charideh, A.; Abou Zakhem, B.

    2009-02-01

    Chemical and isotopic compositions of monthly precipitation were monitored at 12 stations distributed over the entire region in Syria for a period of 4 years from December 1999 to April 2003. Amount of precipitation and mean air temperature of rain monthly were also recorded. The conductivity of rain waters varies between 35 μ/cm in the mountainous stations and 336 μ/cm at Deir Az-Zor station. Excepted Tartous station, the mean value of Cl in the rainfall in all station is 3.8 mg/l. The seasonal variations in δ 18 O are smaller at west stations than to the east stations due to low seasonal temperature variations. All stations are characterized by water lines with slopes significantly lower than GMWL, except Bloudan, suggesting the influence of local factors on the isotopic composition of the precipitation. d-excess values decrease from 19% in the western part to 13% in the eastern part of Syria, indicating the influence of the precipitation generated by the air masses coming from the Mediterranean Sea over Syria. A reliable altitude effect represent by depletion of heavy stable isotopes of about -0.21, and -1.47, per 100 m elevation of 18 O and δ 2 H, respectively. Monthly tritium activity and seasonal variations pattern are low in the west stations than at the east stations. The weighted mean tritium values are between 3 to 9 TU during 2000-2003, and it is increasing with distance from the Syrian coast by 1 TU /100 Km. (author)

  9. The impact of Arctic and North Atlantic oscillation on temperature and precipitation anomalies in Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović-Berdon Nada

    2012-01-01

    Full Text Available The impact of the Arctic Oscillations (AO and the North Atlantic Oscillations (NAO is considered as the most prominent of atmospheric oscillations in the area of the northern hemisphere from the United States to Siberia and from the Arctic to the subtropical Atlantic. The aim of this study was to determine how these fluctuations affect the temperature and precipitation in Serbia. This paper explores the impact for the period of 50 years (1958-2007 by months and in 20 synoptic stations. The influence of the AO on temperature anomalies in Serbia can be seen by the correlation coefficient, the largest in the month of January, while its impact on precipitation is the largest in the month of February. After the test of linear correlation between the NAO index and temperature anomalies for the base period 1971-2000 for 20 synoptic stations in Serbia, it has been found that the highest correlation is in the month of January. The correlation between the NAO and the precipitation anomalies for the stations mentioned above is the highest in the month of February. Spatial patterns of the AO and the NAO influence on temperature in January and on precipitation in February were obtained by applying principal component analysis.

  10. Implications of a decrease in the precipitation area for the past and the future

    Science.gov (United States)

    Benestad, Rasmus E.

    2018-04-01

    The total area with 24 hrs precipitation has shrunk by 7% between 50°S–50°N over the period 1998–2016, according to the satellite-based Tropical Rain Measurement Mission data. A decrease in the daily precipitation area is an indication of profound changes in the hydrological cycle, where the global rate of precipitation is balanced by the global rate of evaporation. This decrease was accompanied by increases in total precipitation, evaporation, and wet-day mean precipitation. If these trends are real, then they suggest increased drought frequencies and more intense rainfall. Satellite records, however, may be inhomogeneous because they are synthesised from a number of individual missions with improved technology over time. A linear dependency was also found between the global mean temperature and the 50°S–50°N daily precipitation area with a slope value of ‑17 × 106 km 2/°C. This dependency was used with climate model simulations to make future projections which suggested a continued decrease that will strengthen in the future. The precipitation area evolves differently when the precipitation is accumulated over short and long time scales, however, and there has been a slight increase in the monthly precipitation area while the daily precipitation area decreased. An increase on monthly scale may indicate more pronounced variations in the rainfall patterns due to migrating rain-producing phenomena.

  11. Storms over the METER--ORNL Precipitation Network: the first six months

    International Nuclear Information System (INIS)

    Miller, R.L.; Patrinos, A.A.N.; Saylor, R.E.

    1979-06-01

    This report presents the first set of data collected by the METER--ORNL Precipitation Network. This network of 49 recording raingages and 5 recording windsets was installed in February 1978, around the Bowen Electric Generating Plant in northwest Georgia for the purpose of investigating the potential effect of the plant's cooling towers on rainfall. This study is conducted on behalf of the DOE Program on Meteorological Effects of Thermal Energy Releases (METER). Included in this report are the complete descriptions of 98 rainfall events which occurred over the METER--ORNL network during the period February 22--August 31, 1978. These descriptions are augmented by information and data supplied by the National Weather Service (NWS). Several stratifications of the rainfall events are performed for reference purposes

  12. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    Science.gov (United States)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  13. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  14. An Ultra-high Resolution Synthetic Precipitation Data for Ungauged Sites

    Science.gov (United States)

    Kim, Hong-Joong; Choi, Kyung-Min; Oh, Jai-Ho

    2018-05-01

    Despite the enormous damage caused by record heavy rainfall, the amount of precipitation in areas without observation points cannot be known precisely. One way to overcome these difficulties is to estimate meteorological data at ungauged sites. In this study, we have used observation data over Seoul city to calculate high-resolution (250-meter resolution) synthetic precipitation over a 10-year (2005-2014) period. Furthermore, three cases are analyzed by evaluating the rainfall intensity and performing statistical analysis over the 10-year period. In the case where the typhoon "Meari" passed to the west coast during 28-30 June 2011, the Pearson correlation coefficient was 0.93 for seven validation points, which implies that the temporal correlation between the observed precipitation and synthetic precipitation was very good. It can be confirmed that the time series of observation and synthetic precipitation in the period almost completely matches the observed rainfall. On June 28-29, 2011, the estimation of 10 to 30 mm h-1 of continuous strong precipitation was correct. In addition, it is shown that the synthetic precipitation closely follows the observed precipitation for all three cases. Statistical analysis of 10 years of data reveals a very high correlation coefficient between synthetic precipitation and observed rainfall (0.86). Thus, synthetic precipitation data show good agreement with the observations. Therefore, the 250-m resolution synthetic precipitation amount calculated in this study is useful as basic data in weather applications, such as urban flood detection.

  15. Variation of precipitation for the last 300 years over the middle and lower reaches of the Yellow River

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Jingyun; HAO; Zhixin; GE; Quansheng

    2005-01-01

    The precipitation at 17 stations over the middle and lower reaches of the Yellow River is reconstructed during the period of 1736―1910, using the snow and rainfall records in the Qing Dynasty, together with the instrumental observation data of precipitation and farmland soil moisture content. The soil physics model related to rainfall infiltration and the surface water balance equation are taken as main reconstruction methodology. The field infiltration experiment by artificial rainfall is conducted to check the reliability. And the precipitation series over the middle and lower reaches of the Yellow River and its 4 sub-regions are established, going back to 1736. Analysis of the time series indicates that the abrupt change of precipitation from high to low occurs around 1915 over the middle and lower reaches of the Yellow River. During the three periods of 1791―1805, 1816―1830 and 1886―1895, the precipitation is markedly higher than the mean of the series. While both the periods of 1916―1945 and 1981―2000 are characterized by less precipitation. Three periodicities of 22―25a, 3.9a and 2.7a are shown in the precipitation fluctuation over the middle and lower reaches of the Yellow River. Moreover, the periodical signal of 22―25a becomes weaker and weaker since the abrupt change of 1915 and disappears in the late 1940s, and then the periodical signal of 35―40a appears instead.

  16. Analysis on Climatic Characteristics of the Precipitation Anomaly in Southwest China in Recent 60 Years

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Rong; PANG; Jing; QIN; Jun

    2012-01-01

    [Objective]The research aimed to analyze temporal-spatial distribution characteristics of the precipitation anomaly in southwest China from 1951 to 2010. [Method] Based on monthly precipitation data at 44 stations of southwest China and 160 stations of China from 1951 to 2010, by using EOF analysis, wavelet analysis and composite analysis, monthly and seasonal change rules of the precipitation in southwest China were analyzed. Corresponding spatial-temporal distribution characteristics of the precipitation in drought and flood years were studied. Temporal-spatial distribution characteristics of the precipitation anomaly in southwest China in recent 60 years were revealed. [Result]Seasonal distribution of the precipitation in southwest China was uneven and was typical single-peak type. Precipitation concentrated from May to September, and peak appeared in July. In recent years, rainfall in autumn significantly became less, while that in other seasons had no obvious change. Precipitation in summer had the cycle of 14 years, another for 6 years and 3-4 years of periodic oscillations. In wet years, precipitation in southwest China had same phase with that in southern China, and anti-phase with that in the junction of Qinghai, Gansu, Xinjiang and Tibet. In dry years, precipitation in southwest China had same phase with that in the eastern part of northwest China and northern China. [Conclusion]The research provided reference basis for prediction and pre-warning of the precipitation in the zone.

  17. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS. (1) Quality control

    Science.gov (United States)

    Peña-Angulo, Dhais; Cortesi, Nicola; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; González-Hidalgo, José Carlos

    2014-05-01

    The HIDROCAES project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is focused on the high resolution in the Spanish continental land of the warming processes during the 1951-2010. To do that the Department of Geography (University of Zaragoza, Spain), the Hydrometeorological Service (Brno Division, Chezck Republic) and the ISAC-CNR (Bologna, Italy) are developing the new dataset MOTEDAS (MOnthly TEmperature DAtabase of Spain), from which we present a collection of poster to show (1) the general structure of dataset and quality control; (2) the analyses of spatial correlation of monthly mean values of maximum (Tmax) and minimum (Tmin temperature; (3) the reconstruction processes of series and high resolution grid developing; (4) the first initial results of trend analyses of annual, seasonal and monthly range mean values. MOTEDAS has been created after exhaustive analyses and quality control of the original digitalized data of the Spanish National Meteorological Agency (Agencia Estatal de Meteorología, AEMET). Quality control was applied without any prior reconstruction, i.e. on original series. Then, from the total amount of series stored at AEMet archives (more than 4680) we selected only those series with at least 10 years of data (i.e. 120 months, 3066 series) to apply a quality control and reconstruction processes (see Poster MOTEDAS 3). Length of series was Tmin, upper and lower thresholds of absolute data, etc), and by comparison with reference series (see Poster MOTEDAS 3, about reconstruction). Anomalous data were considered when difference between Candidate and Reference series were higher than three times the interquartile distance. The total amount of monthly suspicious data recognized and discarded at the end of this analyses was 7832 data for Tmin, and 8063 for Tmax data; they represent less than 0,8% of original total monthly data, for both Tmax and Tmin. No spatial pattern was

  18. Fuzzy-logic-based power control system for multifield electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Grass, N. [Siemens AG, Erlangen (Germany)

    2002-10-01

    The power consumption of large precipitators can be in the range of 1 MW and above. Depending on the dust load properties, the electrical power may be reduced by up to 50% by applying fuzzy logic, without significantly increasing the dust emissions. The new approach uses fuzzy logic for optimization of existing electrostatic precipitators. The software runs on a standard personal computer platform under the, Windows NT operating system. The controllers of the electrostatic precipitator power supplies are linked to the personal computer via an industrial network (e.g., PROFIBUS). The system determines online the differentials of emission versus electrical power of each field. This measurement is difficult because of overlaid events in the other zones, and process changes. The long response time of the resultant dust emission due to electrical power changes in the precipitator is an additional complication. Rules were defined for a coarse, but fast-response power adaptation of all zones. Fine tuning the running system after the coarse optimization increased the accuracy and reliability. When installed on a 4 x 5 zone precipitator in a power station, significant results were obtained. The power savings over three months of operation were in the range of 40%-60% depending on the load and fuel characteristics. Data were recorded over the test period of three months. The results are presented.

  19. Forecasting and Analysis of Monthly Rainfalls in Ardabil Province by Arima, Autoregrressive, and Winters Models

    Directory of Open Access Journals (Sweden)

    B. Salahi

    2017-01-01

    Full Text Available Introduction: Rainfall has the highest variability at time and place scale. Rainfall fluctuation in different geographical areas reveals the necessity of investigating this climate element and suitable models to forecast the rate of precipitation for regional planning. Ardabil province has always faced rainfall fluctuations and shortage of water supply. Precipitation is one of the most important features of the environment. The amount of precipitation over time and in different places is subject to large fluctuations which may be periodical. Studies show that, due to the certain complexities of rainfall, the models which used to predict future values will also need greater accuracy and less error. Among the forecasting models, Arima has more applications and it has replaced with other models. Materials and Methods: In this research, through order 2 Autoregrressive, Winters, and Arima models, monthly rainfalls of Ardabil synoptic station (representing Ardabil province for a 31-year period (1977-2007 were investigated. To assess the presence or absence of significant changes in mean precipitation of Ardabil synoptic station, rainfall of this station was divided into two periods: 1977-1993 and 1994-2010. T-test was used to statistically examine the difference between the two periods. After adjusting the data, descriptive statistics were applied. In order to model the total monthly precipitation of Ardabil synoptic station, Winters, Autoregressive, and Arima models were used. Among different models, the best options were chosen to predict the time series including the mean absolute deviation (MAD, the mean squared errors (MSE, root mean square errors (RMSE and mean absolute percentage errors (MAPE. In order to select the best model among the available options under investigation, the predicted value of the deviation of the actual value was utilized for the months of 2006-2010. Results and Discussion: Statistical characteristics of the total monthly

  20. Average monthly and annual climate maps for Bolivia

    KAUST Repository

    Vicente-Serrano, Sergio M.; El Kenawy, Ahmed M.; Azorin-Molina, Cesar; Chura, O.; Trujillo, F.; Aguilar, Enric; Martí n-Herná ndez, Natalia; Ló pez-Moreno, Juan Ignacio; Sanchez-Lorenzo, Arturo; Morá n-Tejeda, Enrique; Revuelto, Jesú s; Ycaza, P.; Friend, F.

    2015-01-01

    This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control

  1. Study on the Variation Characteristic of Precipitation in Liaoning Province in Recent 48 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the variation characteristic of precipitation in Liaoning Province in recent 48 years. [Method] According to monthly precipitation data from meteorological observation station in Liaoning Province from 1961 to 2008, the variation characteristic of precipitation in Liaoning was analyzed by means of one-dimensional linear estimation, 5-year moving average and wavelet transform method in our paper. [Result] Annual mean precipitation in Liaoning from 1961 to 2008 showed decrease...

  2. Correlation and multifractality in climatological time series

    International Nuclear Information System (INIS)

    Pedron, I T

    2010-01-01

    Climate can be described by statistical analysis of mean values of atmospheric variables over a period. It is possible to detect correlations in climatological time series and to classify its behavior. In this work the Hurst exponent, which can characterize correlation and persistence in time series, is obtained by using the Detrended Fluctuation Analysis (DFA) method. Data series of temperature, precipitation, humidity, solar radiation, wind speed, maximum squall, atmospheric pressure and randomic series are studied. Furthermore, the multifractality of such series is analyzed applying the Multifractal Detrended Fluctuation Analysis (MF-DFA) method. The results indicate presence of correlation (persistent character) in all climatological series and multifractality as well. A larger set of data, and longer, could provide better results indicating the universality of the exponents.

  3. 348-YEAR PRECIPITATION RECONSTRUCTION FROM TREE-RINGS FOR THE NORTH SLOPE OF THE MIDDLE TIANSHAN MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    袁玉江; 李江风; 张家宝

    2001-01-01

    Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant, and the best single correlation coefficient is 0.74, with significance level of 0. 0001.Using two residual chronologies collected from west Baiyanggou and Boerqingou, precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains, its explained variance is 62%. According to much verification from independent precipitation data, historical climate records, glacier and other data, it shows that the reconstructed precipitation series of 348 years is reliable. Analysis of precipitation features indicates that there were three wet periods occurring during 1671 (?) -1692, 1716-1794 and 1825-1866 and three dry periods during 1693 - 1715, 1795- 1824 and 1867- 1969. Two wet periods, during 1716- 1794 and 1825 - 1866,correspond to the times of the second and the third glacial terminal moraine formation, which is in front of No. 1 glacier in Urumqi River source. According to computation, corresponding annual precipitation amounts are 59 mm and 30 mm more than now. The reconstructed precipitation series has a significant drying trend from 1716 to 1969, and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.

  4. Key drivers of precipitation isotopes in Windhoek, Namibia (2012-2016)

    Science.gov (United States)

    Kaseke, K. F.; Wang, L.; Wanke, H.

    2017-12-01

    Southern African climate is characterized by large variability with precipitation model estimates varying by as much as 70% during summer. This difference between model estimates is partly because most models associate precipitation over Southern Africa with moisture inputs from the Indian Ocean while excluding inputs from the Atlantic Ocean. However, growing evidence suggests that the Atlantic Ocean may also contribute significant amounts of moisture to the region. This four-year (2012-2016) study investigates the isotopic composition (δ18O, δ2H and δ17O) of event-scale precipitation events, the key drivers of isotope variations and the origins of precipitation experienced in Windhoek, Namibia. Results indicate large storm-to-storm isotopic variability δ18O (25‰), δ2H (180‰) and δ17O (13‰) over the study period. Univariate analysis showed significant correlations between event precipitation isotopes and local meteorological parameters; lifted condensation level, relative humidity (RH), precipitation amount, average wind speed, surface and air temperature (p < 0.05). The number of significant correlations between local meteorological parameters and monthly isotopes was much lower suggesting loss of information through data aggregation. Nonetheless, the most significant isotope driver at both event and monthly scales was RH, consistent with the semi-arid classification of the site. Multiple linear regression analysis suggested RH, precipitation amount and air temperature were the most significant local drivers of precipitation isotopes accounting for about 50% of the variation implying that about 50% could be attributed to source origins. HYSLPIT trajectories indicated that 78% of precipitation originated from the Indian Ocean while 21% originated from the Atlantic Ocean. Given that three of the four study years were droughts while two of the three drought years were El Niño related, our data also suggests that δ'17O-δ'18O could be a useful tool to

  5. Spatiotemporal Variations of Extreme Precipitation under a Changing Climate in the Three Gorges Reservoir Area (TGRA

    Directory of Open Access Journals (Sweden)

    Mingquan Lü

    2018-01-01

    Full Text Available The Three Gorges Dam (TGD is one of the largest hydroelectric projects in the world. Monitoring the spatiotemporal distribution of extreme precipitation offers valuable information for adaptation and mitigation strategies and reservoir management schemes. This study examined variations in extreme precipitation over the Three Gorges Reservoir area (TGRA in China to investigate the potential role of climate warming and Three Gorges Reservoir (TGR. The trends in extreme precipitation over the TGRA were investigated using the iterative-based Mann–Kendall (MK test and Sen’s slope estimator, based on weather station daily data series and TRMM (Tropical Rainfall Measuring Mission data series. The mean and density distribution of extreme precipitation indices between pre-dam and post-dam, pre-1985 and post-1985, and near and distant reservoir area were assessed by the Mann–Whitney test and the Kolmogorov–Smirnov test. The ratio of extreme precipitation to non-extreme precipitation became larger. The precipitation was characterized by increases in heavy precipitation as well as decreases in light and moderate rain. Comparing extreme precipitation indices between pre-1985 (cooling and post-1985 (warming indicated extreme precipitation has changed to become heavier. Under climate warming, the precipitation amount corresponding to more than the 95th percentile increased at the rate of 6.48%/°C. Results from comparing extreme precipitation for the pre- and post-dam, near reservoir area (NRA and away from the reservoir area (ARA imply an insignificant role of the TGR on rainfall extremes over the TGRA. Moreover, the impoundment of TGR did not exert detectable impacts on the surface relative humidity (RH and water vapor pressure (WP.

  6. Long-term variability of precipitation in Republic of Macedonia

    International Nuclear Information System (INIS)

    Slavov, Nikola; Marinova, Tania; Ristevski, Pece

    2004-01-01

    During the last century a great attention has been spared to the water resources of the territories of different countries in the world. In the last decades investigations were directed towards the long-term variability of precipitation in the basic regions of agricultural production. Among these investigations the results that indicate decreasing of precipitation amounts during the potential crop-growing season are of especially great interest because precipitation decreasing affects harmfully crop production and population feeding. The purpose of the present work is to study the long-term variability of monthly precipitation sums for 5 representative meteorological stations in Republic of Macedonia: Skopje, Bitola, Prilep, Stip and Demir Kapija for the period 1925-2000. The duration and periodicity of precipitation variations are analyzed on the base of 5-years smooth values for different seasons, warm and cold half-year and for year. The tendencies of trend for the period 1925-2000 are found out.(Author)

  7. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2008-01-01

    13 meteoric stations were selected in syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the syrian or local meteoric line (SMWL) was estimated with a slope of 6.63 and that of both syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude was determined by 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14% and - 0.84%/100 m elevation respectively). The spatial variability of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content of precipitation, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern mediterranean climate type over this region. (author)

  8. Influence of aerosol on regional precipitation in North China

    Institute of Scientific and Technical Information of China (English)

    DUAN Jing; MAO JieTai

    2009-01-01

    The possible anthropogenic aerosol effect on regional precipitation is analyzed based on the historical data of precipitation and visibility of North China. At first, the precipitation amounts from 1960 to 1979 are considered as natural background values in our study for relatively less intensive industrial activi-ties and light air pollution during that period of time, then the region is divided into different subregions by applying the clustering method including the significance test of station rainfall correlations to the time series of 10-day mean rainfall amounts in this period. Based on the rule that the precipitation characteristics are similar in the same clustering region, the correlation of precipitation amounts among all stations in each region is thus established. Secondly, for the period from 1990 to 2005, during which, the economy had experienced a rapid development in this region, the variations of visibility at each station are analyzed. The stations with the absolute change in visibility less than 0.1 km/a are used as the reference stations, at which it is assumed that precipitation has not been seriously influ-enced by anthropogenic aerosols. Then the rainfall amounts of reference stations are used to estimate the natural precipitation values of the other stations in each clustering region. The difference between estimated precipitation and measured precipitation amount is thought to result from changes in an-thropogenic aerosols. These changes in precipitation amounts caused by anthropogenic aerosols at each station are calculated using the 10-day mean rainfall values from 1990 to 2005. The analysis re-suits obtained with this method are remarkable if it passes the significance test, and therefore, the suppression of regional precipitation over the region by anthropogenic aerosol is proved. It is found that this effect is most remarkable in summer. The influence of anthropogenic aerosols on convective precipitation possibly plays an important

  9. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia

    Science.gov (United States)

    Dayem, Katherine E.; Molnar, Peter; Battisti, David S.; Roe, Gerard H.

    2010-06-01

    Variability in oxygen isotope ratios collected from speleothems in Chinese caves is often interpreted as a proxy for variability of precipitation, summer precipitation, seasonality of precipitation, and/or the proportion of 18O to 16O of annual total rainfall that is related to a strengthening or weakening of the East Asian monsoon and, in some cases, to the Indian monsoon. We use modern reanalysis and station data to test whether precipitation and temperature variability over China can be related to changes in climate in these distant locales. We find that annual and rainy season precipitation totals in each of central China, south China, and east India have correlation length scales of ∼ 500 km, shorter than the distance between many speleothem records that share similar long-term time variations in δ18O values. Thus the short distances of correlation do not support, though by themselves cannot refute, the idea that apparently synchronous variations in δ18O values at widely spaced (> 500 km) caves in China are due to variations in annual precipitation amounts. We also evaluate connections between climate variables and δ18O values using available instrumental measurements of δ18O values in precipitation. These data, from stations in the Global Network of Isotopes in Precipitation (GNIP), show that monthly δ18O values generally do not correlate well with either local precipitation amount or local temperature, and the degree to which monthly δ18O values do correlate with them varies from station to station. For the few locations that do show significant correlations between δ18O values and precipitation amount, we estimate the differences in precipitation amount that would be required to account for peak-to-peak differences in δ18O values in the speleothems from Hulu and Dongge caves, assuming that δ18O scales with the monthly amount of precipitation or with seasonal differences in precipitation. Insofar as the present-day relationship between δ18O

  10. Seasonal and ENSO Influences on the Stable Isotopic Composition of Galápagos Precipitation

    Science.gov (United States)

    Martin, N. J.; Conroy, J. L.; Noone, D.; Cobb, K. M.; Konecky, B. L.; Rea, S.

    2018-01-01

    The origin of stable isotopic variability in precipitation over time and space is critical to the interpretation of stable isotope-based paleoclimate proxies. In the eastern equatorial Pacific, modern stable isotope measurements in precipitation (δ18Op and δDp) are sparse and largely unevaluated in the literature, although insights from such analyses would benefit the interpretations of several regional isotope-based paleoclimate records. Here we present a new 3.5 year record of daily-resolved δ18Op and δDp from Santa Cruz, Galápagos. With a prior 13 year record of monthly δ18Op and δDp from the island, these new data reveal controls on the stable isotopic composition of regional precipitation on event to interannual time scales. Overall, we find Galápagos δ18Op is significantly correlated with precipitation amount on daily and monthly time scales. The majority of Galápagos rain events are drizzle, or garúa, derived from local marine boundary layer vapor, with corresponding high δ18Op values due to the local source and increased evaporation and equilibration of smaller drops with boundary layer vapor. On monthly time scales, only precipitation in very strong, warm season El Niño months has substantially lower δ18Op values, as the sea surface temperature threshold for deep convection (28°C) is only surpassed at these times. The 2015/2016 El Niño event did not produce strong precipitation or δ18Op anomalies due to the short period of warm SST anomalies, which did not extend into the peak of the warm season. Eastern Pacific proxy isotope records may be biased toward periods of high rainfall during strong to very strong El Niño events.

  11. Forecasting Precipitation over the MENA Region: A Data Mining and Remote Sensing Based Approach

    Science.gov (United States)

    Elkadiri, R.; Sultan, M.; Elbayoumi, T.; Chouinard, K.

    2015-12-01

    We developed and applied an integrated approach to construct predictive tools with lead times of 1 to 12 months to forecast precipitation amounts over the Middle East and North Africa (MENA) region. The following steps were conducted: (1) acquire and analyze temporal remote sensing-based precipitation datasets (i.e. Tropical Rainfall Measuring Mission [TRMM]) over five main water source regions in the MENA area (i.e. Atlas Mountains in Morocco, Southern Sudan, Red Sea Hills of Yemen, and Blue Nile and White Nile source areas) throughout the investigation period (1998 to 2015), (2) acquire and extract monthly values for all of the climatic indices that are likely to influence the climatic patterns over the MENA region (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); and (3) apply data mining methods to extract relationships between the observed precipitation and the controlling factors (climatic indices) and use predictive tools to forecast monthly precipitation over each of the identified pilot study areas. Preliminary results indicate that by using the period from January 1998 until August 2012 for model training and the period from September 2012 to January 2015 for testing, precipitation can be successfully predicted with a three-months lead over South West Yemen, Atlas Mountains in Morocco, Southern Sudan, Blue Nile sources and White Nile sources with confidence (Pearson correlation coefficient: 0.911, 0.823, 0.807, 0.801 and 0.895 respectively). Future work will focus on applying this technique for prediction of precipitation over each of the climatically contiguous areas of the MENA region. If our efforts are successful, our findings will lead the way to the development and implementation of sound water management scenarios for the MENA countries.

  12. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    Science.gov (United States)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  13. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    Science.gov (United States)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  14. GPM, GMI Level 3 Monthly GPROF Profiling V03

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  15. Warm season precipitation signal in δ2 H values of wood lignin methoxyl groups from high elevation larch trees in Switzerland.

    Science.gov (United States)

    Riechelmann, Dana F C; Greule, Markus; Siegwolf, Rolf T W; Anhäuser, Tobias; Esper, Jan; Keppler, Frank

    2017-10-15

    In this study, we tested stable hydrogen isotope ratios of wood lignin methoxyl groups (δ 2 H methoxyl values) as a palaeoclimate proxy in dendrochronology. This is a quite new method in the field of dendrochronology and the sample preparation is much simpler than the methods used before to measure δ 2 H values from wood. We measured δ 2 H methoxyl values in high elevation larch trees (Larix decidua Mill.) from Simplon Valley (southern Switzerland). Thirty-seven larch trees were sampled and five individuals analysed for their δ 2 H methoxyl values at annual (1971-2009) and pentadal resolution (1746-2009). The δ 2 H methoxyl values were measured as CH 3 I released upon treatment of the dried wood samples with hydroiodic acid. 10-90 μL from the head-space were injected into the gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/HTC-IRMS) system. Testing the climate response of the δ 2 H methoxyl values, the annually resolved series show a positive correlation of r = 0.60 with June/July precipitation. The pentadally resolved δ 2 H methoxyl series do not show any significant correlation to climate parameters. Increased precipitation during June and July, which are on average warm and relatively dry months, results in higher δ 2 H values of the xylem water and, therefore, higher δ 2 H values in the lignin methoxyl groups. Therefore, we suggest that δ 2 H methoxyl values of high elevation larch trees might serve as a summer precipitation proxy. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Scaling properties of Polish rain series

    Science.gov (United States)

    Licznar, P.

    2009-04-01

    Scaling properties as well as multifractal nature of precipitation time series have not been studied for local Polish conditions until recently due to lack of long series of high-resolution data. The first Polish study of precipitation time series scaling phenomena was made on the base of pluviograph data from the Wroclaw University of Environmental and Life Sciences meteorological station located at the south-western part of the country. The 38 annual rainfall records from years 1962-2004 were converted into digital format and transformed into a standard format of 5-minute time series. The scaling properties and multifractal character of this material were studied by means of several different techniques: power spectral density analysis, functional box-counting, probability distribution/multiple scaling and trace moment methods. The result proved the general scaling character of time series at the range of time scales ranging form 5 minutes up to at least 24 hours. At the same time some characteristic breaks at scaling behavior were recognized. It is believed that the breaks were artificial and arising from the pluviograph rain gauge measuring precision limitations. Especially strong limitations at the precision of low-intensity precipitations recording by pluviograph rain gauge were found to be the main reason for artificial break at energy spectra, as was reported by other authors before. The analysis of co-dimension and moments scaling functions showed the signs of the first-order multifractal phase transition. Such behavior is typical for dressed multifractal processes that are observed by spatial or temporal averaging on scales larger than the inner-scale of those processes. The fractal dimension of rainfall process support derived from codimension and moments scaling functions geometry analysis was found to be 0.45. The same fractal dimension estimated by means of the functional box-counting method was equal to 0.58. At the final part of the study

  17. Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland

    Directory of Open Access Journals (Sweden)

    Shaowei Ning

    2016-10-01

    Full Text Available The Global Precipitation Mission (GPM Core Observatory that was launched on 27 February 2014 ushered in a new era for estimating precipitation from satellites. Based on their high spatial–temporal resolution and near global coverage, satellite-based precipitation products have been applied in many research fields. The goal of this study was to quantitatively compare two of the latest GPM-era satellite precipitation products (GPM IMERG and GSMap-Gauge Ver. 6 with a network of 840 precipitation gauges over the Chinese mainland. Direct comparisons of satellite-based precipitation products with rain gauge observations over a 20 month period from April 2014 to November 2015 at 0.1° and daily/monthly resolutions showed the following results: Both of the products were capable of capturing the overall spatial pattern of the 20 month mean daily precipitation, which was characterized by a decreasing trend from the southeast to the northwest. GPM IMERG overestimated precipitation by approximately 0.09 mm/day while GSMap-Gauge Ver. 6 underestimated precipitation by −0.04 mm/day. The two satellite-based precipitation products performed better over wet southern regions than over dry northern regions. They also showed better performance in summer than in winter. In terms of mean error, root mean square error, correlation coefficient, and probability of detection, GSMap-Gauge was better able to estimate precipitation and had more stable quality results than GPM IMERG on both daily and monthly scales. GPM IMERG was more sensitive to conditions of no rain or light rainfall and demonstrated good capability of capturing the behavior of extreme precipitation events. Overall, the results revealed some limitations of these two latest satellite-based precipitation products when used over the Chinese mainland, helping to characterize some of the error features in these datasets for potential users.

  18. Negative soil moisture-precipitation feedback in dry and wet regions.

    Science.gov (United States)

    Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun

    2018-03-05

    Soil moisture-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly soil moisture and next-month precipitation. The physical mechanism is investigated through coupling precipitation and soil moisture (P-SM), soil moisture ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is soil moisture limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.

  19. Spatio-temporal variability of several eco-precipitation indicators in China

    Science.gov (United States)

    Guo, B. B.; Zhang, J.; Wang, F.

    2016-12-01

    Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of

  20. Seasonality of runoff and precipitation regimes along transects in Peru and Austria

    OpenAIRE

    Gaudry Maria M. Cárdenas; Gutknecht Dieter; Parajka Juraj; Perdigão Rui A.P.; Blöschl Günter

    2017-01-01

    The aim of this study is to understand the seasonalities of runoff and precipitation and their controls along two transects in Peru and one transect in Austria. The analysis is based on daily precipitation data at 111 and 61 stations in Peru and Austria, respectively, and daily discharge data at 51 and 110 stations. The maximum Pardé coefficient is used to quantify the strength of the seasonalities of monthly precipitation and runoff. Circular statistics are used to quantify the seasonalities...

  1. Long-Term Precipitation Analysis and Estimation of Precipitation Concentration Index Using Three Support Vector Machine Methods

    Directory of Open Access Journals (Sweden)

    Milan Gocic

    2016-01-01

    Full Text Available The monthly precipitation data from 29 stations in Serbia during the period of 1946–2012 were considered. Precipitation trends were calculated using linear regression method. Three CLINO periods (1961–1990, 1971–2000, and 1981–2010 in three subregions were analysed. The CLINO 1981–2010 period had a significant increasing trend. Spatial pattern of the precipitation concentration index (PCI was presented. For the purpose of PCI prediction, three Support Vector Machine (SVM models, namely, SVM coupled with the discrete wavelet transform (SVM-Wavelet, the firefly algorithm (SVM-FFA, and using the radial basis function (SVM-RBF, were developed and used. The estimation and prediction results of these models were compared with each other using three statistical indicators, that is, root mean square error, coefficient of determination, and coefficient of efficiency. The experimental results showed that an improvement in predictive accuracy and capability of generalization can be achieved by the SVM-Wavelet approach. Moreover, the results indicated the proposed SVM-Wavelet model can adequately predict the PCI.

  2. Evaluation of the significance of abrupt changes in precipitation and runoff process in China

    Science.gov (United States)

    Xie, Ping; Wu, Ziyi; Sang, Yan-Fang; Gu, Haiting; Zhao, Yuxi; Singh, Vijay P.

    2018-05-01

    Abrupt changes are an important manifestation of hydrological variability. How to accurately detect the abrupt changes in hydrological time series and evaluate their significance is an important issue, but methods for dealing with them effectively are lacking. In this study, we propose an approach to evaluate the significance of abrupt changes in time series at five levels: no, weak, moderate, strong, and dramatic. The approach was based on an index of correlation coefficient calculated for the original time series and its abrupt change component. A bigger value of correlation coefficient reflects a higher significance level of abrupt change. Results of Monte-Carlo experiments verified the reliability of the proposed approach, and also indicated the great influence of statistical characteristics of time series on the significance level of abrupt change. The approach was derived from the relationship between correlation coefficient index and abrupt change, and can estimate and grade the significance levels of abrupt changes in hydrological time series. Application of the proposed approach to ten major watersheds in China showed that abrupt changes mainly occurred in five watersheds in northern China, which have arid or semi-arid climate and severe shortages of water resources. Runoff processes in northern China were more sensitive to precipitation change than those in southern China. Although annual precipitation and surface water resources amount (SWRA) exhibited a harmonious relationship in most watersheds, abrupt changes in the latter were more significant. Compared with abrupt changes in annual precipitation, human activities contributed much more to the abrupt changes in the corresponding SWRA, except for the Northwest Inland River watershed.

  3. On the relationship between Indian monsoon withdrawal and Iran's fall precipitation onset

    Science.gov (United States)

    Babaeian, Iman; Rezazadeh, Parviz

    2017-09-01

    Indian monsoon is the most prominent of the world's monsoon systems which primarily affects synoptic patterns of India and adjacent countries such as Iran in interaction with large-scale weather systems. In this article, the relationship between the withdrawal date of the Indian monsoon and the onset of fall precipitation in Iran has been studied. Data included annual time series of withdrawal dates of the Indian monsoon prepared by the Indian Institute for Tropical Meteorology, and time series of the first date of 25 mm accumulated precipitation over Iran's synoptic weather stations in a 10-day period which is the basis for the cultivation date. Both time series were considered in Julian calendar with the starting date on August 1. The studied period is 1960-2014 which covers 55 years of data from 36 meteorological stations in Iran. By classifying the withdrawal dates of the Indian monsoon in three stages of late, normal, and early withdrawals, its relation with the onset of fall precipitation in western, southwestern, southern, eastern, central, and northern regions of Iran was studied. Results demonstrated that in four out of the six mentioned regions, the late withdrawal of the Indian monsoon postpones the onset of fall precipitation over Iran. No significant relation was found between the onset of fall precipitation in central region of Iran and the monsoon's withdrawal date. In the western, southwestern, southern, and eastern regions of Iran, the late monsoon delays the onset of fall's precipitation; while in the south Caspian Sea coastal area, it causes the early onset of autumnal precipitation. The lag in onset of fall precipitation in Iran which is coordinated with the late withdrawal of monsoon is accompanied with prolonged subtropical high settling over Iran's plateau that prevents the southward movement of polar jet frontal systems. Such conditions enhance northerly wind currents over the Caspian Sea which, in turn, increase the precipitation in Caspian

  4. The Global Precipitation Patterns Associated with Short-Term Extratropical Climate Fluctuations

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.

    1999-01-01

    Two globally-complete, observation-only precipitation datasets have recently been developed for the Global Precipitation Climatology Project (GPCP). Both depend heavily on a variety of satellite input, as well as gauge data over land. The first, Version 2x79, provides monthly estimates on a 2.5 deg. x 2.5 deg. lat/long grid for the period 1979 through late 1999 (by the time of the conference). The second, the One-Degree Daily (1DD), provides daily estimates on a 1 deg. x l deg. grid for the period 1997 through late 1999 (by the time of the conference). Both are in beta test preparatory to release as official GPCP products. These datasets provide a unique perspective on the hydrological effects of the various atmospheric flow anomalies that have been identified by meteorologists. In this paper we discuss the regional precipitation effects that result from persistent extratropical flow anomalies. We will focus on the Pacific-North America (PNA) and North Atlantic Oscillation (NAO) patterns. Each characteristically becomes established on synoptic time scales, but then persists for periods that can exceed a month. The onset phase of each appears to have systematic mobile features, while the mature phase tend to be more stationary. Accordingly, composites of monthly data for outstanding positive and negative events (separately) contained in the 20-year record reveal the climatological structure of the precipitation during the mature phase. The climatological anomalies of the positive, negative, and (positive-negative) composites show the expected storm-track-related shifts in precipitation, and provide the advantage of putting the known precipitation effects over land in the context of the total pattern over land and ocean. As well, this global perspective points out some unexpected areas of correlation. Day-by-day composites of daily data anchored to the onset date demonstrate the systematic features during the onset. Although the 1DD has a fairly short record, some

  5. Rainfall frequency analysis for ungauged sites using satellite precipitation products

    Science.gov (United States)

    Gado, Tamer A.; Hsu, Kuolin; Sorooshian, Soroosh

    2017-11-01

    The occurrence of extreme rainfall events and their impacts on hydrologic systems and society are critical considerations in the design and management of a large number of water resources projects. As precipitation records are often limited or unavailable at many sites, it is essential to develop better methods for regional estimation of extreme rainfall at these partially-gauged or ungauged sites. In this study, an innovative method for regional rainfall frequency analysis for ungauged sites is presented. The new method (hereafter, this is called the RRFA-S) is based on corrected annual maximum series obtained from a satellite precipitation product (e.g., PERSIANN-CDR). The probability matching method (PMM) is used here for bias correction to match the CDF of satellite-based precipitation data with the gauged data. The RRFA-S method was assessed through a comparative study with the traditional index flood method using the available annual maximum series of daily rainfall in two different regions in USA (11 sites in Colorado and 18 sites in California). The leave-one-out cross-validation technique was used to represent the ungauged site condition. Results of this numerical application have found that the quantile estimates obtained from the new approach are more accurate and more robust than those given by the traditional index flood method.

  6. Correlation and SVD Analysis of Anomalous Spring Precipitation in Northwest China and Sea Surface Temperature in Key Region in Recent 50 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the relationship between spring precipitation anomaly in Northwest China and sea surface temperature anomaly (SSTA) in Key region in recent 50 years. [Method] Based on monthly average precipitation in Northwest China and global monthly sea surface temperature (SST) grid data, the effects of SSTA in equatorial central and eastern Pacific on spring precipitation in Northwest China were discussed by means of correlation and SVD analysis. [Result] For spring precipitation in Nor...

  7. Investigating precipitation changes of anthropic origin: data and methodological issues

    Science.gov (United States)

    de Lima, Isabel; Lovejoy, Shaun

    2017-04-01

    from about a month to ≈30 years. We illustrate this using local gauge data and three qualitatively different global scale precipitation products (from gauges, reanalyses and a satellite and gauge hybrid) that allow to investigate precipitation from monthly to centennial scales and in space from planetary down to 5°x5° scales. By systematically characterizing precipitation variability across wide ranges of time and space scales, we show that the anthropogenic signal only exceeded the natural variability at time scales larger than ≈20 years, so that the disagreement in the trends can be traced to these low frequencies.

  8. Evaluation of the Performance of ClimGen and LARS-WG models in generating rainfall and temperature time series in rainfed research station of Sisab, Northern Khorasan

    Directory of Open Access Journals (Sweden)

    najmeh khalili

    2016-10-01

    LARS-WG was close to one. For the minimum and maximum temperature data there was no significant difference between the RMSE and CD values for the generated and collected data by these two methods, but the ClimGen was slightly more successful in generating temperature data. The X2 test results over seasonal distributions for length of dry and wet series showed that LARS-WG was more accurate than ClimGen.The comparison of LARS-WG and ClimGen models showed that LARS-WG model has a better performance in generating daily rainfall data in terms of frequency distribution. For monthly precipitation, generated data with ClimGen model were acceptable in level of confidence 95%, but even for monthly precipitation data, the LARS-WG model was more accurate. In terms of variance of daily and monthly precipitation data, both models had a poor performance.In terms of generating minimum and maximum daily and monthly temperature data, ClimGen model showed a better performance compared to the LARS-WG model. Again, both models showed a poor performance in terms of variance of daily and monthly temperature data, though LAR-WG was slightly better than ClimGen. For lengths of hot and frost spells, ClimGen was a better choice compared to LARS-WG. Conclusion:In this research, the performances of LARS-WG and ClimGen models were compared in terms of their capability of generating daily and monthly precipitation and temperature data for Sisab Station in Northern Khorasan. The results showed that for this station, LARS-WG model can better simulate precipitation data while ClimGen is a better choice for simulating temperature data. This research also showed that both models were not very successful in the sense of variances of the generated data compared to the other statistical characteristics such as the mean values, though the variance for monthly data was more acceptable than daily data.

  9. Factors controlling stable isotope composition of European precipitation

    International Nuclear Information System (INIS)

    Rozanski, K.; Sonntag, C.; Muennich, K.O.

    1982-01-01

    The seasonal and spatial variations of stable isotope ratios in present day European precipitation are simulated with a simple multibox model of the mean west-east horizontal transport of the atmospheric water vapour across the European continent. Isotope fractionation during the formation of precipitation leads to an increasing depletion of heavy isotopes in the residual air moisture as it moves towards the centre of the continent. This isotopic depletion is partly compensated, particularly in summer, by evapotranspiration, which is assumed to transfer soil water into the atmosphere without isotope fractionation. The model estimates are based on horizontal water vapour flux data, varying seasonally between 88 and 130 kg m -1 s -1 for the Atlantic coast region, and on the monthly precipitation, evapotranspiration and surface air temperature data available for various locations in Europe. Both continental and seasonal temperature effects observed in the stable isotope composition of European precipitation are fairly well reproduced by the model. The calculations show that the isotopic composition of local precipitation is primarily controlled by regional scale processes, i.e. by the water vapour transport patterns into the continent, and by the average precipitation-evapotranspiration history of the air masses precipitating at a given place. Local parameters such as the surface and/or cloud base temperature or the amount of precipitation modify the isotope ratios only slightly. Implications of the model predictions for the interpretation of stable isotope ratios in earlier periods as they are preserved in ice cores and in groundwater are also discussed. (Auth.)

  10. Missing data analysis and homogeneity test for Turkish precipitation ...

    Indian Academy of Sciences (India)

    the monthly and annual total precipitation records at stations operated by Turkish ... used in regional studies; the number of stations representing the area and the quality of the data are also very ..... Water Resources Management 22: 823–841.

  11. Effect of indifferent anions on reactions of cadmium ferrocyanide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gyunner, Eh A; Mel' nichenko, L M; Vel' mozhnyj, I S [Simferopol' skij Gosudarstvennyj Univ. (Ukrainian SSR)

    1982-08-01

    To clarify the effect of indifferent anions on the processes of cadmium ferrocyanide precipitation the interaction in six systems of the type CdXsub(m)-Msub(4)R-Hsub(2)O (X-Cl/sup -/, CH/sub 3/COO/sup -/, SO/sub 4//sup 2 -/; M-K/sup +/, NH/sub 4//sup +/; R-(Fe(CN)/sub 6/)/sup 4 -/) is studied using the methods of physicochemical analysis (the method of residual concentrations, refractometry). Composition and formation regions of low-soluble interaction products are determined. Effect of anion X nature on interaction character is stated in the series Cl/sup -/, CH/sub 3/COO/sup -/, SO/sub 4//sup 2 -/ in mixtures with incomplete Cd/sup 2 +/ precipitation a tendency for the increase of Cd/sup 2 +/:R/sup 4 -/ ratios in precipitates formed is observed.

  12. Downscaling of Short-Term Precipitation from Regional Climate Models for Sustainable Urban Planning

    Directory of Open Access Journals (Sweden)

    Holger Hoppe

    2012-05-01

    Full Text Available A framework for downscaling precipitation from RCM projections to the high resolutions in time and space required in the urban hydrological climate change impact assessment is outlined and demonstrated. The basic approach is that of Delta Change, developed for both continuous and event-based applications. In both cases, Delta Change Factors (DCFs are calculated which represent the expected future change of some key precipitation statistics. In the continuous case, short-term precipitation from climate projections are analysed in order to estimate DCFs associated with different percentiles in the frequency distribution of non-zero intensities. The DCFs may then be applied to an observed time series, producing a realisation of a future time series. The event-based case involves downscaling of Intensity-Duration-Frequency (IDF curves based on extreme value analysis of annual maxima using the Gumbel distribution. The resulting DCFs are expressed as a function of duration and frequency (i.e., return period and may be used to estimate future design storms. The applications are demonstrated in case studies focusing on the expected changes in short-term precipitation statistics until 2100 in the cities of Linz (Austria and Wuppertal (Germany. The downscaling framework is implemented in the climate service developed within the EU-project SUDPLAN.

  13. Validation of satellite based precipitation over diverse topography of Pakistan

    Science.gov (United States)

    Iqbal, Muhammad Farooq; Athar, H.

    2018-03-01

    This study evaluates the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) product data with 0.25° × 0.25° spatial and post-real-time 3 h temporal resolution using point-based Surface Precipitation Gauge (SPG) data from 40 stations, for the period 1998-2013, and using gridded Asian Precipitation ˗ Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) data abbreviated as APH data with 0.25° × 0.25° spatial and daily temporal resolution for the period 1998-2007, over vulnerable and data sparse regions of Pakistan (24-37° N and 62-75° E). To evaluate the performance of TMPA relative to SPG and APH, four commonly used statistical indicator metrics including Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC) are employed on daily, monthly, seasonal as well as on annual timescales. The TMPA slightly overestimated both SPG and APH at daily, monthly, and annual timescales, however close results were obtained between TMPA and SPG as compared to those between TMPA and APH, on the same timescale. The TMPA overestimated both SPG and APH during the Pre-Monsoon and Monsoon seasons, whereas it underestimated during the Post-Monsoon and Winter seasons, with different magnitudes. Agreement between TMPA and SPG was good in plain and medium elevation regions, whereas TMPA overestimated APH in 31 stations. The magnitudes of MAE and RMSE were high at daily timescale as compared to monthly and annual timescales. Relatively large MAE was observed in stations located over high elevation regions, whereas minor MAE was recorded in plain area stations at daily, monthly, and annual timescales. A strong positive linear relationship between TMPA and SPG was established at monthly (0.98), seasonal (0.93 to 0.98) and annual (0.97) timescales. Precipitation increased with the increase of elevation, and not only elevation but latitude also affected the

  14. Potential relationships between the river discharge and the precipitation in the Jinsha River basin, China

    Science.gov (United States)

    Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu

    2018-02-01

    The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.

  15. Time series analysis of monthly pulpwood use in the Northeast

    Science.gov (United States)

    James T. Bones

    1980-01-01

    Time series analysis was used to develop a model that depicts pulpwood use in the Northeast. The model is useful in forecasting future pulpwood requirements (short term) or monitoring pulpwood-use activity in relation to past use patterns. The model predicted a downturn in use during 1980.

  16. Thirteen years of integrated precipitable water derived by GPS at Mario Zucchelli Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Pierguido Sarti

    2013-06-01

    Full Text Available Since 1998, the Italian Antarctic Programme has been funding space geodetic activities based on the use of episodic and permanent global positioning system (GPS observations. As well as their exploitation in geodynamics, these data can be used to sense the atmosphere and to retrieve and monitor its water vapor content and variations. The surface pressure p and temperature Ts at the GPS tracking sites are necessary to compute the zenith hydrostatic delay (ZHD, and consequently, the precipitable water. At sites where no surface information is recorded, the p and Ts values can be retrieved from, e.g., global numerical weather prediction models. Alternatively, the site-specific ZHD values can be computed by interpolation of the ZHD values provided in a grid model (2.5° × 2.0°. We have processed the data series of the permanent GPS site TNB1 (Mario Zucchelli Station, Antarctica from 1998 to 2010, with the purpose of comparing the use of grid ZHD values as an alternative to the use of real surface records. With these approaches, we estimate almost 7 × 104 hourly values of precipitable water over 13 years, and we find discrepancies that vary between 1.8 (±0.2 mm in summer and 3.3 (±0.5 mm in winter. In addition, the discrepancies of the two solutions show a clear seasonal dependency. Radiosounding measurements were used to derive an independent series of precipitable water. These agree better with the GPS precipitable water derived from real surface data. However, the GPS precipitable water time series is dry biased, as it is ca. 77% of the total moisture measured by the radiosoundings. Both the GPS and radiosounding observations are processed through the most up-to-date strategies, to reduce known systematic errors.

  17. Testing for seasonal unit roots in monthly panels of time series

    NARCIS (Netherlands)

    R.M. Kunst (Robert); Ph.H.B.F. Franses (Philip Hans)

    2009-01-01

    textabstractWe consider the problem of testing for seasonal unit roots in monthly panel data. To this aim, we generalize the quarterly CHEGY test to the monthly case. This parametric test is contrasted with a new nonparametric test, which is the panel counterpart to the univariate RURS test that

  18. Chemical and isotopic variations of precipitation in the Los Alamos Region, New Mexico

    International Nuclear Information System (INIS)

    Adams, A.I.; Goff, F.; Counce, D.

    1995-02-01

    Precipitation collectors were installed at 14 locations on the Pajarito Plateau and surrounding areas to study variations in chemistry, stable isotopes and tritium for the years 1990 to 1993. The volume of precipitation was measured and samples were collected and analyzed every three to four months. All precipitation samples contain 18 O) results record seasonal variations in precipitation as the weather patterns shift from sources in the Pacific Ocean to sources in the Gulf of Mexico. The stable isotope results also show isotopic variations due to elevation differences among the collection points. The tritium contents ( 3 H) in rain samples vary from 6.54 T.U. to 141 T.U. Contouring of high tritium values (e.g. >20 T.U.) from each collection period clearly shows that Laboratory activities release some tritium to the atmosphere. The effect of these releases are well below the limits set by the Environmental Protection Agency for drinking water (about 6200 T.U.). The magnitude of the releases is apparently greatest during the summer months. However, anomalous tritium values are detected as far north as Espahola, New Mexico for many collection periods. Tritium releases by the Laboratory are not constant; thus, the actual amount of tritium in each release has been diluted in the composite samples of our three to four month collection periods

  19. Petroleum supply monthly, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-30

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures in the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month based on the Weekly Petroleum Supply Reporting System; statistics based on the most recent data from the Monthly Petroleum Supply Reporting System (MPSRS); and statistics published in prior issues of the PSM and PSA. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. In most cases, the statistics are presented for several geographic areas -- the United States (50 States and the District of Columbia), five PAD Districts, and 12 Refining Districts. At the US and PAD District level, the total volume and the daily rate of activities are presented. The statistics are developed from monthly survey forms submitted by respondents to the EIA and from data provided from other sources.

  20. Arsenic precipitation from metallurgical effluents; Precipitacion de arsenico desde efluentes metalurgicos

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-07-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs.

  1. Geostatistical Study of Precipitation on the Island of Crete

    Science.gov (United States)

    Agou, Vasiliki D.; Varouchakis, Emmanouil A.; Hristopulos, Dionissios T.

    2015-04-01

    Understanding and predicting the spatiotemporal patterns of precipitation in the Mediterranean islands is an important topic of research, which is emphasized by alarming long-term predictions for increased drought conditions [4]. The analysis of records from drought-prone areas around the world has demonstrated that precipitation data are non-Gaussian. Typically, such data are fitted to the gamma distribution function and then transformed into a normalized index, the so-called Standardized Precipitation Index (SPI) [5]. The SPI can be defined for different time scales and has been applied to data from various regions [2]. Precipitation maps can be constructed using the stochastic method of Ordinary Kriging [1]. Such mathematical tools help to better understand the space-time variability and to plan water resources management. We present preliminary results of an ongoing investigation of the space-time precipitation distribution on the island of Crete (Greece). The study spans the time period from 1948 to 2012 and extends over an area of 8 336 km2. The data comprise monthly precipitation measured at 56 stations. Analysis of the data showed that the most severe drought occurred in 1950 followed by 1989, whereas the wettest year was 2002 followed by 1977. A spatial trend was observed with the spatially averaged annual precipitation in the West measured at about 450mm higher than in the East. Analysis of the data also revealed strong correlations between the precipitation in the western and eastern parts of the island. In addition to longitude, elevation (masl) was determined to be an important factor that exhibits strong linear correlation with precipitation. The precipitation data exhibit wet and dry periods with strong variability even during the wet period. Thus, fitting the data to specific probability distribution models has proved challenging. Different time scales, e.g. monthly, biannual, and annual have been investigated. Herein we focus on annual

  2. 118 anos de dados mensais do Índice Padronizado de Precipitação: série meteorológica de Campinas, estado de São Paulo 118 years of monthly Standardized Precipitation Index data: meteorological series of Campinas, state of São Paulo

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2011-03-01

    Full Text Available O Índice Padronizado de Precipitação (SPI é utilizado em programas estaduais e nacionais no monitoramento das condições de seca de diversas regiões brasileiras. Com base na hipótese de que a análise de longas séries temporais do SPI pode auxiliar a adoção de políticas de mitigação e combate a essa anomalia climática, o objetivo desse trabalho foi analisar a variabilidade do SPI mensal, na localidade de Campinas-SP, entre os anos de 1890 a 2007. Por meio de análises espectrais e testes não paramétricos verificou-se uma variabilidade na escala de três a quatro anos. Contudo, não foi possível observar marcante influência do fenômeno El Niño/Oscilação Sul nas condições mensais de variabilidade climática na localidade de Campinas. Com respeito à tendência de longo prazo, enquanto uma tendência de intensificação nas condições de déficit de precipitação pluvial foi detectada em agosto, nos demais meses não houve alterações significativas. Sob o ponto de vista acadêmico o tratamento probabilístico e padronizado dos déficits/excesso de precipitação pluvial empregado no cálculo do SPI, o torna um interessante índice alternativo na investigação de forçantes climáticas condicionantes/moduladoras do clima de determinada região.The Standard Precipitation Index (SPI is used in state and national monitoring programs of the drought conditions in several Brazilian regions. Based on the hypothesis that the analysis of long term SPI time series might help on the adoption of policies of mitigation and facing climate anomalies, this work aims to analyze the variability of monthly SPI, in Campinas (SP during the years from 1890 to 2007. From spectral analyses and non-parametric tests, a variability of three to four years scale was noted for this index. However, a remarkable influence of the El Niño/Southern Oscillation on the variability of monthly climate conditions in Campinas was not seen. Concerning the long

  3. Precipitation Behavior of Magnesium Alloys Containing Neodymium and Yttrium

    Science.gov (United States)

    Solomon, Ellen L. S.

    Magnesium is the lightest of the structural metals and has great potential for reducing the weight of transportation systems, which in turn reduces harmful emissions and improves fuel economy. Due to the inherent softness of Mg, other elements are typically added in order to form a fine distribution of precipitates during aging, which improves the strength by acting as barriers to moving dislocations. Mg-RE alloys are unique among other Mg alloys because they form precipitates that lie parallel to the prismatic planes of the Mg matrix, which is an ideal orientation to hinder dislocation slip. However, RE elements are expensive and impractical for many commercial applications, motivating the rapid design of alternative alloy compositions with comparable mechanical properties. Yet in order to design new alloys reproducing some of the beneficial properties of Mg-RE alloys, we must first fully understand precipitation in these systems. Therefore, the main objectives of this thesis are to identify the roles of specific RE elements (Nd and Y) on precipitation and to relate the precipitate microstructure to the alloy strength. The alloys investigated in this thesis are the Mg-Nd, Mg-Y, and Mg-Y-Nd systems, which contain the main alloying elements of commercial WE series alloys (Y and Nd). In all three alloy systems, a sequence of metastable phases forms upon aging. Precipitate composition, atomic structure, morphology, and spatial distribution are strongly controlled by the elastic strain energy originating from the misfitting coherent precipitates. The dominating role that strain energy plays in these alloy systems gives rise to very unique microstructures. The evolution of the hardness and precipitate microstructure with aging revealed that metastable phases are the primary strengthening phases of these alloys, and interact with dislocations by shearing. Our understanding of precipitation mechanisms and commonalities among the Mg-RE alloys provide future avenues to

  4. Precipitation regime classification for the Mojave Desert: Implications for fire occurrence

    Science.gov (United States)

    Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy

    2016-01-01

    Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.

  5. Identifying and Analyzing Uncertainty Structures in the TRMM Microwave Imager Precipitation Product over Tropical Ocean Basins

    Science.gov (United States)

    Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.

    2016-01-01

    Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.

  6. Interdecadal Change in Extreme Precipitation over South China and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    NING Liang; QIAN Yongfu

    2009-01-01

    Based on the daily precipitation data taken from 17 stations over South China during the period of 1961 2003, a sudden change in summer extreme precipitation events over South China in the early 1990s along with the possible mechanism connected with the anomalies of the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula are examined. The results show that both the annual and summer extreme precipitation events have obvious interdecadal variations and have increased significantly since the early 1990s. Moreover, the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula also have obvious interdecadal variations consistent with that of the extreme precipitation, and influence different months' extreme precipitation, respectively. Their effects are achieved by the interdecadal increases of the strengthening convection over South China through the South China Sea Summer Monsoon.

  7. Online Assessment of Satellite-Derived Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by

  8. Improvements to the gridding of precipitation data across Europe under the E-OBS scheme

    Science.gov (United States)

    Cornes, Richard; van den Besselaar, Else; Jones, Phil; van der Schrier, Gerard; Verver, Ge

    2016-04-01

    Gridded precipitation data are a valuable resource for analyzing past variations and trends in the hydroclimate. Such data also provide a reference against which model simulations may be driven, compared and/or adjusted. The E-OBS precipitation dataset is widely used for such analyses across Europe, and is particularly valuable since it provides a spatially complete, daily field across the European domain. In this analysis, improvements to the E-OBS precipitation dataset will be presented that aim to provide a more reliable estimate of grid-box precipitation values, particularly in mountainous areas and in regions with a relative sparsity of input station data. The established three-stage E-OBS gridding scheme is retained, whereby monthly precipitation totals are gridded using a thin-plate spline; daily anomalies are gridded using indicator kriging; and the final dataset is produced by multiplying the two grids. The current analysis focuses on improving the monthly thin-plate spline, which has overall control on the final daily dataset. The results from different techniques are compared and the influence on the final daily data is assessed by comparing the data against gridded country-wide datasets produced by various National Meteorological Services

  9. Monitoring of Calcite Precipitation in Hardwater Lakes with Multi-Spectral Remote Sensing Archives

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2017-01-01

    Full Text Available Calcite precipitation is a common phenomenon in calcium-rich hardwater lakes during spring and summer, but the number and spatial distribution of lakes with calcite precipitation is unknown. This paper presents a remote sensing based method to observe calcite precipitation over large areas, which are an important prerequisite for a systematic monitoring and evaluation of restoration measurements. We use globally archived satellite remote sensing data for a retrospective systematic assessment of past multi-temporal calcite precipitation events. The database of this study consists of 205 data sets that comprise freely available Landsat and Sentinel 2 data acquired between 1998 and 2015 covering the Northeast German Plain. Calcite precipitation is automatically identified using the green spectra and the metric BGR area, the triangular area between the blue, green and red reflectance value. The validation is based on field measurements of CaCO3 concentrations at three selected lakes, Feldberger Haussee, Breiter Luzin and Schmaler Luzin. The classification accuracy (0.88 is highest for calcite concentrations ≥0.7 mg/L. False negative results are caused by the choice of a conservative classification threshold. False positive results can be explained by already increased calcite concentrations. We successfully transferred the developed method to 21 other hardwater lakes in Northeast Germany. The average duration of lakes with regular calcite precipitation is 37 days. The frequency of calcite precipitation reaches from single time detections up to detections nearly every year. False negative classification results and gaps in Landsat time series reduce the accuracy of frequency and duration monitoring, but in future the image density will increase by acquisitions of Sentinel-2a (and 2b. Our study tested successfully the transfer of the classification approach to Sentinel-2 images. Our study shows that 15 of the 24 lakes have at least one phase of

  10. Comparative Study of the Effects of ENSO Phenomenon (El Niño, La Niña on Temperature and Precipitation of Mashhad

    Directory of Open Access Journals (Sweden)

    vajiheh mohammadi sabet

    2017-03-01

    Full Text Available Introduction: The Southern Oscillation is a large scale phenomenon that changes the Normal oscillating air pressure on both sides of the Pacific Ocean. It disrupted the normal conditions and the patterns of temperature and precipitation change in the nearby region and other regions of the world. This phenomenon is caused by changing the water slope in the Pacific Ocean between Peru (northwestern South America and Northern Australia (about Indonesia and Malaysia. ENSO phenomenon is formed of Elnino (warm state and La Niña (cold state. There is high pressure system in the East and low pressure system in the West Pacific Ocean in normal conditions (Walker cycle. The trade winds blow from East to West with high intensity. ENSO start when the trade winds and temperature and pressure balance on both sides of the PacificOcean change. High pressure will form in the west and low pressure will form in the East. As a result, west will have high and east will have low rainfall. Temperature will change at these two locations. Enso longs about 6 to 18 months. This research investigated the impact of ENSO on monthly precipitation and temperature of Mashhad.The results showed that temperature and rainfall have a good relation with ENSO.This relation occurs in 0-5 month lag. Materials and Methods: The severity of ENSO phenomenon is known by an index which is called ENSO index. The index is the anomaly of sea surface temperature in the Pacific. The long-term temperature and precipitation data of Mashhad selected and analyzed. The Rainfall has no trend but temperature has trend. The trend of temperature modeled by MARS regression and trend was removed.The rainfall data changed to standard and temperature changed to anomaly for comparison with ENSO index. The 2016 annual and monthly temperature of Mashhad is not available. The 2016 Annual temperature was forecasted by ARMA (1,1 model. Then this forecast disaggregated to monthly temperature. For each period of

  11. Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure

    International Nuclear Information System (INIS)

    Teng, Z.K.; Liu, C.T.; Miller, M.K.; Ghosh, G.; Kenik, E.A.; Huang, S.; Liaw, P.K.

    2012-01-01

    Highlights: ► Effects of precipitate microstructure on the ductility were investigated. ► The NiAl precipitates can be systematically characterized by TEM, APT, and USAXS. ► Ductility is a function of the precipitate volume fraction. ► Ductility is closely related to the Al and Ni solubilities in the Fe matrix. ► Ductility is independent of precipitate size and inter-particle spacing. - Abstract: The effects of precipitate microstructure on the room temperature ductility of a series of carefully designed Fe–Al–Ni–Cr–Mo steels were investigated. Transmission electron microscopy (TEM), ultra small angle X-ray scattering (USAXS), and atom probe tomography (APT) were conducted to quantify the nano-scaled precipitates. The accuracy of the characterization results was verified by a numerical analysis. Three point bending tests results demonstrated that ductility was a function of the precipitate volume fraction and the Al and Ni concentrations in the Fe matrix, these relationships were discussed in terms of possible mechanisms. The ductility was also found to be independent of the precipitate size and inter-particle spacing in the studied range, which was validated by a theoretical model.

  12. Merging Satellite Precipitation Products for Improved Streamflow Simulations

    Science.gov (United States)

    Maggioni, V.; Massari, C.; Barbetta, S.; Camici, S.; Brocca, L.

    2017-12-01

    statistics, as well as bias reduction and correlation coefficient, with the Bayesian approach being superior to other methods. A study case in the Tiber river basin is also presented to discuss the performance of forcing a hydrological model with the merged satellite precipitation product to simulate streamflow time series.

  13. Standardized precipitation index based on pearson type III distribution Índice padronizado de precipitação baseado na distribuição pearson tipo III

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2011-06-01

    Full Text Available The initial step in calculating the Standardized Precipitation Index (SPI is to determine a probability density function (pdf that describes the precipitation series under analysis. Once this pdf is determined, the cumulative probability of an observed precipitation amount is computed. The inverse normal function is then applied to the cumulative probability. The result is the SPI. This article assessed the changes in SPI final values, when computed based on Gamma 2-parameters (Gam and Pearson Type III (PE3 distributions (SPIGam and SPIPE3, respectively. Monthly rainfall series, available from five weather stations of the State of São Paulo, were chosen for this study. Considering quantitative and qualitative assessments of goodness-of-fit (evaluated at 1-, 3-, and 6-months precipitation totals, the PE3 distribution seems to be a better choice than the Gam distribution, in describing the long-term rainfall series of the State of São Paulo. In addition, it was observed that the number of SPI time series that could be seen as normally distributed was higher when this drought index was computed from the PE3 distribution. Thus, the use of the Pearson type III distribution within the calculation algorithm of the SPI is recommended in the State of São Paulo.O cálculo do Índice Padronizado de Precipitação (IPP inicia-se com a adoção de uma distribuição paramétrica (dp utilizada para a estimativa das probabilidades de ocorrência associadas a uma série de precipitação pluvial. Após essa escolha, a probabilidade acumulada de ocorrência de um determinado valor de precipitação é calculada. O IPP é obtido após a aplicação da função normal inversa a essa probabilidade acumulada. O artigo avaliou as alterações nos valores finais do IPP, quando calculado com base nas distribuições Gama com dois parâmetros (Gam e Pearson tipo III (PE3; IPPGam e IPPPE3, respectivamente. Utilizaram-se dados de precipitação pluvial de cinco

  14. Descriptive and predictive evaluation of high resolution Markov chain precipitation models

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2012-01-01

    A time series of tipping bucket recordings of very high temporal and volumetric resolution precipitation is modelled using Markov chain models. Both first and second‐order Markov models as well as seasonal and diurnal models are investigated and evaluated using likelihood based techniques. The fi...

  15. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2007-05-01

    The objective of this study is to determine isotopic characteristics of precipitation, the climatic and geographical conditions affecting isotopic composition in order to obtain the input function of groundwater to evaluate the water resources.13 meteoric stations were selected in Syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the Syrian meteoric line (SMWL) was estimated with a slope of 6.62 and that of both Syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude of 18 O was about 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14 % and -0.84% /100m respectively). The spatial distribution of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern Mediterranean climate type over this region.(author)

  16. Precipitation and measurements of precipitation

    NARCIS (Netherlands)

    Schmidt, F.H.; Bruin, H.A.R. de; Attmannspacher, W.; Harrold, T.W.; Kraijenhoff van de Leur, D.A.

    1977-01-01

    In Western Europe, precipitation is normal phenomenon; it is of importance to all aspects of society, particularly to agriculture, in cattle breeding and, of course, it is a subject of hydrological research. Precipitation is an essential part in the hydrological cycle. How disastrous local

  17. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R. J.; Marland, G.; Boden, T. A. (Environmental Sciences Div., Oak Ridge National Laboratory, Oak Ridge, TN (United States)), e-mail: andresrj@ornl.gov; Gregg, J. S. (Risoe DTU National Laboratory for Sustainable Energy, Roskilde (Denmark)); Losey, L. (Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND (United States))

    2011-07-15

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models

  18. Spatio-temporal trend analysis of precipitation in Guizhou province based on GIS technology

    Science.gov (United States)

    Wu, Jianfeng; Zhang, Fengtai; Pan, Yuanfen; Li, Wei; Cao, Guangjie; An, Youzhi

    2018-02-01

    Precipitation changes are closely related to human production and life. Based on the data of Guizhou Province from 1998 to 2012, the temporal and spatial characteristics of precipitation in Guizhou Province were analyzed from the annual, seasonal and monthly scales by linear trend analysis and ArcGIS kriging spatial interpolation. The results show that the annual precipitation is mainly concentrated in the summer, accounting for 47.6% of the year, followed by spring accounted for 26.9%, autumn accounted for 18.6% in winter accounted for 6.9%. In the time, the precipitation in the study area shows a decreasing trend in the annual scale, seasonal scale and July. The overall spatial precipitation distribution shows a decreasing trend from the east to the west. The precipitation also in the south is higher than the northern region.

  19. Discrete wavelet transform-based investigation into the variability of standardized precipitation index in Northwest China during 1960-2014

    Science.gov (United States)

    Yang, Peng; Xia, Jun; Zhan, Chesheng; Zhang, Yongyong; Hu, Sheng

    2018-04-01

    In this study, the temporal variations of the standard precipitation index (SPI) were analyzed at different scales in Northwest China (NWC). Discrete wavelet transform (DWT) was used in conjunction with the Mann-Kendall (MK) test in this study. This study also investigated the relationships between original precipitation and different periodic components of SPI series with datasets spanning 55 years (1960-2014). The results showed that with the exception of the annual and summer SPI in the Inner Mongolia Inland Rivers Basin (IMIRB), spring SPI in the Qinghai Lake Rivers Basin (QLRB), and spring SPI in the Central Asia Rivers Basin (CARB), it had an increasing trend in other regions for other time series. In the spring, summer, and autumn series, though the MK trends test in most areas was at the insignificant level, they showed an increasing trend in precipitation. Meanwhile, the SPI series in most subbasins of NWC displayed a turning point in 1980-1990, with the significant increasing levels after 2000. Additionally, there was a significant difference between the trend of the original SPI series and the largest approximations. The annual and seasonal SPI series were composed of the short periodicities, which were less than a decade. The MK value would increase by adding the multiple D components (and approximations), and the MK value of the combined series was in harmony with that of the original series. Additionally, the major trend of the annual SPI in NWC was based on the four kinds of climate indices (e.g., Atlantic Oscillation [AO], North Atlantic Oscillation [NAO], Pacific Decadal Oscillation [PDO], and El Nino-Southern Oscillation index [ENSO/NINO]), especially the ENSO.

  20. future changes in seasonal-mean precipitation over west africa

    African Journals Online (AJOL)

    HOD

    agriculture is the main source of economic livelihood in ... surface wind direction distinguishes the rainy season from the dry ... The model has a horizontal grid ... MESSAGE is Model for Energy Supply Strategy Alternatives and their General Environmental Impact ... Project (GPCP) monthly precipitation analysis [18-19].

  1. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia

    Science.gov (United States)

    Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei

    2018-04-01

    Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.

  2. Reconstructing missing information on precipitation datasets: impact of tails on adopted statistical distributions.

    Science.gov (United States)

    Pedretti, Daniele; Beckie, Roger Daniel

    2014-05-01

    Missing data in hydrological time-series databases are ubiquitous in practical applications, yet it is of fundamental importance to make educated decisions in problems involving exhaustive time-series knowledge. This includes precipitation datasets, since recording or human failures can produce gaps in these time series. For some applications, directly involving the ratio between precipitation and some other quantity, lack of complete information can result in poor understanding of basic physical and chemical dynamics involving precipitated water. For instance, the ratio between precipitation (recharge) and outflow rates at a discharge point of an aquifer (e.g. rivers, pumping wells, lysimeters) can be used to obtain aquifer parameters and thus to constrain model-based predictions. We tested a suite of methodologies to reconstruct missing information in rainfall datasets. The goal was to obtain a suitable and versatile method to reduce the errors given by the lack of data in specific time windows. Our analyses included both a classical chronologically-pairing approach between rainfall stations and a probability-based approached, which accounted for the probability of exceedence of rain depths measured at two or multiple stations. Our analyses proved that it is not clear a priori which method delivers the best methodology. Rather, this selection should be based considering the specific statistical properties of the rainfall dataset. In this presentation, our emphasis is to discuss the effects of a few typical parametric distributions used to model the behavior of rainfall. Specifically, we analyzed the role of distributional "tails", which have an important control on the occurrence of extreme rainfall events. The latter strongly affect several hydrological applications, including recharge-discharge relationships. The heavy-tailed distributions we considered were parametric Log-Normal, Generalized Pareto, Generalized Extreme and Gamma distributions. The methods were

  3. Development of a daily gridded precipitation data set for the Middle East

    Directory of Open Access Journals (Sweden)

    A. Yatagai

    2008-03-01

    Full Text Available We show an algorithm to construct a rain-gauge-based analysis of daily precipitation for the Middle East. One of the key points of our algorithm is to construct an accurate distribution of climatology. One possible advantage of this product is to validate high-resolution climate models and/or to diagnose the impact of climate changes on local hydrological resources. Many users are familiar with a monthly precipitation dataset (New et al., 1999 and a satellite-based daily precipitation dataset (Huffman et al., 2001, yet our data set, unlike theirs, clearly shows the effect of orography on daily precipitation and other extreme events, especially over the Fertile Crescent region. Currently the Middle-East precipitation analysis product is consisting of a 25-year data set for 1979–2003 based on more than 1300 stations.

  4. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  5. TREND OF PRECIPITATION VARIATION IN HUBEI PROVINCE SINCE THE 1960S

    Institute of Scientific and Technical Information of China (English)

    CHEN Zheng-hong; QIN Jun

    2003-01-01

    Through linear regression analysis to the trend of annual, seasonal and monthly precipitation of 72 meteorological stations in Hubei Province from 1961 to 1995, it is revealed that: l) annual precipitation was increasing by 61.0mm/10a in the eastern part of Hubei (112°E as a dividing line) and decreasing by 34.9mm/10a in the western part; 2) precipitation in winter and summer (January, February, March, June and July) was increasing in almost whole province which usually with non-uniformity of precipitation distribution from the south to the north. The precipitation in spring, autumn and winter (April, September, November and December) was decreasing in most of the areas which usually with non-uniformity of precipitation distribution from the east to the west. March and December were transition periods between two spatial distribution pattems mentioned above; 3) the eastem part of Hubei has beome one of precipitation increasing centers in China. The results was consistent with the trend that more frequent flood and drought events happened in Hubei Province which are more different in spatial and temporal scales.

  6. The Use of Convolutional Neural Network in Relating Precipitation to Circulation

    Science.gov (United States)

    Pan, B.; Hsu, K. L.; AghaKouchak, A.; Sorooshian, S.

    2017-12-01

    Precipitation prediction in dynamical weather and climate models depends on 1) the predictability of pressure or geopotential height for the forecasting period and 2) the successive work of interpreting the pressure field in terms of precipitation events. The later task is represented as parameterization schemes in numerical models, where detailed computing inevitably blurs the hidden cause-and-effect relationship in precipitation generation. The "big data" provided by numerical simulation, reanalysis and observation networks requires better causation analysis for people to digest and realize their use. While classic synoptical analysis methods are very-often insufficient for spatially distributed high dimensional data, a Convolutional Neural Network(CNN) is developed here to directly relate precipitation with circulation. Case study carried over west coast United States during boreal winter showed that CNN can locate and capture key pressure zones of different structures to project precipitation spatial distribution with high accuracy across hourly to monthly scales. This direct connection between atmospheric circulation and precipitation offers a probe for attributing precipitation to the coverage, location, intensity and spatial structure of characteristic pressure zones, which can be used for model diagnosis and improvement.

  7. Terrestrial precipitation and soil moisture: A case study over southern Arizona and data development

    Science.gov (United States)

    Stillman, Susan

    Quantifying climatological precipitation and soil moisture as well as interannual variability and trends requires extensive observation. This work focuses on the analysis of available precipitation and soil moisture data and the development of new ways to estimate these quantities. Precipitation and soil moisture characteristics are highly dependent on the spatial and temporal scales. We begin at the point scale, examining hourly precipitation and soil moisture at individual gauges. First, we focus on the Walnut Gulch Experimental Watershed (WGEW), a 150 km2 area in southern Arizona. The watershed has been measuring rainfall since 1956 with a very high density network of approximately 0.6 gauges per km2. Additionally, there are 19 soil moisture probes at 5 cm depth with data starting in 2002. In order to extend the measurement period, we have developed a water balance model which estimates monsoon season (Jul-Sep) soil moisture using only precipitation for input, and calibrated so that the modeled soil moisture fits best with the soil moisture measured by each of the 19 probes from 2002-2012. This observationally constrained soil moisture is highly correlated with the collocated probes (R=0.88), and extends the measurement period from 10 to 56 years and the number of gauges from 19 to 88. Then, we focus on the spatiotemporal variability within the watershed and the ability to estimate area averaged quantities. Spatially averaged precipitation and observationally constrained soil moisture from the 88 gauges is then used to evaluate various gridded datasets. We find that gauge-based precipitation products perform best followed by reanalyses and then satellite-based products. Coupled Model Intercomparison Project Phase 5 (CMIP5) models perform the worst and overestimate cold season precipitation while offsetting the monsoon peak precipitation forward or backward by a month. Satellite-based soil moisture is the best followed by land data assimilation systems and

  8. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  9. Observation of the movement of the precipitation by using tritium tracer

    International Nuclear Information System (INIS)

    Jiao, Yurong; Ishida, Sayuri; Takada, Kayoko; Imaizumi, Hiroshi; Kano, Naoki; Saito, Masaaki

    2011-01-01

    Tracer techniques have proven to be one of the most powerful tools to characterize the movement of air mass and pollutant transport in hydrological systems. In order to clarify the behavior of low-level tritium in the rain water, we have employed the measuring method of tritium applying a distillation process and an electrolytic enrichment process. The activity of tritium (T specific activity) in the obtained water was measured by liquid scintillation counter. This procedure was applied to bulk precipitation, imitative ground infiltrated precipitation and short term precipitation collected in Niigata City. Moreover, we investigated the concentrations of cations (Na + , K + , Ca 2+ , and Mg 2+ ) in the precipitation to associate with air mass transport patterns arriving at the place. From the above mentioned, next matters have been clarified: (1) T specific activity in precipitation was found to have a strong dependence on location and season. (2) The chemical components in precipitation during typhoon have notable character of marine air mass. (3) Associated ions in monthly precipitation showed seasonal variation, in fact, the seasonal variation of Ca 2+ and tritium were very similar. (4) Backward trajectory analysis method is useful for the analysis of the behavior of T specific activity and several ions in short-term precipitation. (author)

  10. An assessment of differences in gridded precipitation datasets in complex terrain

    Science.gov (United States)

    Henn, Brian; Newman, Andrew J.; Livneh, Ben; Daly, Christopher; Lundquist, Jessica D.

    2018-01-01

    Hydrologic modeling and other geophysical applications are sensitive to precipitation forcing data quality, and there are known challenges in spatially distributing gauge-based precipitation over complex terrain. We conduct a comparison of six high-resolution, daily and monthly gridded precipitation datasets over the Western United States. We compare the long-term average spatial patterns, and interannual variability of water-year total precipitation, as well as multi-year trends in precipitation across the datasets. We find that the greatest absolute differences among datasets occur in high-elevation areas and in the maritime mountain ranges of the Western United States, while the greatest percent differences among datasets relative to annual total precipitation occur in arid and rain-shadowed areas. Differences between datasets in some high-elevation areas exceed 200 mm yr-1 on average, and relative differences range from 5 to 60% across the Western United States. In areas of high topographic relief, true uncertainties and biases are likely higher than the differences among the datasets; we present evidence of this based on streamflow observations. Precipitation trends in the datasets differ in magnitude and sign at smaller scales, and are sensitive to how temporal inhomogeneities in the underlying precipitation gauge data are handled.

  11. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated rainfall in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, while CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR datasets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of rainfall geographically specially in the North zone and seasonally during the summer and spring months in the other zones.

  12. County-Level Climate Uncertainty for Risk Assessments: Volume 8 Appendix G - Historical Precipitation.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  13. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Science.gov (United States)

    Toreti, A.; Xoplaki, E.; Maraun, D.; Kuglitsch, F. G.; Wanner, H.; Luterbacher, J.

    2010-05-01

    We present an analysis of daily extreme precipitation events for the extended winter season (October-March) at 20 Mediterranean coastal sites covering the period 1950-2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions

  14. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Directory of Open Access Journals (Sweden)

    A. Toreti

    2010-05-01

    Full Text Available We present an analysis of daily extreme precipitation events for the extended winter season (October–March at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series. Three stations (one in the western Mediterranean and the others in the eastern basin have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous

  15. Reconstruction of March-June precipitation from tree rings in central Liaoning, China

    Science.gov (United States)

    Wang, Yanchao; Liu, Yu

    2017-11-01

    A dendrochronological profile was generated from Chinese pines ( Pinus tabulaeformis Carr.) in the Qianshan Mountains in northeastern China. Based on correlation analyses, the pattern of precipitation from March to June ( P 36 ) was reconstructed using a simple linear model, which explained 42.7% of the total variance in observed precipitation from 1951 to 2012. The reconstructed P 36 series revealed a consistently increasing trend in precipitation during the twentieth century in the Qianshan Mountains. The reconstructed data showed trends that were similar to those in the variation in trends for March-June precipitation observed at the Shenyang station, the reconstructed January-May precipitation trends in Shenyang City, and the reconstructed average June-September relative humidity for Yiwulü Mountain. The reconstructed data also showed good agreement with the droughts reported in historical documents and recorded by meteorological stations in Liaoning. Spatial correlation analyses show that the reconstructed data reflect the variability in precipitation that occurs over much of northeastern China. In addition, our reconstruction showed a significant periodicity. The significant correlations between the reconstructed P 36 and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and sunspot numbers indicate that precipitation variability in the Qianshan Mountain region is probably driven by extensive atmosphere-sea interactions and solar activities.

  16. Evaluation of satellite-retrieved extreme precipitation using gauge observations

    Science.gov (United States)

    Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.

    2012-04-01

    Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.

  17. The Contribution of Extreme Precipitation to the Total Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.

  18. GPM, TRMM, GMI,TMI Level 3 Monthly GPROF Profiling V03

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  19. The record precipitation and flood event in Iberia in December 1876: description and synoptic analysis

    Directory of Open Access Journals (Sweden)

    Ricardo Machado Trigo

    2014-04-01

    Full Text Available The first week of December 1876 was marked by extreme weather conditions that affected the south-western sector of the Iberian Peninsula, leading to an all-time record flow in two large international rivers. As a direct consequence, several Portuguese and Spanish towns and villages located in the banks of both rivers suffered serious flood damage on 7 December 1876. These unusual floods were amplified by the preceding particularly autumn wet months, with October 1876 presenting extremely high precipitation anomalies for all western Iberia stations. Two recently digitised stations in Portugal (Lisbon and Evora, present a peak value on 5 December 1876. Furthermore, the values of precipitation registered between 28 November and 7 December were so remarkable that, the episode of 1876 still corresponds to the maximum average daily precipitation values for temporal scales between 2 and 10 days. Using several different data sources, such as historical newspapers of that time, meteorological data recently digitised from several stations in Portugal and Spain and the recently available 20th Century Reanalysis, we provide a detailed analysis on the socio-economic impacts, precipitation values and the atmospheric circulation conditions associated with this event. The atmospheric circulation during these months was assessed at the monthly, daily and sub-daily scales. All months considered present an intense negative NAO index value, with November 1876 corresponding to the lowest NAO value on record since 1865. We have also computed a multivariable analysis of surface and upper air fields in order to provide some enlightening into the evolution of the synoptic conditions in the week prior to the floods. These events resulted from the continuous pouring of precipitation registered between 28 November and 7 December, due to the consecutive passage of Atlantic low-pressure systems fuelled by the presence of an atmospheric-river tropical moisture flow over

  20. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    2017-01-01

    Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...... gauges in the model area. The spatiotemporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatiotemporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying on precipitation output...

  1. Surface Temperature and Precipitation Affecting GPS Signals Before the 2009 L'Aquila Earthquake (Central Italy).

    Science.gov (United States)

    Crescentini, L.; Amoruso, A.; Chiaraluce, L.

    2017-12-01

    This work focuses on GPS time series recorded before the Mw 6.1 earthquake which struck Central Italy in April 2009. It shows how environmental noise effects may be subtle and relevant when investigating relatively small strain signals and how the availability of data from weather stations and water level sensors co-located with GPS stations may provide critical information which must be taken into consideration while dealing with deformation signals.The preparatory phase of a large earthquake may include both seismic (foreshocks) and aseismic (slow slip event, SSE) deforming episodes but, unlike afterslip, no slow event has yet been recorded before moderate earthquakes, even when they occurred close to high-sensitivity strain meters. An exception to this seems to be represented by the 2009 earthquake. The main shock was preceded by a foreshock sequence lasting 6 months; it has been claimed that an analysis of continuous GPS data shows that during the foreshock sequence a 5.9 Mw SSE occurred along a decollement located beneath the reactivated normal fault system. This hypothesized SSE, that started in the middle of February 2009 and lasted for almost two weeks, would have eventually loaded the largest foreshock and the main shock.We show that the strain signal that the SSE would have generated at two laser strainmeters operating at about 20 km NE from the SSE source was essentially undetected. On the contrary, a transient signal is present in temperature and precipitation time series recorded close to the GPS station, MTTO, that has largest signal referred to the SSE, implying that these contaminated the GPS record. This interpretation is corroborated by the strong similarity, during the coldest winter months, between the displacement data of MTTO and a linear combination of filtered temperature and precipitation data, mimicking simple heat conduction and snow accumulation/removal processes. Such a correlation between displacement and environmental data is missing

  2. Spring precipitation in inland Iberia: land-atmosphere interactions and recycling and amplification processes.

    Science.gov (United States)

    Rios-Entenza, A.; Miguez-Macho, G.

    2012-04-01

    Inland Iberia, the highest peak of rainfall occurs in May, being critical for agriculture in large water-limited areas. We investigate here the role of the soil moisture - precipitation feedback in the intensification of the water cycle in spring and in the aforementioned maximum of precipitation in the interior of the Iberian Peninsula. We conducted paired, high-resolution simulations with the WRF-ARW model, using a nested grid that covers the Iberian Peninsula at 5km resolution. Eleven months of May (from May 2000 to May 2010) and eleven months of January (from January 2000 to January 2010) were selected. For each month, we performed two simulations: a control one, where all land-atmosphere fluxes are normally set up, and the corresponding experiment, where evapotranspired water over land in the nested domain is not incorporated into the atmosphere, although the corresponding latent heat flux is considered in the surface energy budget. As expected, precipitation is higher in the control runs with respect to the experiments and, furthermore, this fraction of extra rainfall substantially exceeds the value of the analytical recycling ratio. This suggests that amplification processes, and not only direct recycling, may play an important role in the maximum of precipitation observed in the Iberian spring. We estimated the amplification effect to be as large as the recycling with calculations using analytical methods of separation of both contributions. We also develop here a procedure to quantify the amplification impact using the no-ET experiment and results confirm those obtained analytically. These results suggest that in the Iberian spring, under favourable synoptic conditions and given a small supply of external moisture that triggers large-scale convection, land-atmosphere interactions can intensify and sustain convective processes in time. Thus there is a large impact of local land-surface fluxes on precipitation and that alterations of anthropogenic nature can

  3. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    Science.gov (United States)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  4. Effect of precipitates on mechanical properties of AA2195

    International Nuclear Information System (INIS)

    Kim, Jae-Hee; Jeun, Jeong-Hoon; Chun, Hyun-Jin; Lee, Ye Rim; Yoo, Joon-Tae; Yoon, Jong-Hoon; Lee, Ho-Sung

    2016-01-01

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al_2Cu), ß′ (Al_3Zr), and T (Al_xLi_yCu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al_2Cu), ß′ (Al_3Zr), and T_1 (Al_2LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  5. Effect of precipitates on mechanical properties of AA2195

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hee [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Jeun, Jeong-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Chun, Hyun-Jin [Southeast University, Nanjing (China); Lee, Ye Rim [Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Yoo, Joon-Tae [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Yoon, Jong-Hoon [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Lee, Ho-Sung, E-mail: hslee@kari.re.kr [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of)

    2016-06-05

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T (Al{sub x}Li{sub y}Cu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T{sub 1} (Al{sub 2}LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  6. Synoptic Drivers of Precipitation in the Atlantic Sector of the Arctic

    Science.gov (United States)

    Cohen, L.; Hudson, S.; Graham, R.; Renwick, J. A.

    2017-12-01

    Precipitation in the Arctic has been shown to be increasing in recent decades, from both observational and modelling studies, with largest trends seen in autumn and winter. This trend is attributed to a combination of the warming atmosphere and reduced sea ice extent. The seasonality of precipitation in the Arctic is important as it largely determines whether the precipitation falls as snow or rain. This study assesses the spatial and temporal variability of the synoptic drivers of precipitation in the Atlantic (European) sector of the Arctic. This region of the Arctic is of particular interest as it has the largest inter-annual variability in sea ice extent and is the primary pathway for moisture transport into the Arctic from lower latitudes. This study uses the ECMWF ERA-I reanalysis total precipitation to compare to long-term precipitation observations from Ny Ålesund, Svalbard to show that the reanalysis captures the synoptic variability of precipitation well and that most precipitation in this region is synoptically driven. The annual variability of precipitation in the Atlantic Arctic shows strong regionality. In the Svalbard and Barents Sea region, most of the annual total precipitation occurs during autumn and winter (Oct-Mar) (>60% of annual total), while the high-Arctic (> 80N) and Kara Sea receives most of the annual precipitation ( 60% of annual total) during summer (July-Sept). Using a synoptic classification developed for this region, this study shows that winter precipitation is driven by winter cyclone occurrence, with strong correlations to the AO and NAO indices. High precipitation over Svalbard is also strongly correlated with the Scandinavian blocking pattern, which produces a southerly flow in the Greenland Sea/Svalbard area. An increasing occurrence of these synoptic patterns are seen for winter months (Nov and Jan), which may explain much of the observed winter increase in precipitation.

  7. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Santo, Harrif

    2018-04-01

    The launch of the Global Precipitation Measurement (GPM) mission has prompted the assessment of the newly released satellite precipitation products (SPPs) in different parts of the world. This study performed an initial comparison of three GPM IMERG products (IMERG_E, IMERG_L and IMERG_F) with its predecessor, the TMPA 3B42 and 3B42RT products, and a long-term PERSIANN-CDR product over Malaysia. The performance of six SPPs was evaluated using 501 precipitation gauges from 12 March 2014 to 29 February 2016. The annual, seasonal, monthly and daily precipitation measurements were validated using three widely used statistical metrics (CC, RMSE and RB). The precipitation detection capability (POD, FAR and CSI), probability density function (PDF) and the 2014-2015 flood event analysis were also considered in this assessment. The results show that all the SPPs perform well in annual and monthly precipitation measurements. The spatial variability of the total annual precipitation in 2015 is well captured by all six SPPs, with high precipitation amount in southern East Malaysia, and low precipitation amount in the middle part of Peninsular Malaysia. In contrast, all the SPPs show moderate correlation at daily precipitation estimations, with better performance during the northeast monsoon season. The performance of all the SPPs is better in eastern Peninsular Malaysia, but poorer in northern Peninsular Malaysia. All the SPPs have good precipitation detection ability, except the PERSIANN-CDR. All the SPPs underestimate the light (0-1 mm/day) and violent (> 50 mm/day) precipitation classes, but overestimate moderate and heavy (1-50 mm/day) precipitation classes. The IMERG is shown to have a better capability in detecting light precipitation (0-1 mm/day) compared to the other SPPs. The PERSIANN-CDR has the worst performance in capturing all the precipitation classes, with significant underestimation of light precipitation (0-1 mm/day) class and overestimation of moderate and

  8. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.

    Science.gov (United States)

    Djerafi, Rania; Swanepoel, Andri; Crampon, Christelle; Kalombo, Lonji; Labuschagne, Philip; Badens, Elisabeth; Masmoudi, Yasmine

    2017-05-01

    Rifampicin-loaded submicron-sized particles were prepared through supercritical anti-solvent process using ethyl cellulose as polymeric encapsulating excipient. Ethyl acetate and a mixture of ethyl acetate/dimethyl sulfoxide (70/30 and 85/15) were used as solvents for both drug and polymeric excipient. When ethyl acetate was used, rifampicin was crystallized separately without being embedded within the ethyl cellulose matrix while by using the ethyl acetate/dimethyl sulfoxide mixture, reduced crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated. Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose/rifampicin ratio. Results show that the solvent nature and the initial drug concentrations affect morphology and drug precipitation yield of the formulations. In vitro dissolution studies revealed that the release profile of rifampicin was sustained when co-precipitation was carried out with the solvent mixture. It was demonstrated that the drug to polymer ratio influenced amorphous content of the SAS co-precipitates. Differential scanning calorimetry thermograms and infrared spectra revealed that there is neither interaction between rifampicin and the polymer nor degradation of rifampicin during co-precipitation. In addition, stability stress tests on SAS co-precipitates were carried out at 75% relative humidity and room temperature in order to evaluate their physical stability. SAS co-precipitates were X-ray amorphous and remained stable after 6months of storage. The SAS co-precipitation process using a mixture of ethyl acetate/dimethyl sulfoxide demonstrates that this strategy can

  9. Development of a Precipitation-Runoff Model to Simulate Unregulated Streamflow in the Salmon Creek Basin, Okanogan County, Washington

    Science.gov (United States)

    van Heeswijk, Marijke

    2006-01-01

    Surface water has been diverted from the Salmon Creek Basin for irrigation purposes since the early 1900s, when the Bureau of Reclamation built the Okanogan Project. Spring snowmelt runoff is stored in two reservoirs, Conconully Reservoir and Salmon Lake Reservoir, and gradually released during the growing season. As a result of the out-of-basin streamflow diversions, the lower 4.3 miles of Salmon Creek typically has been a dry creek bed for almost 100 years, except during the spring snowmelt season during years of high runoff. To continue meeting the water needs of irrigators but also leave water in lower Salmon Creek for fish passage and to help restore the natural ecosystem, changes are being considered in how the Okanogan Project is operated. This report documents development of a precipitation-runoff model for the Salmon Creek Basin that can be used to simulate daily unregulated streamflows. The precipitation-runoff model is a component of a Decision Support System (DSS) that includes a water-operations model the Bureau of Reclamation plans to develop to study the water resources of the Salmon Creek Basin. The DSS will be similar to the DSS that the Bureau of Reclamation and the U.S. Geological Survey developed previously for the Yakima River Basin in central southern Washington. The precipitation-runoff model was calibrated for water years 1950-89 and tested for water years 1990-96. The model was used to simulate daily streamflows that were aggregated on a monthly basis and calibrated against historical monthly streamflows for Salmon Creek at Conconully Dam. Additional calibration data were provided by the snowpack water-equivalent record for a SNOTEL station in the basin. Model input time series of daily precipitation and minimum and maximum air temperatures were based on data from climate stations in the study area. Historical records of unregulated streamflow for Salmon Creek at Conconully Dam do not exist for water years 1950-96. Instead, estimates of

  10. Long term precipitation trends and variability within the Mediterranean region

    Directory of Open Access Journals (Sweden)

    C. M. Philandras

    2011-12-01

    Full Text Available In this study, the trends and variability of annual precipitation totals and annual rain days over land within the Mediterranean region are analyzed. Long term ground-based observations concerning, on one hand, monthly precipitation totals (1900–2010 and rain days (1965–2010 from 40 meteorological stations within the Mediterranean region were obtained from the Hellenic National Meteorological Service and the World Climate Data and Monitoring Programme (WCDMP of the World Meteorological Organization. On the other hand, high spatial resolution (0.5° × 0.5° gridded monthly data CRU TS 3.1 were acquired from the Climatic Research Unit, University of East Anglia, for the period 1901–2009. The two datasets were compared by means of trends and variability, while the influence of the North Atlantic Oscillation (NAO in the Mediterranean precipitation was examined. In the process, the climatic changes in the precipitation regime between the period 1961–1990 (reference period and the period 2071–2100 (future climate were presented using climate model simulations (RACMO2.1/KNMI. The future climate projections were based on SRES A1B.

    The findings of the analysis showed that statistically significant (95% confidence level negative trends of the annual precipitation totals exist in the majority of Mediterranean regions during the period 1901–2009, with an exception of northern Africa, southern Italy and western Iberian peninsula, where slight positive trends (not statistically significant at 95% CL appear. Concerning the annual number of rain days, a pronounced decrease of 20 %, statistically significant (95% confidence level, appears in representative meteorological stations of east Mediterranean, while the trends are insignificant for west and central Mediterranean. Additionally, NAO index was found to be anticorrelated with the precipitation totals and the number of rain days mainly in Spain, southern France, Italy and Greece. These

  11. Recent climate trends and multisecular climate variability: temperature and precipitation during the cold season (October-March) in the Ebro Basin (NE of Spain) betrween 1500 and 2008

    Science.gov (United States)

    Saz-Sanchez, M.-A.; Cuadrat-Prats, J.-M.

    2009-09-01

    One of the goals of Paleoclimatology is to assess the importance and the exceptional nature of recent climate trends related to the anthropogenic climate change. Instrumental data enable the analysis of last century's climate, but do not give any information on previous periods' precipitation and temperature, during which there was no anthropic intervention on the climate system. Dendroclimatology is one of the paleoclimatic reconstruction sources giving best results when it comes to reconstructing the climate of the time before instruments could be used. This work presents the reconstructed series of precipitation and temperature of the cold season (October-March) In the central sector of the Ebro Valley (NE of Spain). The chronologies used for the reconstruction come on the one hand from the International Tree-Ring Data Bank (ITRDB) and on the other hand from the dendrochronological information bank created in the northern half of the Iberian Peninsula within the framework of the Spanish Interministerial Commission for Science and Technology (CICYT) CLI96-1862 project. The climate data used for chronology calibration and the reconstruction of the temperature and precipitation values are those of the instrumental observatory number 9910 (Pallaruelo) belonging to the Spanish State Meteorological Agency (Agencia Estatal de Meteorología or AEMET), located in the central sector of the Ebro Valley. The reconstruction obtained covers the 1500-1990 period. In order to extend the series up to 2008, instrumental information has been used. Thanks to data from a set of AEMET instrumental observatories close to the one used for chronology calibration, a regional series of temperatures as well as a precipitation one were generated. The series reconstructed through dendroclimatic methods and the regional series do not show statistically significant differences in their mean and variance values. R values between both series exceed 0.85. Taking these statistical characteristics

  12. Correlation between δ18O in precipitation and surface air temperature on different time-scale in China

    International Nuclear Information System (INIS)

    Zhang Lin; Chen Zongyu; Nie Zhenlong; Liu Fuliang; Jia Yankun; Zhang Xiangyang

    2008-01-01

    The relation between isotopic compositions of precipitation and surface air temperature provides a unique tool for paleoclimate studies, among which the relation between long term changes in δ 18 O of precipitation and surface air temperature at different stations or in a given location seems to be the most appropriate to paleoclimatic reconstructions. Analysis was conducted on monthly and annual mean δ 18 O content of precipitation and surface air temperature at spatial and fixed locations by using the data of China (1985-2002) in Global Network of Isotopes in Precipitation (GNIP) Database. This study shows that there is a positive correlation between δ 18 O of precipitation and surface air temperature for stations located in north of 34 degree-36 degree N latitudes. The seasonal δ 18 O-temperature gradient derived from the monthly data of 12 stations in northern China is about 0.034% degree C -1 . The δ 18 O-temperature gradient, however, derived from the long term annual mean data of 13 stations, is about 0.052% degree C -1 , which is substantially larger than the seasonal gradient. (authors)

  13. Nonlinear regression and ARIMA models for precipitation chemistry in East Central Florida from 1978 to 1997

    International Nuclear Information System (INIS)

    Nickerson, David M.; Madsen, Brooks C.

    2005-01-01

    Continuous monitoring of precipitation in East Central Florida has occurred since 1978 at a sampling site located on the University of Central Florida (UCF) campus. Monthly volume-weighted average (VWA) concentration for several major analytes that are present in precipitation samples was calculated from samples collected daily. Monthly VWA concentration and wet deposition of H + , NH 4 + , Ca 2+ , Mg 2+ , NO 3 - , Cl - and SO 4 2- were evaluated by a nonlinear regression (NLR) model that considered 10-year data (from 1978 to 1987) and 20-year data (from 1978 to 1997). Little change in the NLR parameter estimates was indicated among the 10-year and 20-year evaluations except for general decreases in the predicted trends from the 10-year to the 20-year fits. Box-Jenkins autoregressive integrated moving average (ARIMA) models with linear trend were considered as an alternative to the NLR models for these data. The NLR and ARIMA model forecasts for 1998 were compared to the actual 1998 data. For monthly VWA concentration values, the two models gave similar results. For the wet deposition values, the ARIMA models performed considerably better. - Autoregressive integrated moving average models of precipitation data are an improvement over nonlinear models for the prediction of precipitation chemistry composition

  14. Salts-based size-selective precipitation: toward mass precipitation of aqueous nanoparticles.

    Science.gov (United States)

    Wang, Chun-Lei; Fang, Min; Xu, Shu-Hong; Cui, Yi-Ping

    2010-01-19

    Purification is a necessary step before the application of nanocrystals (NCs), since the excess matter in nanoparticles solution usually causes a disadvantage to their subsequent coupling or assembling with other materials. In this work, a novel salts-based precipitation technique is originally developed for the precipitation and size-selective precipitation of aqueous NCs. Simply by addition of salts, NCs can be precipitated from the solution. After decantation of the supernatant solution, the precipitates can be dispersed in water again. By means of adjusting the addition amount of salt, size-selective precipitation of aqueous NCs can be achieved. Namely, the NCs with large size are precipitated preferentially, leaving small NCs in solution. Compared with the traditional nonsolvents-based precipitation technique, the current one is simpler and more rapid due to the avoidance of condensation and heating manipulations used in the traditional precipitation process. Moreover, the salts-based precipitation technique was generally available for the precipitation of aqueous nanoparticles, no matter if there were semiconductor NCs or metal nanoparticles. Simultaneously, the cost of the current method is also much lower than that of the traditional nonsolvents-based precipitation technique, making it applicable for mass purification of aqueous NCs.

  15. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  16. Projections of the Ganges-Brahmaputra precipitation: downscaled from GCM predictors

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2014-01-01

    Downscaling Global Climate Model (GCM) projections of future climate is critical for impact studies. Downscaling enables use of GCM experiments for regional scale impact studies by generating regionally specific forecasts connecting global scale predictions and regional scale dynamics. We employed the Statistical Downscaling Model (SDSM) to downscale 21st century precipitation for two data-sparse hydrologically challenging river basins in South Asia—the Ganges and the Brahmaputra. We used CGCM3.1 by Canadian Center for Climate Modeling and Analysis version 3.1 predictors in downscaling the precipitation. Downscaling was performed on the basis of established relationships between historical Global Summary of Day observed precipitation records from 43 stations and National Center for Environmental Prediction re-analysis large scale atmospheric predictors. Although the selection of predictors was challenging during the set-up of SDSM, they were found to be indicative of important physical forcings in the basins. The precipitation of both basins was largely influenced by geopotential height: the Ganges precipitation was modulated by the U component of the wind and specific humidity at 500 and 1000 h Pa pressure levels; whereas, the Brahmaputra precipitation was modulated by the V component of the wind at 850 and 1000 h Pa pressure levels. The evaluation of the SDSM performance indicated that model accuracy for reproducing precipitation at the monthly scale was acceptable, but at the daily scale the model inadequately simulated some daily extreme precipitation events. Therefore, while the downscaled precipitation may not be the suitable input to analyze future extreme flooding or drought events, it could be adequate for analysis of future freshwater availability. Analysis of the CGCM3.1 downscaled precipitation projection with respect to observed precipitation reveals that the precipitation regime in each basin may be significantly impacted by climate change

  17. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

    Directory of Open Access Journals (Sweden)

    Tarendra Lakhankar

    2013-08-01

    Full Text Available Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM 3B-43 precipitation product exhibits little mean bias and reasonable skill in giving precipitation over Nepal. Compared to station observations, the TRMM precipitation product showed an overall Nash-Sutcliffe efficiency of 0.49, which is similar to the skill of the gridded station-based product Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE. The other satellite precipitation products considered (Global Satellite Mapping of Precipitation (GSMaP, the Climate Prediction Center Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS were less skillful, as judged by Nash-Sutcliffe efficiency, and, on average, substantially underestimated precipitation compared to station observations, despite their, in some cases, higher nominal spatial resolution compared to TRMM. None of the products fully captured the dependence of mean precipitation on elevation seen in the station observations. Overall, the TRMM product is promising for use in water resources applications.

  18. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    Science.gov (United States)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and

  19. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    Science.gov (United States)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  20. A long-term variation of chemical composition in precipitation

    International Nuclear Information System (INIS)

    Yoshioka, Ryuma; Okimura, Takashi; Okumura, Takenobu

    1991-01-01

    Precipitation samples are collected at the six localities in the southwestern Japan weekly or monthly over a long period of time (1978-1989) in order to estimate chemical weathering rates and amount of weathered materials through chemical composition in natural waters. Major chemical composition is determined for the precipitation samples. Together with the data available in the literature, the following characteristics are recognized : 1) Most pH values fall in the narrow range of 4.4 to 5.4, 2) Systematic variations in pH values are observed among the precipitation samples of different geologic environments, 3) pH values become almost constant from 1984 to 1989, 4) NO 3 - concentrations gradually decrease to an almost constant value with time, and 5) ΔSO 4 2- concentrations gradually have a tendency to decrease from 1978 to 1985. The mechanism of phenomena described above is also presented. (author)

  1. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.

  2. Annual and interannual variation of precipitation over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Prasad, T.G.

    /month, and the lowest amplitudes are found in the western Indian Ocean, especially off the Arabian and east African coasts. The INSAT and GEOS Precipitation Index (GPI) rainfall estimates correlated reasonably well with the island rainfall data, with correlation...

  3. Simulated effects of a seasonal precipitation change on the vegetation in tropical Africa

    Directory of Open Access Journals (Sweden)

    E. S. Gritti

    2010-03-01

    Full Text Available Pollen data collected in Africa at high (Kuruyange, valley swamp, Burundi and low altitude (Victoria, lake, Uganda; Ngamakala, pond, Congo showed that after 6 ky before present (BP, pollen of deciduous trees increase their relative percentage, suggesting thus the reduction of the annual amount of precipitation and/or an increase of in the length of the dry season. Until now, pollen-climate transfer functions only investigated mean annual precipitation, due to the absence of modern pollen-assemblage analogs under diversified precipitation regimes. Hence these functions omit the potential effect of a change in precipitation seasonality modifying thus the length of the dry season. In the present study, we use an equilibrium biosphere model (i.e. BIOME3.5 to estimate the sensitivity of equatorial African vegetation, at specific sites, to such changes. Climatic scenarios, differing only in the monthly distribution of the current annual amount of precipitation, are examined at the above three locations in equatorial Africa. Soil characteristics, monthly temperatures and cloudiness are kept constant at their present-day values. Good agreement is shown between model simulations and current biomes assemblages, as inferred from pollen data. To date, the increase of the deciduous forest component in the palaeodata around 6 ky BP has been interpreted as the beginning of a drier climate period. However, our results demonstrate that a change in the seasonal distribution of precipitation could also induce the observed changes in vegetation types. This study confirms the importance of taking into account seasonal changes in the hydrological balance. Palaeoecologists can greatly benefit from the use of dynamic process based vegetation models to acccount for modification of the length of the dry season when they wish to reconstruct vegetation composition or to infer quantitative climate parameters, such as temperature and precipitation, from pollen or vegetation

  4. Comparison of missing value imputation methods in time series: the case of Turkish meteorological data

    Science.gov (United States)

    Yozgatligil, Ceylan; Aslan, Sipan; Iyigun, Cem; Batmaz, Inci

    2013-04-01

    This study aims to compare several imputation methods to complete the missing values of spatio-temporal meteorological time series. To this end, six imputation methods are assessed with respect to various criteria including accuracy, robustness, precision, and efficiency for artificially created missing data in monthly total precipitation and mean temperature series obtained from the Turkish State Meteorological Service. Of these methods, simple arithmetic average, normal ratio (NR), and NR weighted with correlations comprise the simple ones, whereas multilayer perceptron type neural network and multiple imputation strategy adopted by Monte Carlo Markov Chain based on expectation-maximization (EM-MCMC) are computationally intensive ones. In addition, we propose a modification on the EM-MCMC method. Besides using a conventional accuracy measure based on squared errors, we also suggest the correlation dimension (CD) technique of nonlinear dynamic time series analysis which takes spatio-temporal dependencies into account for evaluating imputation performances. Depending on the detailed graphical and quantitative analysis, it can be said that although computational methods, particularly EM-MCMC method, are computationally inefficient, they seem favorable for imputation of meteorological time series with respect to different missingness periods considering both measures and both series studied. To conclude, using the EM-MCMC algorithm for imputing missing values before conducting any statistical analyses of meteorological data will definitely decrease the amount of uncertainty and give more robust results. Moreover, the CD measure can be suggested for the performance evaluation of missing data imputation particularly with computational methods since it gives more precise results in meteorological time series.

  5. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  6. Precipitation extremes on multiple timescales - Bartlett-Lewis rectangular pulse model and intensity-duration-frequency curves

    Science.gov (United States)

    Ritschel, Christoph; Ulbrich, Uwe; Névir, Peter; Rust, Henning W.

    2017-12-01

    For several hydrological modelling tasks, precipitation time series with a high (i.e. sub-daily) resolution are indispensable. The data are, however, not always available, and thus model simulations are used to compensate. A canonical class of stochastic models for sub-daily precipitation are Poisson cluster processes, with the original Bartlett-Lewis (OBL) model as a prominent representative. The OBL model has been shown to well reproduce certain characteristics found in observations. Our focus is on intensity-duration-frequency (IDF) relationships, which are of particular interest in risk assessment. Based on a high-resolution precipitation time series (5 min) from Berlin-Dahlem, OBL model parameters are estimated and IDF curves are obtained on the one hand directly from the observations and on the other hand from OBL model simulations. Comparing the resulting IDF curves suggests that the OBL model is able to reproduce the main features of IDF statistics across several durations but cannot capture rare events (here an event with a return period larger than 1000 years on the hourly timescale). In this paper, IDF curves are estimated based on a parametric model for the duration dependence of the scale parameter in the generalized extreme value distribution; this allows us to obtain a consistent set of curves over all durations. We use the OBL model to investigate the validity of this approach based on simulated long time series.

  7. Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan

    2017-10-01

    Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.

  8. Inter-Comparison and Evaluation of Remote Sensing Precipitation Products over China from 2005 to 2013

    Directory of Open Access Journals (Sweden)

    Qiaolin Zeng

    2018-01-01

    Full Text Available Precipitation is a key aspect of the climate system. In this paper, the dependability of five satellite precipitation products (TRMM [Tropical Rainfall Measuring Mission] 3BV42, PERSIANN [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks] CDR, GSMaP [Global Satellite Mapping of Precipitation] RENALYSIS, CMORPH [Climate Prediction Center’s morphing technique] BLD and CMORPH_RAW were compared with in situ measurements over China for the period of 2005 to 2013. To completely evaluate these precipitation products, the annual, seasonal and monthly precipitation averages were calculated. Overall, the Huaihe River and Qinlin mountains are shown to have heavy precipitation to the southeast and lighter precipitation to the northwest. The comparison results indicate that Gauge correction (CMORPH_BLD improves the quality of the original satellite products (CMORPH_RAW, resulting in the higher correlation coefficient (CC, the low relative bias (BIAS and root mean square error (RMSE. Over China, the GSMaP_RENALYSIS outperforms other products and shows the highest CC (0.91 and lowest RMSE (0.85 mm/day and all products except for PERSIANN_CDR exhibit underestimation. GSMaP_RENALYSIS gives the highest of probability of detection (81%, critical success index (63% and lowest false alarm ratio (36% while TRMM3BV42 gives the highest of frequency bias index (1.00. Over Tibetan Plateau, CMORPH_RAW demonstrates the poorest performance with the biggest BIAS (4.2 mm/month and lowest CC (0.22 in December 2013. GSMaP_RENALYSIS displays quite consistent with in situ measurements in summer. However, GSMaP_RENALYSIS and CMORPH_RAW underestimate precipitation over South China. CMORPH_BLD and TRMM3BV42 show consistent with high CC (>0.8 but relatively large RMSE in summer.

  9. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1980-06-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass-transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile can be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments. Mass-transfer coefficients ranging upward from 6 x 10 -5 m/s were measured in both packless and packed traps. As much as a fourfold increase in precipitation surface area was observed with increasing amount of NaH deposited. 11 figures, 2 tables

  10. GPM, METOP-A, GMI,MHS Level 3 Monthly GPROF Profiling V03

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  11. GPM, METOP-B, GMI,MHS Level 3 Monthly GPROF Profiling V03

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  12. GPM, F16,GMI,SSMI Level 3 Monthly GPROF Profiling V03

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  13. GPM, F17,GMI,SSMI Level 3 Monthly GPROF Profiling V03

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  14. GPM, F18,GMI,SSMI Level 3 Monthly GPROF Profiling V03

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  15. GPM, NOAA18, GMI,MHS Level 3 Monthly GPROF Profiling V03

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  16. GPM, TRMM, GMI,TMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  17. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States

    Directory of Open Access Journals (Sweden)

    Somsubhra Chattopadhyay

    2016-02-01

    Full Text Available Variation in quantities such as precipitation and temperature is often assessed by detecting and characterizing trends in available meteorological data. The objective of this study was to determine the long-term trends in annual precipitation and mean annual air temperature for the state of Kentucky. Non-parametric statistical tests were applied to homogenized and (as needed pre-whitened annual series of precipitation and mean air temperature during 1950–2010. Significant trends in annual precipitation were detected (both positive, averaging 4.1 mm/year for only two of the 60 precipitation-homogenous weather stations (Calloway and Carlisle counties in rural western Kentucky. Only three of the 42 temperature-homogenous stations demonstrated trends (all positive, averaging 0.01 °C/year in mean annual temperature: Calloway County, Allen County in southern-central Kentucky, and urbanized Jefferson County in northern-central Kentucky. In view of the locations of the stations demonstrating positive trends, similar work in adjacent states will be required to better understand the processes responsible for those trends and to properly place them in their larger context, if any.

  18. Improving Frozen Precipitation Density Estimation in Land Surface Modeling

    Science.gov (United States)

    Sparrow, K.; Fall, G. M.

    2017-12-01

    The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in

  19. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...

  20. GPS-based PWV for precipitation forecasting and its application to a typhoon event

    Science.gov (United States)

    Zhao, Qingzhi; Yao, Yibin; Yao, Wanqiang

    2018-01-01

    The temporal variability of precipitable water vapour (PWV) derived from Global Navigation Satellite System (GNSS) observations can be used to forecast precipitation events. A number of case studies of precipitation events have been analysed in Zhejiang Province, and a forecasting method for precipitation events was proposed. The PWV time series retrieved from the Global Positioning System (GPS) observations was processed by using a least-squares fitting method, so as to obtain the line tendency of ascents and descents over PWV. The increment of PWV for a short time (two to six hours) and PWV slope for a longer time (a few hours to more than ten hours) during the PWV ascending period are considered as predictive factors with which to forecast the precipitation event. The numerical results show that about 80%-90% of precipitation events and more than 90% of heavy rain events can be forecasted two to six hours in advance of the precipitation event based on the proposed method. 5-minute PWV data derived from GPS observations based on real-time precise point positioning (RT-PPP) were used for the typhoon event that passed over Zhejiang Province between 10 and 12 July, 2015. A good result was acquired using the proposed method and about 74% of precipitation events were predicted at some ten to thirty minutes earlier than their onset with a false alarm rate of 18%. This study shows that the GPS-based PWV was promising for short-term and now-casting precipitation forecasting.

  1. On the Precipitation and Precipitation Change in Alaska

    Directory of Open Access Journals (Sweden)

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  2. Tritium concentration analysis in atmospheric precipitation in Serbia.

    Science.gov (United States)

    Janković, Marija M; Janković, Bojan Ž; Todorović, Dragana J; Ignjatović, Ljubiša M

    2012-01-01

    Tritium activity concentration were monitored in monthly precipitation at five locations in Serbia (Meteorological Station of Belgrade at Zeleno Brdo, Vinča Institute of Nuclear Sciences, Smederevska Palanka, Kraljevo and Niš) over 2005, using electrolytic enrichment and liquid scintillation counting. The obtained concentrations ranged from 3.36 to 127.02 TU. The activity values obtained in samples collected at Zeleno Brdo were lower or close to the minimum detectable activity (MDA), which has a value of 3.36 TU. Significantly higher tritium levels were obtained in samples collected in Vinča Institute of Nuclear Sciences compared with samples from the other investigated locations. Amount of precipitation were also recorded. A good linear correlation (r = 0.75) for Zeleno Brdo and VINS between their tritium activity was obtained. It was found that the value of the symmetrical index n (which indicates the magnitude of tritium content changes with time (months) through its second derivative) is the highest for Vinča Institute of Nuclear Sciences compared to other locations, which is in accordance with the fact that the highest concentrations of tritium were obtained in the samples from the cited place.

  3. Optimization of precipitation conditions of thorium oxalate precipitate

    International Nuclear Information System (INIS)

    Pazukhin, Eh.M.; Smirnova, E.A.; Krivokhatskij, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1986-01-01

    Thorium precipitation in the form of difficultly soluble oxalate has been investigated. The equation binding the concentration of metal with the nitric acid in the initial solution and quantity of a precipitator necessary for minimization of desired product losses is derived. The graphical solution of this equation for a case, when the oxalic acid with 0.78 mol/l concentration is the precipitator, is presented

  4. Application of the Forhyd model to simulate net precipitation and intercepted water evaporation in forest canopies in Colombian amazonia

    International Nuclear Information System (INIS)

    Tellez Guio, Patricia; Boschell Villamarin, Francisco; Tobon Marin, Conrado

    2005-01-01

    Hydrologic simulation is a technique, which allows us to understand the relationships among hydrological, biological and ecological variables in an ecosystem. In this research, the FORHYD model is used to simulate the net precipitation and the water intercepted by the canopies of a mature forest, a 30-year old secondary forest, an 18-year old secondary forest, a 5-year old secondary forest, and a shifting cultivation plot, all located in Colombia's amazonia. The model calculates the water budget of the canopy by using the precipitation rates, canopy drainage and evaporation of the water intercepted by the canopy. This paper is the second one in a series of papers reporting the results of the research on the simulation of the hydrological fluxes in three different land use types of Colombian amazonia. The research was carried out in middle Caqueta of Colombian amazonia (northwest amazon basin). The FORHYD model was calibrated and validated by using field observations of the climate, net precipitation (PT), thoughtful (TH) and stem flow (ST), which were monitored during a period of 15 months from March 2001 to June 2002. These observations were used as both input variables and diagnostic variables to probe the model's precision to simulate field observations. Results showed that FORHYD simulates with a good precision the net precipitation and the evaporation of the water intercepted by the canopy. However, the model's precision depends on a good parameterization, which in turn depends on a good database of field observations. The model is a good tool for simulating the hydrological cycle and can be used to simulate critical scenarios of climate variability

  5. Generalized Extreme Value's shape parameter and its nature for extreme precipitation using long time series and Bayesian approach

    Science.gov (United States)

    Ragulina, Galina; Reitan, Trond

    2016-04-01

    Assessing the probability of extreme precipitation events is of great importance in civil planning. This requires understanding of how return values change with different return periods, which is essentially described by the Generalized Extreme Value distribution's shape parameter. Some works in the field have suggested a constant shape parameter, while our analysis indicates a non-universal value. We first re-analyse an older precipitation dataset (169 stations) extended by Norwegian data (71 stations). We show that while each set seems to have a constant shape parameter, it differs between the two datasets, indicating regional differences. For a more comprehensive analysis of spatial effects, we examine a global dataset (1495 stations). We provide shape parameter maps for two models. We find clear evidence for the shape parameter being dependent on elevation while the effect of latitude remains uncertain. Our results confirm an explanation in terms of dominating precipitation systems based on a proxy derived from the Köppen-Geiger climate classification.

  6. Knowing what to expect, forecasting monthly emergency department visits: A time-series analysis.

    Science.gov (United States)

    Bergs, Jochen; Heerinckx, Philipe; Verelst, Sandra

    2014-04-01

    To evaluate an automatic forecasting algorithm in order to predict the number of monthly emergency department (ED) visits one year ahead. We collected retrospective data of the number of monthly visiting patients for a 6-year period (2005-2011) from 4 Belgian Hospitals. We used an automated exponential smoothing approach to predict monthly visits during the year 2011 based on the first 5 years of the dataset. Several in- and post-sample forecasting accuracy measures were calculated. The automatic forecasting algorithm was able to predict monthly visits with a mean absolute percentage error ranging from 2.64% to 4.8%, indicating an accurate prediction. The mean absolute scaled error ranged from 0.53 to 0.68 indicating that, on average, the forecast was better compared with in-sample one-step forecast from the naïve method. The applied automated exponential smoothing approach provided useful predictions of the number of monthly visits a year in advance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Quantitative estimation of orographic precipitation over the Himalayas by using TRMM/PR and a dense network of rain gauges

    Science.gov (United States)

    Yatagai, A.

    2009-04-01

    Precipitation Radar (PR) data acquired by the Tropical Rainfall Measuring Mission (TRMM) over 10 years of observation were used to show the monthly rainfall patterns over the Himalayas. To validate and adjust these patterns, we used a dense network of rain gauges to measure daily precipitation over Nepal, Bangladesh, Bhutan, Pakistan, India, Myanmar, and China. We then compared TRMM/PR and rain gauge data in 0.05-degree grid cells (an approximately 5.5-km mesh). Compared with the rain gauge observations, the PR systematically underestimated precipitation by 28-38% in summer (July-September).Significant correlation between TRMM/PR and RG data was found for all months, but the correlation is relatively low in winter. The relationship is investigated for different elevation zones, and the PR was found to underestimate RG data in most zones, except for certain zones in February (250-1000m), March (0-1000m), and April (0-1500m). Monthly PR climatology was adjusted on the basis of monthly regressions between the two sets of data and depicted.

  8. Spatial and temporal analysis of drought in greece using the Standardized Precipitation Index (SPI)

    Science.gov (United States)

    Livada, I.; Assimakopoulos, V. D.

    2007-07-01

    In the present study the Standardised Precipitation Index (SPI) is used to detect drought events in spatial and temporal basis. Using monthly precipitation data from 23 stations well spread over Greece and for a period of 51 years, a classification of drought is performed, based on its intensity and duration. Results indicate that, mild and moderate droughts reduce from north to south and from west to east on the 3- and 6-months time scale, while for the class of severe drought, the frequencies in the southern part of Greece are higher than in the other parts of the country. Furthermore the frequency of occurrence of severe and extreme drought conditions is very low over the whole Greek territory on the 12-month running time scale. Finally SPI was compared to the “de Martonne aridity index (I)” and a satisfactory correlation between them was found.

  9. Characteristics of people with self-reported stress-precipitated seizures.

    Science.gov (United States)

    Privitera, Michael; Walters, Michael; Lee, Ikjae; Polak, Emily; Fleck, Adrienne; Schwieterman, Donna; Haut, Sheryl R

    2014-12-01

    Stress is the most common patient-reported seizure precipitant. We aimed to determine mood and epilepsy characteristics of people who report stress-precipitated seizures. Sequential patients at a tertiary epilepsy center were surveyed about stress as a seizure precipitant. We asked whether acute (lasting minutes-hours) or chronic (lasting days-months) stress was a seizure precipitant, whether stress reduction had been tried, and what effect stress reduction had on seizure frequency. We collected information on antiepileptic drugs, history of depression and anxiety disorder, prior or current treatment for depression or anxiety, and scores on the Neurological Disorders Depression Inventory (NDDI-E) and Generalized Anxiety Disorders-7 (GAD-7) instruments, which are administered at every visit in our Epilepsy Center. We also asked whether respondents thought that they could predict their seizures to determine if stress as a seizure precipitant was correlated with seizure self-prediction. Two hundred sixty-six subjects were included: 219 endorsed stress as a seizure precipitant [STRESS (+)] and 47 did not [STRESS (-)]. Among STRESS (+) subjects, 85% endorsed chronic stress as a seizure precipitant, and 68% endorsed acute stress as a seizure precipitant. In STRESS (+) subjects, 57% had used some type of relaxation or stress reduction method (most commonly yoga, exercise and meditation), and, of those who tried, 88% thought that these methods improved seizures. Among STRESS (-) subjects, 25% had tried relaxation or stress reduction, and 71% thought that seizures improved. Although univariate analysis showed multiple associations with stress as a seizure precipitant, in the multivariable logistic regression, only the GAD-7 score was associated with STRESS (+) (OR = 1.18 [1.03-1.35], p = 0.017). Subjects who reported stress as a seizure precipitant were more likely to report an ability to self-predict seizures (p < 0.001). Stress-precipitated seizures are commonly reported

  10. Time Series Momentum

    DEFF Research Database (Denmark)

    Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse

    2012-01-01

    We document significant “time series momentum” in equity index, currency, commodity, and bond futures for each of the 58 liquid instruments we consider. We find persistence in returns for one to 12 months that partially reverses over longer horizons, consistent with sentiment theories of initial...... under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...

  11. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    Science.gov (United States)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  12. Statistical models to predict flows at monthly level in Salvajina

    International Nuclear Information System (INIS)

    Gonzalez, Harold O

    1994-01-01

    It thinks about and models of lineal regression evaluate at monthly level that they allow to predict flows in Salvajina, with base in predictions variable, like the difference of pressure between Darwin and Tahiti, precipitation in Piendamo Cauca), temperature in Port Chicama (Peru) and pressure in Tahiti

  13. Are satellite products good proxies for gauge precipitation over Singapore?

    Science.gov (United States)

    Hur, Jina; Raghavan, Srivatsan V.; Nguyen, Ngoc Son; Liong, Shie-Yui

    2018-05-01

    The uncertainties in two high-resolution satellite precipitation products (TRMM 3B42 v7.0 and GSMaP v5.222) were investigated by comparing them against rain gauge observations over Singapore on sub-daily scales. The satellite-borne precipitation products are assessed in terms of seasonal, monthly and daily variations, the diurnal cycle, and extreme precipitation over a 10-year period (2000-2010). Results indicate that the uncertainties in extreme precipitation is higher in GSMaP than in TRMM, possibly due to the issues such as satellite merging algorithm, the finer spatio-temporal scale of high intensity precipitation, and the swath time of satellite. Such discrepancies between satellite-borne and gauge-based precipitations at sub-daily scale can possibly lead to distorting analysis of precipitation characteristics and/or application model results. Overall, both satellite products are unable to capture the observed extremes and provide a good agreement with observations only at coarse time scales. Also, the satellite products agree well on the late afternoon maximum and heavier rainfall of gauge-based data in winter season when the Intertropical Convergence Zone (ITCZ) is located over Singapore. However, they do not reproduce the gauge-observed diurnal cycle in summer. The disagreement in summer could be attributed to the dominant satellite overpass time (about 14:00 SGT) later than the diurnal peak time (about 09:00 SGT) of gauge precipitation. From the analyses of extreme precipitation indices, it is inferred that both satellite datasets tend to overestimate the light rain and frequency but underestimate high intensity precipitation and the length of dry spells. This study on quantification of their uncertainty is useful in many aspects especially that these satellite products stand scrutiny over places where there are no good ground data to be compared against. This has serious implications on climate studies as in model evaluations and in particular, climate

  14. Trends in extreme temperature and precipitation in Muscat, Oman

    Directory of Open Access Journals (Sweden)

    L. N. Gunawardhana

    2014-09-01

    Full Text Available Changes in frequency and intensity of weather events often result in more frequent and intensive disasters such as flash floods and persistent droughts. In Oman, changes in precipitation and temperature have already been detected, although a comprehensive analysis to determine long-term trends is yet to be conducted. We analysed daily precipitation and temperature records in Muscat, the capital city of Oman, mainly focusing on extremes. A set of climate indices, defined in the RClimDex software package, were derived from the longest available daily series (precipitation over the period 1977–2011 and temperature over the period 1986–2011. Results showed significant changes in temperature extremes associated with cooling. Annual maximum value of daily maximum temperature (TX, on average, decreased by 1°C (0.42°C/10 year. Similarly, the annual minimum value of daily minimum temperature (TN decreased by 1.5°C (0.61°C/10 year, which, on average, cooled at a faster rate than the maximum temperature. Consequently, the annual count of days when TX > 45°C (98th percentile decreased from 8 to 3, by 5 days. Similarly, the annual count of days when TN < 15°C (2nd percentile increased from 5 to 15, by 10 days. Annual total precipitation averaged over the period 1977–2011 is 81 mm, which shows a tendency toward wetter conditions with a 6 mm/10 year rate. There is also a significant tendency for stronger precipitation extremes according to many indices. The contribution from very wet days to the annual precipitation totals steadily increases with significance at 75% level. When The General Extreme Value (GEV probability distribution is fitted to annual maximum 1-day precipitation, the return level of a 10-year return period in 1995–2011 was estimated to be 95 mm. This return level in the recent decade is about 70% higher than the return level for the period of 1977–1994. These results indicate that the long-term wetting signal apparent in total

  15. Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures

    Science.gov (United States)

    Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar

    2018-06-01

    In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.

  16. Combining Radar and Daily Precipitation Data to Estimate Meaningful Sub-daily Precipitation Extremes

    Science.gov (United States)

    Pegram, G. G. S.; Bardossy, A.

    2016-12-01

    Short duration extreme rainfalls are important for design. The purpose of this presentation is not to improve the day by day estimation of precipitation, but to obtain reasonable statistics for the subdaily extremes at gauge locations. We are interested specifically in daily and sub-daily extreme values of precipitation at gauge locations. We do not employ the common procedure of using time series of control station to determine the missing data values in a target. We are interested in individual rare events, not sequences. The idea is to use radar to disaggregate daily totals to sub-daily amounts. In South Arica, an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. Using this valuable set of data, we are only interested in rare extremes, therefore small to medium values of rainfall depth were neglected, leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprised about 50% of each annual rainfall total. The method presented here uses radar for disaggregating daily gauge totals in subdaily intervals down to 15 minutes in order to extract the maxima of sub-hourly through to daily rainfall at each of 37 selected radar pixels [1 km square in plan] which contained one of the 45 pluviometers not masked out by the radar foot-print. The pluviometer data were aggregated to daily totals, to act as if they were daily read gauges; their only other task was to help in the cross-validation exercise. The extrema were obtained as quantiles by ordering the 12 daily maxima of each interval per year. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the gauge and radar extremes, by matching their ranks, which we found to be stable and meaningful in cross-validation tests. We provide and

  17. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment

    Science.gov (United States)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; hide

    2015-01-01

    Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a

  18. Monthly energy review, June 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the MER and in other EIA publications. 37 figs., 61 tabs.

  19. Monthly energy review, July 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the MER and in other EIA publications. 37 figs., 75 tabs.

  20. Analysis of monthly, winter, and annual temperatures in Zagreb, Croatia, from 1864 to 2010: the 7.7-year cycle and the North Atlantic Oscillation

    Science.gov (United States)

    Sen, Asok K.; Ogrin, Darko

    2016-02-01

    Long instrumental records of meteorological variables such as temperature and precipitation are very useful for studying regional climate in the past, present, and future. They can also be useful for understanding the influence of large-scale atmospheric circulation processes on the regional climate. This paper investigates the monthly, winter, and annual temperature time series obtained from the instrumental records in Zagreb, Croatia, for the period 1864-2010. Using wavelet analysis, the dominant modes of variability in these temperature series are identified, and the time intervals over which these modes may persist are delineated. The results reveal that all three temperature records exhibit low-frequency variability with a dominant periodicity at around 7.7 years. The 7.7-year cycle has also been observed in the temperature data recorded at several other stations in Europe, especially in Northern and Western Europe, and may be linked to the North Atlantic Oscillation (NAO) and/or solar/geomagnetic activity.

  1. Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China.

    Science.gov (United States)

    Liu, Xue-Yan; Xiao, Hong-Wei; Xiao, Hua-Yun; Song, Wei; Sun, Xin-Chao; Zheng, Xu-Dong; Liu, Cong-Qiang; Koba, Keisuke

    2017-11-01

    To constrain sources of anthropogenic nitrogen (N) deposition is critical for effective reduction of reactive N emissions and better evaluation of N deposition effects. This study measured δ 15 N signatures of nitrate (NO 3 - ), ammonium (NH 4 + ) and total dissolved N (TDN) in precipitation at Guiyang, southwestern China and estimated contributions of dominant N sources using a Bayesian isotope mixing model. For NO 3 - , the contribution of non-fossil N oxides (NO x , mainly from biomass burning (24 ± 12%) and microbial N cycle (26 ± 5%)) equals that of fossil NO x , to which vehicle exhausts (31 ± 19%) contributed more than coal combustion (19 ± 9%). For NH 4 + , ammonia (NH 3 ) from volatilization sources (mainly animal wastes (22 ± 12%) and fertilizers (22 ± 10%)) contributed less than NH 3 from combustion sources (mainly biomass burning (17 ± 8%), vehicle exhausts (19 ± 11%) and coal combustions (19 ± 12%)). Dissolved organic N (DON) accounted for 41% in precipitation TDN deposition during the study period. Precipitation DON had higher δ 15 N values in cooler months (13.1‰) than in warmer months (-7.0‰), indicating the dominance of primary and secondary ON sources, respectively. These results newly underscored the importance of non-fossil NO x , fossil NH 3 and organic N in precipitation N inputs of urban environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Six centuries of May-July precipitation in Cyprus from tree rings

    Science.gov (United States)

    Touchan, Ramzi; Christou, Andreas K.; Meko, David M.

    2014-12-01

    A May-July precipitation nested reconstruction for the period AD 1415-2010 was developed from multi-century tree-ring records of Pinus nigra, Pinus brutia, and Cedrus brevifolia for Cyprus. Calibration and verification statistics for the period 1917-2010 show a good level of skill, and split-sample validation over 1917-2010 supports temporal stability of the tree-ring signal for precipitation. Smoothed annual time series of reconstructed precipitation and a tally of drought events in a moving time window indicate that the calibration period is not representative of the full range of drought variability. While convective precipitation in the warm season may be driven strongly by local factors, composite maps of geopotential height anomaly for dry years and wet years support large-scale atmospheric-flow influence related to height anomalies over the broader region of northeast Africa and the eastern Mediterranean. Emerging positive trend in reconstruction residuals may be an early sign of exacerbation of drought stress on trees by recent warming in May-July. Future warming expected from increases in greenhouse gases poses a threat to forest resources in Cyprus and elsewhere in the Mediterranean.

  3. Topography and Data Mining Based Methods for Improving Satellite Precipitation in Mountainous Areas of China

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2015-07-01

    Full Text Available Topography is a significant factor influencing the spatial distribution of precipitation. This study developed a new methodology to evaluate and calibrate the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA products by merging geographic and topographic information. In the proposed method, firstly, the consistency rule was introduced to evaluate the fitness of satellite rainfall with measurements on the grids with and without ground gauges. Secondly, in order to improve the consistency rate of satellite rainfall, genetic programming was introduced to mine the relationship between the gauge rainfall and location, elevation and TMPA rainfall. The proof experiment and analysis for the mean annual satellite precipitation from 2001–2012, 3B43 (V7 of TMPA rainfall product, was carried out in eight mountainous areas of China. The result shows that the proposed method is significant and efficient both for the assessment and improvement of satellite precipitation. It is found that the satellite rainfall consistency rates in the gauged and ungauged grids are different in the study area. In addition, the mined correlation of location-elevation-TMPA rainfall can noticeably improve the satellite precipitation, both in the context of the new criterion of the consistency rate and the existing criteria such as Bias and RMSD. The proposed method is also efficient for correcting the monthly and mean monthly rainfall of 3B43 and 3B42RT.

  4. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    International Nuclear Information System (INIS)

    Innocenzi, Valentina; De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Kopacek, Bernd; Vegliò, Francesco

    2013-01-01

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2 2 full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H 2 O 2 concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2 2 full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na 2 S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%

  5. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); De Michelis, Ida; Ferella, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); Beolchini, Francesca [Department of Marine Sciences, Polytechnic Institute of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy)

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.

  6. Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 1.3 (Daily)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GPCP Daily analysis is a companion to the GPCP Monthly analysis, and provides globally complete precipitation estimates at a spatial resolution of one degree...

  7. Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, S.; Aminian, K.; Wasson, J.A.; Durham, D.L.

    1991-06-01

    The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagation of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.

  8. Bias correction of daily satellite precipitation data using genetic algorithm

    Science.gov (United States)

    Pratama, A. W.; Buono, A.; Hidayat, R.; Harsa, H.

    2018-05-01

    Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) was producted by blending Satellite-only Climate Hazards Group InfraRed Precipitation (CHIRP) with Stasion observations data. The blending process was aimed to reduce bias of CHIRP. However, Biases of CHIRPS on statistical moment and quantil values were high during wet season over Java Island. This paper presented a bias correction scheme to adjust statistical moment of CHIRP using observation precipitation data. The scheme combined Genetic Algorithm and Nonlinear Power Transformation, the results was evaluated based on different season and different elevation level. The experiment results revealed that the scheme robustly reduced bias on variance around 100% reduction and leaded to reduction of first, and second quantile biases. However, bias on third quantile only reduced during dry months. Based on different level of elevation, the performance of bias correction process is only significantly different on skewness indicators.

  9. GPM, F17,GMI,SSMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  10. GPM, NOAA19, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  11. The Canadian Precipitation Analysis (CaPA): Evaluation of the statistical interpolation scheme

    Science.gov (United States)

    Evans, Andrea; Rasmussen, Peter; Fortin, Vincent

    2013-04-01

    correction scheme based on a moving-window averaging technique. For both the variogram and bias correction components of this investigation, a series of trial runs are conducted to evaluate the impact of these changes on the resulting CaPA precipitation analyses.

  12. Implementation of a Time Series Analysis for the Assessment of the Role of Climate Variability in a Post-Disturbance Savanna System

    Science.gov (United States)

    Gibbes, C.; Southworth, J.; Waylen, P. R.

    2013-05-01

    How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.

  13. Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction

    Science.gov (United States)

    Moeeni, Hamid; Bonakdari, Hossein; Fatemi, Seyed Ehsan

    2017-04-01

    Because time series stationarization has a key role in stochastic modeling results, three methods are analyzed in this study. The methods are seasonal differencing, seasonal standardization and spectral analysis to eliminate the periodic effect on time series stationarity. First, six time series including 4 streamflow series and 2 water temperature series are stationarized. The stochastic term for these series obtained with ARIMA is subsequently modeled. For the analysis, 9228 models are introduced. It is observed that seasonal standardization and spectral analysis eliminate the periodic term completely, while seasonal differencing maintains seasonal correlation structures. The obtained results indicate that all three methods present acceptable performance overall. However, model accuracy in monthly streamflow prediction is higher with seasonal differencing than with the other two methods. Another advantage of seasonal differencing over the other methods is that the monthly streamflow is never estimated as negative. Standardization is the best method for predicting monthly water temperature although it is quite similar to seasonal differencing, while spectral analysis performed the weakest in all cases. It is concluded that for each monthly seasonal series, seasonal differencing is the best stationarization method in terms of periodic effect elimination. Moreover, the monthly water temperature is predicted with more accuracy than monthly streamflow. The criteria of the average stochastic term divided by the amplitude of the periodic term obtained for monthly streamflow and monthly water temperature were 0.19 and 0.30, 0.21 and 0.13, and 0.07 and 0.04 respectively. As a result, the periodic term is more dominant than the stochastic term for water temperature in the monthly water temperature series compared to streamflow series.

  14. The Role of Precipitation Recycling in the Propagation and Intensification of Droughts in North America

    Science.gov (United States)

    Herrera-Estrada, J. E.; Sheffield, J.; Martinez-Agudelo, J. A.; Dominguez, F.; Wood, E. F.

    2017-12-01

    Predicting droughts allows stakeholders to mitigate some of the negative impacts of these natural disasters. However, there are still large gaps of knowledge regarding the physical drivers of drought onset, development, and recovery. These gaps have limited our ability to predict some important droughts and to understand how they may be affected by climate change. One physical mechanism that has been linked to the evolution of droughts is precipitation recycling, but its role has not been quantified in detail. Here we use a precipitation recycling model that backtracks the spatial origins of precipitation using vertically integrated moisture fluxes and evapotranspiration data. This allows us to estimate the climatology of moisture sources and sinks, and identify from where moisture fails to arrive when a given region experiences a drought. ERA-Interim data is used to drive this precipitation recycling model from 1980 to 2016 throughout North America and its surrounding oceans. The climatological analysis shows that oceans contribute around 80% of the precipitation over North America during winter, while precipitation that originates from evapotranspiration over land reaches a relative contribution of 60% in the summer. Precipitation contributions from the Pacific Ocean were found to be significantly and positively correlated with ENSO and PDO indices. Furthermore, a regression analysis showed that dry soil moisture in the US Southwest reduces moisture exports to the US Midwest, which in turn can dry soil moisture in the US Midwest. Given that up to 13% of precipitation over the US Midwest was found to be locally recycled, there is a multiplier effect whereby a 10 mm/month reduction in precipitation imports into the region leads to an additional decrease of 0.8 mm/month (on average) from reduced local precipitation recycling, causing a drought to intensify. It was also found that during extensive droughts (e.g. 2011 in Texas and 2012 in the US Midwest

  15. Rapid precipitation of silica (opal-A) disguises evidence of biogenicity in high-temperature geothermal deposits: Case study from Dagunguo hot spring, China

    Science.gov (United States)

    Peng, Xiaotong; Jones, Brian

    2012-06-01

    Dagunguo Spring, located in the Tengchong geothermal area in the western part of Yunnan Province, China, is a very active spring with water temperatures of 78 to 97 °C and pH of 7.7 to 8.8. The vent pool, 5.6 m in diameter and up to 1.5 m deep, is lined with opal-A that was precipitated from the near-boiling spring waters. A glass suspended in the pool was coated with opal-A in two months and two PVC pipes that drained water from the pool in late 2010 became lined with opal-A precipitates in less than three months. The opal-A accumulated at rates of 0.5 to 0.75 mm/month in the spring pool and 2.5 to 3.5 mm/month in the PVC pipes. The opal-A precipitates, irrespective of where they developed, are formed primarily of silicified microbes and opal-A spheres along with minor amounts of native sulfur, detrital quartz, and clay (mainly kaolinite). The fabrics in these opal-A deposits were dictated largely by the growth patterns of the filamentous and rod-shaped microbes that dominate this low-diversity biota and the amount of opal-A that was precipitated around them. Many of the microbes were preserved as rapid opal-A was precipitated on and around them before the cells decayed. With continued precipitation, however, the microbes became quickly engulfed in the opal-A precipitates and morphological evidence of their presence was lost. In essence, the process that controls their preservation ultimately disguised them to the point where cannot be seen. Critically, this loss of morphological identity takes places even before opal-A starts its diagenetic transformation towards quartz.

  16. Validation of a homogeneous 41-year (1961-2001) winter precipitation hindcasted dataset over the Iberian Peninsula: assessment of the regional improvement of global reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sotillo, M.G. [Area de Medio Fisico, Puertos del Estado, Madrid (Spain); Martin, M.L. [Universidad de Valladolid, Dpto. Matematica Aplicada, Escuela Universitaria de Informatica, Campus de Segovia, Segovia (Spain); Valero, F. [Universidad Complutense de Madrid, Dpto. Astrofisica y CC. de la Atmosfera, Facultad de CC Fisicas, Madrid (Spain); Luna, M.Y. [Instituto Nacional de Meteorologia, Madrid (Spain)

    2006-11-15

    A 44-year (1958-2001) homogeneous, Mediterranean, high-resolution atmospheric database was generated through dynamical downscaling within the HIPOCAS (Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe) Project framework. This work attempts to provide a validation of the monthly winter HIPOCAS precipitation over the Iberian Peninsula and the Balearic Islands and to evaluate the potential improvement of these new hindcasted data versus global reanalysis datasets. The validation was performed through the comparative analysis with a precipitation database derived from 4,617 in situ stations located over Iberia and the Balearics. The statistical comparative analysis between the observed and the HIPOCAS fields highlights their very good agreement not only in terms of spatial and time distribution, but also in terms of total amount of precipitation. A principal component analysis is carried out, showing that the patterns derived from the HIPOCAS data largely capture the main characteristics of the observed field. Moreover, it is worth to note that the HIPOCAS patterns reproduce accurately the observed regional characteristics linked to the main orographic features of the study domain. The existence of high correlations between the hindcasted and observed principal component time series gives a measure of the model performance ability. An additional comparative study of the HIPOCAS winter precipitation with global reanalysis data (NCEP and ERA) is performed. This study reveals the important regional improvement in the characterization of the observed precipitation introduced by the HIPOCAS hindcast relative to the above global reanalyses. Such improvement is effective not only in terms of total amount values, but also in the spatial distribution, the observed field being much more realistically reproduced by HIPOCAS than by the global reanalysis data. (orig.)

  17. Maxillary sinus floor augmentation using a nano-crystalline hydroxyapatite silica gel: case series and 3-month preliminary histological results.

    Science.gov (United States)

    Canullo, Luigi; Dellavia, Claudia; Heinemann, Friedhelm

    2012-03-20

    The aim of this case series is to histologically examine a new hydroxyapatite in sinus lift procedure after 3 months. Ten 2-stage sinus lifts were performed in 10 healthy patients having initial bone height of 1-2mm and bone width of 5mm, asking for a fixed implant-supported rehabilitation. After graft material augmentation, a rough-surfaced mini-implant was inserted to maintain stability of the sinus widow. A bioptical core containing a mini-implant was retrieved 3 months after maxillary sinus augmentation with NanoBone(®) and processed for undecalcified histology. From the histomorphometric analysis, NanoBone(®) residuals accounted for the 38.26% ± 8.07% of the bioptical volume, marrow spaces for the 29.23% ± 5.18% and bone for the 32.51% ± 4.96% (new bone: 20.64% ± 2.96%, native bone: 11.87% ± 3.27%). Well-mineralized regenerated bone with lamellar parallel-fibred structure and Haversian systems surrounded the residual NanoBone(®) particles. The measured bone-to-implant contact amounted to 26.02% ± 5.46%. No connective tissue was observed at the implant boundary surface. In conclusion, the tested material showed good histological outcomes also 3 months after surgery. In such critical conditions, the use of a rough-surfaced mini-implant showed BIC values supposed to be effective also in case of functional loading. Although longer follow-up and a wider patient size are needed, these preliminary results encourage further research on this biomaterial for implant load also under early stage and critical conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Multifractal Detrended Fluctuation Analysis of Regional Precipitation Sequences Based on the CEEMDAN-WPT

    Science.gov (United States)

    Liu, Dong; Cheng, Chen; Fu, Qiang; Liu, Chunlei; Li, Mo; Faiz, Muhammad Abrar; Li, Tianxiao; Khan, Muhammad Imran; Cui, Song

    2018-03-01

    In this paper, the complete ensemble empirical mode decomposition with the adaptive noise (CEEMDAN) algorithm is introduced into the complexity research of precipitation systems to improve the traditional complexity measure method specific to the mode mixing of the Empirical Mode Decomposition (EMD) and incomplete decomposition of the ensemble empirical mode decomposition (EEMD). We combined the CEEMDAN with the wavelet packet transform (WPT) and multifractal detrended fluctuation analysis (MF-DFA) to create the CEEMDAN-WPT-MFDFA, and used it to measure the complexity of the monthly precipitation sequence of 12 sub-regions in Harbin, Heilongjiang Province, China. The results show that there are significant differences in the monthly precipitation complexity of each sub-region in Harbin. The complexity of the northwest area of Harbin is the lowest and its predictability is the best. The complexity and predictability of the middle and Midwest areas of Harbin are about average. The complexity of the southeast area of Harbin is higher than that of the northwest, middle, and Midwest areas of Harbin and its predictability is worse. The complexity of Shuangcheng is the highest and its predictability is the worst of all the studied sub-regions. We used terrain and human activity as factors to analyze the causes of the complexity of the local precipitation. The results showed that the correlations between the precipitation complexity and terrain are obvious, and the correlations between the precipitation complexity and human influence factors vary. The distribution of the precipitation complexity in this area may be generated by the superposition effect of human activities and natural factors such as terrain, general atmospheric circulation, land and sea location, and ocean currents. To evaluate the stability of the algorithm, the CEEMDAN-WPT-MFDFA was compared with the equal probability coarse graining LZC algorithm, fuzzy entropy, and wavelet entropy. The results show

  19. Comparing Evaporative Sources of Terrestrial Precipitation and Their Extremes in MERRA Using Relative Entropy

    Science.gov (United States)

    Dirmeyer, Paul A.; Wei, Jiangfeng; Bosilovich, Michael G.; Mocko, David M.

    2014-01-01

    A quasi-isentropic back trajectory scheme is applied to output from the Modern Era Retrospective-analysis for Research and Applications and a land-only replay with corrected precipitation to estimate surface evaporative sources of moisture supplying precipitation over every ice-free land location for the period 1979-2005. The evaporative source patterns for any location and time period are effectively two dimensional probability distributions. As such, the evaporative sources for extreme situations like droughts or wet intervals can be compared to the corresponding climatological distributions using the method of relative entropy. Significant differences are found to be common and widespread for droughts, but not wet periods, when monthly data are examined. At pentad temporal resolution, which is more able to isolate floods and situations of atmospheric rivers, values of relative entropy over North America are typically 50-400 larger than at monthly time scales. Significant differences suggest that moisture transport may be the key to precipitation extremes. Where evaporative sources do not change significantly, it implies other local causes may underlie the extreme events.

  20. Modeling and forecasting monthly movement of annual average solar insolation based on the least-squares Fourier-model

    International Nuclear Information System (INIS)

    Yang, Zong-Chang

    2014-01-01

    Highlights: • Introduce a finite Fourier-series model for evaluating monthly movement of annual average solar insolation. • Present a forecast method for predicting its movement based on the extended Fourier-series model in the least-squares. • Shown its movement is well described by a low numbers of harmonics with approximately 6-term Fourier series. • Predict its movement most fitting with less than 6-term Fourier series. - Abstract: Solar insolation is one of the most important measurement parameters in many fields. Modeling and forecasting monthly movement of annual average solar insolation is of increasingly importance in areas of engineering, science and economics. In this study, Fourier-analysis employing finite Fourier-series is proposed for evaluating monthly movement of annual average solar insolation and extended in the least-squares for forecasting. The conventional Fourier analysis, which is the most common analysis method in the frequency domain, cannot be directly applied for prediction. Incorporated with the least-square method, the introduced Fourier-series model is extended to predict its movement. The extended Fourier-series forecasting model obtains its optimums Fourier coefficients in the least-square sense based on its previous monthly movements. The proposed method is applied to experiments and yields satisfying results in the different cities (states). It is indicated that monthly movement of annual average solar insolation is well described by a low numbers of harmonics with approximately 6-term Fourier series. The extended Fourier forecasting model predicts the monthly movement of annual average solar insolation most fitting with less than 6-term Fourier series

  1. Environmental isotope data no.1: World survey of isotope concentration in precipitation (1953-1963)

    International Nuclear Information System (INIS)

    1969-01-01

    This volume reports environmental isotope (tritium, deuterium and oxygen-18) concentrations in monthly samples of precipitation taken by a global network of 155 stations in the period 1953-1963. Selected meteorological data (amount of precipitation, vapour pressure and temperature) are presented to aid the user in hydrological and hydrometerological studies. The collection of the precipitation samples is carried out by the meteorological services of 65 countries and territories. Analyses of the network samples are done in co-operating laboratories in Canada, Denmark, India, Israel, New Zealand, Sweden and the United States of America and in the IAEA laboratory in Vienna. 4 refs, 2 figs

  2. Urban effects on convective precipitation in Mexico city

    Science.gov (United States)

    Jauregui, Ernesto; Romales, Ernesto

    This paper reports on urban-related convective precipitation anomalies in a tropical city. Wet season (May-October) rainfall for an urban site (Tacubaya) shows a significant trend for the period 1941-1985 suggesting an urban effect that has been increasing as the city grew. On the other hand, rainfall at a suburban (upwind) station apparently unaffected by urbanization, has remained unchanged. Analysis of historical records of hourly precipitation for an urban station shows that the frequency of intense (> 20 mm h -1) rain showers has increased in recent decades. Using a network of automatic rainfall stations, areal distribution of 24 h isoyets show a series of maxima within the urban perimeter which may be associated to the heat island phenomenon. Isochrones of the beginning of rain are used to estimate direction and speed of movement of the rain cloud cells. The daytime heat island seems to be associated with the intensification of rain showers.

  3. Stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural streamflow

    Science.gov (United States)

    Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.

    2016-02-24

    -balance model was developed for simulating monthly natural (unregulated) mean streamflow based on precipitation, temperature, and potential evapotranspiration at select streamflow-gaging stations. The model was calibrated using streamflow data from the U.S. Geological Survey and Environment Canada, along with natural (unregulated) streamflow data from the U.S. Army Corps of Engineers. Correlation coefficients between simulated and natural (unregulated) flows generally were high (greater than 0.8), and the seasonal means and standard deviations of the simulated flows closely matched the means and standard deviations of the natural (unregulated) flows. After calibrating the model for a monthly time step, monthly streamflow for each subbasin was disaggregated into three values per month, or an approximately 10-day time step, and a separate routing model was developed for simulating 10-day streamflow for downstream gages.The stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration was combined with the water-balance model to simulate potential future sequences of 10-day mean streamflow for each of the streamflow-gaging station locations. Flood risk, as determined by equilibrium flow-frequency distributions for the dry (1912–69) and wet (1970–2011) climate states, was considerably higher for the wet state compared to the dry state. Future flood risk will remain high until the wet climate state ends, and for several years after that, because there may be a long lag-time between the return of drier conditions and the onset of a lower soil-moisture storage equilibrium.

  4. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    Science.gov (United States)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  5. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    Science.gov (United States)

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  6. Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data

    Science.gov (United States)

    Liu, N.; Liu, C.

    2017-12-01

    Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.

  7. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    gauges in the model area. The spatio-temporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatio-temporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying onprecipitation output......Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...

  8. Precipitation sequence and kinetics in a Mg-4Sm-1Zn-0.4Zr (wt%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiangyu, E-mail: xxia5@wisc.edu [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States); Luo, Alan A. [Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States); Department of Materials Science and Engineering, The Ohio State University, 116 W. 19th Ave, Columbus, OH 43210 (United States); Stone, Donald S. [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States)

    2015-11-15

    The present research presents a series of investigations into phase identification and precipitation sequence in Mg-4Sm-1Zn-0.4Zr alloy, using differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The precipitation sequence is: super saturated solid solution (S.S.S.S) → solute atom clusters → γ″ → γ′ (→stacking faults) → γ. Structure of γ″ has been determined as an ordered hexagonal GP zone, a = 0.556 nm, c = 0.414 nm γ′ is composed of several γ″ layers. Kinetic studies show that quenched-in vacancies play an important role in the formation of solute clusters, while the growth of both precipitates are diffusion controlled. Analysis of microstructure evolution suggests that nucleation of γ′ happens near existing γ″ precipitates. - Highlights: • Precipitation sequence in a high-zinc magnesium-samarium-zinc-zirconium alloy has been identified. • Structures of metastable precipitates are modified directly with HAADF-STEM. • Kinetic calculations were performed to understand nucleation/growth mechanisms of these precipitates.

  9. Antecedent precipitation index evaluation at chosen climatological stations

    Directory of Open Access Journals (Sweden)

    Silvie Kozlovská

    2010-01-01

    Full Text Available The water retention capacity of a landscape, usually measured for a catchment basin, is a very important and decisive characteristic to identify the runoff amount from the catchment area and, in consequence, for antierosion and flood protection measures. Besides, creating water reserves in the landscape and keeping the water in them is also rather important.Soil humidity contributes to the calculation of potential water retention through modelling the runoff amount and peak discharge from the catchment basin within an area not larger than 5–10 km2. This method is based on curve number values (CN, which are tabulated according to hydrological characteristics of soils, land use, vegetation cover, tillage, antierosion measures and soil humidity, estimated as a 5-day sum of preceding precipitation values. This estimation is known as the antecedent precipitation index and it is divided into 3 degrees – I, II, III. Degree I indicates dry soil but still moist enough to till, whereas degree III means that the soil is oversaturated by water from preceding rainfall. Degree II is commonly used in this context as the antecedent precipitation index. The aim of this paper is to obtain real antecedent precipitation index values in given climatological stations (Brno, Dačice, Holešov, Náměšť nad Oslavou, Strážnice, Telč – Kostelní Myslová, Velké Meziříčí, Znojmo – Kuchařovice for the period of years 1961 – 2009. Daily precipitation sums higher than 30 mm were considered to be the best candidate for such precipitation value since this occurs approximately once a year in studied areas. The occurence of these sums was also analysed for each month within the growing season (April to October. The analysed data was tabulated by climatological stations in order to check the real occurence of all antecedent precipitation index degrees within the studied period.Finally, the effects of different antecedent precipitation index values on the

  10. Forecasting daily meteorological time series using ARIMA and regression models

    Science.gov (United States)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  11. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    International Nuclear Information System (INIS)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 μ in diameter and contained numerous small voids (less than 0.3 μm) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 μm in diameter and contained large voids (approximately 1 μm). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost

  12. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 ..mu.. in diameter and contained numerous small voids (less than 0.3 ..mu..m) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 ..mu..m in diameter and contained large voids (approximately 1 ..mu..m). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost.

  13. Climate variations and salmonellosis in northwest Russia: a time-series analysis.

    Science.gov (United States)

    Grjibovski, A M; Bushueva, V; Boltenkov, V P; Buzinov, R V; Degteva, G N; Yurasova, E D; Nurse, J

    2013-02-01

    Associations between monthly counts of all laboratory-confirmed cases of salmonellosis in Arkhangelsk, northern Russia, from 1992 to 2008 and climatic variables with lags 0-2 were studied by three different models. We observed a linear association between the number of cases of salmonellosis and mean monthly temperature with a lag of 1 month across the whole range of temperatures. An increase of 1 °C was associated with a 2·04% [95% confidence interval (CI) 0·25-3·84], 1·84% (95% CI 0·06-3·63) and 2·32% (95% CI 0·38-4·27) increase in different models. Only one of the three models suggested an increase in the number of cases, by 0·24% (95% CI 0·02-0·46) with an increase in precipitation by 1 mm in the same month. Higher temperatures were associated with higher monthly counts of salmonellosis while the association with precipitation was less certain. The results may have implications for the future patterns of enteric infections in northern areas related to climate change.

  14. Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu province, southeast China

    Science.gov (United States)

    Huang, Jin; Islam, A. R. M. Towfiqul; Zhang, Fangmin; Hu, Zhenghua

    2017-10-01

    With the increasing risk of meteorological disasters, it is of great importance to analyze the spatiotemporal changes of precipitation extremes and its possible impact on rice productivity, especially in Jiangsu province, southeast China. In this study, we explored the relationships between rice yield and extreme precipitation indices using Mann-Kendall trend test, Pettitt's test, and K-means clustering methods. This study used 10 extreme precipitation indices of the rice growing season (May to October) based on the daily precipitation records and rice yield data at 52 meteorological stations during 1961-2012 in Jiangsu province. The main findings were as follows: (1) correlation results indicated that precipitation extremes occurred in the months of July, August, and October, which had noticeable adverse effects on rice yield; (2) the maximum 7-day precipitation of July and the number of rainy days of August and October should be considered as three key indicators for the precipitation-induced rice meteorological disasters; and (3) most of the stations showed an increasing trends for the maximum 7-day precipitation of July and the number of rainy days of August, while the number of rainy days of October in all the stations demonstrated a decreasing trend. Moreover, Jiangsu province could be divided into two major sub-regions such as north and south areas with different temporal variations in the three key indicators.

  15. Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu province, southeast China.

    Science.gov (United States)

    Huang, Jin; Islam, A R M Towfiqul; Zhang, Fangmin; Hu, Zhenghua

    2017-10-01

    With the increasing risk of meteorological disasters, it is of great importance to analyze the spatiotemporal changes of precipitation extremes and its possible impact on rice productivity, especially in Jiangsu province, southeast China. In this study, we explored the relationships between rice yield and extreme precipitation indices using Mann-Kendall trend test, Pettitt's test, and K-means clustering methods. This study used 10 extreme precipitation indices of the rice growing season (May to October) based on the daily precipitation records and rice yield data at 52 meteorological stations during 1961-2012 in Jiangsu province. The main findings were as follows: (1) correlation results indicated that precipitation extremes occurred in the months of July, August, and October, which had noticeable adverse effects on rice yield; (2) the maximum 7-day precipitation of July and the number of rainy days of August and October should be considered as three key indicators for the precipitation-induced rice meteorological disasters; and (3) most of the stations showed an increasing trends for the maximum 7-day precipitation of July and the number of rainy days of August, while the number of rainy days of October in all the stations demonstrated a decreasing trend. Moreover, Jiangsu province could be divided into two major sub-regions such as north and south areas with different temporal variations in the three key indicators.

  16. Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India)

    Science.gov (United States)

    Pandey, Brij Kishor; Khare, Deepak

    2018-02-01

    Precipitation and reference evapotranspiration are key parameters in hydro-meteorological studies and used for agricultural planning, irrigation system design and management. Precipitation and evaporative demand are expected to be alter under climate change and affect the sustainable development. In this article, spatial variability and temporal trend of precipitation and reference evapotranspiration (ETo) were investigated over Narmada river basin (India), a humid tropical climatic region. In the present study, 12 and 28 observatory stations were selected for precipitation and ETo, respectively of 102-years period (1901-2002). A rigorous analysis for trend detection was carried out using non parametric tests such as Mann-Kendall (MK) and Spearman Rho (SR). Sen's slope estimator was used to analyze the rate of change in long term series. Moreover, all the stations of basin exhibit positive trend for annual ETo, while 8% stations indicate significant negative trend for mean annual precipitation, respectively. Change points of annual precipitation were identified around the year 1962 applying Buishand's and Pettit's test. Annual mean precipitation reduced by 9% in upper part while increased maximum by 5% in lower part of the basin due temporal changes. Although annual mean ETo increase by 4-12% in most of the region. Moreover, results of the study are very helpful in planning and development of agricultural water resources.

  17. Decadal Seasonal Shifts of Precipitation and Temperature in TRMM and AIRS Data

    Science.gov (United States)

    Savtchenko, Andrey; Huffman, George; Meyer, David; Vollmer, Bruce

    2018-01-01

    We present results from an analysis of seasonal phase shifts in the global precipitation and surface temperatures. We use data from the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Algorithm (TMPA), and the Atmospheric Infrared Sounder (AIRS) on Aqua satellite, all hosted at NASA Goddard Earth Science Data and Information Services Center (GES DISC). We explore the information content and data usability by first aggregating daily grids from the entire records of both missions to pentad (5-day) series which are then processed using Singular Value Decomposition approach. A strength of this approach is the normalized principal components that can then be easily converted from real to complex time series. Thus, we can separate the most informative, the seasonal, components and analyze unambiguously for potential seasonal phase drifts. TMPA and AIRS records represent correspondingly 20 and 15 years of data, which allows us to run simple “phase learning†from the first 5 years of records and use it as reference. The most recent 5 years are then phase-compared with the reference. We demonstrate that the seasonal phase of global precipitation and surface temperatures has been stable in the past two decades. However, a small global trend of delayed precipitation, and earlier arrival of surface temperatures seasons, are detectable at 95% confidence level. Larger phase shifts are detectable at regional level, in regions recognizable from the Eigen vectors to having strong seasonal patterns. For instance, in Central North America, including the North American Monsoon region, confident phase shifts of 1-2 days per decade are detected at 95% confidence level. While seemingly symbolic, these shifts are indicative of larger changes in the Earth Climate System. We thus also demonstrate a potential usability scenario of Earth Science Data Records curated at the NASA GES DISC in partnership with Earth Science Missions.

  18. Drought Forecasting Using Adaptive Neuro-Fuzzy Inference Systems (ANFIS, Drought Time Series and Climate Indices For Next Coming Year, (Case Study: Zahedan

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinpour Niknam

    2012-07-01

    Full Text Available In this research in order to forecast drought for the next coming year in Zahedan, using previous Standardized Precipitation Index (SPI data and 19 other climate indices were used.  For this purpose Adaptive Neuro-Fuzzy Inference System (ANFIS was applied to build the predicting model and SPI drought index for drought quantity.  At first calculating correlation approach for analysis between droughts and climate indices was used and the most suitable indices were selected. In the next stage drought prediction for period of 12 months was done. Different combinations among input variables in ANFIS models were entered. SPI drought index was the output of the model.  The results showed that just using time series like the previous year drought SPI index in forecasting the 12 month drought was effective. However among all climate indices that were used, Nino4 showed the most suitable results.

  19. Evaluation of NASA's MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States

    Science.gov (United States)

    Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; Bosilovich, Michael G.; Lee, Jaechoul; Wehner, Michael F.; Collow, Allison

    2016-01-01

    This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that

  20. Antecedent precipitation index determined from CST estimates of rainfall

    Science.gov (United States)

    Martin, David W.

    1992-01-01

    This paper deals with an experimental calculation of a satellite-based antecedent precipitation index (API). The index is also derived from daily rain images produced from infrared images using an improved version of GSFC's Convective/Stratiform Technique (CST). API is a measure of soil moisture, and is based on the notion that the amount of moisture in the soil at a given time is related to precipitation at earlier times. Four different CST programs as well as the Geostationary Operational Enviroment Satellite (GOES) Precipitation Index developed by Arkin in 1979 are compared to experimental results, for the Mississippi Valley during the month of July. Rain images are shown for the best CST code and the ARK program. Comparisons are made as to the accuracy and detail of the results for the two codes. This project demonstrates the feasibility of running the CST on a synoptic scale. The Mississippi Valley case is well suited for testing the feasibility of monitoring soil moisture by means of CST. Preliminary comparisons of CST and ARK indicate significant differences in estimates of rain amount and distribution.

  1. A Bayesian kriging approach for blending satellite and ground precipitation observations

    Science.gov (United States)

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  2. AMSU/MSU LOWTROPO DAY/MONTH TEMP ANOMALIES AND ANNUAL CYCLE V5

    Data.gov (United States)

    National Aeronautics and Space Administration — Global lower tropospheric temperatures are derived from a series of microwave sounding instruments flown on a series of satellites. Daily Zonal and Monthly...

  3. AMSU/MSU LOWSTRAT DAY/MONTH TEMP ANOMALIES AND ANNUAL CYCLE V5

    Data.gov (United States)

    National Aeronautics and Space Administration — Global lower stratospheric temperatures are derived from a series of microwave sounding instruments flown on a series of satellites. Daily Zonal and Monthly...

  4. Variation in the isotopic content of precipitation with altitude

    International Nuclear Information System (INIS)

    Stowhas, L.; Silva, C.; Moser, H.; Stichler, W.

    1975-03-01

    Monthly precipitation and single storms have been collected during three years at 12 stations along a W-E profile in Chile, going from Juan Fernandez Islands to Valparaiso, Santiago and Infiernillo in the Andes, and analysed for their deuterium content. The deltaD values are correlated with the altitude of the station, the mean temperature - which also largely depends on the altitude - and the distance from the sea. The correlation parameters show however important variations from year to year and even more from month to month. For instance, in the stretch Santiago (520 m a.s.l.) - La Parva (2680 m) the mean isotopic gradient with altitude were: -1.84 deltaD per mil/100 m in 1970, -1.09 in 1971 and -2.0 in 1972. The low value observed in 1971 could be a consequence of the peculiar weather characteristics of this unusually dry year. In the stretch from the coast to Santiago the trend of the isotopic composition of precipitation is more complicated, because the so-called continental effect is superimposed to the altitude effect. The deuterium content variations have been also determined in snowpack profiles at La Parva station. The results show that snow melting occurs slowly at the bottom during the whole winter, at the expenses of the heat stored during summer in the soil. The melting of the surface snow layers only starts at the end of the winter and then proceeds very fast

  5. Incidence and evolution of subretinal precipitates in optic disc pit maculopathy.

    Science.gov (United States)

    Chatziralli, Irini; Theodossiadis, George; Brouzas, Dimitrios; Theodossiadis, Panagiotis

    2017-06-26

    To study the evolution of subretinal precipitates coexistent with optic disc pit (ODP) maculopathy from their appearance at baseline examination until their absorption after successful treatment. Participants in this retrospective, multicenter study were 42 patients with ODP maculopathy, in whom complete ocular examination was performed, including visual acuity (VA) measurement, slit-lamp examination, color or red-free fundus photography, and optical coherence tomography at baseline after surgical treatment. Out of 42 cases, 17 (40.5%) cases of ODP maculopathy, which were examined between 2002 and 2015, were found to have subretinal precipitates associated with multilayer fluid accumulation at baseline. Precipitates were located at the outer part of the photoreceptor layer and remained for 3-6 months after successful treatment and absorption of subretinal fluid. The mean VA was 0.99 ± 0.21 logMAR at baseline and improved to 0.54 ± 0.25 logMAR at the final examination. Macular precipitates in association with signs of disease chronicity, such as multilayer fluid accumulation, became evident at baseline examination. Precipitates' disappearance in 15 out of 17 cases coincided with the absorption of subretinal fluid. The relative low VA at baseline probably could be attributed to the chronicity of the disease.

  6. Variability of multifractal parameters in an urban precipitation monitoring network

    Science.gov (United States)

    Licznar, Paweł; De Michele, Carlo; Dżugaj, Dagmara; Niesobska, Maria

    2014-05-01

    Precipitation especially over urban areas is considered a highly non-linear process, with wide variability over a broad range of temporal and spatial scales. Despite obvious limitations of rainfall gauges location at urban sites, rainfall monitoring by gauge networks is a standard solution of urban hydrology. Often urban precipitation gauge networks are formed by modern electronic gauges and connected to control units of centralized urban drainage systems. Precipitation data, recorded online through these gauge networks, are used in so called Real-Time-Control (RTC) systems for the development of optimal strategies of urban drainage outflows management. As a matter of fact, the operation of RTC systems is motivated mainly by the urge of reducing the severity of urban floods and combined sewerage overflows, but at the same time, it creates new valuable precipitation data sources. The variability of precipitation process could be achieved by investigating multifractal behavior displayed by the temporal structure of precipitation data. There are multiply scientific communications concerning multifractal properties of point-rainfall data from different worldwide locations. However, very little is known about the close variability of multifractal parameters among closely located gauges, at the distances of single kilometers. Having this in mind, here we assess the variability of multifractal parameters among gauges of the urban precipitation monitoring network in Warsaw, Poland. We base our analysis on the set of 1-minute rainfall time series recorded in the period 2008-2011 by 25 electronic weighing type gauges deployed around the city by the Municipal Water Supply and Sewerage Company in Warsaw as a part of local RTC system. The presence of scale invariance and multifractal properties in the precipitation process was investigated with spectral analysis, functional box counting method and studying the probability distributions and statistical moments of the rainfall

  7. Survival probability of precipitations and rain attenuation in tropical and equatorial regions

    Science.gov (United States)

    Mohebbi Nia, Masoud; Din, Jafri; Panagopoulos, Athanasios D.; Lam, Hong Yin

    2015-08-01

    This contribution presents a stochastic model useful for the generation of a long-term tropospheric rain attenuation time series for Earth space or a terrestrial radio link in tropical and equatorial heavy rain regions based on the well-known Cox-Ingersoll-Ross model previously employed in research in the fields of finance and economics. This model assumes typical gamma distribution for rain attenuation in heavy rain climatic regions and utilises the temporal dynamic of precipitation collected in equatorial Johor, Malaysia. Different formations of survival probability are also discussed. Furthermore, the correlation between these probabilities and the Markov process is determined, and information on the variance and autocorrelation function of rain events with respect to the particular characteristics of precipitation in this area is presented. The proposed technique proved to preserve the peculiarities of precipitation for an equatorial region and reproduce fairly good statistics of the rain attenuation correlation function that could help to improve the prediction of dynamic characteristics of rain fade events.

  8. Regional Frequency and Uncertainty Analysis of Extreme Precipitation in Bangladesh

    Science.gov (United States)

    Mortuza, M. R.; Demissie, Y.; Li, H. Y.

    2014-12-01

    Increased frequency of extreme precipitations, especially those with multiday durations, are responsible for recent urban floods and associated significant losses of lives and infrastructures in Bangladesh. Reliable and routinely updated estimation of the frequency of occurrence of such extreme precipitation events are thus important for developing up-to-date hydraulic structures and stormwater drainage system that can effectively minimize future risk from similar events. In this study, we have updated the intensity-duration-frequency (IDF) curves for Bangladesh using daily precipitation data from 1961 to 2010 and quantified associated uncertainties. Regional frequency analysis based on L-moments is applied on 1-day, 2-day and 5-day annual maximum precipitation series due to its advantages over at-site estimation. The regional frequency approach pools the information from climatologically similar sites to make reliable estimates of quantiles given that the pooling group is homogeneous and of reasonable size. We have used Region of influence (ROI) approach along with homogeneity measure based on L-moments to identify the homogenous pooling groups for each site. Five 3-parameter distributions (i.e., Generalized Logistic, Generalized Extreme value, Generalized Normal, Pearson Type Three, and Generalized Pareto) are used for a thorough selection of appropriate models that fit the sample data. Uncertainties related to the selection of the distributions and historical data are quantified using the Bayesian Model Averaging and Balanced Bootstrap approaches respectively. The results from this study can be used to update the current design and management of hydraulic structures as well as in exploring spatio-temporal variations of extreme precipitation and associated risk.

  9. Summer precipitation influences the stable oxygen and carbon isotopic composition of tree-ring cellulose in Pinus ponderosa.

    Science.gov (United States)

    Roden, John S; Ehleringer, James R

    2007-04-01

    The carbon and oxygen isotopic composition of tree-ring cellulose was examined in ponderosa pine (Pinus ponderosa Dougl.) trees in the western USA to study seasonal patterns of precipitation inputs. Two sites (California and Oregon) had minimal summer rainfall inputs, whereas a third site (Arizona) received as much as 70% of its annual precipitation during the summer months (North American monsoon). For the Arizona site, both the delta(18)O and delta(13)C values of latewood cellulose increased as the fraction of annual precipitation occurring in the summer (July through September) increased. There were no trends in latewood cellulose delta(18)O with the absolute amount of summer rain at any site. The delta(13)C composition of latewood cellulose declined with increasing total water year precipitation for all sites. Years with below-average total precipitation tended to have a higher proportion of their annual water inputs during the summer months. Relative humidity was negatively correlated with latewood cellulose delta(13)C at all sites. Trees at the Arizona site produced latewood cellulose that was significantly more enriched in (18)O compared with trees at the Oregon or California site, implying a greater reliance on an (18)O-enriched water source. Thus, tree-ring records of cellulose delta(18)O and delta(13)C may provide useful proxy information about seasonal precipitation inputs and the variability and intensity of the North American monsoon.

  10. Changes of chemistry of precipitation on the area affected by imissions from hard coal power plant in the years 1977-1994

    International Nuclear Information System (INIS)

    Zablocki, Z.

    1996-01-01

    The changes of precipitation chemistry was studied on 9 sites in the distance 0.2-13.5 km from Dolna Odra power plant during the years 1977-1994. The results of long-term studies of changes of precipitation reaction and amounts of sulfur in precipitation on the area were shown as chronotoposequences. The results indicated on some positive changes in chemistry of precipitation in 1991-1994 years as compared to the period of 1986-1990 which manifested as decrease as yearly averages of amounts of sulfur and nitrate-nitrogen in precipitation and decrease of percentage of monthly measurements of precipitation with very acid reaction. (author). 11 refs, 2 figs, 1 tab

  11. CLIMABR parte I: modelo para a geração de séries sintéticas de precipitação CLIMABR part I: model for generation of synthetic series of precipitation

    Directory of Open Access Journals (Sweden)

    Vicente de P. S. de Oliveira

    2005-09-01

    Full Text Available Na área agrícola tem-se muitos dos estudos relativos à precipitação buscando avaliar os efeitos advindos da sua ocorrência no escoamento superficial; neste caso, é imprescindível o conhecimento não apenas das informações relativas à lâmina precipitada, à duração e intensidade das chuvas mas, também, ao perfil da precipitação. Objetivou-se, através do presente trabalho, mostrar o desenvolvimento de um modelo denominado CLIMABR, para a geração de séries sintéticas de precipitação, para as condições climáticas encontradas no Estado do Rio de Janeiro; para isto, utilizaram-se dados pluviométricos e pluviográficos de 11 estações da Fundação Superintendência Estadual de Rios e Lagoas - SERLA, e da Companhia LIGHT - Serviços de Eletricidade S.A. Na série sintética gerada obtiveram-se os valores mensais da probabilidade de um dia ser chuvoso tendo sido o anterior também chuvoso P(W/W e da probabilidade de um dia ser chuvoso tendo sido o anterior seco P(W/D; o número de dias chuvosos (NW e a precipitação total diária (P ocorrida nesses dias, além de outras informações relativas ao perfil de precipitação. A comparação dos dados gerados pelo CLIMABR com os dados observados mostrou um bom desempenho do modelo para a estimativa destas variáveis.In the agricultural area, many studies related to precipitation have tried to evaluate the effects resulting from its occurrence in surface runoff. In this case the knowledge of not only the information relative to precipitation, its duration and intensity of the rains, but, also the profile of the precipitation is of great importance. With this objective, the present work was carried out to develop a model called CLIMABR, for the generation of synthetic precipitation series and of the instantaneous profile associated to these for the climatic conditions of the State of Rio de Janeiro. Pluviometric and pluviographic data from eleven stations of the Funda

  12. Modelling the regional climate and isotopic composition of Svalbard precipitation using REMOiso

    DEFF Research Database (Denmark)

    Divine..[], D.V.; Sjolte, Jesper; Isaksson, E.

    2011-01-01

    Simulations of a regional (approx. 50 km resolution) circulation model REMOiso with embedded stable water isotope module covering the period 1958-2001 are compared with the two instrumental climate and four isotope series (d18O) from western Svalbard. We examine the data from ice cores drilled...... than summer. The simulated and measured Holtedahlfonna d18O series agree reasonably well, whereas no significant correlation has been observed between the modelled and measured Lomonosovfonna ice core isotopic series. It is shown that sporadic nature as well as variability in the amount inherent...... in reproducing the local climate. The model successfully captures the climate variations on the daily to multidecadal times scales although it tends to systematically underestimate the winter SAT. Analysis suggests that REMOiso performs better at simulating isotope compositions of precipitation in the winter...

  13. Heavy precipitation as a risk factor for shigellosis among homeless persons during an outbreak - Oregon, 2015-2016.

    Science.gov (United States)

    Hines, Jonas Z; Jagger, Meredith A; Jeanne, Thomas L; West, Nicole; Winquist, Andrea; Robinson, Byron F; Leman, Richard F; Hedberg, Katrina

    2018-03-01

    Shigella species are the third most common cause of bacterial gastroenteritis in the United States. During a Shigella sonnei outbreak in Oregon from July 2015 through June 2016, Shigella cases spread among homeless persons with onset of the wettest rainy season on record. We conducted time series analyses using Poisson regression to determine if a temporal association between precipitation and shigellosis incidence existed. Models were stratified by housing status. Among 105 infections identified, 45 (43%) occurred in homeless persons. With increasing precipitation, cases increased among homeless persons (relative risk [RR] = 1.36 per inch of precipitation during the exposure period; 95% confidence interval [CI] = 1.17-1.59), but not among housed persons (RR = 1.04; 95% CI 0.86-1.25). Heavy precipitation likely contributed to shigellosis transmission among homeless persons during this outbreak. When heavy precipitation is forecast, organizations working with homeless persons could consider taking proactive measures to mitigate spread of enteric infections. Published by Elsevier Ltd.

  14. Development of polymeric nanoparticles showing tuneable pH-responsive precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Vakurov, Alexander, E-mail: a.v.vakourov@bmb.leeds.ac.uk; Pchelintsev, Nikolay A., E-mail: n.a.pchelintsev@googlemail.com; Gibson, Tim, E-mail: timdgibson@merchab.fsnet.co.uk; Millner, Paul, E-mail: p.a.millner@leeds.ac.uk [Research Institute of Membrane and Systems Biology, University of Leeds (United Kingdom)

    2012-12-15

    A reverse micellar system comprising dioctyl-sulfosuccinate (AOT)/toluene was used as a template for polymerization of acrylamide/bisacrylamide-based functionalized polymeric nanoparticles. Such nanoparticles were typically sized between 20 and 90 nm and could be synthesized with a wide range of functional groups according to the monomers added to the polymerization mixture. Carboxy nanoparticles with acrylic acid as the functional monomer were synthesized in the reported work. The carboxy nanoparticles were pH sensitive and precipitated at pHs below 4. Modification of carboxy-functionalized polymeric nanoparticles with polyetheleneimine (PEI) resulted in the fabrication of a series of pH-responsive nanoparticles which could precipitate at different pHs and ionic strengths according to the PEI/carboxy ratio in the system. Both non-covalent PEI-nanoparticles conjugates and nanoparticles with covalently linked PEI behaved in this way.

  15. Development of polymeric nanoparticles showing tuneable pH-responsive precipitation

    International Nuclear Information System (INIS)

    Vakurov, Alexander; Pchelintsev, Nikolay A.; Gibson, Tim; Millner, Paul

    2012-01-01

    A reverse micellar system comprising dioctyl-sulfosuccinate (AOT)/toluene was used as a template for polymerization of acrylamide/bisacrylamide-based functionalized polymeric nanoparticles. Such nanoparticles were typically sized between 20 and 90 nm and could be synthesized with a wide range of functional groups according to the monomers added to the polymerization mixture. Carboxy nanoparticles with acrylic acid as the functional monomer were synthesized in the reported work. The carboxy nanoparticles were pH sensitive and precipitated at pHs below 4. Modification of carboxy-functionalized polymeric nanoparticles with polyetheleneimine (PEI) resulted in the fabrication of a series of pH-responsive nanoparticles which could precipitate at different pHs and ionic strengths according to the PEI/carboxy ratio in the system. Both non-covalent PEI-nanoparticles conjugates and nanoparticles with covalently linked PEI behaved in this way.

  16. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  17. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China

    Directory of Open Access Journals (Sweden)

    Shan-hu Jiang

    2010-12-01

    Full Text Available Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC morphing technique precipitation product (CMORPH, were evaluated against surface rain gauge observations from the Laohahe Basin in northern China. Widely used statistical validation indices and categorical statistics were adopted. The evaluations were performed at multiple time scales, ranging from daily to yearly, for the years from 2003 to 2008. The results show that all three satellite precipitation products perform very well in detecting the occurrence of precipitation events, but there are some different biases in the amount of precipitation. 3B42V6, which has a bias of 21%, fits best with the surface rain gauge observations at both daily and monthly scales, while the biases of 3B42RT and CMORPH, with values of 81% and 67%, respectively, are much higher than a normal receivable threshold. The quality of the satellite precipitation products also shows monthly and yearly variation: 3B42RT has a large positive bias in the cold season from September to April, while CMORPH has a large positive bias in the warm season from May to August, and they all attained their best values in 2006 (with 10%, 50%, and −5% biases for 3B42V6, 3B42RT, and CMORPH, respectively. Our evaluation shows that, for the Laohahe Basin, 3B42V6 has the best correspondence with the surface observations, and CMORPH performs much better than 3B42RT. The large errors of 3B42RT and CMORPH remind us of the need for new improvements to satellite precipitation retrieval algorithms or feasible bias adjusting methods.

  18. Disentangling the Effects of Precipitation Amount and Frequency on the Performance of 14 Grassland Species

    Science.gov (United States)

    Didiano, Teresa J.; Johnson, Marc T. J.; Duval, Tim P.

    2016-01-01

    Climate change is causing shifts in the amount and frequency of precipitation in many regions, which is expected to have implications for plant performance. Most research has examined the impacts of the amount of precipitation on plants rather than the effects of both the amount and frequency of precipitation. To understand how climate-driven changes in precipitation can affect grassland plants, we asked: (i) How does the amount and frequency of precipitation affect plant performance? (ii) Do plant functional groups vary in their response to variable precipitation? To answer these questions we grew 14 monocot and eudicot grassland species and conducted a factorial manipulation of the amount (70 vs 90mm/month) and frequency (every 3, 15, or 30 days) of precipitation under rainout shelters. Our results show that both the amount and frequency of precipitation impact plant performance, with larger effects on eudicots than monocots. Above- and below-ground biomass were affected by the amount of precipitation and/or the interaction between the amount and frequency of precipitation. Above-ground biomass increased by 21–30% when the amount of precipitation was increased. When event frequency was decreased from 3 to 15 or 30 days, below-ground biomass generally decreased by 18–34% in the 70 mm treatment, but increased by 33–40% in the 90 mm treatment. Changes in stomatal conductance were largely driven by changes in event frequency. Our results show that it is important to consider changes in both the amount and frequency of precipitation when predicting how plant communities will respond to variable precipitation. PMID:27622497

  19. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  20. Statistical analysis of trends in monthly precipitation at the Limbang River Basin, Sarawak (NW Borneo), Malaysia

    Science.gov (United States)

    Krishnan, M. V. Ninu; Prasanna, M. V.; Vijith, H.

    2018-05-01

    Effect of climate change in a region can be characterised by the analysis of rainfall trends. In the present research, monthly rainfall trends at Limbang River Basin (LRB) in Sarawak, Malaysia for a period of 45 years (1970-2015) were characterised through the non-parametric Mann-Kendall and Spearman's Rho tests and relative seasonality index. Statistically processed monthly rainfall of 12 well distributed rain gauging stations in LRB shows almost equal amount of rainfall in all months. Mann-Kendall and Spearman's Rho tests revealed a specific pattern of rainfall trend with a definite boundary marked in the months of January and August with positive trends in all stations. Among the stations, Limbang DID, Long Napir and Ukong showed positive (increasing) trends in all months with a maximum increase of 4.06 mm/year (p = 0.01) in November. All other stations showed varying trends (both increasing and decreasing). Significant (p = 0.05) decreasing trend was noticed in Ulu Medalam and Setuan during September (- 1.67 and - 1.79 mm/year) and October (- 1.59 and - 1.68 mm/year) in Mann-Kendall and Spearman's Rho tests. Spatial pattern of monthly rainfall trends showed two clusters of increasing rainfalls (maximas) in upper and lower part of the river basin separated with a dominant decreasing rainfall corridor. The results indicate a generally increasing trend of rainfall in Sarawak, Borneo.

  1. Estimation of the impact of climate change-induced extreme precipitation events on floods

    Science.gov (United States)

    Hlavčová, Kamila; Lapin, Milan; Valent, Peter; Szolgay, Ján; Kohnová, Silvia; Rončák, Peter

    2015-09-01

    In order to estimate possible changes in the flood regime in the mountainous regions of Slovakia, a simple physically-based concept for climate change-induced changes in extreme 5-day precipitation totals is proposed in the paper. It utilizes regionally downscaled scenarios of the long-term monthly means of the air temperature, specific air humidity and precipitation projected for Central Slovakia by two regional (RCM) and two global circulation models (GCM). A simplified physically-based model for the calculation of short-term precipitation totals over the course of changing air temperatures, which is used to drive a conceptual rainfall-runoff model, was proposed. In the paper a case study of this approach in the upper Hron river basin in Central Slovakia is presented. From the 1981-2010 period, 20 events of the basin's most extreme average of 5-day precipitation totals were selected. Only events with continual precipitation during 5 days were considered. These 5-day precipitation totals were modified according to the RCM and GCM-based scenarios for the future time horizons of 2025, 2050 and 2075. For modelling runoff under changed 5-day precipitation totals, a conceptual rainfall-runoff model developed at the Slovak University of Technology was used. Changes in extreme mean daily discharges due to climate change were compared with the original flood events and discussed.

  2. [Variations and simulation of stable isotopes in precipitation in the Heihe River basin].

    Science.gov (United States)

    Wu, Jin-Kui; Yang, Qi-Yue; Ding, Yong-Jian; Ye, Bai-Sheng; Zhang, Ming-Quan

    2011-07-01

    To study the variations of deltaD and delta18O in precipitation, 301 samples were sampled during 2002-2004 in 6 sites in the Heihe River basin, Northwestern China. The deltaD and delta18O values ranged from 59 per thousand to -254 per thousand and 6.5 per thousand to -33.4 per thousand, respectively. This wide range indicated that stable isotopes in precipitation were controlled by different condensation mechanisms as a function of air temperature and varying sources of moisture. delta18O in precipitation had a close positive relationship with the air temperature, i. e., a clear temperature effect existed in this area. At a monthly scale, no precipitation effect existed. On the other hand, a weak precipitation effect still accrued at precipitation events scale. The spatial variation of delta18O showed that the weighted average delta18O values decreased with the increasing altitude of sampling sites at a gradient of -0. 47 per thousand/100m. A regional Meteoric Water Line, deltaD = 7.82 delta18O + 7.63, was nearly identical to the Meteoric Water Line in the Northern China. The results of backward trajectory of each precipitation day at Xishui showed that the moisture of the precipitation in cold season (October to March) mainly originated from the west while the moisture source was more complicated in warm season (April to September). The simulation of seasonal delta18O variation showed that the stable isotope composition of precipitation tended to a clear sine-wave seasonal variation.

  3. Development and evaluation of climatologically-downscaled AFWA AGRMET precipitation products over the continental U.S.

    Science.gov (United States)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Gibson, W.; Tian, Y.; Zeng, J.; Kato, H.

    2008-05-01

    Collaborations between the Air Force Weather Agency (AFWA), the Hydrological Sciences Branch at NASA-GSFC, and the PRISM Group at Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS- based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and near-real-time simulations in regions of interest. This work focuses on value added to the AGRMET precipitation product by the inclusion of high-quality climatological information on a monthly time scale. The AGRMET method uses microwave-based satellite precipitation estimates from various polar-orbiting platforms (NOAA POES and DMSP), infrared-based estimates from geostationary platforms (GOES, METEOSAT, etc.), related cloud analysis products, and surface gauge observations in a complex and hierarchical blending process. Results from processing of the legacy AGRMET precipitation

  4. Data imputation analysis for Cosmic Rays time series

    Science.gov (United States)

    Fernandes, R. C.; Lucio, P. S.; Fernandez, J. H.

    2017-05-01

    The occurrence of missing data concerning Galactic Cosmic Rays time series (GCR) is inevitable since loss of data is due to mechanical and human failure or technical problems and different periods of operation of GCR stations. The aim of this study was to perform multiple dataset imputation in order to depict the observational dataset. The study has used the monthly time series of GCR Climax (CLMX) and Roma (ROME) from 1960 to 2004 to simulate scenarios of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of missing data compared to observed ROME series, with 50 replicates. Then, the CLMX station as a proxy for allocation of these scenarios was used. Three different methods for monthly dataset imputation were selected: AMÉLIA II - runs the bootstrap Expectation Maximization algorithm, MICE - runs an algorithm via Multivariate Imputation by Chained Equations and MTSDI - an Expectation Maximization algorithm-based method for imputation of missing values in multivariate normal time series. The synthetic time series compared with the observed ROME series has also been evaluated using several skill measures as such as RMSE, NRMSE, Agreement Index, R, R2, F-test and t-test. The results showed that for CLMX and ROME, the R2 and R statistics were equal to 0.98 and 0.96, respectively. It was observed that increases in the number of gaps generate loss of quality of the time series. Data imputation was more efficient with MTSDI method, with negligible errors and best skill coefficients. The results suggest a limit of about 60% of missing data for imputation, for monthly averages, no more than this. It is noteworthy that CLMX, ROME and KIEL stations present no missing data in the target period. This methodology allowed reconstructing 43 time series.

  5. Uncertainty in projected point precipitation extremes for hydrological impact analysis of climate change

    Science.gov (United States)

    Van Uytven, Els; Willems, Patrick

    2017-04-01

    Current trends in the hydro-meteorological variables indicate the potential impact of climate change on hydrological extremes. Therefore, they trigger an increased importance climate adaptation strategies in water management. The impact of climate change on hydro-meteorological and hydrological extremes is, however, highly uncertain. This is due to uncertainties introduced by the climate models, the internal variability inherent to the climate system, the greenhouse gas scenarios and the statistical downscaling methods. In view of the need to define sustainable climate adaptation strategies, there is a need to assess these uncertainties. This is commonly done by means of ensemble approaches. Because more and more climate models and statistical downscaling methods become available, there is a need to facilitate the climate impact and uncertainty analysis. A Climate Perturbation Tool has been developed for that purpose, which combines a set of statistical downscaling methods including weather typing, weather generator, transfer function and advanced perturbation based approaches. By use of an interactive interface, climate impact modelers can apply these statistical downscaling methods in a semi-automatic way to an ensemble of climate model runs. The tool is applicable to any region, but has been demonstrated so far to cases in Belgium, Suriname, Vietnam and Bangladesh. Time series representing future local-scale precipitation, temperature and potential evapotranspiration (PET) conditions were obtained, starting from time series of historical observations. Uncertainties on the future meteorological conditions are represented in two different ways: through an ensemble of time series, and a reduced set of synthetic scenarios. The both aim to span the full uncertainty range as assessed from the ensemble of climate model runs and downscaling methods. For Belgium, for instance, use was made of 100-year time series of 10-minutes precipitation observations and daily

  6. time series analysis of monthly rainfall in nigeria with emphasis on ...

    African Journals Online (AJOL)

    User

    Monthly rainfall data of twenty-one years (1980 – 2000) were analyzed for the six regions of. Nigeria using the rescaled range (R/S) statistic, the standard fluctuation analysis (FA) and the detrended fluctuation ... 2011 Kwame Nkrumah University of Science and Technology (KNUST) .... starting from the beginning, and s non-.

  7. Beryllium-7 and 210Pb atmospheric deposition measured in moss and dependence on cumulative precipitation

    International Nuclear Information System (INIS)

    Krmar, M.; Mihailović, D.T.; Arsenić, I.; Radnović, D.; Pap, I.

    2016-01-01

    This paper focuses on analysis of the time series of 7 Be and 210 Pb activity measured in moss, and the amount, as well as duration of precipitation, to gain a better understanding of the possible relationships between airborne radionuclide deposition and precipitation. Here we consider whether the amount of these airborne radionuclides in moss samples is a cumulative measure of radionuclide deposition and decay, and a new approach for analyses of the relationships between precipitation and moss activity concentrations is suggested. Through these analyses it was shown that comparison of cumulative activity measured at one location using moss, normalized by values of cumulative amount or duration of precipitation, showed different regimes of airborne radionuclide deposition. - Graphical abstract: Correlation between cumulative activity of 7 Be and 210 Pb measured in moss samples normalized by the cumulative precipitation. - Highlights: • Use of mosses in measurement of airborne radionuclides deposition was investigated • Prior work indicated 7 Be and 210 Pb activities were not correlated with precipitation • This is unusual since radionuclides moss tissues depends on depositional fluxes. • A new method for study of 7 Be and 210 Pb depositional dynamics was developed • Different seasonal regimes of 7 Be deposition are more noticeable in new technique

  8. Vegetation anomalies caused by antecedent precipitation in most of the world

    Science.gov (United States)

    Papagiannopoulou, C.; Miralles, D. G.; Dorigo, W. A.; Verhoest, N. E. C.; Depoorter, M.; Waegeman, W.

    2017-07-01

    Quantifying environmental controls on vegetation is critical to predict the net effect of climate change on global ecosystems and the subsequent feedback on climate. Following a non-linear Granger causality framework based on a random forest predictive model, we exploit the current wealth of multi-decadal satellite data records to uncover the main drivers of monthly vegetation variability at the global scale. Results indicate that water availability is the most dominant factor driving vegetation globally: about 61% of the vegetated surface was primarily water-limited during 1981-2010. This included semiarid climates but also transitional ecoregions. Intra-annually, temperature controls Northern Hemisphere deciduous forests during the growing season, while antecedent precipitation largely dominates vegetation dynamics during the senescence period. The uncovered dependency of global vegetation on water availability is substantially larger than previously reported. This is owed to the ability of the framework to (1) disentangle the co-linearities between radiation/temperature and precipitation, and (2) quantify non-linear impacts of climate on vegetation. Our results reveal a prolonged effect of precipitation anomalies in dry regions: due to the long memory of soil moisture and the cumulative, non-linear, response of vegetation, water-limited regions show sensitivity to the values of precipitation occurring three months earlier. Meanwhile, the impacts of temperature and radiation anomalies are more immediate and dissipate shortly, pointing to a higher resilience of vegetation to these anomalies. Despite being infrequent by definition, hydro-climatic extremes are responsible for up to 10% of the vegetation variability during the 1981-2010 period in certain areas, particularly in water-limited ecosystems. Our approach is a first step towards a quantitative comparison of the resistance and resilience signature of different ecosystems, and can be used to benchmark Earth

  9. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble

    Science.gov (United States)

    Jiang, Mingkai; Felzer, Benjamin S.; Sahagian, Dork

    2016-01-01

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950–2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040–2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment. PMID:27425819

  10. Global daily precipitation fields from bias-corrected rain gauge and satellite observations. Pt. 1. Design and development

    Energy Technology Data Exchange (ETDEWEB)

    Kottek, M.; Rubel, F. [Univ. of Veterinary Medicine, Vienna (Austria). Biometeorology Group

    2007-10-15

    Global daily precipitation analyses are mainly based on satellite estimates, often calibrated with monthly ground analyses or merged with model predictions. We argue here that an essential improvement of their accuracy is only possible by incorporation of daily ground measurements. In this work we apply geostatistical methods to compile a global precipitation product based on daily rain gauge measurements. The raw ground measurements, disseminated via Global Telecommunication System (GTS), are corrected for their systematic measurement errors and interpolated onto a global 1 degree grid. For interpolation ordinary block kriging is applied, with precalculated spatial auto-correlation functions (ACFs). This technique allows to incorporate additional climate information. First, monthly ACFs are calculated from the daily data; second, they are regionalised according to the five main climatic zones of the Koeppen-Geiger climate classification. The interpolation error, a by-product of kriging, is used to flag grid points as missing if the error is above a predefined threshold. But for many applications missing values constitute a problem. Due to a combination of the ground analyses with the daily multi-satellite product of the Global Precipitation Climatology Project (GPCP-1DD) not only these missing values are replaced but also the spatial structure of the satellite estimates is considered. As merging method bivariate ordinary co-kriging is applied. The ACFs necessary for the gauge and the satellite fields as well as the corresponding spatial cross-correlation functions (CCFs) are again precalculated for each of the five main climatic zones and for each individual month. As a result two new global daily data sets for the period 1996 up to today will be available on the Internet (www.gmes-geoland.info): A precipitation product over land, analysed from ground measurements; and a global precipitation product merged from this and the GPCP-1DD multi-satellite product. (orig.)

  11. Precipitation behavior and effect of new precipitated β phase in AZ80 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; HAN En-hou; XU Yong-bo; LIU Lu

    2006-01-01

    Granular precipitate that was a new kind of β-Mg17Al12 phase found in aged AZ80 wrought Mg alloy at all aging temperature was studied. The structure and precipitation behavior of this granular β-Mg17Al12 precipitate were studied by environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). The effect of the granular precipitate on mechanical properties of AZ80 alloy was also studied. The new precipitate that was granular and nucleated both on grain boundaries (GBs) and twin boundaries, has the same crystal structure and lattice parameter as those of the continuous or discontinuous precipitated β-Mg17Al12. And the nucleation and growth of the granular precipitate are faster than those of the other two precipitates at higher temperatures (above 583 K), but are suppressed at lower temperatures (below 423 K). At lower temperatures, the discontinuous β-Mg17Al12 precipitates firstly and the granular β-Mg17Al12 precipitates after aged more than 40 h. The crack is easily nucleated on the phase boundaries of granular phase and matrix because of the weak binding force. As a result, the strength and ductility of AZ80 Mg alloy are decreased by the granular β-Mg17Al12 precipitate.

  12. Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization

    Science.gov (United States)

    Safitri, Nina; Mubarok, M. Zaki; Winarko, Ronny; Tanlega, Zela

    2018-05-01

    In the present study, precipitation of nickel and cobalt as mixed hydroxide precipitate (MHP) from pregnant leach solution of nickel limonite ore from Soroako after iron removal stage was carried out. A series of MHP precipitation experiments was conducted by using MgO slurry as neutralizing agent and the effects of pH, temperature, duration of precipitation and the addition of MHP seed on the precipitation behavior of nickel, cobalt, as well as iron and manganese was studied. Characterization of MHP product was performed by particle size analyzer (PSA) as well as X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM) analyses. Kinetics analysis was made by using differential-integral method for the rate of homogenous reaction. Precipitation at pH 7, temperature 50°C for 30 minute, without seed addition resulted in nickel and cobalt recoveries of 82.8% and 92%, respectively with co-precipitated iron and manganese of 70% and 24.2%, respectively. The seed addition increases nickel and cobalt precipitations significantly to 99.9% and 99.1%, respectively. However, the addition of seed into led to a significant increase of manganese co-precipitation from 24.2% without seed addition to 39.5% at the addition of 1 g seed per 200 mL of PLS. Kinetics analysis revealed that Ni precipitation to form MHP follows the second-order reaction kinetics with activation energy of 94.6 kJ/mol.

  13. Century-scale variability in global annual runoff examined using a water balance model

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.

  14. Tritium in Precipitation, Surface and Groundwaters in the Zagreb Area

    International Nuclear Information System (INIS)

    Horvatincic, N.; Baresic, J.; Sironic, A.; Krajcar Bronic, I.; Obelic, B.

    2011-01-01

    Radioactive isotope tritium (3H) and stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O) were measured in Sava River, precipitation and groundwater at 3 monitoring wells (piezometers) and 1 production well of the Petrusevec aquifer, close to the Sava River. Samples were collected monthly during 2010. The investigation is included in the Regional IAEA Project RER/8/016 Using Environmental Isotopes for Evaluation of Streamwater/Groundwater Interactions in Selected Aquifers in the Danube Basin. Sava River is a tributary of Danube River and the aim of the investigation is to determine the influence of surface stream of Sava River to the groundwater of aquifer used for water exploitation. In this work only 3H results were presented. 3H was measured by liquid scintillation counter Quantulus 1220, using electrolytic enrichment for all samples. 3H activity in precipitation showed slight seasonal fluctuation between 4 TU and 14 TU, with higher values in summer. 3H activity of Sava River and groundwater of the Petrusevec aquifer followed 3H of precipitation till May 2010. Significant increase of 3H in Sava River was observed in June, (199 @ 20) TU, and in the next month it fell down at 6 TU. Increase of 3H was also observed in groundwater but with damped response (maximum 60 TU) and with delay of 2 - 3 months related to Sava River. Different response of different piezometers and the well indicated the different infiltration times of surface water of Sava River to groundwater of the Petrusevec aquifer. The increased 3H activity in surface and groundwaters was caused by release of tritiated water from the Krsko Nuclear Power Plant, 30 km upstream from Zagreb. The results of 3H, 2H/1H and 18O/16O measurements will be used to determine the infiltration time of groundwater of the Petrusevec aquifer using conceptual and mathematical models. (author)

  15. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno; Mallick, Bani K.

    2011-01-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  16. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno

    2011-03-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  17. Verification of high resolution simulation of precipitation and wind in Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Demand of energy and freshwater continues to grow as the global population and demands increase. Precipitation feed the freshwater ecosystems which provides a wealth of goods and services for society and river flow to sustain native species and natural ecosystem functions. The adoption of the wind and hydro-electric power supplies will sustain energy demands/services without restricting the economic growth and accelerated policies scenarios. However, the international meteorological observation network is not sufficiently dense to directly support high resolution climatic research. In this sense, coupled global and regional atmospheric models constitute the most appropriate physical and numerical tool for weather forecasting and downscaling in high resolution grids with the capacity to solve problems resulting from the lack of observed data and measuring errors. Thus, this study aims to calibrate and validate of the WRF regional model from precipitation and wind fields simulation, in high spatial resolution grid cover in Portugal. The simulations were performed in two-way nesting with three grids of increasing resolution (60 km, 20 km and 5 km) and the model performance assessed for the summer and winter months (January and July), using input variables from two different reanalyses and forecasted databases (ERA-Interim and NCEP-FNL) and different forcing schemes. The verification procedure included: (i) the use of several statistics error estimators, correlation based measures and relative errors descriptors; and, (ii) an observed dataset composed by time series of hourly precipitation, wind speed and direction provided by the Portuguese meteorological institute for a comprehensive set of weather stations. Main results suggested the good ability of the WRF to: (i) reproduce the spatial patterns of the mean and total observed fields; (ii) with relatively small values of bias and other errors; and, (iii) and good temporal correlation. These findings are in good

  18. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  19. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  20. Atmospheric circulation leading to record breaking precipitation and floods in southern Iberia in December 1876

    Science.gov (United States)

    Trigo, R. M.; Varino, F.; Vaquero, J.; Valente, M. A.

    2012-04-01

    The first week of December 1876 was marked by extreme weather conditions that affected the south-western sector of the Iberian Peninsula (IP), leading to an all-time record flow in both large international rivers running from Spain to Portugal, Tagus and Guadiana. As a direct consequence, several towns in centre and south IP suffered serious flood damage. These catastrophic floods were amplified by the occurrence of anomalously wet October and November months, as shown by recently digitised time series for both IP countries. These events resulted from the continuous pouring of precipitation registered between 29 November and 7 December, due to the consecutive Atlantic low-pressure systems and their associated frontal systems that reached the Iberian Peninsula. Using several different data sources, such as historical newspapers of that time, meteorological data recently digitised from several stations in Portugal and Spain and the recently available 20th Century Reanalysis (Compo et al., 2011), we were able (135 years afterwards), to study in detail the damage and the atmospheric circulation conditions associated with this event. The synoptic conditions were represented by 6 hourly fields of complementary variables, namely; 1) precipitation rate and mean sea level pressure (SLP); 2) precipitation rate and CAPE; 3) wind speed intensity and divergence at 250 hPa, 4) wind speed intensity and divergence also at 850 hPa; 5) air temperature at 850 hPa and geopotential height at 500 hPa; 6) wind speed barbs and specific moisture content at 850 hPa. Movies with all these variables were obtained for the 10-day sequence that spans between 29 November and 7 December. For two recently digitised stations in Portugal (Lisbon and Évora), the values of precipitation registered during those weeks were so remarkable that when we computed daily accumulated precipitation successively from 1 to 10 days, the episode of 1876 always stood as the maximum precipitation event, with the