WorldWideScience

Sample records for monthly precipitation series

  1. FRACTAL ANALYSIS OF MONTHLY EVAPORATION AND PRECIPITATION TIME SERIES AT CENTRAL MEXICO

    Directory of Open Access Journals (Sweden)

    Rafael Magallanes Quintanar

    2015-09-01

    Full Text Available Advances on climate change research, as well as the assessment of the potential impacts of climate change on water resources, would allow the understanding of the spatial and temporal variability of land-surface precipitation and evaporation time series at local and regional levels. In the present study, the spectral analysis approach was applied on monthly evaporation and precipitation anomaly time series with the aim of estimating their self-affinity statistics. The behavior of estimated fractal dimension values of evaporation time series throughout Zacatecas State territory is irregular, and noise in all the evaporation anomaly time series tends to have a persistent behavior. On the other hand, the behavior of estimated fractal dimension values of most of the precipitation time series throughout Zacatecas State territory tends to be like the Brownian motion. Self-affinity statistics of monthly evaporation or precipitation anomaly time series and geographic coordinates of 32 stations were used to estimate correlation coefficients; the results are compelling evidence concerning monthly precipitation anomaly behavior tends to be more regular toward North of Zacatecas State territory, that is, toward driest areas.

  2. An automatic method to homogenize trends in long-term monthly precipitation series

    Science.gov (United States)

    Rustemeier, E.; Kapala, A.; Mächel, H.; Meyer-Christoffer, A.; Schneider, U.; Ziese, M.; Venema, V.; Becker, A.; Simmer, C.

    2012-04-01

    Lack of homogeneity of long-term series of in-situ precipitation observations is a known problem and requires time consuming manual data correction in order to allow for a robust trend analysis. This work is focused on the development of an algorithm for automatic data correction of multiple stations. The algorithm relies on the similarity of climate signals between close stations. It consists of three steps: 1) Construction of networks of comparable precipitation behaviour; 2) Detection of breakpoints; 3) Trend correction. Detection and correction are based on the homogenization software (Prodige) adopted from Météo France (Caussinus and Mestre 2004). The networks are constructed based on monthly accumulated precipitation and several indices. For the classification, principal component analysis in S-mode is applied followed by a VARIMAX rotation. Within each network, a segmentation method is used to detect the breaks. In order to develop a fully automatic method, scaled time series are combined to create the reference series. The monthly correction applied is a multiple linear regression as described in Mestre, 2004 which also conserves the annual cycle. At present, the algorithm has been used to homogenize 100 years of precipitation records from stations in Germany, without any missing values. The data has been digitized recently by the Meteorological Institute of the University of Bonn and the Deutscher Wetterdienst. The resulting networks correspond well to the German geographical regions. The number of detected breaks varies between 0 ~7 breaks per station. The majority of breaks is very small (below ±10 mm per year) despite a few high (up to ±200 mm) ones. In future, the algorithm will be used to generate a homogenous global precipitation data set HOMPRA for the period 1951-2005 using more than 16000 stations in collaboration with the Global Precipitation Climatology Centre (GPCC, Becker et al., 2012).

  3. Homogeneity of monthly precipitation series from 1932 to 2010 in the Souss Massa Region-Morocco

    Science.gov (United States)

    Abahous, Houria; Ronchail, Josyane; Sifeddine, Abdelfattah; Kenny, Lahcen; Bouchaou, Lhoussaine

    2017-04-01

    Water resources are vulnerable to precipitation fluctuations, especially in arid area such as the Souss-Massa region. Therefore, the analysis and the simulation of the regional rainfall characteristics at decadal scale are of great importance. The availability of long-term time series is often limited by their quality. A network of local meteorological stations recording monthly precipitations from 1932 to 2010 is provided by the Hydraulic basin of Souss Massa Agency. A dataset of 19 selected stations is undergoing an interative process of quality control and homogeneity assessment using ProclimDB/Anclim and Homer softwares. Suspicious monthly data are identified with a combination of criterions. We analyse the standardized precipitation index to better distinguish real climate events from erroneous data in the analyzed series. Statistically significant annual change-points are detected with both absolute and relative methods by using a criterion of validation. The temporal distribution of outliers shows an annual cycle and a decrease of their occurence since the eighties. We also assess the year of 1973 as a change point related to climate in Western High Atlas Mountains stations.

  4. Climate Prediction Center (CPC) Global Precipitation Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global precipitation time series provides time series charts showing observations of daily precipitation as well as accumulated precipitation compared to normal...

  5. Climate Prediction Center (CPC) Three Month Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a series of thirteen probabilistic three-month precipitation outlooks for the United States. CPC issues the thirteen...

  6. Global Precipitation Climatology Project (GPCP) - Monthly, Version 2.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products with the two primary products being the monthly satellite-gauge and associated...

  7. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  8. Trends in monthly precipitation over the northwest of Iran (NWI)

    Science.gov (United States)

    Asakereh, Hossein

    2016-08-01

    Increasing global temperatures during the last century have had their own effects on other climatic conditions, particularly on precipitation characteristics. This study was meant to investigate the spatial and temporal monthly trends of precipitation using the least square error (LSE) approach for the northwest of Iran (NWI). To this end, a database was obtained from 250 measuring stations uniformly scattered all over NWI from 1961 to 2010. The spatial average of annual precipitation in NWI during the period of study was approximately 220.9-726.7 mm. The annual precipitation decreased from southwest to northeast, while the large amount of precipitation was concentrated in the south-west and in the mountainous areas. All over NWI, the maximum and minimum precipitation records occurred from March to May and July to September, respectively. The coefficient of variation (CV) is greater than 44 % in all of NWI and may reach over 76 % in many places. The greatest range of CV, for instance, occurred during July. The spatial variability of precipitation was consistent with a tempo-spatial pattern of precipitation trends. There was a considerable difference between the amounts of change during the months, and the negative trends were mainly attributed to areas concentrated in eastern and southern parts of NWI far from the western mountain ranges. Moreover, limited areas with positive precipitation trends can be found in very small and isolated regions. This is observable particularly in the eastern half of NWI, which is mostly located far from Westerlies. On the other hand, seasonal precipitation trends indicated a slight decrease during winter and spring and a slight increase during summer and autumn. Consequently, there were major changes in average precipitation that occurred negatively in the area under study during the observation period. This finding is in agreement with those findings by recent studies which revealed a decreasing trend of around 2 mm/year over NWI

  9. High resolution reconstruction of monthly precipitation of Iberian Peninsula using circulation weather types

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; Gonzalez-Hidalgo, J. C.; Ramos, A. M.

    2012-06-01

    Precipitation over the Iberian Peninsula (IP) is highly variable and shows large spatial contrasts between wet mountainous regions, to the north, and dry regions in the inland plains and southern areas. In this work, a high-density monthly precipitation dataset for the IP was coupled with a set of 26 atmospheric circulation weather types (Trigo and DaCamara, 2000) to reconstruct Iberian monthly precipitation from October to May with a very high resolution of 3030 precipitation series (overall mean density one station each 200 km2). A stepwise linear regression model with forward selection was used to develop monthly reconstructed precipitation series calibrated and validated over 1948-2003 period. Validation was conducted by means of a leave-one-out cross-validation over the calibration period. The results show a good model performance for selected months, with a mean coefficient of variation (CV) around 0.6 for validation period, being particularly robust over the western and central sectors of IP, while the predicted values in the Mediterranean and northern coastal areas are less acute. We show for three long stations (Lisbon, Madrid and Valencia) the comparison between model and original data as an example to how these models can be used in order to obtain monthly precipitation fields since the 1850s over most of IP for this very high density network.

  10. High resolution reconstruction of monthly autumn and winter precipitation of Iberian Peninsula for last 150 years.

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; González-Hidalgo, J. C.; Ramos, A.

    2012-04-01

    Precipitation over Iberian Peninsula (IP) presents large values of interannual variability and large spatial contrasts between wet mountainous regions in the north and dry regions in the southern plains. Unlike other European regions, IP was poorly monitored for precipitation during 19th century. Here we present a new approach to fill this gap. A set of 26 atmospheric circulation weather types (Trigo R.M. and DaCamara C.C., 2000) derived from a recent SLP dataset, the EMULATE (European and North Atlantic daily to multidecadal climate variability) Project, was used to reconstruct Iberian monthly precipitation from October to March during 1851-1947. Principal Component Regression Analysis was chosen to develop monthly precipitation reconstruction back to 1851 and calibrated over 1948-2003 period for 3030 monthly precipitation series of high-density homogenized MOPREDAS (Monthly Precipitation Database for Spain and Portugal) database. Validation was conducted over 1920-1947 at 15 key site locations. Results show high model performance for selected months, with a mean coefficient of variation (CV) around 0.6 during validation period. Lower CV values were achieved in western area of IP. Trigo, R. M., and DaCamara, C.C., 2000: "Circulation weather types and their impact on the precipitation regime in Portugal". Int. J. Climatol., 20, 1559-1581.

  11. Development of a Global Historic Monthly Mean Precipitation Dataset

    Institute of Scientific and Technical Information of China (English)

    杨溯; 徐文慧; 许艳; 李庆祥

    2016-01-01

    Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to

  12. Development of a global historic monthly mean precipitation dataset

    Science.gov (United States)

    Yang, Su; Xu, Wenhui; Xu, Yan; Li, Qingxiang

    2016-04-01

    Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to

  13. Tritium time series in precipitation of Rm. Valcea, Romania.

    Science.gov (United States)

    Varlam, Carmen; Duliu, Octavian G; Faurescu, Ionut; Vagner, Irina; Faurescu, Denisa

    2016-01-01

    Following tritium concentration records in precipitation for the period 1999-2013 and tritium concentration behaviour during this period for the Ramnicu Valcea (Rm. Valcea) location, the tritium level of individual precipitations of the late spring and summer for the 2009-2013 period was investigated. Despite good correlation between monthly mean tritium concentrations and monthly mean precipitations over the 15-year period of observations (Pearson coefficient 0.87), the individual precipitations had no linear correlation between the tritium concentration and the amount of precipitation.

  14. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  15. Interpolation of monthly precipitation amounts in mountainous catchments with sparse precipitation networks

    Directory of Open Access Journals (Sweden)

    Alexandra P Jacquin

    2013-12-01

    Full Text Available Most studies dealing with the interpolation of precipitation gauge data have focused in areas where the meteorological network is relatively dense, implying that it is still unknown what interpolation methods are more appropriate in the case of mountain catchments with scarce gauge data. This study evaluates the applicability of Kriging with External Drift (KED and the Optimal Interpolation Method (OIM for interpolation of monthly precipitation in these situations. Thiessen Polygons (TP are used as benchmark. The study area corresponds to the upper subcatchment of Aconcagua River, Central Chile. Cross-validation experiments revealed that all these methods show similar performance in the lower zone of the study area, but OIM outperforms TP and KED at high elevations. Optimal Interpolation Method generally produces the smallest bias in the Andean zone of the study area, with mean errors whose absolute values are smaller than 9% of mean monthly precipitation. From April to September, the root mean squared errors of OIM are between 14% and 33% smaller than those of TP and KED in this zone. Although KED achieves a good agreement to mean monthly values at high elevations (mean errors smaller than 19% in absolute value, its performance is comparable to that of TP in terms of root mean squared errors. Long-term water balances did not provide evidence against the applicability of KED and OIM. Nevertheless, the results of the cross-validation experiments indicate that OIM is a better alternative than KED for the interpolation of monthly precipitation in the study area.

  16. Analysis of long time Standard Precipitation Index series to detect the drought frequency changes in Hungary

    Science.gov (United States)

    Lakatos, M.; Bihari, Z.; Szentimrey, T.

    2010-09-01

    The precipitation has large temporal and spatial variability in Hungary. Monthly precipitation sum could be zero in any month in a year and at any place of the country, but it can be near or even above 200 mm as well. The year-to-year variability of the annual precipitation amount is high, so it has large influence on the agriculture and economy. The long-term precipitation trend shows decreasing pattern from the beginning of the last century. Calculation of the several drought indices is a commonly used method to detect the severe drought events. Analysis of the SPI (Standard Precipitation Index) series is performed in this study. In climate studies the homogeneity of data series is of primary importance, since the SPI (Standard Precipitation Index) drought index calculation based on long time data series. That is homogenized daily and monthly precipitation amounts are used for SPI calculations in Hungary. Homogenization and complementing of precipitation data is performed by method the MASH (Multiple Analysis of Series for Homogenization; Szentimrey, 1999). Usually the station data series in Hungary are homogenized once in a year, at the beginning of each year after collecting the data also from all traditional precipitation stations. The SPI calculator which is offered on the project page of DMCSEE (Drought Management Centre for Southeastern Europe) is applied for SPI calculations in Hungary. In the drought mapping there are two ways: the first is when the SPI values are calculated in each grid point after gridding (by gridding part of MISH (Meteorological Interpolation based on Surface Homogenized Data Basis; Szentimrey, Bihari, 2007)) the station precipitation data, and then SPI values at all the grid point covering Hungary is visualized; the second one is when the station based SPI values are interpolated by method MISH (Meteorological Interpolation based on Surface Homogenized Data Basis; Szentimrey, Bihari, 2007) and then visualize them with a GIS mapping

  17. Monthly Mean Precipitation Sums at Russian Arctic Stations, 1966-1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly mean precipitation sums from Russian arctic stations. Precipitation measurements were acquired using a Tretyakov precipitation gauge....

  18. Missing data analysis and homogeneity test for Turkish precipitation series

    Indian Academy of Sciences (India)

    Mahmut Firat; Fatih Dikbas; A Cem Koç; Mahmud Gungor

    2010-12-01

    In this study, missing value analysis and homogeneity tests were conducted for 267 precipitation stations throughout Turkey. For this purpose, the monthly and annual total precipitation records at stations operated by Turkish State Meteorological Service (DMI) from 1968 to 1998 were considered. In these stations, precipitation records for each month was investigated separately and the stations with missing values for too many years were eliminated. The missing values of the stations were completed by Expectation Maximization (EM) method by using the precipitation records of the nearest gauging station. In this analysis, 38 stations were eliminated because they had missing values for more than 5 years, 161 stations had no missing values and missing precipitation values were completed in the remaining 68 stations. By this analysis, annual total precipitation data were obtained by using the monthly values. These data should be hydrologically and statistically reliable for later hydrological, meteorological, climate change modelling and forecasting studies. For this reason, Standard Normal Homogeneity Test (SNHT), (Swed–Eisenhart) Runs Test and Pettitt homogeneity tests were applied for the annual total precipitation data at 229 gauging stations from 1968 to 1998. The results of each of the testing methods were evaluated separately at a significance level of 95% and the inhomogeneous years were determined. With the application of the aforementioned methods, inhomogeneity was detected at 50 stations of which the natural structure was deteriorated and 179 stations were found to be homogeneous.

  19. Seasonality, nonstationarity and the forecasting of monthly time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1991-01-01

    textabstractWe focus on two forecasting models for a monthly time series. The first model requires that the variable is first order and seasonally differenced. The second model considers the series only in its first differences, while seasonality is modeled with a constant and seasonal dummies. A me

  20. Seasonality, nonstationarity and the forecasting of monthly time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1991-01-01

    textabstractWe focus on two forecasting models for a monthly time series. The first model requires that the variable is first order and seasonally differenced. The second model considers the series only in its first differences, while seasonality is modeled with a constant and seasonal dummies. A me

  1. Seasonality, nonstationarity and the forecasting of monthly time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1991-01-01

    textabstractWe focus on two forecasting models for a monthly time series. The first model requires that the variable is first order and seasonally differenced. The second model considers the series only in its first differences, while seasonality is modeled with a constant and seasonal dummies. A

  2. Climate Prediction Center (CPC) One Month Probabilistic Precipitation Outlook for the Contiguous United States and Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) issues a probabilistic one-month precipitation outlook for the United States twice a month. CPC issues an initial monthly outlook...

  3. Climate Prediction Center (CPC)Monthly Precipitation Reconstruction (PREC) Spatial Resolution of 2.5 degree

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  4. Climate Prediction Center (CPC)Monthly Precipitation Reconstruction (PREC) at Spatial Resolution of 1 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  5. Absolute homogeneity test of Kelantan catchment precipitation series

    Science.gov (United States)

    Ros, Faizah Che; Tosaka, Hiroyuki; Sasaki, Kenji; Sidek, Lariyah Mohd; Basri, Hidayah

    2015-05-01

    Along the Kelantan River in north east of Malaysia Peninsular, there are several areas often damaged by flood during north-east monsoon season every year. It is vital to predict the expected behavior of precipitation and river runoff for reducing flood damages of the area under rapid urbanization and future planning. Nevertheless, the accuracy and reliability of any hydrological and climate studies vary based on the quality of the data used. The factors causing variations on these data are the method of gauging and data collection, stations environment, station relocation and the reliability of the measurement tool affect the homogenous precipitation records. Hence in this study, homogeneity of long precipitation data series is checked via the absolute homogeneity test consisting of four methods namely Pettitt test, standard normal homogeneity test (SNHT), Buishand range test and Von Neumann ratio test. For homogeneity test, the annual rainfall amount from the daily precipitation records at stations located in Kelantan operated by Department of Irrigation and Drainage Malaysia were considered in this study. The missing values were completed using the correlation and regression and inverse distance method. The data network consists of 103 precipitation gauging stations where 31 points are inactive, 6 gauging stations had missing precipitation values more than five years in a row and 16 stations have records less than twenty years. So total of 50 stations gauging stations were evaluated in this analysis. With the application of the mentioned methods and further graphical analysis, inhomogeneity was detected at 4 stations and 46 stations are found to be homogeneous.

  6. Monthly Total Precipitation Observation for Climate Prediction Center (CPC)Forecast Divisions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This ASCII dataset contains monthly total precipitation for 102 Forecast Divisions within the conterminous U.S. It is derived from the monthly NCDC climate division...

  7. Temporal synthesis of long continuous precipitation series for unobserved locations

    Science.gov (United States)

    Callau Poduje, Ana Claudia; Leimbach, Sören; Haberlandt, Uwe

    2017-04-01

    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. Unfortunately, available observations with such resolutions are usually limited and it is therefore convenient to develop a stochastic precipitation model to generate long time series in locations without observations. The precipitation model proposed is based on an alternating renewal framework and consists of two structures: external and internal. The components of these structures are described by probability distributions. Different regionalization methods based on descriptors of the locations are presented which are used for estimating the components of the external structure. A multiple linear regression analysis is performed based on the descriptors for this purpose. Alternatively, the descriptors are used for clustering stations and performing regional frequency analysis based on each cluster. Descriptors are as well combined using vine-copulas which result in high flexibility to reproduce different dependence structures. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to test the different methods. A total of 81 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used for this purpose. The length of the available data ranges from 6 to 20 years. The descriptors include information available for the whole country like: position, topography and hydrometeorologic characteristics which are estimated from long term observations. The methods are compared by cross validation of different rain statistics. Given that the model is stochastic the evaluation is performed on the basis of ensembles of many long synthetic time series which are compared with observed ones. Uncertainties are as well considered in the analysis. The results show a good representation of the seasonal variability, good performance in reproducing the sample

  8. A 305 year monthly rainfall series for the Island of Ireland (1711-2016)

    Science.gov (United States)

    Murphy, Conor; Burt, Tim P.; Broderick, Ciaran; Duffy, Catriona; Macdonald, Neil; Matthews, Tom; McCarthy, Mark P.; Mullan, Donal; Noone, Simon; Ryan, Ciara; Thorne, Peter; Walsh, Seamus; Wilby, Robert L.

    2017-04-01

    This paper derives a continuous 305-year monthly rainfall series for the Island of Ireland (IoI) for the period 1711-2016. Two key data sources are employed: i) a previously unpublished UK Met Office Note which compiled annual rainfall anomalies and corresponding monthly per mille amounts from weather diaries and early observational records for the period 1711-1977; and ii) a long-term, homogenised monthly IoI rainfall series for the period 1850-2016. Using estimates of long-term average precipitation sampled from the quality assured series, the full record is reconstituted and insights drawn regarding notable periods and the range of climate variability and change experienced. Consistency with other long records for the region is examined, including: the England and Wales Precipitation series (EWP; 1766-2016); the early EWP Glasspoole series (1716-1765) and the Central England Temperature series (CET; 1711-2016). Strong correspondence between all records is noted from 1780 onwards. While disparities are evident between the early EWP and Ireland series, the latter shows strong decadal consistency with CET throughout the record. In addition, independent, early observations from Cork and Dublin, along with available documentary sources, corroborate the derived series and add confidence to our reconstruction. The new IoI rainfall record reveals that the wettest decades occurred in the early 18th Century, despite the fact that IoI has experienced a long-term winter wetting trend consistent with climate model projections. These exceptionally wet winters of the 1720s and 1730s were concurrent with almost unprecedented warmth in the CET, glacial advance throughout Scandinavia, and glacial retreat in West Greenland, consistent with a wintertime NAO-type forcing. Our study therefore demonstrates the value of long-term observational records for providing insight to the natural climate variability of the North Atlantic region.

  9. HOMPRA Europe - A gridded precipitation data set from European homogenized time series

    Science.gov (United States)

    Rustemeier, Elke; Kapala, Alice; Meyer-Christoffer, Anja; Finger, Peter; Schneider, Udo; Venema, Victor; Ziese, Markus; Simmer, Clemens; Becker, Andreas

    2017-04-01

    Reliable monitoring data are essential for robust analyses of climate variability and, in particular, long-term trends. In this regard, a gridded, homogenized data set of monthly precipitation totals - HOMPRA Europe (HOMogenized PRecipitation Analysis of European in-situ data)- is presented. The data base consists of 5373 homogenized monthly time series, a carefully selected subset held by the Global Precipitation Climatology Centre (GPCC). The chosen series cover the period 1951-2005 and contain less than 10% missing values. Due to the large number of data, an automatic algorithm had to be developed for the homogenization of these precipitation series. In principal, the algorithm is based on three steps: * Selection of overlapping station networks in the same precipitation regime, based on rank correlation and Ward's method of minimal variance. Since the underlying time series should be as homogeneous as possible, the station selection is carried out by deterministic first derivation in order to reduce artificial influences. * The natural variability and trends were temporally removed by means of highly correlated neighboring time series to detect artificial break-points in the annual totals. This ensures that only artificial changes can be detected. The method is based on the algorithm of Caussinus and Mestre (2004). * In the last step, the detected breaks are corrected monthly by means of a multiple linear regression (Mestre, 2003). Due to the automation of the homogenization, the validation of the algorithm is essential. Therefore, the method was tested on artificial data sets. Additionally the sensitivity of the method was tested by varying the neighborhood series. If available in digitized form, the station history was also used to search for systematic errors in the jump detection. Finally, the actual HOMPRA Europe product is produced by interpolation of the homogenized series onto a 1° grid using one of the interpolation schems operationally at GPCC

  10. Stochastic modelling of spatially and temporally consistent daily precipitation time-series over complex topography

    Science.gov (United States)

    Keller, D. E.; Fischer, A. M.; Frei, C.; Liniger, M. A.; Appenzeller, C.; Knutti, R.

    2014-07-01

    Many climate impact assessments over topographically complex terrain require high-resolution precipitation time-series that have a spatio-temporal correlation structure consistent with observations. This consistency is essential for spatially distributed modelling of processes with non-linear responses to precipitation input (e.g. soil water and river runoff modelling). In this regard, weather generators (WGs) designed and calibrated for multiple sites are an appealing technique to stochastically simulate time-series that approximate the observed temporal and spatial dependencies. In this study, we present a stochastic multi-site precipitation generator and validate it over the hydrological catchment Thur in the Swiss Alps. The model consists of several Richardson-type WGs that are run with correlated random number streams reflecting the observed correlation structure among all possible station pairs. A first-order two-state Markov process simulates intermittence of daily precipitation, while precipitation amounts are simulated from a mixture model of two exponential distributions. The model is calibrated separately for each month over the time-period 1961-2011. The WG is skilful at individual sites in representing the annual cycle of the precipitation statistics, such as mean wet day frequency and intensity as well as monthly precipitation sums. It reproduces realistically the multi-day statistics such as the frequencies of dry and wet spell lengths and precipitation sums over consecutive wet days. Substantial added value is demonstrated in simulating daily areal precipitation sums in comparison to multiple WGs that lack the spatial dependency in the stochastic process: the multi-site WG is capable to capture about 95% of the observed variability in daily area sums, while the summed time-series from multiple single-site WGs only explains about 13%. Limitation of the WG have been detected in reproducing observed variability from year to year, a component that has

  11. Reanalysis of monthly precipitation fields in Colombian territory

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Hurtado-Montoya

    2014-01-01

    Full Text Available Se presenta la reconstrucción de los campos históricos de precipitación mensual en Colombia para el periodo 1975 – 2006, a una resolución espacial de 5 minutos de arco (aproximadamente 9,3 km. Cada uno de los 384 mapas fue estimado mediante la integración óptima de la información disponible de pluviómetros, con las series mensuales de campos distribuidos provenientes de mediciones satelitales y con estudios globales de reconstrucción disponibles en diferentes periodos de tiempo y a variadas resoluciones espaciales. Para incorporar el efecto de la topografía se desarrolló una variante del modelo PRISM [1] que tiene en cuenta la existencia de lo óptimos pluviográficos, ausentes en el modelo original por ser esta una característica propia de las zonas tropicales. Como el efecto topográfico es de mayor relevancia para explicar la variabilidad espacial de la lluvia, se dividió la zona de estudio en regiones homogéneas para representar adecuadamente la presencia del óptimo pluviográfico y la variabilidad temporal impuesta por la zona de convergencia intertropical (ZCIT.

  12. A regional GIS-based model for reconstructing natural monthly streamflow series at ungauged sites

    Science.gov (United States)

    Pumo, Dario; Lo Conti, Francesco; Viola, Francesco; Noto, Leonardo V.

    2016-04-01

    Several hydrologic applications require reliable estimates of monthly runoff in river basins to face the widespread lack of data, both in time and in space. The main aim of this work is to propose a regional model for the estimation of monthly natural runoff series at ungauged sites, analyzing its applicability, reliability and limitations. A GIS (Geographic Information System) based model is here developed and applied to the entire region of Sicily (Italy). The core of this tool is a regional model for the estimation of monthly natural runoff series, based on a simple modelling structure, consisting of a regression based rainfall-runoff model with only four parameters. The monthly runoff is obtained as a function of precipitation and mean temperature at the same month and runoff at the previous month. For a given basin, the four model parameters are assessed by specific regional equations as a function of some easily measurable geomorphic and climate basins' descriptors. The model is calibrated by a "two-step" procedure applied to a number of gauged basins over the region. The first step is aimed at the identification of a set of parameters optimizing model performances at the level of single basin. Such "optimal" parameters sets, derived for each calibration basin, are successively used inside a regional regression analysis, performed at the second step, by which the regional equations for model parameters assessment are defined and calibrated. All the gauged watersheds across the Sicily have been analyzed, selecting 53 basins for model calibration and using other 6 basins exclusively for validation purposes. Model performances, quantitatively evaluated considering different statistical indexes, demonstrate a relevant model ability in capturing the observed hydrological response at both the monthly level and higher time scales (seasonal and annual). One of the key features related to the proposed methodology is its easy transferability to other arid and semiarid

  13. Monthly Precipitation Input Data for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly precipitation for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an approximate 50,000...

  14. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  15. Climate Prediction Center (CPC) Monthly U.S. Selected Cities Precipitation Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly U.S. reported precipitation amounts in hundredths of inches (ex 100 is 1.00 inches) generated from the GTS metar(hourly) and synoptic(6-hourly)observations...

  16. Generation of Natural Runoff Monthly Series at Ungauged Sites Using a Regional Regressive Model

    Directory of Open Access Journals (Sweden)

    Dario Pumo

    2016-05-01

    Full Text Available Many hydrologic applications require reliable estimates of runoff in river basins to face the widespread lack of data, both in time and in space. A regional method for the reconstruction of monthly runoff series is here developed and applied to Sicily (Italy. A simple modeling structure is adopted, consisting of a regression-based rainfall–runoff model with four model parameters, calibrated through a two-step procedure. Monthly runoff estimates are based on precipitation, temperature, and exploiting the autocorrelation with runoff at the previous month. Model parameters are assessed by specific regional equations as a function of easily measurable physical and climate basin descriptors. The first calibration step is aimed at the identification of a set of parameters optimizing model performances at the level of single basin. Such “optimal” sets are used at the second step, part of a regional regression analysis, to establish the regional equations for model parameters assessment as a function of basin attributes. All the gauged watersheds across the region have been analyzed, selecting 53 basins for model calibration and using the other six basins exclusively for validation. Performances, quantitatively evaluated by different statistical indexes, demonstrate relevant model ability in reproducing the observed hydrological time-series at both the monthly and coarser time resolutions. The methodology, which is easily transferable to other arid and semi-arid areas, provides a reliable tool for filling/reconstructing runoff time series at any gauged or ungauged basin of a region.

  17. Monthly hail time series analysis related to agricultural insurance

    Science.gov (United States)

    Tarquis, Ana M.; Saa, Antonio; Gascó, Gabriel; Díaz, M. C.; Garcia Moreno, M. R.; Burgaz, F.

    2010-05-01

    Hail is one of the mos important crop insurance in Spain being more than the 50% of the total insurance in cereal crops. The purpose of the present study is to carry out a study about the hail in cereals. Four provinces have been chosen, those with the values of production are higher: Burgos and Zaragoza for the wheat and Cuenca and Valladolid for the barley. The data that we had available for the study of the evolution and intensity of the damages for hail includes an analysis of the correlation between the ratios of agricultural insurances provided by ENESA and the number of days of annual hail (from 1981 to 2007). At the same time, several weather station per province were selected by the longest more complete data recorded (from 1963 to 2007) to perform an analysis of monthly time series of the number of hail days (HD). The results of the study show us that relation between the ratio of the agricultural insurances and the number of hail days is not clear. Several observations are discussed to explain these results as well as if it is possible to determinte a change in tendency in the HD time series.

  18. Improvement of ECMWF monthly forecasts of precipitation over France with an analog method

    Science.gov (United States)

    Berthelot, M.; Dubus, L.; Gailhard, J.

    2010-09-01

    Optimal operation of hydro-power plants requires accurate forecasts of precipitation which are then integrated into hydrological models to forecast river flows and water volumes in reservoirs. Precipitation is a difficult parameter to forecast, especially at long lead times (monthly and over) one of the reasons being the too coarse resolution of numerical weather prediction systems. In this study, we evaluate ECMWF's monthly forecasts of precipitation over 9 important basins in France. The deterministic approach shows that forecasts are useless over week 1. Using the probabilistic approach allows to get useful information for some events (lower and upper terciles for instance), up to week 3, but the overall scores are quite low, and hardly better than climatological scores. In a second step, EDF's analog method, currently used in operations for D+7 forecasts, has been adapted to ECWMF's monthly forecasts. It uses Z700 and Z1000 fields over North Atlantic and Europe to get local precipitations. For the nine catchments studied here and for the four weeks, results show an overall improvement of analog precipitation forecasts compared to raw forecasts. Improvement is also identified with respect to climatology in more than half of the catchments. The prediction skill is mostly pronounced for extreme events (low and heavy precipitations). The analog method thus presents significant performance, suited for operational use. Improvements can also be expected with some optimization of the method (mix of predictors, new similarity criterion…)

  19. RECONSTRUCTION OF PRECIPITATION SERIES AND ANALYSIS OF CLIMATE CHANGE OVER PAST 500 YEARS IN NORTHERN CHINA

    Institute of Scientific and Technical Information of China (English)

    RONG Yan-shu; TU Qi-pu

    2005-01-01

    It is important and necessary to get a much longer precipitation series in order to research features of drought/flood and climate change.Based on dryness and wetness grades series of 18 stations in Northern China of 533 years from 1470 to 2002, the Moving Cumulative Frequency Method (MCFM) was developed, moving average precipitation series from 1499 to 2002 were reconstructed by testing three kinds of average precipitation, and the features of climate change and dry and wet periods were researched by using reconstructed precipitation series in the present paper.The results showed that there were good relationship between the reconstructed precipitation series and the observation precipitation series since 1954 and their relative root-mean-square error were below 1.89%, that the relation between reconstructed series and the dryness and wetness grades series were nonlinear and this nonlinear relation implied that reconstructed series were reliable and could became foundation data for researching evolution of the drought and flood.Analysis of climate change upon reconstructed precipitation series revealed that although drought intensity of recent dry period from middle 1970s of 20th century until early 21st century was not the strongest in historical climate of Northern China, intensity and duration of wet period was a great deal decreasing and shortening respectively, climate evolve to aridification situation in Northern China.

  20. Interpolation of monthly precipitation in mountainous areas with limited gauge data using Universal Kriging

    Science.gov (United States)

    Paz Jacquin, Alexandra

    2013-04-01

    Because orography can strongly affect the spatial distribution of precipitation, precipitation fields in mountainous areas are not likely to be spatially homogenous, as traditional interpolation methods used in hydrology, such as Thiessen Polygons, implicitly assume. Universal Kriging (UKr) is a geostatistical interpolation method that is able to account for the existence of an external drift, i.e. a large-scale trend in the long-term expectation of precipitation. The function m that defines precipitation expectation at each location x is supposed to be a linear combination of basis functions. The application of UKr requires a prior assumption on the nature of these basis functions, a decision that may be difficult if the precipitation network is too sparse to confidently prescribe a choice merely based on regression analysis. This study describes the process of selection of an appropriate external drift model for the application of UKr to the interpolation of monthly precipitation in the Andes of Central Chile, a region where precipitation is strongly influenced by elevation and very limited gauge data is available. The study area is located in the Aconcagua River catchment. Monthly data from nine stations in the period April 1965-March 2001 are used. These stations are located between 640[m.a.s.l.] and 2765[m.a.s.l.] Considering that precipitation in the area is seasonal with respect to both precipitation amounts and their spatial dependence structure, as indicated by the variograms of monthly precipitation, data from each month of the year are treated separately. In order to account for the relationship between long-term mean monthly precipitation and elevation z shown by field data, the following external drift models m(z(x)) are tested: linear, parabolic and logarithmic trend models. The goodness of fit of precipitation estimates is evaluated by means of leave one out cross validation experiments. Root mean squared error and mean error statistics are

  1. 118 anos de dados mensais do Índice Padronizado de Precipitação: série meteorológica de Campinas, estado de São Paulo 118 years of monthly Standardized Precipitation Index data: meteorological series of Campinas, state of São Paulo

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2011-03-01

    Full Text Available O Índice Padronizado de Precipitação (SPI é utilizado em programas estaduais e nacionais no monitoramento das condições de seca de diversas regiões brasileiras. Com base na hipótese de que a análise de longas séries temporais do SPI pode auxiliar a adoção de políticas de mitigação e combate a essa anomalia climática, o objetivo desse trabalho foi analisar a variabilidade do SPI mensal, na localidade de Campinas-SP, entre os anos de 1890 a 2007. Por meio de análises espectrais e testes não paramétricos verificou-se uma variabilidade na escala de três a quatro anos. Contudo, não foi possível observar marcante influência do fenômeno El Niño/Oscilação Sul nas condições mensais de variabilidade climática na localidade de Campinas. Com respeito à tendência de longo prazo, enquanto uma tendência de intensificação nas condições de déficit de precipitação pluvial foi detectada em agosto, nos demais meses não houve alterações significativas. Sob o ponto de vista acadêmico o tratamento probabilístico e padronizado dos déficits/excesso de precipitação pluvial empregado no cálculo do SPI, o torna um interessante índice alternativo na investigação de forçantes climáticas condicionantes/moduladoras do clima de determinada região.The Standard Precipitation Index (SPI is used in state and national monitoring programs of the drought conditions in several Brazilian regions. Based on the hypothesis that the analysis of long term SPI time series might help on the adoption of policies of mitigation and facing climate anomalies, this work aims to analyze the variability of monthly SPI, in Campinas (SP during the years from 1890 to 2007. From spectral analyses and non-parametric tests, a variability of three to four years scale was noted for this index. However, a remarkable influence of the El Niño/Southern Oscillation on the variability of monthly climate conditions in Campinas was not seen. Concerning the long

  2. Statistical significance of trends in monthly heavy precipitation over the US

    KAUST Repository

    Mahajan, Salil

    2011-05-11

    Trends in monthly heavy precipitation, defined by a return period of one year, are assessed for statistical significance in observations and Global Climate Model (GCM) simulations over the contiguous United States using Monte Carlo non-parametric and parametric bootstrapping techniques. The results from the two Monte Carlo approaches are found to be similar to each other, and also to the traditional non-parametric Kendall\\'s τ test, implying the robustness of the approach. Two different observational data-sets are employed to test for trends in monthly heavy precipitation and are found to exhibit consistent results. Both data-sets demonstrate upward trends, one of which is found to be statistically significant at the 95% confidence level. Upward trends similar to observations are observed in some climate model simulations of the twentieth century, but their statistical significance is marginal. For projections of the twenty-first century, a statistically significant upwards trend is observed in most of the climate models analyzed. The change in the simulated precipitation variance appears to be more important in the twenty-first century projections than changes in the mean precipitation. Stochastic fluctuations of the climate-system are found to be dominate monthly heavy precipitation as some GCM simulations show a downwards trend even in the twenty-first century projections when the greenhouse gas forcings are strong. © 2011 Springer-Verlag.

  3. Temporal disaggregation of satellite-derived monthly precipitation estimates and the resulting propagation of error in partitioning of water at the land surface

    Directory of Open Access Journals (Sweden)

    S.A. Margulis

    2001-01-01

    Full Text Available Global estimates of precipitation can now be made using data from a combination of geosynchronous and low earth-orbit satellites. However, revisit patterns of polar-orbiting satellites and the need to sample mixed-clouds scenes from geosynchronous satellites leads to the coarsening of the temporal resolution to the monthly scale. There are prohibitive limitations to the applicability of monthly-scale aggregated precipitation estimates in many hydrological applications. The nonlinear and threshold dependencies of surface hydrological processes on precipitation may cause the hydrological response of the surface to vary considerably based on the intermittent temporal structure of the forcing. Therefore, to make the monthly satellite data useful for hydrological applications (i.e. water balance studies, rainfall-runoff modelling, etc., it is necessary to disaggregate the monthly precipitation estimates into shorter time intervals so that they may be used in surface hydrology models. In this study, two simple statistical disaggregation schemes are developed for use with monthly precipitation estimates provided by satellites. The two techniques are shown to perform relatively well in introducing a reasonable temporal structure into the disaggregated time series. An ensemble of disaggregated realisations was routed through two land surface models of varying complexity so that the error propagation that takes place over the course of the month could be characterised. Results suggest that one of the proposed disaggregation schemes can be used in hydrological applications without introducing significant error. Keywords: precipitation, temporal disaggregation, hydrological modelling, error propagation

  4. An improved parameterization of the mean monthly precipitation in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V. M; Oda, B; Adem, J [Centro de Ciencias de la Atmosfera, Mexico, D.F. (Mexico)

    2001-01-01

    A mean monthly precipitation parameterization is given. It is developed by a multiple linear regression equation in terms of the temperature and the horizontal wind. Using a period of eleven years, from January 1982 to December 1992, for the anomalies of the mean monthly precipitation, temperature, zonal and meridional wind, and vorticity of the wind as variable data, we have obtained a skill above 80% in the estimation of the mean monthly precipitation anomalies with the Adems Thermodynamic Model, or with any others energy balance or general circulation models, as well as to compute monthly precipitation anomalies from observed anomalies of temperature and horizontal wind data. [Spanish] Se presenta una parametrizacion de la precipitacion media mensual desarrollada en una ecuacion de regresion linear multiple en funcion de la temperatura y del viento horizontal. En el calculo de los coeficientes de la ecuacion se usaron los datos de un periodos de once anos, de enero de 1982 a diciembre de 1992, de las anomalias medias mensuales de la precipitacion con el modelo termodinamico de Adem, u otros modelos de balance de energia o de circulacion general de la atmosfera, asi como para calcular anomalias mensuales de precipitacion a partir de datos de anomalias de temperatura y viento observados.

  5. Climate Prediction Center (CPC) Monthly Precipitation Reconstruction of Ocean(PRECO)at Spatial Resolution of 2.5 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  6. Climate Prediction Center(CPC) Monthly Precipitation Reconstruction (PREC)at Spatial Resolution of 0.5 degree.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This global monthly precipitation analysis is called the Climate Prediction Center (CPC) Precipitation Reconstruction (PREC). This analysis consists of two...

  7. Spatial analysis of precipitation time series over the Upper Indus Basin

    Science.gov (United States)

    Latif, Yasir; Yaoming, Ma; Yaseen, Muhammad

    2016-12-01

    The upper Indus basin (UIB) holds one of the most substantial river systems in the world, contributing roughly half of the available surface water in Pakistan. This water provides necessary support for agriculture, domestic consumption, and hydropower generation; all critical for a stable economy in Pakistan. This study has identified trends, analyzed variability, and assessed changes in both annual and seasonal precipitation during four time series, identified herein as: (first) 1961-2013, (second) 1971-2013, (third) 1981-2013, and (fourth) 1991-2013, over the UIB. This study investigated spatial characteristics of the precipitation time series over 15 weather stations and provides strong evidence of annual precipitation by determining significant trends at 6 stations (Astore, Chilas, Dir, Drosh, Gupis, and Kakul) out of the 15 studied stations, revealing a significant negative trend during the fourth time series. Our study also showed significantly increased precipitation at Bunji, Chitral, and Skardu, whereas such trends at the rest of the stations appear insignificant. Moreover, our study found that seasonal precipitation decreased at some locations (at a high level of significance), as well as periods of scarce precipitation during all four seasons. The observed decreases in precipitation appear stronger and more significant in autumn; having 10 stations exhibiting decreasing precipitation during the fourth time series, with respect to time and space. Furthermore, the observed decreases in precipitation appear robust and more significant for regions at high elevation (>1300 m). This analysis concludes that decreasing precipitation dominated the UIB, both temporally and spatially including in the higher areas.

  8. Predicting monthly precipitation along coastal Ecuador: ENSO and transfer function models

    Science.gov (United States)

    de Guenni, Lelys B.; García, Mariangel; Muñoz, Ángel G.; Santos, José L.; Cedeño, Alexandra; Perugachi, Carlos; Castillo, José

    2017-08-01

    It is well known that El Niño-Southern Oscillation (ENSO) modifies precipitation patterns in several parts of the world. One of the most impacted areas is the western coast of South America, where Ecuador is located. El Niño events that occurred in 1982-1983, 1987-1988, 1991-1992, and 1997-1998 produced important positive rainfall anomalies in the coastal zone of Ecuador, bringing considerable damage to livelihoods, agriculture, and infrastructure. Operational climate forecasts in the region provide only seasonal scale (e.g., 3-month averages) information, but during ENSO events it is key for decision-makers to use reliable sub-seasonal scale forecasts, which at the present time are still non-existent in most parts of the world. This study analyzes the potential predictability of coastal Ecuador rainfall at monthly scale. Instead of the discrete approach that considers training models using only particular seasons, continuous (i.e., all available months are used) transfer function models are built using standard ENSO indices to explore rainfall forecast skill along the Ecuadorian coast and Galápagos Islands. The modeling approach considers a large-scale contribution, represented by the role of a sea-surface temperature index, and a local-scale contribution represented here via the use of previous precipitation observed in the same station. The study found that the Niño3 index is the best ENSO predictor of monthly coastal rainfall, with a lagged response varying from 0 months (simultaneous) for Galápagos up to 3 months for the continental locations considered. Model validation indicates that the skill is similar to the one obtained using principal component regression models for the same kind of experiments. It is suggested that the proposed approach could provide skillful rainfall forecasts at monthly scale for up to a few months in advance.

  9. Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Georgiadis, Stylianos; Gregersen, Ida Bülow;

    2017-01-01

    Urban water infrastructure has very long planning horizons, and planning is thus very dependent on reliable estimates of the impacts of climate change. Many urban water systems are designed using time series with a high temporal resolution. To assess the impact of climate change on these systems...... in constructing realistic climate-changed precipitation time series at the sub-hourly scale. In the present study we present a deterministic methodology to perturb historical precipitation time series at the minute scale to reflect non-linear expectations to climate change. The methodology shows good skill......, similarly high-resolution precipitation time series for future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings...

  10. Assessing homogeneity and climate variability of temperature and precipitation series in the capitals of northeastern Brazil

    Science.gov (United States)

    Hänsel, Stephanie; Medeiros, Deusdedit; Matschullat, Jörg; Silva, Isamara; Petta, Reinaldo

    2016-03-01

    A 51-year dataset (1961 to 2011) from nine meteorological stations in the capitals of northeastern Brazil (NEB), with daily data of precipitation totals and of mean, minimum and maximum temperatures, was statistically analyzed for data homogeneity and for signals of climate variability. The hypothesis was explored that a connection exists between inhomogeneities of the time series and the meteorological systems influencing the region. Results of the homogeneity analysis depend on the selected test variable, the test algorithm and the chosen significance level; all more or less subjective choices. Most of the temperature series was classified as "suspect", while most of the precipitation series was categorized as "useful". Displaying and visually checking the time series demonstrates the power of expertise and may allow for a deeper data analysis. Consistent changes in the seasonality of temperature and precipitation emerge over NEB despite manifold breaks in the temperature series. Both series appear to be coupled. The intra-annual temperature and precipitation ranges have increased, along with an intensified seasonal cycle. Temperature mainly increased during DJF, MAM and SON, with decreases in JJA being related to wetter conditions and more frequent heavy precipitation events. Drought conditions mostly increased in SON and DJF, depending on the timing of the local dry season.

  11. Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes

    Science.gov (United States)

    Jomo Danielsen Sørup, Hjalte; Georgiadis, Stylianos; Bülow Gregersen, Ida; Arnbjerg-Nielsen, Karsten

    2017-01-01

    Urban water infrastructure has very long planning horizons, and planning is thus very dependent on reliable estimates of the impacts of climate change. Many urban water systems are designed using time series with a high temporal resolution. To assess the impact of climate change on these systems, similarly high-resolution precipitation time series for future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings in constructing realistic climate-changed precipitation time series at the sub-hourly scale. In the present study we present a deterministic methodology to perturb historical precipitation time series at the minute scale to reflect non-linear expectations to climate change. The methodology shows good skill in meeting the expectations to climate change in extremes at the event scale when evaluated at different timescales from the minute to the daily scale. The methodology also shows good skill with respect to representing expected changes of seasonal precipitation. The methodology is very robust against the actual magnitude of the expected changes as well as the direction of the changes (increase or decrease), even for situations where the extremes are increasing for seasons that in general should have a decreasing trend in precipitation. The methodology can provide planners with valuable time series representing future climate that can be used as input to urban hydrological models and give better estimates of climate change impacts on these systems.

  12. A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China

    Directory of Open Access Journals (Sweden)

    Wenlong Jing

    2016-10-01

    Full Text Available Environmental monitoring of Earth from space has provided invaluable information for understanding land–atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation–land surface characteristics. Daytime land surface temperature, nighttime land surface temperature, and day–night land surface temperature differences were introduced as variables in addition to the Normalized Difference Vegetation Index (NDVI, the Digital Elevation Model (DEM, and geolocation (longitude, latitude. Four machine learning regression algorithms, the classification and regression tree (CART, the k-nearest neighbors (k-NN, the support vector machine (SVM, and random forests (RF, were implemented to downscale monthly TRMM 3B43 V7 precipitation data from 25 km to 1 km over North China for the purpose of comparison of algorithm performance. The downscaled results were validated based on observations from meteorological stations and were also compared to a previous downscaling algorithm. According to the validation results, the RF-based model produced the results with the highest accuracy. It was followed by SVM, CART, and k-NN, but the accuracy of the downscaled results using SVM relied greatly on residual correction. The downscaled results were well correlated with the observations during the year, but the accuracies were relatively lower in July to September. Downscaling errors increase as monthly total precipitation increases, but the RF model was less affected by this proportional effect between errors and observation compared with the other algorithms. The variable importances of the land surface temperature (LST feature variables were higher than those of NDVI, which indicates the significance of considering the precipitation–land surface temperature

  13. A study of regional trends in annual and seasonal precipitation and runoff series

    Energy Technology Data Exchange (ETDEWEB)

    Tveito, O.E.; Hisdal, H.

    1994-03-10

    In this study long and homogeneous time series of runoff and precipitation are studied to identify variations in time and space. The method of empirical orthogonal functions (EOF-method) is applied. Both annual observations, smoothed (using Gauss filter) and seasonal values are analyzed. The analysis shows that the temporal variations in runoff and precipitation coincide. The deviations occurring in the seasonal values are caused by snow accumulation and snow melt. In the filtered series temporal trends are found. A comparison between the different normal periods has been carried out for precipitation. The 1900-30 and 1960-90 periods differ from the 1930-60 period. This may be caused by different weather types dominating the different periods. The different weather types are reflected in different empirical orthogonal functions. This is verified by regional studies. The coinciding patterns in runoff and precipitation are important aspects in climate studies and for extrapolation purposes. 11 refs., 20 figs., 1 tab.

  14. Mapping the mean monthly precipitation of a small island using kriging with external drifts

    Science.gov (United States)

    Cantet, Philippe

    2015-09-01

    This study focuses on the spatial distribution of mean annual and monthly precipitation in a small island (1128 km2) named Martinique, located in the Lesser Antilles. Only 35 meteorological stations are available on the territory, which has a complex topography. With a digital elevation model (DEM), 17 covariates that are likely to explain precipitation were built. Several interpolation methods, such as regression-kriging (MLRK, PCRK,and PLSK) and external drift kriging (EDK) were tested using a cross-validation procedure. For the regression methods, predictors were chosen by established techniques whereas a new approach is proposed to select external drifts in a kriging which is based on a stepwise model selection by the Akaike Information Criterion (AIC). The prediction accuracy was assessed at validation sites with three different skill scores. Results show that using methods with no predictors such as inverse distance weighting (IDW) or universal kriging (UK) is inappropriate in such a territory. EDK appears to outperform regression methods for any criteria, and selecting predictors by our approach improves the prediction of mean annual precipitation compared to kriging with only elevation as drift. Finally, the predicting performance was also studied by varying the size of the training set leading to less conclusive results for EDK and its performance. Nevertheless, the proposed method seems to be a good way to improve the mapping of climatic variables in a small island.

  15. Modeling climate change impacts on combined sewer overflow using synthetic precipitation time series.

    Science.gov (United States)

    Bendel, David; Beck, Ferdinand; Dittmer, Ulrich

    2013-01-01

    In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations).

  16. Perturbing high-resolution precipitation time series to represent future climates

    Science.gov (United States)

    Jomo Danielsen Sørup, Hjalte; Arnbjerg-Nielsen, Karsten

    2016-04-01

    Climate change impact water management worldwide as the water cycle is embedded in the climate system. For urban infrastructure the time resolution of precipitation data needed for design and planning (minutes) is much finer than what is normally provided by climate models (hourly to daily). Thus, a lot of effort is put into giving reliable estimates of what the expected change in precipitation will be at these fine scales. The relevant urban design criteria span from the minute scale up to yearly water balance scale and time series that show realistic changes across these scales and all those in-between are needed. Generally, fine resolution precipitation time series for future climates do not exist and a multitude of statistical approaches exist to try to overcome this problem. RCM outputs must be downscaled to higher spatial and temporal resolution to meet these needs. This is often done by applying weather generators or scaling of model output statistics. Both of these methods have known shortcomings in generating representative time series at the sub-hourly to hourly time scales. In the present study we utilize 1) that we have high resolution precipitation for present climate in the form of observational data, and 2) that we have robust estimates on how precipitation will change due to climate change for all temporal scales. This latter is quantified through change factors which are available for yearly and seasonal precipitation as well as for short term extreme events for a range of return periods. We demonstrate a novel methodology where the regional knowledge about expected changes in precipitation through the use of Intensity-Frequency-Duration (IDF) relationships is used to non-linearly perturb existing precipitation time series at 1-minute resolution to reflect complex expectations to a future changed climate. The methodology process the precipitation time series at event level where individual change factors are calculated based on the actual IDF

  17. Automatic benchmarking of homogenization packages applied to synthetic monthly series within the frame of the MULTITEST project

    Science.gov (United States)

    Guijarro, José A.; López, José A.; Aguilar, Enric; Domonkos, Peter; Venema, Victor; Sigró, Javier; Brunet, Manola

    2017-04-01

    After the successful inter-comparison of homogenization methods carried out in the COST Action ES0601 (HOME), many methods kept improving their algorithms, suggesting the need of performing new inter-comparison exercises. However, manual applications of the methodologies to a large number of testing networks cannot be afforded without involving the work of many researchers over an extended time. The alternative is to make the comparisons as automatic as possible, as in the MULTITEST project, which, funded by the Spanish Ministry of Economy and Competitiveness, tests homogenization methods by applying them to a large number of synthetic networks of monthly temperature and precipitation. One hundred networks of 10 series were sampled from different master networks containing 100 series of 720 values (60 years times 12 months). Three master temperature networks were built with different degree of cross-correlations between the series in order to simulate conditions of different station densities or climatic heterogeneity. Also three master synthetic networks were developed for precipitation, this time mimicking the characteristics of three different climates: Atlantic temperate, Mediterranean and monsoonal. Inhomogeneities were introduced in every network sampled from the master networks, and all publicly available homogenization methods that we could run in an automatic way were applied to them: ACMANT 3.0, Climatol 3.0, MASH 3.03, RHTestV4, USHCN v52d and HOMER 2.6. Most of them were tested with different settings, and their comparative results can be inspected in box-plot graphics of Root Mean Squared Errors and trend biases computed between the homogenized data and their original homogeneous series. In a first stage, inhomogeneities were applied to the synthetic homogeneous series with five different settings with increasing difficulty and realism: i) big shifts in half of the series; ii) the same with a strong seasonality; iii) short term platforms and local

  18. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Monthly Precipitation, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous...

  19. Mapping the mean monthly precipitation of a small island using kriging with external drifts

    Science.gov (United States)

    Cantet, Philippe

    2017-01-01

    This study focuses on the spatial distribution of mean annual and monthly precipitation in a small island (1128 km2) named Martinique, located in the Lesser Antilles. Only 35 meteorological stations are available on the territory, which has a complex topography. With a digital elevation model (DEM), 17 covariates that are likely to explain precipitation were built. Several interpolation methods, such as regression-kriging (𝖬𝖫𝖱𝖪, 𝖯𝖢𝖱𝖪, and 𝖯𝖫𝖲𝖪) and external drift kriging (𝖤𝖣𝖪) were tested using a cross-validation procedure. For the regression methods, predictors were chosen by established techniques whereas a new approach is proposed to select external drifts in a kriging which is based on a stepwise model selection by the Akaike Information Criterion (AIC). The prediction accuracy was assessed at validation sites with three different skill scores. Results show that using methods with no predictors such as inverse distance weighting (𝖨𝖣𝖶) or universal kriging (𝖴𝖪) is inappropriate in such a territory. 𝖤𝖣𝖪 appears to outperform regression methods for any criteria, and selecting predictors by our approach improves the prediction of mean annual precipitation compared to kriging with only elevation as drift. Finally, the predicting performance was also studied by varying the size of the training set leading to less conclusive results for 𝖤𝖣𝖪 and its performance. Nevertheless, the proposed method seems to be a good way to improve the mapping of climatic variables in a small island.

  20. Global Precipitation Variations and Long-term Changes Derived from the GPCP Monthly Product

    Science.gov (United States)

    Adler, Robert F.; Gu, Guojun; Huffman, George; Curtis, Scott

    2005-01-01

    Global and large regional rainfall variations and possible long-term changes are examined using the 25-year (1979-2004) monthly dataset from the Global Precipitation Climatology Project (GPCP). The emphasis is to discriminate among the variations due to ENSO, volcanic events and possible long-term changes. Although the global change of precipitation in the data set is near zero, the data set does indicate an upward trend (0.13 mm/day/25yr) and a downward trend (-0.06 mm/day/25yr) over tropical oceans and lands (25S-25N), respectively. This corresponds to a 4% increase (ocean) and 2% decrease (land) during this time period. Techniques are applied to attempt to eliminate variations due to ENSO and major volcanic eruptions. The impact of the two major volcanic eruptions over the past 25 years is estimated to be about a 5% reduction in tropical rainfall. The modified data set (with ENSO and volcano effect removed) retains the same approximate change slopes, but with reduced variance leading to significance tests with results in the 90-95% range. Inter-comparisons between the GPCP, SSWI (1988-2004), and TRMM (1998-2004) rainfall products are made to increase or decrease confidence in the changes seen in the GPCP analysis.

  1. Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    DEFF Research Database (Denmark)

    Ivits, Eva; Horion, Stéphanie Marie Anne F; Fensholt, Rasmus

    2014-01-01

    -temporal patterns in time-series of Standardized Precipitation Evapotranspiration Index (SPEI) and FPAR3g anomalies (1982–2011) by using an extended Principal Component Analysis. The ERTs represent region specific spatio-temporal patterns of ecosystems responding to drought or ecosystems with decreasing severity...

  2. Markov chain modeling of precipitation time series: Modeling waiting times between tipping bucket rain gauge tips

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2011-01-01

    A very fine temporal and volumetric resolution precipitation time series is modeled using Markov models. Both 1st and 2nd order Markov models as well as seasonal and diurnal models are investigated and evaluated using likelihood based techniques. The 2nd order Markov model is found to be insignif...

  3. An exploratory study of spatial annual maximum of monthly precipitation in the northern region of Portugal

    Science.gov (United States)

    Prata Gomes, D.; Neves, M. M.; Moreira, E.

    2016-08-01

    Adequately analyzing and modeling the extreme rainfall events is of great importance because of the effects that their magnitude and frequency can have on human life, agricultural productivity and economic aspects, among others. A single extreme event may affect several locations, and their spatial dependence has to be appropriately taken into account. Classical geostatistics is a well-developed field for dealing with location referenced data, but it is largely based on Gaussian processes and distributions, that are not appropriate for extremes. In this paper, an exploratory study of the annual maximum of monthly precipitation recorded in the northern area of Portugal from 1941 to 2006 at 32 locations is performed. The aim of this paper is to apply max-stable processes, a natural extension of multivariate extremes to the spatial set-up, to briefly describe the models considered and to estimate the required parameters to simulate prediction maps.

  4. Time series requirements and trends of temperature and precipitation extremes over Italy

    Science.gov (United States)

    Fioravanti, Guido; Desiato, Franco; Fraschetti, Piero; Perconti, Walter; Piervitali, Emanuela

    2013-04-01

    Extreme climate events have strong impacts on society and economy; accordingly,the knowledge of their trends on long period is crucial for the definition and implementation of a national adaptation strategy to climate change. The Research Programme on Climate Variability and Predictability (CLIVAR) identified a set of temperature and precipitation indices suited to investigate variability and trends of climate extremes. It is well known that extreme indices calculation is more demanding than first and second order statistics are: daily temperature and precipitation data are required and strict constrains in terms of continuity and completeness must be met. In addition, possible dishomogeneities affecting time series must be identified and adjusted before indices calculation. When metadata are not available, statistical methods can provide scientist a relevant support for homogeneity check; however, ad-hoc decision criteria (sometimes subjective) must be applied whenever contradictory results characterize different statistical homogeneity tests. In this work, a set of daily (minimum and maximum) temperature and precipitation time series for the period 1961-2011 were selected in order to guarantee a quite uniform spatial distribution of the stations over the Italian territory and according to the afore-said continuity and completeness criteria. Following the method described by Vincent, the homogeneity check of temperature time series was run at annual level. Two well-documented tests were employed (F-test and T-test), both implemented in the free R-package RHtestV3. The Vincent method was also used for a further investigation of time series homogeneity. Temperature dishomogeneous series were discarded. For precipitation series, no homogeneity check was run. The selected series were employed at daily level to calculate a reliable set of extreme indices. For each station, a linear model was employed for indices trend estimation. Finally, single station results were

  5. A new tool for spatiotemporal pattern decomposition based on empirical mode decomposition: A case study of monthly mean precipitation in Taihu Lake Basin, China

    Science.gov (United States)

    Chenhua, Shen; Yani, Yan

    2017-02-01

    We present a new tool for spatiotemporal pattern decomposition and utilize this new tool to decompose spatiotemporal patterns of monthly mean precipitation from January 1957 to May 2015 in Taihu Lake Basin, China. Our goal is to show that this new tool can mine more hidden information than empirical orthogonal function (EOF). First, based on EOF and empirical mode decomposition (EMD), the time series which is an average over the study region is decomposed into a variety of intrinsic mode functions (IMFs) and a residue by means of EMD. Then, these IMFs are supposed to be explanatory variables and a time series of precipitation in every station is considered as a dependent variable. Next, a linear multivariate regression equation is derived and corresponding coefficients are estimated. These estimated coefficients are physically interpreted as spatial coefficients and their physical meaning is an orthogonal projection between IMF and a precipitation time series in every station. Spatial patterns are presented depending on spatial coefficients. The spatiotemporal patterns include temporal patterns and spatial patterns at various timescales. Temporal pattern is obtained by means of EMD. Based on this temporal pattern, spatial patterns at various timescales will be gotten. The proposed tool has been applied in decomposition of spatiotemporal pattern of monthly mean precipitation in Taihu Lake Basin, China. Since spatial patterns are associated with intrinsic frequency, the new and individual spatial patterns are detected and explained physically. Our analysis shows that this new tool is reliable and applicable for geophysical data in the presence of nonstationarity and long-range correlation and can handle nonstationary spatiotemporal series and has the capacity to extract more hidden time-frequency information on spatiotemporal patterns.

  6. TRMM Science Highlights and Status of Precipitation Estimates on Monthly and Finder Time Scales

    Science.gov (United States)

    Adler, Robert; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has completed three years in orbit. A summary of research highlights will be presented focusing on application of TRMM data to topics ranging from climate analysis, through improving forecasts, to microphysical research. Monthly surface rainfall estimates over the ocean based on different instruments on TRMM currently differ by 20%. The difference is not surprising considering the different type of observations available for the first time from TRMM with both the passive and active microwave sensors. Resolving this difference will strengthen the validity and utility of ocean rainfall estimates and is the topic of ongoing research utilizing various facets of the TRMM validation and field experiment programs. The TRMM rainfall estimates are intercompared among themselves and with other estimates, including those of the standard, monthly Global Precipitation Climatology Project (GPCP) analysis. The GPCP analysis agrees roughly in magnitude with the passive microwave-based TRMM estimates which is not surprising considering GPCP over-ocean estimates are based on passive microwave observations. A three year TRMM rainfall climatology is presented based on the TRMM merged product, including anomaly fields related to the changing ENSO situation during the mission. Results of merging TRMM, other passive microwave observations, and geosynchronous infrared rainfall estimates into a global, tropical 3-hour time resolution analysis will also be described.

  7. United States Historical Climatology Network (US HCN) monthly temperature and precipitation data

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R.C. [ed.] [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment and Resources Center; Boden, T.A. [ed.] [Oak Ridge National Lab., TN (United States); Easterling, D.R.; Karl, T.R.; Mason, E.H.; Hughes, P.Y.; Bowman, D.P. [National Climatic Data Center, Asheville, NC (United States)

    1996-01-11

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have been used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.

  8. Anomalously heavy monthly and seasonal precipitation in the Polish Carpathian Mountains and their foreland during the years 1881-2010

    Science.gov (United States)

    Twardosz, Robert; Cebulska, Marta; Walanus, Adam

    2016-10-01

    The paper addresses the frequency, amount and geographic coverage of anomalously heavy precipitation in southern Poland in relation to atmospheric circulation at the monthly and seasonal scales between 1881 and 2010. The Carpathian Mountains and their foreland were selected for the study as an area known for its high precipitation totals and frequent precipitation-triggered natural disasters, such as floods and landslides. Records from 18 stations were used to identify anomalously heavy precipitation (AHP) defined for the purposes of the study, as the top quartile ( Q 75 %) plus 1.5 times the interquartile gap (H) of the precipitation total ( P ≥ Q 75 % + 1.5 H). The study found that most cases of AHP were recorded at one single station each. This suggests that, in addition, to the influence of circulation, local factors also play a major role in the formation of particularly heavy precipitation. The greatest absolute anomalously high precipitation totals were recorded in two disparate parts of the study area: (i) its western part exposed to wet air masses from over the Atlantic Ocean brought in by the dominant western circulation in the temperate zone and (ii) elevated parts of its south-eastern part. Two months with AHP (AHP months) occurred over the entire area (18 stations) in May 1940 and 2010. The latter case had both the greatest absolute totals (over 500 mm) and relative totals defined as their ratio to the long-term average (500 %), and it triggered a catastrophic flood in the Upper Vistula basin.

  9. Temporal asymmetry in precipitation time series and its influence on flow simulations in combined sewer systems

    Science.gov (United States)

    Müller, Thomas; Schütze, Manfred; Bárdossy, András

    2017-09-01

    A property of natural processes is temporal irreversibility. However, this property cannot be reflected by most statistics used to describe precipitation time series and, consequently, is not considered in most precipitation models. In this paper, a new statistic, the asymmetry measure, is introduced and applied to precipitation enabling to detect and quantify irreversibility. It is used to analyze two different data sets of Singapore and Germany. The data of both locations show a significant asymmetry for high temporal resolutions. The asymmetry is more pronounced for Singapore where the climate is dominated by convective precipitation events. The impact of irreversibility on applications is analyzed on two different hydrological sewer system models. The results show that the effect of the irreversibility can lead to biases in combined sewer overflow statistics. This bias is in the same order as the effect that can be achieved by real time control of sewer systems. Consequently, wrong conclusion can be drawn if synthetic time series are used for sewer systems if asymmetry is present, but not considered in precipitation modeling.

  10. Reconstruction, prediction and simulation of multiple monthly stream-flow series

    Directory of Open Access Journals (Sweden)

    L. TORELLI

    1976-06-01

    Full Text Available The logarithms of monthly stream-flows are usually found to have a Normal distribution. Stream-flow series are auto-correlated up to a given time lag s. Moreover stream-flow series of the same region are cross correlated.

  11. Regression model for generating time series of daily precipitation amounts for climate change impact studies

    Science.gov (United States)

    Buishand, T. A.; Klein Tank, A. M. G.

    1996-05-01

    The precipitation amounts on wet days at De Bilt (the Netherlands) are linked to temperature and surface air pressure through advanced regression techniques. Temperature is chosen as a covariate to use the model for generating synthetic time series of daily precipitation in a CO2 induced warmer climate. The precipitation-temperature dependence can partly be ascribed to the phenomenon that warmer air can contain more moisture. Spline functions are introduced to reproduce the non-monotonous change of the mean daily precipitation amount with temperature. Because the model is non-linear and the variance of the errors depends on the expected response, an iteratively reweighted least-squares technique is needed to estimate the regression coefficients. A representative rainfall sequence for the situation of a systematic temperature rise is obtained by multiplying the precipitation amounts in the observed record with a temperature dependent factor based on a fitted regression model. For a temperature change of 3°C (reasonable guess for a doubled CO2 climate according to the present-day general circulation models) this results in an increase in the annual average amount of 9% (20% in winter and 4% in summer). An extended model with both temperature and surface air pressure is presented which makes it possible to study the additional effects of a potential systematic change in surface air pressure on precipitation.

  12. Complexity analysis of the air temperature and the precipitation time series in Serbia

    Science.gov (United States)

    Mimić, G.; Mihailović, D. T.; Kapor, D.

    2017-02-01

    In this paper, we have analyzed the time series of daily values for three meteorological elements, two continuous and a discontinuous one, i.e., the maximum and minimum air temperature and the precipitation. The analysis was done based on the observations from seven stations in Serbia from the period 1951-2010. The main aim of this paper was to quantify the complexity of the annual values for the mentioned time series and to calculate the rate of its change. For that purpose, we have used the sample entropy and the Kolmogorov complexity as the measures which can indicate the variability and irregularity of a given time series. Results obtained show that the maximum temperature has increasing trends in the given period which points out a warming, ranged in the interval 1-2 °C. The increasing temperature indicates the higher internal energy of the atmosphere, changing the weather patterns, manifested in the time series. The Kolmogorov complexity of the maximum temperature time series has statistically significant increasing trends, while the sample entropy has increasing but statistically insignificant trend. The trends of complexity measures for the minimum temperature depend on the location. Both complexity measures for the precipitation time series have decreasing trends.

  13. Monthly values of the standardized precipitation index in the State of São Paulo, Brazil: trends and spectral features under the normality assumption

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2012-01-01

    Full Text Available The aim of this study was to describe monthly series of the Standardized Precipitation Index obtained from four weather stations of the State of São Paulo, Brazil. The analyses were carried out by evaluating the normality assumption of the SPI distributions, the spectral features of these series and, the presence of climatic trends in these datasets. It was observed that the Pearson type III distribution was better than the gamma 2-parameter distribution in providing monthly SPI series closer to the normality assumption inherent to the use of this standardized index. The spectral analyses carried out in the time-frequency domain did not allow us to establish a dominant mode in the analyzed series. In general, the Mann-Kendall and the Pettitt tests indicated the presence of no significant trend in the SPI series. However, both trend tests have indicated that the temporal variability of this index, observed at the months of October over the last 60 years, cannot be seen as the result of a purely random process. This last inference is due to the concentration of decreasing trends, with a common beginning (1983/84 in the four locations of the study.

  14. Trend Analysis of Monthly and Annual Temperature Series of Quetta, Pakistan

    Directory of Open Access Journals (Sweden)

    Farhat Iqbal

    2014-12-01

    Full Text Available The monthly average temperature series of Quetta – Pakistan from 1950 – 2000 is examined. A straight line is fitted to the data and seasonal variation and trend in temperature for each month of the year were obtained. An overall model is constructed as large variations in the monthly slopes were observed. In order to describe the seasonal pattern and trend in temperature, corresponding to the different months, both sine/cosine waves and sine/cosine waves multiplied by the time were included in the model as independent variables. The lag-1 autocorrelation was found in the residual of the model and hence another model was fitted to the pre-whiten series that shows a good fit ( and is free from correlated residuals. Both parametric and non-parametric tests applied to each month temperature show significant trend in all months except February and March.

  15. Effects of different tempers on precipitation hardening of 6000 series aluminium alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Hong; ZHAO Gang; LIU Chun-ming; ZUO Liang

    2007-01-01

    By means of Vickers hardness, mechanical property and formability tests, the effects of different tempers on precipitation hardening of 6000 series aluminium alloys for automotive body sheets were investigated. The results indicate that the short-time pre-aging at 170 ℃ makes for subsequent artificial aging precipitation hardening. With the increase of pre-aging time, the artificial aging hardenability increases. The aging hardening rate reaches the maximum when pre-aging time is up to 10 min, and then it decreases. The short-time pre-aging at 170 ℃ benefits sheets to obtain lower strength under delivery condition and consequently to improve stamping formability of automotive body sheets. The effects of different tempers on precipitation hardening are much more obvious than those of the alloying elements. It is a good treatment schedule to perform pre-aging for 5 min at 170 ℃ right after solution treatment.

  16. Evaluation of recent GRACE monthly solution series with an ice sheet perspective

    Science.gov (United States)

    Horwath, Martin; Groh, Andreas

    2016-04-01

    GRACE monthly global gravity field solutions have undergone a remarkable evolution, leading to the latest (Release 5) series by CSR, GFZ, and JPL, to new series by other processing centers, such as ITSG and AIUB, as well as to efforts to derive combined solutions, particularly by the EGSIEM (European Gravity Service for Improved Emergency Management) project. For applications, such as GRACE inferences on ice sheet mass balance, the obvious question is on what GRACE solution series to base the assessment. Here we evaluate different GRACE solution series (including the ones listed above) in a unified framework. We concentrate on solutions expanded up to degree 90 or higher, since this is most appropriate for polar applications. We empirically assess the error levels in the spectral as well as in the spatial domain based on the month-to-month scatter in the high spherical harmonic degrees. We include empirical assessment of error correlations. We then apply all series to infer Antarctic and Greenland mass change time series and compare the results in terms of apparent signal content and noise level. We find that the ITSG solutions show lowest noise level in the high degrees (above 60). A preliminary combined solution from the EGSIEM project shows lowest noise in the degrees below 60. This virtue maps into the derived ice mass time series, where the EGSIEM-based results show the lowest noise in most cases. Meanwhile, there is no indication that any of the considered series systematically dampens actual geophysical signals.

  17. ON STRONG SIGNALS OF MONTHLY PRECIPITATION ANOMALIES IN EARLY RAINING SEASON OF GUANGDONG AND CONCEPTUAL MODELS OF PREDICTION

    Institute of Scientific and Technical Information of China (English)

    林爱兰

    2002-01-01

    Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).

  18. Principal Modes of Precipitation Variability from Preliminary Series of IMERG Data

    Science.gov (United States)

    Savtchenko, A.; Huffman, G.; Vollmer, B.

    2017-01-01

    The Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission, IMERG, is the unified U.S. algorithm that provides merged Microwave Infrared (IR) satellite precipitation product for the U.S. GPM team. Even though IMERG record is still very short, 2014-2016, it is tempting to test if it captures ENSO and NAO signals as compared to the popular, still on-going, TRMM Multi-satellite Precipitation Analysis, TMPA. El Nino Southern Oscillation (ENSO) is the most significant mode of interannual variability of tropical ocean atmosphere. North Atlantic Oscillation (NAO) impact is on monthly scales and is mostly an atmospheric mode in the North Atlantic. There exist well-defined, multivariate, indexes that represent ENSO and NAO conditions and phase.

  19. A model for estimating rains' area, using the dependence of the time correlation of sites' monthly precipitation totals on the distance between sites

    Science.gov (United States)

    Walanus, Adam; Cebulska, Marta; Twardosz, Robert

    2016-05-01

    Based on the monthly precipitation series from 16 sites (in the Polish Carpathian Mountains), of 132 years' length, a relatively precise scatterplot of correlation coefficients between sites versus distance between sites is obtained. The "rains" of Gaussian shape, in the spatial sense, are a good model, which produces a scatterplot very closely resembling the observed one. The essential parameter of the model is the area covered by the modeled rains, which results to be of order 30-50 km, though with about a twice lower value for the N-S direction.

  20. Describing temporal variability of the mean Estonian precipitation series in climate time scale

    Science.gov (United States)

    Post, P.; Kärner, O.

    2009-04-01

    Applicability of the random walk type models to represent the temporal variability of various atmospheric temperature series has been successfully demonstrated recently (e.g. Kärner, 2002). Main problem in the temperature modeling is connected to the scale break in the generally self similar air temperature anomaly series (Kärner, 2005). The break separates short-range strong non-stationarity from nearly stationary longer range variability region. This is an indication of the fact that several geophysical time series show a short-range non-stationary behaviour and a stationary behaviour in longer range (Davis et al., 1996). In order to model series like that the choice of time step appears to be crucial. To characterize the long-range variability we can neglect the short-range non-stationary fluctuations, provided that we are able to model properly the long-range tendencies. The structure function (Monin and Yaglom, 1975) was used to determine an approximate segregation line between the short and the long scale in terms of modeling. The longer scale can be called climate one, because such models are applicable in scales over some decades. In order to get rid of the short-range fluctuations in daily series the variability can be examined using sufficiently long time step. In the present paper, we show that the same philosophy is useful to find a model to represent a climate-scale temporal variability of the Estonian daily mean precipitation amount series over 45 years (1961-2005). Temporal variability of the obtained daily time series is examined by means of an autoregressive and integrated moving average (ARIMA) family model of the type (0,1,1). This model is applicable for daily precipitation simulating if to select an appropriate time step that enables us to neglet the short-range non-stationary fluctuations. A considerably longer time step than one day (30 days) is used in the current paper to model the precipitation time series variability. Each ARIMA (0

  1. El-Niño/Southern Oscillation (ENSO) influences on monthly NO 3 load and concentration, stream flow and precipitation in the Little River Watershed, Tifton, Georgia (GA)

    Science.gov (United States)

    Keener, V. W.; Feyereisen, G. W.; Lall, U.; Jones, J. W.; Bosch, D. D.; Lowrance, R.

    2010-02-01

    SummaryAs climate variability increases, it is becoming increasingly critical to find predictable patterns that can still be identified despite overall uncertainty. The El-Niño/Southern Oscillation is the best known pattern. Its global effects on weather, hydrology, ecology and human health have been well documented. Climate variability manifested through ENSO has strong effects in the southeast United States, seen in precipitation and stream flow data. However, climate variability may also affect water quality in nutrient concentrations and loads, and have impacts on ecosystems, health, and food availability in the southeast. In this research, we establish a teleconnection between ENSO and the Little River Watershed (LRW), GA., as seen in a shared 3-7 year mode of variability for precipitation, stream flow, and nutrient load time series. Univariate wavelet analysis of the NINO 3.4 index of sea surface temperature (SST) and of precipitation, stream flow, NO 3 concentration and load time series from the watershed was used to identify common signals. Shared 3-7 year modes of variability were seen in all variables, most strongly in precipitation, stream flow and nutrient load in strong El Niño years. The significance of shared 3-7 year periodicity over red noise with 95% confidence in SST and precipitation, stream flow, and NO 3 load time series was confirmed through cross-wavelet and wavelet-coherence transforms, in which common high power and co-variance were computed for each set of data. The strongest 3-7 year shared power was seen in SST and stream flow data, while the strongest co-variance was seen in SST and NO 3 load data. The strongest cross-correlation was seen as a positive value between the NINO 3.4 and NO 3 load with a three-month lag. The teleconnection seen in the LRW between the NINO 3.4 index and precipitation, stream flow, and NO 3 load can be utilized in a model to predict monthly nutrient loads based on short-term climate variability

  2. Identifying external influences on discharge time series: Long term variability of the Danube River flow and its relation to precipitation and temperature

    Science.gov (United States)

    Szolgayová, Elena; Blöschl, Günter; Bucher, Christian

    2013-04-01

    Studies analysing the impact of climate related drivers, such as precipitation and temperature on discharge have become widely popular in the past years. It is especially interesting to see the impact of these factors from the long term perspective and the influence of these drivers on possible long range dependence in the discharge time series. In this work we use cross - wavelet analysis in order to improve the understanding of interdependencies between discharge and the above named climate related drivers and to observe the long term variability of the river flows and its relation to temperature and precipitations. Analysis of the cross - wavelet spectra thus can help to explain the influence of the specific geographical conditions of the region on the discharge. Using the cross - wavelets thus helps to explain the long term behaviour and long range dependence in discharge from the process point of view. Such analysis obviously has to be done case based, observing the interaction between the discharge and the respective driver for different frequency intervals at different periods in time for a discharge gauging station separately. We consider daily and monthly discharge time series from five discharge gauging stations of the Danube River in Germany, Austria and Slovakia and the areal average precipitation over their catchments and temperature time series for the respective discharge gauge. The cross - wavelets are used to analyze the general impact of precipitation on discharge using generated discharge and precipitation data in each station. A simple dual kernel convolution model is used to generate discharge from precipitation. From thus obtained data sets the cross - wavelet spectra are constructed and analysed in order to understand how does precipitation influence discharge, especially in the lower frequencies. The influence of different behavioral patterns in precipitation (simulating possible different physiographic conditions in the catchment), such as

  3. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator

    Directory of Open Access Journals (Sweden)

    Kruczyk Michał

    2015-12-01

    Full Text Available This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS stations in climatologic research. Long time series of daily averaged Integrated Precipitable Water (IPW can serve as climate indicator. The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method. Author applied two modes: sinusoidal and composite (two or more oscillations. Even simple sinusoidal seasonal model (of daily IPW values series clearly represents diversity of world climates. Residuals in periods from 10 up to 17 years are searched for some long-term IPW trend – self-evident climate change indicator. Results are ambiguous: for some stations or periods IPW trends are quite clear, the following years (or the other station not visible. Method of fitting linear trend to IPW series does not influence considerably the value of linear trend. The results are mostly influenced by series length, completeness and data (e.g. meteorological quality. The longer and more homogenous IPW series, the better chance to estimate the magnitude of climatologic IPW changes.

  4. Validation and uncertainty analysis for monthly and extreme precipitation in the ERA-20C reanalysis based on the WZN in-situ measurements

    Science.gov (United States)

    Rustemeier, Elke; Ziese, Markus; Raykova, Kristin; Meyer-Christoffer, Anja; Schneider, Udo; Finger, Peter; Becker, Andreas

    2017-04-01

    The proper representation of precipitation, in particular extreme precipitation, in global reanalyses is still challenging. This paper focuses on the potential of the ERA-20C centennial reanalysis to reproduce precipitation events. The global ERA-20C Reanalysis has been developed within the projects ERA-CLIM and its successor ERA-CLIM2 with the aim of a multi-decadal reanalysis of the global climate system. One of the objectives of ERA-CLIM2 is to provide useful information about the uncertainty of the various parameters. Since precipitation is a prognostic variable, it allows for independent validation by in-situ measurements. For this purpose, the Global Precipitation Climatology Centre (GPCC) operated by the DWD has compared the ERA-20C Reanalysis with the GPCC observational products "Full Data Monthly Version 7" (FDM-V7) and "Full Data Daily Version 1" (FDD-V1). ERA-20C is based on the ECMWF prediction model IFS version Cy38r1 with a spatial resolution of approximately 125 km and covers the 111 years from 1900 to 2010. The GPCC FDM-V7 raster data product, on the other hand, includes the global land surface in-situ measurements between 1901 and 2013 (Schneider et al., 2014) and the FDD-V1 raster data product covers daily precipitation from 1988 to 2013 with daily resolution. The most suitable resolution of 1° was used to validate ERA-20C. For the spatial and temporal validation of the ERA-20C Reanalysis, global temporal scores were calculated on monthly, seasonal and annual time scales. These include e.g. monthly contingency table scores, correlation or climate change indices (ETCCDI) for precipitation to determine extreme values and their temporal change (Peterson et al., 2001, Appendix A). Not surprisingly, the regions with the strongest differences are also those with data scarcity, mountain regions with their luv and lee effects or monsoon areas. They all show a strong systematic difference and breaks within the time series. Differences between ERA-20C and

  5. Gridded Mean Monthly Temperature and Precipitation Data for Alaska, British Columbia, and Yukon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To aid in better understanding the temperature and precipitation data of the spatially variable climate of Alaska and Northwest Canada, this dataset was created via...

  6. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    Science.gov (United States)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be

  7. Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    DEFF Research Database (Denmark)

    Ivits, Eva; Horion, Stéphanie Marie Anne F; Fensholt, Rasmus;

    2014-01-01

    -temporal patterns in time-series of Standardized Precipitation Evapotranspiration Index (SPEI) and FPAR3g anomalies (1982–2011) by using an extended Principal Component Analysis. The ERTs represent region specific spatio-temporal patterns of ecosystems responding to drought or ecosystems with decreasing severity...... in drought events as well as ecosystems where drought was not a dominant factor in a 30-year period. Highest explanatory values in the SPEI12-FPAR3g anomalies and strongest SPEI12-FPAR3g correlations were seen in the ERTs of Australia and South America whereas lowest explanatory value and lowest correlations...

  8. Modeling the Spatial and Temporal Variation of Monthly and Seasonal Precipitation on the Nevada Test Site and Vicinity, 1960-2006

    Science.gov (United States)

    Blainey, Joan B.; Webb, Robert H.; Magirl, Christopher S.

    2007-01-01

    The Nevada Test Site (NTS), located in the climatic transition zone between the Mojave and Great Basin Deserts, has a network of precipitation gages that is unusually dense for this region. This network measures monthly and seasonal variation in a landscape with diverse topography. Precipitation data from 125 climate stations on or near the NTS were used to spatially interpolate precipitation for each month during the period of 1960 through 2006 at high spatial resolution (30 m). The data were collected at climate stations using manual and/or automated techniques. The spatial interpolation method, applied to monthly accumulations of precipitation, is based on a distance-weighted multivariate regression between the amount of precipitation and the station location and elevation. This report summarizes the temporal and spatial characteristics of the available precipitation records for the period 1960 to 2006, examines the temporal and spatial variability of precipitation during the period of record, and discusses some extremes in seasonal precipitation on the NTS.

  9. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    normalization and stationarity were considered. Skewness test applied to evaluate normalization of evaporation, precipitation and stream flow time series and logarithmic transformation function executed for in order to improve normalization. Stationarity of studied time series were evaluated by well-known powerful ADF and KPSS stationarity tests. Time series model's order was determined using modified AICC test and the portmanteau goodness of fit test was used to evaluate the adequacy of developed linear time series models. Man-Kendall trend analysis was also conducted for the precipitation amount, the number of rainy days, the maximum precipitation with 24 hours duration, the evaporation and stream flow in monthly and annual time scales. Results and Discussion: Inferring to the physical base of ARMA models provided by Salas et al (1998, the precipitation has been considered independently and stochastically. If this assumption is not true in a given basin, it is expected that the MA component of stream flow discharge model be eliminated or washed out. This case occurred in basins A, B and C. In these basins, the behavior of precipitation and evaporation was autoregressive. It was observed that the stream flow discharge behavior also follows autoregressive models that had greater lags than precipitation and evaporation lags. This result proved that the precipitation, evaporation, and stream flow processes in the basin were regular processes. In basin D, the behavior of precipitation was stochastic and followed the MA model, which was related to the stochastic processes. In this basin, the stochastic behavior of precipitation affected the stream flow behavior, and it was observed that the stochastic term of MA also appeared in the stream flow. Thus, this leads to decrease the memory of stream flow discharge. The fact that the MA component in the stream flow discharge was greater than the MA component in precipitation indicated that during the process of producing stream flow

  10. Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation

    Science.gov (United States)

    Ribeiro, Sara; Caineta, Júlio; Costa, Ana Cristina; Henriques, Roberto; Soares, Amílcar

    2016-05-01

    Climate data homogenisation is of major importance in climate change monitoring, validation of weather forecasting, general circulation and regional atmospheric models, modelling of erosion, drought monitoring, among other studies of hydrological and environmental impacts. The reason is that non-climate factors can cause time series discontinuities which may hide the true climatic signal and patterns, thus potentially bias the conclusions of those studies. In the last two decades, many methods have been developed to identify and remove these inhomogeneities. One of those is based on a geostatistical simulation technique (DSS - direct sequential simulation), where local probability density functions (pdfs) are calculated at candidate monitoring stations using spatial and temporal neighbouring observations, which then are used for the detection of inhomogeneities. Such approach has been previously applied to detect inhomogeneities in four precipitation series (wet day count) from a network with 66 monitoring stations located in the southern region of Portugal (1980-2001). That study revealed promising results and the potential advantages of geostatistical techniques for inhomogeneity detection in climate time series. This work extends the case study presented before and investigates the application of the geostatistical stochastic approach to ten precipitation series that were previously classified as inhomogeneous by one of six absolute homogeneity tests (Mann-Kendall, Wald-Wolfowitz runs, Von Neumann ratio, Pettitt, Buishand range test, and standard normal homogeneity test (SNHT) for a single break). Moreover, a sensitivity analysis is performed to investigate the number of simulated realisations which should be used to infer the local pdfs with more accuracy. Accordingly, the number of simulations per iteration was increased from 50 to 500, which resulted in a more representative local pdf. As in the previous study, the results are compared with those from the

  11. Postprocessing of simulated precipitation for impact research in West Africa. Part I: model output statistics for monthly data

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, Heiko [University of Wuerzburg, Institute of Geography, Wuerzburg (Germany)

    2011-04-15

    Rainfall represents an important factor in agriculture and food security, particularly, in the low latitudes. Climatological and hydrological studies which attempt to diagnose the hydrological cycle, require high-quality precipitation data. In West Africa, like in many parts of the world, the density of observational data is low and climate models are needed in order to perform homogeneous and complete data sets. However, climate models tend to produce systematic errors, especially, in terms of rainfall and cloud processes, which are usually approximated by physical parameterizations. In this study, a 25-year climatology of monthly precipitation in West Africa is presented, derived from a regional climate model simulation, and evaluated with respect to observational data. It is found that the model systematically underestimates the rainfall amount and variability and does not capture some details of the seasonal cycle in sub-Saharan West Africa. Thus, in its present form the precipitation climatology is not appropriate to draw a realistic picture of the hydrological cycle in West Africa nor to serve as input data for impact research. Therefore, a statistical model is developed in order to adjust the simulated rainfall data to the characteristics of observed precipitation. Assuming that the regional climate model is much more reliable in terms of atmospheric circulation and thermodynamics, model output statistics is used to correct simulated rainfall by means of other simulated parameters of the near-surface climate like temperature, sea level pressure and wind components. Monthly data is adjusted by a cross-validated multiple regression model. The resulting adjusted rainfall climatology reveals a substantial improvement in terms of the model deficiencies mentioned above. In part II of this publication, the characteristics of simulated daily precipitation is adapted to station data by applying a weather generator. Once the postprocessing approach is trained, it can

  12. Estimation of Drainage and Evapotranspiration from Time Series of Soil Moisture, Potential Evaporation, and Precipitation

    Science.gov (United States)

    Salvucci, G. D.; Gioioso, M.

    2003-12-01

    A previous study demonstrated that the dependence of soil water outflow on soil moisture can be estimated by averaging precipitation conditioned on soil moisture. The methodology is non parametric and relies only on the assumed stationarity of the soil moisture time series. Here we present a method for partitioning out the evapotranspiration component of total outflow. One goal is to structure the model with as few assumptions about model form as possible. for example we set evapotranspiration efficiency to increases monotonically with moisture and to be concave down, while the net drainage (capillary rise to or percolation from the root zone) is made to depend on moisture in a concave upward fashion. The functions used to represent these behavior are piecewise continuous polynomials or line segments. After generating a set of feasible partitions using a linear programming technique, we evaluate the relative likelihood of each by estimating the entropy of the time series of soil water storage that results from integrating the fluxes. We show that the entropy of the series is proportional to the likelihood that the increments that make it up come from a stationary process, and use this as a basis for model selection. We also estimate the growth of variance of the time series, and decompose this into an equilibrium process (that saturates with time due to a negative correlation among increments) and an error process which (for white noise model, measurement and sampling errors) leads to a random walk term. A unique feature of the method is that it does not fit model predictions to soil moisture, but instead evaluates the stationarity of the running series of soil water storage values implied by the partitioning. Because of this feature the method can be driven with indices of soil moisture (like brightness temperatures) rather than site-specific water contents.

  13. Inhomogeneities detection in annual precipitation time series in Portugal using direct sequential simulation

    Science.gov (United States)

    Caineta, Júlio; Ribeiro, Sara; Costa, Ana Cristina; Henriques, Roberto; Soares, Amílcar

    2014-05-01

    Climate data homogenisation is of major importance in monitoring climate change, the validation of weather forecasting, general circulation and regional atmospheric models, modelling of erosion, drought monitoring, among other studies of hydrological and environmental impacts. This happens because non-climate factors can cause time series discontinuities which may hide the true climatic signal and patterns, thus potentially bias the conclusions of those studies. In the last two decades, many methods have been developed to identify and remove these inhomogeneities. One of those is based on geostatistical simulation (DSS - direct sequential simulation), where local probability density functions (pdf) are calculated at candidate monitoring stations, using spatial and temporal neighbouring observations, and then are used for detection of inhomogeneities. This approach has been previously applied to detect inhomogeneities in four precipitation series (wet day count) from a network with 66 monitoring stations located in the southern region of Portugal (1980-2001). This study revealed promising results and the potential advantages of geostatistical techniques for inhomogeneities detection in climate time series. This work extends the case study presented before and investigates the application of the geostatistical stochastic approach to ten precipitation series that were previously classified as inhomogeneous by one of six absolute homogeneity tests (Mann-Kendall test, Wald-Wolfowitz runs test, Von Neumann ratio test, Standard normal homogeneity test (SNHT) for a single break, Pettit test, and Buishand range test). Moreover, a sensibility analysis is implemented to investigate the number of simulated realisations that should be used to accurately infer the local pdfs. Accordingly, the number of simulations per iteration is increased from 50 to 500, which resulted in a more representative local pdf. A set of default and recommended settings is provided, which will help

  14. Predictions of precipitation reaction mechanisms for 7xxx series aluminum alloys cast by CDS technique

    Science.gov (United States)

    Sobrino, Luca

    The need to reduce the fleet fuel consumption is pushing the automotive industry to reduce vehicles weight. In this context high strength aluminum alloys are a viable alternative to the heavier steel currently adopted. In particular 7xxx series wrought alloys, thanks to their excellent strength to weight ratio, are drawing the attention of carmakers. The development of the Controlled Diffusion Solidification (CDS) technique allows now the casting of these alloys into near net shapes, thus reducing all the costs related to the manufacturing process and making them attractive. Because of the completely different microstructure resulting from the CDS process, a new design of the heat treatments is required to achieve the best mechanical properties. This project therefore evaluates the macro and microhardness evolution of CDS cast 7xxx alloys in T4 and T6 conditions to predict their precipitation sequence, thus providing useful information for the heat treatments design.

  15. Monthly sunspot number time series analysis and its modeling through autoregressive artificial neural network

    CERN Document Server

    Chattopadhyay, Goutami; 10.1140/epjp/i2012-12043-9

    2012-01-01

    This study reports a statistical analysis of monthly sunspot number time series and observes non homogeneity and asymmetry within it. Using Mann-Kendall test a linear trend is revealed. After identifying stationarity within the time series we generate autoregressive AR(p) and autoregressive moving average (ARMA(p,q)). Based on minimization of AIC we find 3 and 1 as the best values of p and q respectively. In the next phase, autoregressive neural network (AR-NN(3)) is generated by training a generalized feedforward neural network (GFNN). Assessing the model performances by means of Willmott's index of second order and coefficient of determination, the performance of AR-NN(3) is identified to be better than AR(3) and ARMA(3,1).

  16. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran

    Indian Academy of Sciences (India)

    Mohammad Zarenistanak; Amit G Dhorde; R H Kripalani

    2014-03-01

    This paper presents results of trend analysis and change point detection of annual and seasonal precipitation, and mean temperature (TM), maximum temperature (TMAX) and minimum temperature (TMIN) time series of the period 1950–2007. Investigations were carried out for 50 precipitation stations and 39 temperature stations located in southwest Iran. Three statistical tests including Pettitt’s test, Sequential Mann–Kendall test (SQ-MK test) and Mann–Kendall rank test (MK-test) were used for the analysis. The results obtained for precipitation series indicated that most stations showed insignificant trends in annual and seasonal series. Out of the stations which showed significant trends, highest numbers were observed during winter season while no significant trends were detected in summer precipitation. Moreover, no decreasing significant trends were detected by statistical tests in annual and seasonal precipitation series. The analysis of temperature trends revealed a significant increase during summer and spring seasons. TMAX was more stable than TMIN and TM, and winter was stable compared to summer, spring and autumn seasons. The results of change point detection indicated that most of the positive significant mutation points in TM, TMAX and TMIN began in the 1990s.

  17. Spatial downscaling and correction of precipitation and temperature time series to high resolution hydrological response units in the Canadian Rocky Mountains

    Science.gov (United States)

    Kienzle, Stefan

    2015-04-01

    , because the true, sloped area, has a larger area than the planimetric area derived from a GIS. The omission of correcting for sloped areas would result in incorrect calculations of interception volumes, soil moisture storages, groundwater recharge rates, actual evapotranspiration volumes, and runoff coefficients. Daily minimum and maximum air temperatures are estimated for each HRU by downscaling the 10km time series to the HRUs by (a) applying monthly mean lapse rates, estimated either from surrounding climate stations or from the PRISM climate normal dataset in combination with a digital elevation model, (b) adjusting further for aspect of the HRU based on monthly mean incoming solar radiation, and (c) adjusting for canopy cover using the monthly mean leaf area indices. Precipitation estimates can be verified using independent snow water equivalent measurements derived from snow pillow or snow course observations, while temperature estimates are verified against either independent temperature measurements from climate stations, or from fire observation towers.

  18. Forecasting monthly precipitation in Central Chile: a self-organizing map approach using filtered sea surface temperature

    Science.gov (United States)

    Rivera, Diego; Lillo, Mario; Uvo, Cintia B.; Billib, Max; Arumí, José Luis

    2012-01-01

    Western South America is subject to considerable inter-annual variability due to El Niño-Southern Oscillation (ENSO) so forecasting inter-annual variations associated with ENSO would provide an opportunity to tailor management decisions more appropriately to the season. On one hand, the self-organizing maps (SOM) method is a suitable technique to explore the association between sea surface temperature and precipitation fields. On the other hand, Wavelet transform is a filtering technique, which allows the identification of relevant frequencies in signals, and also allows localization on time. Taking advantage of both methods, we present a method to forecast monthly precipitation using the SOM trained with filtered SST anomalies. The use of the SOM to forecast precipitation for Chillan showed good agreement between forecasted and measured values, with correlation coefficients ( r 2) ranging from 0.72 to 0.91, making the combined use filtered SST fields and SOM a suitable tool to assist water management, for example in agricultural water management. The method can be easily tailored to be applied in other stations or to other variables.

  19. Transfer function modeling of the monthly accumulated rainfall series over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Vidal L.; Garcia, Jose A.; Serrano, Antonio; De la Cruz Gallego, Maria [Departamento de Fisica, Universidad de Extremadura, Badajoz (Spain)

    2002-10-01

    In order to improve the results given by Autoregressive Moving-Average (ARMA) modeling for the monthly accumulated rainfall series taken at 19 observatories of the Iberian Peninsula, a Discrete Linear Transfer Function Noise (DLTFN) model was applied taking the local pressure series (LP), North Atlantic sea level pressure series (SLP) and North Atlantic sea surface temperature (SST) as input variables, and the rainfall series as the output series. In all cases, the performance of the DLTFN models, measured by the explained variance of the rainfall series, is better than the performance given by the ARMA modeling. The best performance is given by the models that take the local pressure as the input variable, followed by the sea level pressure models and the sea surface temperature models. Geographically speaking, the models fitted to those observatories located in the west of the Iberian Peninsula work better than those on the north and east of the Peninsula. Also, it was found that there is a region located between 0 N and 20 N, which shows the highest cross-correlation between SST and the peninsula rainfalls. This region moves to the west and northwest off the Peninsula when the SLP series are used. [Spanish] Con el objeto de mejorar los resultados porporcionados por los modelos Autorregresivo Media Movil (ARMA) ajustados a las precipitaciones mensuales acumuladas registradas en 19 observatorios de la Peninsula Iberica se han usado modelos de funcion de transferencia (DLTFN) en los que se han empleado como variable independiente la presion local (LP), la presion a nivel del mar (SLP) o la temperatura de agua del mar (SST) en el Atlantico Norte. En todos los casos analizados, los resultados obtenidos con los modelos DLTFN, medidos mediante la varianza explicada por el modelo, han sido mejores que los resultados proporcionados por los modelos ARMA. Los mejores resultados han sido dados por aquellos modelos que usan la presion local como variable de entrada, seguidos

  20. Time-Series Modeling and Prediction of Global Monthly Absolute Temperature for Environmental Decision Making

    Institute of Scientific and Technical Information of China (English)

    YE Liming; YANG Guixia; Eric VAN RANST; TANG Huajun

    2013-01-01

    A generalized,structural,time series modeling framework was developed to analyze the monthly records of absolute surface temperature,one of the most important environmental parameters,using a deterministicstochastic combined (DSC) approach.Although the development of the framework was based on the characterization of the variation patterns of a global dataset,the methodology could be applied to any monthly absolute temperature record.Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal,involving polynomial functions and the Fourier method,respectively,while stochastic processes were employed to account for any remaining patterns in the temperature signal,involving seasonal autoregressive integrated moving average (SARIMA) models.A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years.The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors,suggesting that DSC models,when coupled with other ecoenvironmental models,can be used as a supplemental tool for short-term (~10-year) environmental planning and decision making.

  1. Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    Directory of Open Access Journals (Sweden)

    Eva Ivits

    2014-05-01

    Full Text Available Observing trends in global ecosystem dynamics is an important first step, but attributing these trends to climate variability represents a further step in understanding Earth system changes. In the present study, we classified global Ecosystem Response Types (ERTs based on common spatio-temporal patterns in time-series of Standardized Precipitation Evapotranspiration Index (SPEI and FPAR3g anomalies (1982–2011 by using an extended Principal Component Analysis. The ERTs represent region specific spatio-temporal patterns of ecosystems responding to drought or ecosystems with decreasing severity in drought events as well as ecosystems where drought was not a dominant factor in a 30-year period. Highest explanatory values in the SPEI12-FPAR3g anomalies and strongest SPEI12-FPAR3g correlations were seen in the ERTs of Australia and South America whereas lowest explanatory value and lowest correlations were observed in Asia and North America. These ERTs complement traditional pixel based methods by enabling the combined assessment of the location, timing, duration, frequency and severity of climatic and vegetation anomalies with the joint assessment of wetting and drying climatic conditions. The ERTs produced here thus have potential in supporting global change studies by mapping reference conditions of long term ecosystem changes.

  2. Monitoring the NOAA Operational VIIRS RSB and DNB Calibration Stability Using Monthly and Semi-Monthly Deep Convective Clouds Time Series

    Directory of Open Access Journals (Sweden)

    Wenhui Wang

    2016-01-01

    Full Text Available The Visible and Infrared Imaging Radiometer Suite (VIIRS onboard the Joint Polar Satellite System (JPSS/Suomi National Polar-Orbiting Partnership (SNPP satellite provide sensor data records for the retrievals of many environment data records. It is critical to monitor the VIIRS long-term calibration stability to ensure quality EDR retrieval. This study investigates the radiometric calibration stability of the NOAA operational SNPP VIIRS Reflective Solar Bands (RSB and Day-Night-Band (DNB using Deep Convective Clouds (DCC. Monthly and semi-monthly DCC time series for 10 moderate resolution bands (M-bands, M1–M5 and M7–M11, March 2013–September 2015, DNB (March 2013–September 2015, low gain stage, and three imagery resolution bands (I-bands, I1–I3, January 2014–September 2015 were developed and analyzed for long-term radiometric calibration stability monitoring. Monthly DCC time series show that M5 and M7 are generally stable, with a stability of 0.4%. DNB has also been stable since May 2013, after its relative response function update, with a stability of 0.5%. The stabilities of M1–M4 are 0.6%–0.8%. Large fluctuations in M1–M4 DCC reflectance were observed since early 2014, correlated with F-factor (calibration coefficients trend changes during the same period. The stabilities of M8-M11 are from 1.0% to 3.1%, comparable to the natural DCC variability at the shortwave infrared spectrum. DCC mean band ratio time series show that the calibration stabilities of I1–I3 follow closely with M5, M7, and M10. Relative calibration changes were observed in M1/M4 and M5/M7 DCC mean band ratio time series. The DCC time series are generally consistent with results from the VIIRS validation sites and VIIRS/MODIS (the Moderate-resolution Imaging Spectroradiometer simultaneous nadir overpass time series. Semi-monthly DCC time series for RSB M-bands and DNB were compared with monthly DCC time series. The results indicate that semi-monthly DCC

  3. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales

    Science.gov (United States)

    Katiraie-Boroujerdy, Pari-Sima; Akbari Asanjan, Ata; Hsu, Kuo-lin; Sorooshian, Soroosh

    2017-09-01

    In the first part of this paper, monthly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Tropical Rainfall Measuring Mission 3B42 algorithm Version 7 (TRMM-3B42V7) are evaluated over Iran using the Generalized Three-Cornered Hat (GTCH) method which is self-sufficient of reference data as input. Climate Data Unit (CRU) is added to the GTCH evaluations as an independent gauge-based dataset thus, the minimum requirement of three datasets for the model is satisfied. To ensure consistency of all datasets, the two satellite products were aggregated to 0.5° spatial resolution, which is the minimum resolution of CRU. The results show that the PERSIANN-CDR has higher Signal to Noise Ratio (SNR) than TRMM-3B42V7 for the monthly rainfall estimation, especially in the northern half of the country. All datasets showed low SNR in the mountainous area of southwestern Iran, as well as the arid parts in the southeast region of the country. Additionally, in order to evaluate the efficacy of PERSIANN-CDR and TRMM-3B42V7 in capturing extreme daily-precipitation amounts, an in-situ rain-gauge dataset collected by the Islamic Republic of the Iran Meteorological Organization (IRIMO) was employed. Given the sparsity of the rain gauges, only 0.25° pixels containing three or more gauges were used for this evaluation. There were 228 such pixels where daily and extreme rainfall from PERSIANN-CDR and TRMM-3B42V7 could be compared. However, TRMM-3B42V7 overestimates most of the intensity indices (correlation coefficients; R between 0.7648-0.8311, Root Mean Square Error; RMSE between 3.29mm/day-21.2mm/5day); PERSIANN-CDR underestimates these extremes (R between 0.6349-0.7791 and RMSE between 3.59mm/day-30.56mm/5day). Both satellite products show higher correlation coefficients and lower RMSEs for the annual mean of consecutive dry spells than wet spells. The results show that TRMM-3B42V7

  4. GRACE RL03-v2 monthly time series of solutions from CNES/GRGS

    Science.gov (United States)

    Lemoine, Jean-Michel; Bourgogne, Stéphane; Bruinsma, Sean; Gégout, Pascal; Reinquin, Franck; Biancale, Richard

    2015-04-01

    Based on GRACE GPS and KBR Level-1B.v2 data, as well as on LAGEOS-1/2 SLR data, CNES/GRGS has published in 2014 the third full re-iteration of its GRACE gravity field solutions. This monthly time series of solutions, named RL03-v1, complete to spherical harmonics degree/order 80, has displayed interesting performances in terms of spatial resolution and signal amplitude compared to JPL/GFZ/CSR RL05. This is due to a careful selection of the background models (FES2014 ocean tides, ECMWF ERA-interim (atmosphere) and TUGO (non IB-ocean) "dealiasing" models every 3 hours) and to the choice of an original method for gravity field inversion : truncated SVD. Identically to the previous CNES/GRGS releases, no additional filtering of the solutions is necessary before using them. Some problems have however been identified in CNES/GRGS RL03-v1: - an erroneous mass signal located in two small circular rings close to the Earth's poles, leading to the recommendation not to use RL03-v1 above 82° latitudes North and South; - a weakness in the sectorials due to an excessive downweighting of the GRACE GPS observations. These two problems have been understood and addressed, leading to the computation of a corrected time series of solutions, RL03-v2. The corrective steps have been: - to strengthen the determination of the very low degrees by adding Starlette and Stella SLR data to the normal equations; - to increase the weight of the GRACE GPS observations; - to adopt a two steps approach for the computation of the solutions: first a Choleski inversion for the low degrees, followed by a truncated SVD solution. The identification of these problems will be discussed and the performance of the new time series evaluated.

  5. Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System

    Science.gov (United States)

    Ninyerola, M.; Pons, X.; Roure, J. M.

    2007-07-01

    In this study, spatial interpolation techniques have been applied to develop an objective climatic cartography of precipitation in the Iberian Peninsula (583,551 km2). The resulting maps have a 200 m spatial resolution and a monthly temporal resolution. Multiple regression, combined with a residual correction method, has been used to interpolate the observed data collected from the meteorological stations. This method is attractive as it takes into account geographic information (independent variables) to interpolate the climatic data (dependent variable). Several models have been developed using different independent variables, applying several interpolation techniques and grouping the observed data into different subsets (drainage basin models) or into a single set (global model). Each map is provided with its associated accuracy, which is obtained through a simple regression between independent observed data and predicted values. This validation has shown that the most accurate results are obtained when using the global model with multiple regression mixed with the splines interpolation of the residuals. In this optimum case, the average R 2 (mean of all the months) is 0.85. The entire process has been implemented in a GIS (Geographic Information System) which has greatly facilitated the filtering, querying, mapping and distributing of the final cartography.

  6. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schmoyer, R.L. [Oak Ridge National Lab., TN (United States); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. [National Climatic Data Center, Asheville, NC (United States); Eischeid, J.K. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the ``best`` data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  7. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center); Schmoyer, R.L. (Oak Ridge National Lab., TN (United States)); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. (National Climatic Data Center, Asheville, NC (United States)); Eischeid, J.K. (Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences)

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the best'' data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  8. A simple and effective method for quantifying spatial anisotropy of time series of precipitation fields

    OpenAIRE

    Niemi, Tero J.; Kokkonen, Teemu; Seed, Alan W.

    2014-01-01

    The spatial shape of a precipitation event has an important role in determining the catchment's hydrological response to a storm. To be able to generate stochastic design storms with a realistic spatial structure, the anisotropy of the storm has to be quantified. In this paper, a method is proposed to estimate the anisotropy of precipitation fields, using the concept of linear Generalized Scale Invariance (GSI). The proposed method is based on identifying the values of GSI parameters that bes...

  9. Influence of composition on precipitation behavior and stress rupture properties in INCONEL RTM740 series superalloys

    Science.gov (United States)

    Casias, Andrea M.

    Increasing demands for energy efficiency and reduction in CO2 emissions have led to the development of advanced ultra-supercritical (AUSC) boilers. These boilers operate at temperatures of 760 °C and pressures of 35 MPa, providing efficiencies close to 50 pct. However, austenitic stainless steels typically used in boiler applications do not have sufficient creep or oxidation resistance. For this reason, nickel (Ni)-based superalloys, such as IN740, have been identified as potential materials for AUSC boiler tube components. However, IN740 is susceptible to heat-affected-zone liquation cracking in the base metal of heavy section weldments. To improve weldability, IN740H was developed. However, IN740H has lower stress rupture ductility compared to IN740. For this reason, two IN740H modifications have been produced by lowering carbon content and increasing boron content. In this study, IN740, IN740H, and the two modified IN740H alloys (modified 1 and 2) were produced with equiaxed grain sizes of 90 ìm (alloys IN740, IN740H, and IN740H modified 1 alloys) and 112 µm (IN740H modified 2 alloy). An aging study was performed at 800 °C on all alloys for 1, 3, 10, and 30 hours to assess precipitation behavior. Stress rupture tests were performed at 760 °C with the goal of attaining stress levels that would yield rupture at 1000 hours. The percent reduction in area was measured after failure as a measure of creep ductility. Light optical, scanning electron, and transmission electron microscopy were used in conjunction with X-ray diffraction to examine precipitation behavior of annealed, aged, and stress rupture tested samples. The amount and type of precipitation that occurred during aging prior to stress rupture testing or in-situ during stress rupture testing influenced damage development, stress rupture life, and ductility. In terms of stress rupture life, IN740H modified 2 performed the best followed by IN740H modified 1 and IN740, which performed similarly, and IN740

  10. Time Series of I-129 and I-127 Speciation in Precipitation from Denmark

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Aldahan, Ala; Nielsen, Sven Poul

    2009-01-01

    Environmental 129I mainly released from reprocessing plants at La Hague (France) and Sellafield (UK) provides a unique atmospheric and environmental tracer. This study deals with 129I and 127I speciation in precipitation collected in Denmark during 2001−2006 that indicates many new findings. The ...

  11. A Conditionally Beta Distributed Time-Series Model With Application to Monthly US Corporate Default Rates

    DEFF Research Database (Denmark)

    Nielsen, Thor Pajhede

    2017-01-01

    . (2016) in examining the conditional independence hypothesis of Lando and Nielsen (2010). Empirically we find that; (1) the current default rate influence the default rate of the following periods even when conditioning on explanatory variables. (2) The 12 month lag is highly significant in explaining...

  12. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India

    Science.gov (United States)

    Mahmood, Rashid; Babel, Mukand S.

    2013-07-01

    The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91-3.15 °C, 0.93-2.63 °C, and 6-12 %, and under H3B2, the values of change are 0.69-1.92 °C, 0.56-1.63 °C, and 8-14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.

  13. AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data

    Science.gov (United States)

    Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.

    2016-05-01

    The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).

  14. 极值指数估计在太原站月降水频率分析中的应用研究%Research on the Application of Extreme Value Index Estimation in the Monthly Precipitation Frequency Analysis of Taiyuan Station

    Institute of Scientific and Technical Information of China (English)

    李扬

    2015-01-01

    This paper studied the extreme value index estimation methods and their application in monthly precipitation frequency analysis .Based on the introduction of extreme value theory and discrimination method of heavy-tailed distribu-tion ,three kinds of EVI estimators were selected .Monthly precipitation series of Taiyuan station in Shanxi province was chosen as an example for application of extreme value index estimation methods in monthly precipitation frequency analy-sis .The results showed that the distribution of monthly precipitation series of Taiyuan station was heavy-tailed distribu-tion .Heavy precipitation section of series was best fitted by Moment estimator .Simple in calculation ,high in accuracy , Moment estimator can provide reference for monthly precipitation frequency analysis in Taiyuan .%在介绍极值理论基础、重尾分布判别方法的基础上,选用3种常用极值指数估计量,以山西省太原站月降水序列为例研究极值指数估计方法在月降水频率分析中的应用。结果表明:太原站月降水序列的样本分布属于重尾分布;选取序列强降水部分进行拟合时,Moment估计量对该段经验点据的拟合效果相对最佳,且计算简便,可为当地月降水序列的频率分析提供参考。

  15. Adverse events following 12 and 18 month vaccinations: a population-based, self-controlled case series analysis.

    Directory of Open Access Journals (Sweden)

    Kumanan Wilson

    Full Text Available BACKGROUND: Live vaccines have distinct safety profiles, potentially causing systemic reactions one to 2 weeks after administration. In the province of Ontario, Canada, live MMR vaccine is currently recommended at age 12 months and 18 months. METHODS: Using the self-controlled case series design we examined 271,495 12 month vaccinations and 184,312 18 month vaccinations to examine the relative incidence of the composite endpoint of emergency room visits or hospital admissions in consecutive one day intervals following vaccination. These were compared to a control period 20 to 28 days later. In a post-hoc analysis we examined the reasons for emergency room visits and the average acuity score at presentation for children during the at-risk period following the 12 month vaccine. RESULTS: Four to 12 days post 12 month vaccination, children had a 1.33 (1.29-1.38 increased relative incidence of the combined endpoint compared to the control period, or at least one event during the risk interval for every 168 children vaccinated. Ten to 12 days post 18 month vaccination, the relative incidence was 1.25 (95%, 1.17-1.33 which represented at least one excess event for every 730 children vaccinated. The primary reason for increased events was statistically significant elevations in emergency room visits following all vaccinations. There were non-significant increases in hospital admissions. There were an additional 20 febrile seizures for every 100,000 vaccinated at 12 months. CONCLUSIONS: There are significantly elevated risks of primarily emergency room visits approximately one to two weeks following 12 and 18 month vaccination. Future studies should examine whether these events could be predicted or prevented.

  16. The Santander Atlantic Time-Series Station (SATS): A Time Series combination of a monthly hydrographic Station and The Biscay AGL Oceanic Observatory.

    Science.gov (United States)

    Lavin, Alicia; Somavilla, Raquel; Cano, Daniel; Rodriguez, Carmen; Gonzalez-Pola, Cesar; Viloria, Amaia; Tel, Elena; Ruiz-Villareal, Manuel

    2017-04-01

    Long-Term Time Series Stations have been developed in order to document seasonal to decadal scale variations in key physical and biogeochemical parameters. Long-term time series measurements are crucial for determining the physical and biological mechanisms controlling the system. The Science and Technology Ministers of the G7 in their Tsukuba Communiqué have stated that 'many parts of the ocean interior are not sufficiently observed' and that 'it is crucial to develop far stronger scientific knowledge necessary to assess the ongoing changes in the ocean and their impact on economies.' Time series has been classically obtained by oceanographic ships that regularly cover standard sections and stations. From 1991, shelf and slope waters of the Southern Bay of Biscay are regularly sampled in a monthly hydrographic line north of Santander to a depth of 1000 m in early stages and for the whole water column down to 2580 m in recent times. Nearby, in June 2007, the IEO deployed an oceanic-meteorological buoy (AGL Buoy, 43° 50.67'N; 3° 46.20'W, and 40 km offshore, www.boya-agl.st.ieo.es). The Santander Atlantic Time Series Station is integrated in the Spanish Institute of Oceanography Observing Sistem (IEOOS). The long-term hydrographic monitoring has allowed to define the seasonality of the main oceanographic facts as the upwelling, the Iberian Poleward Current, low salinity incursions, trends and interannual variability at mixing layer, and at the main water masses North Atlantic Central Water and Mediterranean Water. The relation of these changes with the high frequency surface conditions recorded by the Biscay AGL has been examined using also satellite and reanalysis data. During the FIXO3 Project (Fixed-point Open Ocean Observatories), and using this combined sources, some products and quality controled series of high interest and utility for scientific purposes has been developed. Hourly products as Sea Surface Temperature and Salinity anomalies, wave significant

  17. Evaluation of Ten Month Time-series of Soil Fundamental Frequency

    Science.gov (United States)

    Daminelli, R.; Marcellini, A.; Tento, A.

    2012-12-01

    In 2011 two seismic stations were installed on the right bank of the Po river levee to monitor the fundamental soil frequency f0 by H/V technique with the main aim to investigate the dependence of f0 on hydro-geological parameters. The considered embankment consists of poorly consolidated alluvial deposits, mainly sands and sandy-silts with an elevation less than 10 m. Cross-holes and down-holes tests show a VS tacking 3 hours sampling rate (time interval between any two f0 successive evaluations) and a total time span of T=10 months. The preliminary results evidence a correlation between f0 and the level of water table.

  18. Autogenous wisdom tooth transplantation: A case series with 6-9 months follow-up

    Directory of Open Access Journals (Sweden)

    Tatjana Nimcenko

    2014-01-01

    Full Text Available Tooth transplantation can be considered a valid and predictable treatment option for rehabilitating young patients with permanent teeth loss. This study presents several cases of successful autogenous tooth transplantation with a 6-9 months follow-up. Tooth auto-transplantation can be considered a reasonable option for replacing missing teeth when a donor tooth is available. The auto-transplantation of a right mandibular third molar with compromised function and esthetics to replace the residual roots resulting from coronal destruction due to extensive carious lesion of the second molar in the same quadrant as shown in the presented cases can result a viable treatment alternative especially in a young patient that cannot undergo dental implant therapy. Transplantation of mature third molar seems to be a promising method for replacing a lost permanent molar tooth and restoring esthetics and function. This clinical procedure showed excellent functional and esthetical long-term results in the analyzed cases.

  19. Autogenous wisdom tooth transplantation: A case series with 6-9 months follow-up

    Science.gov (United States)

    Nimčenko, Tatjana; Omerca, Gražvydas; Bramanti, Ennio; Cervino, Gabriele; Laino, Luigi; Cicciù, Marco

    2014-01-01

    Tooth transplantation can be considered a valid and predictable treatment option for rehabilitating young patients with permanent teeth loss. This study presents several cases of successful autogenous tooth transplantation with a 6-9 months follow-up. Tooth auto-transplantation can be considered a reasonable option for replacing missing teeth when a donor tooth is available. The auto-transplantation of a right mandibular third molar with compromised function and esthetics to replace the residual roots resulting from coronal destruction due to extensive carious lesion of the second molar in the same quadrant as shown in the presented cases can result a viable treatment alternative especially in a young patient that cannot undergo dental implant therapy. Transplantation of mature third molar seems to be a promising method for replacing a lost permanent molar tooth and restoring esthetics and function. This clinical procedure showed excellent functional and esthetical long-term results in the analyzed cases. PMID:25540668

  20. Analysis of climatic variations in seasonal precipitation and temperature in Salamanca (Spain); Analisis de las variaciones climaticas en series estacionales de temperatura y precipitacion en Salamanca (Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Casado, A.; Encinas, A.H.; Rodriguez Puebla, C. [Dpto. de Fisica General y de la Atmosfera Universidad de Salamanca, Salamanca (Spain)

    1996-12-31

    This paper describes the seasonal precipitation and temperature variability in Salamanca. The objectives of the study are: to determine the climate signals on inter annual time-scale within the time series; to redefine the series as a function of the significant oscillation components and to predict local precipitation and temperature variables. The methods used are spectral analysis to obtain the periods of the significant components, linear and nonlinear regression models to obtain the analytical functions that best fit the data. (Author) 14 refs.

  1. The effect of ambient air temperature and precipitation on monthly counts of salmonellosis in four regions of Kazakhstan, Central Asia, in 2000-2010.

    Science.gov (United States)

    Grjibovski, A M; Kosbayeva, A; Menne, B

    2014-03-01

    We studied associations between monthly counts of laboratory-confirmed cases of salmonellosis, ambient air temperature and precipitation in four settings in Kazakhstan. We observed a linear association between the number of cases of salmonellosis and mean monthly temperature during the same months only in Astana: an increase of 1°C was associated with a 5·5% [95% confidence interval (CI) 2·2-8·8] increase in the number of cases. A similar association, although not reaching the level of significance was observed in the Southern Kazakhstan region (3·5%, 95% CI -2·1 to 9·1). Positive association with precipitation with lag 2 was found in Astana: an increase of 1 mm was associated with a 0·5% (95% CI 0·1-1·0) increase in the number of cases. A similar association, but with lag 0 was observed in Southern Kazakhstan region (0·6%, 95% CI 0·1-1·1). The results may have implications for the future patterns of salmonellosis in Kazakhstan with regard to climate change.

  2. Applying the Ramer-Douglas-Peucker algorithm to compress and characterize time-series and spatial fields of precipitation

    Science.gov (United States)

    Ehret, Uwe; Neuper, Malte

    2014-05-01

    Well known in image processing and computer graphics, the Ramer-Douglas-Peucker(RDP) algorithm (Ramer, 1972; Douglas and Peucker, 1973) is a procedure to approximate a polygon (lines or areas) by a subset of its nodes. Typically it is used to represent a polygonal feature on a larger scale, e.g. when zooming out of an image. The algorithm is simple but effective: Starting from the simplest possible approximation of the original polygon (for a line it is the start and end point), the simplified polygon is built by successively adding always the node of the original polygon farthest from the simplified polygon. This is repeated until a chosen agreement between the original and the simplified polygon is reached. Compared to other smoothing and compression algorithms like moving-average filters or block aggregation, the RDP algorithm has the advantages that i) the simplified polygon is built from the original points, i.e. extreme values are preserved and ii) that the variability of the original polygon is preserved in a scale-independent manner, i.e. the simplified polygon is high-resolution where necessary and low-resolution where possible. Applying the RDP algorithm to time series of precipitation or 2d spatial fields of radar rainfall often reveals a large degree of compressibility while losing almost no information. In general, this is the case for any auto-correlated polygon such as discharge time series etc. While the RDP algorithm is thus interesting as a very efficient tool for compression, it can also be used to characterize time series or spatial fields with respect to their temporal or spatial structure by relating, over successive steps of simplification, the compression achieved and information lost. We will present and discuss the characteristics of the RDP-based compression and characterization at various examples, both observed (rainfall and discharge time series, 2-d radar rainfall fields) and artificial (random noise fields, random fields with known

  3. Forecasting of monthly inflow and outflow currency using time series regression and ARIMAX: The Idul Fitri effect

    Science.gov (United States)

    Ahmad, Imam Safawi; Setiawan, Suhartono, Masun, Nunun Hilyatul

    2015-12-01

    Currency plays an important role in economic transactions of Indonesian society. In order to guarantee the availability of currency, Bank Indonesia needs to develop demand and supply planning of currency. The purpose of this study is to get model and predict inflow and outflow of currency in KPW BI Region IV (East Java) with ARIMA method, time series regression and ARIMAX. The data of monthly inflow and outflow is used of currency in KPW BI Surabaya, Malang, Kediri and Jember.The observation period starting from January 2003 to December 2014. Based on the smallest values of out-sample RMSE and SMAPE, ARIMA is the best model to predict the outflow of currency in KPW BI Surabaya and ARIMAX for KPW BI Malang, Kediri and Jember. The best forecasting model for inflow of currency in KPW BI Surabaya, Malang, Kediri and Jember chronologically as follows are calendar variation model, transfer function, ARIMA, and time series regression. These results indicates that the more complex models may not necessarily produce a more accurate forecast as the result of M3-Competition.

  4. The use of partial thickness method and zero wet bulb temperature for discriminating precipitation type during winter months at the Ebro basin in Spain

    Science.gov (United States)

    Buisan, S.; Revuelto, J.

    2010-09-01

    The forecast office of the State Meteorological Agency of Spain (AEMET) which is located in the city of Zaragoza provides weather forecast, warnings and aviation forecast products for Aragón, Navarra and La Rioja regions. This area of Spain lies mainly on the Ebro river basin. Although the likelihood of snowfall in this territory is low, a forecasting of snow-depth higher than 5cm for low elevations activates the orange warning which must be issued to local emergency management and civil protection authorities. Zero wet bulb temperature has been historically the main tool for forecasting the altitude of snow-rain boundary at the forecast office; it shows the freezing level limit due to evaporational cooling when lower troposphere is saturated from aloft. This work adds two new parameters, the 1000-850 mb and the 850-700 mb thickness in order to characterize the thermal structure of surface based cold air and atmospheric mid-levels. The three main airports in this area Zaragoza-Aragón, Logroño-La Rioja and Pamplona-Navarra are located at altitudes below 500 m. They are thus suitable for this study. In addition, more than 16 years of meteorological observations every hour, known as METAR (Meteorological Aerodrome Report), are available at these locations. These observations were analysed and the predominant precipitation type during a six-hour period was characterized. The 00h, 06h, 12h and 18h analysis time of the ECMWF Forecast model were employed in order to get the parameters at the day and time when the precipitation took place. The most representative grid point of the model for each airport was chosen in order to illustrate the atmospheric conditions. A correlation between precipitation type and zero wet bulb temperature, 1000-850 mb and the 850-700 mb thickness was done for more than 230 different situations during a 16 year period. As a result, we plotted a series of site specific charts for each airport based on these parameters, in order to describe the

  5. 全球地面降水月值历史数据集研制%Development of a global historic monthly mean precipitation dataset

    Institute of Scientific and Technical Information of China (English)

    杨溯; 徐文慧; 许艳; 李庆祥

    2016-01-01

    observational stations over China,which may result in uncertainties in East A-sian precipitation studies.In order to take into account comprehensive historic information,users might need to employ two or more datasets.However,the non-uniform data formats,data units,station ids and so on add extra difficulties for users to ex-ploit these datasets.For this reason,a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center (NMIC)of China.Precipitation observations from 12 sources are aggregated,and the data formats,data units,station ids are uniformed.Duplicated stations with the same iden-tifications are identified with duplicated observations removed.Consistency test,correlation coefficient test,significance t-test at the 95% confidence level,and significance F-test at the 95% confidence level are conducted first to ensure the data reliabili-ty.Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration (CMA)Global Precipitation (CGP)historic precipitation dataset version 1.0.It contains observations at 31 thousand stations with 1.87×107 data records,among which 4152 time series of precipitation are longer than 100 a.This dataset plays a critical role in climate research due to its advantages in large data volume and high station network density compared to other datasets. Using PMT (Penalized Maximal t-test)method,significant Inhomogeneity has been detected in historic precipitation datasets at 340 stations.The ratio method is then applied to effectively remove these remarkable change points.Global precipitation analy-sis based on CGP v1.0 shows that rainfall has been increasing during the period of 1901 to 2013 with an increasing rate 3.52± 0.5 mm/(10 a),slightly higher than that in the NCDC data.Analysis also reveals distinguished long-term changing trends at different latitude zones.

  6. Exploiting an ensemble of regional climate models to provide robust estimates of projected changes in monthly temperature and precipitation probability distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Tapiador, Francisco J.; Sanchez, Enrique; Romera, Raquel (Inst. of Environmental Sciences, Univ. of Castilla-La Mancha (UCLM), 45071 Toledo (Spain)). e-mail: francisco.tapiador@uclm.es

    2009-07-01

    Regional climate models (RCMs) are dynamical downscaling tools aimed to improve the modelling of local physical processes. Ensembles of RCMs are widely used to improve the coarse-grain estimates of global climate models (GCMs) since the use of several RCMs helps to palliate uncertainties arising from different dynamical cores and numerical schemes methods. In this paper, we analyse the differences and similarities in the climate change response for an ensemble of heterogeneous RCMs forced by one GCM (HadAM3H), and one emissions scenario (IPCC's SRES-A2 scenario). As a difference with previous approaches using PRUDENCE database, the statistical description of climate characteristics is made through the spatial and temporal aggregation of the RCMs outputs into probability distribution functions (PDF) of monthly values. This procedure is a complementary approach to conventional seasonal analyses. Our results provide new, stronger evidence on expected marked regional differences in Europe in the A2 scenario in terms of precipitation and temperature changes. While we found an overall increase in the mean temperature and extreme values, we also found mixed regional differences for precipitation

  7. Reasonability Analysis of Chaotic Identification of Monthly Rainfall Series%月降雨序列的混沌判定的合理性分析

    Institute of Scientific and Technical Information of China (English)

    路剑飞; 陈子燊

    2011-01-01

    针对目前月降雨序列混沌特性研究中存在的问题,以广东省西江流域高要站月降雨序列为例,运用功率谱方法、主成分分析法、饱和关联维数法、C-C方法进行了混沌特性的判定及特征参数的求取,同时分析了数据长度和噪声对混沌研究的影响.研究结果表明,利用功率谱方法进行混沌判定时,单纯的根据连续多峰的噪声背景作为判定混沌存在的依据并不可靠;饱和关联维数法仅从能量角度对混沌序列进行判定,此外,对混沌序列进行滤波会导致此法判定结果的稳健性降低,C-C方法证明了其计算结果的可靠性;为计算出相对稳定的饱和关联维D2,计算数据的长度至少应为450个点;递归图及相应的各种定量判定标准验证了改进的双小波空域降噪方法可有效去除混沌序列中噪声的影响.%A discussion is conducted due to several problems presented in chaotic research of monthly rainfall series.As an example, monthly precipitation data of Gaoyao Station in West River basin in Guangdong Province is utilized for chaotic identification and calculation of characteristic parameters via power spectrum method, PCA, G-P Algorithm and C-C method.Impacts of data length and noise in the dataset are also studied.The results show that it is not reliable to judge a chaotic feature reflected on the power spectrum as successive multi-peaks; although chaotic series and noise can be distinguished directly with PCA method,it can only be held in the way of energy; besides, filtering process on chaotic series will make identification results derived from PCA method unstable; embedded parameters calculated with C-C method prove the validity of results from G-P Algorithm; take dataset used in this paper for example, a relatively stable D2 can be calculated on the premise that at least 450 data points are considered; recurrence plot and corresponding quantitative analysis indices validate effectiveness of

  8. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Peter, E-mail: pl404@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS (United Kingdom); Wojcik, Tomasz [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Povoden-Karadeniz, Erwin [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Falahati, Ahmad [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria)

    2014-10-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed.

  9. Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007

    Directory of Open Access Journals (Sweden)

    P. Štěpánek

    2009-04-01

    Full Text Available Quality control and homogenization has to be undertaken prior to any data analysis in order to eliminate any erroneous values and non climatic biases in time series. In this work we describe and then apply our own approach to data quality control, combining several methods: (i by applying limits derived from interquartile ranges (ii by analyzing difference series between candidate and neighbouring stations and (iii by comparing the series values tested with "expected'' values – technical series created by means of statistical methods for spatial data (e.g. IDW, kriging.

    Because of the presence of noise in series, statistical homogeneity tests render results with some degree of uncertainty. In this work, the use of various statistical tests and reference series made it possible to increase considerably the number of homogeneity test results for each series and thus to assess homogeneity more reliably. Inhomogeneities were corrected on a daily scale.

    These methodological approaches are demonstrated by use of the daily data of air temperature and precipitation measured in the area of the Czech Republic. Series were processed by means of developed ProClimDB and AnClim software (http://www.climahom.eu.

  10. Generalized Extreme Value's shape parameter and its nature for extreme precipitation using long time series and Bayesian approach

    Science.gov (United States)

    Ragulina, Galina; Reitan, Trond

    2016-04-01

    Assessing the probability of extreme precipitation events is of great importance in civil planning. This requires understanding of how return values change with different return periods, which is essentially described by the Generalized Extreme Value distribution's shape parameter. Some works in the field have suggested a constant shape parameter, while our analysis indicates a non-universal value. We first re-analyse an older precipitation dataset (169 stations) extended by Norwegian data (71 stations). We show that while each set seems to have a constant shape parameter, it differs between the two datasets, indicating regional differences. For a more comprehensive analysis of spatial effects, we examine a global dataset (1495 stations). We provide shape parameter maps for two models. We find clear evidence for the shape parameter being dependent on elevation while the effect of latitude remains uncertain. Our results confirm an explanation in terms of dominating precipitation systems based on a proxy derived from the Köppen-Geiger climate classification.

  11. Estimating continuous monthly baseflow time series and their possible applications in the context of the ecological reserve

    CSIR Research Space (South Africa)

    Smakhtin, VU

    2001-04-01

    Full Text Available (IFRs) are used instead of reference natural streamflow time series. The corresponding groundwater storage time series will then represent the groundwater reserve. These storages may provisionally be called ?IFR driven?. Two component reserve time series... (river and groundwater) are, therefore, dependent. In this example, the assumption is that IFRs (river reserve flows) determine the extent to which groundwater resources may be impacted in the absence of any surface water resource development (the impacts...

  12. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: New insight from U-series isotopes in weathering rinds

    Science.gov (United States)

    Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-12-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time

  13. 基于RBF神经网络的池州市降水序列预测%Prediction of precipitation series based on RBF neural network in Chizhou city

    Institute of Scientific and Technical Information of China (English)

    沈艳; 杨春雷; 张庆国; 朱雅莉

    2012-01-01

    时间序列预测分析方法是进行预测预报的有效工具,有着广泛的应用.针对时间序列的非线性、动态变化等特征,基于RBF神经网络对时间序列预测方法进行改进,并以安徽省池州市1959 ~2009年来的月降水量为时间序列数据样本,用MATLAB软件编程,采用基于随机选取中心的RBF神经网络预测方法,对池州市的月降水量进行预测,并选择不同的扩展速度参数,用均方误差进行检验.通过与BP网络模型的预测结果比较分析,表明RBF模型的预测效果较好.建立的基于随机选取中心的RBF神经网络模型,不需要计算原始时间序列数据的复杂函数关系,具有操作简单、学习速度快、短期预测精度高等优点,用于时间序列预测方面能够获得十分满意的结果,具有很高的应用价值.%The time series analysis which used to forecast time series is an effective method and has been used widely. For the non-linear and dynamic characters, we improved time series forecast method based on RBF neural network with month precipitation of 1959-2009 in Chizhou, Anhui as data sample of time series. We used MATLAB software to program and forecast month precipitation of Chizhou based on RBF neural network forecast method of random selection center. At last, we chose different speed and test it with RMSE (root mean square error) . Compared with BPNN(backpropagation neural network), predictive validity of RBF model based on random selection center is preferable and does not need to calculate complexed functional relationship of the original time series data, with advantage of simple operation, study fast and high short-term forecast accuracy.

  14. Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia

    Science.gov (United States)

    Deo, Ravinesh C.; Şahin, Mehmet

    2015-07-01

    The forecasting of drought based on cumulative influence of rainfall, temperature and evaporation is greatly beneficial for mitigating adverse consequences on water-sensitive sectors such as agriculture, ecosystems, wildlife, tourism, recreation, crop health and hydrologic engineering. Predictive models of drought indices help in assessing water scarcity situations, drought identification and severity characterization. In this paper, we tested the feasibility of the Artificial Neural Network (ANN) as a data-driven model for predicting the monthly Standardized Precipitation and Evapotranspiration Index (SPEI) for eight candidate stations in eastern Australia using predictive variable data from 1915 to 2005 (training) and simulated data for the period 2006-2012. The predictive variables were: monthly rainfall totals, mean temperature, minimum temperature, maximum temperature and evapotranspiration, which were supplemented by large-scale climate indices (Southern Oscillation Index, Pacific Decadal Oscillation, Southern Annular Mode and Indian Ocean Dipole) and the Sea Surface Temperatures (Nino 3.0, 3.4 and 4.0). A total of 30 ANN models were developed with 3-layer ANN networks. To determine the best combination of learning algorithms, hidden transfer and output functions of the optimum model, the Levenberg-Marquardt and Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton backpropagation algorithms were utilized to train the network, tangent and logarithmic sigmoid equations used as the activation functions and the linear, logarithmic and tangent sigmoid equations used as the output function. The best ANN architecture had 18 input neurons, 43 hidden neurons and 1 output neuron, trained using the Levenberg-Marquardt learning algorithm using tangent sigmoid equation as the activation and output functions. An evaluation of the model performance based on statistical rules yielded time-averaged Coefficient of Determination, Root Mean Squared Error and the Mean Absolute

  15. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...... for vector field estimation already known from short-term weather radar nowcasting. However, instead of forecasting the weather radar rainfall, the proposed interpolation method exploits the advection of the rainfall in the interpolation. The interpolated rainfall fields are validated by measurements...... at ground level from laser disdrometers. The proposed interpolation method performs better when compared to traditional interpolation of weather radar rainfall where the radar observation is considered constant in time between measurements. It is demonstrated that the advection-based interpolation method...

  16. Benchmarking monthly homogenization algorithms

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2011-08-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  17. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  18. Characteristics of Spatial Structural Patterns and Temporal Variability of Annual Precipitation in Ningxia

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of a...

  19. 长江上游月降水人工神经网络预测模型%ARTIFICIAL NEURAL NETWORK MODELS FOR FORECASTING MONTHLY PRECIPITATION IN THE UPPER YANGTZE RIVER

    Institute of Scientific and Technical Information of China (English)

    冯亚文; 任国玉; 张丽; 罗华超

    2011-01-01

    Monthly precipitation forecast for the upper Yangtze River is very essential to the water resources management for the entire Yangtze River basin. Three typical meteorological stations were selected respectively in three different climatic zones. All the selected stations contained nearly 60 years of monthly precipitation records in the upper Yangtze River. This paper estimated the month of precipitation and precipitation time delay parameter, and established monthly precipitation forecasting model using back-propagation neural network, radial basis function neural network, generalized regression neural network and multiple linear regression method respectively, to predict the precipitation of coming month. Then, the mean square error and coefficient of determination were used to verify the simulation accuracy of various models and the model simulation results. The results show that artificial neural network prediction model is superior to multiple linear regression in general. Especially, the performance of the back-propagation neural network is better than the others. It can be determined as an effective monthly precipitation methods for the upper Yangtze River after determining reasonable input variables and network structure.%长江上游月降水量预测对于三峡库区及整个长江流域水资源管理具有重要意义.根据长江上游不同气候区降水差异,选取玉树、九龙和宜宾3个代表性气象站点近60 a的月降水量数据,运用反向传播神经网络、径向基函数神经网络、广义回归神经网络和多元线性回归法,确定降水时滞和降水月份,建立月降水预测模型,来预测未来一个月的降水量,并采用均方误差和判定系数来验证和对比各种模型的模拟效果.结果显示:人工神经网络模型总体上优于多元线性回归,特别是反向传播种经网络的模拟结果各站表现较好,在确定合理的输入变量和网络结构后,可以尝试作为长江上游各站月降水预测模型.

  20. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    Science.gov (United States)

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds

  1. Creating a monthly time series of the potentiometric surface in the Upper Floridan aquifer, Northern Tampa Bay area, Florida, January 2000-December 2009

    Science.gov (United States)

    Lee, Terrie M.; Fouad, Geoffrey G.

    2014-01-01

    In Florida’s karst terrain, where groundwater and surface waters interact, a mapping time series of the potentiometric surface in the Upper Floridan aquifer offers a versatile metric for assessing the hydrologic condition of both the aquifer and overlying streams and wetlands. Long-term groundwater monitoring data were used to generate a monthly time series of potentiometric surfaces in the Upper Floridan aquifer over a 573-square-mile area of west-central Florida between January 2000 and December 2009. Recorded groundwater elevations were collated for 260 groundwater monitoring wells in the Northern Tampa Bay area, and a continuous time series of daily observations was created for 197 of the wells by estimating missing daily values through regression relations with other monitoring wells. Kriging was used to interpolate the monthly average potentiometric-surface elevation in the Upper Floridan aquifer over a decade. The mapping time series gives spatial and temporal coherence to groundwater monitoring data collected continuously over the decade by three different organizations, but at various frequencies. Further, the mapping time series describes the potentiometric surface beneath parts of six regionally important stream watersheds and 11 municipal well fields that collectively withdraw about 90 million gallons per day from the Upper Floridan aquifer. Monthly semivariogram models were developed using monthly average groundwater levels at wells. Kriging was used to interpolate the monthly average potentiometric-surface elevations and to quantify the uncertainty in the interpolated elevations. Drawdown of the potentiometric surface within well fields was likely the cause of a characteristic decrease and then increase in the observed semivariance with increasing lag distance. This characteristic made use of the hole effect model appropriate for describing the monthly semivariograms and the interpolated surfaces. Spatial variance reflected in the monthly

  2. Iodine isotopes in precipitation: Four-year time series variations before and after 2011 Fukushima nuclear accident

    DEFF Research Database (Denmark)

    Xu, Sheng; Zhang, Luyuan; Freeman, Stewart P. H. T.;

    2016-01-01

    Rainwater samples were collected monthly from Fukushima, Japan, in 2012-2014 and analysed for 127I and 129I. These are combined with previously reported data to investigate atmospheric levels and behaviour of Fukushima-derived 129I before and after the 2011 nuclear accident. In the new datasets...... from March 2011 to September 2012, whereas the 129I concentrations and 129I/127I ratios followed declining trends since the accident. Although 129I concentrations in five samples during the period of 2013-2014 have approached the pre-accident levels, 129I concentrations in most samples remained higher...... values in winter and spring-summer. The high 129I levels in winter and spring-summer are most likely attributed to local resuspension of the Fukushima-derived radionuclide-bearing fine soil particles deposited on land surfaces, and re-emission through vegetation taking up 129I from contaminated soil...

  3. The study of time series of monthly averaged values of F10.7 from 1950 to 2010

    CERN Document Server

    Bruevich, E A; Yakunina, G V

    2014-01-01

    Prior to 1947, the activity of the Sun was assessed by the relative numbers of sunspots (W). The 10.7 cm radio emission (frequency of 2.8 GHz) for observations of the variability of radiation of chromosphere and the lower corona (F10.7) became used from 1947. For the F10,7 are available more detailed observational archive data, so this activity index more often than the other indices is used in the prediction and monitoring of the solar activity. We have made the analysis of time series of F10.7 with the use of different mother wavelets: Daubechies 10, Symlet 8, Meyer, Gauss 8 and Morlet. Wavelet spectrum allows us not only to identify cycles, but analyze their change in time. Each wavelet has its own characteristic features, so sometimes with the help of different wavelets it can be better identify and highlight the different properties of the analyzed signal. We intended to choose the mother wavelet, which is more fully gives information about the analyzed index F10.7. We have received, that all these wavel...

  4. Configuring calendar variation based on time series regression method for forecasting of monthly currency inflow and outflow in Central Java

    Science.gov (United States)

    Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika

    2015-12-01

    Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.

  5. Standardized precipitation index zones for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, L.; Soto, M. [Instituto de Ecologia, A.C., Xalapa, Veracruz (Mexico); Rutherford, B.M.; Maarouf, A. [Faculty of Environmental Studies, York University, Toronto, Ontario (Canada)

    2005-01-01

    Precipitation zone systems exists for Mexico based on seasonality, quantity of precipitation, climates and geographical divisions, but none are convenient for the study of the relation of precipitation with phenomena such as El nino. An empirical set of seven exclusively Mexican and six shared zones was derived from three series of Standardized Precipitation Index (SPI) images, from 1940 through 1989: a whole year series (SPI-12) of 582 monthly images, a six month series (SPI-6) of 50 images for winter months (November through April), and a six month series (SPI-6) of 50 images for summer months (May through October). By examination of principal component and unsupervised classification images, it was found that all three series had similar zones. A set of basic training fields chosen from the principal component images was used to classify all three series. The resulting thirteen zones, presented in this article, were found to be approximately similar, varying principally at zones edges. A set of simple zones defined by just a few vertices can be used for practical operations. In general the SPI zones are homogeneous, with almost no mixture of zones and few outliers of one zone in the area of others. They are compared with a previously published map of climatic regions. Potential applications for SPI zones are discussed. [Spanish] Existen varios sistemas de zonificacion de Mexico basados en la estacionalidad, cantidad de precipitacion, climas y divisiones geograficas, pero ninguno es conveniente para el estudio de la relacion de la precipitacion con fenomenos tales como El Nino. En este trabajo se presenta un conjunto de siete zonas empiricas exclusivamente mexicanas y seis compartidas, derivadas de tres series de imagenes de SPI (Indice Estandarizado de la Precipitacion), desde 1940 a 1989: una serie de 582 imagenes mensuales (SPI-12), una series de 50 imagenes (SPI-6) de meses de invierno (noviembre a abril), y otra de 50 imagenes (SPI-6) de meses de verano

  6. Iodine isotopes in precipitation: Four-year time series variations before and after 2011 Fukushima nuclear accident.

    Science.gov (United States)

    Xu, Sheng; Zhang, Luyuan; Freeman, Stewart P H T; Hou, Xiaolin; Watanabe, Akira; Sanderson, David C W; Cresswell, Alan; Yamaguchi, Katsuhiko

    2016-05-01

    Rainwater samples were collected monthly from Fukushima, Japan, in 2012-2014 and analysed for (127)I and (129)I. These are combined with previously reported data to investigate atmospheric levels and behaviour of Fukushima-derived (129)I before and after the 2011 nuclear accident. In the new datasets, (127)I and (129)I concentrations between October 2012 and October 2014 varied from 0.5 to 10 μg/L and from 1.2 × 10(8) to 6.9 × 10(9) atoms/L respectively, resulting in (129)I/(127)I atomic ratio ranges from 3 × 10(-8) to 2 × 10(-7). The (127)I concentrations were in good agreement with those in the previous period from March 2011 to September 2012, whereas the (129)I concentrations and (129)I/(127)I ratios followed declining trends since the accident. Although (129)I concentrations in five samples during the period of 2013-2014 have approached the pre-accident levels, (129)I concentrations in most samples remained higher values in winter and spring-summer. The high (129)I levels in winter and spring-summer are most likely attributed to local resuspension of the Fukushima-derived radionuclide-bearing fine soil particles deposited on land surfaces, and re-emission through vegetation taking up (129)I from contaminated soil and water, respectively. Long-term declining rate suggests that contribution of the Fukushima-derived (129)I to the atmosphere would become less since 2014.

  7. Variation in stable isotope ratios of monthly rainfall in the Douala and Yaounde cities, Cameroon: local meteoric lines and relationship to regional precipitation cycle

    Science.gov (United States)

    Wirmvem, Mengnjo Jude; Ohba, Takeshi; Kamtchueng, Brice Tchakam; Taylor, Eldred Tunde; Fantong, Wilson Yetoh; Ako, Ako Andrew

    2017-09-01

    Hydrogen (D) and oxygen (18O) stable isotopes in precipitation are useful tools in groundwater recharge and climatological investigations. This study investigated the isotopes in rainfall during the 2013 and 2014 hydrological years in the Douala and Yaounde urban cities. The objectives were to generate local meteoric water lines (LMWLs), define the spatial-temporal variations of the isotopes in rainwater and their relationship to the regional precipitation cycle, and determine the factors controlling the isotopic variation. The LWMLs in Douala and Yaounde were δD = 7.92δ18O + 12.99 and δD = 8.35δ18O + 15.29, respectively. The slopes indicate isotopic equilibrium conditions during rain formation and negligible evaporation effect during rainfall. Precipitation showed similar wide ranges in δ18O values from -5.26 to -0.75 ‰ in Douala and -5.8 to +1.81 ‰ in Yaounde suggesting a common moisture source from the Atlantic Ocean. Enriched weighted mean δ18O (wδ18O) values during the low pre- and post-monsoon showers coincided with low convective activity across the entire region. Enriched isotopic signatures also marked the West African monsoon transition phase during each hydrological year. Abrupt wδ18O depletion after the transition coincided with the monsoon onset in the region. Peak periods of monsoonal rainfall, associated with high convective activities, were characterised by the most depleted wδ18O values. Controls on isotopic variations are the amount effect and moisture recycling. The stable isotope data provide a tool for groundwater recharge studies while the isotopic correlation with regional rainfall cycle demonstrate their use as markers of moisture circulation and detecting climatic changes in precipitation.

  8. Variation in stable isotope ratios of monthly rainfall in the Douala and Yaounde cities, Cameroon: local meteoric lines and relationship to regional precipitation cycle

    Science.gov (United States)

    Wirmvem, Mengnjo Jude; Ohba, Takeshi; Kamtchueng, Brice Tchakam; Taylor, Eldred Tunde; Fantong, Wilson Yetoh; Ako, Ako Andrew

    2016-04-01

    Hydrogen (D) and oxygen (18O) stable isotopes in precipitation are useful tools in groundwater recharge and climatological investigations. This study investigated the isotopes in rainfall during the 2013 and 2014 hydrological years in the Douala and Yaounde urban cities. The objectives were to generate local meteoric water lines (LMWLs), define the spatial-temporal variations of the isotopes in rainwater and their relationship to the regional precipitation cycle, and determine the factors controlling the isotopic variation. The LWMLs in Douala and Yaounde were δD = 7.92δ18O + 12.99 and δD = 8.35δ18O + 15.29, respectively. The slopes indicate isotopic equilibrium conditions during rain formation and negligible evaporation effect during rainfall. Precipitation showed similar wide ranges in δ18O values from -5.26 to -0.75 ‰ in Douala and -5.8 to +1.81 ‰ in Yaounde suggesting a common moisture source from the Atlantic Ocean. Enriched weighted mean δ18O (wδ18O) values during the low pre- and post-monsoon showers coincided with low convective activity across the entire region. Enriched isotopic signatures also marked the West African monsoon transition phase during each hydrological year. Abrupt wδ18O depletion after the transition coincided with the monsoon onset in the region. Peak periods of monsoonal rainfall, associated with high convective activities, were characterised by the most depleted wδ18O values. Controls on isotopic variations are the amount effect and moisture recycling. The stable isotope data provide a tool for groundwater recharge studies while the isotopic correlation with regional rainfall cycle demonstrate their use as markers of moisture circulation and detecting climatic changes in precipitation.

  9. Correlation between total precipitable water and precipitation over East Asia

    Science.gov (United States)

    Keum, Wangho; Lim, Gyu-Ho

    2017-04-01

    The precipitation rate(PR) and the total precipitable water(TPW) interact with various physical mechanisms. The correlation of two variables changes with difference of domain resolution and characteristics of the region. This poster analyzes the correlation between PR and TPW over East Asia using Cyclostationary Empirical Orthogonal Function(CSEOF) which is one of the PCA analysis. The CSEOF is useful to search a periodic pattern of the data. The anomalies which is subtracted climatological mean from the original data are used to represent annual cycles. Two variances of ERA-Interim Monthly Total Column Water vapor and GPCP monthly precipitation amounts with 372 time since January, 1984 to December, 2014 are decomposed into several modes separately. The first mode which explain largest variance are used in analysis. PC of both PR and TPW increase recently on mean value and amplitude, and they show considerable correlation on phase. The correlation coefficient of PR and TPW is 0.61 and maintains the same values by month. The result of harmonic analysis shows 2 to 6 year oscillations. As result of decomposed modes of two variables, there is the relationship between TPW PC series and horizontal moisture gradient. The Horizontal moist gradient can change affect moisture flux convergence which is one of important variable of rainfall events.

  10. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data

    Science.gov (United States)

    Bordi, Isabella; Zhu, Xiuhua; Fraedrich, Klaus

    2016-01-01

    Monthly means of ground-based GPS measurements of precipitable water vapor (PWV) from six stations in the USA covering the period January 2007-December 2012 are analyzed to investigate their usefulness for monitoring meteorological wet/dry spells. For this purpose, the relationship between PWV and the Standardized Precipitation Index (SPI) on 1-month timescale is investigated. The SPI time series at grid points close to the stations are computed using gridded precipitation records from the NOAA Climate Prediction Center (CPC) unified precipitation dataset (January 1948-April 2012). GPS measurements are first verified against PWV data taken from the latest ECMWF reanalysis ERA-Interim; these PWV reanalysis data, which extend back to 1979, are then used jointly with CPC precipitation to compute precipitation efficiency (PE), defined as the percentage of total water vapor content that falls onto the surface as measurable precipitation in a given time period. The overall results suggest that (i) PWV time series are dominated by the seasonal cycle with maximum values during summer months, (ii) the comparison between GPS and ERA-Interim PWV monthly data shows good agreement with differences less than 4 mm, (iii) at all stations and for almost all months, PWV is only poorly correlated with recorded precipitation and the SPI, while PE correlates highly with the SPI, providing an estimate of the water availability at a given location and useful information on wet/dry spell occurrence, and (iv) long data records would allow, for each month of the year, the identification of PE thresholds associated with different SPI classes that, in turn, have potential for forecasting meteorological wet/dry spells. Thus, it is through PE that ground-based GPS measurements appear of relevance for assessing wet/dry spells, although there is not a direct relationship between PWV and SPI.

  11. An assessment of El Niño and La Niña impacts focused on monthly and seasonal rainfall and extreme dry/precipitation events in mountain regions of Colombia and México

    Science.gov (United States)

    Pinilla Herrera, María Carolina; Andrés Pinzón Correa, Carlos

    2016-03-01

    The influence of El Niño and La Niña on monthly and seasonal rainfall over mountain landscapes in Colombia and México was assessed based on the Oceanic Niño Index (ONI). A statistical analysis was develop to compare the extreme dry/precipitation events between El Niño, La Niña and Neutral episodes. For both areas, it was observed that El Niño and La Niña episodes are associated with important increases or decreases in rainfall. However, Neutral episodes showed the highest occurrence of extreme precipitation/dry events. For a better understanding of the impact of El Niño and La Niña on seasonal precipitation, we did a compound and a GIS analyses to define the high/low probability of above, below or normal seasonal precipitation under El Niño, La Niña and cold/warm Neutral episodes. In San Vicente, Colombia the below-normal seasonal rainfall was identified during El Niño and Neutral episodes in the dry season JJA. In this same municipality we also found above-normal seasonal rainfall during La Niña and Neutral episodes, especially in the dry season DJF. In Tancítaro México the below-normal seasonal rainfall was identified during La Niña winters (DJF) and El Niño summers (JJA), the above-normal seasonal rainfall was found during La Niña summers (JJA) and El Niño winters (DJF).

  12. Evaluation of precipitation and river discharge variations over southwestern Iran during recent decades

    Indian Academy of Sciences (India)

    Azadeh Arbabi Sabzevari; Mohammad Zarenistanak; Hossein Tabari; Shokat Moghimi

    2015-03-01

    This study investigates trend and change point in the annual and monthly precipitation and river discharge time series for a 56-year period (1956/57–2011/12). The analyses were carried out for 17 rain gauge stations and 13 hydrometric stations located in the southwest regions of Iran. Five statistical tests of Mann–Kendall, Spearman, Sequential Mann–Kendall, Pettitt and Sen’s slope estimator were utilized for the analysis. The relationships between the precipitation and river discharge series were also examined by the Pearson correlation test. The results obtained for the precipitation time series indicated that most of the stations were characterized by insignificant trends for both the annual and monthly series. The analysis of discharge trends revealed a significant increase during both the annual and October through April series. The magnitude of significant increasing trends in annual river discharge ranged between 6.65 and 20.49 m3/s per decade. The highest number of significant trends in the monthly river discharge series was observed in January and February, accounting for seven and four trends respectively. Furthermore, most of the annual and monthly river discharge series showed significant change points in the 1970s. It was also found that river discharge was strongly correlated with precipitation at the annual scale and for most of the months.

  13. Storage Gage Precipitation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A storage gage is a precipitation gage that requires reading and maintenance only monthly or seasonal intervals. This library includes reports from such gages,...

  14. Generation of a stochastic precipitation model for the tropical climate

    Science.gov (United States)

    Ng, Jing Lin; Abd Aziz, Samsuzana; Huang, Yuk Feng; Wayayok, Aimrun; Rowshon, MK

    2017-06-01

    A tropical country like Malaysia is characterized by intense localized precipitation with temperatures remaining relatively constant throughout the year. A stochastic modeling of precipitation in the flood-prone Kelantan River Basin is particularly challenging due to the high intermittency of precipitation events of the northeast monsoons. There is an urgent need to have long series of precipitation in modeling the hydrological responses. A single-site stochastic precipitation model that includes precipitation occurrence and an intensity model was developed, calibrated, and validated for the Kelantan River Basin. The simulation process was carried out separately for each station without considering the spatial correlation of precipitation. The Markov chains up to the fifth-order and six distributions were considered. The daily precipitation data of 17 rainfall stations for the study period of 1954-2013 were selected. The results suggested that second- and third-order Markov chains were suitable for simulating monthly and yearly precipitation occurrences, respectively. The fifth-order Markov chain resulted in overestimation of precipitation occurrences. For the mean, distribution, and standard deviation of precipitation amounts, the exponential, gamma, log-normal, skew normal, mixed exponential, and generalized Pareto distributions performed superiorly. However, for the extremes of precipitation, the exponential and log-normal distributions were better while the skew normal and generalized Pareto distributions tend to show underestimations. The log-normal distribution was chosen as the best distribution to simulate precipitation amounts. Overall, the stochastic precipitation model developed is considered a convenient tool to simulate the characteristics of precipitation in the Kelantan River Basin.

  15. Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model

    Science.gov (United States)

    Rounaghi, Mohammad Mahdi; Nassir Zadeh, Farzaneh

    2016-08-01

    We investigated the presence and changes in, long memory features in the returns and volatility dynamics of S&P 500 and London Stock Exchange using ARMA model. Recently, multifractal analysis has been evolved as an important way to explain the complexity of financial markets which can hardly be described by linear methods of efficient market theory. In financial markets, the weak form of the efficient market hypothesis implies that price returns are serially uncorrelated sequences. In other words, prices should follow a random walk behavior. The random walk hypothesis is evaluated against alternatives accommodating either unifractality or multifractality. Several studies find that the return volatility of stocks tends to exhibit long-range dependence, heavy tails, and clustering. Because stochastic processes with self-similarity possess long-range dependence and heavy tails, it has been suggested that self-similar processes be employed to capture these characteristics in return volatility modeling. The present study applies monthly and yearly forecasting of Time Series Stock Returns in S&P 500 and London Stock Exchange using ARMA model. The statistical analysis of S&P 500 shows that the ARMA model for S&P 500 outperforms the London stock exchange and it is capable for predicting medium or long horizons using real known values. The statistical analysis in London Stock Exchange shows that the ARMA model for monthly stock returns outperforms the yearly. ​A comparison between S&P 500 and London Stock Exchange shows that both markets are efficient and have Financial Stability during periods of boom and bust.

  16. Characteristic features of winter precipitation and its variability over northwest India

    Indian Academy of Sciences (India)

    R K Yadav; K Rupa Kumar; M Rajeevan

    2012-06-01

    Northwestern parts of India receive considerable amount of precipitation during the winter months of December–March. Although, it is only about 15% of the annual precipitation, the precipitation is very important for rabi crops and to maintain the glaciers extend in the Himalaya, which melt and supply water to the rivers during other seasons. The precipitation is mainly associated with the sequence of synoptic systems known as ‘western disturbances’. The precipitation has considerable spatial and temporal variability, with maximum precipitation occurring particularly over northern hilly regions, with decreasing influence southwards. The spatially coherent winter precipitation series has been prepared for the largest possible area comprising nine meteorological subdivisions of northwest India, which constitute about 32% of the total area of the country, having similar precipitation characteristics. The precipitation series has been statistically analysed to understand its characteristics and variability. The seasonal precipitation series is found to be homogeneous, Gaussian (normal) distributed and free from persistence. The precipitation variability has increased during the most recent three decades with more excess and deficient years.

  17. Trend analysis of precipitation in Jharkhand State, India - Investigating precipitation variability in Jharkhand State

    Science.gov (United States)

    Chandniha, Surendra Kumar; Meshram, Sarita Gajbhiye; Adamowski, Jan Franklin; Meshram, Chandrashekhar

    2016-08-01

    Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901-2011) from 18 meteorological stations. Autocorrelation and Mann-Kendall/modified Mann-Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt-Mann-Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901-2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901-1949, which was reversed during the subsequent period (1950-2011).

  18. Gap Filling of Precipitation Data by SSA - Singular Spectrum Analysis

    Science.gov (United States)

    Filho, A. S. F.; Lima, G. A. R.

    2016-10-01

    From the macroscopic standpoint, the precipitation time series is obtained from observation of natural systems rather than in the laboratory. These time series are often full of gaps (missing values) due to the conditions under which the measurements are made. Missing values give rise to various problems in spectral estimation, inhibit statistical analysis and in specifying boundary conditions for numerical models. Hence, gap filling is necessary in environmental science. The aim of this study is to highlight the application of the SSA forecasting algorithm to fill in missing values to real-life time series. It was applied to several monthly precipitation time series recorded over a large savannah area in Brazil. The results are promising and the accuracy and reliability depend on the pattern and relative length of the gaps with respect to the total length of the time series and presence of noise.

  19. Characteristics of variation of precipitation time series in Yellow River Delta%黄河三角洲地区降水时序变化特征研究

    Institute of Scientific and Technical Information of China (English)

    刘健; 林琳; 陈学群; 管清花

    2012-01-01

    Based on daily precipitation data measured at five meteorological stations in the Yellow River Delta from 1961 to 2007, the Mann-Kendall nonparametric test and wavelet analysis methods were used to analyze the characteristics of variation of the precipitation time series in the Yellow River Delta over the last 50 years. The results show that the inter-annual and seasonal precipitation in the area had a decreasing trend during the study period and changed abruptly around 1976, when the precipitation began to decrease significantly. The inter-annual precipitation had an eight to nine-year dominant cycle and the four seasonal precipitations had 16 to 17-year dominant cycles. According to the cycle characteristics, it can be predicted that there will be a period of abundant precipitation from 2012 to 2014 in the Yellow River Delta, and there will be more precipitation in autumn and winter and less precipitation in spring and summer.%基于黄河三角洲内5个气象站1961-2007年逐日降水资料,采用Mann-Kendal非参数检验、小波分析等方法,对近50年来黄河三角洲地区降水量时序变化特征进行研究.结果表明,黄河三角洲地区近50年来,年际和年内不同季节降水量均呈逐步下降趋势,并在1976年左右发生突变,之后降水量下降显著.年际降水存在约8~9年的主变化周期,而春夏秋冬四季降水存在约16~ 17年的主变化周期.根据周期变化特征,预测2012-2014年黄河三角洲地区将处于多水期,其中秋季和冬季降水较多,而春季和夏季降水较少.

  20. CPC Merged Analysis of Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists of two files containing global monthly averaged precipitation rate values at a 2.5x2.5 resolution starting in 1979. Values are obtained...

  1. Calorimetric studies of 7000 series aluminum alloys. I - Matrix precipitate characterization of 7075. II - Comparison of 7075, 7050, and RX720 alloys

    Science.gov (United States)

    Deiasi, R.; Adler, P. N.

    1977-01-01

    Correlation between differential scanning calorimetry and high temperature transmission electron microscopy for the characterization of preexisting matrix precipitates in the highest-strength and overaged tempers of 7075 aluminum was demonstrated. The solid state reactions undergone by these tempers in the 20-500 C temperature range were elucidated and expressed in terms of thermodynamic and kinetic parameters. The dissolution parameters for each phase are distinguishable and serve as guidelines for a rapid characterization of the matrix microstructure of these alloys.

  2. Estimation of extreme floods : At-site flood estimates by application of a hydrological model and long synthetic series of precipitation and temperature

    OpenAIRE

    Barkved, Line Johanne

    2007-01-01

    Estimation of extreme floods, based on statistical analyses of observed values of flood series, is associated with several problems leading to high uncertainty in the flood estimates. In particular is this related to the length of the observation series and the extrapolation outside the range of observed values, when estimating the rare extreme floods. In many cases, short hydrological records are the common rule rather than the exceptions. This thesis targets at-site, single station, fr...

  3. Modelación de valores extremos: Un análisis preliminar de la precipitación mensual en La Habana; Extreme-value modelling: A preliminary analysis of monthly precipitation at Havana

    Directory of Open Access Journals (Sweden)

    Jesper Ryden

    2011-02-01

    Full Text Available El análisis estadístico de valores extremos es de suma importancia en muchos campos de la ingeniería.Este trabajo es una breve introducción a la modelación con distribución  de valores extremos. Consisteen la presentación de dos métodos básicos comúnmente empleados en el modelado de valores extremospara analizar el problema típico de estimación de valores de retorno. Como ilustración de los métodos,se investiga un conjunto de datos de la precipitación mensual en La Habana. Statistical analysis of extreme values is of importance in many fields of engineering. This paper willserve as a brief introduction to modelling with extreme-value distributions. A presentation of two common,basic methods is given to analyse the standard problem in extreme-value modelling of estimation of returnvalues. As an illustration of the methods, a data set of monthly precipitation at Havana is investigated.

  4. Monthly values of the standardized precipitation index in the State of São Paulo, Brazil: trends and spectral features under the normality assumption Valores mensais do índice padronizado de precipitação pluvial no Estado de São Paulo, Brasil: tendência e características espectrais sob o pressuposto da normalidade

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2012-01-01

    Full Text Available The aim of this study was to describe monthly series of the Standardized Precipitation Index obtained from four weather stations of the State of São Paulo, Brazil. The analyses were carried out by evaluating the normality assumption of the SPI distributions, the spectral features of these series and, the presence of climatic trends in these datasets. It was observed that the Pearson type III distribution was better than the gamma 2-parameter distribution in providing monthly SPI series closer to the normality assumption inherent to the use of this standardized index. The spectral analyses carried out in the time-frequency domain did not allow us to establish a dominant mode in the analyzed series. In general, the Mann-Kendall and the Pettitt tests indicated the presence of no significant trend in the SPI series. However, both trend tests have indicated that the temporal variability of this index, observed at the months of October over the last 60 years, cannot be seen as the result of a purely random process. This last inference is due to the concentration of decreasing trends, with a common beginning (1983/84 in the four locations of the study.O objetivo do trabalho foi descrever séries mensais do Índice Padronizado de Precipitação (SPI, obtidas a partir de quatro estações meteorológicas do Estado de São Paulo, Brasil (1951-2010. As análises foram realizadas avaliando-se o pressuposto de normalidade das distribuições do SPI, as características espectrais dessas séries e a presença de tendências climáticas nessas amostras. Observou-se que a distribuição Pearson tipo III foi melhor que a gama 2-parâmetros em prover séries mensais do SPI mais próximas ao pressuposto de normalidade inerente ao uso desse índice padronizado. As análises espectrais realizadas no domínio tempo-frequência não permitiram o estabelecimento de modo (de frequência dominante nas séries analisadas. De forma geral, os testes de Mann-Kendall e

  5. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  6. Time series analysis of precipitation and vegetation to detect food production anomalies in the Horn of Africa. The case of Lower Shabelle (Somalia

    Directory of Open Access Journals (Sweden)

    M. A. Belenguer-Plomer

    2016-12-01

    Full Text Available The Horn of Africa is one of the most food-insecure locations around the world due to the continuous increase of its population and the practice of the subsistence agriculture. This causes that much of the population cannot take the minimum nutritional needs for a healthy life. Moreover, this situation of food vulnerability may be seriously affected in the coming years due to the effects of climate change. The aim of this work is combine the information about the state of the vegetation that offers the NDVI with rainfall data to detect negative anomalies in food production. This work has been used the monthly products of NDVI MOD13A3 of MODIS and the rainfall estimation product TAMSAT, both during the period 2001-2015. With these products we have calculated the average of the entire time period selected and we have detected the years whose NDVI values were further away from the average, being these 2010, 2011 and 2014. Once detected the years with major anomalies in NDVI, there has been an exclusive monthly analysis of those years, where we have analysed the relationships between the value of NDVI and monthly rainfall, obtaining a direct relationship between the two values. It also has been used crop calendar to focus the analysis in the months of agricultural production and finding that the main cause of anomalies in vegetation is a decrease in the registration of rainfall during the months of agricultural production. This reason explains the origin of the food shortages that occurred in 2010 and 2011 that generated an enormous humanitarian crisis in this area.

  7. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  8. Precipitation variability assessment of northeast China: Songhua River basin

    Science.gov (United States)

    Khan, Muhammad Imran; Liu, Dong; Fu, Qiang; Azmat, Muhammad; Luo, Mingjie; Hu, Yuxiang; Zhang, Yongjia; Abrar, Faiz M.

    2016-07-01

    Variability in precipitation is critical for the management of water resources. In this study, the research entropy base concept was applied to investigate spatial and temporal variability of the precipitation during 1964-2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy was applied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainy days for each selected station. Intensity entropy and apportionment entropy were used to calculate the variability over individual year and decade, respectively. Subsequently, Spearman's Rho and Mann-Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sample disorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80), April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributed significantly higher than those of other months. Overall, the contribution of the winter season was considerably high with a standard deviation of 0.10. The precipitation variability on decade basis was observed to increase from decade 1964-1973 and 1994-2003 with a mean value of decadal apportionment disorder index 0.023 and 0.053, respectively. In addition, the Mann-Kendall test value (1.90) showed a significant positive trend only at the Shangzhi station.

  9. Precipitation Reconstruction (PREC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The PREC data set is an analysis of monthly precipitation constructed on a 2.5(o)lat/lon grid over the global for the period from 1948 to the present. The land...

  10. MAP3S Precipitation Chemistry Network: fifth periodic summary report (1981)

    Energy Technology Data Exchange (ETDEWEB)

    Dana, M.T.; Rothert, J.E.

    1983-02-01

    This, the fifth in a series of summary reports, contains complete field and chemical data from the MAP3 Precipitation Chemistry Network for the year 1981. The 1981 data were added to the previous data base, and an update of the previous five year statistical summary completed. Included are basic statistics, time trend analyses, and monthly averages.

  11. Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China

    Directory of Open Access Journals (Sweden)

    Hui Tao

    2016-05-01

    Full Text Available Satellite-based precipitation monitoring at high spatial resolution is crucial for assessing the water and energy cycles at the global and regional scale. Based on the recently released 7th version of the Multi-satellite Precipitation Analysis (TMPA product of the Tropical Rainfall Measuring Mission (TRMM, and the monthly precipitation data (3B43 are evaluated using observed monthly precipitation from 65 meteorological stations in Jiangsu Province, China, for the period 1998–2014. Additionally, the standardized precipitation index (SPI, which is derived by a nonparametric approach, is employed to investigate the suitability of the TRMM 3B43 precipitation data for drought monitoring in Jiangsu Province. The temporal correlations between observations and the TRMM 3B43 precipitation data show, in general, reasonable agreement for different time scales. However, in summer, only 50% of the stations present correlation coefficients that are statistically significant at the 95% confidence interval. The overall best agreement of TRMM 3B43 precipitation data at seasonal scale tends to occur in autumn (SON. The comparative analysis of the calculated SPI time series suggests that the accuracy of TRMM3B43 decreases with increasing time scale. Stations with significant correlation coefficients also become less spatially homogeneous with increasing time scale. In summary, the findings demonstrate that TRMM 3B43 precipitation data can be used for reliable short-term drought monitoring in Jiangsu province, while temporal-spatial limitations exist for longer time scales.

  12. Analysis of Changes in Precipitation and Drought in Aksu River Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Yuhu Zhang

    2015-01-01

    Full Text Available The analysis of the spatiotemporal trends of precipitation and drought is relevant for the future development and sustainable management of water resources in a given region. In this study, precipitation and Standardized Precipitation Index (SPI trends were analyzed through applying linear regression, Mann–Kendall, and Spearman’s Rho tests at the 5% significance level. For this goal, meteorological data from 9 meteorological stations in and around Aksu Basin during the period 1960–2010 was used, and two main annual drought periods were detected (1978-1979 and 1983–1986, while the extremely dry years were recorded in 1975 and 1985 at almost all of the stations. The monthly analysis of precipitation series indicates that all stations had increasing trend in July, October, and December, while both increasing and decreasing trends were found in other months. For the seasonal scale, precipitation series had increasing trends in summer and winter. 33% of the stations had the decreasing trend on precipitation in the spring series, and it was 11% in the autumn. At the same time, the SPI-12 values of all stations had the increasing trend. The significant trends were detected at Aheqi, Baicheng, Keping, and Kuche stations.

  13. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901-2002), West Bengal, India

    Science.gov (United States)

    Chatterjee, Soumendu; Khan, Ansar; Akbari, Hashem; Wang, Yupeng

    2016-12-01

    This paper intended to investigate spatio-temporal monotonic trend and shift in concentration of monsoon precipitation across West Bengal, India, by analysing the time series of monthly precipitation from 18 weather stations during the period from 1901 to 2002. In dealing with, the inhomogeneity in the precipitation series, RHtestsV4 software package is used to detect, and adjust for, multiple change points (shifts) that could exist in data series. Finally, the cumulative deviation test was applied at 5% significant level to check the homogeneity (presence of historic changes by cumulative deviations test). Afterward, non-parametric Mann-Kendall (MK) test and Theil-Sen estimator (TSE) was applied to detect of nature and slope of trends; and, Sequential Mann Kendall (SQMK) test was applied for detection of turning point and magnitude of change in trends. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation in precipitation data series. Four indices- precipitation concentration index (PCI), precipitation concentration degree (PCD), precipitation concentration period (PCP) and fulcrum (centre of gravity) were used to detect precipitation concentration and the spatial pattern in it. The application of the above-mentioned procedures has shown very notable statewide monotonic trend for monsoon precipitation time series. Regional cluster analysis by SQMK found increasing precipitation in mountain and coastal regions in general, except during the non- monsoon seasons. The results show that higher PCI values were mainly observed in South Bengal, whereas lower PCI values were mostly detected in North Bengal. The PCI values are noticeably larger in places where both monsoon total precipitation and span of rainy season are lower. The results of PCP reveal that precipitation in Gangetic Bengal mostly occurs in summer (monsoon season), and the rainy season arrives earlier in North Bengal than South Bengal

  14. CPR, ECLS, BVAD and successful heart transplantation within 2 months: a single-centre case series in two young, high-urgency listed patients.

    Science.gov (United States)

    Schmidt, Anna K; Saeed, Diyar; Mehdiani, Arash; Sowinski, Bozena; Westenfeld, Ralf; Akhyari, Payam; Lichtenberg, Artur; Boeken, Udo

    2017-07-20

    In times of organ shortage, death while on the heart waiting-list still represents a major problem. As a consequence, bridging to transplant as well as the decision when to escalate therapy play a very important role. We report on two young patients with dilated cardiomyopathy and acute decompensation who were successfully bridged to heart transplantation with both left and temporary right ventricular assist devices in just 2 months. As a permanent biventricular assist device (BVAD) would have definitely impaired the patients' outcome after HTX, we decided to implant an LVAD with a temporary RVAD. In our opinion, this represents a suitable strategy to reduce mortality in HU-listed patients with acute deterioration of cardiac pump function and should be further evaluated in future studies.

  15. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  16. Switching from serotonin reuptake inhibitors to agomelatine in patients with refractory obsessive-compulsive disorder: a 3 month follow-up case series

    Directory of Open Access Journals (Sweden)

    Fornaro Michele

    2011-02-01

    Full Text Available Abstract Background Serotonin reuptake inhibitors (SRIs currently represent the cornerstone of obsessive-compulsive disorder (OCD pharmacotherapy. However, OCD is characterized by high rates of partial and/or absent response to standard, recommended treatments, often prompting pharmacological and non-pharmacological augmentation or switching of strategies. Agomelatine, a novel melatonin agonist and selective serotonin antagonist (MASSA antidepressant approved for major depressive disorder (MDD has recently been additionally proposed as a treatment for anxiety disorders such as social anxiety disorder (SAD and panic disorder (PD, but not yet OCD. Nonetheless, agomelatine may have a role in the management of OCD, essentially due to its anxiolytic 5-hydroxytryptamine (HT2C blockade action, while melatonin (MT1 and MT2 modulation might contribute to circadian rhythm restoration if impaired. Methods This case series reports the outcome of six patients with or without comorbid mood and/or other anxiety disorders who were treated with SRIs at adequate doses for at least 8 weeks, showing partial or no response. Patients were then switched to agomelatine 50 mg/day, and followed up for 12 weeks. Results Three out of six patients, in particular those with relevant circadian rhythm subjective impairment, showed a Yale-Brown Obsessive Compulsive Scale (Y-BOCS score reduction of ≥35%. No relevant side effects were observed, but initial, transient, self-remitting dizziness in one patient and weight gain in another were seen. Conclusions Although clinical confounding factors (subthreshold bipolarity and eventually the presence of impaired circadian rhythms and methodological boundaries (lack of control and neurophysiological recording, tiny sample size and short follow-up limit the validity of this preliminary observation, it does indicate agomelatine may have a role in some SRI-refractory OCD cases, thus prompting the validity of investigation by further

  17. drought assessment using Standard precipitation Index in semi arid conditions

    Science.gov (United States)

    Bargaoui, Zoubeida

    2015-04-01

    The Gamma distribution is classically fitted at monthly resolution to assess drought occurrence with respect to precipitation series. SPI estimation reports deviations from normal situations and allows the classification of months from extremely wet to extremely dry. However in case where time series contain zeros (no rainfall observed for some months) the choice of Gamma distribution is not appropriate. The objective of this study is compare Gamma distribution results to the loi des fuites distribution as alternative (Ref : Parent et al., Rev. Statistique Appliquée, 2006, LIV (4), 85-111 ). A network composed by 43 rainfall stations from the extreme North region of Tunisia (Mediterranean façade) using long series records (exceeding 30 years) is adopted to develop the methodology. the distributions for the 1- month, 3-months totals as well as 6 months totals and 12-months totals are adjusted station by station for both distributions and SPI-1, SPI-3, SPI-6 , SPI-12 are computed. It is found that especially for SPI-1 and SPI-3 that reflect meteorological drought, the decision status is well related to the underlined distribution which results in many operational concerns.

  18. Extreme precipitation event over North China in August 2010: observations, monthly forecasting, and link to intra-seasonal variability of the Silk-Road wave-train across Eurasia

    Science.gov (United States)

    Orsolini, Yvan; Zhang, Ling; Peters, Dieter; Fraedrich, Klaus

    2014-05-01

    Forecast of regional precipitation events at the sub-seasonal timescale remains a big challenge for operational global prediction systems. Over the Far East in summer, climate and precipitation are strongly influenced by the fluctuating western Pacific subtropical high (WPSH) and strong precipitation is often associated with southeasterly low-level wind that brings moist-laden air from the southern China seas. The WPSH variability is partly influenced by quasi-stationary wave-trains propagating eastwards from Europe across Asia along the two westerly jets: the Silk-Road wave-train along the Asian jet at mid-latitudes and, on a more northern route, the polar wave-train along the sub-polar jet. While the Silk-Road wave-train appears as a robust, internal mode of variability in seasonal predictions models, its predictability is very low on the sub-seasonal to seasonal time scale. A case in point is the unusual summer of 2010, when China experienced its worst seasonal flooding for a decade, triggered by unusually prolonged and severe monsoonal rains. In addition that summer was also characterized by record-breaking heat wave over Eastern Europe and Russia as well as catastrophic monsoonal floods in Pakistan 2010. The impact of the latter circulation anomalies on the precipitation further east over China, has been little explored. Here, we examine the role and the actual predictability of the Silk-Road wave-train, and its impact on precipitation over Northeastern China throughout August 2010, using the high-resolution IFS forecast model of ECMWF, realistic initialized and run in an ensemble mode. We demonstrate that the forecast failure with regard to flooding and extreme precipitation over Northeastern China in August 2010 is linked to the failure to represent intra-seasonal variations of the Silk-Road wave-train and the associated intensification of the WPSH.

  19. Precipitation variability assessment of northeast China: Songhua River basin

    Indian Academy of Sciences (India)

    Muhammad Imran Khan; Dong Liu; Qiang Fu; Muhammad Azmat; Mingjie Luo; Yuxiang Hu; Yongjia Zhang; Faiz M Abrar

    2016-07-01

    Variability in precipitation is critical for the management of water resources. In this study, the researchentropy base concept was applied to investigate spatial and temporal variability of the precipitationduring 1964–2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy wasapplied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainydays for each selected station. Intensity entropy and apportionment entropy were used to calculate thevariability over individual year and decade, respectively. Subsequently, Spearman’s Rho and Mann–Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sampledisorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80),April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributedsignificantly higher than those of other months. Overall, the contribution of the winter season wasconsiderably high with a standard deviation of 0.10. The precipitation variability on decade basis wasobserved to increase from decade 1964–1973 and 1994–2003 with a mean value of decadal apportionmentdisorder index 0.023 and 0.053, respectively. In addition, the Mann–Kendall test value (1.90) showed asignificant positive trend only at the Shangzhi station.

  20. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    Science.gov (United States)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  1. Spatially-based quality control for daily precipitation datasets

    Science.gov (United States)

    Serrano-Notivoli, Roberto; de Luis, Martín; Beguería, Santiago; Ángel Saz, Miguel

    2016-04-01

    There are many reasons why wrong data can appear in original precipitation datasets but their common characteristic is that all of them do not correspond to the natural variability of the climate variable. For this reason, is necessary a comprehensive analysis of the data of each station in each day, to be certain that the final dataset will be consistent and reliable. Most of quality control techniques applied over daily precipitation are based on the comparison of each observed value with the rest of values in same series or in reference series built from its nearest stations. These methods are inherited from monthly precipitation studies, but in daily scale the variability is bigger and the methods have to be different. A common character shared by all of these approaches is that they made reconstructions based on the best-correlated reference series, which could be a biased decision because, for example, a extreme precipitation occurred in one day in more than one station could be flagged as erroneous. We propose a method based on the specific conditions of the day and location to determine the reliability of each observation. This method keeps the local variance of the variable and the time-structure independence. To do that, individually for each daily value, we first compute the probability of precipitation occurrence through a multivariate logistic regression using the 10 nearest observations in a binomial mode (0=dry; 1=wet), this produces a binomial prediction (PB) between 0 and 1. Then, we compute a prediction of precipitation magnitude (PM) with the raw data of the same 10 nearest observations. Through these predictions we explore the original data in each day and location by five criteria: 1) Suspect data; 2) Suspect zero; 3) Suspect outlier; 4) Suspect wet and 5) Suspect dry. Tests over different datasets addressed that flagged data depend mainly on the number of available data and the homogeneous distribution of them.

  2. Precipitation Reconstruction over Land (PREC/L)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists files of 3 resolutions of monthly averaged precipitation totals. The global analyses are defined by interpolation of gauge observations...

  3. Interpolation and Extrapolation of Precipitation Quantities in Serbia

    Directory of Open Access Journals (Sweden)

    Rastislav Stojsavljević

    2013-01-01

    Full Text Available The aim of this paper is to indicate the problems with filling the missing data in precipitation database using interpolation and extrapolation methods. Investigated periods were from 1981 to 2010 for Northern (Autonomous Province of Vojvodina and Proper Serbia and from 1971 to 2000 for Southern Serbia (Autonomous Province of Kosovo and Metohia. Database included time series from 78 meteorological stations that had less than 20% of missing data. Interpolation was performed if station had missing data for five consecutive months or less. If station had missing data for six consecutive months or more, extrapolation was performed. For every station with mising data correlation with at least three surrounding stations was performed. The lowest acceptable value of correlation coefficient for precipitation was set at 0,300

  4. Kinetics of asphaltene precipitation from crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, T.; Hussein, I.A.; Fogler, H.S. [Michigan Univ., Ann Arbor (United States). Dept. of Chemical Engineering

    2008-07-01

    The kinetics of asphaltene precipitation from crude oils was investigated using n-alkane precipitants. Recent studies have shown that there is a kinetic phenomenon associated with asphaltene precipitation. This study showed that the time needed to precipitate the asphaltenes can vary from a few minutes to several months, depending on the amount of n-alkane precipitant added. As such, the onset of asphaltene precipitation is a function of the concentration of precipitant and time. A technique to quantify the amount of asphaltenes precipitated as a function of time and precipitant concentration was presented. This study also investigated the kinetic effects caused by various precipitants. Optical microscopy was used to monitor the growth of asphaltene aggregates with time. Refractive index measurements provided further insight into the kinetics of asphaltene precipitation. Polarity based fractionation and dielectric constant measurements were used to compare the nature of asphaltenes precipitated early in the precipitation process with the asphaltenes precipitated at later times. It was concluded that asphaltenes precipitating at different times from the same crude oil-precipitant mixture are different from one another. 3 refs.

  5. Impact of deep convection on the isotopic amount effect in tropical precipitation

    Science.gov (United States)

    Tharammal, Thejna; Bala, Govindasamy; Noone, David

    2017-02-01

    The empirical "amount effect" observed in the distribution of stable water isotope ratios in tropical precipitation is used in several studies to reconstruct past precipitation. Recent observations suggest the importance of large-scale organized convection systems on amount effect. With a series of experiments with Community Atmospheric Model version 3.0 with water isotope tracers, we quantify the sensitivity of amount effect to changes in modeled deep convection. The magnitude of the regression slope between long-term monthly precipitation amount and isotope ratios in precipitation over tropical ocean reduces by more than 20% with a reduction in mean deep convective precipitation by about 60%, indicating a decline in fractionation efficiency. Reduced condensation in deep convective updrafts results in enrichment of lower level vapor with heavier isotope that causes enrichment in total precipitation. However, consequent increases in stratiform and shallow convective precipitation partially offset the reduction in the slope of amount effect. The net result is a reduced slope of amount effect in tropical regions except the tropical western Pacific, where the effects of enhanced large-scale ascent and increased stratiform precipitation prevail over the influence of reduced deep convection. We also find that the isotope ratios in precipitation are improved over certain regions in the tropics with reduced deep convection, showing that analyses of isotope ratios in precipitation and water vapor are powerful tools to improve precipitation processes in convective parameterization schemes in climate models. Further, our study suggests that the precipitation types over a region can alter the fractionation efficiency of isotopes with implications for the reconstructions of past precipitation.

  6. Needle aspiration of calcific deposits (NACD) for calcific tendinitis is safe and effective: Six months follow-up of clinical results and complications in a series of 431 patients.

    Science.gov (United States)

    Oudelaar, Bart W; Schepers-Bok, Relinde; Ooms, Edwin M; Huis In 't Veld, Rianne; Vochteloo, Anne J H

    2016-04-01

    Although needle aspiration of calcific deposits (NACD) has proven to be an effective treatment for calcific tendinitis of the rotator cuff (CTRC) in patients who are resistant to conservative treatment, little is known about the effectiveness of NACD in terms of complete relief of symptoms and the effectiveness of repeated NACD procedures. Furthermore, analyses of complications of the procedure in large series are scarce. 431 consecutive patients with symptomatic CTRC treated by NACD were included in this retrospective cohort study. Short-term effects were assessed at two weeks post-treatment by using an 11-point numeric rating scale (NRS). The six months outcome was determined on a dichotomous symptom scale (symptom free or persistence of symptoms). NACD procedures performed within six months of a previous NACD procedure were considered repeated procedures. All complications that occurred within six months of the NACD procedure were registered. At two weeks post-treatment, a significant improvement of pain scores was noted (mean reduction of NRS: 4.4 points; ptendinitis of the rotator cuff in the majority of patients. Approximately one third of the patients will require multiple treatments, which were equally effective as the primary procedure. Based on this, patients should not be withheld a second or even a third treatment in case of persistent symptoms. Furthermore, NACD has a low complication rate, the risk of infection should, however, always be accounted for. Retrospective study, level IV. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Large-scale climatic control on European precipitation

    Science.gov (United States)

    Lavers, David; Prudhomme, Christel; Hannah, David

    2010-05-01

    Precipitation variability has a significant impact on society. Sectors such as agriculture and water resources management are reliant on predictable and reliable precipitation supply with extreme variability having potentially adverse socio-economic impacts. Therefore, understanding the climate drivers of precipitation is of human relevance. This research examines the strength, location and seasonality of links between precipitation and large-scale Mean Sea Level Pressure (MSLP) fields across Europe. In particular, we aim to evaluate whether European precipitation is correlated with the same atmospheric circulation patterns or if there is a strong spatial and/or seasonal variation in the strength and location of centres of correlations. The work exploits time series of gridded ERA-40 MSLP on a 2.5˚×2.5˚ grid (0˚N-90˚N and 90˚W-90˚E) and gridded European precipitation from the Ensemble project on a 0.5°×0.5° grid (36.25˚N-74.25˚N and 10.25˚W-24.75˚E). Monthly Spearman rank correlation analysis was performed between MSLP and precipitation. During winter, a significant MSLP-precipitation correlation dipole pattern exists across Europe. Strong negative (positive) correlation located near the Icelandic Low and positive (negative) correlation near the Azores High pressure centres are found in northern (southern) Europe. These correlation dipoles resemble the structure of the North Atlantic Oscillation (NAO). The reversal in the correlation dipole patterns occurs at the latitude of central France, with regions to the north (British Isles, northern France, Scandinavia) having a positive relationship with the NAO, and regions to the south (Italy, Portugal, southern France, Spain) exhibiting a negative relationship with the NAO. In the lee of mountain ranges of eastern Britain and central Sweden, correlation with North Atlantic MSLP is reduced, reflecting a reduced influence of westerly flow on precipitation generation as the mountains act as a barrier to moist

  8. Monthly errors

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2006 monthly average statistical metrics for 2m Q (g kg-1) domain-wide for the base and MODIS WRF simulations against MADIS observations. This dataset is...

  9. Retrieving pace in vegetation growth using precipitation and soil moisture

    Science.gov (United States)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and

  10. Recent changes of precipitation in Gansu, Northwest China: An index-based analysis

    Science.gov (United States)

    Li, Cheng; Wang, Ranghui

    2017-07-01

    Monitoring variations in precipitation is important in detecting regional climate change and studying the hydrological cycle. An understanding of its dynamic characteristics will be valuable in the management of water resources in Northwest China. This study utilized daily precipitation data from 29 stations across Gansu spanning the years from 1960 to 2013; the data was used to investigate changes in precipitation by defining 21 precipitation-related indices. Trends were detected in the series of precipitation-related indices using the Mann-Kendall test. Primary results are as follows: (1) Decreasing trends in both the extreme precipitation and wet spell indices are indicative of a decrease in precipitation in southeastern Gansu, whereas the trends in the data indicate that northwestern Gansu has experienced an increase in precipitation; (2) decreasing trends in the annual number and length of dry spells with longer durations in northwestern Gansu also demonstrate that the precipitation frequency and intensity are increasing across this area; (3) by means of 24-month time scales, standardized precipitation index values, and principal component analysis, the Gansu can also be identified into two distinctive sub-regions, which predominantly show different variations of dryness/wetness during 1960-2013; and (4) the correlation analysis showed that the intensity of the western Pacific subtropical high possesses obvious effects on a number of precipitation indices in two subregions of Gansu. In addition, the Indian Ocean Dipole and Multivariate El Niño-Southern Oscillation (ENSO) index may also be important factors in the southeastern areas; in contrast, the impacts of large-scale climate indices on precipitation indices are less severe in northwestern Gansu.

  11. Recent changes of precipitation in Gansu, Northwest China: An index-based analysis

    Science.gov (United States)

    Li, Cheng; Wang, Ranghui

    2016-04-01

    Monitoring variations in precipitation is important in detecting regional climate change and studying the hydrological cycle. An understanding of its dynamic characteristics will be valuable in the management of water resources in Northwest China. This study utilized daily precipitation data from 29 stations across Gansu spanning the years from 1960 to 2013; the data was used to investigate changes in precipitation by defining 21 precipitation-related indices. Trends were detected in the series of precipitation-related indices using the Mann-Kendall test. Primary results are as follows: (1) Decreasing trends in both the extreme precipitation and wet spell indices are indicative of a decrease in precipitation in southeastern Gansu, whereas the trends in the data indicate that northwestern Gansu has experienced an increase in precipitation; (2) decreasing trends in the annual number and length of dry spells with longer durations in northwestern Gansu also demonstrate that the precipitation frequency and intensity are increasing across this area; (3) by means of 24-month time scales, standardized precipitation index values, and principal component analysis, the Gansu can also be identified into two distinctive sub-regions, which predominantly show different variations of dryness/wetness during 1960-2013; and (4) the correlation analysis showed that the intensity of the western Pacific subtropical high possesses obvious effects on a number of precipitation indices in two subregions of Gansu. In addition, the Indian Ocean Dipole and Multivariate El Niño-Southern Oscillation (ENSO) index may also be important factors in the southeastern areas; in contrast, the impacts of large-scale climate indices on precipitation indices are less severe in northwestern Gansu.

  12. Precipitation in the Central Mediterranean during the last century

    Science.gov (United States)

    Maheras, P.; Balafoutis, Ch.; Vafiadis, M.

    1992-09-01

    Monthly precipitation data from 10 stations (Patras, Corfu, Hvar, Trieste, Venice, Florence, Rome, Naples, Catania and Malta) in the Central Mediterranean area are used for a period of 95 years (1894 1988). The homogeneity of these precipitation time series is tested and their statistical characteristics are analysed. An abrupt climatic change is found at Naples and Rome. The application of Principal Component Analysis (PCA) has yielded three groups of stations where the precipitation data indicate similar fluctuations. Group A includes the stations situated along the coasts of the Ionian and Adriatic seas and the station Naples, while Group B includes the Northern Italian stations and Group C includes the stations at Catania and Malta. In all three groups maximum precipitation was observed during the 1930s. The periodicities of the scores of the significant components have been studied by spectral analysis and significant periodicities of 13.6, 3.5 and 2.2 years were found. Finally, a discussion of the relationships between these precipitation fluctuations and circulation types over the Mediterranean is presented.

  13. Comparing the Palmer Drought Index and the Standardized Precipitation Index for Zagreb-Gric Observatory

    Science.gov (United States)

    Pandzic, Kreso

    2016-04-01

    Conventional Palmer Drought Index (PDSI) and recent Standardized Precipitation Index (SPI) are compared for Zagreb-Gric weather station. Historical time series of PDSI and SPI are compared. For that purpose monthly precipitation, air temperature and air humidity data for Zagreb-Gric Observatory and period 1862-2012 are used. The results indicate that SPI is simpler for interpretation than PDSI. On the other side, lack of temperature within SPI, make impossible use of it on climate change applications. A comparison of PDSI and SPI for the periods from 1 to 24 months indicate the best agreement between PDSI and SPI for the periods from 6 to 12 months. In addition, correlation coefficients of determination between annual corn crop per hectare and SPI 9- months time scale and PDSI from May to October are shown as significant.

  14. Monitoring drought conditions and their uncertainties in areas with sparse precipitation data. Evaluation of different precipitation datasets in Africa.

    Science.gov (United States)

    Naumann, G.; Barbosa, P.; Carrao, H.; Singleton, A.; Vogt, J.

    2012-04-01

    Assessment of drought conditions requires understanding regional historical droughts as well as the impacts on human activities during their occurrences. Traditional methods for drought assessment are mainly based on water supply indices derived from precipitation time-series alone. Thus, the main limitation for developing effective real-time drought monitoring and early warning systems in Africa is the lack of reliable and up-to-date precipitation data in many regions of the continent. A sparse distribution of rain gauges and short or incomplete rainfall historical records pose further problems. This lack of information may lead to significant errors in the estimation of statistical parameters for deriving water supply indices from the precipitation time-series. Procedures for drought detection and assessment have a particular level of uncertainty associated to the data and models used. In order to better understand the extent, severity and impact of a drought in a region, it is first necessary to improve the quality of these procedures by using the best available data, theoretical assumptions and model formulations. The main objective of this study is to evaluate the uncertainties due to sample size associated with the estimation of the Standardized Precipitation Index (SPI) and their impact on the possible level of confidence in drought monitoring in Africa. In order to do this, four different rainfall datasets, each available on a monthly basis, were analysed over four river basins in Africa (Oum-er-Rbia, Limpopo, Niger, and Eastern Nile) as well as at continental level. The four precipitation datasets used were the Tropical Rainfall Measuring Mission (TRMM) satellite monthly rainfall product 3B43 (0.25°x0.25°), the Global Precipitation Climatology Centre (GPCC) gridded precipitation dataset V.5 (0.5°x0.5°), the Global Precipitation Climatology Project (GPCP) Global Monthly Merged Precipitation Analyses (2.5°x2.5°), and the Climate Prediction Center

  15. Validation and Development of the GPCP Experimental One-Degree Daily (1DD) Global Precipitation Product

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Einaud, Franco (Technical Monitor)

    2000-01-01

    The One-Degree Daily (1DD) precipitation dataset has been developed for the Global Precipitation Climatology Project (GPCP) and is currently in beta test preparatory to release as an official GPCP product. The 1DD provides a globally-complete, observation-only estimate of precipitation on a daily 1 deg. x 1 deg. grid for the period 1997 through early 2000 (by the time of the conference). In the latitude band 40N-40S the 1DD uses the Threshold-Matched Precipitation Index (TMPI), a GPI-like IR product with the pixel-level T(sub b) threshold and (single) conditional rain rate determined locally for each month by the frequency of precipitation in the GPROF SSM/I product and by, the precipitation amount in the GPCP monthly satellite-gauge (SG) combination. Outside 40N-40S the 1DD uses a scaled TOVS precipitation estimate that has month-by-month adjustments based on the TMPI and the SG. Early validation results are encouraging. The 1DD shows relatively large scatter about the daily validation values in individual grid boxes, as expected for a technique that depends on cloud-sensing schemes such as the TMPI and TOVS. On the other hand, the time series of 1DD shows good correlation with validation in individual boxes. For example, the 1997-1998 time series of 1DD and Oklahoma Mesonet values in a grid box in northeastern Oklahoma have the correlation coefficient = 0.73. Looking more carefully at these two time series, the number of raining days for the 1DD is within 7% of the Mesonet value, while the distribution of daily rain values is very similar. Other tests indicate that area- or time-averaging improve the error characteristics, making the data set highly attractive to users interested in stream flow, short-term regional climatology, and model comparisons. The second generation of the 1DD product is currently under development; it is designed to directly incorporate TRMM and other high-quality precipitation estimates. These data are generally sparse because they are

  16. Study of asphaltene precipitation by Calorimetry

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Plantier, Frédéric; Bessières, David;

    2007-01-01

    of experiments showed that weak forces determine precipitation. Indeed, isothermal titration calorimetry could not detect any clear signal although this technique can detect low-energy transitions such as liquid-liquid equilibrium and rnicellization. The second series of tests proved that precipitation caused...

  17. Implementation and validation of a Wilks-type multi-site daily precipitation generator over a typical Alpine river catchment

    Science.gov (United States)

    Keller, D. E.; Fischer, A. M.; Frei, C.; Liniger, M. A.; Appenzeller, C.; Knutti, R.

    2015-05-01

    Many climate impact assessments require high-resolution precipitation time series that have a spatio-temporal correlation structure consistent with observations, for simulating either current or future climate conditions. In this respect, weather generators (WGs) designed and calibrated for multiple sites are an appealing statistical downscaling technique to stochastically simulate multiple realisations of possible future time series consistent with the local precipitation characteristics and their expected future changes. In this study, we present the implementation and validation of a multi-site daily precipitation generator re-built after the methodology described in Wilks (1998). The generator consists of several Richardson-type WGs run with spatially correlated random number streams. This study aims at investigating the capabilities, the added value and the limitations of the precipitation generator for a typical Alpine river catchment in the Swiss Alpine region under current climate. The calibrated multi-site WG is skilful at individual sites in representing the annual cycle of the precipitation statistics, such as mean wet day frequency and intensity as well as monthly precipitation sums. It reproduces realistically the multi-day statistics such as the frequencies of dry and wet spell lengths and precipitation sums over consecutive wet days. Substantial added value is demonstrated in simulating daily areal precipitation sums in comparison to multiple WGs that lack the spatial dependency in the stochastic process. Limitations are seen in reproducing daily and multi-day extreme precipitation sums, observed variability from year to year and in reproducing long dry spell lengths. Given the performance of the presented generator, we conclude that it is a useful tool to generate precipitation series consistent with the mean climatic aspects and likely helpful to be used as a downscaling technique for climate change scenarios.

  18. Uncertainties in Arctic Precipitation

    Science.gov (United States)

    Majhi, I.; Alexeev, V. A.; Cherry, J. E.; Cohen, J. L.; Groisman, P. Y.

    2012-12-01

    Arctic precipitation is riddled with measurement biases; to address the problem is imperative. Our study focuses on comparison of various datasets and analyzing their biases for the region of Siberia and caution that is needed when using them. Five sources of data were used ranging from NOAA's product (RAW, Bogdanova's correction), Yang's correction technique and two reanalysis products (ERA-Interim and NCEP). The reanalysis dataset performed better for some months in comparison to Yang's product, which tends to overestimate precipitation, and the raw dataset, which tends to underestimate. The sources of bias vary from topography, to wind, to missing data .The final three products chosen show higher biases during the winter and spring season. Emphasis on equations which incorporate blizzards, blowing snow and higher wind speed is necessary for regions which are influenced by any or all of these factors; Bogdanova's correction technique is the most robust of all the datasets analyzed and gives the most reasonable results. One of our future goals is to analyze the impact of precipitation uncertainties on water budget analysis for the Siberian Rivers.

  19. The Application of Box–Cox Transformation to Determine the Standardised Precipitation Index (SPI, the Standardised Discharge Index (SDI and to Identify Drought Events: Case Study in Eastern Kujawy (Central Poland

    Directory of Open Access Journals (Sweden)

    Bartczak Arkadiusz

    2014-10-01

    Full Text Available The article presents the results of research into the transformation of series of hydro-meteorological data for determining dry periods with the Standardised Precipitation Index (SPI and the Standardised Discharge Index (SDI. Time series from eight precipitation stations and five series of river discharge data in Eastern Kujawy (central Poland were analysed for 1951–2010. The frequency distribution of the series for their convergence with the normal distribution was tested with the Shapiro–Wilk test and homogeneity with the Bartlett's test. The transformation of the series was done with the Box–Cox technique, which made it possible to homogenise the series in terms of variance. In Poland, the technique has never been used to determine the SPI. After the transformation the distributions of virtually all series complied with the normal distribution and were homogeneous. Moreover, a statistically significant correlation between the δ transformation parameter and the skewness of the series of monthly precipitation was observed. It was similar for the series of mean monthly discharges in the winter half-year and the hydrological year. The analysis indicates an alternate occurrence of dry and wet periods both in case of precipitation and run-offs. Drought periods coincided with low flow periods. Thus, the fluctuations tend to affect the development of agriculture more than long-term ones.

  20. Long-term trend and variability of precipitation in Chhattisgarh State, India

    Science.gov (United States)

    Meshram, Sarita Gajbhiye; Singh, Vijay P.; Meshram, Chandrashekhar

    2017-08-01

    Spatial and temporal precipitation variability in Chhattisgarh State in India was examined by using monthly precipitation data for 102 years (1901-2002) from 16 stations. The homogeneity of precipitation data was evaluated by the double-mass curve approach and the presence of serial correlation by lag-1 autocorrelation coefficient. Linear regression analysis, the conventional Mann-Kendall (MK) test, and Spearman's rho were employed to identify trends and Sen's slope to estimate the slope of trend line. The coefficient of variation (CV) was used to analyze precipitation variability. Spatial interpolation was done by a Kriging process using ArcGIS 9.3. Results of both parametric and non-parametric tests and trend tests showed that at 5 % significance level, annual precipitation exhibited a decreasing trend at all stations except Bilaspur and Dantewada. For both annual and monsoon precipitation, Sen's test showed a decreasing trend for all stations, except Bilaspur and Dantewada. The highest percentage of variability was observed in winter precipitation (88.75 %) and minimum percentage variability in annual series (14.01 %) over the 102-year periods.

  1. Analysis of Precipitation Characteristics during 1957-2012 in the Semi-Arid Loess Plateau, China.

    Science.gov (United States)

    Zhao, Weijun; Yu, Xinyang; Ma, Huan; Zhu, Qingke; Zhang, Yan; Qin, Wei; Ai, Ning; Wang, Yu

    2015-01-01

    Precipitation is the only water supply and most important factor affecting vegetation growth on the slopes of semi-arid Loess Plateau of China. Based on precipitation data from 7 synoptic stations in the study area over the period 1957-2012, the trends of precipitation and standardized precipitation index (SPI) were analyzed by using linear regression, Mann-Kendall, and Spearman's Rho tests at the 5% significance level. The results show that (1) the precipitation fluctuation of monthly precipitation was intense (coefficients of variation> 100%), and the drier years were recorded as 1965 and 1995 at all stations. (2) The significant change trend of different stations varied on different time scales: the Changwu station had a significant decreasing trend in April (-0.488 mm/year) and November (-0.249 mm/year), while Luochuan station was in April (-0.457 mm/year); Changwu station displayed a significant increasing trends in winter (0.220 mm/year) and a significant decreasing trends in spring (-0.770 mm/year). The significant decreasing trends in annual precipitation were detected at the Suide (-2.034 mm/year) and Yan'an (-2.129 mm/year) stations. (3) The SPI-12 series analysis suggests that the drought degree of Yulin and Changwu was the lowest and that of Hengshan was the highest among the 7 synoptic stations.

  2. Seasonal Variability and Anomalies in Precipitation over Pakistan; a study of 2010 - 2014 Floods

    Science.gov (United States)

    Minallah, S.; Ivanov, V. Y.

    2015-12-01

    The study is concerned with understanding and analyzing the meteorological parameter of precipitation in the region of Pakistan to establish correlation between the consecutive five year (2010 - 2014) flooding and precipitation anomalies. Temporal and spatial variations in the rainfall pattern were studied and time series analysis for one region, which was most affected by the floods, was carried out. Two precipitation products, Global Precipitation Climatology Project (GPCP) and Climate Prediction Center Merged Analysis of Precipitation (CMAP), were used for the period of January 1979 till December 2014 which showed similar patterns albeit with slightly different magnitudes. It was found that there was a strong seasonal trend in the precipitation corresponding to the summer Monsoons and winter Western Disturbances phenomenon; that there were high spatial variations across the country; and that the changing rainfall pattern and intensity caused massive flooding in the five year period under consideration. The case study for the selected region also showed that while there is a downward trend in the annual precipitation, specific months corresponding to the Monsoon period showed an upward trend and the intensity and occurrence of anomalous events have increased.

  3. The Evolution of El Nino-Precipitation Relationships from Satellites and Gauges

    Science.gov (United States)

    Curtis, Scott; Adler, Robert F.; Starr, David OC (Technical Monitor)

    2002-01-01

    This study uses a twenty-three year (1979-2001) satellite-gauge merged community data set to further describe the relationship between El Nino Southern Oscillation (ENSO) and precipitation. The globally complete precipitation fields reveal coherent bands of anomalies that extend from the tropics to the polar regions. Also, ENSO-precipitation relationships were analyzed during the six strongest El Ninos from 1979 to 2001. Seasons of evolution, Pre-onset, Onset, Peak, Decay, and Post-decay, were identified based on the strength of the El Nino. Then two simple and independent models, first order harmonic and linear, were fit to the monthly time series of normalized precipitation anomalies for each grid block. The sinusoidal model represents a three-phase evolution of precipitation, either dry-wet-dry or wet-dry-wet. This model is also highly correlated with the evolution of sea surface temperatures in the equatorial Pacific. The linear model represents a two-phase evolution of precipitation, either dry-wet or wet-dry. These models combine to account for over 50% of the precipitation variability for over half the globe during El Nino. Most regions, especially away from the Equator, favor the linear model. Areas that show the largest trend from dry to wet are southeastern Australia, eastern Indian Ocean, southern Japan, and off the coast of Peru. The northern tropical Pacific and Southeast Asia show the opposite trend.

  4. Long-term trend and variability of precipitation in Chhattisgarh State, India

    Science.gov (United States)

    Meshram, Sarita Gajbhiye; Singh, Vijay P.; Meshram, Chandrashekhar

    2016-04-01

    Spatial and temporal precipitation variability in Chhattisgarh State in India was examined by using monthly precipitation data for 102 years (1901-2002) from 16 stations. The homogeneity of precipitation data was evaluated by the double-mass curve approach and the presence of serial correlation by lag-1 autocorrelation coefficient. Linear regression analysis, the conventional Mann-Kendall (MK) test, and Spearman's rho were employed to identify trends and Sen's slope to estimate the slope of trend line. The coefficient of variation (CV) was used to analyze precipitation variability. Spatial interpolation was done by a Kriging process using ArcGIS 9.3. Results of both parametric and non-parametric tests and trend tests showed that at 5 % significance level, annual precipitation exhibited a decreasing trend at all stations except Bilaspur and Dantewada. For both annual and monsoon precipitation, Sen's test showed a decreasing trend for all stations, except Bilaspur and Dantewada. The highest percentage of variability was observed in winter precipitation (88.75 %) and minimum percentage variability in annual series (14.01 %) over the 102-year periods.

  5. Heavy precipitation episodes and cosmic rays variation

    Directory of Open Access Journals (Sweden)

    A. Mavrakis

    2006-01-01

    Full Text Available In this paper an attempt is made to investigate the possible temporal correlation between heavy precipitation episodes and cosmic rays' activity, on various time scales. Cosmic rays measurements are sparse and cover less extended periods than those of precipitation. Precipitation is largely influenced by local climatic and even physiographic conditions, while cosmic rays' distribution is far more uniform over an area. Thus, in an effort to cover a larger range of climatic characteristics, each cosmic rays station was correlated with several nearby precipitation stations. Selected statistical methods were employed for the data processing. The analysis was preformed on annual, seasonal, monthly and daily basis whenever possible. Wet and dry regions and/or seasons seem to present a different response of precipitation to cosmic rays variations. Also Forbush decreases in most cases will not lead to heavy precipitation, yet this might be sensitive to precipitable water availability.

  6. 中国华东及其周边地区NDVI对气温和降水的月际响应特征%Inter-monthly Response Characteristics of NDVI to the Variation of Temperature and Precipitation in East China and Its Surrounding Areas

    Institute of Scientific and Technical Information of China (English)

    崔林丽; 史军

    2011-01-01

    利用SPOT VGT-NDVI数据和气象站点的气温和降水资料,分析了1998—2010年期间我国华东及其周边地区NDVI对气温和降水变化的时空响应特征。结果表明,在整个研究区,NDVI对当月气温和前1月降水变化响应最为强烈。空间上,NDVI对气温变化的响应在整个研究区差异不明显,而对降水变化的响应在北部地区较在中部和南部强。NDVI在多数地区都同步响应于当月气温变化,在北部和南部一些地区对气温变化滞后响应1个月左右。NDVI对降水变化在北部地区滞后响应1个月左右,而在南部地区滞后响应2~3个月。研究区NDVI对气温和降水响应的时间特征、空间分布及总体滞后期与已有的研究结果基本一致,但在南部地区NDVI对降水变化的响应滞后期较已有的研究结果长。不同的数据源、研究范围、气候和植被类型及土壤特性的差异等都有可能造成研究结果的差异。%The interaction between vegetation and atmosphere is important in global climate change and natural resource management and has become a research focus of geosciences in recent years.Spatial and temporal response characteristics of NDVI to the variations of temperature and precipitation in East China and its surrounding areas were analyzed based on the SPOT VGT-DN data from Flemish Institute for Technological Research(VITO),Belgium,and monthly temperature and precipitation data from 135 meteorological stations during 1998-2010.The results indicate that in the whole study area,NDVI has the maximum response to the temperature of the same month,and has the maximum response to the precipitation of previous one month.Spatially,the response of NDVI to temperature has no significant difference among the whole study area,and the response of NDVI to precipitation in the northern part is stronger than that in the middle and southern part of the study area.In the middle part of the study area,NDVI synchronously

  7. A Comparison of Four Precipitation Distribution Models Used in Daily Stochastic Models

    Institute of Scientific and Technical Information of China (English)

    LIU Yonghe; ZHANG Wanchang; SHAO Yuehong; ZHANG Kexin

    2011-01-01

    Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; thev are widely used in meteorological and hydrological simulations. For modeling daily precipitation in weather generators, first-order Markov chain-dependent exponential, gamma, mixed-exponential, and lognormal distributions can be used. To examine the performance of these four distributions for precipitation simulation, they were fitted to observed data collected at 10 stations in the watershed of Yishu River. The parameters of these models were estimated using a maximum-likelihood technique performed using genetic algorithms. Parameters for each calendar month and the Fourier series describing parameters for the whole year were estimated separately. Bayesian information criterion, simulated monthly mean, maximum daily value, and variance were tested and compared to evaluate the fitness and performance of these models. The results indicate that the lognormal and mixed-exponential distributions give smaller BICs, but their stochastic simulations have overestimation and underestimation respectively, while the gamma and exponential distributions give larger BICs, but their stochastic simulations produced monthly mean precipitation very well. When these distributions were fitted using Fourier series, they all underestimated the above statistics for the months of June, July and August.

  8. Developing GIOVANNI-based Online Prototypes to Intercompare TRMM-Related Global Gridded-Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Teng, William; Kempler, Steven; Milich, Lenard

    2014-01-01

    New online prototypes have been developed to extend and enhance the previous effort by facilitating investigation of product characteristics and intercomparison of precipitation products in different algorithms as well as in different versions at different spatial scales ranging from local to global without downloading data and software. Several popular Tropical Rainfall Measuring Mission (TRMM) products and the TRMM Composite Climatology are included. In addition, users can download customized data in several popular formats for further analysis. Examples show product quality problems and differences in several monthly precipitation products. It is seen that differences in daily and monthly precipitation products are distributed unevenly in space and it is necessary to have tools such as those presented here for customized and detailed investigations. A simple time series and two area maps allow the discovery of abnormal values of 3A25 in one of the months. An example shows a V-shaped valley issue in the Version 6 3B43 time series and another example shows a sudden drop in 3A25 monthly rain rate, all of which provide important information when the products are used for long-term trend studies. Future plans include adding more products and statistical functionality in the prototypes.

  9. Monthly Climatic Data for the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Publication of monthly mean temperature, pressure, precipitation, vapor pressure, and hours of sunshine for approximately 2,000 surface data collection stations...

  10. Modelagem estatística da precipitação mensal e anual e no período seco para o estado de Minas Gerais Statistical modeling of monthly, annual and dry season mean precipitation for the State of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Carlos R. de Mello

    2009-02-01

    Full Text Available Objetivou-se, com o presente estudo, ajustar modelos lineares para predição da precipitação média mensal (no período úmido e anual e no período seco, baseados nas coordenadas geográficas (latitude e longitude e altitude para o Estado de Minas Gerais. Aplicaram-se dados diários de precipitação, provenientes da Agência Nacional de Águas (ANA de 209 estações meteorológicas, das quais 197 foram usadas para ajuste dos modelos e 12 para sua validação final. O coeficiente de determinação ajustado (r², o erro médio absoluto (%, a tendência das estimativas (% e significância dos parâmetros, foram considerados na avaliação dos modelos. De maneira geral, os modelos apresentaram bons parâmetros estatísticos de validação, com r² maior que 0,70, erro médio menor que 10% e tendência não significativa (This study aimed at adjusting statistical linear models for prediction of total mean precipitation associated to monthly (in the wet season, annual and dry season periods, based on geographical coordinates (latitude and longitude and altitude for the State of Minas Gerais, Brazil. Daily precipitation data from the "Agência Nacional de Águas" (ANA for 209 pluviometric stations were applied, 197 for modeling adjustment and 12 for final validation. Coefficient of determination adjusted (r², mean absolute error (%, prediction bias (% and estimated parameters significance were considered for evaluation of models. The monthly and annual precipitation models presented good statistical validation coefficients, with r² greater than 0.70, mean error smaller than 10% and bias not significant (< 2% in relation to mean value. However, the dry season model presented an overestimation of precipitation, showing that more variables associated to topographic characteristics would be necessary to produce a more accurate model. Nevertheless, the adjusted models present good conditions for practical applications, forming an important tool for

  11. Use of localized human growth hormone and testosterone injections in addition to manual therapy and exercise for lower back pain: a case series with 12-month follow-up

    Directory of Open Access Journals (Sweden)

    Dubick MN

    2015-06-01

    Full Text Available Marc N Dubick,1 Thomas H Ravin,2 Yvonne Michel,3 David C Morrisette4 1Interventional Pain Management, Division of Anesthesiology, Bon Secours St Francis Hospital, Charleston, SC, USA; 2Musculoskeletal Medicine, Val d'Isere Health Clinic, Denver, CO, USA; 3Statistical Consultant, Private Practice, Daniel Island, SC, USA; 4Division of Physical Therapy, Medical University of South Carolina, SC, USA Objective: The objective of this case series was to investigate the feasibility and safety of a novel method for the management of chronic lower back pain. Injections of recombinant human growth hormone and testosterone to the painful and dysfunctional areas in individuals with chronic lower back pain were used. In addition, the participants received manual therapies and exercise addressing physical impairments such as motor control, strength, endurance, pain, and loss of movement. Pain ratings and self-rated functional outcomes were assessed.Study design: This is a case series involving consecutive patients with chronic lower back pain who received the intervention of injections of recombinant human growth hormone and testosterone, and attended chiropractic and/or physical therapy. Outcomes were measured at 12 months from the time of injection.Setting: A community based hospital affiliated office, and a private practice block suite.Participants: A total of 60 consecutive patients attending a pain management practice for chronic lower back pain were recruited for the experimental treatment. Most participants were private pay.Interventions: Participants who provided informed consent and were determined not to have radicular pain received diagnostic blocks. Those who responded favorably to the diagnostic blocks received injections of recombinant human growth hormone and testosterone in the areas treated with the blocks. Participants also received manipulation- and impairment-based exercises.Outcome measures: Outcomes were assessed at 12 months through pain

  12. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  13. Drought analysis for Kuwait using standardized precipitation index.

    Science.gov (United States)

    Almedeij, Jaber

    2014-01-01

    Implementation of adequate measures to assess and monitor droughts is recognized as a major matter challenging researchers involved in water resources management. The objective of this study is to assess the hydrologic drought characteristics from the historical rainfall records of Kuwait with arid environment by employing the criterion of Standardized Precipitation Index (SPI). A wide range of monthly total precipitation data from January 1967 to December 2009 is used for the assessment. The computation of the SPI series is performed for intermediate- and long-time scales of 3, 6, 12, and 24 months. The drought severity and duration are also estimated. The bivariate probability distribution for these two drought characteristics is constructed by using Clayton copula. It has been shown that the drought SPI series for the time scales examined have no systematic trend component but a seasonal pattern related to rainfall data. The results are used to perform univariate and bivariate frequency analyses for the drought events. The study will help evaluating the risk of future droughts in the region, assessing their consequences on economy, environment, and society, and adopting measures for mitigating the effect of droughts.

  14. Spatial interpolation methods for monthly rainfalls and temperatures in Basilicata

    Directory of Open Access Journals (Sweden)

    Ferrara A

    2008-12-01

    Full Text Available Spatial interpolated climatic data on grids are important as input in forest modeling because climate spatial variability has a direct effect on productivity and forest growth. Maps of climatic variables can be obtained by different interpolation methods depending on data quality (number of station, spatial distribution, missed data etc. and topographic and climatic features of study area. In this paper four methods are compared to interpolate monthly rainfall at regional scale: 1 inverse distance weighting (IDW; 2 regularized spline with tension (RST; 3 ordinary kriging (OK; 4 universal kriging (UK. Besides, an approach to generate monthly surfaces of temperatures over regions of complex terrain and with limited number of stations is presented. Daily data were gathered from 1976 to 2006 period and then gaps in the time series were filled in order to obtain monthly mean temperatures and cumulative precipitation. Basic statistics of monthly dataset and analysis of relationship of temperature and precipitation to elevation were performed. A linear relationship was found between temperature and altitude, while no relationship was found between rainfall and elevation. Precipitations were then interpolated without taking into account elevation. Based on root mean squared error for each month the best method was ranked. Results showed that universal kriging (UK is the best method in spatial interpolation of rainfall in study area. Then cross validation was used to compare prediction performance of tree different variogram model (circular, spherical, exponential using UK algorithm in order to produce final maps of monthly precipitations. Before interpolating temperatures were referred to see level using the calculated lapse rate and a digital elevation model (DEM. The result of interpolation with RST was then set to originally elevation with an inverse procedure. To evaluate the quality of interpolated surfaces a comparison between interpolated and

  15. Validation of Satellite Precipitation (trmm 3B43) in Ecuadorian Coastal Plains, Andean Highlands and Amazonian Rainforest

    Science.gov (United States)

    Ballari, D.; Castro, E.; Campozano, L.

    2016-06-01

    Precipitation monitoring is of utmost importance for water resource management. However, in regions of complex terrain such as Ecuador, the high spatio-temporal precipitation variability and the scarcity of rain gauges, make difficult to obtain accurate estimations of precipitation. Remotely sensed estimated precipitation, such as the Multi-satellite Precipitation Analysis TRMM, can cope with this problem after a validation process, which must be representative in space and time. In this work we validate monthly estimates from TRMM 3B43 satellite precipitation (0.25° x 0.25° resolution), by using ground data from 14 rain gauges in Ecuador. The stations are located in the 3 most differentiated regions of the country: the Pacific coastal plains, the Andean highlands, and the Amazon rainforest. Time series, between 1998 - 2010, of imagery and rain gauges were compared using statistical error metrics such as bias, root mean square error, and Pearson correlation; and with detection indexes such as probability of detection, equitable threat score, false alarm rate and frequency bias index. The results showed that precipitation seasonality is well represented and TRMM 3B43 acceptably estimates the monthly precipitation in the three regions of the country. According to both, statistical error metrics and detection indexes, the coastal and Amazon regions are better estimated quantitatively than the Andean highlands. Additionally, it was found that there are better estimations for light precipitation rates. The present validation of TRMM 3B43 provides important results to support further studies on calibration and bias correction of precipitation in ungagged watershed basins.

  16. PRECIPITATION OF PLUTONOUS PEROXIDE

    Science.gov (United States)

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  17. Inter-comparison of drought indicators derived from multiple precipitation datasets in Africa

    Science.gov (United States)

    Naumann, Gustavo; Dutra, Emanuel; Barbosa, Paulo; Pappenberger, Florian; Wetterhall, Fredrik

    2013-04-01

    This study investigates the potential of implementing different drought indicators to improve drought monitoring capabilities at continental scale. Several global and continental datasets based on re-analysis, gridded observation, and remote sensing data were tested. At regional level the capabilities of each indicator and dataset on five regions on the African continent (Oum er-rbia, Blue Nile, Upper Niger, Limpopo and the Great Horn of Africa) were compared. The five precipitation datasets used were the ERA - Interim reanalysis (0.5°x0.5° resolution from 1979 to 2010), Tropical Rainfall Measuring Mission (TRMM) satellite monthly rainfall product 3B43 (0.25°x0.25° resolution from 1998 to 2010), the Global Precipitation Climatology Centre (GPCC) gridded precipitation dataset V.5 (1°x1° resolution from 1901 to 2010), the Global Precipitation Climatology Project (GPCP) Global Monthly Merged Precipitation Analyses (2.5°x2.5° resolution from 1979 to 2010), and the Climate Prediction Center Merged Analysis of Precipitation (CMAP, 2.5°x2.5° resolution from 1979 to 2010). The set of indicators proposed included Standardized Precipitation index (SPI), Standardized Precipitation-Evaporation Index (SPEI), Standardized Run-off index (SRI), Soil Moisture Anomalies (SMA). A comparison of the annual cycle and monthly precipitation time series shows a general agreement in the timing of the peaks including the Great Horn of Africa where there are two rainy seasons. The main differences are observed thus in the ability to represent the magnitude of the wet seasons and extremes. Moreover, for the areas that are under drought, all the datasets agree with the certain time of onset and recovery but there are sometimes disagreements on the area affected. The agreement between datasets depends on the threshold selected to define the drought conditions. The comparison between SPI estimations suggest that the main sources of uncertainties (due by lack of ground information

  18. Bias Corrected Spatially Downscaled Monthly CMIP5 Climate Projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This archive contains 234 projections of monthly BCSD CMIP5 projections of precipitation and monthly means of daily-average, daily maximum and daily minimum...

  19. Trends in daily temperature and precipitation extremes over Georgia, 1971–2010

    Directory of Open Access Journals (Sweden)

    I. Keggenhoff

    2014-08-01

    Full Text Available Annual changes to climate extreme indices in Georgia (Southern Caucasus from 1971 to 2010 are studied using homogenized daily minimum and maximum temperature and precipitation series. Fourteen extreme temperature and 11 extreme precipitation indices are selected from the list of core climate extreme indices recommended by the World Meteorological Organization – Commission for Climatology (WMO-CCL and the research project on Climate Variability and Predictability (CLIVAR of the World Climate Research Programme (WCRP. Trends in the extreme indices are studied for 10 minimum and 11 maximum temperature and 24 precipitation series for the period 1971–2010. Between 1971 and 2010 most of the temperature extremes show significant warming trends. In 2010 there are 13.3 fewer frost days than in 1971. Within the same time frame there are 13.6 more summer days and 7.0 more tropical nights. A large number of stations show significant warming trends for monthly minimum and maximum temperature as well as for cold and warm days and nights throughout the study area, whereas warm extremes and night-time based temperature indices show greater trends than cold extremes and daytime indices. Additionally, the warm spell duration indicator indicates a significant increase in the frequency of warm spells between 1971 and 2010. Cold spells show an insignificant increase with low spatial coherence. Maximum 1-day and 5-day precipitation, the number of very heavy precipitation days, very wet and extremely wet days as well as the simple daily intensity index all show an increase in Georgia, although all trends manifest a low spatial coherence. The contribution of very heavy and extremely heavy precipitation to total precipitation increased between 1971 and 2010, whereas the number of wet days decreases.

  20. Correlating GRACE with Standardized Precipitation Indices and Precipitation Gauges for the High Plains Aquifer

    Science.gov (United States)

    Miller, K. A.; Clancy, K.

    2016-12-01

    The NASA and German Aerospace Center Gravity Recovery and Climate Experiment (GRACE) detects monthly changes in the gravity of the earth assumed to be water storage using the distance between two satellites, GRACE A and GRACE B, as a phase change. We will use level 3 GRACE Tellus data from the NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (PO.DAAC). The data have a resolution of 9 km2 and are available for 2002 to 2015. We examine GRACE data for the High Plains aquifer (Texas, Oklahoma, Wyoming, Nebraska, Kansas, New Mexico, Colorado and South Dakota) and compare changes to monthly averaged precipitation gauges, standardized precipitation indices for one, three, six, and twelve-months. We hypothesize that GRACE data will correlate best with 1) three-month standardized precipitation indices; 2) regions with natural land cover; 3) and in years where precipitation is at or above average.

  1. Remote sensing-based time-series analysis of cheatgrass (Bromus tectorum L.) phenology.

    Science.gov (United States)

    Clinton, Nicholas E; Potter, Christopher; Crabtree, Bob; Genovese, Vanessa; Gross, Peggy; Gong, Peng

    2010-01-01

    The western United States is under invasion from cheatgrass (Bromus tectorum L.), an annual grass that alters the pattern of phenology in the ecosystems it infests. This study was conducted to investigate methods for monitoring this invasion. As a result of its annual phenology, cheatgrass is not only an extremely competitive invader, it is also detectible from time series of remotely sensed data. Using the MODerate resolution imaging spectro-radiometer (MODIS) normalized difference vegetation index (NDVI) and spatially interpolated precipitation data, we fit splines to monthly observations to generate time series of NDVI and precipitation from 2001 to 2005 in the state of Utah. We generated a variety of existing metrics of phenology and developed several metrics to describe the relationship between the NDVI and the precipitation time series. These metrics not only describe the pattern of response to precipitation in ecosystems of various infestation levels, but they are predictive of cheatgrass infestation. We tested several popular data mining algorithms to investigate the predictive ability of the time series-based metrics. Our results show that presence-absence can be predicted with 90% accuracy, and four categorical levels of infestation can be predicted with 71% accuracy. The results show that time series-based metrics are effective in prediction of cheatgrass abundance levels, are more effective than metrics based only on NDVI, and provide more information that existing approaches to cheatgrass mapping using phenology. These results are important for designing strategies to monitor ecosystem health over long periods of time at a landscape scale.

  2. Experimental Marvin Windshield Effects on Precipitation Records in Leadville, Colorado

    Science.gov (United States)

    Jarrett, Robert D.; Crow, Loren W.

    1988-01-01

    An evaluation of the Leadville, Colorado, precipitation records that include a reported record-breaking storm (and flood) at higher elevations in the Rocky Mountains has indicated that the use of an experimental Marvin windshield (designed to decrease the effects of wind on precipitation-gage catchment of snow during winter) resulted in substantially overregistered summer precipitation for 1919 to 1938. The July monthly precipitation for these years was over-registered by an average of 157 percent of the long-term July monthly precipitation at Leadville. The cause of the overregistration of precipitation was the almost 4-foot-top-diameter cone-shaped windshield that had the effect of 'funneling' hail and rain splash into the rain gage. Other nearby precipitation gages, which did not use this Marvin windshield, did not have this trend of increased precipitation for the same period. Streamflow records from the Leadville area also do not indicate an increase in streamflow from 1919 to 1938.

  3. TEMPERATURE AND PRECIPITATION CHANGES IN TÂRGU-MURES (ROMANIA FROM PERIOD 1951-2010

    Directory of Open Access Journals (Sweden)

    O.Rusz

    2012-03-01

    Full Text Available Temperature and precipitation changes in Târgu Mures (Romania from period 1951-2010. The analysis was made based upon meteorological data collected at Târgu Mures meteorological station (Romania, Mures county, lat. 46°32’N, lon. 24°32’E, elevation 308 m, between 1951 and 2010. Several climatic parameters were studied (for instance, annual and monthly mean temperature, maximum precipitation in 24 hours, number of summer days, etc. Detected inhomogeneities are not related to instrumental causes or geographical relocation. Positive and statistical significant trends (Mann-Kendall test are indicated for: mean annual temperatures, mean temperatures of warm months, average of the maximum and minimum temperatures (annual and warm months data, number of days with mean temperature between 20.1-25.0 °C, number of days with precipitation ≥0 mm, and for all parameters of precipitation of September. The sequential version of Mann-Kendall test show a beginning of a trend in 1956 in the case of mean temperature (at same, the two and three parts regression denote this year like a moment of change, years 1965 and 1992 in the case of annual amount of precipitation. CUSUM charts indicate occurs of changes points at 1988, 2005, 2009 (mean temperature respectively at 1989, 2004 (precipitation, and at 1968, 1992 (daily temperature range. Tendencies of overlapped time series reveal a more important increase at the end of period (mainly for mean temperature. The analysis with RClimDex show for 5 extreme climate indices a significant trend: positive for summer days, warm nights, warm spell duration indicator and negative for cold nights and cold days.

  4. Towards Quantitative Ocean Precipitation Validation

    Science.gov (United States)

    Klepp, C.; Bakan, S.; Andersson, A.

    2009-04-01

    A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding and successful modelling of the global climate system as it is an important component of the water cycle. However, reliable detection of quantitative precipitation over the global oceans, especially at high latitudes during the cold season remains a challenging task for remote sensing and model based estimates. Quantitative ship validation data using reliable instruments for measuring rain and snowfall hardly exist but are highly demanded for ground validation of such products. The satellite based HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) climatology contains fields of precipitation, evaporation and the resulting freshwater flux along with 12 additional atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables are calculated from SSM/I passive microwave radiometer measurements. HOAPS contains three main data subsets that originate from one common pixel-level data source. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. Especially for North Atlantic mid-latitude mix-phase precipitation, the HOAPS precipitation retrieval has been investigated in some depth. This analysis revealed that the HOAPS retrieval qualitatively well represents cyclonic and intense mesoscale precipitation in agreement with ship observations and Cloudsat data, while GPCP, ECMWF forecast, ERA-40 and regional model data miss mesoscale precipitation substantially. As the differences between the investigated data sets are already large under mix-phase precipitation conditions, further work is carried out on snowfall validation during the cold season at high-latitudes. A Norwegian Sea field campaign in winter 2005 was carried out using an optical disdrometer capable of measuring quantitative amounts of snowfall over the ocean

  5. Application of the Standardized Precipitation Index (SPI in Greece

    Directory of Open Access Journals (Sweden)

    Christos A. Karavitis

    2011-08-01

    Full Text Available The main premise of the current effort is that the use of a drought index, such as Standardized Precipitation Index (SPI, may lead to a more appropriate understanding of drought duration, magnitude and spatial extent in semi-arid areas like Greece. The importance of the Index may be marked in its simplicity and its ability to identify the beginning and end of a drought event. Thus, it may point towards drought contingency planning and through it to drought alert mechanisms. In this context, Greece, as it very often faces the hazardous impacts of droughts, presents an almost ideal case for the SPI application. The present approach examines the SPI drought index application for all of Greece and it is evaluated accordingly by historical precipitation data. Different time series of data from 46 precipitation stations, covering the period 1947–2004, and for time scales of 1, 3, 6, 12 and 24 months, were used. The computation of the index was achieved by the appropriate usage of a pertinent software tool. Then, spatial representation of the SPI values was carried out with geo-statistical methods using the SURFER 9 software package. The results underline the potential that the SPI usage exhibits in a drought alert and forecasting effort as part of a drought contingency planning posture.

  6. Relationship between monthly temperature anomalies and drought frequency

    Science.gov (United States)

    Maeda, E.; Naumann, G.

    2012-04-01

    Meteorological droughts are extreme climate events characterized by a period, of months or years, with below-normal precipitation. The economical and ecological impacts of such events can be catastrophic, having profound effects for agricultural production, water resources, biodiversity, tourism and many other aspects. It is recognized that the cause of meteorological droughts are largely associated with fluctuations on sea surface temperature and atmospheric dynamic processes. Nevertheless, the influence of surface air temperature on the frequency of meteorological droughts is still unclear. The objective of this study was to assess the relationship between temperature anomalies and drought frequency. Records from 50 stations from the Global Historical Climatology Network (GHCN) were analyzed at monthly time scale. The criterion used to select the stations was solely the length of the time series recorded in the stations. Namely, only stations with more than 100 years records, for both precipitation and temperature, were used in this study. In general, the selected stations were distributed along Australia, European countries, Unites States and Canada. Standardized temperature anomalies were calculated taking as baseline the entire dataset recorded at the station. The precipitation anomalies for each month were assessed through the Standardized Precipitation Index (SPI) according to the empirical cumulative distribution at each location. Therefore, both temperature anomalies and precipitation deficits were normalized, allowing a direct comparison of the entire dataset in each station, independent of the season of the year. Next, the monthly SPI were associated with the respective monthly temperatures anomalies. The SPI values were binned based on the temperature anomaly values. The used bin width was 0.5 degC. Finally, for each temperature anomaly bin, the average SPI and the frequency of months with SPI lower than -1 (moderated drought) were calculated. In order

  7. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  8. A review of statistical analyses on monthly and daily rainfall in Catalonia

    Directory of Open Access Journals (Sweden)

    X. Lana

    2009-01-01

    Full Text Available A review on recent studies about monthly and daily rainfall in Catalonia is presented. Monthly rainfall is analysed along the west Mediterranean Coast and in Catalonia, quantifying aspects as the irregularity of monthly amounts and the spatial distribution of the Standard Precipitation Index. Several statistics are applied to daily rainfall series such as their extreme value and intraannual spatial distributions, the variability of the average and standard deviation rain amounts for each month, their amount and time distributions, and time trends affecting four pluviometric indices for different percentiles and class intervals. All these different analyses constitute the continuity of the scientific study of Catalan rainfall, which started about a century ago.

  9. The Global Precipitation Measurement Mission

    Science.gov (United States)

    Jackson, Gail

    2014-05-01

    Goddard Space Flight Center. It was shipped to Japan in November 2012 for launch on a Japanese H-IIA rocket from Tanegashima Island, Japan. The launch has been officially scheduled for 1:07 p.m. to 3:07 p.m. EST Thursday, February 27, 2014 (3:07 a.m. to 5:07 a.m. JST Friday, February 28). The day that the GPM Core was shipped to Japan was the day that GPM's Project Scientist, Dr. Arthur Hou passed away after a year-long battle with cancer. Dr. Hou truly made GPM a global effort with a global team. He excelled in providing scientific oversight for achieving GPM's many science objectives and application goals, including delivering high-resolution precipitation data in near real time for better understanding, monitoring and prediction of global precipitation systems and high-impact weather events such as hurricanes. Dr. Hou successfully forged international partnerships to collect and validate space-borne measurements of precipitation around the globe. He served as a professional mentor to numerous junior and mid-level scientists. His presence, leadership, generous personality, and the example he set for all of us as a true "team-player" will be greatly missed. The GPM mission will be described, Arthur's role as Project Scientist for GPM, and early imagery of GPM's retrievals of precipitation will be presented if available at the end of April 2014 (2 months after launch).

  10. Comparisons on seasonal and annual variations of δ18O in precipitation

    Institute of Scientific and Technical Information of China (English)

    ZHANGXinping; YAOTandong

    2004-01-01

    The spatial and temporal variations of stable oxygen isotope in precipitation on different time scales are analyzed according to the data from the IAEA/WMO stations with long survey series in the Northern Hemisphere. Temperature effect is mainly distributed in mid-high latitudes on seasonal scale except for Bamako and Addisababa stations. The δ18O /temperature slope displays the positive correlation against altitude for most of the statistical stations. Amount effect appears primarily in the region south of 30°N and coastal areas. The δ18O/precipitation slope is indirectly proportional to precipitation amount. For some of the sampling stations at mid-high latitudes where their seasonal distribution of precipitation is contrary to that of temperature, coupled with temperature effect, the amount effect appears synchronistically. Either the temperature effect or the amount effect on seasonal scale, there are positive correlations to a certain extent between the annual weighted mean δ18O and the annual mean temperature for almost all the stations. The correlation between composite δ18O and temperature on spatial scale is much more marked, compared with that of individual station. There is a good agreement between 10-year moving average temperature curves Ⅰ and Ⅱ, with the values of the former all markedly smaller than corresponding ones of the latter, calculated by the monthly mean series group Ⅰ and the annual mean series group Ⅱ, respectively. However, two calculated dδ18O/dT curves display the distinct difference: the variation amplitude of slope series Ⅱ is larger than that of slope series Ⅰ. Both curves had similar ascending trend from the 1960s to the 1970s, and then, their variations display the anti-phase. Moreover, the analyses show that there is negative correlation between slope series Ⅱ and temperature series Ⅱ. However, the status is different for slope series Ⅰ and temperature series Ⅰ. Both series have contrary trend from the

  11. Impact of Precipitation Fluctuation on Desert-Grassland ANPP

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2016-11-01

    Full Text Available Precipitation change has significantly influenced annual net primary productivity (ANPP at either annual or seasonal scales in desert steppes in arid and semi-arid regions. In order to reveal the process of precipitation driving ANPP at different time scales, responses of different ANPP levels to the inter-annual and intra-annual precipitation fluctuations were analyzed. ANPP was reversed by building a ground reflectance spectrum model, from 2000 to 2015, using the normalized differential vegetation index of the Moderate-Resolution Imaging Spectroradiometer (MODIS-NDVI data at 250 m × 250 m spatial resolution. Since the description of the differently expressing forms of precipitation are not sufficient in former studies in order to overcome the deficiency of former studies, in this study, intra-annual precipitation fluctuations were analyzed not only with precipitation of May–August, June–August, July–August, and August, respectively, which have direct influence on vegetation productivity within the year, but quantitative description, vector precipitation (R, concentration ratio (Cd, and concentration period (D, were also used to describe the overall characteristics of intra-annual precipitation fluctuations. The concentration ratio and the maximum precipitation period of the intra-annual precipitation were represented by using monthly precipitation. The results showed that: (1 in the period from 1971 to 2015, the maximum annual precipitation is 3.76 times that of the minimum in the Urat desert steppe; (2 vector precipitation is more significantly related to ANPP (r = 0.7724, p = 0.000 compared to meteorological annual precipitation and real annual precipitation influence; and (3 annual precipitation is almost concentrated in 5–8 months and monthly precipitation accumulation has significantly effected ANPP, especially in the period of June–August, since the vegetation composition in the study area was mainly sub-shrubs and perennial

  12. Relative importance of precipitation frequency and intensity in inter-annual variation of precipitation in Singapore during 1980-2013

    Science.gov (United States)

    Li, Xin; Babovic, Vladan

    2017-04-01

    Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have

  13. Fourier series

    CERN Document Server

    Tolstov, Georgi P

    1962-01-01

    Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

  14. Use of localized human growth hormone and testosterone injections in addition to manual therapy and exercise for lower back pain: a case series with 12-month follow-up

    OpenAIRE

    Dubick MN; Ravin TH; Michel Y; Morrisette DC

    2015-01-01

    Marc N Dubick,1 Thomas H Ravin,2 Yvonne Michel,3 David C Morrisette4 1Interventional Pain Management, Division of Anesthesiology, Bon Secours St Francis Hospital, Charleston, SC, USA; 2Musculoskeletal Medicine, Val d'Isere Health Clinic, Denver, CO, USA; 3Statistical Consultant, Private Practice, Daniel Island, SC, USA; 4Division of Physical Therapy, Medical University of South Carolina, SC, USA Objective: The objective of this case series was to investigate the feasibility and safety...

  15. Precipitates in electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Keith [Development and Market Research, Cogent Power Limited, Corporation Road, Newport, South Wales NP19 OXT (United Kingdom)], E-mail: keith.jenkins@cogent-power.com; Lindenmo, Magnus [Development and Market Research, Cogent Power Limited, Corporation Road, Newport, South Wales NP19 OXT (United Kingdom)

    2008-10-15

    Precipitates heavily influence the magnetic properties of electrical steels, either as a key controlled requirement as part of the manufacturing process or as an unwanted harmful residual in the final product. In this current work copper-manganese sulphides precipitates are the primary inhibitor species in the conventional grain-oriented (CGO) steels examined and grain boundary pinning is effective at a mean precipitate size of 30-70 nm. The growth of CuMnS has been studied and the results show that a precipitate size above {approx}100 nm allows the onset of secondary recrystallisation in the heating conditions applied. The effect of precipitates on the magnetic properties of both grain-oriented and non-oriented steels in their final product form is then examined. Examples of grain-oriented material still containing large numbers of precipitates clearly show the detrimental effects with increases in total power loss of 40% or more. Loss deterioration by about 20% is also seen in samples of high silicon non-oriented material in which titanium carbo-nitride precipitates have been observed. In this case the precipitates are believed to have formed during cooling after final annealing. Finally a grain-oriented steel with a large number of very small precipitates, which do not seem to have any harmful effect on the magnetic properties, is demonstrated.

  16. Petroleum supply monthly: December 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Data are presented which describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States. Data are presented in two sections: Summary Statistics, presenting a time series of selected petroleum data on a U.S. level, and Detailed Statistics, presenting statistics for the most current month available as well as year to date.

  17. Inconsistency in precipitation measurements across Alaska and Yukon border

    Directory of Open Access Journals (Sweden)

    L. Scaff

    2015-07-01

    Full Text Available This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (NWS 8-in gauge and Nipher gauge, and the bias-corrected data to account for wind effect on the gauge catch, wetting loss and trace events. The bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. Monthly corrections increase solid precipitation by 135 % in January, 20 % for July at the Barter Island in Alaska, and about 31 % for January and 4 % for July at the Yukon stations. Regression analyses of the monthly precipitation data show a stronger correlation for the warm months (mainly rainfall than for cold month (mainly snowfall between the station pairs, and small changes in the precipitation relationship due to the bias corrections. Double mass curves also indicate changes in the cumulative precipitation over the study periods. This change leads to a smaller and inverted precipitation gradient across the border, representing a significant modification in the precipitation pattern over the northern region. Overall, this study discovers significant inconsistency in the precipitation measurements across the US and Canada border. This discontinuity is greater for snowfall than for rainfall, as gauge snowfall observations have large errors in the windy and cold conditions. This result will certainly impact regional, particularly cross borders, climate and hydrology investigations.

  18. Statistical downscaling of meteorological time series and climatic projections in a watershed in Turkey

    Science.gov (United States)

    Göncü, S.; Albek, E.

    2016-10-01

    In this study, meteorological time series from five meteorological stations in and around a watershed in Turkey were used in the statistical downscaling of global climate model results to be used for future projections. Two general circulation models (GCMs), Canadian Climate Center (CGCM3.1(T63)) and Met Office Hadley Centre (2012) (HadCM3) models, were used with three Special Report Emission Scenarios, A1B, A2, and B2. The statistical downscaling model SDSM was used for the downscaling. The downscaled ensembles were put to validation with GCM predictors against observations using nonparametric statistical tests. The two most important meteorological variables, temperature and precipitation, passed validation statistics, and partial validation was achieved with other time series relevant in hydrological studies, namely, cloudiness, relative humidity, and wind velocity. Heat waves, number of dry days, length of dry and wet spells, and maximum precipitation were derived from the primary time series as annual series. The change in monthly predictor sets used in constructing the multiple regression equations for downscaling was examined over the watershed and over the months in a year. Projections between 1962 and 2100 showed that temperatures and dryness indicators show increasing trends while precipitation, relative humidity, and cloudiness tend to decrease. The spatial changes over the watershed and monthly temporal changes revealed that the western parts of the watershed where water is produced for subsequent downstream use will get drier than the rest and the precipitation distribution over the year will shift. Temperatures showed increasing trends over the whole watershed unparalleled with another period in history. The results emphasize the necessity of mitigation efforts to combat climate change on local and global scales and the introduction of adaptation strategies for the region under study which was shown to be vulnerable to climate change.

  19. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  20. Individual external dose monitoring of all citizens of Date City by passive dosimeter 5 to 51 months after the Fukushima NPP accident (series): 1. Comparison of individual dose with ambient dose rate monitored by aircraft surveys.

    Science.gov (United States)

    Miyazaki, Makoto; Hayano, Ryugo

    2016-12-06

    Date (da'te) City in Fukushima Prefecture has conducted a population-wide individual dose monitoring program after the Fukushima Daiichi Nuclear Power Plant Accident, which provides a unique and comprehensive data set of the individual doses of citizens. The purpose of this paper, the first in the series, is to establish a method for estimating effective doses based on the available ambient dose rate survey data. We thus examined the relationship between the individual external doses and the corresponding ambient doses assessed from airborne surveys. The results show that the individual doses were about 0.15 times the ambient doses, the coefficient of 0.15 being a factor of 4 smaller than the value employed by the Japanese government, throughout the period of the airborne surveys used. The method obtained in this study could aid in the prediction of individual doses in the early phase of future radiological accidents involving large-scale contamination.

  1. Monthly energy review, June 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the MER and in other EIA publications. 37 figs., 61 tabs.

  2. Monthly energy review, July 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the MER and in other EIA publications. 37 figs., 75 tabs.

  3. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  4. Natural gas monthly, March 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  5. Natural gas monthly, March 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  6. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    Science.gov (United States)

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitationprecipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially

  7. Petroleum supply monthly, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-30

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures in the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month based on the Weekly Petroleum Supply Reporting System; statistics based on the most recent data from the Monthly Petroleum Supply Reporting System (MPSRS); and statistics published in prior issues of the PSM and PSA. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. In most cases, the statistics are presented for several geographic areas -- the United States (50 States and the District of Columbia), five PAD Districts, and 12 Refining Districts. At the US and PAD District level, the total volume and the daily rate of activities are presented. The statistics are developed from monthly survey forms submitted by respondents to the EIA and from data provided from other sources.

  8. Petroleum supply monthly, June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-28

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures ih the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month based on the Weekly Petroleum Supply Reporting System; statistics based on the most recent data from the Monthly Petroleum Supply Reporting System (MPSRS); and statistics published in prior issues of the PSM and PSA. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. In most cases, the statistics are presented for several geographic areas - - the United States (50 States and the District of Columbia), five PAD Districts, and 12 Refining Districts. At the US and PAD District level, the total volume and the daily rate of activities are presented. The statistics are developed from monthly survey forms submitted by respondents to the EIA and from data provided firom other sources.

  9. Monthly Meteorological Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly forms that do not fit into any regular submission. Tabulation sheets and generic monthly forms designed to capture miscellaneous monthly observations.

  10. Petroleum supply monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blends, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

  11. Petroleum Supply Monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  12. COSMIC monthly progress report

    Science.gov (United States)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of May 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Nine articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) WFI - Windowing System for Test and Simulation; (2) HZETRN - A Free Space Radiation Transport and Shielding Program; (3) COMGEN-BEM - Composite Model Generation-Boundary Element Method; (4) IDDS - Interactive Data Display System; (5) CET93/PC - Chemical Equilibrium with Transport Properties, 1993; (6) SDVIC - Sub-pixel Digital Video Image Correlation; (7) TRASYS - Thermal Radiation Analyzer System (HP9000 Series 700/800 Version without NASADIG); (8) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (VAX VMS Version); and (9) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (UNIX Version). Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  13. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    Science.gov (United States)

    Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Graff, Benjamin

    2015-04-01

    considered to correct monthly precipitation and temperature time series. The first one applies two new analogy steps, using the sea surface temperature (SST) and the large-scale two-meter temperature. The second method is a calendar selection that keeps the closest analogue dates in the year for each target date. A sensitivity study has been performed to assess the final number of analogues dates to retain for each method. A comparison to Safran over 1958-2010 shows that biases on the interannual cycle of precipitation and temperature are strongly reduced with both methods. Using two supplementary analogy levels moreover leads to a large improvement of correlation in seasonal temperature time series. These two methods have also been validated before 1958 thanks to both raw observations and homogenized time series. The two post-processing methods come with some advantages and drawbacks. The calendar selection allows to slightly better correct for seasonal biases in precipitation and is therefore adapted in a forecasting context. The selection with two supplementary analogy levels would allow for possible season shifts and SST trends and is therefore better suited for climate reconstruction and climate change studies. Compo, G. P. et al. (2011). The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 137:1-28. doi: 10.1002/qj.776 Radanovics, S., Vidal, J.-P., Sauquet, E., Ben Daoud, A., and Bontron, G. (2013). Optimising predictor domains for spatially coherent precipitation downscaling. Hydrology and Earth System Sciences, 17:4189-4208. doi:10.5194/hess-17-4189-2013 Vidal, J.-P ., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 30:1627-1644. doi:10.1002/joc.2003

  14. WPA Precipitation Tabulations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly precipitation data tabulated under the Work Projects Administration (WPA), a New Deal program created to reduce unemployment during the Great Depression....

  15. Chemisorption And Precipitation Reactions

    Science.gov (United States)

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  16. Downscaling and projection of precipitation from general circulation model predictors in an equatorial climate region by the automated regression-based statistical method

    Science.gov (United States)

    Amin, Mohd Zaki M.; Islam, Tanvir; Ishak, Asnor M.

    2014-10-01

    The authors have applied an automated regression-based statistical method, namely, the automated statistical downscaling (ASD) model, to downscale and project the precipitation climatology in an equatorial climate region (Peninsular Malaysia). Five precipitation indices are, principally, downscaled and projected: mean monthly values of precipitation (Mean), standard deviation (STD), 90th percentile of rain day amount, percentage of wet days (Wet-day), and maximum number of consecutive dry days (CDD). The predictors, National Centers for Environmental Prediction (NCEP) products, are taken from the daily series reanalysis data, while the global climate model (GCM) outputs are from the Hadley Centre Coupled Model, version 3 (HadCM3) in A2/B2 emission scenarios and Third-Generation Coupled Global Climate Model (CGCM3) in A2 emission scenario. Meanwhile, the predictand data are taken from the arithmetically averaged rain gauge information and used as a baseline data for the evaluation. The results reveal, from the calibration and validation periods spanning a period of 40 years (1961-2000), the ASD model is capable to downscale the precipitation with reasonable accuracy. Overall, during the validation period, the model simulations with the NCEP predictors produce mean monthly precipitation of 6.18-6.20 mm/day (root mean squared error 0.78 and 0.82 mm/day), interpolated, respectively, on HadCM3 and CGCM3 grids, in contrast to 6.00 mm/day as observation. Nevertheless, the model suffers to perform reasonably well at the time of extreme precipitation and summer time, more specifically to generate the CDD and STD indices. The future projections of precipitation (2011-2099) exhibit that there would be an increase in the precipitation amount and frequency in most of the months. Taking the 1961-2000 timeline as the base period, overall, the annual mean precipitation would indicate a surplus projection by nearly 14~18 % under both GCM output cases (HadCM3 A2/B2 scenarios and

  17. Future projections of extreme precipitation using Advanced Weather Generator (AWE-GEN) over Peninsular Malaysia

    Science.gov (United States)

    Syafrina, A. H.; Zalina, M. D.; Juneng, L.

    2014-09-01

    A stochastic downscaling methodology known as the Advanced Weather Generator, AWE-GEN, has been tested at four stations in Peninsular Malaysia using observations available from 1975 to 2005. The methodology involves a stochastic downscaling procedure based on a Bayesian approach. Climate statistics from a multi-model ensemble of General Circulation Model (GCM) outputs were calculated and factors of change were derived to produce the probability distribution functions (PDF). New parameters were obtained to project future climate time series. A multi-model ensemble was used in this study. The projections of extreme precipitation were based on the RCP 6.0 scenario (2081-2100). The model was able to simulate both hourly and 24-h extreme precipitation, as well as wet spell durations quite well for almost all regions. However, the performance of GCM models varies significantly in all regions showing high variability of monthly precipitation for both observed and future periods. The extreme precipitation for both hourly and 24-h seems to increase in future, while extreme of wet spells remain unchanged, up to the return periods of 10-40 years.

  18. Natural gas monthly, April 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

  19. Flood/drought event identification using an effective indicator based on the correlations between multiple time scales of the Standardized Precipitation Index and river discharge

    Science.gov (United States)

    Wang, Yuefeng; Chen, Xingwei; Chen, Ying; Liu, Meibing; Gao, Lu

    2017-04-01

    In order to further investigate the capability of the Standardized Precipitation Index (SPI) to identify flood/drought events, monthly precipitation data from 26 precipitation stations and monthly discharge data from four hydrological stations from 1960 to 2006 in the Minjiang River basin were used to analyze the correlations between multiple time scales of the SPI and river discharge. The SPI series that had a maximum correlation with discharge was chosen to detect flood/drought events in the basin, and the results were compared to historical flood/drought events. The results indicated the following. (1) High Pearson correlations between the SPI and discharge were identified at shorter time scales (1 to 3 months), and the maximum correlation was found on the time scale of 2 months. (2) Five floods among the six largest historical flood events in the Minjiang River basin were identified with the 2-month SPI, but the SPI does have shortcomings in identifying more general floods. The SPI also identified major drought events that were consistent with historical data. This demonstrates that the 2-month SPI is an effective indicator for the identification of major flood/drought events in the Minjiang River basin.

  20. GPM, GMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  1. GPM, GMI Level 3 Monthly GPROF Profiling VV03C

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  2. GPM, GMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  3. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    Science.gov (United States)

    Yang, Zhongwen; Hsu, Kuolin; Sorooshian, Soroosh; Xu, Xinyi; Braithwaite, Dan; Verbist, Koen M. J.

    2016-04-01

    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009-2014. The historical data (satellite and gauge) for 2009-2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide.

  4. Investigation the Concentration and Trend of Winter Precipitation of Iranian Border Stations over the Last Half Century

    Directory of Open Access Journals (Sweden)

    Keyvan Khalili

    2017-02-01

    is to specify whether an ascending or a descending trend exists in data series. Since parametric tests have some assumptions including normality, stability, and independence of variables, where most of these assumptions do not apply to hydrologic variables, the nonparametric methods are more preferred in meteorological and hydrological studies. Results and Discussion: The PCI index was calculated using the monthly precipitation of the selected stations at seasonal and winter time scales over a 50-year period. This period was then divided into two 25-year sub-periods for the investigation of changes in average values of PCI (7. In the first 25-year span, the irregular precipitation distribution has been observed in the Bandarabbas station and its surroundings in winter season. In none of the studied stations, highly irregular precipitation occurred. The highest share of PCI was relatedto the precipitation average distribution class, and the northern, northwestern, and northeastern parts of the country have a uniform precipitation distribution. In winter, within the first 25-year period, the country had ideal conditions in terms of precipitation and its concentration in the mentioned regions. Within the second 25-year period, the intensity of irregular precipitation concentration decreased, as the regions that had confronted strong precipitation irregularities wereadded to regions with uniform concentration. At the seasonal scale and in winter, the country’s share of uniform distribution diminished in the second 25 years, and overall most parts of Iran have been covered by average precipitation distribution. The uniform precipitation distribution in recent years (second 25 years has decreased in winter in such a way that no uniform distribution has been observed in the northeast of the country and uniform distribution belongedto the Caspian sea border strip, southern regions of west and east Azerbaijan stations (Urmia, Khoy and Tabriz stations along with Kermanshah

  5. Nonstationary modeling of extreme precipitation in China

    Science.gov (United States)

    Gao, Meng; Mo, Dingyuan; Wu, Xiaoqing

    2016-12-01

    The statistical methods based on extreme value theory have been traditionally used in meteorology and hydrology for a long time. Due to climate change and variability, the hypothesis of stationarity in meteorological or hydrological time series was usually not satisfied. In this paper, a nonstationary extreme value analysis was conducted for annual maximum daily precipitation (AMP) at 631 meteorological stations over China for the period 1951-2013. Stationarity of all 631 AMP time series was firstly tested using KPSS test method, and only 48 AMP time series showed non-stationarity at 5% significance level. The trends of these 48 nonstationary AMP time series were further tested using M-K test method. There were 25 nonstationary AMP time series mainly distributed in southern and western China showing significant positive trend at 5% level. Another 5 nonstationary AMP time series with significant negative trends were near northern urban agglomeration, Sichuan Basin, and central China. For these nonstationary AMP time series with significant positive or negative trends, the location parameter in generalized extreme value (GEV) distribution was assumed to be time-varying, and the trends were successfully characterized by the nonstationary GEV models. For the remaining 18 nonstationary AMP time series mainly in the eastern portion of China, no significant trend was detected. The correlation analysis showed that only 5 nonstationary AMP time series were significantly correlated with one or two of the four climate indices EASMI, WPI, SOI, and PDO. Then, the location and scale parameters in the GEV distribution were modeled as functions of the significantly correlated climate indices. The modeling results in this study showed that the nonstationary GEV distributions performed better than their stationary equivalents. Finally, 20-year and 50-year return levels of precipitation extremes at all 631 stations were estimated using the best fitting distribution for the year 1961

  6. Probability Distribution and Projected Trends of Daily Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    CAO; Li-Ge; ZHONG; Jun; SU; Bu-Da; ZHAI; Jian-Qing; Macro; GEMMER

    2013-01-01

    Based on observed daily precipitation data of 540 stations and 3,839 gridded data from the high-resolution regional climate model COSMO-Climate Limited-area Modeling(CCLM)for 1961–2000,the simulation ability of CCLM on daily precipitation in China is examined,and the variation of daily precipitation distribution pattern is revealed.By applying the probability distribution and extreme value theory to the projected daily precipitation(2011–2050)under SRES A1B scenario with CCLM,trends of daily precipitation series and daily precipitation extremes are analyzed.Results show that except for the western Qinghai-Tibetan Plateau and South China,distribution patterns of the kurtosis and skewness calculated from the simulated and observed series are consistent with each other;their spatial correlation coefcients are above 0.75.The CCLM can well capture the distribution characteristics of daily precipitation over China.It is projected that in some parts of the Jianghuai region,central-eastern Northeast China and Inner Mongolia,the kurtosis and skewness will increase significantly,and precipitation extremes will increase during 2011–2050.The projected increase of maximum daily rainfall and longest non-precipitation period during flood season in the aforementioned regions,also show increasing trends of droughts and floods in the next 40 years.

  7. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation

    Science.gov (United States)

    Peterson, P.; Funk, C. C.; Husak, G. J.; Pedreros, D. H.; Landsfeld, M.; Verdin, J. P.; Shukla, S.

    2013-12-01

    CHIRP and CHIRPS are new quasi-global precipitation products with daily to seasonal time scales, a 0.05° resolution, and a 1981 to near real-time period of record. Developed by the Climate Hazards Group at UCSB and scientists at the U.S. Geological Survey Earth Resources Observation and Science Center specifically for drought early warning and environmental monitoring, CHIRPS provides moderate latency precipitation estimates that place observed hydrologic extremes in their historic context. Three main types of information are used in the CHIRPS: (1) global 0.05° precipitation climatologies, (2) time-varying grids of satellite-based precipitation estimates, and (3) in situ precipitation observations. CHIRP: The global grids of long-term (1980-2009) average precipitation were estimated for each month based on station data, averaged satellite observations, and physiographic parameters. 1981-present time-varying grids of satellite precipitation were derived from spatially varying regression models based on pentadal cold cloud duration (CCD) values and TRMM V7 training data. The CCD time-series were derived from the CPC and NOAA B1 datasets. Pentadal CCD-percent anomaly values were multiplied by pentadal climatology fields to produce low bias pentadal precipitation estimates. CHIRPS: The CHG station blending procedure uses the satellite-observed spatial covariance structure to assign relative weights to neighboring stations and the CHIRP values. The CHIRPS blending procedure is based on the expected correlation between precipitation at a given target location and precipitation at the locations of the neighboring observation stations. These correlations are estimated using the CHIRP fields. The CHG has developed an extensive archive of in situ daily, pentadal and monthly precipitation totals. The CHG database has over half a billion daily rainfall observations since 1980 and another half billion before 1980. Most of these observations come from four sets of global

  8. Considerações estatísticas relativas a seis séries mensais de temperatura do ar da Secretaria de Agricultura e Abastecimento do Estado de São Paulo Statistical considerations of six monthly air temperature series of the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2011-06-01

    Full Text Available O objetivo do trabalho foi detectar tendências e variações climáticas nas séries mensais de temperatura máxima (Tmax e mínima (Tmin do Estado de São Paulo. A fim de obter melhor adequação, entre a probabilidade de ocorrência dos erros estatísticos tipo I e II, foram utilizados métodos paramétricos (teste t, F e razão da verossimilhança e não paramétricos (teste sazonal de Mann-Kendall e de Pettitt. As séries de Tmin das localidades de Campinas, Cordeirópolis, Ribeirão Preto e, especialmente Ubatuba, apresentam fortes indícios de tendências e variações climáticas nos últimos 60 anos. Nas séries de Monte Alegre do Sul e Pindorama tais indícios são observados de forma pouco significativa. As alterações de ordem climática observadas nas séries de Tmax são bastante inferiores às observadas nas séries de Tmin. Dentre todas as localidades analisadas, a de Ubatuba foi a que apresentou as tendências de elevação mais significativas nos dados de temperatura do ar. Os resultados também indicaram que no mês de Abril podem ser verificados, em todas as seis localidades, os indícios mais significativos de elevação nos valores mensais da Tmax e, em especial, da Tmin. Em contra partida, o mês de Setembro mostrou-se o menos sujeito a elevação nos valores dessas duas variáveis meteorológicas.The aim of the work was to detect trends and climate variations in monthly maximum (Tmax and minimum (Tmin air temperature series of the State of São Paulo. In order to obtain a better balance between the probabilities associated with type I and II errors, parametric methods (tests t, F and the likelihood ratio test and non-parametric methods (Seasonal Mann-Kendall test and Pettitt test were used. In the series of Campinas-SP, Cordeirópolis-SP, Ribeirão Preto-SP and, especially Ubatuba-SP, strong evidences of climate trends and climate variations in the last 60 years were detected. In the Monte Alegre do Sul-SP and Pindorama

  9. Drought analysis in the Eastern Nile basin using the standardized precipitation index.

    Science.gov (United States)

    Elkollaly, Mohamed; Khadr, Mosaad; Zeidan, Bakenaz

    2017-01-31

    Drought is considered by many researchers to be the most complex but least understood of all natural hazards, affecting more people than any other hazard. Drought affects many aspects of community and environment, and any future increases in the water demand will be most critical in periods of severe drought. Geospatial analysis of the historical drought events and their causes can be used to mitigate drought impacts and to develop preparedness plans. This study aimed to identify the changes in drought frequency, magnitude, duration, and intensity in the Eastern Nile basin during the period 1965-2000, using the standardized precipitation index (SPI). An SPI program based on C sharp language was developed to monitor drought in the study area. Twenty-eight meteorological stations distributed on the Eastern Nile basin were chosen to collect monthly precipitation data. For drought analysis, SPI series of 3-, 6-, 9-, 12-, and 24-month timescales have been calculated. Results showed that the study area received several drought events during the long rainy season (June to September) and the short rainy season (March to May) as well. Annual analysis of SPI time series indicated that the study area received several drought events, and the most severity event was during the year 1984.

  10. Time Series

    OpenAIRE

    Gil-Alana, L.A.; Moreno, A; Pérez-de-Gracia, F. (Fernando)

    2011-01-01

    The last 20 years have witnessed a considerable increase in the use of time series techniques in econometrics. The articles in this important set have been chosen to illustrate the main themes in time series work as it relates to econometrics. The editor has written a new concise introduction to accompany the articles. Sections covered include: Ad Hoc Forecasting Procedures, ARIMA Modelling, Structural Time Series Models, Unit Roots, Detrending and Non-stationarity, Seasonality, Seasonal Adju...

  11. Evaluation of the TRMM multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin, China

    Science.gov (United States)

    Yang, Na; Zhang, Ke; Hong, Yang; Zhao, Qiaohua; Huang, Qin; Xu, Yinshan; Xue, Xianwu; Chen, Sheng

    2017-06-01

    In this study, we first evaluated a satellite-based precipitation product (3B42V7) using gauge observations and then investigated its utility in supporting reservoir operation and water resources management in Hanjiang basin from January 1998 to December 2013. Direct comparison of 3B42V7 with gauge observations shows that it can well capture the spatial and temporal characteristics of precipitation over the study basin. However, the 3B42V7 estimates generally show slight underestimation of precipitation, especially for extreme precipitation events, which need be considered in the future algorithm development. Next, we conducted the long-term (2008-2013) hydrologic evaluation of the 3B42V7 product using a calibrated monthly hydrologic model. The results show that the performance of the monthly hydrologic model driven by 3B42V7 is compatible to the results driven by gauge-based simulations according to high values of Nash-Sutcliffe coefficients (0.83 and 0.66 for observation-driven and 3B47V7 driven simulations, respectively) and small values of biases (-8.16% and -3.98%). We further evaluated the applicability of 3B42V7 in reservoir operation through a set of operation experiments, in which modeled inflow series were used to make decisions. The results indicate that reservoir operations based on modeled streamflow using the 3B42V7 estimates perform well in water allocation decision-making and strongly agree with actual inflow based operations. Despite that 3B42V7 tends to slightly underestimate precipitation, the resultant operations do not impact the functions and benefits of reservoir operation much. This suggests that the 3B42V7 precipitation estimates are valuable and useful for monthly streamflow simulation and long-term reservoir operation in Hanjiang basin. This study provides a new insight on the evaluation and utility of the remote sensing based precipitation estimates.

  12. Relationships between interdecadal variability and extreme precipitation events in South America during the monsoon season

    Science.gov (United States)

    Grimm, Alice; Laureanti, Nicole; Rodakoviski, Rodrigo

    2016-04-01

    This study aims to clarify the impact of interdecadal climate oscillations (periods of 8 years and longer) on the frequency of extreme precipitation events over South America in the monsoon season (austral spring and summer), and determine the influence of these oscillations on the daily precipitation frequency distribution. Interdecadal variability modes of precipitation during the monsoon season are provided by a continental-scale rotated empirical orthogonal function analysis for the 60 years period 1950-2009. The main disclosed modes are robust, since they are reproduced for different periods. They can produce differences around 50% in monthly precipitation between opposite phases. Oceanic and atmospheric anomalous fields associated with these modes indicate that they have physical basis. The first modes in spring and summer display highest correlation with the Interdecadal Pacific Oscillation (IPO) SST mode, while the second modes have strongest correlation with the Atlantic Multidecadal Oscillation (AMO) SST mode. However, there are also other influences on these modes. As the most dramatic consequences of climate variability stem from its influence on the frequency of extreme precipitation events, it is important to also assess this influence, since variations in monthly or seasonal precipitation do not necessarily imply significant alterations in their extreme events. This study seeks to answer the questions: i) Do opposite phases of the main interdecadal modes of seasonal precipitation produce significant anomalies in the frequency of extreme events? ii) Does the interdecadal variability of the frequency of extreme events show similar spatial and temporal structure as the interdecadal variability of the seasonal precipitation? iii) Does the interdecadal variability change the daily precipitation probability distribution between opposite phases? iv) In this case, which ranges of daily precipitation are most affected? The significant anomalies of the extreme

  13. as the Strengthening Precipitates

    Science.gov (United States)

    Lu, Qi; Xu, Wei; van der Zwaag, Sybrand

    2014-12-01

    Generally, Laves phase and M23C6 are regarded as undesirable phases in creep-resistant steels due to their very high-coarsening rates and the resulting depletion of beneficial alloying elements from the matrix. In this study, a computational alloy design approach is presented to develop martensitic steels strengthened by Laves phase and/or M23C6, for which the coarsening rates are tailored such that they are at least one order of magnitude lower than those in existing alloys. Their volume fractions are optimized by tuning the chemical composition in parallel. The composition domain covering 10 alloying elements at realistic levels is searched by a genetic algorithm to explore the full potential of simultaneous maximization of the volume fraction and minimization of the precipitates coarsening rate. The calculations show that Co and W can drastically reduce the coarsening rate of Laves and M23C6 and yield high-volume fractions of precipitates. Mo on the other hand was shown to have a minimal effect on coarsening. The strengthening effects of Laves phase and M23C6 in the newly designed alloys are compared to existing counterparts, showing substantially higher precipitation-strengthening contributions especially after a long service time. New alloys were designed in which both Laves phase and M23C6 precipitates act as strengthening precipitates. Successfully combining MX and M23C6 was found to be impossible.

  14. Asphaltene Precipitation inHeavy-Oil Systems

    OpenAIRE

    Verås, Tor Jørgen

    2011-01-01

    Vapor-Assisted Petroleum Extraction (VAPEX) is a relatively new and promising method for recovering heavy crude oils in Canada. The technique upgrades the oil in-situ through asphaltene precipitation, but it may also cause damage to the formation by clogging its pore throats. This thesis brings some clarity to what asphaltenes are and how they form from mixes of bitumen and solvent, depending on the type and amount of solvent used. This was investigated through a series of laboratory experime...

  15. Precipitation chemistry in central Amazonia

    Science.gov (United States)

    Andreae, M. O.; Talbot, R. W.; Berresheim, H.; Beecher, K. M.

    1990-01-01

    Rain samples from three sites in central Amazonia were collected over a period of 6 weeks during the 1987 wet season and analyzed for ionic species and dissolved organic carbon. A continuous record of precipitation chemistry and amount was obtained at two of these sites, which were free from local or regional pollution, for a time period of over 1 month. The volume-weighted mean concentrations of most species were found to be about a factor of 5 lower during the wet season compared with previous results from the dry season. Only sodium, potassium, and chloride showed similar concentrations in both seasons. When the seasonal difference in rainfall amount is taken into consideration, the deposition fluxes are only slightly lower for most species during the wet season than during the dry season, again with the exception of chloride, potassium, and sodium. Sodium and chloride are present in the same ratio as in sea salt; rapid advection of air masses of marine origin to the central Amazon Basin during the wet season may be responsible for the observed higher deposition flux of these species. Statistical analysis suggests that sulfate is, to a large extent, of marine (sea salt and biogenic) origin, but that long-range transport of combustion-derived aerosols also makes a significant contribution to sulfate and nitrate levels in Amazonian rain. Organic acid concentrations in rain were responsible for a large fraction of the observed precipitation acidity; their concentration was strongly influenced by gas/liquid interactions.

  16. Natural gas monthly, March 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This issue of the Natural Gas Monthly contains estimates for March 1999 for many natural gas data series at the national level. Estimates of national natural gas prices are available through December 1998 for most series. Highlights of the data contained in this issue are listed below. Preliminary data indicate that the national average wellhead price for 1998 declined to 16% from the previous year ($1.96 compared to $2.32 per thousand cubic feet). At the end of March, the end of the 1998--1999 heating season, the level of working gas in underground natural gas storage facilities is estimated to be 1,354 billion cubic feet, 169 billion cubic feet higher than at the end of March 1998. Gas consumption during the first 3 months of 1999 is estimated to have been 179 billion cubic feet higher than in the same period in 1998. Most of this increase (133 billion cubic feet) occurred in the residential sector due to the cooler temperatures in January and February compared to the same months last year. According to the National Weather Service, heating degree days in January 1999 were 15% greater than the previous year while February recorded a 5% increase.

  17. Nordic Seas Precipitation Ground Validation Project

    Science.gov (United States)

    Klepp, Christian; Bumke, Karl; Bakan, Stephan; Andersson, Axel

    2010-05-01

    A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding of the water cycle in the global climate system. However, reliable detection of precipitation over the global oceans, especially of solid precipitation, remains a challenging task. This is true for both, passive microwave remote sensing and reanalysis based model estimates. The satellite based HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) climatology contains fields of precipitation, evaporation and the resulting freshwater flux along with 12 additional atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables are calculated from SSM/I passive microwave radiometer measurements. HOAPS contains three main data subsets that originate from one common pixel-level data source. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. The optical disdrometer ODM 470 is a ground validation instrument capable of measuring rain and snowfall on ships even under high wind speeds. It was used for the first time over the Nordic Seas during the LOFZY 2005 campaign. A dichotomous verification for these snowfall events resulted in a perfect score between the disdrometer, a precipitation detector and a shipboard observer's log. The disdrometer data is further point-to-area collocated against precipitation from three satellite derived climatologies, HOAPS-3, the Global Precipitation Climatology Project (GPCP) one degree daily (1DD) data set, and the Goddard Profiling algorithm, version 2004 (GPROF 2004). Only the HOAPS precipitation turns out to be overall consistent with the disdrometer data resulting in an accuracy of 0.96. The collocated data comprises light precipitation events below 1 mm/h. Therefore two LOFZY case studies with high precipitation rates are presented that still indicate plausible results. Overall, this

  18. Precipitating factors of asthma.

    Science.gov (United States)

    Lee, T H

    1992-01-01

    Asthma is characterised by bronchial hyperresponsiveness. This feature of the asthmatic diathesis predisposes patients to wheezing in response to a number of different factors. These precipitating factors include specific allergen acting via sensitised mediator cells through an IgE-dependent mechanism. There are irritants which may work through a non-specific manner, or stimuli such as exercise and hyperventilation, which probably also act through mediator release via a non-IgE-dependent manner. The mechanism whereby physical stimuli such as exercise induce bronchoconstriction is of interest, because it increases the context in which the mast cell may participate in acute asthmatic bronchoconstriction. Respiratory infections also commonly provoke asthma, especially in infants and may, indeed, precipitate the asthmatic state itself. Finally, drugs can often trigger asthma attacks and the mechanisms of asthma precipitated by non-steroidal anti-inflammatory drugs such as aspirin have been the subject of recent research.

  19. Average monthly and annual climate maps for Bolivia

    KAUST Repository

    Vicente-Serrano, Sergio M.

    2015-02-24

    This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control and temporal homogenization procedure. Monthly average maps at the spatial resolution of 1 km were modeled by means of a regression-based approach using topographic and geographic variables as predictors. The monthly average maximum and minimum temperatures, precipitation and potential exoatmospheric solar radiation under clear sky conditions are used to estimate the monthly average atmospheric evaporative demand by means of the Hargreaves model. Finally, the average water balance is estimated on a monthly and annual scale for each 1 km cell by means of the difference between precipitation and atmospheric evaporative demand. The digital layers used to create the maps are available in the digital repository of the Spanish National Research Council.

  20. Precipitation-Regulated Feedback

    Science.gov (United States)

    Voit, Mark

    2016-07-01

    Star formation in the central galaxies of galaxy clusters appears to be fueled by precipitation of cold clouds out of hot circumgalactic gas via thermal instability. I will present both observational and theoretical support for the precipitation mode in large galaxies and discuss how it can be implemented in cosmological simulations of galaxy evolution. Galaxy cluster cores are unique laboratories for studying the astrophysics of thermal instability and may be teaching us valuable lessons about how feedback works in galaxies spanning the entire mass spectrum.

  1. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  2. Proposing Chinese Pharmacists Month

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Dear Pharmacists: Today I would like to share with you about the American Pharmacists Month which is celebrated in October every year.This month-long observance is promoted by American Pharmacist Association.

  3. Variability of summer-time precipitation in Danube plain, Bulgaria

    Directory of Open Access Journals (Sweden)

    Nikolova Nina

    2005-01-01

    Full Text Available Over the recent years the climate extremes like as drought and floods become more often and have negative impact on human society. That is way it is very important to know the peculiarities of precipitation variability. The paper investigates precipitation variability during summer time in one of the most important agriculture region in Bulgaria - Danube Plain. The summer-time is determined for the period May - October. The study is based on monthly precipitation total for the period 1961-2005. The precipitation variability is analyzed by comparison with the period 1961-1990, determined by World Meteorological Organization as "contemporary climate". In order to investigate the precipitation variability the various indices lake as Percent of Normal, Rainfall Anomaly Index and Cumulative Anomaly have been calculated. Two wet spells (1865-1983 and 1993-2005 and one dry spell (1983-1993 have been identified. The Kriging interpolation has been applied for presenting special distribution of precipitation variability.

  4. Petroleum supply monthly, April 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographical regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US. The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the US.

  5. Reaction systems with precipitation

    Directory of Open Access Journals (Sweden)

    Marek Rogalski

    2015-04-01

    Full Text Available This article proposes expanding Reaction Systems of Ehrenfeucht and Rozenberg by incorporating precipitation reactions into it. This improves the computing power of Reaction Systems by allowing us to implement a stack. This addition enables us to implement a Deterministic Pushdown Automaton.

  6. Chart Series

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) offers several different Chart Series with data on beneficiary health status, spending, operations, and quality...

  7. Case series

    African Journals Online (AJOL)

    abp

    2013-06-20

    Jun 20, 2013 ... Upper cervical spine injuries: a management of a series of 70 cases. El Fatemi ... women, with traffic accidents being the major traumatic cause. .... osteosynthesis is preferred to respect the biomechanics of the cervical spine ...

  8. Estimating continuous monthly baseflow time series and their ...

    African Journals Online (AJOL)

    drinie

    2001-04-02

    Apr 2, 2001 ... possible applications in the context of the ecological reserve. VU Smakhtin .... The required modifications have been made to the previously computerised and .... recharge reduction due to catchment changes, etc.). In other ...

  9. 461 TIME SERIES ANALYSES OF MEAN MONTHLY RAINFALL ...

    African Journals Online (AJOL)

    Osondu

    tests (trend, cycle, seasonal and decomposition analyses) using additive and multiplicative modeling approach. ... period under review. ... alone (including desertification and soil erosion) ... than one meter co-dominate (Davis 1982 p12).

  10. Impact of snowfall measurement deficiencies on quantification of precipitation and its trends over Northern Eurasia

    Directory of Open Access Journals (Sweden)

    P. Ya. Groisman

    2014-01-01

    Full Text Available Instead of «ground truth» precipitation, rain gauges at meteorological stations estimate a function of several variables. In addition to precipitation, these variables include temperature, wind, humidity, gauge type, state of the gauge exposure, and observational practices. Their impact and changes hamper our efforts to estimate precipitation changes alone. For example, wind-induced negative biases for snowfall measurements are higher than for other precipitation types and a redistribution of these types during regional warming can cause an artificial increase in measured precipitation. In such conditions, the only way to properly estimate actual climatic changes of precipitation would be a use of precipitation time series that are corrected for all known systematic biases. Methodology of such corrections has been developed and recently implemented for Northern Eurasia for the past 50+ years (up to 2010. With the focus on Russia, we assess differences that emerge when officially reported precipitation in the cold season is compared to corrected precipitation time series at the same network. It is shown that conclusions about trend patterns over the country are quite different when all sources of inhomogeneity of precipitation time series are removed and impact of all factors unrelated to the precipitation process are accounted for. In particular, we do not see statistically significant increases of the cold season precipitation over most of the Russian Federation and in Arctic Asia it significantly decreases.

  11. Stochastic precipitation generator with hidden state covariates

    Science.gov (United States)

    Kim, Yongku; Lee, GyuWon

    2017-08-01

    Time series of daily weather such as precipitation, minimum temperature and maximum temperature are commonly required for various fields. Stochastic weather generators constitute one of the techniques to produce synthetic daily weather. The recently introduced approach for stochastic weather generators is based on generalized linear modeling (GLM) with covariates to account for seasonality and teleconnections (e.g., with the El Niño). In general, stochastic weather generators tend to underestimate the observed interannual variance of seasonally aggregated variables. To reduce this overdispersion, we incorporated time series of seasonal dry/wet indicators in the GLM weather generator as covariates. These seasonal time series were local (or global) decodings obtained by a hidden Markov model of seasonal total precipitation and implemented in the weather generator. The proposed method is applied to time series of daily weather from Seoul, Korea and Pergamino, Argentina. This method provides a straightforward translation of the uncertainty of the seasonal forecast to the corresponding conditional daily weather statistics.

  12. CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS at PSD: Gridded Monthly Values. Monthly Values after 2006 are from the real time files (RT)

  13. Analysis of the Time Trends of Precipitation over Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Mourad Lazri

    2014-08-01

    Full Text Available Time trends of precipitation in the north of Algeria from meteorological radar are analysed. A probabilistic approach presented here proposes to study the evolution of the rainfall phenomenon in two distinct study areas, one located in sea and other located in ground. A decision criterion is established and based on radar reflectivity in order to classify the precipitation events located in both areas. At each radar observation, a state of precipitation is classified, either convective (heavy precipitation or stratiform (average precipitation both for the "sea" and for the "ground". In all, a time series of precipitation composed of three states; no raining, stratiform precipitation and convective precipitation, is obtained for each of the two areas. Thereby, we studied and characterized the behavior of precipitation in time by a Markov chain of order one with three states. Transition probabilities are calculated. The results show that rainfall is well described by a Markov chain of order one with three states. Indeed, the stationary probabilities, which are calculated by using the Markovian model, and the actual probabilities are almost identical.

  14. A feasibility study on precipitation regime classification by meteorological states

    Science.gov (United States)

    Hamada, A.; Takayabu, Y. N.

    2012-04-01

    Appropriate microphysical models of rainfall systems are essential for accurate precipitation retrievals from satellite measurements. For a better estimate of rainfall from the microwave imager satellites in Global Satellite Mapping of Precipitation (GSMaP), Takayabu (2008, GEWEX Newsletter; hereinafter T08) produced 3-monthly maps of dominant rainfall systems, utilizing TRMM Precipitation Radar (PR) and Lightning Imaging Sensor (LIS) data. It is worthwhile if we can classify different type of rainfall systems not from satellite rainfall data themselves but from the environmental meteorological states. In this feasibility study, precipitation regime classification over the oceans is performed by constructing a look-up-table (LUT) for estimating precipitation types in terms of local state of the atmosphere and ocean. This time, we chose four variables to construct the LUTs; sea surface temperature (SST), pressure vertical velocity at 500hPa (ω500), lower-tropospheric baroclinicity at 900hPa (dT900/dy), and lower-tropospheric stability (LTS), obtained from ERA-interim and OISST. The LUTs are trained with the precipitation types defined by T08. The four-dimensional probability density functions for each precipitation types were utilized to reconstruct precipitation types at each point. The constructed four-dimensional LUT is shown to have a reasonably good skill in estimation over the oceans. The possibility of detection (POD) is above 60% up to 90% for all seasons. The estimation skill is less dependent on months despite that the LUT was trained with only one month climatology, indicating the choice of these state variables is reasonable. The LUT can also describe interannual variations of precipitation regimes, e.g., those differences in El Niño and La Niña periods. The way of separation by selected environmental states is mostly meteorologically reasonable, although some representative variables have some room for improvements especially in the midlatitudes. We

  15. On temporal evolution of precipitation probability of the Yangtze River delta in the last 50 years

    Science.gov (United States)

    Feng, Guo-Lin; Dong, Wen-Jie; Li, Jing-Ping

    2004-09-01

    The monthly precipitation observational data of the Yangtze River delta are transformed into the temporal evolution of precipitation probability (PP) and its hierarchically distributive characters have been revealed in this paper. Research results show that precipitation of the Yangtze River delta displays the interannual and interdecadal characters and the periods are all significant at a confidence level of more than 0.05. The interdecadal is an important time scale, because it is on the one hand a disturbance of long period changes and on the other hand it is also the background for interannual change. The interdecadal and 3-7y oscillations have different motion laws in the data-based mechanism self-memory model (DAMSM). Meanwhile, this paper also provides a new train of thought for dynamic modelling. Because this method only involves a certain length of data series, it can be used in many fields, such as meteorology, hydrology, seismology and economy etc and thus has a bright perspective in practical applications.

  16. On temporal evolution of precipitation probability of the Yangtze River delta in the last 50 years

    Institute of Scientific and Technical Information of China (English)

    Feng Guo-Lin; Dong Wen-Jie; Li Jing-Ping

    2004-01-01

    The monthly precipitation observational data of the Yangtze River delta are transformed into the temporal evolution of precipitation probability (PP), and its hierarchically distributive characters have been revealed in this paper.Research results show that precipitation of the Yangtze River delta displays the interannual and interdecadal characters and the periods are all significant at a confidence level of more than 0.05. The interdecadM is an important time scale,because it is on the one hand a disturbance of long period changes, and on the other hand it is also the background for interannual change. The interdecadal and 3-7y oscillations have different motion laws in the data-based mechanism self-memory model (DAMSM). Meanwhile, this paper also provides a new train of thought for dynamic modelling.Because this method only involves a certain length of data series, it can be used in many fields, such as meteorology,hydrology, seismology, and economy etc, and thus has a bright perspective in practical applications.

  17. Bias Adjusted Precipitation Threat Scores

    Directory of Open Access Journals (Sweden)

    F. Mesinger

    2008-04-01

    Full Text Available Among the wide variety of performance measures available for the assessment of skill of deterministic precipitation forecasts, the equitable threat score (ETS might well be the one used most frequently. It is typically used in conjunction with the bias score. However, apart from its mathematical definition the meaning of the ETS is not clear. It has been pointed out (Mason, 1989; Hamill, 1999 that forecasts with a larger bias tend to have a higher ETS. Even so, the present author has not seen this having been accounted for in any of numerous papers that in recent years have used the ETS along with bias "as a measure of forecast accuracy".

    A method to adjust the threat score (TS or the ETS so as to arrive at their values that correspond to unit bias in order to show the model's or forecaster's accuracy in extit{placing} precipitation has been proposed earlier by the present author (Mesinger and Brill, the so-called dH/dF method. A serious deficiency however has since been noted with the dH/dF method in that the hypothetical function that it arrives at to interpolate or extrapolate the observed value of hits to unit bias can have values of hits greater than forecast when the forecast area tends to zero. Another method is proposed here based on the assumption that the increase in hits per unit increase in false alarms is proportional to the yet unhit area. This new method removes the deficiency of the dH/dF method. Examples of its performance for 12 months of forecasts by three NCEP operational models are given.

  18. Hourly Precipitation Data (HPD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly Precipitation Data (HPD) Publication is archived and available from the National Climatic Data Center (NCDC). This publication contains hourly precipitation...

  19. Hispanic Heritage Month

    Science.gov (United States)

    York, Sherry

    2004-01-01

    Hispanic heritage month is from September 15 to October 15. One problem that arises when grouping people into categories such as Hispanic or Latino is stereotyping, stereotypes can be promoted or used in this Hispanic month to promote a greater understanding of Latino cultures.

  20. Progress report, 24 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    The work performed during the past 12 months (months 13 – 24) of the project has included the conclusion of Task 1 – Fundamental Studies and Task 2 – Multimirror Cutting Head Design. Work on Task 3 – Compact Cutting Head Design, and Task 4 – Interface Design has been carried out and the tests...... of the multimirror cutting head have been started....

  1. Progress report, 36 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    The work performed during the past 12 months (months 13 – 24) of the project has included the conclusion of Task 1 – Fundamental Studies and Task 2 – Multimirror Cutting Head Design. Work on Task 3 – Compact Cutting Head Design, and Task 4 – Interface Design has been carried out and the tests...... of the multimirror cutting head have been started....

  2. Progress report, 36 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    The work performed during the past 12 months (months 13 – 24) of the project has included the conclusion of Task 1 – Fundamental Studies and Task 2 – Multimirror Cutting Head Design. Work on Task 3 – Compact Cutting Head Design, and Task 4 – Interface Design has been carried out and the tests of ...

  3. Progress report, 24 months

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    The work performed during the past 12 months (months 13 – 24) of the project has included the conclusion of Task 1 – Fundamental Studies and Task 2 – Multimirror Cutting Head Design. Work on Task 3 – Compact Cutting Head Design, and Task 4 – Interface Design has been carried out and the tests of ...

  4. Precipitation properties observed during CHUVA Field Campaign

    Science.gov (United States)

    Morales, C.; Machado, L. A.; Angelis, C. F.; Silva Dias, M. A. F.; Fisch, G.; Carvalho, I. C.; Biscaro, T.; Sakuragi, J.; Neves, J. R.; Anselmo, E. M.; Lacerda, M.

    2012-04-01

    CHUVA is a Brazilian research program that seeks to depict the main precipitating systems observed in Brazil as a support for the Global Precipitation Measurement (GPM) mission. CHUVA is conducting a series of field campaigns in the time frame of 2010-2013 to sample raining systems that vary from maritime to continental regime and in polluted and clean environments. For this study, we will present initially the drop size distribution (DSD) variability observed in the field experiments of Alcantara (March/2010), Fortaleza (April/2011), Belém (June/2011) and Vale do Paraiba (November-December/2011). Secondly, with the help of the mobile X-Band and MRR-2, we will show the DSD differences observed on warm and cold phase clouds, and convective and stratiform precipitation. Finally, by employing the vertical electrical field and lightning measurements together with the weather radar, we will present the main vertical precipitation features observed in thunderstorms and non- thunderstorms, in addition to the different raining systems observed during the four field campaigns.

  5. Recent changes in precipitation extremes in Romania

    Directory of Open Access Journals (Sweden)

    Adina-Eliza CROITORU

    2014-11-01

    Full Text Available Changes in daily extreme precipitations have been identified in many studies conducted at local, regional or global scales. In Romania, only little research on this issue has been done so far. The present study is focused on the analysis of the trends in daily extreme precipitations indices over a period of 53 years (1961-2013. Data sets of daily precipitation recorded in 34 weather stations were analyzed. Among them, three are located in the Carpathian Mountains area and four are located on the Black Sea Coast. The main goal was to find changes in extreme daily precipitation using a set of 13 indices adopted from the core indices developed by ETCCDMI with appropriate modifications to suit to the studied area. The series of the indices as well as their trends were generated using RClimDex software. The trends have been calculated using the linear mean square method. The findings are similar to those obtained at the global and European continental scales and the most noteworthy are: increasing trends dominate for the most of the indices, but only about 25% of them are statistically significant at α=0.05; decreasing trends are more specific to southern area of the country; decreasing trends of  R0.1, CDD and CWD dominate for the great majority of locations; the spatial distribution of the significant slopes in the area is extremely irregular.

  6. Time series prediction in agroecosystems

    Science.gov (United States)

    Cortina-Januchs, M. G.; Quintanilla-Dominguez, J.; Vega-Corona, A.; Andina, D.

    2012-04-01

    This work proposes a novel model to predict time series such as frost, precipitation, temperature, solar radiation, all of them important variables for the agriculture process. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms and sensor data fusion are used. The real time series are obtained from different sensors. The clustering algorithms find relationships between variables, clustering involves the task of dividing data sets, which assigns the same label to members who belong to the same group, so that each group is homogeneous and distinct from the others. Those relationships provide information to the ANN in order to obtain the time series prediction. The most important issue of ANN in time series prediction is generalization, which refers to their ability to produce reasonable predictions on data sets other than those used for the estimation of the model parameters.

  7. Extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China

    Directory of Open Access Journals (Sweden)

    W. Wang

    2007-07-01

    Full Text Available Extreme hydro-meteorological events have become the focus of more and more studies in the last decade. Due to the complexity of the spatial pattern of changes in precipitation processes, it is still hard to establish a clear view of how precipitation has changed and how it will change in the future. In the present study, changes in extreme precipitation and streamflow processes in the Dongjiang River Basin in southern China are investigated. It was shown that little change is observed in annual extreme precipitation in terms of various indices, but some significant changes are found in the precipitation processes on a monthly basis. The result indicates that when detecting climate changes, besides annual indices, seasonal variations in extreme events should be considered as well. Despite of little change in annual extreme precipitation series, significant changes are detected in several annual extreme flood flow and low-flow series, mainly at the stations along the main channel of Dongjiang River, which are affected significantly by the operation of several major reservoirs. The result highlights the importance of evaluating the impacts of human activities in assessing the changes of extreme streamflows. In addition, three non-parametric methods that are not-commonly used by hydro-meteorology community, i.e., Kolmogorov–Smirnov test, Levene's test and quantile test, are introduced and assessed by Monte Carlo simulation in the present study to test for changes in the distribution, variance and the shift of tails of different groups of dataset. Monte Carlo simulation result shows that, while all three methods work well for detecting changes in two groups of data with large data size (e.g., over 200 points in each group and big difference in distribution parameters (e.g., over 100% increase of scale parameter in Gamma distribution, none of them are powerful enough for small data sets (e.g., less than 100 points and small distribution

  8. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation model

  9. Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods

    Directory of Open Access Journals (Sweden)

    E. P. Maurer

    2008-03-01

    Full Text Available Downscaling of climate model data is essential to local and regional impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km2 per grid cell resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM. The two methods included are constructed analogues (CA and a bias correction and spatial downscaling (BCSD, both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce generally comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit limited skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.

  10. Vegetation response to upstream water yield in the Heihe river by time series analysis of MODIS data

    Directory of Open Access Journals (Sweden)

    L. Jia

    2010-07-01

    Full Text Available Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe basin. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remote sensing data were used to monitor the vegetation dynamic for a long time period. Due to cloud-contamination, atmospheric influence and different solar angles, however, the quality and consistence of time series of remote sensing data is degraded. In this research we used a Fourier Transform method – the Harmonic Analysis of Time Series (HANTS algorithm – to reconstruct cloud-free NDVI time series data from the Terra-MODIS dataset. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The relationship between the anomalies in vegetation growth, the local precipitation and upstream water yield were analyzed. The same approach is used to identify, remove and gap-filling cloud contaminated observations in the satellite data for each year in the dataset. The results showed that: the previous year total runoff had a significant relationship with the vegetation growth in Ejina Oasis and that anomalies in monthly runoff of the Heihe River influenced the phenology of vegetation in the entire oasis during drier years. The time of maximum green-up was uniform throughout the oasis during wetter years, but showed a clear S–N gradient (downstream during drier years.

  11. Spatiotemporal monthly rainfall reconstruction via artificial neural network – case study: south of Brazil

    Directory of Open Access Journals (Sweden)

    A. O. Cardoso

    2007-04-01

    Full Text Available Climatological records users, frequently, request time series for geographical locations where there is no observed meteorological attributes. Climatological conditions of the areas or points of interest have to be calculated interpolating observations in the time of neighboring stations and climate proxy. The aim of the present work is the application of reliable and robust procedures for monthly reconstruction of precipitation time series. Time series is a special case of symbolic regression and we can use Artificial Neural Network (ANN to explore the spatiotemporal dependence of meteorological attributes. The ANN seems to be an important tool for the propagation of the related weather information to provide practical solution of uncertainties associated with interpolation, capturing the spatiotemporal structure of the data. In practice, one determines the embedding dimension of the time series attractor (delay time that determine how data are processed and uses these numbers to define the network's architecture. Meteorological attributes can be accurately predicted by the ANN model architecture: designing, training, validation and testing; the best generalization of new data is obtained when the mapping represents the systematic aspects of the data, rather capturing the specific details of the particular training set. As illustration one takes monthly total rainfall series recorded in the period 1961–2005 in the Rio Grande do Sul – Brazil. This reliable and robust reconstruction method has good performance and in particular, they were able to capture the intrinsic dynamic of atmospheric activities. The regional rainfall has been related to high-frequency atmospheric phenomena, such as El Niño and La Niña events, and low frequency phenomena, such as the Pacific Decadal Oscillation.

  12. Uncertainty in drought monitoring by the Standardized Precipitation Index: the case study of the Abruzzo region (central Italy)

    Science.gov (United States)

    Vergni, L.; Di Lena, B.; Todisco, F.; Mannocchi, F.

    2017-04-01

    As shown by several authors, drought monitoring by the Standardized Precipitation Index (SPI) presents some uncertainties, mainly dependent on the choice of the probability distribution used to describe the cumulative precipitation and on the characteristics (e.g., length and variability) of the dataset. In this paper, the uncertainty related to SPI estimates has been quantified and analyzed with regards to the case study of the Abruzzo region (Central Italy), by using monthly precipitation recorded at 75 stations during the period 1951-2009. First, a set of distributions suitable to describe the cumulative precipitation at the 3-, 6-, and 12-month time scales was identified by using L-moments ratio diagrams. The goodness-of-fit was evaluated by applying the Kolmogorov-Smirnov test, and the Normality test on the derived SPI series. Then the confidence intervals of SPI have been calculated by applying a bootstrap procedure. The size of the confidence intervals has been considered as a measure of uncertainty, and its dependence on several factors such as the distribution type, the time scale, the record length, and the season has been examined. Results show that the distributions Pearson type III (PE3), Weibull (WEI), Generalized Normal (GNO), Generalized Extreme Value (GEV), and Gamma (GA2) are all suitable to describe the cumulative precipitation, with a slightly better performance of the PE3 and GNO distributions. As expected, the uncertainty increases as the record length and time scale decrease. The leading source of uncertainty is the record length while the effects due to seasonality and time scale are negligible. Two-parameter distributions make it possible to obtain confidence intervals of SPI (particularly for extreme values) narrower than those obtained by three-parameter distributions. Nevertheless, due to a poorer goodness of fit, two-parameter distributions can provide less reliable estimates of the precipitation probability. In any event, independently

  13. Uncertainty in drought monitoring by the Standardized Precipitation Index: the case study of the Abruzzo region (central Italy)

    Science.gov (United States)

    Vergni, L.; Di Lena, B.; Todisco, F.; Mannocchi, F.

    2015-12-01

    As shown by several authors, drought monitoring by the Standardized Precipitation Index (SPI) presents some uncertainties, mainly dependent on the choice of the probability distribution used to describe the cumulative precipitation and on the characteristics (e.g., length and variability) of the dataset. In this paper, the uncertainty related to SPI estimates has been quantified and analyzed with regards to the case study of the Abruzzo region (Central Italy), by using monthly precipitation recorded at 75 stations during the period 1951-2009. First, a set of distributions suitable to describe the cumulative precipitation at the 3-, 6-, and 12-month time scales was identified by using L-moments ratio diagrams. The goodness-of-fit was evaluated by applying the Kolmogorov-Smirnov test, and the Normality test on the derived SPI series. Then the confidence intervals of SPI have been calculated by applying a bootstrap procedure. The size of the confidence intervals has been considered as a measure of uncertainty, and its dependence on several factors such as the distribution type, the time scale, the record length, and the season has been examined. Results show that the distributions Pearson type III (PE3), Weibull (WEI), Generalized Normal (GNO), Generalized Extreme Value (GEV), and Gamma (GA2) are all suitable to describe the cumulative precipitation, with a slightly better performance of the PE3 and GNO distributions. As expected, the uncertainty increases as the record length and time scale decrease. The leading source of uncertainty is the record length while the effects due to seasonality and time scale are negligible. Two-parameter distributions make it possible to obtain confidence intervals of SPI (particularly for extreme values) narrower than those obtained by three-parameter distributions. Nevertheless, due to a poorer goodness of fit, two-parameter distributions can provide less reliable estimates of the precipitation probability. In any event, independently

  14. Precipitation and Solubility of Calcium Hydrogenurate Hexahydrate.

    Science.gov (United States)

    Babić-Ivančić, V; Füredi-Milhofer, H; Brničević, N; Marković, M

    1992-01-01

    Solid phases formed in the quaternary system: uric acid-calcium hydroxide -hydrochloric acid-water aged for 2 months at 310 K were studied to determine conditions for calcium hydrogenurate hexahydrate, Ca(C5H3N4O)2 · 6H2O precipitation. The precipitates were identified by chemical and thermogravimetric analyses, x-ray powder diffraction, infrared spectroscopy, light microscopy, and scanning electron microscopy. In the precipitation diagram the concentration region in which calcium hydrogenurate hexahydrate precipitated as a single solid phase was established. The solubility of calcium hydrogenurate hexahydrate was investigated in the pH range from 6.2 to 10.1 at different temperatures. The total soluble and ionic concentration of calcium (atomic absorption spectroscopy and Ca-selective electrode), total urate concentration (spectrophotometry), and pH were determined in equilibrated solutions. The data are presented in the form of tables and chemical potential diagrams. By using these data the thermodynamic solubility products of calcium hydrogenurate hexahydrate, Ks = a(Ca(2+)) · a(2)(C5H3N4O3(-)), were determined: [Formula: see text]The formation of calcium hydrogenurate hexahydrate crystals in urinary tract of patients with pathologically high concentrations of calcium and urates (hypercalciuria and hyperuricosiuria) is possible.

  15. Analysis of drought in the region of Abruzzo (Central Italy) by the Standardized Precipitation Index

    Science.gov (United States)

    Di Lena, B.; Vergni, L.; Antenucci, F.; Todisco, F.; Mannocchi, F.

    2014-01-01

    The paper presents a comprehensive analysis of drought phenomena in the Region of Abruzzo (Central Italy) using the Standardized Precipitation Index (SPI) computed at different time scales (3, 6, 12, 24 months). The study is based on monthly precipitation data collected from 1951 to 2009 at 69 climatic stations uniformly distributed over the region. According to the trend analysis, most stations are characterized by increments in both drought severity and variability, particularly at the longer time scales. A principal component analysis applied to SPI time series enabled to identify two main patterns: the first more correlated to the coastal areas, the second more correlated to the inland, mountainous areas. However, the spatial patterns become less defined as the time scale increases, making more uncertain the definition of homogenous areas to be used in drought management plans. In most cases, the identified drought patterns have similar negative overall tendencies, but different trend directions in some sub-periods. In particular, the first drought pattern is clearly characterized by a trend reversal (from decreasing to increasing) during the last decade. This temporal evolution, consistent with that observed by large-scale analyses in the corresponding (or near) grid points, was not detected for the second pattern, which is probably influenced by local topographic and/or orographic factors. The results confirm the complexity of drought phenomenon in a typical Mediterranean region and the necessity of high-resolution datasets to capture its temporal and spatial variability.

  16. TARP Monthly Housing Scorecard

    Data.gov (United States)

    Department of the Treasury — Treasury and the U.S. Department of Housing and Urban Development (HUD) jointly produce a Monthly Housing Scorecard on the health of the nation’s housing market. The...

  17. Lightship Monthly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Weather Observations (Monthly Form 1001) from lightship stations in the United States. Please see the 'Surface Weather Observations (1001)' library for more...

  18. Oceanographic Monthly Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Monthly Summary contains sea surface temperature (SST) analyses on both regional and ocean basin scales for the Atlantic, Pacific, and Indian Oceans....

  19. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  20. [Seasonality of rotavirus infection in Venezuela: relationship between monthly rotavirus incidence and rainfall rates].

    Science.gov (United States)

    González Chávez, Rosabel

    2015-09-01

    In general, it has been reported that rotavirus infection was detected year round in tropical countries. However, studies in Venezuela and Brazil suggest a seasonal behavior of the infection. On the other hand, some studies link infection with climatic variables such as rainfall. This study analyzes the pattern of behavior of the rotavirus infection in Carabobo-Venezuela (2001-2005), associates the seasonality of the infection with rainfall, and according to the seasonal pattern, estimates the age of greatest risk for infection. The analysis of the rotavirus temporal series and accumulated precipitation was performed with the software SPSS. The infection showed two periods: high incidence (November-April) and low incidence (May-October). Accumulated precipitation presents an opposite behavior. The highest frequency of events (73.8% 573/779) for those born in the period with a low incidence of the virus was recorded at an earlier age (mean age 6.5 +/- 2.0 months) when compared with those born in the station of high incidence (63.5% 568/870, mean age 11.7 +/- 2.2 months). Seasonality of the infection and the inverse relationship between virus incidence and rainfall was demonstrated. In addition, it was found that the period of birth determines the age and risk of infection. This information generated during the preaccine period will be helpful to measure the impact of the vaccine against the rotavirus.

  1. Review of calcium carbonate polymorph precipitation in spring systems

    Science.gov (United States)

    Jones, Brian

    2017-05-01

    Many spring deposits throughout the world are characterized by spectacular deposits of calcium carbonate that are formed of various combinations of aragonite and calcite, and in very rare cases vaterite. The factors that control the precipitation of the aragonite and calcite have been the subject of considerable debate that has been based on natural precipitates and information gained from numerous laboratory experiments. Synthesis of this information indicates that there is probably no single universal factor that controls calcite and aragonite precipitation in all springs. Instead, the reason for aragonite as opposed to calcite precipitation should be ascertained by considering the following ordered series of possibilities for each system. First, aragonite, commonly with calcite as a co-precipitate, will form from spring water that has a high CO2 content and rapid CO2 degassing, irrespective of the Mg:Ca ratio and scale of precipitation. Second, aragonite can be precipitated from waters that have low levels of CO2 degassing provided that the Mg:Ca ratio is high enough to inhibit calcite precipitation. Third, the presence of biofilms may lead to the simultaneous precipitation of aragonite and calcite (irrespective of CO2 degassing or Mg:Ca ratio) either within the different microdomains that develop in the biofilm or because of diurnal changes in various geochemical parameters associated with the biofilm. Although the precipitation of calcite and aragonite has commonly been linked directly to water temperature, there is no clear evidence for this proposition. It is possible, however, that temperature may be influencing another parameter that plays a more direct role in the precipitation of these CaCO3 polymorphs. Despite the advances that have been made, the factors that ultimately control calcite and aragonite are still open to debate because this long-standing problem has still not been fully resolved.

  2. Irrigation enhances precipitation at the mountains downwind

    Directory of Open Access Journals (Sweden)

    J. Jódar

    2010-05-01

    Full Text Available Atmospheric circulation models predict an irrigation-rainfall feedback. However, actual field evidences are very weak. We present strong field evidence about an increase in rainfall at the mountains located downwind of irrigated zones. We chose two regions, located in semiarid southern Spain, where irrigation started at a well defined date, and we analyzed rainfall statistics before and after the beginning of irrigation. Analyzed statistics include the variation of (1 mean rainfall Δ P, (2 ratio of monthly precipitation to annual precipitation Δ r, and (3 number of months with minimum rainfall episodes Δ Pmin after a transition period from unirrigated to irrigated conditions. All of them show statistically significant increases. Δ P and Δ r show larger and more statistically significant variations in June and July. Their variation is proportional to the mean annual water volume applied in the neighboring upwind irrigation lands. Variations in Δ Pmin are statistically significant in the whole summer. That is, the number of months with some rain displays a relevant increase after irrigation. However, increase in rainfall while statistically significant is distributed over a broad region, so that it is of little relevance from a water resources perspective. The joint increment in Δ P and Δ Pmin after the irrigation transition period denotes a net increase in the number of months having a minimum cumulated precipitation in summer.

  3. Spatial and temporal variability of precipitation and drought in Portugal

    Directory of Open Access Journals (Sweden)

    D. S. Martins

    2012-05-01

    Full Text Available The spatial variability of precipitation and drought are investigated for Portugal using monthly precipitation from 74 stations and minimum and maximum temperature from 27 stations, covering the common period of 1941–2006. Seasonal precipitation and the corresponding percentages in the year, as well as the precipitation concentration index (PCI, was computed for all 74 stations and then used as an input matrix for an R-mode principal component analysis to identify the precipitation patterns. The standardized precipitation index at 3 and 12 month time scales were computed for all stations, whereas the Palmer Drought Severity Index (PDSI and the modified PDSI for Mediterranean conditions (MedPDSI were computed for the stations with temperature data. The spatial patterns of drought over Portugal were identified by applying the S-mode principal component analysis coupled with varimax rotation to the drought indices matrices. The result revealed two distinct sub-regions in the country relative to both precipitation regimes and drought variability. The analysis of time variability of the PC scores of all drought indices allowed verifying that there is no linear trend indicating drought aggravation or decrease. In addition, the analysis shows that results for SPI-3, SPI-12, PDSI and MedPDSI are coherent among them.

  4. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80...... reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined...... with the stable carbon isotope data in atmospheric transport models....

  5. Exposures series

    OpenAIRE

    Stimson, Blake

    2011-01-01

    Reaktion Books’ Exposures series, edited by Peter Hamilton and Mark Haworth-Booth, is comprised of 13 volumes and counting, each less than 200 pages with 80 high-quality illustrations in color and black and white. Currently available titles include Photography and Australia, Photography and Spirit, Photography and Cinema, Photography and Literature, Photography and Flight, Photography and Egypt, Photography and Science, Photography and Africa, Photography and Italy, Photography and the USA, P...

  6. Precipitation change in Southern Italy linked to global scale oscillation indexes

    Science.gov (United States)

    Caloiero, T.; Coscarelli, R.; Ferrari, E.; Mancini, M.

    2009-09-01

    linked high values of NAO index to low annual and seasonal precipitation (drought) and, on the contrary, low values to intense rainfalls and floods. For this reason, knowing the changes in monthly rainfalls, due to evolution of a planetary-scale oscillation, is useful for farmers and water management in a specific area. This study presents an investigation on the rainfall trends in Southern Italy (Campania, Apulia, Basilicata, Calabria and Sicily) using a database of about 70 rain gauges with more than 70 years of observation. Statistical analyses for trend detection were performed on rainfall monthly records through the Mann-Kendall non-parametric test and a least-square linear regression. These analyses are made for the entire year and also on seasonal scale. The normalized rainfalls and some global climatic indexes were jointly analysed in order to find their possible correlations. Results obtained for trend analyses of rainfall series show statistically significant negative trends for annual and winter aggregations in the most part of the series. The correlation analyses between the adopted planetary-scale indexes and the precipitation anomalies demonstrate that the indexes influence to some extent precipitation over Southern Italy, though in different way. The correlation coefficients between planetary-scale indexes and rainfalls appear more significant for winter precipitation.

  7. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2017-03-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  8. Previsão da temperatura média mensal de Uberlândia, MG, com modelos de séries temporais Forecast of monthly mean temperatures in Uberlândia, Minas Gerais, Brazil using time series models

    Directory of Open Access Journals (Sweden)

    Maria I. S. Silva

    2008-10-01

    Full Text Available Modelos de séries temporais têm sido amplamente usados no estudo de variáveis climatológicas, como temperatura e precipitação. Diversos são os objetivos traçados neste trabalho a fim de se analisar a série de temperatura média mensal da cidade de Uberlândia, MG, descrevendo seus componentes, e fazer previsões para períodos subseqüentes através de modelos ajustados para a série. A análise permitiu identificar, na série, a presença dos componentes, tendência e sazonalidade. Modelos do tipo SARIMA foram ajustados e, por meio dos critérios AIC (Akaike Information Criterion, BIC (Bayesian Information Criterion e MSE (Mean Square Error foi selecionado o modelo SARIMA (3,1,0(0,1,1 para fins de previsão.Time series models have been used for climatological variables such as temperature and rainfall. In this paper, time series of monthly mean temperatures for the municipality of Uberlândia, Minas Gerais, were analyzed describing their components and making forecasts using the SARIMA models. The analysis showed trend and seasonality components. The SARIMA model was adjusted by AIC (Akaike Information Criterion, BIC (Bayesian Information Criterion and MSE (Mean Square Error criterion. The results showed that the SARIMA (3,1,0(0,1,1 was a good model for forecasting.

  9. Petroleum supply monthly, July 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-29

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: Petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

  10. Petroleum supply monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This publication the Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report, (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data presented are divided into Summary Statistics and Detailed Statistics.

  11. Petroleum supply monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-26

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  12. Petroleum supply monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This publication the Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report, (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data presented are divided into Summary Statistics and Detailed Statistics.

  13. Precipitation regime classification for the Mojave Desert: Implications for Fire Occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Tagestad, Jerry D.; Brooks, Matthew L.; Cullinan, Valerie I.; Downs, Janelle L.; McKinley, Randy

    2016-01-05

    Mojave Desert ecosystem processes are dependent upon the amount and seasonality of precipitation. Multi-decadal periods of drought or above-average rainfall affect landscape vegetation condition, biomass and susceptibility to fire. The seasonality of precipitation events can also affect the likelihood of lightning, a key ignition source for fires. To develop an understanding of precipitation regimes and fire patterns we used monthly average precipitation data and GIS data representing burned areas from 1971-2010. We applied a K-means cluster analysis to the monthly precipitation data identifying three distinct precipitation seasons; winter (October – March), spring (April-June) and summer (July-September) and four discrete precipitation regimes within the Mojave ecoregion.

  14. Nonparametric temporal downscaling with event-based population generating algorithm for RCM daily precipitation to hourly: Model development and performance evaluation

    Science.gov (United States)

    Lee, Taesam; Park, Taewoong

    2017-04-01

    It is critical to downscale temporally coarse GCM or RCM outputs (e.g., monthly or daily) to fine time scales, such as sub-daily or hourly. Recently, a temporal downscaling model employing a nonparametric framework (NTD) with k-nearest resampling and a genetic algorithm has been developed to preserve key statistics as well as the diurnal cycle. However, this model's usage can be limited in estimating precipitation for design storms or floods because the key statistics of annual maximum precipitation (AMP), especially for longer hourly durations, present a systematic bias that cannot be preserved due to the discontinuity of multiday consecutive precipitation events in the downscaling procedure. In the current study, we develop an approach to downscale a consecutive daily precipitation at once focusing on the reproduction of AMP totals for different durations instead of day-by-day downscaling. The proposed model has been verified with the precipitation datasets for the 60 stations across South Korea over the period 1979-2005. Additionally, two validation studies were performed with the recent datasets of 2006-2014 and nearest neighbor stations. The verification and the two validation tests conclude that the population-based NTD (PNTD) model proposed in the current study is superior to the existing NTD model in preserving the key statistics of the observed AMP series and suitable for downscaling future climate scenarios.

  15. Responses of Soil CO2 Emissions to Extreme Precipitation Regimes: a Simulation on Loess Soil in Semi-arid Regions

    Science.gov (United States)

    Wang, R.; Zhao, M.; Hu, Y.; Guo, S.

    2016-12-01

    Responses of soil CO2 emission to natural precipitation play an essential role in regulating regional C cycling. With more erratic precipitation regimes, mostly likely of more frequent heavy rainstorms, projected into the future, extreme precipitation would potentially affect local soil moisture, plant growth, microbial communities, and further soil CO2 emissions. However, responses of soil CO2 emissions to extreme precipitation have not yet been systematically investigated. Such performances could be of particular importance for rainfed arable soil in semi-arid regions where soil microbial respiration stress is highly sensitive to temporal distribution of natural precipitation.In this study, a simulated experiment was conducted on bare loess soil from the semi-arid Chinese Loess Plateau. Three precipitation regimes with total precipitation amounts of 150 mm, 300 mm and 600 mm were carried out to simulate the extremely dry, business as usual, and extremely wet summer. The three regimes were individually materialized by wetting soils in a series of sub-events (10 mm or 150 mm). Co2 emissions from surface soil were continuously measured in-situ for one month. The results show that: 1) Evident CO2 emission pulses were observed immediately after applying sub-events, and cumulative CO2 emissions from events of total amount of 600 mm were greater than that from 150 mm. 3) In particular, for the same total amount of 600 mm, wetting regimes by applying four times of 150 mm sub-events resulted in 20% less CO2 emissions than by applying 60 times of 10 mm sub-events. This is mostly because its harsh 150 mm storms introduced more over-wet soil microbial respiration stress days (moisture > 28%). As opposed, for the same total amount of 150 mm, CO2 emissions from wetting regimes by applying 15 times of 10 mm sub-events were 22% lower than by wetting at once with 150 mm water, probably because its deficiency of soil moisture resulted in more over-dry soil microbial respiration

  16. Analysis of precipitation characteristics of South and North China based on the power-law tail exponents

    Institute of Scientific and Technical Information of China (English)

    Feng Guo-Lin; Gong Zhi-Qiang; Zhi Rong; Zhang Da-Quan

    2008-01-01

    Precipitation sequence is a typical nonlinear and chaotic observational series, and studies on precipitation forecasts are restricted to the use of traditional linear statistical methods, especially when analysing the regional characteristics of precipitation. In the context of 20 stations' daily precipitation series (from 1956 to 2000) in South China (SC) and North China (NC), we divide each precipitation series into many self-stationary segments by using the heuristic segmentation algorithm (briefly BG algorithm). For each station's precipitation series, we calculate the exponent of power-law tail (EPT) of the cumulative probability distribution of segments with a length larger than l for precipitation and temperature series. Our results show that the power-law decay of the cumulative probability distribution of stationary segments might be a common attribution for precipitation and other nonstationary time series; the EPT somewhat indicates the precipitation duration and its spatial distribution that might be different from area to area. The EPT in NC is larger than in SC; Meanwhile, EPT might be another effective way to study the abrupt changes in nonlinear and nonstationary time series.

  17. Impacts of Urban Development on Precipitation in the Tropical Maritime Climate of Puerto Rico

    Directory of Open Access Journals (Sweden)

    Ángel Torres-Valcárcel

    2014-04-01

    Full Text Available Water is critical for sustaining natural and managed ecosystems, and precipitation is a key component in the water cycle. To understand controls on long-term changes in precipitation for scientific and environmental management applications it is necessary to examine whether local land use and land cover change (LULCC has played a significant role in changing historical precipitation patterns and trends. For the small tropical island of Puerto Rico, where maritime climate is dominant, we used long-term precipitation and land use and land cover data to assess whether there were any detectable impacts of LULCC on monthly and yearly precipitation patterns and trends over the past century. Particular focus was given to detecting impacts from the urban landscape on mesoscale climates across Puerto Rico. We found no statistical evidence for significant differences between average monthly precipitation in urban and non-urban areas directly from surface stations, but, after subdividing by Holdridge Ecological Life Zones (HELZs in a GIS, there were statistically significant differences (α = 0.05 in yearly average total precipitation between urban and non-urban areas in most HELZs. Precipitation in Puerto Rico has been decreasing over the past century as a result of a decrease in precipitation during periods (months or years of low rain. However, precipitation trends at particular stations contradict synoptic-scale long-term trends, which suggests that local land use/land cover effects are driving precipitation variability at local scales.

  18. The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation

    Science.gov (United States)

    Norris, Jesse; Carvalho, Leila M. V.; Jones, Charles; Cannon, Forest; Bookhagen, Bodo; Palazzi, Elisa; Tahir, Adnan Ahmad

    2017-09-01

    The Weather Research and Forecasting (WRF) model is used to simulate the spatiotemporal distribution of precipitation over central Asia over the year April 2005 through March 2006. Experiments are performed at 6.7 km horizontal grid spacing, with an emphasis on winter and summer precipitation over the Himalaya. The model and the Tropical Rainfall Measuring Mission show a similar inter-seasonal cycle of precipitation, from extratropical cyclones to monsoon precipitation, with agreement also in the diurnal cycle of monsoon precipitation. In winter months, WRF compares better in timeseries of daily precipitation to stations below than above 3-km elevation, likely due to inferior measurement of snow than rain by the stations, highlighting the need for reliable snowfall measurements at high elevations in winter. In summer months, the nocturnal precipitation cycle in the foothills and valleys of the Himalaya is captured by this 6.7-km WRF simulation, while coarser simulations with convective parameterization show near zero nocturnal precipitation. In winter months, higher resolution is less important, serving only to slightly increase precipitation magnitudes due to steeper slopes. However, even in the 6.7-km simulation, afternoon precipitation is overestimated at high elevations, which can be reduced by even higher-resolution (2.2-km) simulations. These results indicate that WRF provides skillful simulations of precipitation relevant for studies of water resources over the complex terrain in the Himalaya.

  19. Stochastic daily precipitation model with a heavy-tailed component

    Science.gov (United States)

    Neykov, N. M.; Neytchev, P. N.; Zucchini, W.

    2014-09-01

    Stochastic daily precipitation models are commonly used to generate scenarios of climate variability or change on a daily timescale. The standard models consist of two components describing the occurrence and intensity series, respectively. Binary logistic regression is used to fit the occurrence data, and the intensity series is modeled using a continuous-valued right-skewed distribution, such as gamma, Weibull or lognormal. The precipitation series is then modeled using the joint density, and standard software for generalized linear models can be used to perform the computations. A drawback of these precipitation models is that they do not produce a sufficiently heavy upper tail for the distribution of daily precipitation amounts; they tend to underestimate the frequency of large storms. In this study, we adapted the approach of Furrer and Katz (2008) based on hybrid distributions in order to correct for this shortcoming. In particular, we applied hybrid gamma-generalized Pareto (GP) and hybrid Weibull-GP distributions to develop a stochastic precipitation model for daily rainfall at Ihtiman in western Bulgaria. We report the results of simulations designed to compare the models based on the hybrid distributions and those based on the standard distributions. Some potential difficulties are outlined.

  20. Natural gas monthly, November 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

  1. A global satellite-assisted precipitation climatology

    Science.gov (United States)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  2. A global satellite assisted precipitation climatology

    Directory of Open Access Journals (Sweden)

    C. Funk

    2015-05-01

    Full Text Available Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05° global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology

  3. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  4. Petroleum supply monthly, April 1990

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-06-26

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the Petroleum Supply Monthly describe (PSM) the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply.'' Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: (1) the Summary Statistics and (2) the Detailed Statistics.

  5. Natural gas monthly, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This issue of the Natural Gas Monthly (NGM) presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through February 1998 for many data series, and through November 1997 for most natural gas prices. Highlights of the natural gas data contained in this issue are: Preliminary estimates for January and February 1998 show that dry natural gas production, net imports, and consumption are all within 1 percent of their levels in 1997. Warmer-than-normal weather in recent months has resulted in lower consumption of natural gas by the residential sector and lower net withdrawals of gas from under round storage facilities compared with a year ago. This has resulted in an estimate of the amount of working gas in storage at the end of February 1998 that is 18 percent higher than in February 1997. The national average natural gas wellhead price is estimated to be $3.05 per thousand cubic feet in November 1997, 7 percent higher than in October. The cumulative average wellhead price for January through November 1997 is estimated to be $2.42 per thousand cubic feet, 17 percent above that of the same period in 1996. This price increase is far less than 36-percent rise that occurred between 1995 and 1996. 6 figs., 26 tabs.

  6. Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere

    Science.gov (United States)

    Damiani, Alessandro; Funke, Bernd; Santee, Michelle L.; Cordero, Raul R.; Watanabe, Shingo

    2016-04-01

    Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis.

  7. County-Level Climate Uncertainty for Risk Assessments: Volume 8 Appendix G - Historical Precipitation.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  8. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  9. Precipitation-fire linkages in Indonesia (1997-2015)

    Science.gov (United States)

    Fanin, Thierry; van der Werf, Guido R.

    2017-09-01

    Over the past decades, fires have burned annually in Indonesia, yet the strength of the fire season is for a large part modulated by the El Niño Southern Oscillation (ENSO). The two most recent very strong El Niño years were 2015 and 1997. Both years involved high incidences of fire in Indonesia. At present, there is no consistent satellite data stream spanning the full 19-year record, thereby complicating a comparison between these two fire seasons. We have investigated how various fire and precipitation datasets can be merged to better compare the fire dynamics in 1997 and 2015 as well as in intermediary years. We combined nighttime active fire detections from the Along Track Scanning Radiometer (ATSR) World Fire Atlas (WFA) available from 1997 until 2012 and the nighttime subset of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor from 2001 until now. For the overlapping period, MODIS detected about 4 times more fires than ATSR, but this ratio varied spatially. Although the reasons behind this spatial variability remain unclear, the coefficient of determination for the overlapping period was high (R2 = 0. 97, based on monthly data) and allowed for a consistent time series. We then constructed a rainfall time series based on the Global Precipitation Climatology Project (GPCP, 1997-2015) and the Tropical Rainfall Measurement Mission Project (TRMM, 1998-2015). Relations between antecedent rainfall and fire activity were not uniform in Indonesia. In southern Sumatra and Kalimantan, we found that 120 days of rainfall accumulation had the highest coefficient of determination with annual fire intensity. In northern Sumatra, this period was only 30 days. Thresholds of 200 and 305 mm average rainfall accumulation before each active fire were identified to generate a high-incidence fire year in southern Sumatra and southern Kalimantan, respectively. The number of active fires detected in 1997 was 2.2 times higher than in 2015. Assuming the ratio between

  10. Evaluation of extreme precipitation estimates from TRMM in Angola

    Science.gov (United States)

    Pombo, Sandra; de Oliveira, Rodrigo Proença

    2015-04-01

    In situ ground observation measurement of precipitation is difficult in vast and sparsely populated areas, with poor road networks. This paper examines the use of remote sensors installed in satellites and evaluates the accuracy of TRMM 3B42 annual maximum daily precipitation estimates in Angola, in West Africa, a region where ground monitoring networks are generally. TRMM 3B42 estimates of annual maximum daily precipitation are compared to ground observation data from 159 locations. As a direct comparison between the two datasets for a common specific period and sites is not possible, a statistical approach was adopted to test the hypothesis that the TRMM 3B42 estimates and the ground monitoring records exhibit similar statistical characteristics. The study shows that the annual maximum daily precipitation estimates obtained from TRMM 3B42 slightly underestimate the quantiles obtained from the in situ observations. The use of remote sensing products to estimate extreme precipitation values for engineering design purposes is however promising. A maximum daily precipitation map for a return period of 20 years was computed and in the future, as the length of the remote sensing data series increases, it may be possible to estimate annual maximum daily precipitation estimates exclusively from these datasets for larger return periods. The paper also presents maps of the PdT/PDT ratios, where PdT is the annual maximum precipitation for a duration d and a return period of T years, and PDT is the annual maximum daily precipitation for a return period of T years. In conjunction with these maps it is possible to estimate the maximum precipitation for durations between 3 h and 5 days.

  11. Long Lead-Time Forecasting of Snowpack and Precipitation in the Upper Snake River Basin using Pacific Oceanic-Atmospheric Variability

    Science.gov (United States)

    Anderson, S.; Tootle, G.; Parkinson, S.; Holbrook, P.; Blestrud, D.

    2012-12-01

    Water managers and planners in the western United States are challenged with managing resources for various uses, including hydropower. Hydropower is especially important throughout the Upper Snake River Basin, where a series of hydropower projects provide a low cost renewable energy source to the region. These hydropower projects include several dams that are managed by Idaho Power Company (IPC). Planners and managers rely heavily on forecasts of snowpack and precipitation to plan for hydropower availability and the need for other generation sources. There is a pressing need for improved snowpack and precipitation forecast models in the Upper Snake River Basin. This research investigates the ability of Pacific oceanic-atmospheric data and climatic variables to provide skillful long lead-time (three to nine months) forecasts of snowpack and precipitation, and examines the benefits of segregating the warm and cold phases of the Pacific Decadal Oscillation (PDO) to reduce the temperature variability within the target dataset. Singular value decomposition (SVD) was used to identify regions of Pacific Ocean sea surface temperatures (SST) and 500mbar geopotential heights (Z500) for various lead times (three, six, and nine months) that were teleconnected with snowpack and precipitation stations in Upper Snake River Basin headwaters. The identified Pacific Ocean SST and Z500 regions were used to create indices that became predictors in a non-parametric forecasting model. The majority of forecasts resulted in positive statistical skill, which indicated an improvement of the forecast over the climatology forecast (no-skill forecast). The results from the forecasts models indicated that derived indices from the SVD analysis resulted in improved forecast skill when compared to forecasts using established climate indices. Segregation of the cold phase PDO years resulted in the identification of different regions in the Pacific Ocean and vastly improved skill for the nine month

  12. Monthly energy review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document presents an overview of the Energy Information Administration`s (EIA) recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors.

  13. Photos of the month

    CERN Multimedia

    Claudia Marcelloni de Oliveira

    Congratulations to Adele Rimoldi, ATLAS physicist from Pavia, who ran her first marathon in New York last month. Adele completed the 42.2 km in a time of 4:49:19. She sure makes it look easy!!! The ATLAS pixel service quarter panel in SR1

  14. Monthly Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-28

    This publication presents an overview of the Energy information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief ``energy plugs`` (reviews of EIA publications) are included, as well.

  15. Medical Surveillance Monthly Report

    Science.gov (United States)

    2016-04-01

    3,215 (80) 469 (64) Poisoning, drug 3,574 (99) 2,197 (88) 2,585 (26) Other burns 389 (125) 154 (125) 36 (115) Other superfi cial injury 303 (128...Alcohol and drug abuse and dependence. In: Textbook of Military Medicine series: Military psychiatry: preparing in peace for war. Offi ce of the...Encounter for antineoplastic chemotherapy and immunotherapy 49 12.7 Encounter for other orthopedic aftercare 39 10.1 Aftercare following joint replacement

  16. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    Assimilating precipitation observations by modifying the moisture and sometimes temperature profiles has been shown successful in forcing the model precipitation to be close to the observed precipitation, but only while the assimilation is taking place. After the forecast start, the model tends to "forget" the assimilation changes and lose their extra skill after few forecast hours. This suggests that this approach is not an efficient way to modify the potential vorticity field, since this is the variable that the model would remember. In this study, the ensemble Kalman filter (EnKF) method is used to effectively change the potential vorticity field by allowing ensemble members with better precipitation to receive higher weights. In addition to using an EnKF, two other changes in the precipitation assimilation process are proposed to solve the problems related to the highly non-Gaussian nature of the precipitation variable: a) transform precipitation into a Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation at the location where some ensemble members have positive precipitation. The idea is first tested by the observing system simulation experiments (OSSEs) using SPEEDY, a simplified but realistic general circulation model. When the global precipitation is assimilated in addition to conventional rawinsonde observations, both the analyses and the medium range forecasts are significantly improved as compared to only having rawinsonde observations. The improvement is much reduced when only modifying the moisture field with the same approach, which shows the importance of the error covariance between precipitation and all other model variables. The effect of precipitation assimilation is larger in the Southern Hemisphere than that in the Northern Hemisphere because the Northern Hemisphere analyses are already accurate as a result of denser rawinsonde stations. Assimilation of precipitation using a more comprehensive

  17. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  18. 鄱阳湖干旱多尺度特征及其与月均水位的相关性%Multi-scale characteristics of drought of Poyang Lake and its association to monthly average water level

    Institute of Scientific and Technical Information of China (English)

    张启旺; 张吉; 周涛

    2016-01-01

    以鄱阳湖13个气象站1957~2013年的逐月降水量、平均气温、各站点纬度和同期水位站逐月平均水位为实验数据,分别计算1、3、6、12、24、48个月尺度下标准降水指数( SPI)和标准降水蒸散指数( SPEI)时间序列,并利用Morlet小波分析理论,分析了该序列多时间尺度变化特征。基于Mann-Kendall检验,分析了鄱阳湖气象干旱趋势特征;利用Spearman秩相关系数,研究了不同时间尺度SPI和SPEI序列与月平均水位的相关关系。研究表明,鄱阳湖流域SPI和SPEI序列存在约68个月变化的主周期,两个主要特征时间尺度变化的强分布;气象干旱与湖水位的相关关系随时间尺度的增大而减弱。%The different 1-month, 3-month, 6-month, 12-month, 24-month and 48-month standardized precipitation index ( SPI) and Standardized Precipitation Evapotranspiration Index ( SPEI) time series are calculated based on the monthly precipitation, mean temperature and respective latitudes of 13 meteorological gauging stations from 1957 to 2013 and the simulta-neous monthly mean water level data in Poyang lake;the multi-scale features for these two time series are analyzed based on the wavelet theory with the Morlet function. The trend of meteorological drought of Poyang Lake is tested by the Mann -Kendall method. The correlation between the different scales of SPI and SPEI time series and the mean monthly water level is analyzed by Spearman coefficient. The results show that the SPI and SPEI time series have a cycle of 68-month period and two strong distri-butions with varied temporal scale. The relationship of meteorological drought of Poyang Lake and the water level decreases with the increase of time scale.

  19. Validation of the EGSIEM combined monthly GRACE gravity fields

    Science.gov (United States)

    Li, Zhao; van Dam, Tonie; Chen, Qiang; Weigelt, Matthias; Güntner, Andreas; Jäggi, Adrian; Meyer, Ulrich; Jean, Yoomin; Altamimi, Zuheir; Rebischung, Paul

    2016-04-01

    Observations indicate that global warming is affecting the water cycle. Here in Europe predictions are for more frequent high precipitation events, wetter winters, and longer and dryer summers. The consequences of these changes include the decreasing availability of fresh water resources in some regions as well as flooding and erosion of coastal and low-lying areas in other regions. These weather related effects impose heavy costs on society and the economy. We cannot stop the immediate effects global warming on the water cycle. But there may be measures that we can take to mitigate the costs to society. The Horizon2020 supported project, European Gravity Service for Improved Emergency Management (EGSIEM), will add value to EO observations of variations in the Earth's gravity field. In particular, the EGSIEM project will interpret the observations of gravity field changes in terms of changes in continental water storage. The project team will develop tools to alert the public water storage conditions could indicate the onset of regional flooding or drought. As part of the EGSIEM project, a combined GRACE gravity product is generated, using various monthly GRACE solutions from associated processing centers (ACs). Since each AC follows a set of common processing standards but applies its own independent analysis method, the quality, robustness, and reliability of the monthly combined gravity fields should be significantly improved as compared to any individual solution. In this study, we present detailed and updated comparisons of the combined EGSIEM GRACE gravity product with GPS position time series, hydrological models, and existing GRACE gravity fields. The GPS residuals are latest REPRO2 station position residuals, obtained by rigorously stacking the IGS Repro 2 , daily solutions, estimating, and then restoring the annual and semi-annual signals.

  20. Your Child's Development: 9 Months

    Science.gov (United States)

    ... For Parents MORE ON THIS TOPIC Your Baby's Growth: 9 Months Your Baby's Hearing, Vision, and Other Senses: 9 Months Your Child's Checkup: 9 Months Medical Care and Your 8- to 12-Month-Old Feeding Your 8- to 12-Month-Old Sleep and Your 8- to 12-Month-Old Contact ...

  1. Spatio-temporal patterns of precipitation in Serbia

    Science.gov (United States)

    Gocic, Milan; Trajkovic, Slavisa

    2014-08-01

    The monthly precipitation data from 29 synoptic stations for the period 1946-2012 were analyzed using a number of different multivariate statistical analysis methods to investigate the spatial variability and temporal patterns of precipitation across Serbia. R-mode principal component analysis was used to study the spatial variability of the precipitation. Three distinct sub-regions were identified by applying the agglomerative hierarchical cluster analysis to the two component scores: C1 includes the north and the northeast part of Serbia, while C2 includes the western part of Central Serbia and southwestern part of Serbia and C3 includes central, east, south and southeast part of Serbia. The analysis of the identified sub-regions indicated that the monthly and seasonal precipitation in sub-region C2 had the values above average, while C1 and C3 had the precipitation values under average. The analysis of the linear trend of the mean annual precipitation showed an increasing trend for the stations located in Serbia and three sub-regions. From the result of this analysis, one can plan land use, water resources and agricultural production in the region.

  2. Influence of solar activity on the precipitation in the North-central China

    Science.gov (United States)

    Zhai, Qian

    2017-02-01

    The time series of sunspot number and the precipitation in the north-central China (108° ∼ 115° E, 33° ∼ 41° N) over the past 500 years (1470-2002) are investigated, through periodicity analysis, cross wavelet transform and ensemble empirical mode decomposition analysis. The results are as follows: the solar activity periods are determined in the precipitation time series of weak statistical significance, but are found in decomposed components of the series with statistically significance; the Quasi Biennial Oscillation (QBO) is determined to significantly exist in the time series, and its action on precipitation is opposite to the solar activity; the sun is inferred to act on precipitation in two ways, with one lagging the other by half of the solar activity period.

  3. Rising Precipitation Extremes across Nepal

    Directory of Open Access Journals (Sweden)

    Ramchandra Karki

    2017-01-01

    Full Text Available As a mountainous country, Nepal is most susceptible to precipitation extremes and related hazards, including severe floods, landslides and droughts that cause huge losses of life and property, impact the Himalayan environment, and hinder the socioeconomic development of the country. Given that the countrywide assessment of such extremes is still lacking, we present a comprehensive picture of prevailing precipitation extremes observed across Nepal. First, we present the spatial distribution of daily extreme precipitation indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI from 210 stations over the period of 1981–2010. Then, we analyze the temporal changes in the computed extremes from 76 stations, featuring long-term continuous records for the period of 1970–2012, by applying a non-parametric Mann−Kendall test to identify the existence of a trend and Sen’s slope method to calculate the true magnitude of this trend. Further, the local trends in precipitation extremes have been tested for their field significance over the distinct physio-geographical regions of Nepal, such as the lowlands, middle mountains and hills and high mountains in the west (WL, WM and WH, respectively, and likewise, in central (CL, CM and CH and eastern (EL, EM and EH Nepal. Our results suggest that the spatial patterns of high-intensity precipitation extremes are quite different to that of annual or monsoonal precipitation. Lowlands (Terai and Siwaliks that feature relatively low precipitation and less wet days (rainy days are exposed to high-intensity precipitation extremes. Our trend analysis suggests that the pre-monsoonal precipitation is significantly increasing over the lowlands and CH, while monsoonal precipitation is increasing in WM and CH and decreasing in CM, CL and EL. On the other hand, post-monsoonal precipitation is significantly decreasing across all of Nepal while winter precipitation is decreasing

  4. Petroleum marketing monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Petroleum Marketing Monthly (PPM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o. b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

  5. Petroleum marketing monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

  6. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  7. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  8. Quality Control and Homogeneity of Precipitation Data in the Southwest of Europe.

    Science.gov (United States)

    González-Rouco, J. Fidel; Jiménez, J. Luis; Quesada, Vicente; Valero, Francisco

    2001-03-01

    A quality control process involving outliers processing, homogenization, and interpolation has been applied to 95 monthly precipitation series in the Iberian Peninsula, southern France, and northern Africa during the period 1899-1989. A detailed description of the procedure results is provided and the impact of adjustments on trend estimation is discussed.Outliers have been censored by trimming extreme values. Homogeneity adjustments have been developed by applying the Standard Normal Homogeneity Test in combination with an objective methodology to select reference series.The spatial distribution of outliers indicates that they are due to climate variability rather than measurement errors. After carrying out the homogeneity procedure, 40% of the series were found to be homogeneous, 49.5% became homogeneous after one adjustment, and 9.5% after two adjustments. About 30% of the inhomogeneities could be traced to information in the scarce history files.It is shown that these data present severe homogeneity problems and that applying outliers and homogeneity adjustments greatly changes the patterns of trends for this area.

  9. Analysis of satellite precipitation over East Africa during last decades

    Science.gov (United States)

    Cattani, Elsa; Wenhaji Ndomeni, Claudine; Merino, Andrés; Levizzani, Vincenzo

    2016-04-01

    Daily accumulated precipitation time series from satellite retrieval algorithms (e.g., ARC2 and TAMSAT) are exploited to extract the spatial and temporal variability of East Africa (EA - 5°S-20°N, 28°E-52°E) precipitation during last decades (1983-2013). The Empirical Orthogonal Function (EOF) analysis is applied to precipitation time series to investigate the spatial and temporal variability in particular for October-November-December referred to as the short rain season. Moreover, the connection among EA's precipitation, sea surface temperature, and soil moisture is analyzed through the correlation with the dominant EOF modes of variability. Preliminary results concern the first two EOF's modes for the ARC2 data set. EOF1 is characterized by an inter-annual variability and a positive correlation between precipitation and El Niño, positive Indian Ocean Dipole mode, and soil moisture, while EOF2 shows a dipole structure of spatial variability associated with a longer scale temporal variability. This second dominant mode is mostly linked to sea surface temperature variations in the North Atlantic Ocean. Further analyses are carried out by computing the time series of the joint CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI, http://etccdi.pacificclimate.org/index.shtml), i.e. RX1day, RX5day, CDD, CDD, CWD, SDII, PRCPTOT, R10, R20. The purpose is to identify the occurrenes of extreme events (droughts and floods) and extract precipitation temporal variation by trend analysis (Mann-Kendall technique). Results for the ARC2 data set demonstrate the existence of a dipole spatial pattern in the linear trend of the time series of PRCPTOT (annual precipitation considering days with a rain rate > 1 mm) and SDII (average precipitation on wet days over a year). A negative trend is mainly present over West Ethiopia and Sudan, whereas a positive trend is exhibited over East Ethiopia and Somalia. CDD (maximum number of consecutive dry days) and

  10. Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

    Directory of Open Access Journals (Sweden)

    L. Jia

    2011-03-01

    Full Text Available Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that

  11. High-resolution precipitation database for the last two centuries in Italy: climatologies and anomalies

    Science.gov (United States)

    Crespi, Alice; Brunetti, Michele; Maugeri, Maurizio

    2017-04-01

    The availability of gridded high-resolution spatial climatologies and corresponding secular records has acquired an increasing importance in the recent years both to research purposes and as decision-support tools in the management of natural resources and economical activities. High-resolution monthly precipitation climatologies for Italy were computed by gridding on a 30-arc-second-resolution Digital Elevation Model (DEM) the precipitation normals (1961-1990) obtained from a quality-controlled dataset of about 6200 stations covering the Italian surface and part of the Northern neighbouring regions. Starting from the assumption that the precipitation distribution is strongly influenced by orography, especially elevation, a local weighted linear regression (LWLR) of precipitation versus elevation was performed at each DEM cell. The regression coefficients for each cell were estimated by selecting the stations with the highest weights in which the distances and the level of similarity between the station cells and the considered grid cell, in terms of orographic features, are taken into account. An optimisation procedure was then set up in order to define, for each month and for each grid cell, the most suitable decreasing coefficients for the weighting factors which enter in the LWLR scheme. The model was validated by the comparison with the results provided by inverse distance weighting (IDW) applied both to station normals and to the residuals of a global regression of station normals versus elevation. In both cases, the LWLR leave-one-out reconstructions show the best agreement with the observed station normals, especially when considering specific station clusters (high elevation sites for example). After producing the high-resolution precipitation climatological field, the temporal component on the high-resolution grid was obtained by following the anomaly method. It is based on the assumption that the spatio-temporal structure of the signal of a

  12. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  13. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  14. Impact on watershed resilience due to variation of precipitation

    Science.gov (United States)

    Kaur, H.; Kumar, P.

    2013-12-01

    This study presents the variation of magnitude of precipitation as well as its seasonal distribution in Minnesota River Basin. The motivation for the study is the sediment increment in Minnesota River. The human, external and climatic changes are affecting the dynamics of Minnesota River Basin, a 44,000 km2 agriculturally-dominated watershed in the upper Midwest. The fluctuations in anthropogenic or climatic factors can influence the dynamics of watershed. We are analyzing the variation in precipitation over 110 years from 1900-2010. The hydrologic daily data is obtained from 22 gages distributed across the Minnesota River Basin. In this study we are trying to understand the shifting precipitation patterns and increase in heavy rainfall events. Soil erosion is affected by the increase in frequency and intensity of precipitation events. The variation in precipitation pattern can be the factor responsible for sediment increment and can disturb the resilience of watershed. The precipitation is considered as the Dichotomous Markov Noise with its two values as the day with precipitation and without precipitation. The transition rates for precipitation from one value to another value are obtained for 11 decades throughout the period. The probability of occurrence of precipitation event is also compared for 11 decades. The outlier precipitation events are categorized into different months for each decade. The year is divided into four seasons and all the comparisons are made seasonal as well as yearly. The low dimensional catastrophic shift model of sediment dynamics will be framed. This model will show the increase rate in sediment depending on the environmental processes such as erosion, deposition or bio stabilization. Single or multiple stable states can be obtained with this catastrophic shift model. The precipitation will act as a Dichotomous Markov Noise in affecting the sediment dynamics. The switches between the stable states can be observed depending on the

  15. Impact of improved snowmelt modelling in a monthly hydrological model.

    Science.gov (United States)

    Folton, Nathalie; Garcia, Florine

    2016-04-01

    The quantification and the management of water resources at the regional scale require hydrological models that are both easy to implement and efficient. To be reliable and robust, these models must be calibrated and validated on a large number of catchments that are representative of various hydro-meteorological conditions, physiographic contexts, and specific hydrological behavior (e.g. mountainous catchments). The GRLoiEau monthly model, with its simple structure and its two free parameters, answer our need of such a simple model. It required the development of a snow routine to model catchments with temporarily snow-covered areas. The snow routine developed here does not claim to represent physical snowmelt processes but rather to simulate them globally on the catchment. The snowmelt equation is based on the degree-day method which is widely used by the hydrological community, in particular in engineering studies (Etchevers 2000). A potential snowmelt (Schaefli et al. 2005) was computed, and the parameters of the snow routine were regionalized for each mountain area. The GRLoiEau parsimonious structure requires meteorological data. They come from the distributed mesoscale atmospheric analysis system SAFRAN, which provides estimations of daily solid and liquid precipitations and temperatures on a regular square grid at the spatial resolution of 8*8 km², throughout France. Potential evapotranspiration was estimated using the formula by Oudin et al. (2005). The aim of this study is to improve the quality of monthly simulations for ungauged basins, in particular for all types of mountain catchments, without increasing the number of free parameters of the model. By using daily SAFRAN data, the production store and snowmelt can be run at a daily time scale. The question then arises whether simulating the monthly flows using a production function at a finer time step would improve the results. And by using the SAFRAN distributed climate series, a distributed approach

  16. Spatial patterns of global precipitation in the frequency domain

    Science.gov (United States)

    Denaxa, Demetra; Markonis, Yannis

    2016-04-01

    This study examines global precipitation patterns during 1901-2014 by using the monthly CRU TS3.23 land precipitation gridded dataset, the European historical reconstruction (1500-2000 AD) of Pauling et al. (2006), and the CMIP5 model outputs. In particular, spatial features of long-term precipitation are explored for each continent, using a novel peak-detection methodology of spectral analysis. This approach estimates the statistical significance of the spectral peaks based on the structure of the spectral continuum, as determined by the autocorrelation structure. To this end, the spatial variability of the lag-one autocorrelation coefficient for the annual time scale, as well as the Hurst coefficient, have been also estimated and a global overview of them is presented. Pauling, Andreas, et al. "Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation." Climate Dynamics 26.4 (2006): 387-405.

  17. On the balance of precipitation and evaporation over global oceans in satellite based and reanalysis data sets

    Science.gov (United States)

    Bakan, S.; Andersson, A.; Fennig, K.; Klepp, C.; Klocke, D.; Schulz, J.

    2009-04-01

    Over the global oceans, precipitation should be smaller than evaporation and the balance should be compensated by the global runoff from land surfaces. But to which extent do satellite climatologies and reanalysis products reproduce this basic feature of the global water cycle? The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data set, HOAPS-3 (www.hoaps.org), contains fields of precipitation and evaporation over the global ocean and all basic state variables needed for the derivation of the fluxes. Except for the NOAA Pathfinder SST data set, all variables are derived from SSM/I satellite data over the ice free global ocean between 1987 and 2005. Special emphasis has been put into quality control and inter-satellite calibration in order to derive the data fields as homogeneous as possible. One of the major design goals of HOAPS was to provide a data set that is based exclusively on retrieval procedures which avoid any additional model or reanalysis input. On a global scale, the average evaporation since 1987 exceeds precipitation rate over the oceans in HOAPS-3 systematically, with almost negligible yearly cycle and small monthly variations. While the globally averaged precipitation time series does not exhibit any significant trend over the study period, evaporation shows a continuous increase during this time. Regionally, this increase concentrates in the subtropics and is, together with some reduction in precipitation, consistent with a strengthening of the Hadley circulation during the observation period. These results are compared with similar data fields of the same period from various satellite climatologies to insure the consistency of our results and to the NCEP and ERA40 as well as ERAInterim reanalysis products. Remarkable similarities and differences between the different information sources have been found and will be discussed in the presentation.

  18. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. If you're a research professional, academic, or student, you'll learn: nucleation theory, precipitate growth, calculation of interfacial energies. advanced techniques for technologically relevant multicomponent systems and complex thermo-mechanical treatments. numerical approaches using evolution equations and discrete particle size distribu...

  19. Encoding information into precipitation structures

    Science.gov (United States)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-12-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B- → C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

  20. Forecasting Daily Time Series using Periodic Unobserved Components Time Series Models

    NARCIS (Netherlands)

    Koopman, Siem Jan; Ooms, Marius

    2004-01-01

    We explore a periodic analysis in the context of unobserved components time series models that decompose time series into components of interest such as trend and seasonal. Periodic time series models allow dynamic characteristics to depend on the period of the year, month, week or day. In the stand

  1. Forecasting Daily Time Series using Periodic Unobserved Components Time Series Models

    NARCIS (Netherlands)

    Koopman, Siem Jan; Ooms, Marius

    2004-01-01

    We explore a periodic analysis in the context of unobserved components time series models that decompose time series into components of interest such as trend and seasonal. Periodic time series models allow dynamic characteristics to depend on the period of the year, month, week or day. In the

  2. Validation of remote sensed precipitation with the use of hydrological models - methodology and first results achieved in the frame of EUMETSAT H-SAF

    Science.gov (United States)

    Lapeta, B.; Niedbala, J. M.; Niedbala, J. S.; Struzik, P.

    2009-04-01

    High variability of precipitation in space and time causes difficulties in proper validation of remote sensed rain rates using conventional ground measurements and observations. Insufficient number and spatial resolution of ground data and their questionable quality make this task even more difficult. Therefore, the idea of independent assessment of the quality of satellite-derived data with the use of operational hydrological models has been implemented in the frame of EUMETSAT. In the paper, the assumptions and methodology of H-SAF hydrological validation will be described. Additionally, the preliminary hydrological validation results obtained for the six month time series of H-SAF precipitation rain rate will be presented. The quality of the rain rate were analyzed using two hydrological model MIKE 11 and Modelling Platform, run in Hydrological Forecasting Office in Krakow, Poland. The differences between the outcomes from these models will be discussed as well.

  3. DCP Series

    Directory of Open Access Journals (Sweden)

    Philip Stearns

    2011-06-01

    Full Text Available Photo essay. A collection of Images produced by intentionally corrupting the circuitry of a Kodak DC280 2 MP digitalcamera. By rewiring the electronics of a digital camera, glitched images are produced in a manner that parallels chemically processing unexposed film or photographic paper to produce photographic images without exposure to light. The DCP Series of Digital Images are direct visualizations of data generated by a digital camera as it takes a picture. Electronic processes associated with the normal operations of the camera, which are usually taken for granted, are revealed through an act of intervention. The camera is turned inside­out through complexes of short­circuits, selected by the artist, transforming the camera from a picture taking device to a data capturing device that renders raw data (electronic signals as images. In essence, these images are snap­shots of electronic signals dancing through the camera's circuits, manually rerouted, written directly to the on­board memory device. Rather than seeing images of the world through a lens, we catch a glimpse of what the camera sees when it is forced to peer inside its own mind.

  4. Precipitation and temperature effects on mortality and lactation parameters of dairy cattle in California.

    Science.gov (United States)

    Stull, C L; McV Messam, L L; Collar, C A; Peterson, N G; Castillo, A R; Reed, B A; Andersen, K L; VerBoort, W R

    2008-12-01

    Data from 3 commercial rendering companies located in different regions of California were analyzed from September 2003 through August 2005 to examine the relationship of dairy calf and cow mortality to monthly average daily temperature and total monthly precipitation respectively. Yearly average mortality varied between rendering regions from 2.1 to 8.1% for mature cows. The relationship between cow and calf monthly mortality and monthly average daily temperature was U-shaped. Overall, months with average daily temperatures less than 14 and greater than 24 degrees C showed substantial increases in both calf and cow mortality with calf mortality being more sensitive to changes in these temperature ranges than cow mortality. Temperature changes were reflected in a 2-fold difference between the minimum and maximum mortality in cows and calves. Precipitation showed a weak effect with calf mortality and no effect with cow mortality. Data from Dairy Herd Improvement Association were used from 112 California herds tested over a 24-mo period to examine the relationship of milk production and quality with monthly average daily temperature and monthly precipitation. Somatic cell count and percent milk fat were either weakly or not associated with monthly average daily temperature and total monthly precipitation. However, total monthly precipitation was negatively associated with test day milk per milking cow regardless of the dairy's geographical location. Housing-specific associations for test day milk per milking cow were greater for total monthly precipitation than monthly average daily temperature, with the strongest negative association seen for dairies that do not provide shelter for cows. This suggests that providing suitable housing for lactating dairy cattle may ameliorate the precipitation-associated decrease in test day milk per milking cow.

  5. Extreme Precipitation and High-Impact Landslides

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.

  6. Identify Precipitation Pattern Using Multi-scale Sample Entropy

    Science.gov (United States)

    Liang, X.; Zhou, X.; Lin, J. S.; Xu, W.

    2015-12-01

    In an effort to seek new perspectives on identifying precipitation patterns associated with the precipitation time series, this study explored the potential use of the information metrics through Multi-scale Sample Entropy (MSE) analysis. The objectives were to develop MSE analysis in investigating if discernable changes in long term patterns could be identified when the information metrics in the data were studied in terms of how they change with scales. Scales, in the present context, are the intervals of days that sample entropy (SE) is sampled within a time series. For this study we looked into the characteristics of precipitation before and after 1980 for the regions upstream of Yangtze River in southwestern China, based on the daily rain-gauge data collected from 70 gauges since 1951. The results suggest three main patterns of SE with scale, they are: significant decrease, relatively flat and significant increase. These three patterns correspond, respectively, to the downstream, midstream and upstream of the upper Yangtze River region. By the nature of entropy, a significant decrease in SE implies more regularity with scale, which could mean a longer continuous drought or a more evenly distributed continuous precipitation. In this case, our analysis shows that it is attributed to the longer continuous drought. For the case of significant SE increase, it was found to be tied to an increase in the rain frequency. These results appear to show that the MSE analysis could indeed be useful for long term precipitation study.

  7. Petroleum marketing monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data.

  8. Generating precipitation with the help of other meteorological variables

    Science.gov (United States)

    Schlabing, Dirk; Bárdossy, András

    2014-05-01

    Weather generators traditionally model dry and wet conditions separately. This necessitates not only the existence of a rain occurrence model, but also the double parametrisation of the process generating non-precipitation variables for dry and wet conditions. We propose a method to generate rain together with other meteorological variables within a single stochastic model, thus greatly reducing the number of needed parameters. Drier conditions can, to a certain extend, be seen by the values of non-precipitation variables becoming more distant to their mean values during wet conditions. Hence, this information can be used to estimate a probability of dryness. This probability is derived from values of air temperature, long and short wave radiation, relative humidity and wind speed components at every time step. Then, a continuous time series of precipitation is constructed in the standard-normal domain, comprised of the probability of dryness and transformed precipitation amounts. This time series can then be modelled with a single stochastic model such as a simple vector-autoregressive process. The generated time series is compared with measured data concerning their marginals, auto- and cross correlations as well as low-frequency variability.

  9. Isotopic composition of precipitation in Ljubljana (Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Vreča

    2008-12-01

    Full Text Available The stable isotopic composition of hydrogen and oxygen (δ2H and δ18O and tritium activity (3H are monitored in monthly precipitation at Ljubljana since 1981. Here we present complete set of numerical data and the statistical analysis for period 1981–2006. Seasonal variations of δ2H and δ18O are observed and are typical for continental stations of the Northern Hemisphere. The weighted mean δ2H and δ18O values are –59 ‰ and –8.6 ‰, respectively.The orthogonal Local Meteoric Water Line is δ2H = (8.06 ± 0.08δ18O + (9.84 ± 0.71, and the temperature coefficient of δ18O is 0.29 ‰/°C. Deuterium excess weighted mean value is 9.5 ‰ and indicates the prevailing influence of the Atlantic air masses. Tritium activity in monthly precipitation shows also seasonal variations which are superposed to the decreasing trend of mean annual activity.

  10. Analysis of groundwater drought using a variant of the Standardised Precipitation Index

    Directory of Open Access Journals (Sweden)

    J. P. Bloomfield

    2013-06-01

    Full Text Available A new index for standardising groundwater level time series and characterising groundwater droughts, the Standardised Groundwater level Index (SGI, is described. The SGI is a modification of the Standardised Precipitation Index (SPI that accounts for differences in the form and characteristics of precipitation and groundwater level time series. The SGI is estimated using a non-parametric normal scores transform of groundwater level data for each calendar month. These monthly estimates are then merged to form a continuous index. The SGI has been calculated for 14 relatively long, up to 103 yr, groundwater level hydrographs from a variety of aquifers and compared with SPI for the same sites. The SPI accumulation period which leads to the strongest correlation between SPI and SGI, qmax, varies between sites. There is a positive linear correlation between qmax and a measure of the range of significant autocorrelation in the SGI series, mmax. For each site the strongest correlation between SPI and SGI is in the range 0.7 to 0.87, and periods of low values of SGI coincide with previously independently documented droughts. Hence SGI is taken to be a robust and meaningful index of groundwater drought. The maximum length of groundwater droughts defined by SGI is an increasing function of mmax, meaning that relatively long groundwater droughts are generally more prevalent at sites where SGI has a relatively long autocorrelation range. Based on correlations between mmax, average unsaturated zone thickness and aquifer hydraulic diffusivity, the source of autocorrelation in SGI is inferred to be dependent on aquifer flow and storage characteristics. For fractured aquifers, such as the Cretaceous Chalk, autocorrelation in SGI is inferred to be primarily related to autocorrelation in the recharge time series, while in granular aquifers, such as the Permo-Triassic Sandstones, autocorrelation in SGI is inferred to be primarily a function of intrinsic aquifer

  11. Spatiotemporal analysis of precipitation trends during 1961-2010 in Hubei province, central China

    Science.gov (United States)

    Wang, Ranghui; Li, Cheng

    2016-04-01

    Precipitation is an important climatic parameter, and its variability severely affects regional hydrological processes and water resource management. In order to explore the changing spatial and temporal characteristics of precipitation-related indices, including precipitation amounts indices, extreme precipitation indices, and precipitation concentration indices, in Hubei province, central China during 1961-2010, several precipitation-related indices series were analyzed using the Mann-Kendall test, Pettitt test, and inverse distance weighted interpolation method in this paper. The results are as follows: (1) A clear south-north gradient is apparent in the spatial distribution of the majority of precipitation-related indices, while the distribution of other indices (i.e., CDD, PCD, and PCP) is just the opposite. Most part of Hubei province can experience mixed positive and negative trends in precipitation-related indices. (2) The majority of precipitation-related indices exhibit an increasing trend, but most of which are not significant. July has the largest positive trend, with a regional average of 14.76 mm/decade. As for extreme precipitation indices, there exist large variations in Hubei, especially in R95pTOT. Besides, no obvious trends are shown in precipitation concentration indices. (3) With the exception of consecutive dry days (CDD), most of extreme precipitation indices are strongly correlated with annual mean precipitation (AMP) in Hubei. And the extreme precipitation indices are well correlated with each other except CDD and consecutive wet days (CWD). For six precipitation-related indices (i.e., SDII, RX1day, RX5day, R95pTOT R99pTOT, and PCD), there are significant positive relationships with Northern Hemisphere Subtropical High (NHSH) but significant negative relationships with Northern Hemisphere Polar Vortex (NHPV). Furthermore, the majority of precipitation-related indices have significant negative correlations with East Asian summer monsoon

  12. Data Rescue for precipitation station network in Slovak Republic

    Science.gov (United States)

    Fasko, Pavel; Bochníček, Oliver; Švec, Marek; Paľušová, Zuzana; Markovič, Ladislav

    2016-04-01

    Transparency of archive catalogues presents very important task for the data saving. It helps to the further activities e.g. digitalization and homogenization. For the time being visualization of time series continuation in precipitation stations (approximately 1250 stations) is under way in Slovak Republic since the beginning of observation (meteorological stations gradually began to operate during the second half of the 19th century in Slovakia). Visualization is joined with the activities like verification and accessibility of the data mentioned in the archive catalogue, station localization according to the historical annual books, conversion of coordinates into x-JTSK, y-JTSK and hydrological catchment assignment. Clustering of precipitation stations at the specific hydrological catchment in the map and visualization of the data duration (line graph) will lead to the effective assignment of corresponding precipitation stations for the prolongation of time series. This process should be followed by the process of turn or trend detection and homogenization. The risks and problems at verification of records from archive catalogues, their digitalization, repairs and the way of visualization will be seen in poster. During the searching process of the historical and often short time series, we realized the importance of mainly those stations, located in the middle and higher altitudes. They might be used as replacement for up to now quoted fictive points used at the construction of precipitation maps. Supplementing and enhancing the time series of individual stations will enable to follow changes in precipitation totals during the certain period as well as area totals for individual catchments in various time periods appreciated mainly by hydrologists and agro-climatologists.

  13. Analysis on the Precipitation Characteristics in the Rainy Season in Liupanshui City in Recent 50 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the variation rule of precipitation in the rainy season in Liupanshui City in recent 50 years. [Method] Based on the monthly precipitation data from three observatories (Liuzhi, Panxian and Shuicheng) of Liupanshui City from May to September during 1960-2009, the interannual, interdecadal variation and mutation characteristics of precipitation in the rainy season in Liupanshui City in recent 50 years were analyzed by using the linear tendency estimation, sliding T-tes...

  14. Commissioners' Monthly Case Activity Report

    Data.gov (United States)

    Occupational Safety and Health Review Commission — Total cases pending at the beginning of the month, total cases added to the docket during the month, total cases disposed of during the month, and total cases...

  15. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

    Directory of Open Access Journals (Sweden)

    Tarendra Lakhankar

    2013-08-01

    Full Text Available Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM 3B-43 precipitation product exhibits little mean bias and reasonable skill in giving precipitation over Nepal. Compared to station observations, the TRMM precipitation product showed an overall Nash-Sutcliffe efficiency of 0.49, which is similar to the skill of the gridded station-based product Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE. The other satellite precipitation products considered (Global Satellite Mapping of Precipitation (GSMaP, the Climate Prediction Center Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS were less skillful, as judged by Nash-Sutcliffe efficiency, and, on average, substantially underestimated precipitation compared to station observations, despite their, in some cases, higher nominal spatial resolution compared to TRMM. None of the products fully captured the dependence of mean precipitation on elevation seen in the station observations. Overall, the TRMM product is promising for use in water resources applications.

  16. Modelling of spatio-temporal precipitation relevant for urban hydrology with focus on scales, extremes and climate change

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen

    Time series of precipitation are necessary for assessment of urban hydrological systems. In a changed climate this is challenging as climate model output is not directly comparable to observations at the scales relevant for urban hydrology. The focus of this PhD thesis is downscaling...... of precipitation to spatio-temporal scales used in urban hydrology. It investigates several observational data products and identifies relevant scales where climate change and precipitation can be assessed for urban use. Precipitation is modelled at different scales using different stochastic techniques. A weather...... generator is used to produce an artificial spatio-temporal precipitation product that can be used both directly in large scale urban hydrological modelling and for derivation of extreme precipitation statistics relevant for urban hydrology. It is discussed why precipitation time series from a changed...

  17. Recent precipitation trends, flash floods and landslides in southern Brazil

    Science.gov (United States)

    Ávila, Alvaro; Justino, Flavio; Wilson, Aaron; Bromwich, David; Amorim, Marcelo

    2016-11-01

    In order to understand the rising number of flash floods and landslides in the densely populated region of southeastern Brazil, this study analyzes the spatial and temporal changes in precipitation from 1978 to 2014. We focus on the sensitivity of mountainous regions, specifically the Rio de Janeiro (RJMR) and Santa Catarina (SCMR) regions. Daily rainfall observations are aggregated into annual and seasonal indexes, and RClimdex is used to evaluate a suite of precipitation and extreme event indexes. Results show positive annual and seasonal precipitation trends during all seasons except for the winter season in the RJMR. Diverse change points in their time series, spatial differences in the trends at individual stations, and trends associated with elevation suggest that despite the close proximity of these two regions, climate impacts are not uniform across all of southeastern Brazil. The majority of precipitation-related indexes present positive trends, especially in the extreme precipitation indexes (PRCPTOT, RX1day, Rx5day and R30 mm). Statistically significant positive correlations are discovered between landslides/flash floods events and annual maximum 1-day and 5-day consecutive precipitation, and these indexes may be useful indicators of natural hazard events for this region.

  18. Petroleum supply monthly, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-26

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  19. Petroleum Supply Monthly, August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-30

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) district movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.

  20. Petroleum supply monthly, January 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-15

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  1. Petroleum supply monthly, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-27

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum supply annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  2. Petroleum supply monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-28

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  3. Petroleum supply monthly, July 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-26

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  4. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional

  5. Hydroclimatic variables and acute gastro-intestinal illness in British Columbia, Canada: A time series analysis

    Science.gov (United States)

    Galway, L. P.; Allen, D. M.; Parkes, M. W.; Li, L.; Takaro, T. K.

    2015-02-01

    Using epidemiologic time series analysis, we examine associations between three hydroclimatic variables (temperature, precipitation, and streamflow) and waterborne acute gastro-intestinal illness (AGI) in two communities in the province of British Columbia (BC), Canada. The communities were selected to represent the major hydroclimatic regimes that characterize BC: rainfall-dominated and snowfall dominated. Our results show that the number of monthly cases of AGI increased with increasing temperature, precipitation, and streamflow in the same month in the context of a rainfall-dominated regime, and with increasing streamflow in the previous month in the context of a snowfall-dominated regime. These results suggest that hydroclimatology plays a role in driving the occurrence and variability of AGI in these settings. Further, this study highlights that the nature and magnitude of the effects of hydroclimatic variability on AGI are different in the context of a snowfall-dominated regime versus a rainfall-dominated regimes. We conclude by proposing that the watershed may be an appropriate context for enhancing our understanding of the complex linkages between hydroclimatic variability and waterborne illness in the context of a changing climate.

  6. Forecasting the Reference Evapotranspiration Using Time Series Model

    Directory of Open Access Journals (Sweden)

    H. Zare Abyaneh

    2016-10-01

    Full Text Available Introduction: Reference evapotranspiration is one of the most important factors in irrigation timing and field management. Moreover, reference evapotranspiration forecasting can play a vital role in future developments. Therefore in this study, the seasonal autoregressive integrated moving average (ARIMA model was used to forecast the reference evapotranspiration time series in the Esfahan, Semnan, Shiraz, Kerman, and Yazd synoptic stations. Materials and Methods: In the present study in all stations (characteristics of the synoptic stations are given in Table 1, the meteorological data, including mean, maximum and minimum air temperature, relative humidity, dry-and wet-bulb temperature, dew-point temperature, wind speed, precipitation, air vapor pressure and sunshine hours were collected from the Islamic Republic of Iran Meteorological Organization (IRIMO for the 41 years from 1965 to 2005. The FAO Penman-Monteith equation was used to calculate the monthly reference evapotranspiration in the five synoptic stations and the evapotranspiration time series were formed. The unit root test was used to identify whether the time series was stationary, then using the Box-Jenkins method, seasonal ARIMA models were applied to the sample data. Table 1. The geographical location and climate conditions of the synoptic stations Station\tGeographical location\tAltitude (m\tMean air temperature (°C\tMean precipitation (mm\tClimate, according to the De Martonne index classification Longitude (E\tLatitude (N Annual\tMin. and Max. Esfahan\t51° 40'\t32° 37'\t1550.4\t16.36\t9.4-23.3\t122\tArid Semnan\t53° 33'\t35° 35'\t1130.8\t18.0\t12.4-23.8\t140\tArid Shiraz\t52° 36'\t29° 32'\t1484\t18.0\t10.2-25.9\t324\tSemi-arid Kerman\t56° 58'\t30° 15'\t1753.8\t15.6\t6.7-24.6\t142\tArid Yazd\t54° 17'\t31° 54'\t1237.2\t19.2\t11.8-26.0\t61\tArid Results and Discussion: The monthly meteorological data were used as input for the Ref-ET software and monthly reference

  7. Applying complex networks to evaluate precipitation patterns over South America

    Science.gov (United States)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja

    2016-04-01

    The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify

  8. A procedure for assessing future trends of subdaily precipitation values on point scale

    Science.gov (United States)

    Rianna, Guido; Villani, Veronica; Mercogliano, Paola; Vezzoli, Renata

    2015-04-01

    In many areas of Italy, urban flooding or floods in small mountain basins, induced by heavy precipitations on subdaily scale, represent remarkable hazards able to cause huge damages and casualties often increased by very high population density. A proper assessment about how frequency and magnitude of such events could change under the effect of Climate Changes (CC) is crucial for the development of future territorial planning (such as early warning systems). The current constraints of climate modeling, also using high resolution RCM, prevent an adequate representation of subdaily precipitation patterns (mainly concerning extreme values) while available observed datasets are often unsuitable for the application of the bias-correction (BC) techniques requiring long time series. In this work, a new procedure is proposed: at point scale, precipitation outputs on 24 and 48 hours are provided by high resolution (about 8km) climate simulation performed through the RCM COSMO_CLM driven by GCM CMCC_CM and bias-corrected by quantile mapping approach. These ones are adopted for a monthly stochastic disaggregation approach combining Random Parameter Bartlett-Lewis (RPBL) gamma model with appropriate rainfall disaggregation technique. The last one implements empirical correction procedures, called adjusting procedures, to modify the model rainfall output, so that it is consistent with the observed rainfall values on daily time scale. In order to take into account the great difficulties related to minimization of objective function required by retrieving the 7 RPBL parameters, for each dataset the computations are repeated twenty times. Moreover, adopting statistical properties on 24 and 48 hours to retrieve RPBL parameters allows, according Bo et al. (1994), to infer statistical properties until hourly scale maintaining the information content about the possible changes in precipitation patterns due to CC. The entire simulation chain is tested on Baiso weather station, in

  9. Atrial Ectopics Precipitating Atrial Fibrillation

    OpenAIRE

    Johnson Francis

    2015-01-01

    Holter monitor tracing showing blocked atrial ectopics and atrial ectopic precipitating atrial fibrillation is being demonstrated. Initially it was coarse atrial fibrillation, which rapidly degenerated into fine atrial fibrillation.

  10. Hourly and Daily Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Precipitation reports submitted on many form types, including tabular and autographic charts. Reports are almost exclusively from the US Cooperative Observer Network.

  11. Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps

    Science.gov (United States)

    Chen, Min; Bica, Benedikt; Tüchler, Lukas; Kann, Alexander; Wang, Yong

    2017-07-01

    This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.

  12. Spatial-temporal variation of precipitation concentration and structure in the Wei River Basin, China

    Science.gov (United States)

    Huang, Shengzhi; Huang, Qiang; Chen, Yutong; Xing, Li; Leng, Guoyong

    2016-07-01

    It is of significant importance to investigate precipitation structure and precipitation concentration due to their great impact on droughts, floods, soil erosion, as well as water resources management. A complete investigation of precipitation structure and its distribution pattern in the Wei River Basin was performed based on recorded daily precipitation data in this study. Two indicators were used: concentration index based on daily precipitation (CID), to assess the distribution of rainy days, and concentration index based on monthly precipitation (CIM), to estimate the seasonality of the precipitation. Besides, the modified Mann-Kendall trend test method was employed to capture the variation trends of CID and CIM. The results indicate that: (1) the 1-3-day events are the predominant precipitation events in terms of the occurrence and fractional contribution; (2) the obvious differences in the CID of various areas are found in the Wei River Basin, and the high CID values mainly concentrate in the northern basin, conversely, the southern basin has a relatively low CID value; (3) high CIM values are primarily in the western and northern basin, reflecting a remarkable seasonality of precipitation in these regions; and (4) all of the stations show a downward trend of CIM, which indicates that the monthly precipitation distribution tends to be more uniform.

  13. Annual and interannual variation of precipitation over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Prasad, T.G.

    /month, and the lowest amplitudes are found in the western Indian Ocean, especially off the Arabian and east African coasts. The INSAT and GEOS Precipitation Index (GPI) rainfall estimates correlated reasonably well with the island rainfall data, with correlation...

  14. Comparisons on seasonal and annual variations of δ18O in precipitation%不同时间尺度下降水中氧稳定同位素的时空变化

    Institute of Scientific and Technical Information of China (English)

    章新平; 姚檀栋

    2004-01-01

    The spatial and temporal variations of stable oxygen isotope in precipitation on different time scales are analyzed according to the data from the IAEA/WMO stations with long survey series in the Northern Hemisphere. Temperature effect is mainly distributed in mid-high latitudes on seasonal scale except for Bamako and Addisababa stations. The δ18O/temperature slope displays the positive correlation against altitude for most of the statistical stations. Amount effect appears primarily in the region south of 30°N and coastal areas. The δ18O/precipitation slope is indirectly proportional to precipitation amount. For some of the sampling stations at mid-high latitudes where their seasonal distribution of precipitation is contrary to that of temperature, coupled with temperature effect, the amount effect appears synchronistically. Either the temperature effect or the amount effect on seasonal scale, there are positive correlations to a certain extent between the annual weighted mean δ18O and the annual mean temperature for almost all the stations. The correlation between composite δ18O and temperature on spatial scale is much more marked, compared with that of individual station. There is a good agreement between 10-year moving average temperature curves I and Ⅱ, with the values of the former all markedly smaller than corresponding ones of the latter, calculated by the monthly mean series group I and the annual mean series group Ⅱ, respectively. However, two calculated dδ18O/dT curves display the distinct difference: the variation amplitude of slope series Ⅱ is larger than that of slope series I. Both curves had similar ascending trend from the 1960s to the 1970s, and then, their variations display the anti-phase. Moreover, the analyses show that there is negative correlation between slope series Ⅱ and temperature series Ⅱ. However, the status is different for slope series I and temperature series I. Both series have contrary trend from the 1960s to the

  15. GPM, METOP-A, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  16. GPM, F17,GMI,SSMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  17. GPM, METOP-B, GMI,MHS Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  18. GPM, METOP-A, GMI,MHS Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  19. GPM, TRMM, GMI,TMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  20. GPM, NOAA19, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  1. GPM, F17,GMI,SSMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  2. GPM, F18,GMI,SSMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  3. GPM, NOAA19, GMI,MHS Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  4. GPM, TRMM, GMI,TMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  5. GPM, F16,GMI,SSMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  6. GPM, NOAA18, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  7. GPM, F18,GMI,SSMI Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  8. GPM, NOAA18, GMI,MHS Level 3 Monthly GPROF Profiling VV03A

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  9. GPM, F16,GMI,SSMI Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  10. GPM, METOP-B, GMI,MHS Level 3 Monthly GPROF Profiling VV03B

    Data.gov (United States)

    National Aeronautics and Space Administration — 3GPROF products provide global gridded monthly/daily precipitation averages from multiple satellites that can be used for climate studies. The 3GPROF products are...

  11. Forecasting and Analysis of Monthly Rainfalls in Ardabil Province by Arima, Autoregrressive, and Winters Models

    Directory of Open Access Journals (Sweden)

    B. Salahi

    2017-01-01

    Full Text Available Introduction: Rainfall has the highest variability at time and place scale. Rainfall fluctuation in different geographical areas reveals the necessity of investigating this climate element and suitable models to forecast the rate of precipitation for regional planning. Ardabil province has always faced rainfall fluctuations and shortage of water supply. Precipitation is one of the most important features of the environment. The amount of precipitation over time and in different places is subject to large fluctuations which may be periodical. Studies show that, due to the certain complexities of rainfall, the models which used to predict future values will also need greater accuracy and less error. Among the forecasting models, Arima has more applications and it has replaced with other models. Materials and Methods: In this research, through order 2 Autoregrressive, Winters, and Arima models, monthly rainfalls of Ardabil synoptic station (representing Ardabil province for a 31-year period (1977-2007 were investigated. To assess the presence or absence of significant changes in mean precipitation of Ardabil synoptic station, rainfall of this station was divided into two periods: 1977-1993 and 1994-2010. T-test was used to statistically examine the difference between the two periods. After adjusting the data, descriptive statistics were applied. In order to model the total monthly precipitation of Ardabil synoptic station, Winters, Autoregressive, and Arima models were used. Among different models, the best options were chosen to predict the time series including the mean absolute deviation (MAD, the mean squared errors (MSE, root mean square errors (RMSE and mean absolute percentage errors (MAPE. In order to select the best model among the available options under investigation, the predicted value of the deviation of the actual value was utilized for the months of 2006-2010. Results and Discussion: Statistical characteristics of the total monthly

  12. Spatiotemporal Variability of the Meteorological Drought in Romania using the Standardized Precipitation Index

    Science.gov (United States)

    Cheval, Sorin; Busuioc, Aristita; Dumitrescu, Alexandru; Birsan, Marius-Victor

    2013-04-01

    Drought events occur over any geographical area, and may impact severely the environment and society. In terms of economic losses, droughts are one of the major natural hazards affecting Romania, so that the topic has been constantly approached. In general, the climatic projections over the 21st century display increasing temperatures and very likely declining summer precipitation (Busuioc et al., 2010), probably causing better drought conditions. This study examines the variability of the droughts in Romania, aiming to characterize the droughts intensity, durations and frequency (a), to identify spatial and temporal patterns (b), trends (c), and potential triggering factors (d). Besides, we consider comparing the performance of different instances of the Standardized Precipitation Index (SPI) (McKee et al., 1993), such as time scale and probability distribution functions (gamma and Pearson type III), for retrieving drought characteristics. Homogenous monthly precipitation amounts from 98 weather stations run by the Romanian Meteorological Administration covering the period 1961-2010 were the primary data for calculating 1, 3, 6, and 12-month time scale SPI. The Mann-Kendall statistics sustained the trend significance examination, while Empirical Orthogonal Function (EOF) analysis synthesizes the climate signal related to spatial and temporal characteristics of variability over Romania. The SPI variability over Romania is mainly influenced by the large-scale mechanisms (e.g. North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO)) accounting for more than 50% from the observed variance, on second place being the Carpathians accounting for the highest influence in winter (11%). Thus, the Carpathians separate Romania in two major regions in terms of drought characteristics, namely outside and inside the mountainous arch. Significant trends towards dry conditions are noted at very few stations in winter, spring and summer, while trend to

  13. Creating a global sub-daily precipitation dataset

    Science.gov (United States)

    Lewis, Elizabeth; Blenkinsop, Stephen; Fowler, Hayley

    2016-04-01

    Extremes of precipitation can cause flooding and droughts which can lead to substantial damages to infrastructure and ecosystems and can result in loss of life. It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. The first step towards achieving this is to construct a new global sub-daily precipitation dataset. Data collection is ongoing and already covers North America, Europe, Asia and Australasia. Comprehensive, open source quality control software is being developed to set a new standard for verifying sub-daily precipitation data and a set of global hydroclimatic indices will be produced based upon stakeholder recommendations. This will provide a unique global data resource on sub-daily precipitation whose derived indices, e.g. monthly/annual maxima, will be freely available to the wider scientific community.

  14. Creating a global sub-daily precipitation dataset

    Science.gov (United States)

    Lewis, Elizabeth; Blenkinsop, Stephen; Fowler, Hayley

    2017-04-01

    Extremes of precipitation can cause flooding and droughts which can lead to substantial damages to infrastructure and ecosystems and can result in loss of life. It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. The first step towards achieving this is to construct a new global sub-daily precipitation dataset. Data collection is ongoing and already covers North America, Europe, Asia and Australasia. Comprehensive, open source quality control software is being developed to set a new standard for verifying sub-daily precipitation data and a set of global hydroclimatic indices will be produced based upon stakeholder recommendations. This will provide a unique global data resource on sub-daily precipitation whose derived indices, e.g. monthly/annual maxima, will be freely available to the wider scientific community.

  15. Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau

    Science.gov (United States)

    Li, Jingmin; Ehlers, Todd A.; Werner, Martin; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko

    2017-01-01

    The Himalaya-Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O (δO18p) over the Himalaya-Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼ 2.0- 4.0 °C lower across the Himalaya and Tibet, and >5.0 °C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200-600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4 ‰ /km larger during the MH and 0.2 ‰ /km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70°E-110°E and 10°N-30°N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of

  16. Freezing precipitation in Russia and the Ukraine

    Directory of Open Access Journals (Sweden)

    A. A. Zavyalova

    2007-04-01

    Full Text Available Conditions for freezing precipitation (FP, including freezing rain (FR and freezing drizzle (FZ for 8 airports in Russia and 4 in the Ukraine are studied on the basis of 10 to 20-year series of surface observations, radiosonde and objective analysis data. Statistical characteristics are presented of the FP episode durations and of occurrence frequency dependences on surface air temperature, wind direction and speed and cloud base height. From the radiosonde data, it is found that the "classical mechanism" of FP generation (for which, stratification of "warm nose" type in the cloud layer is necessary is not frequent: most of FP cases are associated with "all cold" conditions in the lower 3-km layer, that is, with negative temperatures in and below the clouds.

  17. Sodium hydride precipitation in sodium cold traps

    Energy Technology Data Exchange (ETDEWEB)

    McPheeters, C.C.; Raue, D.J.

    1980-06-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass-transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile can be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments. Mass-transfer coefficients ranging upward from 6 x 10/sup -5/ m/s were measured in both packless and packed traps. As much as a fourfold increase in precipitation surface area was observed with increasing amount of NaH deposited. 11 figures, 2 tables.

  18. Regional frequency analysis of extremes precipitations in Northern of Mozambique

    Directory of Open Access Journals (Sweden)

    M. Álvarez

    2016-01-01

    Full Text Available Extreme precipitation events that occur over internal basins of Cabo Delgado (Northern Mozambique often result in the occurrence of flood events with associated loss of life and infrastructure. This paper presents a study of regional frequency analysis of maximum daily precipitations based on the index flood procedure with estimated parameters by L-moments approach. Observed annual maximum daily precipitation series of 12 stations with records of more than 20 years were analyzed. The discordancy and heterogeneity measures based on the L-moments suggest that the region can be considered as homogeneous. Among the candidate distributions analyzed Monte Carlo simulations identified the Generalized Logistic distribution function as the best regional fit for the region. The achieved results will be useful in hydrologic and hydraulic studies related to floods and floodplain delineation in the region.

  19. Chemical Data for Precipitate Samples

    Science.gov (United States)

    Foster, Andrea L.; Koski, Randolph A.

    2008-01-01

    During studies of sulfide oxidation in coastal areas of Prince William Sound in 2005, precipitate samples were collected from onshore and intertidal locations near the Ellamar, Threeman, and Beatson mine sites (chapter A, fig. 1; table 7). The precipitates include jarosite and amorphous Fe oxyhydroxide from Ellamar, amorphous Fe oxyhydroxide from Threeman, and amorphous Fe oxyhydroxide, ferrihydrite, and schwertmannite from Beatson. Precipitates occurring in the form of loose, flocculant coatings were harvested using a syringe and concentrated in the field by repetitive decanting. Thicker accumulations were either scraped gently from rocks using a stainless steel spatula or were scooped directly into receptacles (polyethylene jars or plastic heavy-duty zippered bags). Most precipitate samples contain small amounts of sedimentary detritus. With three jarosite-bearing samples from Ellamar, an attempt was made to separate the precipitate from the heavy-mineral fraction of the sediment. In this procedure, the sample was stirred in a graduated cylinder containing deionized water. The jarosite-rich suspension was decanted onto analytical filter paper and air dried before analysis. Eleven precipitate samples from the three mine sites were analyzed in laboratories of the U.S. Geological Survey (USGS) in Denver, Colorado (table 8). Major and trace elements were determined by inductively coupled plasma-mass spectrometry following multiacid (HCl-HNO3-HClO4-HF) digestion (Briggs and Meier, 2002), except for mercury, which was analyzed by cold-vapor atomic absorption spectroscopy (Brown and others, 2002a). X-ray diffraction (XRD) analyses were performed on powdered samples (<200 mesh) by S. Sutley of the USGS. Additional details regarding sample preparation and detection limits are found in Taggert (2002). Discussions of the precipitate chemistry and associated microbial communities are presented in Koski and others (2008) and Foster and others (2008), respectively.

  20. Extreme precipitation events in the Czech Republic in the context of climate change

    Directory of Open Access Journals (Sweden)

    V. Květoň

    2008-04-01

    Full Text Available As an introduction, short survey of two analyses of long-term fluctuations of annual precipitation totals in the Czech Republic is presented. The main focus of this paper is to contribute to investigation of precipitation trends in the Czech Republic by another point of view. For every pixel of 1 km2 size, annual maxima of daily precipitation were obtained for time period of 112 years (1895–2006. Based on these time series, we were trying to answer question if there are some changes of area size/distribution of annual maximum of daily precipitation totals. Courses and trends are analyzed for some parameters of area distribution of annual maximum of daily precipitation totals in the area of the Czech Republic. No significant climate changes of tested precipitation characteristics were found.

  1. Metal particle's precipitation behavior in direct reading ferrography precipitator tube

    Institute of Scientific and Technical Information of China (English)

    尹凤福; 李谋渭

    2004-01-01

    A new metal particle monitoring instrument was developed by improving the traditional direct reading ferrography. The precipitation behaviors of sub-magnetic particles, magnetic particles, and the mixture of these particles were examined with the instrument. The results show that the precipitation behavior of sub-magnetic metal particles of copper and aluminum is not random as it was believed previously. The sub-magnetic particles show a distribution in the precipitator tube, almost the same as the deposition curves as the magnetic particles have. The deposition amount of particles is increased in the oil which consists of several different kinds of particles. On the base of these experiments, a new index used for the total quantity of wear was redefined.

  2. IMPACTS OF ANTARCTIC OSCILLATION ON SUMMER MOISTURE TRANSPORT AND PRECIPITATION IN EASTERN CHINA

    Institute of Scientific and Technical Information of China (English)

    QIN Jun; WANG Pan-xing; GONG Yan

    2005-01-01

    Using NCEP/NCAR reanalysis data and monthly precipitation over 160 conventional stations in China,analyses of moisture transport characteristics and corresponding precipitation variation in the east part of China in summer are made, and studies are carried out on possible influence on moisture transport and precipitation in summer by the variation of Antarctic Oscillation (AAO). The results show that the abnormal variation of the AAO affected the summer precipitation in China significantly. The variation of AAO can cause the variation ofintension and location of Northwestern Pacific High, which in turn cause the variation of summer monsoon rainfall in the eastern China.

  3. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    Science.gov (United States)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  4. North-South precipitation patterns in western North America on interannual-to-decadal timescales

    Science.gov (United States)

    Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.

    1998-01-01

    The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation

  5. Geostatistical Study of Precipitation on the Island of Crete

    Science.gov (United States)

    Agou, Vasiliki D.; Varouchakis, Emmanouil A.; Hristopulos, Dionissios T.

    2015-04-01

    Understanding and predicting the spatiotemporal patterns of precipitation in the Mediterranean islands is an important topic of research, which is emphasized by alarming long-term predictions for increased drought conditions [4]. The analysis of records from drought-prone areas around the world has demonstrated that precipitation data are non-Gaussian. Typically, such data are fitted to the gamma distribution function and then transformed into a normalized index, the so-called Standardized Precipitation Index (SPI) [5]. The SPI can be defined for different time scales and has been applied to data from various regions [2]. Precipitation maps can be constructed using the stochastic method of Ordinary Kriging [1]. Such mathematical tools help to better understand the space-time variability and to plan water resources management. We present preliminary results of an ongoing investigation of the space-time precipitation distribution on the island of Crete (Greece). The study spans the time period from 1948 to 2012 and extends over an area of 8 336 km2. The data comprise monthly precipitation measured at 56 stations. Analysis of the data showed that the most severe drought occurred in 1950 followed by 1989, whereas the wettest year was 2002 followed by 1977. A spatial trend was observed with the spatially averaged annual precipitation in the West measured at about 450mm higher than in the East. Analysis of the data also revealed strong correlations between the precipitation in the western and eastern parts of the island. In addition to longitude, elevation (masl) was determined to be an important factor that exhibits strong linear correlation with precipitation. The precipitation data exhibit wet and dry periods with strong variability even during the wet period. Thus, fitting the data to specific probability distribution models has proved challenging. Different time scales, e.g. monthly, biannual, and annual have been investigated. Herein we focus on annual

  6. Atmospheric circulation leading to record breaking precipitation and floods in southern Iberia in December 1876

    Science.gov (United States)

    Trigo, R. M.; Varino, F.; Vaquero, J.; Valente, M. A.

    2012-04-01

    The first week of December 1876 was marked by extreme weather conditions that affected the south-western sector of the Iberian Peninsula (IP), leading to an all-time record flow in both large international rivers running from Spain to Portugal, Tagus and Guadiana. As a direct consequence, several towns in centre and south IP suffered serious flood damage. These catastrophic floods were amplified by the occurrence of anomalously wet October and November months, as shown by recently digitised time series for both IP countries. These events resulted from the continuous pouring of precipitation registered between 29 November and 7 December, due to the consecutive Atlantic low-pressure systems and their associated frontal systems that reached the Iberian Peninsula. Using several different data sources, such as historical newspapers of that time, meteorological data recently digitised from several stations in Portugal and Spain and the recently available 20th Century Reanalysis (Compo et al., 2011), we were able (135 years afterwards), to study in detail the damage and the atmospheric circulation conditions associated with this event. The synoptic conditions were represented by 6 hourly fields of complementary variables, namely; 1) precipitation rate and mean sea level pressure (SLP); 2) precipitation rate and CAPE; 3) wind speed intensity and divergence at 250 hPa, 4) wind speed intensity and divergence also at 850 hPa; 5) air temperature at 850 hPa and geopotential height at 500 hPa; 6) wind speed barbs and specific moisture content at 850 hPa. Movies with all these variables were obtained for the 10-day sequence that spans between 29 November and 7 December. For two recently digitised stations in Portugal (Lisbon and Évora), the values of precipitation registered during those weeks were so remarkable that when we computed daily accumulated precipitation successively from 1 to 10 days, the episode of 1876 always stood as the maximum precipitation event, with the

  7. Effect of Mg/Ca ratios on microbially induced carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu; Seref Sonmez, M.; Kurt, M. Ali

    2016-04-01

    Influence of Mg/Ca ratios on microbially induced carbonate mineralogy were investigated by series of experiments carried out under various environmental conditions (Mg/Ca ratio, temperature and salinity). Halophilic bacterial cultures used for biomineralization experiments were isolated from hypersaline Lake Acıgöl (Denizli, SW Turkey), displaying extreme water chemistry with an average pH around 8.6 (Balci eta l.,2015). Enriched bacterial culture used in the experiments consisted of Halomonas saccharevitans strain AJ275, Halomonas alimentaria strain L7B; Idiomarina sp. TBZ29, 98% Idiomarina seosensis strain CL-SP19. Biomineralization experiments were set up using above enriched culture with Mg/Ca ratios of 0.05, 1, 4 and 15 and salinity of 8% and 15% experiments at 30oC and 10oC. Additionally, long-term biomineralization experiments were set up to last for a year, for Mg/Ca=4 and Mg/Ca=15 experiments at 30oC. For each experimental condition abiotic experiments were also conducted. Solution chemistry throughout incubation was monitored for Na, K, Mg, Ca, bicarbonate, carbonate, ammonium and phosphate for a month. At the end of the experiments, precipitates were collected and morphology and mineralogy of the biominerals were investigated and results were evaluated using the software DIFFRAC.SUITE EVA. Overall the preliminary results showed chemical precipitation of calcite, halite, hydromagnesite and sylvite. Results obtained from biological experiments indicate that, low Mg/Ca ratios (0.05 and 1) favor chlorapatite precipitation, whereas higher Mg/Ca ratios favor struvite precipitation. Biomineralization of dolomite, huntite and magnesite is favorable at high Mg/Ca ratios (4 and 15), in the presence of halophilic bacteria. Moreover, results indicate that supersaturation with respect to Mg (Mg/Ca=15) combined with NaCl (15%) inhibits biomineralization and forms chemical precipitates. 15% salinity is shown to favor chemical precipitation of mineral phases more than

  8. Temporal Analysis of Remotely Sensed Precipitation Products for Hydrological Applications

    Science.gov (United States)

    Tobin, K. J.; Bennett, M. E.

    2011-12-01

    No study has systematically evaluated streamflow modeling between monthly and daily timescales. This study examines streamflow from eight watersheds across the United States where five different precipitation products were used as primary input into the Soil and Water Assessment Tool to generate simulated streamflow. Timescales examined include monthly, dekad (10 day), pentad (5 day), triad (3 day), and daily. The eight basins studied are the San Pedro (Arizona); Cimarron (north-central Oklahoma); mid-Nueces (south Texas); mid-Rio Grande (south Texas and northern Mexico), Yocano (northern Mississippi); Alapaha (south Georgia); Upper Tar (North Carolina) and mid-St. Francis (eastern Arkansas). The precipitation products used to drive simulations include rain gauge, NWS Multisensor Precipitation Estimator, Tropical Rainfall Measurement Mission, Multi-Satellite (TRMM) Precipitation Analysis, TRMM 3B42-V6, and Climate Prediction Center Morphing Method (CMORPH). Understanding how streamflow varies at sub-monthly timescales is important because there are a host of hydrological applications such a flood forecast guidance and reservoir inflow forecasts that reside in a temporal domain between monthly and daily timescales. The major finding of this study is the quantification of a strong positive correlation between performance metrics and time step at which model performance deteriorates. Basically, better performing simulations, with higher Nash-Sutcliffe values of 0.80 and above can support modeling at finer timescales to at least daily and perhaps beyond into the sub-daily realm. These findings are significant in that they clearly document the ability of SWAT to support modeling at sub-monthly time steps, which is beyond the capability for which SWAT was initially designed.

  9. Changes of the Temperature and Precipitation Extremes on Homogenized Data

    Directory of Open Access Journals (Sweden)

    LAKATOS, Mónika

    2007-01-01

    Full Text Available Climate indices to detect changes have been defined in several international projects onclimate change. Climate index calculations require at least daily resolution of time series withoutinhomogeneities, such as transfer of stations, changes in observation practice. In many cases thecharacteristics of the estimated linear trends, calculated from the original and from the homogenizedtime series are significantly different. The ECA&D (European Climate Assessment & Dataset indicesand some other special temperature and precipitation indices of own development were applied to theClimate Database of the Hungarian Meteorological Service. Long term daily maximum, minimum anddaily mean temperature data series and daily precipitation sums were examined. The climate indexcalculation processes were tested on original observations and on homogenized daily data fortemperature; in the case of precipitation a complementation process was performed to fill in the gapsof missing data. Experiences of comparing the climate index calculation results, based on original andcomplemented-homogenized data, are reported in this paper. We present the preliminary result ofclimate index calculations also on gridded (interpolated daily data.

  10. Verification of precipitation forecasts by the DWD limited area model LME over Cyprus

    Directory of Open Access Journals (Sweden)

    K. Savvidou

    2007-01-01

    Full Text Available A comparison is made between the precipitation forecasts by the non-hydrostatic limited area model LME of the German Weather Service (DWD and observations from a network of rain gauges in Cyprus. This is a first attempt to carry out a preliminary verification and evaluation of the LME precipitation forecasts over the area of Cyprus. For the verification, model forecasts and observations were used covering an eleven month period, from 1/2/2005 till 31/12/2005. The observations were made by three Automatic Weather Observing Systems (AWOS located at Larnaka and Paphos airports and at Athalassa synoptic station, as well as at 6, 6 and 8 rain gauges within a radius of about 30 km around these stations, respectively. The observations were compared with the model outputs, separately for each of the three forecast days. The "probability of detection" (POD of a precipitation event and the "false alarm rate" (FAR were calculated. From the selected cases of the forecast precipitation events, the average forecast precipitation amounts in the area around the three stations were compared with the measured ones. An attempt was also made to evaluate the model's skill in predicting the spatial distribution of precipitation and, in this respect, the geographical position of the maximum forecast precipitation amount was contrasted to the position of the corresponding observed maximum. Maps with monthly precipitation totals observed by a local network of 150 rain gauges were compared with the corresponding forecast precipitation maps.

  11. Future changes in atmospheric circulation types and related precipitation extremes in Central Europe

    Science.gov (United States)

    Homann, Markus; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas

    2016-04-01

    The statistical evaluation of the relationships between atmospheric circulation types and areal precipitation events took place in the context of an international project called WETRAX (Weather patterns, storm tracks and related precipitation extremes). The aim of the project was to estimate the regional flooding potential in Central Europe under enhanced climate change conditions. For parts of southern Central Europe, a gridded daily precipitation set with 6km horizontal resolution has been generated for the period 1951-2006 by the Austrian Zentralanstalt für Meteorologie und Geodynamik (ZAMG). To determine regions with similar precipitation variability, a S-mode principal component analysis has been applied. Extreme precipitation events are defined by the 95% percentile, based on regional arithmetic means of daily precipitation. Large-scale atmospheric circulation types have been derived by different statistical methods and variables using the COST733 classification software and gridded daily NCEP1 reanalysis data. To evaluate the performance of a particular circulation type classification with respect to regional precipitation extremes, multiple regression models have been derived between the circulation type frequencies as predictor variables and monthly frequencies of extreme precipitation as well as monthly rainfall amounts from these events. To estimate the regional flooding potential in Central Europe under enhanced climate change conditions, multiple regression models are applied to different projected GCM predictor data. Thus, future changes in circulation type occurrence frequencies are transferred into assessments of future changes in precipitation extremes on a regional scale.

  12. Response of a papyrus wetland system to precipitation variations

    Science.gov (United States)

    Kayendeke, Ellen; French, Helen K.; Kansiime, Frank; Bamutaze, Yazidhi

    2016-04-01

    There has been an increase in flood incidents all over the world, and this has been mainly attributed to climate changes particularly increasing precipitation intensity and duration. The severity of floods is influenced by catchment characteristics as well as the spatial distribution of precipitation within a given catchment. It is proposed that papyrus wetlands found in southern, central and eastern Africa can mitigate floods since they have the capacity to store excess water during storm events. However, hardly any research quantifies the amount of water that papyrus wetlands are able to store during different hydrologic regimes, or how the papyrus wetland stage changes in response to changing precipitation and river discharge patterns. The research aims of this project are to improve our understanding of the functioning of the papyrus system, and how it is affected by climatic stresses. This will be done by analysing the response of papyrus wetland (water levels and inundation extent) to changes in precipitation amounts and intensities in the catchment during the dry and wet seasons. Further, we aim to examine whether there is a precipitation threshold at which the functioning of the papyrus wetland system is compromised, and the influence of local precipitation patterns versus patterns of the wider catchment area. We will use wetland stage data, precipitation data from a local weather station, as well as remote sensing data (MODIS time series) to monitor changes in water level and inundation in the different seasons. We will then simulate papyrus wetland responses to projected climate changes within the catchment, and assess their potential for flood control within the catchment.

  13. Electronic Services Monthly MI Report

    Data.gov (United States)

    Social Security Administration — This electronic services monthly MI report contains monthly MI data for most public facing online online applications such as iClaim, electronic access, Mobile wage...

  14. Estimating Monthly Rainfall from Geostationary Satellite Imagery Over Amazonia, Brazil.

    Science.gov (United States)

    Cutrim, Elen Maria Camara

    The infrared regression and the grid-history satellite rainfall estimating techniques were utilized to estimate monthly rainfall in Amazonia during one month of the rainy season (March, 1980) and one month of the dry season (September, 1980). The estimates were based on 3-hourly SMS-II infrared and visible images. Three sets of coefficients for the grid history method (Marajo, Arabian Sea, and GATE) were used to estimate rainfall. The estimated rain was compared with gauge measurements over the region. The infrared regression technique overestimated by a factor of 1.5. The Marajo coefficients yielded the best estimate, especially for eastern Amazonia. In the wet month Marajo coefficients overestimated rain by 10% and in the dry month by 70%. The Arabian Sea coefficients overestimated rain and the GATE coefficients slightly underestimated rain for Amazonia. Two maps of monthly rainfall over Amazonia were constructed for March and September, 1980, combining the ground station and satellite inferred rainfall of the grid history method using the Marajo coefficients. The satellite observations and ground data were mutually compatible and were contourable on these final, composite maps. Monthly rainfall was found to be much more inhomogeneous than previously reported. In March there was a belt of high precipitation trending southwest, with higher values and sharpest gradients in the coastal area. The upper Amazon was also an area of high precipitation, both north and south of the equator. In Roraima rainfall decreased drastically to the north. In September, the area of highest precipitation was the northwestern part of Amazonas State (northern hemisphere). Rainfall elsewhere was very localized and in northeastern Amazonia varied from 0 to 150 mm. Even though the grid history method presented better results for estimating rainfall over Amazonia, the IR model could be utilized more efficiently and economically on an operational basis if the calibration were properly made

  15. Retrieving latent heating vertical structure from cloud and precipitation Profiles—Part I: Warm rain processes

    Science.gov (United States)

    Min, Qilong; Li, Rui; Wu, Xiaoqing; Fu, Yunfei

    2013-06-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages of hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water. Specifically, rain events are segregated into three rain types: warm, convective, and stratiform, based on their dynamical and thermodynamical characteristics. As the first of the series, only the warm rain LH algorithm is presented and evaluated here. The major microphysical processes of condensation and evaporation for warm rain are parameterized through traditional rain growth theory, with the aid of Cloud Resolving Model (CRM) simulations. The evaluation or the self-consistency tests indicate that the physical based retrievals capture the fundamental LH processes associated with the warm rain life cycle. There is no significant systematic bias in terms of convection strength, illustrated by the month-long CRM simulation as the mesoscale convective systems (MCSs) experience from initial, mature, to decay stages. The overall monthly-mean LH comparison showed that the total LH, as well as condensation heating and evaporation cooling components, agree with the CRM simulation.

  16. Features of cross-Pacific climate shown in the variability of China and US precipitation

    Science.gov (United States)

    Li, Q.; Yang, S.; Kousky, V. E.; Higgins, R. W.; Lau, K.-M.; Xie, P.

    2005-11-01

    In this study, we have analyzed the climate features of China and the United States with a focus on the differences, similarities, connectivity, and predictability of precipitation and the relationships between precipitation and large-scale patterns of natural variability. China precipitation is characterized by large seasonality, with a maximum in summer and a minimum in winter. The seasonality of precipitation shows an increasing linear tendency in northwest China, with a change of about 20% from 1901 to 1998. A relatively weaker increasing tendency also appears in the Big Bend of Yellow River (BBYR) and the Tibetan Plateau, while southwest China experiences a decreasing tendency. Furthermore, the seasonality in the BBYR shows particularly significant interdecadal variability, while that of southern and eastern China has decreased slightly in the recent decades.Compared to China, the United States as a whole has less precipitation in summer but more precipitation in other seasons. Here, the seasonality of precipitation is only about 24% of that in China. The annual mean precipitation is 64.1 mm per month in the United States, compared to 54.6 mm per month in China. The seasonality of precipitation exhibits a decreasing tendency in the southeast, Pacific Northwest, and Gulf Coast and an increasing tendency in the Great Lakes. The seasonality in the Great Plains exhibits large interdecadal variability.The long-term variations of precipitation are highly seasonally dependent. In summer, a decreasing trend is observed in north China and an increasing trend is found in eastern-central China. However, these trends are almost opposite in spring. In addition, the fall precipitation decreases with time nearly everywhere in China except for the middle and lower reaches of the Yangtze River Valley.Results also indicate that the El Niño/Southern Oscillation (ENSO), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and

  17. Method for seasonal precipitation reconstruction derived from snow and rainfall archives in Qing Dynasty:A case study in Shijiazhuang

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jingyun; HAO Zhixin; GE Quansheng

    2004-01-01

    Two methods to reconstruct seasonal precipitation are developed in terms of the soil surface water balance and field infiltration experiment by artificial rainfall. Seasonal and annual precipitation for the period of 1736~1910 are reconstructed from snow and rainfall archives in the Qing Dynasty through both methods. The seasonal precipitation series from 1736 to 2000 is also established. The results show that the time series of seasonal precipitation obtained from both methods are statistically significant and consistent, implying that the seasonal precipitation can be reconstructed accurately from snow and rainfall archives in the Qing Dynasty by the above two methods, and thus the Chinese precipitation data in a large area would be extended to the early 18th century from 20th century (instrumental observation period).

  18. Your Baby's Growth: 3 Months

    Science.gov (United States)

    ... to Be Smart About Social Media Your Baby's Growth: 3 Months KidsHealth > For Parents > Your Baby's Growth: 3 Months Print A A A What's in ... months of life are a period of rapid growth. Your baby will gain about 1 to 1½ ...

  19. Monthly energy review, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Monthly Energy Review for the month of August 1997, presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors.

  20. Periodicities of hail precipitation in France

    Science.gov (United States)

    Hermida, Lucía; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Hierro, Rodrigo; Wu, Xueke; García-Ortega, Eduardo

    2013-04-01

    The wavelet analysis is a powerful tool appropriated for studying multiscale and non-stationary processes that occur in finite spatial and temporal domains. Its development began with Morlet and, since then, the wavelet transform (WT) has had better applications in Geophysics. However, the characterization of hail precipitation is not exempt from difficulty, since it deals with phenomenon on a small scale, with elevated spatial and temporal variation. The extreme variability of the frequency and distribution of hail is attributed, among other things, to the same process of its formation. The conditions that influence hail formation span from air masses climatology to lower-scale factors such as orography, wind fields, concentration of ice nuclei or temperature. This last factor is important both from a point of view of convective activity as well as its influence in the height of the freezing point. Thus, it would be possible to do comparative analysis between time series of temperature and diverse hail variables; or, rather, to try to establish a relationship between periodicities found and phenomenon such as ENSO (El Niño, Southern Oscillation) or NAO (North-Atlantic Oscillation). France is one of the European countries that is most affected by hail precipitation. Previous climatic studies have been done with the objective of characterizing the long-term variability of distinct variables of this hydrometeor that is present in the time series. These measurements are obtained using networks of hailpads distributed in French territory and managed by ANELFA. Berthet et al. (2011) observed the annual hail frequency in France, finding successions of three years with high values followed by three years of low values; this being calculated as the number of hailfalls per year divided by the number of hailpad stations that were in use during said year. In the present paper, a wavelet analysis was carried out with the objective of detecting the possible existence of

  1. Extreme value theory applied to the standardized precipitation index - doi: 10.4025/actascitechnol.v36i1.17475

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2014-01-01

    Full Text Available The Standardized Precipitation Index (SPI is a mathematical algorithm developed for detecting and characterizing precipitation departures with regard to an expected regional climate condition. Thus, this study aimed to verify the possibility of using the time-independent general extreme value distribution (GEV for modeling the probability of occurrence of both SPI annual maxima (the maximum monthly SPI value; SPImax and SPI annual minima (the minimum monthly SPI value; SPImim obtained from the weather station of Campinas, State of São Paulo, Brazil (1891-2011 and to evaluate the presence of trends, temporal persistence and periodical components in these two datasets. The goodness-of-fit tests used in this study quantify the agreement between the empirical cumulative distribution and the GEV cumulative function. Our results have indicated that such parametric function can be used to assess the probability of occurrence of SPImin and SPImax values. No significant serial correlation and no trend were detected in both series. For the SPImim, the wavelet analysis has detected a dominant mode in the 4-8 year band. Future studies should focus on the development of a GEV model capable of accounting for such feature. No dominant mode was found for the annual monthly SPI maximums.

  2. Monthly Water Balance Model Hydrology Futures

    Science.gov (United States)

    Bock, Andy; Hay, Lauren E.; Markstrom, Steven; Atkinson, R. Dwight

    2016-01-01

    A monthly water balance model (MWBM) was driven with precipitation and temperature using a station-based dataset for current conditions (1950 to 2010) and selected statistically-downscaled general circulation models (GCMs) for current and future conditions (1950 to 2099) across the conterminous United States (CONUS) using hydrologic response units from the Geospatial Fabric for National Hydrologic Modeling (http://dx.doi.org/doi:10.5066/F7542KMD). Six MWBM output variables (actual evapotranspiration (AET), potential evapotranspiration (PET), runoff (RO), streamflow (STRM), soil moisture storage (SOIL), and snow water equivalent (SWE)) and the two MWBM input variables (atmospheric temperature (TAVE) and precipitation (PPT)) were summarized for hydrologic response units and aggregated at points of interest on a stream network. Results were then organized into the Monthly Water Balance Hydrology Futures database, an open-access database using netCDF format (http://cida-eros-mows1.er.usgs.gov/thredds/dodsC/nwb_pub/).  Methods used to calibrate and parameterize the MWBM are detailed in the Hydrology and Earth System Sciences (HESS)  paper "Parameter regionalization of a monthly water balance model for the conterminous United States" by Bock and others (2016).  See the discussion paper link in the "Related External Resources" section for access.  Supplemental data files related to the plots and data analysis in Bock and others (2016) can be found in the HESS-2015-325.zip folder in the "Attached Files" section.  Detailed information on the files and data can be found in the ReadMe.txt contained within the zipped folder. Recommended citation of discussion paper:Bock, A.R., Hay, L.E., McCabe, G.J., Markstrom, S.L., and Atkinson, R.D., 2016, Parameter regionalization of a monthly water balance model for the conterminous United States: Hydrology and Earth System Sciences, v. 20, 2861-2876, doi:10.5194/hess-20-2861-2016, 2016

  3. Monthly streamflow forecasting in the Rhine basin

    Science.gov (United States)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2017-04-01

    Forecasting seasonal streamflow of the Rhine river is of societal relevance as the Rhine is an important water way and water resource in Western Europe. The present study investigates the predictability of monthly mean streamflow at lead times of zero, one, and two months with the focus on potential benefits by the integration of seasonal climate predictions. Specifically, we use seasonal predictions of precipitation and surface air temperature released by the European Centre for Medium-Range Weather Forecasts (ECMWF) for a regression analysis. In order to disentangle forecast uncertainty, the 'Reverse Ensemble Streamflow Prediction' framework is adapted here to the context of regression: By using appropriate subsets of predictors the regression model is constrained to either the initial conditions, the meteorological forcing, or both. An operational application is mimicked by equipping the model with the seasonal climate predictions provided by ECMWF. Finally, to mitigate the spatial aggregation of the meteorological fields the model is also applied at the subcatchment scale, and the resulting predictions are combined afterwards. The hindcast experiment is carried out for the period 1982-2011 in cross validation mode at two gauging stations, namely the Rhine at Lobith and Basel. The results show that monthly forecasts are skillful with respect to climatology only at zero lead time. In addition, at zero lead time the integration of seasonal climate predictions decreases the mean absolute error by 5 to 10 percentage compared to forecasts which are solely based on initial conditions. This reduction most likely is induced by the seasonal prediction of precipitation and not air temperature. The study is completed by bench marking the regression model with runoff simulations from ECMWFs seasonal forecast system. By simply using basin averages followed by a linear bias correction, these runoff simulations translate well to monthly streamflow. Though the regression model

  4. A global survey on the seasonal variation of the marginal distribution of daily precipitation

    Science.gov (United States)

    Papalexiou, Simon Michael; Koutsoyiannis, Demetris

    2016-08-01

    To characterize the seasonal variation of the marginal distribution of daily precipitation, it is important to find which statistical characteristics of daily precipitation actually vary the most from month-to-month and which could be regarded to be invariant. Relevant to the latter issue is the question whether there is a single model capable to describe effectively the nonzero daily precipitation for every month worldwide. To study these questions we introduce and apply a novel test for seasonal variation (SV-Test) and explore the performance of two flexible distributions in a massive analysis of approximately 170,000 monthly daily precipitation records at more than 14,000 stations from all over the globe. The analysis indicates that: (a) the shape characteristics of the marginal distribution of daily precipitation, generally, vary over the months, (b) commonly used distributions such as the Exponential, Gamma, Weibull, Lognormal, and the Pareto, are incapable to describe "universally" the daily precipitation, (c) exponential-tail distributions like the Exponential, mixed Exponentials or the Gamma can severely underestimate the magnitude of extreme events and thus may be a wrong choice, and (d) the Burr type XII and the Generalized Gamma distributions are two good models, with the latter performing exceptionally well.

  5. Precipitations and floods in the central Iberian Peninsula in the late 16th century

    Science.gov (United States)

    Bullón, T.

    2010-09-01

    Palace General Archive, Simancas General Archive, and the archives of Madrid, Torrelaguna and Arganda townships. The work consisted of obtaining significant climate and hydrology data from the documents and was implemented in three phases: interpretation of the qualitative data, its quantification, and a statistical analysis. Numerical indexes were used to convert qualitative information to numbers for statistical purposes, which facilitated the consolidation and comprehension of data from very disperse sources. The data were organized into three groups (precipitation, droughts and river floods), which were analyzed separately. Series were constructed for the intensity of the precipitation, the droughts and the flooding according to month, season, and year. The qualitative data was converted to numerical values using indexes for intensity/duration for precipitation, and intensity/frequency for floods, while the statistical analysis took into account each of the series obtained and the relationships among them. The seasonal analysis was based on yearly and seasonal data, and particularly the values associated with the spring season

  6. How often precipitation records break?

    Science.gov (United States)

    Papalexiou, Simon Michael; Oikonomou, Maria; Floutsakou, Athina; Bessas, Nikolaos; Mamassis, Nikos

    2016-04-01

    How often precipitation records break? Are there any factors that determine the average time needed for the next maximum to occur? In order to investigate these simple questions we use several hundreds of daily precipitation records (more than 100 years long each) and we study the time intervals between each successive maximum precipitation value. We investigate if the record breaking time interval is related (a) to the autocorrelation structure, (b) to probability dry, and (c) to the tail of the marginal distribution. For the last, we first, evaluate which type of tail is better fitted by choosing among three general types of tails corresponding to the distributions Pareto, Lognormal and Weibull; and second, we assess the heaviness of the tail based on the estimated shape parameter. The performance of each tail is evaluated in terms of return period values, i.e., we compare the empirical return periods of precipitation values above a threshold with the predicted ones by each of the three types of fitted tails.

  7. Experimental study of brushite precipitation

    Science.gov (United States)

    Arifuzzaman, S. M.; Rohani, S.

    2004-07-01

    A systematic approach was developed for the synthesis of orthophosphates in the laboratory. A set of experiments was designed to investigate the influence of initial calcium and phosphorus concentration on the precipitated phase, nucleation pH and product size distribution at 25°C. Another goal was to characterize the precipitated phase. The investigation was conducted in a batch reactor. The initial molar concentration of calcium chloride and hydrated sodium phosphate solutions was varied from 0.005 to 0.08-mole dm -3 and the solution pH was kept under 7.1. Analysis by powder XRD, FTIR and elemental P/Ca revealed that the crystals precipitated were pure brushite (dicalcium phosphate dihydrate), as expected, except in one experiment in which amorphous calcium phosphate precipitated. The brushite crystals produced had plate-like morphology as investigated by scanning electron microscopy (SEM). The nucleation pH showed a decreasing trend as the concentration of the calcium and phosphorus increased in the reactor, but the volume mean diameter of the crystals and the span of the crystal size distribution did not show any sensitivity to the changes in the initial calcium and phosphorus concentration.

  8. Electrostatic Precipitator (ESP) TRAINING MANUAL

    Science.gov (United States)

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  9. Grassland responses to precipitation extremes

    Science.gov (United States)

    Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...

  10. Influence of Climate Oscillations on Extreme Precipitation in Texas

    Science.gov (United States)

    Bhatia, N.; Singh, V. P.; Srivastav, R. K.

    2016-12-01

    Much research in the field of hydroclimatology is focusing on the impact of climate variability on hydrologic extremes. Recent studies show that the unique geographical location and the enormous areal extent, coupled with extensive variations in climate oscillations, have intensified the regional hydrologic cycle of Texas. The state-wide extreme precipitation events can actually be attributed to sea-surface pressure and temperature anomalies, such as Bermuda High and Jet Streams, which are further triggered by such climate oscillations. This study aims to quantify the impact of five major Atlantic and Pacific Ocean related climate oscillations: (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI), on extreme precipitation in Texas. Their respective effects will be determined for both climate divisions delineated by the National Climatic Data Centre (NCDC) and climate regions defined by the Köppen Climate Classification System. This study will adopt a weighted correlation approach to attain the robust correlation coefficients while addressing the regionally variable data outliers for extreme precipitation. Further, the variation of robust correlation coefficients across Texas is found to be related to the station elevation, historical average temperature, and total precipitation in the months of extremes. The research will shed light on the relationship between precipitation extremes and climate variability, thus aiding regional water boards in planning, designing, and managing the respective systems as per the future climate change.

  11. The Effects of Dominant Driving Forces on Summer Precipitation during Different Periods in Beijing

    Directory of Open Access Journals (Sweden)

    Fuxing Li

    2017-02-01

    Full Text Available Wavelet analysis methods (CWT, XWT, WTC were employed to evaluate the impact of dominant climatic driving factors on summer precipitation in the Beijing area based on monthly precipitation data of Beijing ranging from 1880 to 2014. The two climatic driving factors, i.e., the East Asian summer monsoon (EASM and the Northern Limit of Western Pacific Subtropical High (NWPSH were considered in particular. The relationships between summer precipitation and EASM/NWPSH were also examined. The results revealed similar periods in low-frequency oscillation (76–95 years and mid-range frequency oscillation (32–60 years for the summer precipitation in the Beijing area and EASM/NWPSH. The summer precipitation correlated positively with the NWPSH and EASM, especially for periods of 43 years and 33 years, respectively. This indicates that summer precipitation during 1880–1960 and during the years after 1960 was significantly affected by NWPSH and EASM, respectively. Based on the periodic change of 33 years for both summer precipitation and EASM, heavy precipitation can be expected to occur again in Beijing at approximately 2026. Understanding the relationships between summer precipitation and climatic factors is of significant importance for precipitation predictions and water resource variations in the Beijing area.

  12. Simulation of extreme precipitation over the Yangtze River Basin using Wakeby distribution

    Science.gov (United States)

    Su, Buda; Kundzewicz, Zbigniew W.; Jiang, Tong

    2009-05-01

    Based on the daily observational precipitation data at 147 stations in the Yangtze River Basin during 1960-2005 and projected daily data of 79 grid cells from the ECHAM5/ MPI-OM model in the 20th and 21st century, time series of precipitation extremes which contain AM (Annual Maximum) and MI (Munger Index) are constructed. The distribution feature of precipitation extremes is analyzed based on the two index series. Three principal results were obtained, as stated in the sequel. (i) In the past half century, the intensity of extreme heavy precipitation and drought events was higher in the mid-lower Yangtze than in the upper Yangtze reaches. Although the ECHAM5 model still can’t capture the precipitation extremes over the Yangtze River Basin satisfactorily, spatial pattern of the observed and the simulated precipitation extremes are much similar to each other. (ii) For quantifying the characteristics of extremely high and extremely low precipitation over the Yangtze River Basin, four probability distributions are used, namely: General Extreme Value (GEV), General Pareto (GPA), General Logistic (GLO), and Wakeby (WAK). It was found that WAK can adequately describe the probability distribution of precipitation extremes calculated from both observational and projected data. (iii) Return period of precipitation extremes show spatially different changes under three greenhouse gas emission scenarios. The 50-year heavy precipitation and drought events from simulated data during 1951-2000 will become more frequent, with return period below 25 years, for the most mid-lower Yangtze region in 2001-2050. The changing character of return periods of precipitation extremes should be taken into account for the hydrological design and future water resources management.

  13. Trends in Precipitation Extremes over Southeast Asia

    Science.gov (United States)

    Endo, N.; Matsumoto, J.

    2010-12-01

    Trends in precipitation extremes were examined using daily precipitation data from Southeast Asian countries during 1950's to 2000's. Number of wet day, defined by a day with daily precipitation exceeding 1 mm, tends to decrease over these countries, while average precipitation intensity of wet day shows an increasing trend. Heavy precipitation indices, which are defined by precipitation amount and percentile, demonstrate that the number of stations with significant upward trend is larger than that with significant downward trend. Heavy precipitation increases in southern Vietnam, northern part of Myanmar, and the Visayas and Luzon Islands in the Philippines, while heavy precipitation decreases in northern Vietnam. Annual maximum number of consecutive dry days decreases in the region where winter monsoon precipitation dominates. Prolongation of the dry season is suggested in Myanmar.

  14. Validation of a homogeneous 41-year (1961-2001) winter precipitation hindcasted dataset over the Iberian Peninsula: assessment of the regional improvement of global reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sotillo, M.G. [Area de Medio Fisico, Puertos del Estado, Madrid (Spain); Martin, M.L. [Universidad de Valladolid, Dpto. Matematica Aplicada, Escuela Universitaria de Informatica, Campus de Segovia, Segovia (Spain); Valero, F. [Universidad Complutense de Madrid, Dpto. Astrofisica y CC. de la Atmosfera, Facultad de CC Fisicas, Madrid (Spain); Luna, M.Y. [Instituto Nacional de Meteorologia, Madrid (Spain)

    2006-11-15

    A 44-year (1958-2001) homogeneous, Mediterranean, high-resolution atmospheric database was generated through dynamical downscaling within the HIPOCAS (Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe) Project framework. This work attempts to provide a validation of the monthly winter HIPOCAS precipitation over the Iberian Peninsula and the Balearic Islands and to evaluate the potential improvement of these new hindcasted data versus global reanalysis datasets. The validation was performed through the comparative analysis with a precipitation database derived from 4,617 in situ stations located over Iberia and the Balearics. The statistical comparative analysis between the observed and the HIPOCAS fields highlights their very good agreement not only in terms of spatial and time distribution, but also in terms of total amount of precipitation. A principal component analysis is carried out, showing that the patterns derived from the HIPOCAS data largely capture the main characteristics of the observed field. Moreover, it is worth to note that the HIPOCAS patterns reproduce accurately the observed regional characteristics linked to the main orographic features of the study domain. The existence of high correlations between the hindcasted and observed principal component time series gives a measure of the model performance ability. An additional comparative study of the HIPOCAS winter precipitation with global reanalysis data (NCEP and ERA) is performed. This study reveals the important regional improvement in the characterization of the observed precipitation introduced by the HIPOCAS hindcast relative to the above global reanalyses. Such improvement is effective not only in terms of total amount values, but also in the spatial distribution, the observed field being much more realistically reproduced by HIPOCAS than by the global reanalysis data. (orig.)

  15. Verification of high resolution simulation of precipitation and wind in Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Demand of energy and freshwater continues to grow as the global population and demands increase. Precipitation feed the freshwater ecosystems which provides a wealth of goods and services for society and river flow to sustain native species and natural ecosystem functions. The adoption of the wind and hydro-electric power supplies will sustain energy demands/services without restricting the economic growth and accelerated policies scenarios. However, the international meteorological observation network is not sufficiently dense to directly support high resolution climatic research. In this sense, coupled global and regional atmospheric models constitute the most appropriate physical and numerical tool for weather forecasting and downscaling in high resolution grids with the capacity to solve problems resulting from the lack of observed data and measuring errors. Thus, this study aims to calibrate and validate of the WRF regional model from precipitation and wind fields simulation, in high spatial resolution grid cover in Portugal. The simulations were performed in two-way nesting with three grids of increasing resolution (60 km, 20 km and 5 km) and the model performance assessed for the summer and winter months (January and July), using input variables from two different reanalyses and forecasted databases (ERA-Interim and NCEP-FNL) and different forcing schemes. The verification procedure included: (i) the use of several statistics error estimators, correlation based measures and relative errors descriptors; and, (ii) an observed dataset composed by time series of hourly precipitation, wind speed and direction provided by the Portuguese meteorological institute for a comprehensive set of weather stations. Main results suggested the good ability of the WRF to: (i) reproduce the spatial patterns of the mean and total observed fields; (ii) with relatively small values of bias and other errors; and, (iii) and good temporal correlation. These findings are in good

  16. From precipitation to runoff: Climatic controls on discharge variability

    Science.gov (United States)

    Rossi, M. W.; Whipple, K. X.; Vivoni, E. R.

    2012-12-01

    A number of recent studies have stressed the importance of modeling stochastic distributions of flood magnitudes along with thresholds to incision in order to develop more robust predictions of climatic control on fluvial erosion. Some of these studies have used precipitation time-series and others have used discharge time-series to characterize the climate state. While discharge is more directly tied to incision process, precipitation records are generally of longer duration and are more widely available. However, before fluvial incision models can benefit from the wealth of global precipitation data, better understanding of the non-linear transformation from precipitation to runoff is needed. There are a number of possible explanations for this non-linearity that can be broadly characterized into: (1) the statistical structure of precipitation itself (e.g. the autocorrelation of precipitation events); (2) the mediation of rainfall to runoff by the soil water balance (e.g. the role of soil properties and vegetation); and (3) the spatial organization of channel networks. While progress is needed on each of these fronts, we choose to first focus on (1) by examining the statistics of mean daily storm depth, storm frequency, and runoff for the continental U.S. The continental U.S. provides a good setting to explore this issue because it exhibits a wide range of climates (dry to humid; cold to hot; winter-dominated to summer-dominated precipitation) and has a dense observation network for both precipitation and discharge. Specifically, we rely on the United States Historical Climatology Network (USHCN) for meteorological data (1,221 stations) and the Hydro-Climatic Data Network-2009 (HCDN-2009) for hydrological data (704 stations). Stations in these networks have been selected to best reflect the "natural" state by maximizing record length/completeness and minimizing anthropogenic influence. Whereas precipitation is commonly modeled as a Poisson process (i.e. an

  17. Spatio-temporal variability of several eco-precipitation indicators in China

    Science.gov (United States)

    Guo, B. B.; Zhang, J.; Wang, F.

    2016-12-01

    Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of

  18. Summation of series

    CERN Document Server

    Jolley, LB W

    2004-01-01

    Over 1,100 common series, all grouped for easy reference. Arranged by category, these series include arithmetical and geometrical progressions, powers and products of natural numbers, figurate and polygonal numbers, inverse natural numbers, exponential and logarithmic series, binomials, simple inverse products, factorials, trigonometrical and hyperbolic expansions, and additional series. 1961 edition.

  19. Adjusted Monthly Precipitation, Snowfall and Rainfall for Canada (1874-1990)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was distributed by NSIDC until October, 2003, when it was withdrawn from distribution because it duplicates the NOAA National Climatic Data Center...

  20. Variability of multifractal parameters in an urban precipitation monitoring network

    Science.gov (United States)

    Licznar, Paweł; De Michele, Carlo; Dżugaj, Dagmara; Niesobska, Maria

    2014-05-01

    Precipitation especially over urban areas is considered a highly non-linear process, with wide variability over a broad range of temporal and spatial scales. Despite obvious limitations of rainfall gauges location at urban sites, rainfall monitoring by gauge networks is a standard solution of urban hydrology. Often urban precipitation gauge networks are formed by modern electronic gauges and connected to control units of centralized urban drainage systems. Precipitation data, recorded online through these gauge networks, are used in so called Real-Time-Control (RTC) systems for the development of optimal strategies of urban drainage outflows management. As a matter of fact, the operation of RTC systems is motivated mainly by the urge of reducing the severity of urban floods and combined sewerage overflows, but at the same time, it creates new valuable precipitation data sources. The variability of precipitation process could be achieved by investigating multifractal behavior displayed by the temporal structure of precipitation data. There are multiply scientific communications concerning multifractal properties of point-rainfall data from different worldwide locations. However, very little is known about the close variability of multifractal parameters among closely located gauges, at the distances of single kilometers. Having this in mind, here we assess the variability of multifractal parameters among gauges of the urban precipitation monitoring network in Warsaw, Poland. We base our analysis on the set of 1-minute rainfall time series recorded in the period 2008-2011 by 25 electronic weighing type gauges deployed around the city by the Municipal Water Supply and Sewerage Company in Warsaw as a part of local RTC system. The presence of scale invariance and multifractal properties in the precipitation process was investigated with spectral analysis, functional box counting method and studying the probability distributions and statistical moments of the rainfall

  1. Niobium carbide precipitation in microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, C.; Hulka, K. [Niobium Products Co. GmbH, Duesseldorf (Germany); Bleck, W. [Inst. for Ferrous Metallurgy, RWTH Aachen Univ., Aachen (Germany)

    2004-11-01

    The precipitation of niobium carbo-nitrides in the austenite phase, interphase and ferrite phase of microalloyed steel was assessed by a critical literature review and a round table discussion. This work analyses the contribution of niobium carbide precipitates formed in ferrite in the precipitation hardening of commercially hot rolled strip. Thermodynamics and kinetics of niobium carbo-nitride precipitation as well as the effect of deformation and temperature on the precipitation kinetics are discussed in various examples to determine the amount of niobium in solid solution that will be available for precipitation hardening after thermomechanical rolling in the austenite phase and successive phase transformation. (orig.)

  2. The MAP3S Precipitation Chemistry Network: Data and quality control summary for 1986 and 1987

    Energy Technology Data Exchange (ETDEWEB)

    Dana, M.T.; Barchet, W.R.

    1989-05-01

    This report, the tenth in a series documenting results from the MAP3S Precipitation Chemistry Network, contains a statistical summary of daily precipitation chemistry data from the nine-site network in the eastern United States, both for the years 1986 and 1987 individually and for the period 1977 through 1987. In addition, external quality assurance results for 1986 and 1987 are summarized. 17 refs., 21 figs., 20 tabs.

  3. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China

    Science.gov (United States)

    Ye, Baisheng; Yang, Daqing; Ma, Lijuan

    2012-06-01

    This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959-2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increa