WorldWideScience

Sample records for monthly energy demand

  1. Energy Demand

    NARCIS (Netherlands)

    Stehfest, E. et al.

    2014-01-01

    Key policy issues – How will energy demand evolve particularly in emerging and medium- and low- income economies? – What is the mix of end-use energy carriers to meet future energy demand? – How can energy efficiency contribute to reducing the growth rate of energy demand and mitigate pressures on t

  2. Temperature Effect on Energy Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Duk [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    We provide various estimates of temperature effect for accommodating seasonality in energy demand, particularly natural gas demand. We exploit temperature response and monthly temperature distribution to estimate the temperature effect on natural gas demand. Both local and global smoothed temperature responses are estimated from empirical relationship between hourly temperature and hourly energy consumption data during the sample period (1990 - 1996). Monthly temperature distribution estimates are obtained by kernel density estimation from temperature dispersion within a month. We integrate temperature response and monthly temperature density over all the temperatures in the sample period to estimate temperature effect on energy demand. Then, estimates of temperature effect are compared between global and local smoothing methods. (author). 15 refs., 14 figs., 2 tabs.

  3. Intelligent energy demand forecasting

    CERN Document Server

    Hong, Wei-Chiang

    2013-01-01

    This book offers approaches and methods to calculate optimal electric energy allocation, using evolutionary algorithms and intelligent analytical tools to improve the accuracy of demand forecasting. Focuses on improving the drawbacks of existing algorithms.

  4. Monthly Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-28

    This publication presents an overview of the Energy information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief ``energy plugs`` (reviews of EIA publications) are included, as well.

  5. Monthly energy review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document presents an overview of the Energy Information Administration`s (EIA) recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors.

  6. Impact of Energy Demands

    Science.gov (United States)

    Cambel, Ali B.

    1970-01-01

    The types of pollutants associated with the process of power production are identified. A nine-point proposal is presented on the ways the increase in power demands might be achieved with the minimum threat to the environment. (PR)

  7. Monthly Energy Review, July 1992

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-07-27

    The Monthly Energy Review is prepared by the Energy Information Administration. Topics discussed include: Energy Overview, Energy Consumption, Petroleum, Natural Gas, Oil and Gas Resource Development, Coal, Electricity, Nuclear Energy, Energy Prices, International Energy. (VC)

  8. Visualisation turns down energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Ole Michael [Danish Building and Urban Research, Hoersholm (Denmark)

    2003-07-01

    After many energy saving campaigns, Danish families give the impression that they are conscious of energy consumption. Children have learned to turn off the light and adults to buy low-energy bulbs and household appliances. Questioned about their energy consumption and its fluctuations, the same people nevertheless confess to not really knowing. You pay your energy bill but pay no attention to the current consumption, or its level. Unlike other types of consumption, energy consumption is an almost invisible type of consumption. Nevertheless, as a secondary consumption it is much affected by primary consumption in the form of white goods, appliances, cars, food etc., the main purpose of which usually is visibility. This paper presents the result of an experiment to make the energy consumption visible. Meters in the flats showing actual electricity, heat and water consumption confront tenants with the consequences of their own behaviour. The experiment also investigates different set-ups concerning information and communication about energy consumption. Monthly consumption and levels of consumption compared within the neighbourhood are elements of this information. Also quarterly eco-accounting, with key-figures of consumption and environmental considerations like CO{sub 2} emission, are part of the information set-up. Within the first year of visualisation one case shows a 9% reduction of heat and a 22% reduction of electricity. The other cases seem to follow the same tendency. The philosophy of the experiment is that you must know your position in order to change it. You must know about the level of your own energy consumption in order to turn down energy demand. The visible meters are elements in 'Urban Ecological Renewal of a Housing Block' (Hedebygade Block) in a central district of Copenhagen.

  9. Monthly energy review, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Monthly Energy Review for the month of August 1997, presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors.

  10. Demand-Side Energy Management

    NARCIS (Netherlands)

    Molderink, Albert; Iniewski, K.

    2012-01-01

    Concerns about climate change, increasing energy prices and dependability of energy supply ask for drastic changes in the energy supply chain, but also in the current demand-supply philosophy. Current trends in energy consumptions result in an increasing and more fluctuating electricity usage, causi

  11. Monthly energy review, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-26

    This publication presents information for the month of August, 1993 on the following: Energy overview; energy consumption; petroleum; natural gas; oil and gas resource development; coal; electricity; nuclear energy; energy prices, and international energy.

  12. Monthly energy review, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-26

    This publication presents information for the month of August, 1993 on the following: Energy overview; energy consumption; petroleum; natural gas; oil and gas resource development; coal; electricity; nuclear energy; energy prices, and international energy.

  13. Monthly energy review, January 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents an overview of recent monthly energy statistics. Major activities covered include production, consumption, trade, stocks, and prices for fossil fuels, electricity, and nuclear energy.

  14. Monthly energy review, November 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 61 tabs.

  15. Monthly energy review, November 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 91 tabs.

  16. Monthly energy review, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 61 tabs.

  17. Monthly energy review, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 36 figs., 61 tabs.

  18. Monthly energy review, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 61 tabs.

  19. Monthly energy review, January 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 61 tabs.

  20. Monthly energy review, February 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 73 tabs.

  1. Monthly energy review, March 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs., 74 tabs.

  2. Monthly energy review, November 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 75 tabs.

  3. Monthly energy review, July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 37 figs. 73 tabs.

  4. Energy demand modeling for Uzbekistan

    Directory of Open Access Journals (Sweden)

    Bobur Khodjaev

    2012-05-01

    Full Text Available The paper is devoted to energy demand forecasting in Uzbekistan. Studies show that in spite of the abundant reserves of hydrocarbons, low energy efficiency can have an adverse impact on energy security in Uzbekistan in the future. Oil and gas are the main primary energy source and they ensure energy security of Uzbekistan. Energy demand forecasting is essential in order to develop an effective energy policy. Such forecast can be useful to plan oil and gas production volumes, to identify priorities for the industrial modernization and to create favorable conditions for sustainable economic development in the future. Author proposes model based on translog function for developing medium-and long-term development programs in energy sector and the modernization and technological re-equipment of industry.

  5. Monthly energy review, April 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Monthly Energy Review contains statistical data on the following: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. In addition, an energy overview is provided, and, for the April issue, Energy use and carbon emissions; Some international comparisons.

  6. Monthly energy review, December 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-22

    This document provides data on monthly energy use and fossil fuels. The following sections are included: Highlights: Emissions of greenhouse gases in the United States 1985--1990; Highlights: assessment of energy use in multibuilding facilities; energy overview; energy consumption; petroleum; natural gas; oil and gas resource development; coal; electricity; nuclear energy; energy prices; and international energy.

  7. Demand, Energy, and Power Factor

    Science.gov (United States)

    1994-08-01

    demand, but first, let’s talk some more about why electrical demand charges occur. Electric Load Leveling: 5 ** show flip chart of daily utility load (see...and cost savings for energy are available as a result of lowering demand. 3 ’~ show flip chart of block structure (see copy at end of script) Shown... flip chart (see copy at end of script) This is a graphical representation of real, apparent and reactive power in3 an AC circuit. Real power is the power

  8. Monthly energy review: April 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This monthly report presents an overview of energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. A section is also included on international energy. The feature paper which is included each month is entitled ``Energy equipment choices: Fuel costs and other determinants.`` 37 figs., 59 tabs.

  9. Monthly Energy Review, February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-26

    This monthly publication presents an overview of EIA`s recent monthly energy statistics, covering the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief descriptions (`energy plugs`) on two EIA publications are presented at the start.

  10. Energy demand and population change.

    Science.gov (United States)

    Allen, E L; Edmonds, J A

    1981-09-01

    During the post World War 2 years energy consumption has grown 136% while population grew about 51%; per capita consumption of energy expanded, therefore, about 60%. For a given population size, demographic changes mean an increase in energy needs; for instance the larger the group of retirement age people, the smaller their energy needs than are those for a younger group. Estimates indicate that by the year 2000 the energy impact will be toward higher per capita consumption with 60% of the population in the 19-61 age group of workers. Rising female labor force participation will increase the working group even more; it has also been found that income and energy grow at a proportional rate. The authors predict that gasoline consumption within the US will continue to rise with availability considering the larger number of female drivers and higher per capita incomes. The flow of illegal aliens (750,000/year) will have a major impact on income and will use greater amounts of energy than can be expected. A demographic change which will lower energy demands will be the slowdown of the rate of household formation caused by the falling number of young adults. The response of energy demand to price changes is small and slow but incomes play a larger role as does the number of personal automobiles and social changes affecting household formation. Households, commercial space, transportation, and industry are part of every demand analysis and population projections play a major role in determining these factors.

  11. Monthly energy review, August 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. 37 figs., 73 tabs.

  12. Monthly energy review, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public.

  13. Monthly energy review, November 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-24

    The Monthly Energy Review gives information on production, distribution, and consumption for various energy sources, e.g. petroleum, natural gas, oil, coal, electricity, and nuclear energy. Some data is also included on international energy sources and supplies, the import of petroleum products into the US and pricing and reserves data (as applicable) for the various sources of energy listed above.

  14. Monthly energy review, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-26

    The Monthly Energy Review gives information on production, distribution, and consumption for various energy sources, e.g. petroleum, natural gas, oil, coal, electricity, and nuclear energy. Some data is also included on international energy sources and supplies, the import of petroleum products into the US and pricing and reserves data (as applicable) for the various sources of energy listed above.

  15. Monthly energy review, June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-25

    The Monthly Energy Review provides an overview of the production, distribution, and consumption of energy derived from petroleum, natural gas, coal, electricity, and nuclear energy. It also discusses oil and gas resource development, energy prices, and issues relevant to international energy markets.

  16. Monthly energy review, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-26

    The Monthly Energy Review gives information on production, distribution, and consumption for various energy sources, e.g. petroleum, natural gas, oil, coal, electricity, and nuclear energy. Some data is also included on international energy sources and supplies, the import of petroleum products into the US and pricing and reserves data (as applicable) for the various sources of energy listed above.

  17. Monthly energy review, July 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This document presents an overview of recent monthly energy statistics. Activities covered include: U.S. production, consumption, trade, stock, and prices for petroleum, coal, natural gas, electricity, and nuclear energy.

  18. Monthly energy review, August 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report presents an overview of recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, coal, natural gas, electricity, and nuclear energy.

  19. Monthly energy review, April 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy data. A brief summary of the monthly and historical comparison data is provided in Section 1 of the report. A highlight section of the report provides an assessment of summer 1997 motor gasoline price increases.

  20. Monthly energy review, January 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This document presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum,natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal metric conversion factors.

  1. Monthly energy review, July 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document presents an overview of the recent monthly energy statistics from the Energy Information Administration (EIA). Statistical data covers activities of U.S. production, consumption, trade, stocks, and prices for fossil fuels , nuclear energy, and electricity. Also included are international energy and thermal and metric conversion factors.

  2. Monthly energy review, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. International energy and thermal and metric conversion factors are included.

  3. Monthly energy review, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-29

    The Monthly Energy Review provides information on production, distribution, consumption, prices, imports, and exports for the following US energy sources: petroleum; petroleum products; natural gas; coal; electricity; and nuclear energy. The section on international energy contains data for world crude oil production and consumption, petroleum stocks in OECD countries, and nuclear electricity gross generation.

  4. Monthly energy review, June 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the MER and in other EIA publications. 37 figs., 61 tabs.

  5. Monthly energy review, July 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the MER and in other EIA publications. 37 figs., 75 tabs.

  6. Energy supply and demand in California

    Science.gov (United States)

    Griffith, E. D.

    1978-01-01

    The author expresses his views on future energy demand on the west coast of the United States and how that energy demand translates into demand for major fuels. He identifies the major uncertainties in determining what future demands may be. The major supply options that are available to meet projected demands and the policy implications that flow from these options are discussed.

  7. Monthly energy review, December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-21

    This publication presents an overview of EIA`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. An energy preview of alternative fuel providers vehicle fleet surveys is included. The publication is intended for use by members of Congress, Federal and State agencies, energy analysts, and the general public.

  8. Monthly energy review, April 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report presents an overview of monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. International energy and thermal metric conversion factors are included.

  9. Monthly energy review, October 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This document presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Information is also provided for oil and gas resource development. International energy statistics are given for petroleum production, consumption, and stocks, and for nuclear electricity gross generation. 37 figs., 61 tabs.

  10. Monthly energy review, March 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Energy production during December 1997 totaled 5.9 quadrillion Btu, a 2.8 percent increase from the level of production during December 1996. Coal production increased 9.5 percent, natural gas production increased 3.9 percent, and production of crude oil and natural gas plant liquids decreased 1.1 percent. All other forms of energy production combined were down 6.9 percent from the level of production during December 1996.

  11. Monthly energy review, June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-26

    The Monthly Energy Review presents current data on production, consumption, stocks, imports, exports, and prices of the principal energy commodities in the United States. Also included are data on international production of crude oil, consumption of petroleum products, petroleum stocks, and production of electricity from nuclear-powered facilities.

  12. Monthly energy review, September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This publication presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Information is also provided on international energy, including petroleum production, consumption, and stocks and nuclear electricity gross generation. This issues provides a brief industry overview and a detailed analysis of the spring 1996 gasoline price runup, crude oil supply issues, U.S. crude oil imports, petroleum stocks, futures markets, refining cash margin trends, and the financial performance of U.S. refining and marketing firms. 37 figs., 73 tabs.

  13. Monthly Energy Review, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report presents an overview of recent monthly energy statistics. Energy production during November 1997 totaled 5.6 quadrillion Btu, a 0.3-percent decrease from the level of production during November 1996. Natural gas production increased 2.8 percent, production of crude oil and natural gas plant liquids decreased 1.7 percent, and coal production decreased 1.6 percent. All other forms of energy production combined were down 1.1 percent from the level of production during November 1996. Energy consumption during November 1997 totaled 7.5 quadrillion Btu, 0.1 percent above the level of consumption during November 1996. Consumption of natural gas increased 1.5 percent, consumption of coal fell 0.3 percent, while consumption of petroleum products decreased 0.2 percent. Consumption of all other forms of energy combined decreased 0.8 percent from the level 1 year earlier. Net imports of energy during November 1997 totaled 1.7 quadrillion Btu, 8.6 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 6.3 percent, and net imports of natural gas were up 1.2 percent. Net exports of coal fell 17.8 percent from the level in November 1996.

  14. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  15. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...

  16. Monthly energy review June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents data on energy consumption, fossil fuels imports, supply and disposition, energy prices, electricity, nuclear energy electricity production, and international energy production and consumption.

  17. Monthly energy review, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This is an overview of the February energy statistics by the Energy Information Administration. The contents of the report include an energy overview, US energy production, energy consumption, trade stocks and prices for petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 73 tabs.

  18. Monthly energy review, January 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This is an overview of the January energy statistics by the Energy Information Administration. The contents of the report include an energy overview, US energy production, energy consumption, trade stocks and prices for petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 47 figs., 71 tabs.

  19. Minimum Energy Demand Locomotion on Space Station

    Directory of Open Access Journals (Sweden)

    Wing Kwong Chung

    2013-01-01

    Full Text Available The energy of a space station is a precious resource, and the minimization of energy consumption of a space manipulator is crucial to maintain its normal functionalities. This paper first presents novel gaits for space manipulators by equipping a new gripping mechanism. With the use of wheels locomotion, lower energy demand gaits can be achieved. With the use of the proposed gaits, we further develop a global path planning algorithm for space manipulators which can plan a moving path on a space station with a minimum total energy demand. Different from existing approaches, we emphasize both the use of the proposed low energy demand gaits and the gaits composition during the path planning process. To evaluate the performance of the proposed gaits and path planning algorithm, numerous simulations are performed. Results show that the energy demand of both the proposed gaits and the resultant moving path is also minimum.

  20. China's Energy Demand Growth Expected to Slow Down in 2005

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ China's energy consumption rises 15.1 percent China's energy consumption rose 15.1 percent in the first 11 months of 2004, boosted by strong demand from manufacturing industries, according to the reports from the Chinese news media. In the period from January to November, the country consumed a total of 1.95 trillion kilowatt hours.

  1. Strengthen Domestic Construction to Satisfy Energy Demand

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The energy issue is a common concern for all countries in the world and also a challenge to China, and Chinese government attaches great importance to the issue.China's demand for energy rises steadily with its fast economic growth. In face of energy resources shortages, China has to implement a twofold strategy on the energy issue: strenuously consolidating domestic resources construction, and rigorously enforcing energy-saving by improving public awareness of energy conservation.

  2. Monthly energy review, March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This is an overview of the March 1997 energy statistics by the Energy Information Administration. The Contents of the report include an update on the effects of Title IV of the Clean Air Act Amendments of 1990 on electric utilities, an energy overview, US energy production, energy consumption, trade stocks and prices for petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 60 tabs.

  3. Monthly energy review, May 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-24

    Energy production during Feb 95 totaled 5.4 quadrillion Btu (Q), 3.1% over Feb 94. Energy consumption totaled 7.4 Q, 0.7% below Feb 94. Net imports of energy totaled 1.3 Q, 5.6% below Feb 94. This publication is divided into energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy.

  4. Monthly energy review, October 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-25

    This is the June report by the Energy Information Administration. The contents of the report include an energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. Included are appendices containing thermal conversion factors, metric and other physical conversion factors, and carbon dioxide emission factors for coal.

  5. Monthly energy review, September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-25

    An ``energy snapshot`` article is included on housing characteristics in 1993 (survey of 7,111 households). The rest of the document is divided into: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, international energy, and appendices (conversion factors, CO2 emission factors from coal, index, glossary).

  6. Energy infrastructure: Mapping future electricity demand

    Science.gov (United States)

    Janetos, Anthony C.

    2016-08-01

    Electricity distribution system planners rely on estimations of future energy demand to build adequate supply, but these are complicated to achieve. An approach that combines spatially resolved projections of population movement and climate change offers a method for building better demand maps to mid-century.

  7. Elasticity of Energy Demand and Challenges for China's Energy Industry

    Institute of Scientific and Technical Information of China (English)

    Jason Zunsheng Yin; David Forrest Gates

    2006-01-01

    The rapid growth of energy demand, the lagging growth of energy production and rising pollution problems have raised concerns in several policy areas, including the availability and cost of energy supply and the possibility of further adverse impacts on the environment. This paper begins with an overview of recent developments in energy demand and supply in China.Using a traditional demand elasticity approach, it analyzes the elasticity of each of four major energy end uses and the potential for adjustments in their relationships. The paper concludes with suggestions for public policy to meet the challenge of growing energy demand and implications for the private sector, including both private and foreign investments.

  8. Monthly energy review, December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Sections of this report include the following: Energy overview; Energy consumption; Petroleum; Natural gas; Oil and gas resource development; Coal; Electricity; Nuclear energy; Energy prices; and International energy. Appendices contain thermal conversion factors, metric and other physical conversion factors, carbon dioxide emission factors for coal, list of feature articles that have appeared since 1994, and a glossary.

  9. Demand Response and Energy Storage Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Ookie Ma, Kerry Cheung

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  10. Addressing Energy Demand through Demand Response. International Experiences and Practices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ni, Chun Chun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dudley, Junqiao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Martin, Phil [Enernoc, Inc., Boston, MA (United States); Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  11. Monthly energy review, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    Two brief articles are presented: measuring dependence on imported oil; and preliminary estimates of household energy consumption and expenditures in 1993. Then statistical tables are presented: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. Appendices present thermal conversion factors, metric and other physical conversion factors, CO{sub 2} emission factors for coal, and listing of previous articles. A glossary is also included.

  12. Electricity Demand and Energy Consumption Management System

    CERN Document Server

    Sarmiento, Juan Ojeda

    2008-01-01

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  13. Monthly energy review, March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-28

    This publication presents statistical data on the following topics: Energy Consumption; Petroleum; Natural Gas; Oil and Gas Resource Development; Coal; Electricity; Nuclear Energy; Energy Prices; and International Energy. Appendices are included on: Thermal Conversion Factors; Metric and Other Physical Conversion Factors; Carbon Dioxide Emission Factors for Coal. A Glossary is included.

  14. Monthly energy review: September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

  15. Monthly energy review, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-25

    Energy production during February 1994 totaled 5.3 quadrillion Btu, a 2.2% increase over February 1993. Coal production increased 9%, natural gas rose 2.5%, and petroleum decreased 3.6%; all other forms of energy production combined were down 3%. Energy consumption during the same period totaled 7.5 quadrillion Btu, 4.1% above February 1993. Natural gas consumption increased 5.8%, petroleum 5.2%, and coal 2.3%; consumption of all other energy forms combined decreased 0.7%. Net imports of energy totaled 1.4 quadrillion Btu, 16.9% above February 1993; petroleum net imports increased 10.1%, natural gas net imports were down 4.9%, and coal net exports fell 43.7%. This document is divided into: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, international energy, appendices (conversion factors, etc.), and glossary.

  16. Industrial electricity demand and energy efficiency policy

    OpenAIRE

    Henriksson, Eva

    2010-01-01

    This dissertation consists of an introduction and five self-contained papers addressing the issues of industrial electricity demand and the role of energy efficiency policy. An important context for the study is the increased interest in so-called voluntary energy efficiency programs in which different types of tax exemptions are granted if the participating firms carry out energy efficiency measures following an energy audit. Paper 1 conceptually analyses the cost-effectiveness of voluntary ...

  17. Monthly energy review, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This is an overview of the May energy statistics by the Energy Information Administration. The contents of the report include an energy overview, US energy production, trade stocks and prices for petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. Energy production during February 1997 totaled 5.4 quadrillion Btu, a 1.9% decrease from the level of production during February 1996. Coal production increased 1.2%, natural gas production decreased 2.9%, and production of crude oil and natural gas plant liquids decreased 2.1%. All other forms of energy production combined were down 6.3% from the level of production during February 1996. Energy consumption during February 1997 totaled 7.5 quadrillion Btu, 4.0% below the level of consumption during February 1996. Consumption of petroleum products decreased 4.4%, consumption of natural gas was down 3.5%, and consumption of coal fell 2.2%. Consumption of all other forms of energy combined decreased 6.7% from the level 1 year earlier. Net imports of energy during February 1997 totaled 1.5 quadrillion Btu, 14.1% above the level of net imports 1 year earlier. Net imports of petroleum increased 12.7% and net imports of natural gas were up 7.4%. Net exports of coal fell 12.1% from the level in February 1996. 37 figs., 75 tabs.

  18. Energy demand projections for energy [r]evolution 2012

    OpenAIRE

    Graus, W.H.J.; Kermeli, K.

    2012-01-01

    In this study energy demand scenarios are developed for the 2012 update of the Greenpeace/EREC Energy [R]evolution scenario. These scenarios cover energy demand in the period 2009-2050 for ten world regions (OECD Europe, OECD Americas, OECD Asia Oceania, Eastern Europe/Eurasia, China, India, Other non-OECD Asia, Latin America, Africa and Middle East).

  19. Energy demand projections for energy [r]evolution 2012

    NARCIS (Netherlands)

    Graus, W.H.J.; Kermeli, K.

    2012-01-01

    In this study energy demand scenarios are developed for the 2012 update of the Greenpeace/EREC Energy [R]evolution scenario. These scenarios cover energy demand in the period 2009-2050 for ten world regions (OECD Europe, OECD Americas, OECD Asia Oceania, Eastern Europe/Eurasia, China, India, Other n

  20. Energy demand and emissions of the non-energy sector

    NARCIS (Netherlands)

    Daioglou, Vasileios; Faaij, Andre P. C.; Saygin, Deger; Patel, Martin K.; Wicke, Birka; van Vuuren, Detlef P.

    The demand for fossil fuels for non-energy purposes such as production of bulk chemicals is poorly understood. In this study we analyse data on non-energy demand and disaggregate it across key services or products. We construct a simulation model for the main products of non-energy use and project

  1. Monthly energy review, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This publication contains statistical information and data analysis of energy production and consumption within the major energy industries of petroleum, natural gas, coal, electricity, nuclear energy and oil and gas resource development. Energy production during October 1993 totaled 5.5-quadrillion Btu, a 3.0 percent decrease from the level of production during October 1992. Coal production decreased 5.6 percent, petroleum production decreased 3.4 percent, and natural gas production increased 1.9 percent. All other forms of energy production combined were down 6.0 percent from the level of production during October 1992. Energy consumption during October 1993 totaled 6.7 quadrillion Btu, 0.9 percent above the level of consumption during October 1992. Natural gas consumption increased 6.5 percent, coal consumption rose 2.9 percent, and petroleum consumption was down 1.3 percent. Consumption of all other forms of energy combined decreased 5.5 percent from the level of 1 year earlier.

  2. Monthly energy review, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This publication contains statistical information and data analysis of energy production and consumption within the major energy industries of petroleum, natural gas, coal, electricity, nuclear energy and oil and gas resource development. Energy production during October 1993 totaled 5.5-quadrillion Btu, a 3.0 percent decrease from the level of production during October 1992. Coal production decreased 5.6 percent, petroleum production decreased 3.4 percent, and natural gas production increased 1.9 percent. All other forms of energy production combined were down 6.0 percent from the level of production during October 1992. Energy consumption during October 1993 totaled 6.7 quadrillion Btu, 0.9 percent above the level of consumption during October 1992. Natural gas consumption increased 6.5 percent, coal consumption rose 2.9 percent, and petroleum consumption was down 1.3 percent. Consumption of all other forms of energy combined decreased 5.5 percent from the level of 1 year earlier.

  3. Monthly energy review, July 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-24

    Energy production during April 1995 totaled 5.5 quadrillion Btu, a 1.0-percent decrease from the level of production during April 1994. Coal production decreased 7.7 percent, natural gas increased 1.3 percent, and production of crude oil and natural gas plant liquids increased 0.3 percent. All other forms of energy production combined were up 8.6 percent from the level of production during April 1994.

  4. Monthly energy review, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-29

    US total energy consumption in July 1990 was 6.7 quadrillion Btu Petroleum products accounted for 42 percent of the energy consumed in July 1990, while coal accounted for 26 percent and natural gas accounted for 19 percent. Residential and commercial sector consumption was 2.3 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The sector accounted for 35 percent of July 1990 total consumption, about the same share as in July 1989. Industrial sector consumption was 2.4 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The industrial sector accounted for 36 percent of July 1990 total consumption, about the same share as in July 1989. Transportation sector consumption of energy was 1.9 quadrillion Btu in July 1990, up 1 percent from the July 1989 level. The sector consumed 29 percent of July 1990 total consumption, about the same share as in July 1989. Electric utility consumption of energy totaled 2.8 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. Coal contributed 53 percent of the energy consumed by electric utilities in July 1990, while nuclear electric power contributed 21 percent; natural gas, 12 percent; hydroelectric power, 9 percent; petroleum, 5 percent; and wood, waste, geothermal, wind, photovoltaic, and solar thermal energy, about 1 percent.

  5. Monthly energy review, July 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-26

    Energy production during April 1994 totaled 5.5 quadrillion Btu, a 2.2-percent increase from the level of production during April 1993. Coal production increased 11.8 percent, petroleum production fell 4.0 percent, and natural gas production decreased 0.3 percent. All other forms of energy production combined were down 2.9 percent from the level of production during April 1993. Energy consumption during April 1994 totaled 6.7 quadrillion Btu, 1.4 percent above the level of consumption during April 1993. Petroleum consumption increased 3.9 percent, coal consumption rose 1.1 percent, and natural gas consumption decreased 1.5 percent. Consumption of all other forms of energy combined decreased 0.4 percent from the level 1 year earlier. Net imports of energy during April 1994 totaled 1.5 quadrillion Btu, 8.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 4.5 percent, and net imports of natural gas were up 18.5 percent. Net exports of coal fell 9.2 percent from the level in April 1993.

  6. Monthly energy review, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Energy production during March 1994 totaled 5.9 quadrillion Btu, a 3.7-percent increase from the level of production during March 1993. Coal production increased 15.7 percent, petroleum production fell 4.1 percent, and natural gas production decreased 1.1 percent. All other forms of energy production combined were up 0.5 percent from the level of production during March 1993. Energy consumption during March 1994 totaled 7.5 quadrillion Btu, 1.3 percent below the level of consumption during March 1993. Natural gas consumption decreased 3.6 percent, petroleum consumption fell 1.6 percent, and coal consumption remained the same. Consumption of all other forms of energy combined increased 3.7 percent from the level 1 year earlier. Net imports of energy during March 1994 totaled 1.5 quadrillion Btu, 6.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 3.2 percent, and net imports of natural gas were up 15.7 percent. Net exports of coal rose 2.1 percent from the level in March 1993.

  7. Monthly energy review, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-29

    Energy production during May 1994 totaled 5.6 quadrillion Btu, a 2.4-percent increase from the level of production during May 1993. Coal production increased 13.3 percent, natural gas production rose 1.7 percent, and petroleum production decreased 2.5 percent. All other forms of energy production combined were down 8.3 percent from the level of production during May 1993. Energy consumption during May 1994 totaled 6.6 quadrillion Btu, 3.6 percent above the level of consumption during May 1993. Natural gas consumption increased 8.7 percent, coal consumption rose 4.6 percent, and petroleum consumption was up 3.6 percent. Consumption of all other forms of energy combined decreased 5.8 percent from the level 1 year earlier. Net imports of energy during May 1994 totaled 1.5 quadrillion Btu, 14.3 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 8.4 percent, and net imports of natural gas were up 23.2 percent. Net exports of coal fell 16.8 percent from the level in May 1993.

  8. Monthly energy review, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Energy production during March 1994 totaled 5.9 quadrillion Btu, a 3.7-percent increase from the level of production during March 1993. Coal production increased 15.7 percent, petroleum production fell 4.1 percent, and natural gas production decreased 1.1 percent. All other forms of energy production combined were up 0.5 percent from the level of production during March 1993. Energy consumption during March 1994 totaled 7.5 quadrillion Btu, 1.3 percent below the level of consumption during March 1993. Natural gas consumption decreased 3.6 percent, petroleum consumption fell 1.6 percent, and coal consumption remained the same. Consumption of all other forms of energy combined increased 3.7 percent from the level 1 year earlier. Net imports of energy during March 1994 totaled 1.5 quadrillion Btu, 6.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 3.2 percent, and net imports of natural gas were up 15.7 percent. Net exports of coal rose 2.1 percent from the level in March 1993.

  9. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    Nowadays, the minimization of energy consumption and the optimization of efficiency of the overall energy grid have been in the agenda of most national and international energy policies. At the same time, urbanization has put cities under the microscope towards achieving cost-effective energy...... savings due to their compact and highly dense form. Thus, accurate estimation of energy demand of cities is of high importance to policy-makers and energy planners. This calls for automated methods that can be easily expandable to higher levels of aggregation, ranging from clusters of buildings...... to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...

  10. Social obstacles in curbing residential energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Anker-Nilssen, Per [Norwegian School of Management BI, Sandvika (Norway). Centre for Energy and Environment

    2003-07-01

    The continuing growth in residential energy-use does not comply with policy targets for curbing end-user demand. Households are steadily increasing their energy-use, offsetting energy efficiency improvements, to gain time, convenience, comfort and mobility. If sustainable development presupposes lowering demand, it conflicts with present energy-driven changes in life-styles. Environmental degradation due to energy-use gives incentives to raise taxes and duties. The Norwegian experience is that rising income increase households' energy consumption while decreasing its share of total expense. Consequently, higher prices hit low-income households that account for a minor share of total household demand. Since energy represents a purchased input factor to accomplish tasks, the burden is twofold. Energy consumption losses also represent the loss of time and thus money. Additionally, these households have less financial reserves to invest in energy saving. Hence, impact of price hikes (e.g. cold weather) has a regressive social effect. This paper argues that heavy taxation of end-user energy within current practices including tax recycling or deduction, is neither advisable nor politically viable to obtain set targets. Panel data of individual households' electricity use in Oslo suggests that low-income households can not counteract sudden price-hikes but adjust long-term, while the opposite applies to high-income households. In the discussion on environmental policy towards energy-use, the socio-economic effect of measures must be emphasised. New conceptualisations of the world-wide problems in energy and mobility that transforms into agreements on e.g. emission control, can result in added burdens on the poor in industrialised countries rather than the developing countries at large.

  11. Optimal Demand Response with Energy Storage Management

    OpenAIRE

    Huang, Longbo; Walrand, Jean; Ramchandran, Kannan

    2012-01-01

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the...

  12. Global monthly water stress: 2. Water demand and severity of water stress

    OpenAIRE

    Wada, Yoshihide; Van Beek, L. P. H.; Viviroli, Daniel; Dürr, Hans H.; Weingartner, Rolf; Bierkens, Marc F. P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted with global monthly water demand. Water demand is defined here as the volume of water required by users to satisfy their needs. Water demand is calculated for the benchmark year of 2000 and contras...

  13. Global monthly water stress: 2. Water demand and severity of water stress

    OpenAIRE

    Wada, Yoshihide; Beek, L. P. H.; Viviroli, Daniel; Dürr, Hans H; Weingartner, Rolf; Bierkens, Marc F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted with global monthly water demand. Water demand is defined here as the volume of water required by users to satisfy their needs. Water demand is calculated for the benchmark year of 2000 and contras...

  14. Optimal Demand Response with Energy Storage Management

    CERN Document Server

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  15. Controlling Energy Demand in Mobile Computing Systems

    CERN Document Server

    Ellis, Carla

    2007-01-01

    This lecture provides an introduction to the problem of managing the energy demand of mobile devices. Reducing energy consumption, primarily with the goal of extending the lifetime of battery-powered devices, has emerged as a fundamental challenge in mobile computing and wireless communication. The focus of this lecture is on a systems approach where software techniques exploit state-of-the-art architectural features rather than relying only upon advances in lower-power circuitry or the slow improvements in battery technology to solve the problem. Fortunately, there are many opportunities to i

  16. Energy demand analysis in the workshop on alternative energy strategies

    Energy Technology Data Exchange (ETDEWEB)

    Carhart, S C

    1978-04-01

    The Workshop on Alternative Energy Strategies, conducted from 1974 through 1977, was an international study group formed to develop consistent national energy alternatives within a common analytical framework and global assumptions. A major component of this activity was the demand program, which involved preparation of highly disaggregated demand estimates based upon estimates of energy-consuming activities and energy requirements per unit of activity reported on a consistent basis for North America, Europe, and Japan. Comparison of the results of these studies reveals that North America requires more energy per unit of activity in many consumption categories, that major improvements in efficiency will move North America close to current European and Japanese efficiencies, and that further improvements in European and Japanese efficiencies may be anticipated as well. When contrasted with expected availabilities of fuels, major shortfalls of oil relative to projected demands emerge in the eighties and nineties. Some approaches to investment in efficiency improvements which will offset these difficulties are discussed.

  17. Energy demand on dairy farms in Ireland.

    Science.gov (United States)

    Upton, J; Humphreys, J; Groot Koerkamp, P W G; French, P; Dillon, P; De Boer, I J M

    2013-10-01

    Reducing electricity consumption in Irish milk production is a topical issue for 2 reasons. First, the introduction of a dynamic electricity pricing system, with peak and off-peak prices, will be a reality for 80% of electricity consumers by 2020. The proposed pricing schedule intends to discourage energy consumption during peak periods (i.e., when electricity demand on the national grid is high) and to incentivize energy consumption during off-peak periods. If farmers, for example, carry out their evening milking during the peak period, energy costs may increase, which would affect farm profitability. Second, electricity consumption is identified in contributing to about 25% of energy use along the life cycle of pasture-based milk. The objectives of this study, therefore, were to document electricity use per kilogram of milk sold and to identify strategies that reduce its overall use while maximizing its use in off-peak periods (currently from 0000 to 0900 h). We assessed, therefore, average daily and seasonal trends in electricity consumption on 22 Irish dairy farms, through detailed auditing of electricity-consuming processes. To determine the potential of identified strategies to save energy, we also assessed total energy use of Irish milk, which is the sum of the direct (i.e., energy use on farm) and indirect energy use (i.e., energy needed to produce farm inputs). On average, a total of 31.73 MJ was required to produce 1 kg of milk solids, of which 20% was direct and 80% was indirect energy use. Electricity accounted for 60% of the direct energy use, and mainly resulted from milk cooling (31%), water heating (23%), and milking (20%). Analysis of trends in electricity consumption revealed that 62% of daily electricity was used at peak periods. Electricity use on Irish dairy farms, therefore, is substantial and centered around milk harvesting. To improve the competitiveness of milk production in a dynamic electricity pricing environment, therefore, management

  18. Visualising the Global Shift in Energy Demand and Supply

    OpenAIRE

    Muhammad Isma'il

    2012-01-01

    The global energy demand depends on supplies from fossil fuels responsible for climate change. The supply of the fossil fuels required to meet the global energy demand depends on production from the available proved reserves of oil, coal and gas unevenly distributed around the world. On the other hand, the energy demand of a country is determined by its economic growth and population dynamics. The industrialised nations accounted for the rising demand in global primary energy. However, a glob...

  19. Dynamic energy-demand models. A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Feng [Department of Economics, Goeteborg University, Gothenburg (Sweden)

    2000-04-01

    This paper compares two second-generation dynamic energy demand models, a translog (TL) and a general Leontief (GL), in the study of price elasticities and factor substitutions of nine Swedish manufacturing industries: food, textiles, wood, paper, printing, chemicals, non-metallic minerals, base metals and machinery. Several model specifications are tested with likelihood ratio test. There is a disagreement on short-run adjustments; the TL model accepts putty-putty production technology of immediate adjustments, implying equal short- and long-run price elasticities of factors, while the GL model rejects immediate adjustments, giving out short-run elasticities quite different from the long-run. The two models also disagree in substitutability in many cases. 21 refs.

  20. Historical monthly energy review, 1973--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The Historical Monthly Energy Review (HMER) presents monthly and annual data from 1973 through 1992 on production, consumption, stocks, imports, exports, and prices of the principal energy commodities in the United States. Also included are data on international production of crude oil, consumption of petroleum products, petroleum stocks, and production of electricity from nuclear-powered facilities. This edition of the HMER extends the original HMER in several ways: (1) Four additional years of monthly data, 1989--1992, have been added. (2) This report fully replaces the earlier one; each data cell that has been revised since the original HMER is marked with an ``R`` so that changes can be quickly noted. (3) Section 1 has been expanded to include Tables 1.7--1.13, which were not available in the first HMER. (4) Tables 3.9 on propane and Table 4.3 on natural gas trade, which have been added to the MER since the release of the first HMER, are included in this edition. In addition, Table 10.4 on nuclear electricity gross generation has been reorganized to align more closely with the current presentation in the MER.

  1. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  2. Infrastructure of the information society and its energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Souchon, Laetitia; Flipo, Fabrice [INT/ETOS - France Telecom R and D (France); Aebischer, Bernard [ETH Zurich, Centre for Energy Policy and Economics (CEPE) (Switzerland); Roturier, Jacques (retired from Univ. of Bordeaux, France)

    2007-07-01

    Energy demand of ICT end-use equipment, like personal computers, is considered a potentially important topic for almost 20 years. Policy measures, like the Energy Star Label and worldwide campaigns for low standby consumptions, are now successfully implemented in order that the energy demand of ICT end-use equipment is not growing uncontrolled.But what about energy demand of the infrastructure needed to make use of the ICT end-use equipment? Some previous work will be reported in the field of voice centric telecommunication indicating that energy demand of the infrastructure is growing much faster than energy demand of the phone and reaches for mobile communication up to 90 % of total energy demand. Regarding the infrastructure for internet, a much more complex issue, the energy demand data, as found in the literature, are rather uncertain and partially contradictory. The fraction of energy demand for the infrastructure is probably today of the order of 30 % while mobile communication and other trends being expected to steadily increase then installing the infrastructure as the most important element of future energy demand of ICT. In the present paper, a brief survey of several analyses of the energy demand of the infrastructure for ICT is given in section 1. In section 2, preliminary results of ongoing research presently performed by one of us (LS) in the framework of a France Telecom R and D Programme are presented. Finally, section 3 broadens the problematic to the interaction between ICT and contemporary societal and ecological contexts, as they are interlinked.

  3. Forecasting Monthly Electricity Demands: An Application of Neural Networks Trained by Heuristic Algorithms

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2017-03-01

    Full Text Available Electricity demand forecasting plays an important role in capacity planning, scheduling, and the operation of power systems. Reliable and accurate prediction of electricity demands is therefore vital. In this study, artificial neural networks (ANNs trained by different heuristic algorithms, including Gravitational Search Algorithm (GSA and Cuckoo Optimization Algorithm (COA, are utilized to estimate monthly electricity demands. The empirical data used in this study are the historical data affecting electricity demand, including rainy time, temperature, humidity, wind speed, etc. The proposed models are applied to Hanoi, Vietnam. Based on the performance indices calculated, the constructed models show high forecasting performances. The obtained results also compare with those of several well-known methods. Our study indicates that the ANN-COA model outperforms the others and provides more accurate forecasting than traditional methods.

  4. Energy. The concept - the resources - the demand

    Energy Technology Data Exchange (ETDEWEB)

    Grawe, Joachim

    2007-04-15

    After giving a short historical review of how mankind has been using natural forces throughout its evolution, Energy elaborates on the physical attributes of energy. The rise in use of fossil and regenerative fuels is the third main subject. A detailed discussion about the interactions between energy requirements and standards of living completes the booklet. [German] Energy arbeitet nach einem kurzen historischen Exkurs, wie Menschen Naturkraefte in ihrer Entstehungsgeschichte nutzten und nutzen, die physi-kalischen Kennzeichen der Energie heraus. Die Entstehung fossiler und regenerativer Energietraeger ist der dritte Schwerpunkt. Abschliessend werden die Wechselwirkungen zwischen Energiebedarf und Lebensstan-dard ausfuehrlich diskutiert.

  5. Implications of Energy Return on Energy Invested on Future Total Energy Demand

    Directory of Open Access Journals (Sweden)

    Shinuo Deng

    2011-12-01

    Full Text Available Human society is now at the beginning of a transition from fossil-fuel based primary energy sources to a mixture of renewable and nuclear based energy sources which have a lower Energy Return On Energy Invested (EROEI than the older fossil based sources. This paper examines the evolution of total energy demand during this transition for a highly idealized energy economy. A simple model is introduced in which the net useful energy output required to operate an economy is assumed to remain fixed while the lower EROEI source gradually replaces the older higher EROEI primary energy source following a logistics substitution model. The results show that, for fixed net useful energy output, total energy demand increases as the ratio EROEInew/EROEIold decreases; total energy demand diverges as EROEInew approaches unity, indicating that the system must collapse in this limit.

  6. Study on the Determinants of Energy Demand in China

    Institute of Scientific and Technical Information of China (English)

    魏巍贤

    2002-01-01

    Based on the modern economic theory and the characteristics of China's energy consumption, this paper analyzes the determinants of energy demand in China, builds up a China's energy demand model, and examines the long-run relationship between China's aggregate energy consumption and the main economic variables such as GDP by using the Johansen multivariate approach. It is found that there exists unique long-run relationship among the variables in the model over the sampling period. An error-correction model provides an appropriate framework for forecasting the short-run fluctuations in the aggregate demand of China.

  7. Analysis of household energy demand in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Anh Tuan; Lefevre, T. [Institut d`Economie et de Politique de l`Energie, Grenoble (France)

    1996-12-01

    An analysis of household energy consumption in four Vietnamese provinces, Hanoi, Maitay, Haihung and Vinhphu, showed that each province exhibited different energy use patterns but these differences are in a relatively narrow range within urban or rural areas. However, there are big contrasts between rural areas due to availability of resources and income. Coal accounts for 41% of the total energy consumption and fuelwood for 26%, the remainder being kerosene and agricultural residues. Energy consumption for cooking and pigfeed accounts for 91% of total energy use. Households with better incomes are tending to switch from biomass to `modern` fuels with biomass playing a limited role in most urban households. Energy used for cooking was found to increase less readily than income. 21 refs., 3 figs., 11 tabs., 1 app.

  8. Demand for oil and energy in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, C. Jr.; Relles, D.A.; Navarro, J.

    1980-05-01

    How much of the world's oil and energy supply will the non-OPEC less-developed countries (NOLDCs) demand in the next decade. Will their requirements be small and thus fairly insignificant compared with world demand, or large and relatively important. How will world demand be affected by the economic growth of the NOLDCs. In this report, we try to develop some reasonable forecasts of NOLDC energy demands in the next 10 years. Our focus is mainly on the demand for oil, but we also give some attention to the total commercial energy requirements of these countries. We have tried to be explicit about the uncertainties associated with our forecasts, and with the income and price elasticities on which they are based. Finally, we consider the forecasts in terms of their implications for US policies concerning the NOLDCs and suggest areas of future research on NOLDC energy issues.

  9. Ant colony optimization approach to estimate energy demand of Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Duran Toksari, M. [Erciyes University, Kayseri (Turkey). Engineering Faculty, Industrial Engineering Department

    2007-08-15

    This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic{sub A}COEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection. (author)

  10. Energy Saving by Chopping off Peak Demand Using Day Light

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Maitra

    2011-08-01

    Full Text Available An artificial intelligent technique has been implemented in this research using real time datas to calculate how much energy can be chopped from peak load demand. The results are based on real time data that are taken from power delivering centers. These datas do reflect the present condition of power and a solution to those critical conditions during the peak period. These are done in such a way such that helps in judicious scheduling of load. The time based load scheduling has been done so as to understand the basic criteria for solving power crisis during morning peak and early evening peak. The sunray availability and percentage of load that will use day light saving (DLS technique has been taken into account in this work. The results shows that about 0.5% to 1% of load can be shedded off from the peak load period which otherwise is reduction of power. Thus it otherwise also means that an equivalent amount of energy is saved which amounts to a large saving of national money. This result is obtained on monthly and even daily basis. Thus this paper justifies DLS gives a new renewable technique to save energy.

  11. Measuring and controlling unfairness in decentralized planning of energy demand

    NARCIS (Netherlands)

    Pournaras, E.; Vasirani, M.; Kooij, R.E.; Aberer, K.

    2014-01-01

    Demand-side energy management improves robustness and efficiency in Smart Grids. Load-adjustment and load-shifting are performed to match demand to available supply. These operations come at a discomfort cost for consumers as their lifestyle is influenced when they adjust or shift in time their dema

  12. Measuring and controlling unfairness in decentralized planning of energy demand

    NARCIS (Netherlands)

    Pournaras, E.; Vasirani, M.; Kooij, R.E.; Aberer, K.

    2014-01-01

    Demand-side energy management improves robustness and efficiency in Smart Grids. Load-adjustment and load-shifting are performed to match demand to available supply. These operations come at a discomfort cost for consumers as their lifestyle is influenced when they adjust or shift in time their

  13. Managing the growing energy demand - The case of Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Kholy, Hosni; Faried, Ragy

    2010-09-15

    The electric energy consumption rate in Egypt has an average increase of 7% per year through the last three decades. In order to satisfy the ever increasing energy demand, several actions were, and have to be taken. These actions have to be carried out in parallel. The one having the greatest effect is the measures carried out for energy conservation and loss reduction. Diversifying the energy source such as utilization of Renewable Energy technologies can contribute to satisfying the demand and extending the hydro-carbon reserves life. Regional integration of electrical networks will save expenditures used to build additional power plants.

  14. Demand Response Resource Quantification with Detailed Building Energy Models

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine; Horsey, Henry; Merket, Noel; Stoll, Brady; Nag, Ambarish

    2017-04-03

    Demand response is a broad suite of technologies that enables changes in electrical load operations in support of power system reliability and efficiency. Although demand response is not a new concept, there is new appetite for comprehensively evaluating its technical potential in the context of renewable energy integration. The complexity of demand response makes this task difficult -- we present new methods for capturing the heterogeneity of potential responses from buildings, their time-varying nature, and metrics such as thermal comfort that help quantify likely acceptability of specific demand response actions. Computed with an automated software framework, the methods are scalable.

  15. Single-Family Houses That Meet The Future Energy Demands

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2002-01-01

    to examine these consequences thoroughly. The department is presently contributing to this end by participating in quite a few investigative projects, where single-family houses are designed to meet the proposed future energy demands. This paper describes the results obtained from one such project where...... the department, in co-operation with a major building entrepreneur, has developed a single-family house that shows that there are no evident problems in meeting the future energy demands....

  16. Autonomous Hybrid Priority Queueing for Scheduling Residential Energy Demands

    Science.gov (United States)

    Kalimullah, I. Q.; Shamroukh, M.; Sahar, N.; Shetty, S.

    2017-05-01

    The advent of smart grid technologies has opened up opportunities to manage the energy consumption of the users within a residential smart grid system. Demand response management is particularly being employed to reduce the overall load on an electricity network which could in turn reduce outages and electricity costs. The objective of this paper is to develop an intelligible scheduler to optimize the energy available to a micro grid through hybrid queueing algorithm centered around the consumers’ energy demands. This is achieved by shifting certain schedulable load appliances to light load hours. Various factors such as the type of demand, grid load, consumers’ energy usage patterns and preferences are considered while formulating the logical constraints required for the algorithm. The algorithm thus obtained is then implemented in MATLAB workspace to simulate its execution by an Energy Consumption Scheduler (ECS) found within smart meters, which automatically finds the optimal energy consumption schedule tailor made to fit each consumer within the micro grid network.

  17. Energy Demands and Efficiency Strategies in Data Center Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-09-01

    for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  18. Analysis of energy and utility service demands

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The collection, analysis, and review of existing data on a community's service requirements are documented. The research focused on the analysis of energy-using activities including both micro activities such as space heating, cooking, lighting, and transportation; and macro activities such as providing shelter, health care, education, etc. The technical report describes the analytical framework developed for community description; describes an indexing system by which a catalog of services can be accessed; illustrates the application of the data to an existing community; and provides ancillary information on data availability. A catalog of data is presented which includes several sets of indices which facilitate access of data using various keys. Abstracts of 48 data sources are analyzed. Each abstract includes a description and evaluation of the data, a sampling of that data, an assessment as to how that data may be applied to other analyses, and a reference where the user can secure additional data. (MCW)

  19. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes i

  20. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  1. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK); Zhou, Shengchao [University of Tennessee, Knoxville (UTK)

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  2. Scenarios of energy demand and efficiency potential for Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  3. Energy demand analytics using coupled technological and economic models

    Science.gov (United States)

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  4. Impact of selected energy conservation technologies on baseline demands

    Energy Technology Data Exchange (ETDEWEB)

    Doernberg, A

    1977-09-01

    This study is an application of the modeling and demand projection capability existing at Brookhaven National Laboratory to specific options in energy conservation. Baseline energy demands are modified by introducing successively three sets of conservation options. The implementation of improved building standards and the use of co-generation in industry are analyzed in detail and constitute the body of this report. Two further sets of energy demands are presented that complete the view of a low energy use, ''conservation'' scenario. An introduction to the report covers the complexities in evaluating ''conservation'' in view of the ways it is inextricably linked to technology, prices, policy, and the mix of output in the economy. The term as used in this report is narrowly defined, and methodologies are suggested by which these other aspects listed can be studied in the future.

  5. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    Adaptation Case, in which the optimal electricity generation mix is determined by allowing for endogenous capacity adjustments in the model. This modeling exercise will identify the changes in the energy demand and in electricity generation mix in the Adaptation Case, as well as climate change damages......Although previous climate change research has documented the effects of linking mitigation and adaptation in the energy sector, there is still a lack of integrated assessment, particularly at national level. This paper may contribute to fill this gap, identifying the interactions between climate...... change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...

  6. Water supply and demand in an energy supply model

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, D; Loose, V

    1980-12-01

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  7. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  8. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  9. Modelling energy demand in the buildings sector within the EU

    Energy Technology Data Exchange (ETDEWEB)

    O Broin, Eoin

    2012-11-01

    In the on-going effort within the EU to tackle greenhouse gas emissions and secure future energy supplies, the buildings sector is often referred to as offering a large potential for energy savings. The aim of this thesis is to produce scenarios that highlight the parameters that affect the energy demands and thus potentials for savings of the building sector. Top-down and bottom-up approaches to modelling energy demand in EU buildings are applied in this thesis. The top-down approach uses econometrics to establish the historical contribution of various parameters to energy demands for space and water heating in the residential sectors of four EU countries. The bottom-up approach models the explicit impact of trends in energy efficiency improvement on total energy demand in the EU buildings stock. The two approaches are implemented independently, i.e., the results from the top-down studies do not feed into those from the bottom-up studies or vice versa. The explanatory variables used in the top-down approach are: energy prices; heating degree days, as a proxy for outdoor climate; a linear time trend, as a proxy for technology development; and the lag of energy demand, as a proxy for inertia in the system. In this case, inertia refers to the time it takes to replace space and water heating systems in reaction to price changes. The analysis gives long-term price elasticities of demand as follows: for France, -0.17; for Italy, -0.35; for Sweden, -0.27; and for the UK, -0.35. These results reveal that the price elasticity of demand for space and water heating is inelastic in each of these cases. Nonetheless, scenarios created for the period up to 2050 using these elasticities and an annual price increase of 3 % show that demand can be reduced by more than 1 % per year in France and Sweden and by less than 1 % per year in Italy and the UK. In the bottom-up modelling, varying rates for conversion efficiencies, heating standards for new buildings, end-use efficiency, and

  10. Monthly energy review, September 1990. [Contains Glossary

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-21

    This report presents current data on production, consumption, stocks, imports, exports, and prices of the principal energy commodities in the United States. Also included are data on international production of crude oil, consumption of petroleum products, petroleum stocks, and production of electricity from nuclear-powered facilities.

  11. Monthly energy review, September 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-26

    This publication presents current data on production, consumption, stocks, imports, exports, and prices of the principal energy commodities in the United States. Also included are data on international production of crude oil, consumption of petroleum products, petroleum stocks, and production of electricity from nuclear-powered facilities. 36 figs., 57 tabs.

  12. Monthly energy review, October 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-25

    This report presents current data on production, consumption, stocks, imports, exports, and prices of the principal energy commodities in the United States. Also included are data on international production of crude oil, consumption of petroleum products, petroleum stocks, and production of electricity from nuclear-powered facilities. 36 figs., 57 tabs.

  13. Monthly energy review, September 1990. [Contains Glossary

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-21

    This report presents current data on production, consumption, stocks, imports, exports, and prices of the principal energy commodities in the United States. Also included are data on international production of crude oil, consumption of petroleum products, petroleum stocks, and production of electricity from nuclear-powered facilities.

  14. Energy Demand and Supply Analysis and Outlook - Energy Forecast for 2001 and Policy Issues

    Energy Technology Data Exchange (ETDEWEB)

    Na, In Gang; Ryu, Ji Chul [Korea Energy Economics Institute, Euiwang (Korea)

    2000-12-01

    The energy consumption in Korea has grown at impressive rates during the last 3 decades, along with the economic growth. The global concern about the environment issue and the restructuring in Korea energy industry has an effect on the pattern and trend of energy demand in Korea. Under the situation, this research are focusing on the analysis of energy consumption and forecast of energy demand. First of all, we analyze the trends and major characteristics of energy consumption, beginning with 1970s and up to the third quarter of 2000. In the analysis of energy consumption by energy types, we also perform qualitative analysis on the trends and characteristics of each energy types, including institutional analysis. In model section, we start with the brief description of synopsis and outline the survey on empirical models for energy demand. The econometric model used in KEEI's short-term energy forecast is outlined, followed by the result of estimations. The 2001 energy demand forecast is predicted in detail by sectors and energy types. In the year 2001, weak demand is projected to continue through the First Half, and pick up its pace of growth only in the Second Half. Projected total demand is 201.3 million TOE or 4.4% growth. In the last section, the major policy issues are summarized in three sub-sections: the restructuring in energy industry, the security of energy demand and supply, international energy cooperation including south-north energy cooperation. (author). 86 refs., 43 figs., 73 tabs.

  15. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  16. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2013-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  17. Holidays in lights: Tracking cultural patterns in demand for energy services

    Science.gov (United States)

    Román, Miguel O.; Stokes, Eleanor C.

    2015-06-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  18. Characterization and Analysis of Energy Demand Patterns in Airports

    Directory of Open Access Journals (Sweden)

    Sergio Ortega Alba

    2017-01-01

    Full Text Available Airports in general have high-energy consumption. Influenced by many factors, the characteristics of airport energy consumption are stochastic, nonlinear and dynamic. In recent years, airport managers have made huge efforts to harmonize airport operation with environmental sustainability by minimizing the environmental impact, with energy conservation and energy efficiency as one of their pillars. A key factor in order to reduce energy consumption at airports is to understand the energy use and consumption behavior, due to the multiple parameters and singularities that are involved. In this article, a 3-step methodology based on monitoring methods is proposed to characterize and analyze energy demand patterns in airports through their electric load profiles, and is applied to the Seve Ballesteros-Santander Airport (Santander, Spain. This methodology can be also used in airports in order to determine the way energy is used, to establish the classification of the electrical charges based on their operation way as well as to determine the main energy consumers and main external influencers. Results show that airport present a daily energy demand pattern since electric load profiles follow a similar curve shape for every day of the year, having a great dependence of the terminal building behavior, the main energy consumer of the airport, and with heating, ventilation and air conditioning (HVAC and lighting being the most energy-intensive facilities, and outside temperature and daylighting the main external influencers.

  19. 'Energy landscapes': Meeting energy demands and human aspirations.

    Science.gov (United States)

    Blaschke, Thomas; Biberacher, Markus; Gadocha, Sabine; Schardinger, Ingrid

    2013-08-01

    Renewable energy will play a crucial role in the future society of the 21st century. The various renewable energy sources need to be balanced and their use carefully planned since they are characterized by high temporal and spatial variability that will pose challenges to maintaining a well balanced supply and to the stability of the grid. This article examines the ways that future 'energy landscapes' can be modelled in time and space. Biomass needs a great deal of space per unit of energy produced but it is an energy carrier that may be strategically useful in circumstances where other renewable energy carriers are likely to deliver less. A critical question considered in this article is whether a massive expansion in the use of biomass will allow us to construct future scenarios while repositioning the 'energy landscape' as an object of study. A second important issue is the utilization of heat from biomass energy plants. Biomass energy also has a larger spatial footprint than other carriers such as, for example, solar energy. This article seeks to provide a bridge between energy modelling and spatial planning while integrating research and techniques in energy modelling with Geographic Information Science. This encompasses GIS, remote sensing, spatial disaggregation techniques and geovisualization. Several case studies in Austria and Germany demonstrate a top-down methodology and some results while stepwise calculating potentials from theoretical to technically feasible potentials and setting the scene for the definition of economic potentials based on scenarios and assumptions.

  20. Flow based vs. demand based energy-water modelling

    Science.gov (United States)

    Rozos, Evangelos; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Koukouvinos, Antonios; Makropoulos, Christos

    2015-04-01

    The water flow in hydro-power generation systems is often used downstream to cover other type of demands like irrigation and water supply. However, the typical case is that the energy demand (operation of hydro-power plant) and the water demand do not coincide. Furthermore, the water inflow into a reservoir is a stochastic process. Things become more complicated if renewable resources (wind-turbines or photovoltaic panels) are included into the system. For this reason, the assessment and optimization of the operation of hydro-power systems are challenging tasks that require computer modelling. This modelling should not only simulate the water budget of the reservoirs and the energy production/consumption (pumped-storage), but should also take into account the constraints imposed by the natural or artificial water network using a flow routing algorithm. HYDRONOMEAS, for example, uses an elegant mathematical approach (digraph) to calculate the flow in a water network based on: the demands (input timeseries), the water availability (simulated) and the capacity of the transmission components (properties of channels, rivers, pipes, etc.). The input timeseries of demand should be estimated by another model and linked to the corresponding network nodes. A model that could be used to estimate these timeseries is UWOT. UWOT is a bottom up urban water cycle model that simulates the generation, aggregation and routing of water demand signals. In this study, we explore the potentials of UWOT in simulating the operation of complex hydrosystems that include energy generation. The evident advantage of this approach is the use of a single model instead of one for estimation of demands and another for the system simulation. An application of UWOT in a large scale system is attempted in mainland Greece in an area extending over 130×170 km². The challenges, the peculiarities and the advantages of this approach are examined and critically discussed.

  1. The study on energy demand forecast of Chongqing

    Institute of Scientific and Technical Information of China (English)

    YANGJia; WUXiangsheng

    2003-01-01

    Energy demand forecasting is the base for programming energy system. With the economy development, the increasing amount of energy consumption is in contradiction with the exhausted resource and destroyed environment. For the sake of the sustainable development, the reasonable energy demand forecasting is needed, and it is the scientific reference for establishing energy developing stratagem and energy policy. But the traditional forecasting methods at present have some Jimitations. Artificial neural network(ANN) is a new and developing subject, whose capability of adaptability and self-study is excellent. Based on the analysis as above, the forecasting model with artificial neural network was established. This model is based on the idea of time series. Compared with the traditional algorithm, this model is more friendly and maneuverability, which is not only able to forecast for a short term, but also able to forecast for a long period. Based on the fact of Chongqing, the energy demand of Chongqing is analyzed, and then it is forecasted from 2002 to 2020 with the model, and the forecasting results are reasonable.

  2. Single-Family Houses That Meet The Future Energy Demands

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2002-01-01

    In 1990 the Danish Government decided to make an effort to reduce the heat demand of new buildings by 50% before the year 2000. In 1995 a new Building Code (Boligministeriet 1995) was introduced, which resulted in a 25% reduction compared to the previous Building Code (Boligministeriet 1988). Bef...... the department, in co-operation with a major building entrepreneur, has developed a single-family house that shows that there are no evident problems in meeting the future energy demands....... to examine these consequences thoroughly. The department is presently contributing to this end by participating in quite a few investigative projects, where single-family houses are designed to meet the proposed future energy demands. This paper describes the results obtained from one such project where...

  3. Structural Breaks, Parameter Stability and Energy Demand Modeling in Nigeria

    Directory of Open Access Journals (Sweden)

    Olusegun A. Omisakin

    2012-08-01

    Full Text Available This paper extends previous studies in modeling and estimating energy demand functions for both gasoline and kerosene petroleum products for Nigeria from 1977 to 2008. In contrast to earlier studies on Nigeria and other developing countries, this study specifically tests for the possibility of structural breaks/regime shifts and parameter instability in the energy demand functions using more recent and robust techniques. In addition, the study considers an alternative model specification which primarily captures the price-income interaction effects on both gasoline and kerosene demand functions. While the conventional residual-based cointegration tests employed fail to identify any meaningful long run relationship in both functions, the Gregory-Hansen structural break cointegration approach confirms the cointegration relationships despite the breakpoints. Both functions are also found to be stable under the period studied.The elasticity estimates also follow the a priori expectation being inelastic both in the long- and short run for the two functions.

  4. Energy Demands and Efficiency Strategies in Data Center Buildings

    Science.gov (United States)

    Shehabi, Arman

    2009-01-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands have increased by nearly a factor of four over the past decade. This dissertation investigates how…

  5. Forecasting long-term energy demand of Croatian transport sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Krajačić, Goran; Lulić, Zoran

    2013-01-01

    predictions for the Croatian transport sector are presented. Special emphasis is given to different influencing mechanisms, both legal and financial. The energy demand predictions presented in this paper are based on an end-use simulation model developed and tested with Croatia as a case study. The model...

  6. Testing simulation and structural models with applications to energy demand

    Science.gov (United States)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  7. 78 FR 61813 - National Energy Action Month, 2013

    Science.gov (United States)

    2013-10-04

    ... families and our businesses' bottom lines, and it reflects our economy's outsized demand for oil. To... made by recommitting to increasing our energy security, strengthening our economy, combatting climate..., save money for consumers, and use our resources to create good American jobs. A clean energy...

  8. Study on energy demand function of korea considering replacement among energy sources and the structural changes of demand behavior

    Energy Technology Data Exchange (ETDEWEB)

    Moon, C.K. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    If the necessity of careful study on energy function is mentioned, it should be stressed that energy investment not only needs a long gestation period but also, acts as the bottleneck in the production capacity of an economy when investment is not enough. Thereby, the adverse effect of an energy supply shortage is very big. Especially, the replacement/supplemental relationship between energy and capital which corresponds to the movement on the iso-quanta curve is believed to have a direct relation with the answer as to whether long-term economic development would be possible under an energy crisis and its influence on technology selection. Furthermore, the advantages of technological advances which correspond to the movement on the iso-quanta curve has a direct relation with the question whether long-term economic development would be possible under an energy crisis depending on whether its direction is toward energy-saving or energy-consuming. This study tackles the main issues and outlines of the quantitative approach method based on the accounting approach method for modeling energy demand, quantitative economics approach method, and production model. In order to model energy demand of the Korean manufacturing industry, related data was established and a positive analytical model is completed and presented based on these. 122 refs., 10 tabs.

  9. An empirical analysis of energy demand in Namibia

    Energy Technology Data Exchange (ETDEWEB)

    De Vita, G. [Oxford Brookes University (United Kingdom). Business School; Endresen, K. [Independent Energy Consultant, Winhoek (Namibia); Hunt, L.C. [University of Surrey, Guildford (United Kingdom). Dept. of Economics

    2006-12-15

    Using a unique database of end-user local energy data and the recently developed Autoregressive Distributed Lag (ARDL) bounds testing approach to cointegration, we estimate the long-run elasticities of the Namibian energy demand function at both aggregated level and by type of energy (electricity, petrol and diesel) for the period 1980-2002. Our main results show that energy consumption responds positively to changes in GDP and negatively to changes in energy price and air temperature. The differences in price elasticities across fuels uncovered by this study have significant implications for energy taxation by Namibian policy makers. We do not find any significant cross-price elasticities between different fuel types. (author)

  10. Demand for Energy and Energy Generation: Does Regional Energy Policy Play a Role?

    Directory of Open Access Journals (Sweden)

    Paul OJEAGA

    2014-06-01

    Full Text Available Does regional energy policy play a role in regional energy generation? What does the implication of the current industrialization trend mean for the generation and the supply process across regions? And to what extent does regional energy policy affect energy security (energy supply risks in regions? This study investigates the effect of regional energy policy on regional generation characteristics in seven regions of the World using regional panel data from 1980 to 2010 a period of 31 years although some years of data are missing. It was found that regional energy policy were been shaped by pollution concerns and that cost reduction needs had strong effects on energy security (energy generation resources supply. The method of estimation used is the quantile regression estimation method which provides robust estimates after controlling for heterscedastic errors and is robust in the presence of outliers in the response measurement. Energy policy has strong implication for access to sustainable supply of energy generation resources however it had little or no effect on energy generation itself. Industrial demand for energy particularly in the developed countries were probably also making developed countries depend on more nuclear and hydro energy generation sources.

  11. Seismic Energy Demand of Buckling-Restrained Braced Frames

    Science.gov (United States)

    Choi, Hyunhoon; Kim, Jinkoo

    2008-07-01

    In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 60 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.

  12. Heating Energy and Peak-Power Demand in a Standard and Low Energy Building

    Directory of Open Access Journals (Sweden)

    Miimu Airaksinen

    2013-01-01

    Full Text Available Building energy efficiency legislation has traditionally focused on space heating energy consumption. This has led to a decrease in energy consumption, especially in space heating. However, in the future when more renewable energy is used both on site and in energy systems, the peak energy demand becomes more important with respect to CO2 emissions and energy security. In this study it was found out the difference between space heating energy consumption was 55%–62% when a low energy and standard building were compared. However, the difference in peak energy demands was only 28%–34%, showing the importance of paying attention to the peak demands as well. 

  13. ENVIRONMENTAL IMPLICATIONS OF THE INCREASING DEMAND FOR ENERGY

    Directory of Open Access Journals (Sweden)

    Perticas Diana

    2012-07-01

    Full Text Available During human society’s development on large geographical areas, a series of cultural systems have appeared and have determined a certain approach concerning the environment and social relations. These systems of thought persist even today and they are strongly influenced by individuals’ thinking and approaches in that society, thing that requires a specific approach for the implementation of these relatively new concepts (e.g. sustainable development, pollution, ecological approaches on social life. Furthermore, the continuous growth of the demand for energy in the world is seen as an alarm. Between 1970 and 1997 world energy consumption has almost doubled and it is projected to grow by about 57% during 2004-2030 and the thing which should be mentioned is that with the increasing energy demand, pollution levels will increase too. But we must not forget that electric and thermal power represent one of the basic needs of mankind, and when the fulfilment of this need started to affect the climate and implicitly human health this problem turned into a hardly manageable one. We must not forget that the world’s population is growing rapidly and the level of pollution per capita increased we might even say in direct proportion. In many cases, increased pollution has its explanation in the growing number of individuals at global level and also the increasing needs, desires, aspirations, standard of living, of these. This paper intends to objectively analyse the interconnections that arise between the environment and the growth of the demand for energy, emphasizing the devastating effects of pollution created by burning fossil fuels in order to obtain electric and thermal power as well as the current and future possibilities for the replacement of these energy reserves with renewable energy reserves. The whole analysis will be accompanied by case studies and will follow strictly imposed goals by sustainable development.

  14. Demand Response Resources for Energy and Ancillary Services (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  15. Evaluation of biomass combustion based energy systems by cumulative energy demand and energy yield coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.; Oser, M.

    2004-07-01

    This final report prepared for the International Energy Agency (IEA) Bioenergy Task 32 presents a method for a comparison of different energy systems with respect to the overall energy yield during their life cycles. For this purpose, the Cumulative Energy Demand (CED) based on primary energy and the Energy Yield Factor (EYC) are introduced and determined for the following scenarios: Log wood, wood chips, and wood pellets for residential heating and - except for log wood - also for district heating. As an alternative to heat production, power production via combustion and use of the electricity for decentralised heat pumps is also looked at. The evaluation and comparison of both the EYC for all fuels and the EYC{sub N}R for the non-renewable part enables a ranking of energy systems without a subjective weighing of non-renewable and renewable fuels to be made. For a sustainable energy supply, it is proposed to implement renewable energy systems in future which achieve an energy yield EYC{sub N}R of at least greater than 2 but favourably greater than 5. The evaluation of the different scenarios presented is proposed as the future basis for the choice of the most efficient energy systems based on biomass combustion.

  16. Demand-driven energy supply from stored biowaste for biomethanisation.

    Science.gov (United States)

    Aichinger, Peter; Kuprian, Martin; Probst, Maraike; Insam, Heribert; Ebner, Christian

    2015-10-01

    Energy supply is a global hot topic. The social and political pressure forces a higher percentage of energy supplied by renewable resources. The production of renewable energy in form of biomethane can be increased by co-substrates such as municipal biowaste. However, a demand-driven energy production or its storage needs optimisation, the option to store the substrate with its inherent energy is investigated in this study. The calorific content of biowaste was found unchanged after 45 d of storage (19.9±0.19 kJ g(-1) total solids), and the methane yield obtained from stored biowaste was comparable to fresh biowaste or even higher (approx. 400 m(3) Mg(-1) volatile solids). Our results show that the storage supports the hydrolysis of the co-substrate via acidification and production of volatile fatty acids. The data indicate that storage of biowaste is an efficient way to produce bioenergy on demand. This could in strengthen the role of biomethane plants for electricity supply the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Energy demand for materials in an international context.

    Science.gov (United States)

    Worrell, Ernst; Carreon, Jesus Rosales

    2017-06-13

    Materials are everywhere and have determined society. The rapid increase in consumption of materials has led to an increase in the use of energy and release of greenhouse gas (GHG) emissions. Reducing emissions in material-producing industries is a key challenge. If all of industry switched to current best practices, the energy-efficiency improvement potential would be between 20% and 35% for most sectors. While these are considerable potentials, especially for sectors that have historically paid a lot of attention to energy-efficiency improvement, realization of these potentials under current 'business as usual' conditions is slow due to a large variety of barriers and limited efforts by industry and governments around the world. Importantly, the potentials are not sufficient to achieve the deep reductions in carbon emissions that will be necessary to stay within the climate boundaries as agreed in the 2015 Paris Conference of Parties. Other opportunities need to be included in the menu of options to mitigate GHG emissions. It is essential to develop integrated policies combining energy efficiency, renewable energy and material efficiency and material demand reduction, offering the most economically attractive way to realize deep reductions in carbon emissions.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  18. Three Essays Examining Household Energy Demand and Behavior

    Science.gov (United States)

    Murray, Anthony G.

    This dissertation consists of three essays examining household energy decisions and behavior. The first essay examines the adoption of energy efficient Energy Star home appliances by U.S. households. Program effectiveness requires that consumers be aware of the labeling scheme and also change their purchase decisions based on label information. The first essay examines the factors associated with consumer awareness of the Energy Star label of recently purchased major appliances and the factors associated with the choice of Energy Star labeled appliances. The findings suggest that eliminating identified gaps in Energy Star appliance adoption would result in house electricity cost savings of $164 million per year and associated carbon emission reductions of about 1.1 million metric tons per year. The second essay evaluates household energy security and the effectiveness of the Low-Income Home Energy Assistance Program (LIHEAP), the single largest energy assistance program available to poor households within the United States. Energy security is conceptually akin to the well-known concept of food security. Rasch models and household responses to energy security questions in the 2005 Residential Energy Consumption Survey are used to generate an energy insecurity index that is consistent with those found in the food insecurity literature. Participating in LIHEAP is found to significantly reduce household energy insecurity score in the index. Further, simulations show that the elimination of the energy assistance safety net currently available to households increases the number of energy insecure house- holds by over 16 percent. The third essay develops a five equation demand system to estimate household own-price, cross-price and income elasticities between electricity, natural gas, food at home, food away from home, and non-durable commodity groups. Household cross-price elasticities between energy and food commodities are of particular importance. Energy price shocks

  19. Modelling of Sudan’s Energy Supply, Transformation, and Demand

    Directory of Open Access Journals (Sweden)

    Ali A. Rabah

    2016-01-01

    Full Text Available The study aimed to develop energy flow diagram (Sankey diagram of Sudan for the base year 2014. The developed Sankey diagram is the first of its kind in Sudan. The available energy balance for the base year 2012 is a simple line draw and did not count the energy supply by private and mixed sectors such as sugar and oil industries and marine and civil aviation. The private and mixed sectors account for about 7% of the national grid electric power. Four energy modules are developed: resources, transformation, demand, and export and import modules. The data are obtained from relevant Sudanese ministries and directorates and Sudan Central Bank. “e!Sankey 4 pro” software is used to develop the Sankey diagram. The main primary types of energy in Sudan are oil, hydro, biomass, and renewable energy. Sudan has a surplus of gasoline, petroleum coke, and biomass and deficit in electric power, gasoil, jet oil, and LPG. The surplus of gasoline is exported; however, the petroleum coke is kept as reserve. The deficit is covered by import. The overall useful energy is 76% and the loss is 24%. The useful energy is distributed among residential (38%, transportation (33%, industry (12%, services (16%, and agriculture (1% sectors.

  20. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    Energy Technology Data Exchange (ETDEWEB)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  1. Energy demand, energy substitution and economic growth : Evidence from developed and developing countries

    Science.gov (United States)

    Abd Aziz, Azlina

    This thesis contributes to the literature on energy demand in three ways. Firstly, it examines the major determinants of energy demand using a panel of 23 developed countries and 16 developing countries during 1978 to 2003. Secondly, it examines the demand for energy in the industrial sector and the extent of inter-fuel substitution, as well as substitution between energy and non-energy inputs, using data from 5 advanced countries and 5 energy producer's developing countries. Third, the thesis investigates empirically the relationship between energy consumption and economic growth for these groups of countries over a 26-year period. The empirical results of this study confirm the majority of the findings in energy demand analysis. Income and price have shown to be important determinants for energy consumption in both developed and developing countries. Moreover, both economic structure and technical progress appear to exert significant impacts on energy consumption. Income has a positive impact on energy demand and the effect is larger in developing countries. In both developed and developing countries, price has a negative impact but these effects are larger in developed countries than in developing countries. The share of industry in GDP is positive and has a greater impact on energy demand in developing countries, whereas technological progress is found to be energy using in developed countries and energy saving in developing countries. With respect to the analysis of inter-factor and inter-fuel substitution in industrial energy demand, the results provide evidence for substitution possibilities between factor inputs and fuels. Substitutability is observed between capital and energy, capital and labour and labour and energy. These findings confirm previous evidence that production technologies in these countries allow flexibility in the capital-energy, capital-labour and labour-energy mix. In the energy sub-model, the elasticities of substitution show that large

  2. Energy demand and mix for global welfare and stable ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Kern, C.; Kaiser, P.

    2012-07-01

    Social indicators show that an annual energy consumption of 2 tonnes of oil equivalent per capita (toe pc) should be enough to ensure a sufficient global average level of welfare and happiness. Hence, rich countries with currently up to 8 toe pc should reduce and poor should legitimately increase their energy demand until 2 toe pc are reached. At today's global energy mix with 80% fossil fuels, even this optimistic scenario will inevitably lead to a conflict between welfare and stable ecosystems. The population will be 9 billion by 2050 and the ecological footprint would rise from today 1.5 to 2 planet Earths. The only option to reach the desired footprint of one planet Earth is a complete shift from fossil fuels to renewables. (orig.)

  3. Forecast of transportation energy demand through the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  4. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  5. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S. (ed.)

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  6. Industrial power monitoring and control : Power management system helps plant reduce energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Crossley, L.E. [E2MS Inc., Whitby, ON (Canada); Demysh, M. [Diversa Cast Technologies, Guelph, ON (Canada)

    2001-05-01

    A power management system, consisting of a real time demand management system designed to allow managers to reduce operating costs via the automatic control of plant furnace loads with interference to production kept to a minimum, was installed at Diversa Cast Technologies in Guelph, Ontario. Diversa Cast Technologies manufactures aluminium, gray and ductile iron automotive lost foam castings. The potential load at the plant is approximately 5000 kW, and comprises two coreless induction melters and supporting equipment. Used for iron batch melting in the off peak hours between 2300 hours and 0700 hours, the first melter is rated at 2750 kW with 8000 lbs capacity. The aluminium heal melting during the on peak hours is handled by the second melter rated at 1250 kW with a 2700 lbs capacity. The electric utility operates on a time-of-use basis which includes penalties for on-peak demand. The installation of the system is described, along with its operation. The software comprises a number of modules to control all the necessary functions associated with data acquisition and analysis. The modules include: communications module, display module, analysis module, report module, database filer, and a system and cost configuration module. Commissioned in February 2000, the system has operated for approximately two months. After the initial period of two weeks where the system was in a monitoring mode to determine the baseline of energy demand and consumption, the demand control was activated. The numerous advantages of the system include better efficiency in the way energy is used, a reduction in the power factor penalties, power factor savings. The payback for this system is less than 8 months. The overall demand was lowered, the productivity improved along with the energy consumption efficiency. 4 figs.

  7. Free energy option and its relevance to improve domestic energy demands in southern Nigeria

    Directory of Open Access Journals (Sweden)

    Moses Eterigho Emetere

    2016-11-01

    Full Text Available The aim of this paper is to seek an energy option that would benefit the growing energy demands. Domestic energy demands in southern Nigeria had increased greatly due to failing power programs and seasonal migrations. The fossil fuel option is gradually fading away due to environmental pollution and recent dynamic cost. The renewable energy option had been celebrated with little success in the coastal area of southern Nigeria. At the moment, the renewable energy option is very expensive with little guarantee on its efficiency with time. The data set used for this study was obtained from the Davis weather installation in Covenant University. The free energy option was considered. The cost and its environmental implication for domestic use were comparatively discussed alongside other energy options — using the Life cycle cost analysis. It was found out that free energy option is more affordable and efficient for domestic use.

  8. A Multi-Scale Energy Demand Model suggests sharing Market Risks with Intelligent Energy Cooperatives

    NARCIS (Netherlands)

    Methenitis, G.; Kaisers, M.; La Poutré, J.A.

    2015-01-01

    In this paper, we propose a multi-scale model of energy demand that is consistent with observations at a macro scale, in our use-case standard load profiles for (residential) electric loads. We employ the model to study incentives to assume the risk of volatile market prices for intelligent energy c

  9. Pilot Evaluation of Energy Savings from Residential Energy Demand Feedback Devices

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S. [Florida Solar Energy Center, Cocoa, FL (United States); Hoak, David [Florida Solar Energy Center, Cocoa, FL (United States); Cummings, Jamie [Florida Solar Energy Center, Cocoa, FL (United States)

    2008-01-01

    This report discusses instantaneous feedback on household electrical demand has shown promise to reduce energy consumption. This report reviews past research and describes a two year pilot evaluation of a low cost residential energy feedback system installed in twenty case study homes in FL.

  10. Analysis of historical series of industrial demand of energy; Analisi delle serie storiche dei consumi energetici dell`industria

    Energy Technology Data Exchange (ETDEWEB)

    Moauro, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-03-01

    This paper reports a short term analysis of the Italian demand for energy fonts and a check of a statistic model supposing the industrial demand for energy fonts as a function of prices and production, according to neoclassic neoclassic micro economic theory. To this pourpose monthly time series of industrial consumption of main energy fonts in 6 sectors, industrial production indexes in the same sectors and indexes of energy prices (coal, natural gas, oil products, electricity) have been used. The statistic methodology refers to modern analysis of time series and specifically to transfer function models. These ones permit rigorous identification and representation of the most important dynamic relations between dependent variables (production and prices), as relation of an input-output system. The results have shown an important positive correlation between energy consumption with prices. Furthermore, it has been shown the reliability of forecasts and their use as monthly energy indicators.

  11. Global monthly water stress: II. Water demand and severity of water

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Viviroli, D.; Dürr, H.H.; Weingartner, R.; Bierkens, M.F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted

  12. Global monthly water stress: II. Water demand and severity of water

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Viviroli, D.; Dürr, H.H.; Weingartner, R.; Bierkens, M.F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted

  13. Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-06-01

    Full Text Available In this paper, an optimal energy management strategy for a cooperative multi-microgrid system with combined cooling, heat and power (CCHP is proposed and has been verified for a test case of building microgrids (BMGs. Three different demand types of buildings are considered and the BMGs are assumed to be equipped with their own combined heat and power (CHP generators. In addition, the BMGs are also connected to an external energy network (EEN, which contains a large CHP, an adsorption chiller (ADC, a thermal storage tank, and an electric heat pump (EHP. By trading the excess electricity and heat energy with the utility grid and EEN, each BMG can fulfill its energy demands. Seasonal energy demand variations have been evaluated by selecting a representative day for the two extreme seasons (summer and winter of the year, among the real profiles of year-round data on electricity, heating, and cooling usage of all the three selected buildings. Especially, the thermal energy management aspect is emphasized where, bi-lateral heat trading between the energy supplier and the consumers, so-called energy prosumer concept, has been realized. An optimization model based on mixed integer linear programming has been developed for minimizing the daily operation cost of the EEN while fulfilling the energy demands of the BMGs. Simulation results have demonstrated the effectiveness of the proposed strategy.

  14. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  15. Planning nuclear energy centers under technological and demand uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.M.; Palmedo, P.F.

    1976-01-01

    The question considered is whether new nuclear power plants should be located in nuclear energy centers, or ''power parks'' with co-located fabrication and reprocessing facilities. That issue has been addressed in a recent study by the Nuclear Regulatory Commission and remains under investigation at Brookhaven and elsewhere. So far, however, the advisability of this policy has been analyzed primarily within the framework of a single view of the future. Suggestions of the types of questions that should be asked regarding this policy if it is properly to be viewed as an example of decision making under uncertainty are made. It is concluded that ''A consideration of the various uncertainties involved in the question of dispersed vs. remote siting of energy facilities introduces a number of new elements into the analysis. On balance those considerations provide somewhat greater support for the clustered concept. The NEC approach seems to provide somewhat greater flexibility in accomodating possible future electricity generating technologies. Increased regulatory and construction efficiencies possible in an NEC reduces the impact of demand uncertainty as does the lower costs associated with construction acceleration or deceleration.'' It is also noted that, in the final analysis, ''it is the public's perception of the relative costs and benefits of a measure that determine the acceptability or unacceptability of a particular innovation,'' not the engineer's cost/benefit analysis. It is further noted that if the analysis can identify limits on analytical methods and models, it will not make the job of energy decision-making any easier, but it may make the process more responsive to its impact on society. (MCW)

  16. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    Energy Technology Data Exchange (ETDEWEB)

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-08-12

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. Overall results show that pilot participants had energy savings of 20%, and the potential for an additional 14% to 20% load drop during a 100 F demand response event. In addition to the efficiency-related bill savings, participants on the dynamic rate saved an estimated 5% on their energy costs compared to the standard rate. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

  17. Design of demand side response model in energy internet demonstration park

    Science.gov (United States)

    Zhang, Q.; Liu, D. N.

    2017-08-01

    The implementation of demand side response can bring a lot of benefits to the power system, users and society, but there are still many problems in the actual operation. Firstly, this paper analyses the current situation and problems of demand side response. On this basis, this paper analyses the advantages of implementing demand side response in the energy Internet demonstration park. Finally, the paper designs three kinds of feasible demand side response modes in the energy Internet demonstration park.

  18. Improving the Model for Energy Consumption Load Demand Forecasting

    Science.gov (United States)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    This paper proposes an application of a filter method in preprocessing stage for mid-term load demand forecasting to improve electricity load forecasting and to guarantee satisfactory forecasting accuracy. Case study employs the historical electricity consumption demand data in Thailand which were recorded in the 12 years of 1997 through to 2007. The load demand forecasted value is used for unit commitment and fuel reserve planning in the power system. This method consists of a trend component and a cyclical component decomposed from the original load demand using the Hodrick-Prescott (HP) filter in the preprocessing stage and the forecasting of each component using Double Neural Networks (DNNs) in the forecasting stage. Experimental results show that with preprocessing before forecasting can predict the load demand better than that without preprocessing.

  19. Supplying the energy demand in the chicken meat processing poultry with biogas

    Directory of Open Access Journals (Sweden)

    Adriano Henrique Ferrarez

    2016-04-01

    Full Text Available The main use of electrical energy in the chicken meat processing unit is refrigeration. About 70% of the electricity is consumed in the compressors for the refrigeration system. Through this study, the energetic viability of using biogas from poultry litter in supplying the demand for the refrigeration process was found. The meat processing unit studied has the potential to process about a hundred and sixty thousand chickens a day. The potential biogas production from poultry litter is 60,754,298.91 m3.year-1. There will be a surplus of approximately 8,103MWh per month of electric energy generated from biogas. An economic analysis was performed considering a planning horizon of 20 years and the discount rate of 12% per year. The economic analysis was performed considering scenario 1: sale of all electricity generated by the thermoelectric facility, and scenario 2: sale of the surplus electricity generated after complying with the demands of the refrigeration process and all other electrical energy and thermal energy use. Economic indicators obtained for scenarios 1 and 2 were favorable for the project implementation.

  20. Documentation of an interactive program for projecting space heating energy demand (IPPSHED)

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Doreen

    1978-08-01

    The model presented here is designed to be a tool for analyzing the effects of conservation strategies in reducing building energy demands. The purpose of the model is to project residential space heating demands for defined structural types. The user obtains energy demand projections, interactively, for different geographic regions. These energy demands are derived by incorporating theoretical building energy loads, projected housing and fuel mixes, and the efficiencies of both the structures and the conversion devices. The User's Guide in Appendix A contains the necessary information for running the model. This section will be published as a separate report.

  1. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  2. Promotion COPERNIC Energy and Society the interrogations on the world demand evolution; Promotion COPERNIC Energie et Societe les interrogations sur l'evolution de la demande mondiale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    In the framework of a prospective reflexion emergence on the energy demand, this document presents an analysis of the prospective approach and of recent studies: challenges, interests, limits, validity of the models and hypothesis and results relevance. With this analysis, the authors aim to identify the main interrogations bond to the world energy demand evolution. They then analyse these interrogations in the framework of a sectoral approach (agriculture, industry, transports, residential) in order to detail the demand and to forecast the evolution. Facing the consumption attitudes, they also suggest some new action avenues to favor a sustainable growth. (A.L.B.)

  3. 75 FR 54063 - Demand Response Compensation in Organized Wholesale Energy Markets; Technical Conference

    Science.gov (United States)

    2010-09-03

    ...-000] Demand Response Compensation in Organized Wholesale Energy Markets; Technical Conference AGENCY... address the use of a net benefits test for determining when to compensate demand response providers and the allocation of costs associated with demand response. DATES: The technical conference will be...

  4. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  5. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  6. Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants.

    Science.gov (United States)

    Mousel, Danièle; Palmowski, Laurence; Pinnekamp, Johannes

    2017-01-01

    Organic micropollutants (OMP), e.g. pharmaceuticals and household/industrial chemicals, are not fully eliminated in state-of-the-art municipal wastewater treatment plants and can potentially harm the aquatic environment. Therefore, several pilot and large-scale investigations on the elimination of organic micropollutants have taken place in recent years. Based on the present findings, the most efficient treatment steps to eliminate organic micropollutants have proven to be ozonation, adsorption on powdered activated carbon (PAC), or filtration through granular activated carbon (GAC). Yet a further treatment step implies an increase in energy demand of the wastewater treatment plant, which has to be considered along with OMP elimination. To this aim, data on energy demand of ten large-scale municipal wastewater treatment plants (WWTP) with processes for OMP elimination was collected and analyzed. Moreover, calculations on energy demand beyond the WWTP for production and transport of ancillary materials were performed to assess the cumulative energy demand of the processes. An assessment of the greenhouse gas emissions of the processes was achieved, which shall facilitate future life cycle analyses. The results show that energy demand of ozonation at the wastewater treatment plant is dependent upon the ozone dosage and is significantly higher than energy demand of PAC addition or GAC filtration (2 to 4 times higher without consideration of delivery heads). Despite uncertainties regarding the energy demand for production of activated carbon, it could be shown that the cumulative energy demand of adsorption steps is significantly higher than the energy demand at the WWTP. Using reactivated GAC can lead to energy and greenhouse gas emissions savings compared to using fresh GAC/PAC. Moreover, energy demand is always plant-specific and depends on different factors (delivery heads, existing filtration or post-treatment etc.). Since processes for elimination of organic

  7. Effects of atmospheric variability on energy utilization and conservation. [Space heating energy demand modeling; Program HEATLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Johnson, G.R.; Somervell, W.L. Jr.; Sparling, E.W.; Dreiseitly, E.; Macdonald, B.C.; McGuirk, J.P.; Starr, A.M.

    1976-11-01

    Research conducted between 1 July 1975 and 31 October 1976 is reported. A ''physical-adaptive'' model of the space-conditioning demand for energy and its response to changes in weather regimes was developed. This model includes parameters pertaining to engineering factors of building construction, to weather-related factors, and to socio-economic factors. Preliminary testing of several components of the model on the city of Greeley, Colorado, yielded most encouraging results. Other components, especially those pertaining to socio-economic factors, are still under development. Expansion of model applications to different types of structures and larger regions is presently underway. A CRT-display model for energy demand within the conterminous United States also has passed preliminary tests. A major effort was expended to obtain disaggregated data on energy use from utility companies throughout the United States. The study of atmospheric variability revealed that the 22- to 26-day vacillation in the potential and kinetic energy modes of the Northern Hemisphere is related to the behavior of the planetary long-waves, and that the midwinter dip in zonal available potential energy is reflected in the development of blocking highs. Attempts to classify weather patterns over the eastern and central United States have proceeded satisfactorily to the point where testing of our method for longer time periods appears desirable.

  8. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, Tilman, E-mail: tilman@santarius.de [Visiting Scholar, Institute of European Studies and Energy and Resources Group, University of California, Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 (United States)

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  9. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Science.gov (United States)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  10. Empirical assessment of the determinants of road energy demand in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Polemis, Michael L. [Athens Univ., Dept. of Economics, Athens (Greece)

    2006-05-15

    This paper attempts to cast light on the determinants of road energy demand in Greece. For this purpose, we used cointegration techniques and vector autoregression (VAR) analysis in order to capture short-run and long-run dynamics for gasoline and diesel demand, respectively. From the empirical analysis that covers the period 1978-2003, we find that in the long-run gasoline energy demand appears to be price and income inelastic while diesel demand appears to be price inelastic and income elastic. We also found that the absence of close substitutes in the road sector denotes the low level of energy switching in Greece. (Author)

  11. Electric energy demand and supply prospects for California

    Science.gov (United States)

    Jones, H. G. M.

    1978-01-01

    A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.

  12. Energy Consumption and Freight Transport Demand in Denmark

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Bonilla, David

    2008-01-01

    econometric models make use of a deterministic trend to explain fuel intensity and cannot accommodate long-run effects such as asymmetric diesel price effects and relationship between the variables in the freight demand. Our results do not confirm that decoupling truck freight has accelerated in recent years...

  13. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  14. Demand for Energy and Energy Generation: Does Regional Energy Policy Play a Role?

    OpenAIRE

    Ojeaga, Paul; Odejimi DEBORAH

    2014-01-01

    Does regional energy policy play a role in regional energy generation? What does the implication of the current industrialization trend mean for the generation and the supply process across regions? And to what extent does regional energy policy affect energy security (energy supply risks) in regions? This study investigates the effect of regional energy policy on regional generation characteristics in seven regions of the World using regional panel data from 1980 to 2010 a period of 31 years...

  15. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    NARCIS (Netherlands)

    Hekkenberg, M.; Moll, H.C.; Schoot Uiterkamp, A.J.M.

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect

  16. Enhancing State Clean Energy Workforce Training to Meet Demand. Issue Brief

    Science.gov (United States)

    Saha, Devashree

    2010-01-01

    Recent state policy and federal funding initiatives are driving the demand for clean energy in both the short and long term. This increased demand has created the need for many more workers trained or retrained in a variety of clean energy jobs. In response, states are utilizing funding under the American Recovery and Reinvestment Act of 2009…

  17. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    Science.gov (United States)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  18. How might residential PV change the energy demand curve in Poland

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2016-01-01

    Full Text Available Photovoltaics (PV in terms of installed capacity play a minor role in the portfolio of renewable energy sources (RES in Poland. However current market tendencies indicate that residential PV installations are gaining on popularity and may in future significantly contribute to covering national energy demand. This study investigates the potential impact of numerous residential PV installations on the shape and statistical properties of the polish energy demand curve. Analysis employed statistical data on mean household energy consumption in different districts, typical energy demand patterns and hourly values of irradiation for the year 2012. Obtained results indicate that there is a possibility to integrate in total as much as 300 000 residential PV installations (0.9 GW from which generated energy will be utilized by households within given district. Further analysis has shown that to some extent increasing number of residential PV decreases the value of energy demand coefficient of variation.

  19. The Outlook for Energy Supply and Demand (1/3)

    CERN Document Server

    CERN. Geneva

    2015-01-01

    These lectures will review the challenges facing energy policy, the outlook for different sources of primary energy (fossil and renewable), how energy is used, and prospects for improved energy efficiency. A colloquium ‘Can Future Energy Needs be Met Sustainably?’, that I will be giving on Tuesday 15 September at 16:30, is part of this course – see separate Abstract for a summary. The lectures will provide more details and address topics that will only be mentioned in passing in the colloquium.

  20. Structural change of the economy, technological progress and long-term energy demand

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    ) the effect on energy demand of structural changes exemplified by changes in the energy supply sector and in Danish trade patterns. The report highlights a few aspects of the interaction between structural economic changes and energy demand, but it does not intend to cover a wide range of issues related...... to these topics. In the introductory chapter some discussions and thoughts about issues not covered by the articles are brought forward. The introductory chapter includes an overview of possible relations between longterm energy demand and the economy, technical progress, demography, social conditions...

  1. Forecasting energy demand and CO{sub 2}-emissions from energy production in the forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H.

    1997-12-31

    The purpose of this study was to develops new energy forecasting methods for the forest industry energy use. The scenarios have been the most commonly used forecasts, but they require a lot of work. The recent scenarios, which are made for the forest industry, give a wide range of results; e.g. from 27,8 TWh to 38 TWh for electricity use in 2010. There is a need for more simple and accurate methods for forecasting. The time scale for the study is from 1975 to 2010, i.e. 36 years. The basic data for the study is collected from time period 1975 - 1995. It includes the wood use, production of main product categories and energy use in the forest industry. The factors affecting energy use at both industry level and at mill level are presented. The most probable technology trends, which can have an effect on energy production and use and CO{sub 2}-emissions are studied. Recent forecasts for the forest industry energy use till the year 2010 are referred and analysed. Three alternative forecasting methods are studied more closely. These methods are (a) Regression analysis, (b) Growth curves and (c) Delphi-method. Total electricity demand, share of purchased electricity, total fuel demand and share of process-based biofuels are estimated for the time period 1996 - 2010. The results from the different methods are compared to each other and to the recent scenarios. The comparison is made for the results concerning the energy use and the usefulness of the methods in practical work. The average energy consumption given by the forecasts for electricity was 31,6 TWh and for fuel 6,2 Mtoe in 2010. The share of purchased electricity totalled 73 % and process based fuels 77 %. The figures from 1995 are 22,8 TWh, 5,5 Mtoe, 64 % and 68 % respectively. All three methods were suitable for forecasting. All the methods required less working hours and were easier to use than scenarios. The methods gave results with a smaller deviation than scenarios, e.g. with electricity use in 2010 from

  2. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    Science.gov (United States)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  3. The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand.

    Science.gov (United States)

    Gutowski, Timothy G; Sahni, Sahil; Allwood, Julian M; Ashby, Michael F; Worrell, Ernst

    2013-03-13

    In this paper, we review the energy requirements to make materials on a global scale by focusing on the five construction materials that dominate energy used in material production: steel, cement, paper, plastics and aluminium. We then estimate the possibility of reducing absolute material production energy by half, while doubling production from the present to 2050. The goal therefore is a 75 per cent reduction in energy intensity. Four technology-based strategies are investigated, regardless of cost: (i) widespread application of best available technology (BAT), (ii) BAT to cutting-edge technologies, (iii) aggressive recycling and finally, and (iv) significant improvements in recycling technologies. Taken together, these aggressive strategies could produce impressive gains, of the order of a 50-56 per cent reduction in energy intensity, but this is still short of our goal of a 75 per cent reduction. Ultimately, we face fundamental thermodynamic as well as practical constraints on our ability to improve the energy intensity of material production. A strategy to reduce demand by providing material services with less material (called 'material efficiency') is outlined as an approach to solving this dilemma.

  4. Energy Consumption and Freight Transport Demand in Denmark

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Bonilla, David

    2008-01-01

    Considering the externalities of freight transport activity (energy use, accidents, congestion, its related GHG emissions, and lost oil revenues) this article reviews trends from 1990-2005 in truck freight fuel intensity (energy use per tonne-km moved), on road truck fuel economy (L/ 100 km driven......). We review changes in decoupling truck freight activity from GDP. We examine separately five manufacturing sectors using data from Statistics Denmark on vehicle performance for 1980-2006. Our four major findings are: (1) truck freight energy intensity (mj/tonne-km) continues to grow as well as CO2...... emissions; (2) decoupling has not been large enough to reduce overall energy use of truck; (3) because of the absence of fuel economy regulations, a low average vehicle load, increased hauling distance, overall energy use of truck freight will continue to expand; (4) results show that standard freight...

  5. India Energy Outlook: End Use Demand in India to 2020

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  6. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  7. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  8. An overview of energy supply and demand in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  9. An overview of energy supply and demand in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  10. An overview of energy supply and demand in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  11. An overview of energy supply and demand in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  12. Energy efficient demand controlled ventilation in single family houses

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian

    2010-01-01

    This paper presents a strategy for a simple demand controlled ventilation system for single family houses where all sensors and controls are located in the air handling unit. The strategy is based on sensing CO2-concentration and moisture content in the outdoor air and exhaust air. The CO2......-concentration is used to ensure adequate ventilation during occupancy and the moisture content is used to ensure adequate removal of moisture produced in the house. The ventilation rate can be switched between two flow rates: a high rate and a low rate. The high flow rate is based on existing requirements...... in the Danish building regulations and the low flow rate is based on minimum requirements in indoor air quality standards. Measurements were performed on an existing single family house where the controls were installed on the existing mechanical ventilation system. The results showed that the ventilation can...

  13. For a simultaneous mastery of the energy demand and offer; Pour une maitrise simultanee de la demande et de l'offre d'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    This document is a 'white book' written by the French energy-environment technical association (ATEE) in the framework of the national debate on energies. Its aim is to provide arguments, ways of reflexion and proposals of measures and actions in the domain of competence of the ATEE, i.e. energy mastery, renewable energies and cogeneration in the industry sector, the public and private tertiary sector, the collective dwelling and the local organizations. The recommendations of ATEE are based on a balance and sustainable mastery of both the energy demand and the energy offer: 1 - reduction of the demand and improvement of the energy efficiency (reduction of the French energy intensity, consumer information about energy saving and abatement of CO{sub 2} emissions, abatement of energy consumptions in government buildings, allocation of sufficient budgetary means to the French agency of environment and energy mastery (Ademe), implementation of energy mastery programs by energy suppliers, generalization of 'result contracts' by energy service companies and progressive integration of CO{sub 2} emissions, appointment of energy responsible persons in administrations and energy consuming companies, creation of a domestic emission credit market for non-eligible companies, integration of the indirect emissions due to the transports, implementation of the technology procurement purchase method to improve the energy efficiency of common appliances). 2 - mastery of the offer: encouraging cogeneration, revalorization of the repurchase tariffs of the electricity produced from renewable energies, flattening of the administrative, regulatory and contractual obstacles, promotion of the use of renewable heat. The contributions of the 'cogeneration', 'biogas' and 'wood-fuel' associations are given in appendixes. (J.S.)

  14. Global energy efficiency improvement in the log term: a demand- and supply-side perspective

    OpenAIRE

    Graus, W.H.J.; Blomen, E.; Worrell, E.

    2011-01-01

    This study assessed technical potentials for energy efficiency improvement in 2050 in a global context. The reference scenario is based on the World Energy Outlook of the International Energy Agency 2007 edition and assumptions regarding gross domestic product developments after 2030. In the reference scenario, worldwide final energy demand almost doubles from 293 EJ in 2005 to 571 EJ in 2050 and primary energy supply increases from 439 EJ in 2005 to 867 EJ in 2050 (excluding non-energy use)....

  15. Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management

    CERN Document Server

    Koutsopoulos, Iordanis

    2010-01-01

    The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

  16. The Integration of Energy Efficiency, Renewable Energy, DemandResponse and Climate Change: Challenges and Opportunities for Evaluatorsand Planners

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2007-05-29

    This paper explores the feasibility of integrating energyefficiency program evaluation with the emerging need for the evaluationof programs from different "energy cultures" (demand response, renewableenergy, and climate change). The paper reviews key features andinformation needs of the energy cultures and critically reviews theopportunities and challenges associated with integrating these withenergy efficiency program evaluation. There is a need to integrate thedifferent policy arenas where energy efficiency, demand response, andclimate change programs are developed, and there are positive signs thatthis integration is starting to occur.

  17. Energy Systems Scenario Modelling and Long Term Forecasting of Hourly Electricity Demand

    DEFF Research Database (Denmark)

    Alberg Østergaard, Poul; Møller Andersen, Frits; Kwon, Pil Seok

    2015-01-01

    . The results show that even with a limited short term electric car fleet, these will have a significant effect on the energy system; the energy system’s ability to integrate wind power and the demand for condensing power generation capacity in the system. Charging patterns and flexibility have significant...... or inflexible electric vehicles and individual heat pumps, and in the long term it is investigated what the effects of changes in the load profiles due to changing weights of demand sectors are. The analyses are based on energy systems simulations using EnergyPLAN and demand forecasting using the Helena model...... effects on this. Likewise, individual heat pumps may affect the system operation if they are equipped with heat storages. The analyses also show that the long term changes in electricity demand curve profiles have little impact on the energy system performance. The flexibility given by heat pumps...

  18. Air conditioning versus heating: climate control is more energy demanding in Minneapolis than in Miami

    Science.gov (United States)

    Sivak, Michael

    2013-03-01

    Energy demand for climate control was analyzed for Miami (the warmest large metropolitan area in the US) and Minneapolis (the coldest large metropolitan area). The following relevant parameters were included in the analysis: (1) climatological deviations from the desired indoor temperature as expressed in heating and cooling degree days, (2) efficiencies of heating and cooling appliances, and (3) efficiencies of power-generating plants. The results indicate that climate control in Minneapolis is about 3.5 times as energy demanding as in Miami. This finding suggests that, in the US, living in cold climates is more energy demanding than living in hot climates.

  19. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  20. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Brown, A. [Cambridge Systematics Inc., Cambridge, MA (United States); Fischer, M. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Hutson, N. [Cambridge Systematics Inc., Cambridge, MA (United States); Lamm, C. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Pei, Y. L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vimmerstedt, L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vyas, A. D. [Cambridge Systematics Inc., Cambridge, MA (United States); Winebrake, J. J. [Cambridge Systematics Inc., Cambridge, MA (United States)

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  1. An accelerator-driven reactor for meeting future energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-12-31

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel.

  2. Influence Of Building Zoning On Annual Energy Demand

    OpenAIRE

    Rivalin, Lisa; Marchio, Dominique; Stabat, Pascal; Caciolo, Marcello; Cogné, Benoit

    2014-01-01

    Simulation tools are widely used to assess the energy consumption of a building. In the modeling process, some choices should be made by the simulation tool user such as the division of the building into thermal zones. The zoning process is user dependent, which results in some difference in energy consumption results and model set-up and computational times. The aim of this work is to assess the influence of building zoning on the results of the dynamic thermal simulation including airflow a...

  3. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  4. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    Science.gov (United States)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  5. Towards managing consumer energy demand with the aid of the internet of things

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2012-05-01

    Full Text Available and designed to be incorporated into the Internet of Things. We describe the technology used and dedicate a section on the potential benefits of making consumer energy demand information available at regional and national levels....

  6. The impact of indoor thermal conditions, system controls and building types on the building energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Corgnati, Stefano Paolo; Fabrizio, Enrico; Filippi, Marco [Dipartimento di Energetica (DENER), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-07-01

    It is possible to evaluate the energy demand as well as the parameters related to indoor thermal comfort through building energy simulation tools. Since energy demand for heating and cooling is directly affected by the required level of thermal comfort, the investigation of the mutual relationship between thermal comfort and energy demand (and therefore operating costs) is of the foremost importance both to define the benchmarks for energy service contracts and to calibrate the energy labelling according to European Directive 2002/92/CE. The connection between indoor thermal comfort conditions and energy demand for both heating and cooling has been analyzed in this work with reference to a set of validation tests (office buildings) derived from a European draft standard. Once a range of required acceptable indoor operative temperatures had been fixed in accordance with Fanger's theory (e.g. -0.5 < PMV < -0.5), the effective hourly comfort conditions and the energy consumptions were estimated through dynamic simulations. The same approach was then used to quantify the energy demand when the range of acceptable indoor operative temperatures was fixed in accordance with de Dear's adaptive comfort theory. (author)

  7. Energetic and dynamic: how mitochondria meet neuronal energy demands.

    Directory of Open Access Journals (Sweden)

    Dzhamilja Safiulina

    2013-12-01

    Full Text Available Mitochondria are the power houses of the cell, but unlike the static structures portrayed in textbooks, they are dynamic organelles that move about the cell to deliver energy to locations in need. These organelles fuse with each other then split apart; some appear anchored and others more free to move around, and when damaged they are engulfed by autophagosomes. Together, these processes-mitochondrial trafficking, fusion and fission, and mitophagy-are best described by the term "mitochondrial dynamics". The molecular machineries behind these events are relatively well known yet the precise dynamics in neurons remains under debate. Neurons pose a peculiar logistical challenge to mitochondria; how do these energy suppliers manage to traffic down long axons to deliver the requisite energy supply to distant parts of the cell? To date, the majority of neuronal mitochondrial dynamics studies have used cultured neurons, Drosophila larvae, zebrafish embryos, with occasional experiments in resting mouse nerves. However, a new study in this issue of PLOS Biology from Marija Sajic and colleagues provides an in vivo look at mitochondrial dynamics along resting and electrically active neurons of live anaesthetized mice.

  8. Study on the Standard Definitions and Methods of Energy Supply and Demand Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.S. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-11-01

    It is no doubt that a successful national energy policy depends on how deeply is understood the structure of energy supply and demand. It, however, is quite difficult to make out the precise statistics of the energy supply and demand statistics without the technical knowledge. We need to consider reporting the energy statistics as constructing an infrastructure in its field. With several revisions of reporting data system, the energy statistics have been developed, but they still have many problems due to the shortage of energy statistic data. This study indicates the technical problems of reporting system by energy sources and suggests the improving ways about how to collect and report energy supply and demand statistics. Concerning the statistics of oil supply and demand, this study suggests definition and reporting methods on the annual oil statistics of IEA and shows revised data on the national report submitted to IEA 2000. Also to calculate precise coal supply and demand, coal conversion processes, relationship of inputs of coking coal through coke oven coke, COG and BFG are considered in this study. To include auto-producer electricity and heat for sale in the transformation sector of energy balance, related data are collected and how much is used for electricity generation and heat for sale are estimated. To avoid double counting, it shows how each amount is subtracted from the corresponding sector. In order to a success of establishing energy policies and strategies, they need to be based on the well-framed statistics on energy supply and demand. Therefore we all should keep in mind that continuing interests and supports are necessary to set up the energy data system. And to develop the energy statistical system, more consistent institutional framework is necessary to be established along with the technical solution. (author). 23 refs., 11 figs., 45 tabs.

  9. 76 FR 63527 - National Energy Action Month, 2011

    Science.gov (United States)

    2011-10-12

    ... Throughout our history, America's energy resources have laid the foundation for our Nation's economic... investments in clean energy in our Nation's history, which are giving rise to cutting-edge technologies... development of our domestic energy resources. To help save consumers money at the pump and on their...

  10. Energy demand modelling and GHG emission reduction: case study Croatia

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Novosel, Tomislav

    2013-01-01

    In the light of new European energy-climate package and its measures for increasing security of supply, decreasing the impact on environment and stimulating sustainable development with special emphasis on job creation and regional growth, Croatia as a future EU member state, needs to reconsider...... GHG module was assembled and added to the NeD model covering all six sectors and calculating its emissions. The model is based on bottom up approach, where data was available, which combines and process large number of input data at the end use level. NeD model was used to present different future GHG...

  11. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    Science.gov (United States)

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  12. Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.

    2017-04-01

    Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of the proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.

  13. Energy demand hourly simulations and energy saving strategies in greenhouses for the Mediterranean climate

    Science.gov (United States)

    Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.

    2017-01-01

    This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.

  14. Function and impact of weather files on energy demand simulations

    Directory of Open Access Journals (Sweden)

    Alex González Cáceres

    2013-12-01

    Full Text Available Actualmente se han desarrollado distintos tipos de archivos climáticos para su uso en simulaciones energéticas, cuyo origen depende principalmente de las estaciones meteorológicas, variables ambientales, algoritmos de interpolación y periodos considerados. En atención a esta diversidad cabe preguntarse cuáles son los más apropiados para su utilización en estudios de esta naturaleza para viviendas en Chile, y en particular, para la ciudad de Concepción. Se presenta un análisis comparativo, desarrollado en el contexto del proyecto Fondef D10I10251 , entre tres fuentes de archivos climáticos para Concepción, el primero obtenido a través de la página web de EERE, (U.S. DOE Energy Efficiency and Renewable Energy, el segundo desarrollado por Meteonorm y el último generado a través de los datos proporcionados por un centro de observación geodésica ubicado en Concepción (TIGO. Se puede observar que el origen y método de obtención de datos para la ciudad de Concepción en Chile puede generar diferencias en la demanda de un 24,8%, que en este caso corresponde a 41,34 kWh/m2.

  15. Structural change of the economy, technological progress and long-term energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Klinge Jacobsen, H. [Risoe National Dept., Roskilde (Denmark). Systems Analysis Dept.

    2000-05-01

    The material included in the report is a collection of papers dealing with different issues related to the topics included in the title. Some of these papers have already either been published or presented at various conferences. Together with a general introduction, they constitute the author's PhD dissertation. The dissertation includes six papers and two shorter notes on different aspects of structural change of the economy and energy demand. Three different issues related to long-term energy demand are discussed: (1) the importance of technological change and its representation in energy-economy modelling, (2) an integration of two different modelling approaches, and (3) the effect on energy demand of structural changes exemplified by changes in the energy supply sector and in Danish trade patterns. The report highlights a few aspects of the interaction between structural economic changes and energy demand, but it does not intend to cover a wide range of issues related to these topics. In the introductory chapter some discussions and thoughts about issues not covered by the articles are brought forward. The introductory chapter includes an overview of possible relations between longterm energy demand and the economy, technical progress demography, social conditions and politics. The first two papers discuss the importance for projections of long-term energy demand of the way in which technological progress is modelled. These papers focus on energy-economy modelling. A paper dealing with two different approaches to energy demand modelling and the possible integration of these approaches in the Danish case follows next. The integrated Danish model, is then used for analysing different revenue recycling principles in relation to a CO{sub 2} tax. The effect of subsidising biomass use is compared with recycling through corporate tax rates. Then a paper follows describing the structural change of a specific sector, namely the energy supply sector, and the

  16. Energy demand management and study on energy information system development for establishing policy of reducing green-house gas

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.C. [Inha University, Inchon (Korea, Republic of)

    1998-05-01

    The development of energy statistics system should precede ahead of drafting rational energy saving or carbon dioxide emission policy. The energy efficiency index can be used as energy policy index by estimating the change of energy use and connecting the causes and the result as a statistical amount that can obtain economic growth and economic structure change from energy unit consumption separately. Energy information system estimates energy saving and potential amount of carbon dioxide emission due to the introduction of energy saving technology / saving plan as a database equipped with extensive technical and economic data on energy system. This study analyzes the development debate of energy efficiency index and energy information system, which is indispensable to energy demand management and policy establishment of carbon dioxide emission reduction as a prerequisite task of developing energy information system that will be started soon and presents the frame of energy information system that is suitable to our conditions. 66 refs., 3 figs., 10 tabs.

  17. Norwegian Residential Energy Demand: Coordinated use of a System Engineering and a Macroeconomic Model

    Directory of Open Access Journals (Sweden)

    Tor A Johnsen

    1996-07-01

    Full Text Available In Norway, the system engineering model MARKAL and the macroeconomic model MSG-EE are both used in studies of national CO2 controlling strategies. MARKAL is a linear programming model that calculates a composite set of technologies necessary to meet demand and environmental constraints at minimised total energy expenditure. MSG-EE is an applied general equilibrium model including the link between economic activity, energy demand and emissions to air. MSG-EE has a theory consistent description of the link between income, prices and energy demand, but the representation of technological improvements is simple. MARKAL has a sophisticated description of future energy technology options, but includes no feedback to the general economy. A project for studying the potential for a coordinated use of these two models was initiated and funded by the Norwegian Research Council (NFR. This paper gives a brief presentation of the two models. Results from independent model calculations show that MARKAL gives a signficant lower residential energy demand than MSG-EE does. This is explained by major differences in modelling approach. A first attempt of coordinating the residential energy demand in the models is reported. This attempt shows that implementing results from MARKAL, in MSG-EE for the residential sector alone gives little impact on the general economy. A further development of an iteration procedure between the models should include all energy using sectors.

  18. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hun, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74°F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  19. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  20. Global impacts of energy demand on the freshwater resources of nations

    Science.gov (United States)

    Holland, Robert Alan; Scott, Kate A.; Flörke, Martina; Brown, Gareth; Ewers, Robert M.; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-01-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being—energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy. PMID:26627262

  1. Prediction-based manufacturing center self-adaptive demand side energy optimization in cyber physical systems

    Science.gov (United States)

    Sun, Xinyao; Wang, Xue; Wu, Jiangwei; Liu, Youda

    2014-05-01

    Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufacturing center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.

  2. Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-01-01

    Full Text Available The role of Demand Side Management (DSM with Distributed Energy Storage (DES has been gaining attention in recent studies due to the impact of the latter on energy management in the smart grid. In this work, an Energy Scheduling and Distributed Storage (ESDS algorithm is proposed to be installed into the smart meters of Time-of-Use (TOU pricing consumers possessing in-home energy storage devices. Source of energy supply to the smart home appliances was optimized between the utility grid and the DES device depending on energy tariff and consumer demand satisfaction information. This is to minimize consumer energy expenditure and maximize demand satisfaction simultaneously. The ESDS algorithm was found to offer consumer-friendly and utility-friendly enhancements to the DSM program such as energy, financial, and investment savings, reduced/eliminated consumer dissatisfaction even at peak periods, Peak-to-Average-Ratio (PAR demand reduction, grid energy sustainability, socio-economic benefits, and other associated benefits such as environmental-friendliness.

  3. Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-17

    Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

  4. EVOLUTION OF THE DEMAND AND SUPPLY IN ENERGY RESOURCES

    Directory of Open Access Journals (Sweden)

    Silvestru MAXIMILIAN

    2013-06-01

    Full Text Available Economic, social and political development of human society in recent decades put to the fore the issue of natural resources available to the earth; scientists are asking ever more seriously the question to what extent these resources can support the economic development in the future, can provide food and survival of a growing population and will be able to contribute to the eradication of underdevelopment. The emphasis of major events – the population explosion, the trend of depletion of natural resources, environmental deterioration, underdevelopment etc. – was and it is still discussed with increasing responsibility by specialists, being drafted a large number of forecasts for a variable duration perspective. The trend of depletion of natural resources is another phenomenon of the contemporary world and that will become, certainly, even more pronounced in the near future. Harnessing the increasing exhaustible natural resources with low reserves and a slow recovery of renewable resources raises acutely the issue regarding the conservation of these resources. In recent decades, there is a tendency to waste energy and raw materials in the society. There are produced goods without an absolute utility, being imposed artificially by advertising or fashion swings and many products are designed in such a way that it takes little to compel the buyer to replace them. The "consumption" civilization is characterized as a "society that throws" the population of developed countries (18% of world population dispelling waste form 20 to 25% of the material production of the world. Excessive consumption of raw materials and fuel was favoured by their relatively low prices, maintained under the pressure of interests of transnational companies, prices that disfavoured, however, the developing countries. Consequently, consumption of raw materials and fuel turned to the easily accessible resources that have been heavily exploited, partially abandoning some

  5. monthly energy consumption forecasting using wavelet analysis and ...

    African Journals Online (AJOL)

    User

    paper, a wavelet transform and radial basis function neural network based energy forecast model is developed to .... These prop- erties lead to quicker learning in comparison to ..... Machine Learning and Cybernetics,. IEEE Transactions, 8: ...

  6. Residential demand for energy: A review of the empirical literature and some new results

    Science.gov (United States)

    Kirby, S. N.

    1983-01-01

    Demand for energy is derived from the demand for particular end-use service (e.g., warmth, cooling, clothes drying, etc.). This derivative nature of energy demand gives rise to two major, although interrelated, issues: first, a complete model must consider both the demand for services and the demand for energy-using equipment; second, the essentially dynamic nature of the demand requires a clear delineation between short-run and long-run responses. Because of their durability, appliance stocks will be adjusted only over a period of time. In contrast, the intensity of utilization of a given appliance portfolio can be adjusted fairly rapidly. In the short run, defined as the period of time during which appliance stocks are fixed, households are essentially limited in their ability to respond to changes in fuel prices and income. In the long run, households may alter their stock of energy using equipment to reflect more accurately their desired capital stock. As such, longer run responses will be much larger in magnitude than short run responses.

  7. Calcium signaling as a mediator of cell energy demand and a trigger to cell death.

    Science.gov (United States)

    Bhosale, Gauri; Sharpe, Jenny A; Sundier, Stephanie Y; Duchen, Michael R

    2015-09-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury.

  8. Summary of Characteristics and Energy Efficiency Demand-side Management Programs in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Glatt, Sandy [BCS Inc., Laurel, MD (United States)

    2010-04-01

    This report is the first in a series that seeks to characterize energy supply and industrial sector energy consumption, and summarize successful industrial demand-side management (DSM) programs within each of the eight North American Electric Reliability Corporation (NERC) regions.

  9. Model documentation report: Residential sector demand module of the national energy modeling system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  10. Renewable energy: GIS-based mapping and modelling of potentials and demand

    Science.gov (United States)

    Blaschke, Thomas; Biberacher, Markus; Schardinger, Ingrid.; Gadocha, Sabine; Zocher, Daniela

    2010-05-01

    Worldwide demand of energy is growing and will continue to do so for the next decades to come. IEA has estimated that global primary energy demand will increase by 40 - 50% from 2003 to 2030 (IEA, 2005) depending on the fact whether currently contemplated energy policies directed towards energy-saving and fuel-diversification will be effectuated. The demand for Renewable Energy (RE) is undenied but clear figures and spatially disaggregated potentials for the various energy carriers are very rare. Renewable Energies are expected to reduce pressures on the environment and CO2 production. In several studies in Germany (North-Rhine Westphalia and Lower Saxony) and Austria we studied the current and future pattern of energy production and consumption. In this paper we summarize and benchmark different RE carriers, namely wind, biomass (forest and non-forest, geothermal, solar and hydro power. We demonstrate that GIS-based scalable and flexible information delivery sheds new light on the prevailing metaphor of GIS as a processing engine serving needs of users more on demand rather than through ‘maps on stock'. We compare our finding with those of several energy related EU-FP7 projects in Europe where we have been involved - namely GEOBENE, REACCESS, ENERGEO - and demonstrate that more and more spatial data will become available together with tools that allow experts to do their own analyses and to communicate their results in ways which policy makers and the public can readily understand and use as a basis for their own actions. Geoportals in combination with standardised geoprocessing today supports the older vision of an automated presentation of data on maps, and - if user privileges are given - facilities to interactively manipulate these maps. We conclude that the most critical factor in modelling energy supply and demand remain the economic valuation of goods and services, especially the forecast of future end consumer energy costs.

  11. Modeling future demand for energy resources: A study of residential electricity usage in Thailand

    Science.gov (United States)

    Nilagupta, Prapassara

    1999-12-01

    Thailand has a critical need for effective long-term energy planning because of the country's rapidly increasing energy consumption. In this study, the demand for electricity by the residential sector is modeled using a framework that provides detailed estimates of the timing and spatial distribution of changes in energy demand. A population model was developed based on the Cohort-Component method to provide estimates of population by age, sex and urban/non-urban residency in each province. A residential electricity end user model was developed to estimate future electricity usage in urban and non-urban households of the seventy-six provinces in Thailand during the period 1999--2019. Key variables in this model include population, the number of households, family household size, and characteristics of eleven types of electric household appliance such as usage intensity, input power, and saturation rate. The methodology employed in this study is a trending method which utilizes expert opinion to estimate future variables based on a percentage change from the most current value. This study shows that from 1994 to 2019 Thailand will experience an increase in population from 55.4 to 83.6 million. Large percentage population increases will take place in Bangkok, Nonthaburi, Samut Prakarn, Nakhon Pathom and Chonburi. At a national level, the residential electricity consumption will increase from approximately 19,000 to 8 1,000 GWh annually. Consumption in non-urban households will be larger than in urban households, with respective annual increases of 8.0% and 6.2% in 2019. The percent increase of the average annual electricity consumption will be four times the average annual percent population increase. Increased electricity demand is largely a function of increased population and increased demand for high-energy appliances such as air conditioners. In 1994, air conditioning was responsible for xx% of total residential electricity demand. This study estimates that in

  12. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    Science.gov (United States)

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  13. 75 FR 62305 - National Energy Awareness Month, 2010

    Science.gov (United States)

    2010-10-08

    ..., and our environment. Over the last year and a half, we have taken unprecedented action to build a.... As a Nation of scientists and engineers, farmers and entrepreneurs, we must continue to invest in...-leading industries, and find lasting solutions to our energy challenges. If we seize this moment, we...

  14. Perspective on the energy future of the Northeast United States. [Reduce demand and develop diversified supplies

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, J.; Davitian, H.; Goettle, R. IV; Palmedo, P.F.

    1976-06-01

    This study was undertaken to examine the implications of alternative energy futures for the northeastern U.S. First, the past and present energy supply and demand patterns for the U.S. and the northeast region are reviewed. Then, on the basis of detailed analyses of present and possible future supply and demand activities, scenarios for the years 1985 and 2000 are constructed and compared to examine the implications of various policies that will affect future supply and demand activities. Economic and environmental consequences are also discussed. The principal findings of the study are these: (1) conservation measures can reduce fuel and resource requirements in the northeast by over 30 percent; (2) oil imports are likely to continue to be a major energy resource for the northeast since only if strong conservation measures are combined with large increases in U.S. energy supplies is there apt to be a substantial decline in oil imports to the region; (3) a shift to coal and other alternate energy supplies, coupled with increased conservation, could compensate for a curtailment in the use of nuclear power in the region; (4) new resource technologies are capable of supplying up to 20 percent of the region's energy requirements in 2000; (5) no single supply technology or single conservation strategy taken alone can reduce the region's increasing dependence on foreign oil. Rather, the creation of an acceptable energy system for the region will require efforts in many directions in terms both of reducing demand and developing reliable, diversified supplies.

  15. A Load Prioritization Model for a Smart Demand Responsive Energy Management System in the Residential Sector

    Directory of Open Access Journals (Sweden)

    Suratsavadee Koonlaboon KORKUA

    2014-01-01

    Full Text Available In order to strengthen energy security while reducing environmental impact, particularly from global warming and greenhouse gas (GHG emissions, the government of Thailand has established a 20-year Energy Efficiency Development Plan (EEDP, aiming to reduce a 20 % share of final energy consumption by 2030. The energy saving potential assessment reveals that the forecasted energy saving by the residential sector holds more than 60 % of the overall electricity saving shares. Therefore, in this paper, the situation of Thailand’s energy is presented and the energy conservation plan is reviewed. Next, a smart demand responsive energy management system under ZigBee/IEEE 802.15.4 based wireless communication is proposed. An analysis of demand response potential in terms of a time-of-use (TOU pricing without enabling technology program in Thailand scenario is also investigated. Finally, by using the proposed load characterization and load prioritization under the concept of a smart energy management system, the bill savings benefits of a demand responsive program can be proved while the target of energy saving is also achieved.

  16. Examining demand response, renewable energy and efficiencies to meet growing electricity needs

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, N.; Eldridge, M.; Shipley, A.M.; Laitner, J.S.; Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States); Silverstein, A. [A. Silverstein Consultant (United States); Hedman, B. [Energy and Environmental Analysis Inc., Arlington, VA (United States); Sloan, M. [Virtus Energy Research Associates, Inc. Austin, TX (United States)

    2007-04-15

    While Texas has already taken steps to improve its renewable energy portfolio (RPS), and its energy efficiency improvement program (EEIP), the level of savings that utilities can achieve through the EEIP can be greatly increased. This report estimated the size of energy efficiency and renewable energy resources in Texas, and suggested a range of policy options that might be adopted to further extend EEIP. Current forecasts suggest that peak demand in Texas will increase by 2.3 per cent annually from 2007-2012, a level of growth which is threatening the state's ability to maintain grid reliability at reasonable cost. Almost 70 per cent of installed generating capacity is fuelled by natural gas in Texas. Recent polling has suggested that over 70 per cent of Texans are willing support increased spending on energy efficiency. Demand response measures that may be implemented in the state include incentive-based programs that pay users to reduce their electricity consumption during specific times and pricing programs, where customers are given a price signal and are expected to moderate their electricity usage. By 2023, the widespread availability of time-varying retail electric rates and complementary communications and control methods will permanently change the nature of electricity demand in the state. At present, the integrated utilities in Texas offer a variety of direct load control and time-of-use, curtailable, and interruptible rates. However, with the advent of retail competition now available as a result of the structural unbundling of investor-owned utilities, there is less demand response available in Texas. It was concluded that energy efficiency, demand response, and renewable energy resources can meet the increasing demand for electricity in Texas over the next 15 years. 4 figs.

  17. Life Cycle Assessment Projection of Photovoltaic Cells: A Case Study on Energy Demand of Quantum Wire Based Photovoltaic Technology Research

    Science.gov (United States)

    Mukherjee, Shilpi

    With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA). LCA is the study of environmental impacts of a product throughout its life cycle. While there are some non-recoverable costs of research, energy is precious, and the PV research community should be aware of its energy consumption. LCA can help identify options for energy conservation through process optimization. A case study was conducted on the energy demand of a test-bed emerging PV technology using life cycle assessment methodology. The test-bed system chosen for this study was a new-material PV cell. The objective was to quantify the total energy demand for the research phase of the test-bed solar cell's life cycle. The objective was accomplished by collecting primary data on energy consumption for each process in the development of this solar cell. It was found that 937 kWh of energy was consumed for performing research on a single sample of the solar cell. For comparison, this energy consumption is 83% of Arkansas's average monthly residential electricity consumption. Life cycle inventory analysis showed that heating, ventilation, and air conditioning consumed the bulk of the energy of research. It is to be noted that the processes studied as part of the solar cell test-bed system are representative of a research process only. Life cycle thinking can identify energy hot-spots and

  18. A Unit Commitment Model with Demand Response for the Integration of Renewable Energies

    OpenAIRE

    IKEDA Yuichi; Ikegami, Takashi; Kataoka, Kazuto; Ogimoto, Kazuhiko

    2011-01-01

    The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power s...

  19. Predicted changes in energy demands for heating and cooling due to climate change

    Science.gov (United States)

    Dolinar, Mojca; Vidrih, Boris; Kajfež-Bogataj, Lučka; Medved, Sašo

    In the last 3 years in Slovenia we experienced extremely hot summers and demand for cooling the buildings have risen significantly. Since climate change scenarios predict higher temperatures for the whole country and for all seasons, we expect that energy demand for heating would decrease while demand for cooling would increase. An analysis for building with permitted energy demand and for low-energy demand building in two typical urban climates in Slovenia was performed. The transient systems simulation program (TRNSYS) was used for simulation of the indoor conditions and the energy use for heating and cooling. Climate change scenarios were presented in form of “future” Test Reference Years (TRY). The time series of hourly data for all meteorological variables for different scenarios were chosen from actual measurements, using the method of highest likelihood. The climate change scenarios predicted temperature rise (+1 °C and +3 °C) and solar radiation increase (+3% and +6%). With the selection of these scenarios we covered the spectra of possible predicted climate changes in Slovenia. The results show that energy use for heating would decrease from 16% to 25% (depends on the intensity of warming) in subalpine region, while in Mediterranean region the rate of change would not be significant. In summer time we would need up to six times more energy for cooling in subalpine region and approximately two times more in Mediterranean region. low-energy building proved to be very economical in wintertime while on average higher energy consumption for cooling is expected in those buildings in summertime. In case of significant warmer and more solar energy intensive climate, the good isolated buildings are more efficient than standard buildings. TRY proved not to be efficient for studying extreme conditions like installed power of the cooling system.

  20. Energy systems scenario modelling and long term forecasting of hourly electricity demand

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2015-06-01

    Full Text Available The Danish energy system is undergoing a transition from a system based on storable fossil fuels to a system based on fluctuating renewable energy sources. At the same time, more of and more of the energy system is becoming electrified; transportation, heating and fuel usage in industry and elsewhere. This article investigates the development of the Danish energy system in a medium year 2030 situation as well as in a long-term year 2050 situation. The analyses are based on scenario development by the Danish Climate Commission. In the short term, it is investigated what the effects will be of having flexible or inflexible electric vehicles and individual heat pumps, and in the long term it is investigated what the effects of changes in the load profiles due to changing weights of demand sectors are. The analyses are based on energy systems simulations using EnergyPLAN and demand forecasting using the Helena model. The results show that even with a limited short-term electric car fleet, these will have a significant effect on the energy system; the energy system’s ability to integrated wind power and the demand for condensing power generation capacity in the system. Charging patterns and flexibility have significant effects on this. Likewise, individual heat pumps may affect the system operation if they are equipped with heat storages. The analyses also show that the long-term changes in electricity demand curve profiles have little impact on the energy system performance. The flexibility given by heat pumps and electric vehicles in the long-term future overshadows any effects of changes in hourly demand curve profiles.

  1. Regional Differences in the Price-Elasticity of Demand for Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, M. A.; Griffin, J.

    2006-02-01

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  2. Urbanization impact on energy demand and CO2 emission in China

    Institute of Scientific and Technical Information of China (English)

    BaorenWEI; HiroshiYAGITA; AtsushiINABA; MasayukiSAGISAKA

    2003-01-01

    Urbanization has been believed a driving force of GDP growth in China. In the other hand, urbanization will atso impose some impact on energy demand and CO2 emissions. The calculation method of this impact is presented in this paper. It has been assumed that in 2003 the urbanization rate in China will have a unit (1 %) growth, GDP growth and its partition in agriculture, secondary industry and tertiary industry are calculated. The corresponding energy demand for GDP growth, household and transportation and CO2 emissions are further calculated. The calculation has been carried out by a computer program NICE Ⅲ developed in LCA Research Center AIST Japan. It has been found that 1 % increase of urbanization rate will cause 1 % of total energy demand and 1.2 % CO2 emissions in China in 2003.

  3. Supplementing energy demand of rural households in Bangladesh through appropriate biogas technology

    DEFF Research Database (Denmark)

    Ashekuzzaman, S.M.; Badruzzaman, A.B.M.; Rafiqul Hoque, A.T.M.

    2010-01-01

    This paper has sought to show the potential of energy recovery from rurally available agro and household organic wastes and thus, the possible impact on supplementing energy demand, reducing deforestation, and replacing fossil fuel as well as avoided greenhouse gases. Results show that co......-digestion of a wide range of manure, crop residues and household wastes with cow manure was successful to produce increased gas yield than what would be if cow dung is digested separately and the energy value from this can supplement 57–79% of the rural energy demand, depending on the methane yield from organic waste...... mixtures. However, particularly considering for cooking purpose, it can save 1586–2213 Kg firewood/Household/year. Therefore, the results suggests that implementation of co-digestion in the centralized plant could be a viable solution to produce decentralized energy for the rural households in terms...

  4. Supplementing energy demand of rural households in Bangladesh through appropriate biogas technology

    DEFF Research Database (Denmark)

    Ashekuzzaman, S.M.; Badruzzaman, A.B.M.; Rafiqul Hoque, A.T.M.

    2010-01-01

    This paper has sought to show the potential of energy recovery from rurally available agro and household organic wastes and thus, the possible impact on supplementing energy demand, reducing deforestation, and replacing fossil fuel as well as avoided greenhouse gases. Results show that co......-digestion of a wide range of manure, crop residues and household wastes with cow manure was successful to produce increased gas yield than what would be if cow dung is digested separately and the energy value from this can supplement 57–79% of the rural energy demand, depending on the methane yield from organic waste...... mixtures. However, particularly considering for cooking purpose, it can save 1586–2213 Kg firewood/Household/year. Therefore, the results suggests that implementation of co-digestion in the centralized plant could be a viable solution to produce decentralized energy for the rural households in terms...

  5. Mexico's long-term energy outlook : results of a detailed energy supply and demand simulation

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G. [Argonne National Laboratory, Argonne, IL (United States); Quintanilla, J. [Nacional de Autonoma de Mexico Univ., Mexico City (Mexico). Direccion General de Servicios de Computo Academico; Aguilar, V. [Secretaria de Energia, Mexico City (Mexico); Conde, L.A. [Inst. Nacional de Ecologia, Mexico City (Mexico); Fernandez, J. [Comision Federal de Electricidad, Mexico City (Mexico); Mar, E. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Martin del Campo, C.; Serrato, G.; Ortega, R. [Nacional de Autonoma de Mexico Univ., Mexico City (Mexico). Facultad de Ingenieria

    2006-04-15

    This article discussed the results of a bottom-up analysis of Mexico's energy markets which was conducted using an energy and power evaluation program. The program was used to develop energy market forecasts to the year 2025. In the first phase of the study, dynamic optimization software was used to determine the optimal, least-cost generation system expansion path to meet growing demand for electricity. A separate model was used to determine the optimal generating strategy of mixed hydro-thermal electric power systems. In phase 2, a nonlinear market-based approach was used to determine the energy supply and demand balance for the entire energy system, as well as the response of various segments of the energy system to changes in energy price and demand levels. Basic input parameters included information on the energy system structure; base-year energy statistics; and, technical and policy constraints. A total of 14 scenarios were modelled to examine variations in load growth, sensitivities to changes in projected fuel prices, variations in assumed natural gas availability, system reliability targets, and the potential for additional nuclear capacity. Forecasts for the entire energy system were then developed for 4 scenarios: (1) reference case; (2) limited gas scenario; (3) renewable energy; and (4) additional nuclear power generation capacity. Results of the study showed that Mexico's crude oil production is projected to increase annually by 1 per cent to 2025. Imports of petroleum products resulting from the country's rapidly growing transportation sector will increase. Demand for natural gas is expected to outpace projected domestic production. The long-term market outlook for Mexico's electricity industry shows a heavy reliance on natural gas-based generating technologies. It was concluded that alternative results for a constrained-gas scenario showed a substantial shift to coal-based generation and associated effects on the natural gas

  6. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells.

    Science.gov (United States)

    Devin, Anne; Rigoulet, Michel

    2007-01-01

    This review focuses on the different mechanisms involved in the adjustment of mitochondrial ATP production to cellular energy demand. The oxidative phosphorylation steady state at constant mitochondrial enzyme content can vary in response to energy demand. However, such an adaptation is tightly linked to a modification in both oxidative phosphorylation yield and phosphate potential and is obviously very limited in eukaryotic cells. We describe the three main mechanisms involved in mitochondrial response to energy demand. In heart cells, a short-term adjustment can be reached mainly through metabolic signaling via phosphotransfer networks by the compartmentalized energy transfer and signal transmission. In such a complex regulatory mechanism, Ca(2+) signaling participates in activation of matricial dehydrogenases as well as mitochondrial ATP synthase. These processes allow a large increase in ATP production rate without an important modification in thermodynamic forces. For a long-term adaptation, two main mechanisms are involved: modulation of the mitochondrial enzyme content as a function of energy demand and/or kinetic regulation by covalent modifications (phosphorylations) of some respiratory chain complex subunits. Regardless of the mechanism involved (kinetic regulation by covalent modification or adjustment of mitochondrial enzyme content), the cAMP signaling pathway plays a major role in molecular signaling, leading to the mitochondrial response. We discuss the energetic advantages of these mechanisms.

  7. Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Rabia; Ahmad, Sheikh Saeed [Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi (Pakistan)

    2010-05-15

    A research associated with urban transportation was carried out in Rawalpindi and Islamabad to analyze the status of emission of air pollutants and energy demands. The study included a discussion of past trends and future scenarios in order to reduce the future emissions. A simple model of passenger transport has been developed using computer based software called Long-Range Energy Alternatives Planning System (LEAP). The LEAP model was used to estimate total energy demand and the vehicular emissions for the base year 2000 and extrapolated till 2030 for the future predictions. Transport database in Rawalpindi and Islamabad, together with fuel consumption values for the vehicle types and emission factors of NO{sub x}, SO{sub 2} and PM{sub 10} corresponding to the actual vehicle types, formed the basis of the transport demand, energy consumption and total emission calculations. Apart from base scenario, the model was run under three alternative scenarios to study the impact of different urban transport policy initiatives that would reduce energy demand and emissions in transport sector of Rawalpindi and Islamabad. The prime objective was to arrive at an optimal transport policy, which limits the future growth of fuel consumption as well as air pollution. (author)

  8. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to

  9. Co-optimization of Energy and Demand-Side Reserves in Day-Ahead Electricity Markets

    Science.gov (United States)

    Surender Reddy, S.; Abhyankar, A. R.; Bijwe, P. R.

    2015-04-01

    This paper presents a new multi-objective day-ahead market clearing (DAMC) mechanism with demand-side reserves/demand response (DR) offers, considering realistic voltage-dependent load modeling. The paper proposes objectives such as social welfare maximization (SWM) including demand-side reserves, and load served error (LSE) minimization. In this paper, energy and demand-side reserves are cleared simultaneously through co-optimization process. The paper clearly brings out the unsuitability of conventional SWM for DAMC in the presence of voltage-dependent loads, due to reduction of load served (LS). Under such circumstances multi-objective DAMC with DR offers is essential. Multi-objective Strength Pareto Evolutionary Algorithm 2+ (SPEA 2+) has been used to solve the optimization problem. The effectiveness of the proposed scheme is confirmed with results obtained from IEEE 30 bus system.

  10. Impact of kiln thermal energy demand and false air on cement kiln flue gas CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R.; Kawan, Dinesh; Tokheim, Lars-Andre [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); (Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The present study is focused on the effect of the specific thermal energy demand and the false air factor on carbon capture applied to cement kiln exhaust gases. The carbon capture process model was developed and implemented in Aspen Plus. The model was developed for flue gases from a typical cement clinker manufacturing plant. The specific thermal energy demand as well as the false air factor of the kiln system were varied in order to determine the effect on CO2 capture plant performance, such as the solvent regeneration energy demand. In general, an increase in the mentioned kiln system factors increases the regeneration energy demand. The reboiler energy demand is calculated as 3270, 3428 and 3589 kJ/kg clinker for a specific thermal energy of 3000, 3400 and 3800 kJ/kg clinker, respectively. Setting the false air factor to 25, 50 or 70% gives a reboiler energy demand of 3428, 3476, 3568 kJ/kg clinker, respectively.

  11. Information and Communications Systems for Control-by-Price of Distributed Energy Resources and Flexible Demand

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob

    2011-01-01

    The control-by-price concept fits well with controlling small-scale generation, storage and demand. In this paper, we investigate the required information and communications systems that are needed to realize the control-by-price concept for such units. We first present a proposal for overall...... distributed energy resources and flexible demand as a regulating resource. Furthermore, the results illustrate and verify the applicability of the concept and the proposed infrastructure for controlling distributed energy resources and flexible demand....... infrastructure and subsystem design and secondly focus on the design and implementation of the end-user price-responsive controller, interfaces, and communications. The design and its applicability on existing devices is verified through laboratory tests with two cases: electric space heating thermostat control...

  12. Color doppler energy (CDE) : initial ten-months experience

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Young Jin; Son, Hyun Ju; Lee, Suck Hong; Kim, Byung Soo [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of); Han, Kook Sang; Nam, SAng Hwa; Lee, Keum Seob [Haedong Hospital, Pusan (Korea, Republic of); Shin Se Kwon [Daedong Hospital, Pusan (Korea, Republic of)

    1996-06-01

    Color Doppler imaging(CDI) has shortcomings, including random noise, aliasing, and angle dependence. To overcome these, a method using CD US, termed power doppler or Color Doppler Energy(CDE), has recently been introduced. The purpose of this study was to show the clinical usefulness of CDE. We retrospectively analyzed the CDI and CDE of 61 cases(20 renal pseudotumors, 8 musculoskeletal inflammations, 17 epididymitis or epididymo-orchitis, 3 varicoceles, 1 normal testis, 1 hepatocellualr carcinoma, 7 renal cell carcinoma, 1 renal angiomyolipoma, and 3 splenic varices). CDI and CDE scans were obtained at the same region with constant scan plane. The color gain was increased until noise first became perceptible, and scans were always obtained in such a way that the maximum amount of vascularity was shown. Thereafter, the vascularity, vascular displacement, and the vascular relationship between CDI and CDE were compared. In 17 of 20 cases of pseudotumor in the kidney, normal vascularity was identified in CDI and CDE, but was more cleary visible in CDE. In three cases, there was no visible vascularity in CDI, but normal vascularity in CDE. In eight cases of musculoskeletal inflammation and 17 cases of epididymitis with or without orchitis, the vascularity was increased due to hyperemia, which was more prominently seen in CDE than in CDI. In three varicoceles, CDE appeared to be better in demonstrating low velocity flow. In one patient who was suspected of having acute testicular torsion, CDE was helpful in excluding this suspicion. In one case of hepatocellualr carcinoma, seven cases of renal cell carcinoma, one case of renal angiomyolipoma, and three cases of splenic varices, CDE was better than CDI in showing the vascularity, vascular relationship, and vascular displacement.

  13. Economic growth, energy demand and the environment. Empirical insights using time series and decomposition analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Dirk C.

    2011-07-01

    Industrialization and increasing mobility in developing countries like China and India are resulting in growing energy demand. This hunger for energy is largely satisfied by fossil fuels and thus accompanied by rising emissions. This book aims at empirically giving insights about the relationship between energy consumption, economic growth and CO{sub 2} emissions using recent panel cointegration and decomposition methods. The investigation is carried out for the top energy consumers and CO{sub 2} emitters worldwide with a special emphasis on the European Union and some focus countries for the detailed analysis of the industry and transport sector. The results confirm the need for a more sustainable energy system by implementing measures of energy efficiency and reducing carbon intensity of energy supply by shifting from fossil fuels to renewable energy sources. (orig.)

  14. Hydropeaking in Nordic rivers - combined analysis from effects of changing climate conditions and energy demands to river regimes

    Science.gov (United States)

    Ashraf, Faisal Bin; Marttila, Hannu; Torabi Haghighi, Ali; Alfredsen, Knut; Riml, Joakim; Kløve, Bjørn

    2017-04-01

    Increasing national and international demands for more flexible management of the energy resources with more non-storable renewables being used in adapting to the ongoing climate change will influence hydropower operations. Damming and regulation practices of river systems causes homogenization of long term river dynamics but also higher temporal sub-daily flow variations i.e. hydropeaking. In Nordic countries, many major rivers and lakes are regulated for hydropower purposes, which have caused considerable changes in river biotic, hydrologic and morphologic structures. Due to rapidly changing energy markets in the Nordic countries (deregulation of the power market and adding of renewable but intermittent sources of energy like, wind, solar, etc.) sub-daily flow conditions are under change within regulated river systems due to the increased demand on hydropower for providing balancing power. However, holistic analysis from changes in energy markets and its effect on sub-daily river regimes is lacking. This study analyzes the effects of hydropeaking on river regime in Finland, Sweden and Norway using long term high resolution data (15 minutes to hourly time interval) from 72 pristine and 136 regulated rivers with large spatial coverage across Fennoscandia. Since the sub-daily discharge variation is masked through the monthly or daily analyzes, in order to quantify these changes high resolution data is needed. In our study we will document, characterize and classify the impacts of sub-daily flow variation due to regulation and climatic variation on various river systems in Fennoscandia. Further, with increasing social demands for ecosystem services in regulated rivers, it is important to evaluate the new demand and update hydropower operation plan accordingly. We will analyse ecological response relationships along gradients of hydrological alteration for the biological communities, processes of river ecosystems and climate boundaries together with considering the

  15. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  16. A revival of the autoregressive distributed lag model in estimating energy demand relationships

    Energy Technology Data Exchange (ETDEWEB)

    Bentzen, J.; Engsted, T.

    1999-07-01

    The findings in the recent energy economics literature that energy economic variables are non-stationary, have led to an implicit or explicit dismissal of the standard autoregressive distribution lag (ARDL) model in estimating energy demand relationships. However, Pesaran and Shin (1997) show that the ARDL model remains valid when the underlying variables are non-stationary, provided the variables are co-integrated. In this paper we use the ARDL approach to estimate a demand relationship for Danish residential energy consumption, and the ARDL estimates are compared to the estimates obtained using co-integration techniques and error-correction models (ECM's). It turns out that both quantitatively and qualitatively, the ARDL approach and the co-integration/ECM approach give very similar results. (au)

  17. New Building Principles In Consequence Of Legislative Demands For Reduced Energy Consumption In Danish Housing

    DEFF Research Database (Denmark)

    Jessen, Rasmus Zederkof; Brohus, Henrik; Kirkegaard, Poul Henning

    2006-01-01

    The increasing restrictions in coming building codes regarding energy consumption in housing generate a need to rethink the building design as well as the building process. This paper discusses the need to change/challenge the way structures are conceived in order to accommodate new legislative...... demands regarding energy consumption. More often than not sustainable aspects like the need for reduced energy consumption are implemented late in the design process. This paper investigates the affect of incorporating aspects like solar heat gain and energy consumption in the initial concept...

  18. Temperature effects on future energy demand in Sub-Saharan Africa

    Science.gov (United States)

    Shivakumar, Abhishek

    2016-04-01

    Climate change is projected to adversely impact different parts of the world to varying extents. Preliminary studies show that Sub-Saharan Africa is particularly vulnerable to climate change impacts, including changes to precipitation levels and temperatures. This work will analyse the effect of changes in temperature on critical systems such as energy supply and demand. Factors that determine energy demand include income, population, temperature (represented by cooling and heating degree days), and household structures. With many countries in Sub-Saharan Africa projected to experience rapid growth in both income and population levels, this study aims to quantify the amplified effects of these factors - coupled with temperature changes - on energy demand. The temperature effects will be studied across a range of scenarios for each of the factors mentioned above, and identify which of the factors is likely to have the most significant impact on energy demand in Sub-Saharan Africa. Results of this study can help set priorities for decision-makers to enhance the climate resilience of critical infrastructure in Sub-Saharan Africa.

  19. Economic feasibility of a wood biomass energy system under evolving demand

    Directory of Open Access Journals (Sweden)

    Giorgio Guariso

    2016-01-01

    Full Text Available In some European regions, particularly in mountainous areas, the demand for energy is evolving due to the decrease of resident population and the adoption of energy efficiency measures. Such changes are rapid enough to significantly impact on the planning process of wood-to-energy chains that are supposed to work for the following 20–25 years. The paper summarizes a study in an Italian pre-alpine district where some municipality shows a declining resident population together with increasing summer tourism. The planning of conversion plants to exploit the local availability of wood is formulated as a mathematical programming problem that maximizes the economic return of the investment, under time-varying parameters that account for the demand evolution. Such a demand is estimated from current trends, while biomass availability and transport is computed from the local cartography, through standard GIS operations. Altogether, the mixed integer optimization problem has 11 possible plant locations of different sizes and technologies taking their feedstock from about 200 parcels. The problem is solved with a commercial software package and shows that the optimal plan changes if one considers the foreseen evolution of the energy demand. As it always happen in this type of biomass-based plants, while the problem formulation is general and may be applied to other cases, the solution obtained is strongly dependent on local values and thus cannot be extrapolated to different contexts.

  20. Energy shift estimation of demand response activation on domestic refrigerators – A field test study

    DEFF Research Database (Denmark)

    Lakshmanan, Venkatachalam; Gudmand-Høyer, Kristian; Marinelli, Mattia;

    2014-01-01

    This paper presents a method to estimate the amount of energy that can be shifted during demand response (DR) activation on domestic refrigerator. Though there are many methods for DR activation like load reduction, load shifting and onsite generation, the method under study is load shifting. Ele...

  1. Comparing demand and consumption. A realistic energy balance; Abgleich von Bedarf und Verbrauch. Realistische Energiebilanz

    Energy Technology Data Exchange (ETDEWEB)

    Jagnow, Kati [Ingenieurbuero fuer Energieberatung, Braunschweig (Germany); Wolff, Dieter [Ostfalia Hochschule fuer Angewandte Wissenschaften, Braunschweig/Wolfenbuettel (Germany)

    2010-07-01

    The new appendix 1 of DIN V 18599 is to help users of the standard to either establish a realistic energy balance or - optimally - even to be able to match the calculated heat demand to the measured real consumption data. (orig.)

  2. Energy Optimization and Management of Demand Response Interactions in a Smart Campus

    Directory of Open Access Journals (Sweden)

    Antimo Barbato

    2016-05-01

    Full Text Available The proposed framework enables innovative power management in smart campuses, integrating local renewable energy sources, battery banks and controllable loads and supporting Demand Response interactions with the electricity grid operators. The paper describes each system component: the Energy Management System responsible for power usage scheduling, the telecommunication infrastructure in charge of data exchanging and the integrated data repository devoted to information storage. We also discuss the relevant use cases and validate the framework in a few deployed demonstrators.

  3. Modeling of Energy Demand in the Greenhouse Using PSO-GA Hybrid Algorithms

    Directory of Open Access Journals (Sweden)

    Jiaoliao Chen

    2015-01-01

    Full Text Available Modeling of energy demand in agricultural greenhouse is very important to maintain optimum inside environment for plant growth and energy consumption decreasing. This paper deals with the identification parameters for physical model of energy demand in the greenhouse using hybrid particle swarm optimization and genetic algorithms technique (HPSO-GA. HPSO-GA is developed to estimate the indistinct internal parameters of greenhouse energy model, which is built based on thermal balance. Experiments were conducted to measure environment and energy parameters in a cooling greenhouse with surface water source heat pump system, which is located in mid-east China. System identification experiments identify model parameters using HPSO-GA such as inertias and heat transfer constants. The performance of HPSO-GA on the parameter estimation is better than GA and PSO. This algorithm can improve the classification accuracy while speeding up the convergence process and can avoid premature convergence. System identification results prove that HPSO-GA is reliable in solving parameter estimation problems for modeling the energy demand in the greenhouse.

  4. A survey on the energy consumption and demand in a tertiary institution

    Directory of Open Access Journals (Sweden)

    Sunday A. Oke

    2008-05-01

    Full Text Available The need for energy supply, particularly electricity, has been on the increase in the last two decades in developing countries such as Nigeria. Economic and industrial developments have led to this increase in demand for electricity. In universities, much of the electricity consumption is consumed in air conditioning systems, which are used to overcome the indoor thermal discomfort during harsh seasons. An amount of electricity is also consumed by laboratory equipment and machinery used for practical and demonstrations. Thus, if universities are to achieve the goals of teaching, research and community service, then proper management of electricity supplied to the system is needed in view of its limited availability. Since electrical energy in Nigeria is highly subsidised by the government, monitoring and controlling the energy consumption pattern in a university is a major aim in the country. However, there is still a lack of information about electricity end-use consumption in Nigerian universities. This paper presents the results of a walk-through energy audit conducted in a university and recommends means of tackling the problem from the demand end by focusing on the areas of potential savings flagged by the energy audit. It was noted that tackling the problem of energy demand from the users’ end is quite challenging, but it might be the only hope of the school in view of inflexibility of supply.

  5. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    Science.gov (United States)

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  6. Estimating the net electricity energy generation and demand using the ant colony optimization approach. Case of Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Toksari, M. Duran [Engineering Faculty, Industrial Engineering Department, Erciyes University, 38039 Kayseri (Turkey)

    2009-03-15

    This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear{sub A}COEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic{sub A}COEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios. (author)

  7. Estimating the net electricity energy generation and demand using the ant colony optimization approach: Case of Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Toksari, M. Duran [Engineering Faculty, Industrial Engineering Department, Erciyes University, 38039 Kayseri (Turkey)], E-mail: dtoksari@erciyes.edu.tr

    2009-03-15

    This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear{sub A}COEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic{sub A}COEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios.

  8. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand

    Science.gov (United States)

    Epstein, Tamir; Gatenby, Robert A.; Brown, Joel S.

    2017-01-01

    To maintain optimal fitness, a cell must balance the risk of inadequate energy reserve for response to a potentially fatal perturbation against the long-term cost of maintaining high concentrations of ATP to meet occasional spikes in demand. Here we apply a game theoretic approach to address the dynamics of energy production and expenditure in eukaryotic cells. Conventionally, glucose metabolism is viewed as a function of oxygen concentrations in which the more efficient oxidation of glucose to CO2 and H2O produces all or nearly all ATP except under hypoxic conditions when less efficient (2 ATP/ glucose vs. about 36ATP/glucose) anaerobic metabolism of glucose to lactic acid provides an emergency backup. We propose an alternative in which energy production is governed by the complex temporal and spatial dynamics of intracellular ATP demand. In the short term, a cell must provide energy for constant baseline needs but also maintain capacity to rapidly respond to fluxes in demand particularly due to external perturbations on the cell membrane. Similarly, longer-term dynamics require a trade-off between the cost of maintaining high metabolic capacity to meet uncommon spikes in demand versus the risk of unsuccessfully responding to threats or opportunities. Here we develop a model and computationally explore the cell’s optimal mix of glycolytic and oxidative capacity. We find the Warburg effect, high glycolytic metabolism even under normoxic conditions, is represents a metabolic strategy that allow cancer cells to optimally meet energy demands posed by stochastic or fluctuating tumor environments. PMID:28922380

  9. Academic training lectures | The outlook for energy supply and demand | 14 - 16 September

    CERN Document Server

    2015-01-01

    Please note that the next series of Academic Training Lectures will take place on the 14, 15 and 16 September. The lectures will be given by by Chris Llewellyn Smith (Director of Energy Research, University of Oxford, President of SESAME Council). The Outlook for Energy Supply and Demand (1/3) on Monday, 14 September from 11.00 a.m. to 12.00 p.m. https://indico.cern.ch/event/388334/ Can Future Energy Needs be Met Sustainably? (2/3) on Tuesday, 15 September from 4.30 p.m. to 5.30 p.m.  (CERN Colloquium) https://indico.cern.ch/event/388335/ The Outlook for Energy Supply and Demand (3/3) on Wednesday, 16 September from 11.00 a.m to 12.00 p.m. https://indico.cern.ch/event/388336/ at CERN, Main Auditorium, in Building 500-1-001. Description: These lectures will review the challenges facing energy policy, the outlook for different sources of primary energy (fossil and renewable), how energy is used, and prospects for improved energy efficiency. A colloquium ‘Can Future Energy Needs be Met ...

  10. Scenario Formation of Energy Demand and CO2 Emissions for Sustainable China

    Institute of Scientific and Technical Information of China (English)

    Wei Baoren; Yagita Hiroshi

    2008-01-01

    Co-integration theory has been employed in this paper and Granger causes are found between urbanization rate and GDP, between capital stock and GDP. Scenario analysis of GDP is performed using the GDP model established in the paper. The energy consumptions in Germany, Japan and other developed countries are analyzed and compared with the energy consumption in China. Environmental friendly scenario of energy demand and CO2 emissions for sustainable China has been formed based on the results of comparison. Under environmental friendly scenario, the primary energy consumption will be 4.31 billion ton coal equivalence (tee) and CO2 emissions will be 1.854 billion t-c in 2050; energy per capital will be 3.06 tce that is 1.8 times of energy consumed in 2005 in China and 51% of consumed energy per capital in Japan in 2003. In 2050, the energy requirement of unit GDP will be 20% lower than that of Germany in 2003, but will be still 37% higher than that in Japan in 2003. It is certain that to fulfill the environmental friendly Scenario of energy demand and CO 2 emissions is a difficult task and it needs long term efforts of the whole society, not only in production sectors but also in service and household sectors.

  11. Design and Implementation of Demand Response Information Interactive Service Platform Based on “Internet Plus” Smart Energy

    Science.gov (United States)

    Cui, Gaoying; Fan, Jie; Qin, Yuchen; Wang, Dong; Chen, Guangyan

    2017-05-01

    In order to promote the effective use of demand response load side resources, promote the interaction between supply and demand, enhance the level of customer service and achieve the overall utilization of energy, this paper briefly explain the background significance of design demand response information platform and current situation of domestic and foreign development; Analyse the new demand of electricity demand response combined with the application of Internet and big data technology; Design demand response information platform architecture, construct demand responsive system, analyse process of demand response strategy formulate and intelligent execution implement; study application which combined with the big data, Internet and demand response technology; Finally, from information interaction architecture, control architecture and function design perspective design implementation of demand response information platform, illustrate the feasibility of the proposed platform design scheme implemented in a certain extent.

  12. Energy efficiency and barriers towards meeting energy demand in industries in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Unachukwu, Godwin O.; Zarma, I.H.; Sambo, A.S.

    2010-09-15

    Energy is an important production factor and therefore should be managed in parallel with land, labor and capital. Energy efficient production should be seen as a quick and cheaper source of new energy supply as the cost of providing energy can be several times the cost of saving it. Increasingly energy efficiency is deemed to include not only the physical efficiency of the technical equipment and facilities but also the overall economic efficiency of the energy system.

  13. Implications of the Hidden Spatiotemporal Vulnerability of US Building Energy Demand to Climate Change

    Science.gov (United States)

    Huang, J.; Gurney, K. R.

    2015-12-01

    Energy consumption in US buildings, accounting for 41% of primary energy consumption in 2010, is particularly vulnerable to climate change due to the direct relationship between space heating/cooling and outside temperature. Past assessments of climate change impacts on building energy consumption have neglected spatial variations in the "balance point" temperature and the extremes at smaller spatiotemporal scales, making the implications of local-scale vulnerability incomplete. Here we develop state-specific empirical relationships between building energy consumption and temperature to explore the vulnerability of building energy supply and demand under climate change. We find increases in summertime electricity demand exceeding 20% and decreases in wintertime non-electric energy demand of more than 30% in some states by the end of the century. When examined annually at the national scale, these extremes are hidden by numerical cancellation. The financial implications vary spatially with increases in total net building energy expenditures in some states (as much as 3 billion/year) while in others, costs decline (as much as 1 billion/year). Integrated across the contiguous US, these variations result in a net savings of roughly 1.4 billion/year. However, this must be weighed against the cost of adding electricity generation capacity ranging from 13.9 billion/year to 52.2 billion/year in order to maintain the electricity grid's reliability in summer. These results have wide implications for climate policy, the social cost of carbon and energy supply planning. It also demonstrates the importance of representing the climate change impacts on energy consumption at scales relevant to human decisions and actions.Energy consumption in US buildings, accounting for 41% of primary energy consumption in 2010, is particularly vulnerable to climate change due to the direct relationship between space heating/cooling and outside temperature. Past assessments of climate change

  14. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  15. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  16. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  17. The energy demand of fast neuronal network oscillations: insights from brain slice preparations

    Directory of Open Access Journals (Sweden)

    Oliver eKann

    2012-01-01

    Full Text Available Fast neuronal network oscillations in the gamma range (30-100 Hz in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration.

  18. Qualitative Screening Method for Impact Assessment of Uncertain Building Geometry on Thermal Energy Demand Predictions

    Science.gov (United States)

    Wate, P.; Coors, V.; Robinson, D.; Iglesias, M.

    2016-10-01

    Virtual 3D models of cities are now being extensively employed for the estimation of thermal energy demand at varying spatial and temporal scales. Efforts in preparing and management of the datasets required for the simulations have reached an advanced stage. Thus allowing to perform city scale simulations using simplified thermal energy balance models. However, the uncertainty inherent in datasets and the reliability of their data sources are often not given due consideration. Such consideration to the uncertainty problem would need a paradigm shift in simulation practices from a single value assignment to uncertainty characterization followed by assessment of qualitative and quantitative impact on the simulation results. The proposed study establishes a mechanism to handle the uncertainty arising from the building geometry reconstruction process and its possible consequences on the thermal energy demand calculations.

  19. Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, R.U.; Ayres, L.W.

    1980-03-01

    The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

  20. Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, R.U.; Ayres, L.W.

    1980-03-01

    The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

  1. Domestic energy supply and demand in southwest Asia and northern Africa: Pt. 3. Alternative energies and research priorities

    Energy Technology Data Exchange (ETDEWEB)

    Tasdemiroglu, E. (Middle East Technical Univ., Ankara (TR). Dept. of Mechanical Engineering)

    1989-01-01

    This paper reviews the alternative energies and research priorities in developing countries, with particular emphasis on Egypt and Sudan in northern Africa, and Bangladesh, Indonesia, Jordan, Pakistan, Syrian A.R. and Yemen A.R. in southwest Asia. In discussing alternative energy sources and technologies, the importance of the utilization of improved stoves is indicated and factors, which have prevented their diffusion, are identified. The role of reforestation programs together with other forestry solutions for regular fuel wood supply are studied in detail. Solar, biogas and wind energy technologies are discussed, and R and D activities in these are reviewed for the countries under review. The paper concludes with a discussion of research issues and priorities for the energy sector. Analysis of energy supply and demand patterns, surveys of indigenous energy sources, sectoral analysis of conservation and efficiency improvements, and development of a selected number of renewable energy technologies are listed among the priorities. (author).

  2. Model documentation report: Industrial sector demand module of the national energy modeling system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  3. Statistical analysis regarding energy supply and demand in the EU and Romania between 1990 and 2014

    Directory of Open Access Journals (Sweden)

    Evelina GRADINARU

    2016-07-01

    Full Text Available Climate changes and mankind’s unlimited needs in term of energy, in opposition with the limited nature of our planet energy sources, impose an all new approach regarding the way in which we produce our energy and how efficient we are using it. The European Union is a world leader in promoting sustainability in this field, and Romania, as part of this multi-state organization, follows the same path. We will see further in this paper the evolution of the main statistical indicators regarding energy, with a particular emphasis on electricity, for both the EU and Romania. The starting point will be primary energy production and demand, continuing with the sources of energy, and finishing with electricity and its relevant indicators regarding production and renewable sources. Finally, the relevant conclusions will be drawn.

  4. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  5. Three Essays on National Oil Company Efficiency, Energy Demand and Transportation

    Science.gov (United States)

    Eller, Stacy L.

    This dissertation is composed of three separate essays in the field of energy economics. In the first paper, both data envelopment analysis and stochastic production frontier estimation are employed to provide empirical evidence on the revenue efficiency of national oil companies (NOCs) and private international oil companies (IOCs). Using a panel of 80 oil producing firms, the analysis suggests that NOCs are generally less efficient at generating revenue from a given resource base than IOCs, with some exceptions. Due to differing firm objectives, however, structural and institutional features may help explain much of the inefficiency. The second paper analyzes the relationship between economic development and the demand for energy. Energy consumption is modeled using panel data from 1990 to 2004 for 50 countries spanning all levels of development. We find the relationship between energy consumption and economic development corresponds to the structure of aggregate output and the nature of derived demand for electricity and direct-use fuels in each sector. Notably, the evidence of non-constant income elasticity of demand is much greater for electricity demand than for direct-use fuel consumption. In addition, we show that during periods of rapid economic development, one in which the short-term growth rate exceeds the long-run average, an increase in aggregate output is met by less energy-efficient capital. This is a result of capital being fixed in the short-term. As additional, more efficient capital stock is added to the production process, the short-term increase in energy intensity will diminish. In the third essay, we develop a system of equations to estimate a model of motor vehicle fuel consumption, vehicle miles traveled and implied fuel efficiency for the 67 counties of the State of Florida from 2001 to 2008. This procedure allows us to decompose the factors of fuel demand into elasticities of vehicle driving demand and fuel efficiency. Particular

  6. Oil demand and price elasticity of energy consumption in the GCC countries: A panel cointegration analysis

    Directory of Open Access Journals (Sweden)

    Md Qaiser Alam

    2016-07-01

    Full Text Available This paper examines the cointegrating relationship between oil demand and price elasticity of energy consumption in the Gulf Co-operation Council (GCC countries during the period 1980-2010. The paper has applied the recently developed panel cointegration techniques, Dynamic Ordinary Least Squares (DOLS and panel DOLS in a panel of GCC countries. The region is being recognized as the major region of oil production and export in the global economy. In recent times, the region is emerging as a fastest growing oil consuming region globally. This fast increase in the level of oil consumption in the major oil exporting countries raises the energy security implications in the sphere of the growing oil demand in the world economy. This is likely to bring many pitfalls in the form of price distortions and reduced growth rates in and outside the oil export region. The empirical finding reveals a cointegrating relationship among the variables and indicates an income elastic and price inelastic demand for oil in the long-run in the GCC countries. The outcomes of income elastic and price inelastic demand for oil are also consistent in the short-run. The income and price inelastic demand for oil though exists for a full panel of countries but vary across the GCC countries. The result of the Granger Causality test also depicts a unidirectional causality running from income to oil consumption and bidirectional causality running between oil prices and income in the GCC countries. Moreover, the outcomes reveal that demand for oil varies positively with the growth of income and negatively with the price level in the economy.

  7. Managing energy demand through transport policy. What can South Africa learn from Europe?

    Energy Technology Data Exchange (ETDEWEB)

    Vanderschuren, Marianne [Centre for Transport Studies, Faculty of Engineering and the Built Environment, University of Cape Town, Private Bag, 7701 Rondebosch (South Africa); Lane, T.E. [Centre for Transport Studies, University of Cape Town (South Africa); Korver, W. [Goudappel Coffeng BV (Netherlands)

    2010-02-15

    For years, the world has enjoyed the luxury of inexpensive transport fuels, resulting in the continuous expansion of transport demand and vast improvements in mobility levels. The threat of peak oil and other environmental concerns, however, are forcing a paradigm shift in terms of transport planning. In recent times, many developed nations have been investigating alternative ways and means of weaning themselves off oil as the main transport energy source and managing transport energy demand. South Africa is a developing nation that, in terms of transportation technology and policy, lags behind developed countries. This presents South Africa with the opportunity to learn from other countries' triumphs and mistakes and to skip over obsolete investment patterns and in effective policy. It needs to be determined what South Africa can do to bend the stream of continuously growing transport (energy) demand, without hampering growth in mobility. Solutions can potentially be found by looking at the European Union's past and present situation and responses. This paper summarises various European energy management transport policies. These policies are translated into a South African context - pros, cons and implementation viability are identified. (author)

  8. Managing energy demand through transport policy: What can South Africa learn from Europe?

    Energy Technology Data Exchange (ETDEWEB)

    Vanderschuren, Marianne, E-mail: marianne.vanderschuren@uct.ac.z [Centre for Transport Studies, Faculty of Engineering and the Built Environment, University of Cape Town, Private Bag, 7701 Rondebosch (South Africa); Lane, T.E., E-mail: lane.tanya@gmail.co [Centre for Transport Studies, University of Cape Town (South Africa); Korver, W., E-mail: WKorver@goudappel.n [Goudappel Coffeng BV (Netherlands)

    2010-02-15

    For years, the world has enjoyed the luxury of inexpensive transport fuels, resulting in the continuous expansion of transport demand and vast improvements in mobility levels. The threat of peak oil and other environmental concerns, however, are forcing a paradigm shift in terms of transport planning. In recent times, many developed nations have been investigating alternative ways and means of weaning themselves off oil as the main transport energy source and managing transport energy demand. South Africa is a developing nation that, in terms of transportation technology and policy, lags behind developed countries. This presents South Africa with the opportunity to learn from other countries' triumphs and mistakes and to skip over obsolete investment patterns and ineffective policy. It needs to be determined what South Africa can do to bend the stream of continuously growing transport (energy) demand, without hampering growth in mobility. Solutions can potentially be found by looking at the European Union's past and present situation and responses. This paper summarises various European energy management transport policies. These policies are translated into a South African context-pros, cons and implementation viability are identified.

  9. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  10. Using high frequency consumption data to identify demand response potential for solar energy integration

    Science.gov (United States)

    Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.

    2015-12-01

    California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.

  11. Optimization of a polygeneration system for energy demands of a livestock farm

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2016-01-01

    Full Text Available A polygeneration system is an energy system capable of providing multiple utility outputs to meet local demands by application of process integration. This paper addresses the problem of pinpointing the optimal polygeneration energy supply system for the local energy demands of a livestock farm in terms of optimal system configuration and optimal system capacity. The optimization problem is presented and solved for a case study of a pig farm in the paper. Energy demands of the farm, as well as the super-structure of the polygeneration system were modelled using TRNSYS software. Based on the locally available resources, the following polygeneration modules were chosen for the case study analysis: a biogas fired internal combustion engine co-generation module, a gas boiler, a chiller, a ground water source heat pump, solar thermal collectors, photovoltaic collectors, and heat and cold storage. Capacities of the polygeneration modules were used as optimization variables for the TRNSYS-GenOpt optimization, whereas net present value, system primary energy consumption, and CO2 emissions were used as goal functions for optimization. A hybrid system composed of biogas fired internal combustion engine based co-generation system, adsorption chiller solar thermal and photovoltaic collectors, and heat storage is found to be the best option. Optimal heating capacity of the biogas co-generation and adsorption units was found equal to the design loads, whereas the optimal surface of the solar thermal array is equal to the south office roof area, and the optimal surface of the PV array corresponds to the south facing animal housing building rooftop area. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  12. Analysis of Changes in Energy Consumption and Demand Trend in China’s Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China’s energy consumption for agricultural production has relied on petroleum and coal with relatively low input from power and other types of energy for a long time.Projections indicate that as China’s existing development trend leads to substantial growth of energy demand for agricultural production,such a long term irrational energy consumption pattern would unlikely be able to meet the needs of the country’s developing agricultural sector.As such,it is recommended that China’s agricultural sector should follow the national energy development strategy guideline by gradually increasing the use of wind power,solar energy,biomass and other new energy sources while advancing technological innovations on traditional energy sources.Meanwhile,as the consumption structure of three major energy sources(i.e.petroleum,coal,and power)is optimized,development and application of biomass from agriculture as raw materials for alternative energy should be enhanced.Lastly,the development and application of wind power,solar energy,and hydropower in agricultural production should be increased in areas where appropriate.

  13. Development of an expert system in econometrics. Application to energy demand modelling; Construction d`un systeme expert en econometrie. Application a la demande d`energie

    Energy Technology Data Exchange (ETDEWEB)

    Fauveau, A.

    1993-05-03

    The proper use of econometric softwares requires both statistical and economic skills. The main objective of this thesis is to provide the users of regression programs with assistance in the process of regression analysis by means of expert system technology. We first built an expert system providing general econometric strategy. The running principle of the program is based on a ``estimation - hypothesis check - specification improvement`` cycle. Its econometric expertise is a consistent set of statistical technics and analysis rules for estimating one equation. Then, we considered the inclusion of the economic knowledge required to produce a consistent analysis; we focused on energy demand modelling. The economic knowledge base is independent from the econometric rules, this allow us to update it easily. (author).

  14. Distributed generation and demand response dispatch for a virtual power player energy and reserve provision

    DEFF Research Database (Denmark)

    Faria, Pedro; Soares, Tiago; Vale, Zita

    2014-01-01

    operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper...... proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources’ participation can be performed in both energy and reserve contexts. This methodology contemplates...... the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers....

  15. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hongbo [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-Ku, 603-8577 Kyoto (Japan); Zhou, Weisheng; Nakagami, Ken' ichi [College of Policy Sciences, Ritsumeikan University, 603-8577 Kyoto (Japan); Gao, Weijun [Faculty of Environmental Engineering, The University of Kitakyushu, 808-0135 Kitakyushu (Japan)

    2010-05-15

    In this paper, a linear programming model has been developed for the design and evaluation of biomass energy system, while taking into consideration demand side characteristics. The objective function to be minimized is the total annual cost of the energy system for a given customer equipped with a biomass combined cooling, heating and power (CCHP) plant, as well as a backup boiler fueled by city gas. The results obtained from the implementation of the model demonstrate the optimal system capacities that customers could employ given their electrical and thermal demands. As an illustrative example, an investigation addresses the optimal biomass CCHP system for a residential area located in Kitakyushu Science and Research Park, Japan. In addition, sensitivity analyses have been elaborated in order to show how the optimal solutions would vary due to changes of some key parameters including electricity and city gas tariffs, biogas price, electricity buy-back price, as well as carbon tax rate. (author)

  16. Energy demands of diverse spiking cells from the neocortex, hippocampus and thalamus.

    Directory of Open Access Journals (Sweden)

    Abdelmalik eMoujahid

    2014-04-01

    Full Text Available It has long been known that neurons in the brain are not physiologically homogeneous. In response to current stimulus, they can fire several distinct patterns of action potentials that are associated with different physiological classes ranging from regular-spiking cells, fast-spiking cells, intrinsically bursting cells, and low-threshold cells. In this work we show that the high degree of variability in firing characteristics of action potentials among these cells is accompanied with a significant variability in the energy demands required to restore the concentration gradients after an action potential.The values of the metabolic energy were calculated for a wide range of cell temperatures and stimulus intensities following two different approaches. The first one is based on the amount of Na$^+$ load crossing the membrane during a single action potential, while the second one focuses on the electrochemical energy functions deduced from the dynamics of the computational neuron models. The results show that the thalamocortical relay neuron is the most energy-efficient cell consuming between 7 to 18 nJ/cm$^2$ for each spike generated, while both the regular and fast spiking cells from somatosensory cortex and the intrinsically-bursting cell from a cat visual cortex are the least energy-efficient, and can consume up to 100 nJ/cm$^2$ per spike. The lowest values of these energy demands were achieved at higher temperatures and high external stimuli.

  17. A policy study on energy supply and demand of several countries (China, Indonesia, Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ryeal [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    Korea is depending 97% of primary energy consumption on imports. To have a stable supply of energy required for a continuous growth, it is recommended to utilize international energy market actively for short-term while it is required to reinforce resources diplomacy with other countries with full of resources for mid- and long-term. This study reviewed energy supply and demand and major policies of China, Indonesia and Mexico, which give direct or indirect influence on energy supply and demand of Korea. With the geographical adjacency, Korea imports coal from China and exports petroleum products to China. Furthermore, it is very likely to have a trade related to nuclear power plant and natural gas. Indonesia exports coal, crude oil, and LNG to Korea. Especially LNG is occupied 60% of total amount of imports. It is expected to get help from Mexico because there are many similar aspects between Mexico and Korea such as GNP or a conservative idea on energy industry. (author). 49 refs., 6 figs., 42 tabs.

  18. Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering

    Science.gov (United States)

    Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo

    2011-01-01

    The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy

  19. Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya.

    Science.gov (United States)

    Sima, Laura C; Kelner-Levine, Evan; Eckelman, Matthew J; McCarty, Kathleen M; Elimelech, Menachem

    2013-03-01

    In rapidly growing urban areas of developing countries, infrastructure has not been able to cope with population growth. Informal water businesses fulfill unmet water supply needs, yet little is understood about this sector. This paper presents data gathered from quantitative interviews with informal water business operators (n=260) in Kisumu, Kenya, collected during the dry season. Sales volume, location, resource use, and cost were analyzed by using material flow accounting and spatial analysis tools. Estimates show that over 76% of the city's water is consumed by less than 10% of the population who have water piped into their dwellings. The remainder of the population relies on a combination of water sources, including water purchased directly from kiosks (1.5 million m(3) per day) and delivered by hand-drawn water-carts (0.75 million m(3) per day). Energy audits were performed to compare energy use among various water sources in the city. Water delivery by truck is the highest per cubic meter energy demand (35 MJ/m(3)), while the city's tap water has the highest energy use overall (21,000 MJ/day). We group kiosks by neighborhood and compare sales volume and cost with neighborhood-level population data. Contrary to popular belief, we do not find evidence of price gouging; the lowest prices are charged in the highest-demand low-income area. We also see that the informal sector is sensitive to demand, as the number of private boreholes that serve as community water collection points are much larger where demand is greatest.

  20. Comfort filters in a total energy demand optimization method for the passive design of a building

    OpenAIRE

    2015-01-01

    The effective design of sustainable buildings results from an accurate optimization process of all the interrelated variables. The authors developed a replicable methodology for the optimization of the building envelope design. Following a previous work, where in the pre-processing and the optimization phases the minimization of the total energy demand is performed by coupling TRNSYS® with GenOpt®, this paper is focused on the post-processing phase of the methodology, in which the results are...

  1. Peak Power Demand and Energy Consumption Reduction Strategies for Trains under Moving Block Signalling System

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2013-01-01

    Full Text Available In the moving block signalling (MBS system where the tracking target point of the following train is moving forward with its leading train, overload of the substations occurs when a dense queue of trains starts (or restarts in very close distance interval. This is the peak power demand problem. Several methods have been attempted in the literature to deal with this problem through changing train’s operation strategies. However, most existing approaches reduce the service quality. In this paper, two novel approaches—“Service Headway Braking” (SHB and “Extending Stopping Distance Interval” (ESDI—are proposed according to available and unavailable extra station dwell times, respectively. In these two methods, the restarting times of the trains are staggered and traction periods are reduced, which lead to the reduction of peak power demand and energy consumption. Energy efficient control switching points are seen as the decision parameters. Nonlinear programming method is used to model the process. Simulation results indicate that, compared with ARL, peak power demands are reduced by 40% and 20% by applying SHB and ESDI without any arrival time delay, respectively. At the same time, energy consumptions are also reduced by 77% and 50% by applying SHB and ESDI, respectively.

  2. Public transport subsidies. The impacts of regional bus cards on the travel demand and energy use in Finish urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Dargay, J. [Univ. College London (United Kingdom); Pekkarinen, S. [Univ. of Oulu (Finland)

    1996-12-01

    This study is a part of a larger Finnish project financed by the Ministry of Transport and Communications concerned with evaluating the impacts of new integrated fare and ticket policies. The objective of the policy is to encourage a modal shift from cars to public transport, thereby reducing energy use and the harmful environmental effects of transport. The regional bus card systems (RBC) provide the opportunity to purchase a monthly ticket, at a substantial discount of normal fares, which is valid on all buses in an area covering a city centre and the smaller independent communities surrounding. RBC systems are subsidized by both Local Authorities and the state government and are currently operating in over ten urban areas in Finland. The objectives of this research project are: (1) to estimate the fare elasticities of the demand of bus services and the price elasticities of RBC demand, (2) to evaluate the effectiveness of the adopted subsidizing policy and (3) to assess the consequences of the fares policy on energy use in transport. This paper deals specifically with the latter two issues. (EG)

  3. Creating hourly distributions at national level for various energy demands and renewable energy supplies

    DEFF Research Database (Denmark)

    Connolly, David; Drysdale, Dave; Hansen, Kenneth

    2015-01-01

    includes wind, solar (photovoltaic and thermal), and wave power. Distributions are not created for dispatchable plants, such as coal, gas, and nuclear thermal plants, since their output is usually determined by the energy modelling tool rather than by a dependent resource. The methodologies are purposely......In the future, intermittent renewables will provide much larger shares of the primary energy supply compared to today, so accommodating their fluctuations is a key challenge for future energy systems. Many researchers use computer modelling to investigate this challenge, by simulating how...... the energy system will behave with increasing amounts of intermittent renewable energy. To assess this challenge, short-term time steps at an hourly scale are often necessary. Without this, the variations in renewable energy production will be missed, since their production can increase and decrease without...

  4. Local government involvement in long term resource planning for community energy systems. Demand side management

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  5. THERMOCHEMICAL ENERGY STORAGE FOR SEASONAL BALANCE OF SURPLUS ELECTRICITY AND HEAT DEMAND IN DOMESTIC BUILDINGS

    OpenAIRE

    Schmidt, Matthias; Linder, Marc Philipp

    2016-01-01

    Thermochemical storage systems are predestined to store thermal energy for a long time since the storage principle itself is free of losses and allows for very high energy densities. Therefore we developed a new approach where electricity, p. e. from private PV-panels in the summer, is used to charge a thermochemical reaction system. The reaction product then can be stored in an inexpensive tank at room temperature. If there is heat demand during the winter part of the material can be supplie...

  6. Analysis of Water and Energy Budgets and Trends Using the NLDAS Monthly Data Products

    Science.gov (United States)

    Vollmer, B.; Rui, H.; Mocko, D. M.; Teng, W. L.; Lei, G.

    2012-12-01

    The North American Land Data Assimilation System (NLDAS, http://ldas.gsfc.nasa.gov/nldas/) data set, with high spatial and temporal resolutions (0.125° x 0.125°, hourly and monthly), long temporal coverage (Jan. 1979 - present), and various water- and energy-related variables (precipitation, soil moisture, evapotranspiration, radiation, latent heat, and runoff, etc.), is an excellent data source for supporting water and energy cycle studies. NLDAS hourly data, accessible from NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; Hydrology Data Holdings Portal http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings), have been broadly used by various user communities in modeling, research, and applications, such as drought and flood monitoring, watershed and water quality management, and case studies for extreme events. NLDAS data sets consist of a Forcing data set for land surface models, comprising a synthesis of best available near-surface observations and reanalyses, and separate land surface model output data sets of NLDAS models driven by the Forcing. To further facilitate analysis of water and energy budgets and trends, NLDAS monthly data products have been recently released by NASA GES DISC. The NLDAS monthly data were generated from NLDAS hourly data, as monthly accumulation for precipitation and monthly average for other variables. NLDAS monthly climatology data set will further be generated based on the monthly data and become accessible also from the Hydrology Data Holdings Portal. This presentation describes the major characteristics of the NLDAS data set. Some preliminary analysis results of water and energy budgets and trends from the NLDAS monthly data are shown and discussed. The NLDAS hourly, monthly, and monthly climatology terrestrial hydrological data could play an important role in characterizing the spatial and temporal variability of water and energy cycles and, thereby, improve our understanding of land

  7. Public perceptions of demand-side management and a smarter energy future

    Science.gov (United States)

    Spence, Alexa; Demski, Christina; Butler, Catherine; Parkhill, Karen; Pidgeon, Nick

    2015-06-01

    Demand-side management (DSM) is a key aspect of many future energy system scenarios. DSM refers to a range of technologies and interventions designed to create greater efficiency and flexibility on the demand-side of the energy system. Examples include the provision of more information to users to support efficient behaviour and new `smart’ technologies that can be automatically controlled. Key stated outcomes of implementing DSM are benefits for consumers, such as cost savings and greater control over energy use. Here, we use results from an online survey to examine public perceptions and acceptability of a range of current DSM possibilities in a representative sample of the British population (N = 2,441). We show that, although cost is likely to be a significant reason for many people to take up DSM measures, those concerned about energy costs are actually less likely to accept DSM. Notably, individuals concerned about climate change are more likely to be accepting. A significant proportion of people, particularly those concerned about affordability, indicated unwillingness or concerns about sharing energy data, a necessity for many forms of DSM. We conclude substantial public engagement and further policy development is required for widespread DSM implementation.

  8. An Integrated Decentralized Energy Planning Model considering Demand-Side Management and Environmental Measures

    Directory of Open Access Journals (Sweden)

    Seyed Mahmood Kazemi

    2013-01-01

    Full Text Available Decentralized energy planning (DEP is looked upon as an indisputable opportunity for energy planning of villages, isolated islands, and far spots. Nonetheless, at this decentralized planning level, the value of demand-side resources is not fairly examined, despite enjoying great advantages. Therefore, the core task of this study is to integrate demand-side resources, as a competing solution against supply-side alternatives, with decentralized energy planning decisions and demonstrate the rewarding role it plays. Moreover, sustainability indicators (SIs are incorporated into DEP attempts in order to attain sustainable development. It is emphasized that unless these indicators are considered at lower energy planning levels, they will be ignored at higher planning levels as well. Hence, to the best knowledge of the authors, this study for the first time takes into account greenhouse gas (GHG emissions produced by utilization of renewable energies in DEP optimization models. To address the issues mentioned previously, multiobjective linear programming model along with a min-max goal programming approach is employed. Finally, using data taken from the literature, the model is solved, and the obtained results are discussed. The results show that DSM policies have remarkably contributed to significant improvements especially in terms of environmental indicators.

  9. Growing Energy Demand ProvidesImmense Opportunities to Chinese Investors:Minister Naveed Qamar

    Institute of Scientific and Technical Information of China (English)

    Audrey Guo

    2011-01-01

    Fdoeral Minister for Water and wer of Pakistan,Syed Naveed Qamar said that the growing energy demand in Pakistan is a challenge for the government,yet it provides immense opportunities for Chinese investors to contribute towards reducing energy shortage in the country while sharing the benefits on August 2,2011.Leading the Pakistani delegation in the 1st China-Pakistan Joint Energy Working Group (JEWG) meeting in Beijing,the Minister thanked the Chinese government “for extending every possible support to Pakistan at all times,especially in the hours of need.”Qian Zhimin,Deputy Administrator of National Energy Administration (NEA) of the National Development Reform Commission of China led the Chinese side in the largely attended JEWG meeting.

  10. Model documentation report: Residential sector demand module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  11. Model documentation report: Residential sector demand module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  12. Determining the Optimal Capacities of Renewable-Energy-Based Energy Conversion Systems for Meeting the Demands of Low-Energy District Heating, Electricity, and District Cooling

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend; Dincer, Ibrahim

    2015-01-01

    This chapter presents a method for determining the optimal capacity of a renewable-energy-based energy conversion system for meeting the energy requirements of a given district as considered on a monthly basis, with use of a low-energy district heating system operating at a low temperature, as lo...

  13. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of

  14. A comparison of fatigue and energy levels at 6 weeks and 14 to 19 months postpartum.

    Science.gov (United States)

    Troy, N W

    1999-05-01

    It has been assumed that women recover from pregnancy and childbirth within 6 weeks. Recent research shows that women's fatigue levels are the same, or higher, at 6 weeks postpartum as at the time of delivery. This study determined the differences in primiparous women's fatigue and energy levels at 6 weeks and 14 to 19 months postpartum. Determinations of how some contributing factors and outcomes of postpartum fatigue relate to each other and to fatigue and energy at 14 to 19 months postpartum were also made. Analyses revealed that women are more fatigued and less energetic at 14 to 19 months than they were at 6 weeks postpartum. Quality of sleep did not correlate with fatigue or energy. At 14 to 19 months postpartum return to full functional status is almost complete, with household and infant care responsibilities being most complete. The women were experiencing mild life crises of various sorts, were somewhat depressed, and were gratified in the mothering role.

  15. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    Science.gov (United States)

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools.

  16. Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment

    Science.gov (United States)

    Adika, Christopher Otieno

    The advancement of renewable energy technologies and the deregulation of the electricity market have seen the emergence of Demand response (DR) programs. Demand response is a cost-effective load management strategy which enables the electricity suppliers to maintain the integrity of the power grid during high peak periods, when the customers' electrical load is high. DR programs are designed to influence electricity users to alter their normal consumption patterns by offering them financial incentives. A well designed incentive-based DR scheme that offer competitive electricity pricing structure can result in numerous benefits to all the players in the electricity market. Lower power consumption during peak periods will significantly enhance the robustness of constrained networks by reducing the level of power of generation and transmission infrastructure needed to provide electric service. Therefore, this will ease the pressure of building new power networks as we avoiding costly energy procurements thereby translating into huge financial savings for the power suppliers. Peak load reduction will also reduce the inconveniences suffered by end users as a result of brownouts or blackouts. Demand response will also drastically lower the price peaks associated with wholesale markets. This will in turn reduce the electricity costs and risks for all the players in the energy market. Additionally, DR is environmentally friendly since it enhances the flexibility of the power grid through accommodation of renewable energy resources. Despite its many benefits, DR has not been embraced by most electricity networks. This can be attributed to the fact that the existing programs do not provide enough incentives to the end users and, therefore, most electricity users are not willing to participate in them. To overcome these challenges, most utilities are coming up with innovative strategies that will be more attractive to their customers. Thus, this dissertation presents various

  17. Deregulation of Electricity Market and Drivers of Demand for Electrical Energy in Industry

    Directory of Open Access Journals (Sweden)

    Bojnec Štefan

    2016-09-01

    Full Text Available This paper investigates deregulation of electricity market focusing on electricity prices and drivers of demand for electrical energy in industry in Slovenia. The patterns in evolution of real electricity price developments and the three main components of the electricity price are calculated: liberalized market share for purchased electricity price, regulated infrastructure share for use of electricity network grids and mandatory state charges in the sale of electricity (duty, excise duty and value-added tax. To calculate the real value of electricity prices, producer price index of industrial commodities for electricity prices in industry is used as deflator and implicit deflator of gross domestic product for the size of the economy. In the empirical econometric part is used regression analysis for the amount electricity consumption in the industry depending on the real gross domestic product, direct and cross-price elasticity for natural gas prices in the industry. The results confirmed volatility in real electricity price developments with their increasing tendency and the increasing share of different taxes and state charges in the electricity prices for industry. Demand for electrical energy in industry is positively associated with gross domestic product and price of natural gas as substitute for electrical energy in industry use, and negatively associated with prices of electrical energy for industry.

  18. Understanding energy consumption behaviors in order to adapt demand response measures

    Energy Technology Data Exchange (ETDEWEB)

    Vassileva, Iana; Wallin, Fredrik; Dahlquist, Erik [Malardalen University (Sweden)], email: iana.vassileva@mdh.se, email: fredrik.wallin@mdh.se, email: erik.dahlquist@mdh.se

    2011-07-01

    When new price strategies and other demand-response measures are being established, it is important that amounts of electricity consumed and the potential for consumer participation be given serious consideration. It is important to encourage consumers to use less electricity if sustainable use of energy is to be achieved. Demand-response is a key component of the smart grids concept. So it is vital to get a comprehensive understanding of how different processes and factors influence the end use of energy. This paper presents an in-depth analysis of questionnaire responses from 2000 households in Vaxjo, Sweden. It sheds new light on the energy consumption behaviors of Swedish householders. Since 2008 Vaxjo householder customers have been able to check their own daily electricity consumption and get advice and tips, via a website provided by the local energy company, on how to lower the use of electricity. At the present time, of those responding to the questionnaire, this website is visited more frequently by people who live in houses than in apartments.

  19. Energy demand in solar home systems; Demanda energetica em solar home systems

    Energy Technology Data Exchange (ETDEWEB)

    Trigoso, Federico Morante

    2000-07-01

    The central objective of this work is to understand the relationships between the energy demand and technical, economic, social and cultural factors that could influence it. For this a field research was established with the inclusion of 18 families distributed in four communities located in the South Coast of the Vale da Ribeira, Vale da Ribeira. The energy consumption of these families was measured along more than one year and, to facilitate its execution, it was necessary to develop an equipment capable to supply the daily consumption in units of Ampere-hour. This instrument was coupled to the photovoltaic systems in those communities and, besides, it was materialized a methodology of data obtaining that includes the users participation. The obtaining of data manually sought to provide an inter-relationship among the system, the user and the researcher with the purpose of, besides the data purely technicians, to obtain social and cultural information related with the energy uses. Through this methodology it was possible to verify that the energy demand is related with a series of factors that escape from the previous context. It was verified that the social and cultural behavior of the peoples will be reflected overall in the photovoltaic systems operation. The master thesis shows ways to deep in those studies that will be helpful to design methodology that includes all the parameters involved, still ignored. (author)

  20. Energy demand and carbon emissions under different development scenarios for Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233 (China); Chen, Changhong; Huang, Cheng; Cheng, Zhen; Wang, Hongli; Huang, Haiying [Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233 (China); Xie, Shichen; Lu, Jun [East China University of Science and Technology, Shanghai 200237 (China); Wang, Yangjun [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Dhakal, Shobhakar [Global Carbon Project, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305 8506 (Japan)

    2010-09-15

    In this paper, Shanghai's CO{sub 2} emissions from 1995 to 2006 were estimated following the IPCC guidelines. The energy demand and CO{sub 2} emissions were also projected until 2020, and the CO{sub 2} mitigation potential of the planned government policies and measures that are not yet implemented but will be enacted or adopted by the end of 2020 in Shanghai were estimated. The results show that Shanghai's total CO{sub 2} emissions in 2006 were 184 million tons of CO{sub 2}. During 1995-2006, the annual growth rate of CO{sub 2} emissions in Shanghai was 6.22%. Under a business-as-usual (BAU) scenario, total energy demand in Shanghai will rise to 300 million tons of coal equivalent in 2020, which is 3.91 times that of 2005. Total CO{sub 2} emissions in 2010 and 2020 will reach 290 and 630 million tons, respectively, under the BAU scenario. Under a basic-policy (BP) scenario, total energy demand in Shanghai will be 160 million tons of coal equivalent in 2020, which is 2.06 times that of 2005. Total CO{sub 2} emissions in 2010 and 2020 in Shanghai will be 210 and 330 million tons, respectively, 28% and 48% lower than those of the business-as-usual scenario. The results show that the currently planned energy conservation policies for the future, represented by the basic-policy scenario, have a large CO{sub 2} mitigation potential for Shanghai. (author)

  1. Energy demand and carbon emissions under different development scenarios for Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233 (China); Chen Changhong, E-mail: chench@saes.sh.c [Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233 (China); Xie Shichen [East China University of Science and Technology, Shanghai 200237 (China); Huang Cheng; Cheng Zhen; Wang Hongli [Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233 (China); Wang Yangjun [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Huang Haiying [Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233 (China); Lu Jun [East China University of Science and Technology, Shanghai 200237 (China); Dhakal, Shobhakar [Global Carbon Project, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305 8506 (Japan)

    2010-09-15

    In this paper, Shanghai's CO{sub 2} emissions from 1995 to 2006 were estimated following the IPCC guidelines. The energy demand and CO{sub 2} emissions were also projected until 2020, and the CO{sub 2} mitigation potential of the planned government policies and measures that are not yet implemented but will be enacted or adopted by the end of 2020 in Shanghai were estimated. The results show that Shanghai's total CO{sub 2} emissions in 2006 were 184 million tons of CO{sub 2}. During 1995-2006, the annual growth rate of CO{sub 2} emissions in Shanghai was 6.22%. Under a business-as-usual (BAU) scenario, total energy demand in Shanghai will rise to 300 million tons of coal equivalent in 2020, which is 3.91 times that of 2005. Total CO{sub 2} emissions in 2010 and 2020 will reach 290 and 630 million tons, respectively, under the BAU scenario. Under a basic-policy (BP) scenario, total energy demand in Shanghai will be 160 million tons of coal equivalent in 2020, which is 2.06 times that of 2005. Total CO{sub 2} emissions in 2010 and 2020 in Shanghai will be 210 and 330 million tons, respectively, 28% and 48% lower than those of the business-as-usual scenario. The results show that the currently planned energy conservation policies for the future, represented by the basic-policy scenario, have a large CO{sub 2} mitigation potential for Shanghai.

  2. Increased demand-side flexibility: market effects and impacts on variable renewable energy integration

    Directory of Open Access Journals (Sweden)

    Åsa Grytli Tveten

    2016-12-01

    Full Text Available This paper investigates the effect of increased demand-side flexibility (DSF on integration and market value of variable renewable energy sources (VRE. Using assumed potentials, system-optimal within-day shifts in demand are investigated for the Northern European power markets in 2030, applying a comprehensive partial equilibrium model with high temporal and spatial resolution. Increased DSF is found to cause only a minor (less than 3% reduction in consumers’ cost of electricity. VRE revenues are found to increase (up to 5% and 2% for wind and solar power, respectively, and total VRE curtailment decreases by up to 7.2 TWh. Increased DSF causes only limited reductions in GHG emissions. The emission reduction is, however, sensitive to underlying assumptions. We conclude that increased DSF is a promising measure for improving VRE integration. However, low consumers’ savings imply that policies stimulating DFS will be needed to fully use the potential benefits of DSF for VRE integration

  3. Hierarchical control framework for integrated coordination between distributed energy resources and demand response

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di; Lian, Jianming; Sun, Yannan; Yang, Tao; Hansen, Jacob

    2017-09-01

    Demand response is representing a significant but largely untapped resource that can greatly enhance the flexibility and reliability of power systems. In this paper, a hierarchical control framework is proposed to facilitate the integrated coordination between distributed energy resources and demand response. The proposed framework consists of coordination and device layers. In the coordination layer, various resource aggregations are optimally coordinated in a distributed manner to achieve the system-level objectives. In the device layer, individual resources are controlled in real time to follow the optimal power generation or consumption dispatched from the coordination layer. For the purpose of practical applications, a method is presented to determine the utility functions of controllable loads by taking into account the real-time load dynamics and the preferences of individual customers. The effectiveness of the proposed framework is validated by detailed simulation studies.

  4. Robust optimization based energy dispatch in smart grids considering demand uncertainty

    Science.gov (United States)

    Nassourou, M.; Puig, V.; Blesa, J.

    2017-01-01

    In this study we discuss the application of robust optimization to the problem of economic energy dispatch in smart grids. Robust optimization based MPC strategies for tackling uncertain load demands are developed. Unexpected additive disturbances are modelled by defining an affine dependence between the control inputs and the uncertain load demands. The developed strategies were applied to a hybrid power system connected to an electrical power grid. Furthermore, to demonstrate the superiority of the standard Economic MPC over the MPC tracking, a comparison (e.g average daily cost) between the standard MPC tracking, the standard Economic MPC, and the integration of both in one-layer and two-layer approaches was carried out. The goal of this research is to design a controller based on Economic MPC strategies, that tackles uncertainties, in order to minimise economic costs and guarantee service reliability of the system.

  5. Energy demands for maintenance, growth, pregnancy, and lactation of female Pacific walruses (Odobenus rosmarus divergens)

    Science.gov (United States)

    Noren, Shawn R.; Udevitz, Mark S.; Jay, Chadwick V.

    2014-01-01

    Decreases in sea ice have altered habitat use and activity patterns of female Pacific walruses Odobenus rosmarus divergens and could affect their energetic demands, reproductive success, and population status. However, a lack of physiological data from walruses has hampered efforts to develop the bioenergetics models required for fully understanding potential population-level impacts. We analyzed long-term longitudinal data sets of caloric consumption and body mass from nine female Pacific walruses housed at six aquaria using a hierarchical Bayesian approach to quantify relative energetic demands for maintenance, growth, pregnancy, and lactation. By examining body mass fluctuations in response to food consumption, the model explicitly uncoupled caloric demand from caloric intake. This is important for pinnipeds because they sequester and deplete large quantities of lipids throughout their lifetimes. Model outputs were scaled to account for activity levels typical of free-ranging Pacific walruses, averaging 83% of the time active in water and 17% of the time hauled-out resting. Estimated caloric requirements ranged from 26,900 kcal d−1 for 2-yr-olds to 93,370 kcal d−1 for simultaneously lactating and pregnant walruses. Daily consumption requirements were higher for pregnancy than lactation, reflecting energetic demands of increasing body size and lipid deposition during pregnancy. Although walruses forage during lactation, fat sequestered during pregnancy sustained 27% of caloric requirements during the first month of lactation, suggesting that walruses use a mixed strategy of capital and income breeding. Ultimately, this model will aid in our understanding of the energetic and population consequences of sea ice loss.

  6. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  7. The rising demand for energy: a potential for optical fiber sensors in the monitoring sector

    Science.gov (United States)

    Bosselmann, Thomas; Willsch, Michael; Ecke, Wolfgang

    2008-03-01

    For a long time electric power was taken as a natural unlimited resource. With globalization the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fiber optic sensor applications.

  8. Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche [Ostfold research, Fredrikstad (Norway); Modahl, Ingunn Saur [Ostfold research, Fredrikstad (Norway); Bakken, Tor Haakon [SINTEF Energy, Trondheim (Norway)

    2012-11-01

    Energy Demand (CED) were chosen to be reviewed and to benchmark technologies for production of electricity. In this report, generic definitions of the different energy indicators are used, making them applicable to different energy products (fuels, heat and electricity). The discussion and conclusions are also made as general as possible when the indicators are compared. In the benchmarking exercise the energy product under study is electricity.Conclusions - Comparing technologies. Hydropower clearly achieves the best energy performance according to the indicators EPR, NER and CED. Wind power achieves the second best performance while thermal power generation technologies based on biomass and fossil fuels give the lowest energy performance. There are large variations between the analysed technologies regarding the amount of primary energy needed to produce 1 kWh of electricity.The sources of primary energy used for producing electricity vary between the technologies. Electricity from hydropower, in particular, has a very high share of renewable energy as the primary source, while also wind power and bio-energy have high shares of renewables. The main energy sources required for producing electricity from coal and natural gas are fossil based.The study shows that second life cycle hydropower plants (which means upgrading and extension of old, existing plants) can have extremely high energy efficiency, measured by EPR. (Such plants are not shown in the figures in the summary, but are part of the results). For hydropower, the losses in waterways, turbines, generators and transformers are crucial for the ranking of cases when considering the whole life cycle (NER and CED). In general, this study gives no indication whether 'large' hydropower installations are more energy efficient than smaller installations, or whether reservoir hydropower plants are more energy efficient than run-of-river plants. Conclusions - Comparing indicators: The main reason for the

  9. Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Novosel, Tomislav;

    2014-01-01

    and renewable energy sources. Croatian long-term energy demand and its effect on the future national GHG (greenhouse gas) emissions are analysed in this paper. For that purpose the NeD model was constructed (National energy demand model). The model is comprised out of six modules, each representing one sector...... to referent (frozen efficiency) scenario. Results obtained in this paper were also compared to the Croatian National Energy Strategy for the years 2020 and 2030. It was shown that if already implemented policies were properly taken into account the actual final energy demand for the year 2030 would be 43...

  10. Joint Real-Time Energy and Demand-Response Management using a Hybrid Coalitional-Noncooperative Game

    Energy Technology Data Exchange (ETDEWEB)

    He, Fulin; Gu, Yi; Hao, Jun; Zhang, Jun Jason; Wei, Jiaolong; Zhang, Yingchen

    2015-11-11

    In order to model the interactions among utility companies, building demands and renewable energy generators (REGs), a hybrid coalitional-noncooperative game framework has been proposed. We formulate a dynamic non-cooperative game to study the energy dispatch within multiple utility companies, while we take a coalitional perspective on REGs and buildings demands through a hedonic coalition formation game approach. In this case, building demands request different power supply from REGs, then the building demands can be organized into an ultimate coalition structure through a distributed hedonic shift algorithm. At the same time, utility companies can also obtain a stable power generation profile. In addition, the interactive progress among the utility companies and building demands which cannot be supplied by REGs is implemented by distributed game theoretic algorithms. Numerical results illustrate that the proposed hybrid coalitional-noncooperative game scheme reduces the cost of both building demands and utility companies compared with the initial scene.

  11. Renewable Energy Supply and Demand for the City of El Gouna, Egypt

    Directory of Open Access Journals (Sweden)

    Johannes Wellmann

    2016-03-01

    Full Text Available The paper discusses a supply and demand scenario using renewable energy sources for the city El Gouna in Egypt as an example for a self-supplying community. All calculations are based on measured meteorological data and real power demand during the year 2013. The modeled energy system consists of a concentrating solar tower plant with thermal storage and low-temperature seawater desalination unit as well as an integrated photovoltaic plant and a wind turbine. The low-temperature desalination unit has been newly developed in order to enable the utilization of waste heat from power conversion processes by improved thermal efficiency. In the study, special attention is given to the surplus power handling generated by the photovoltaic and wind power plant. Surplus power is converted into heat and stored in the thermal storage system of the solar power plant in order to increase the capacity factor. A brief estimation of investment costs have been conducted as well in order to outline the economic performance of the modeled energy and water supply system.

  12. Household energy demand in Kenya: An application of the linear approximate almost ideal demand system (LA-AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Ngui, Dianah, E-mail: ngui.diana@ku.ac.ke [Kenyatta University, P.O. Box 43844-00100, Nairobi (Kenya); Kenya Institute for Public Policy Research and Analysis, P.O. Box, 56445-00200, Nairobi (Kenya); Mutua, John [Energy Regulatory Commission, P.O. Box 42681-00100, Nairobi (Kenya); Osiolo, Hellen; Aligula, Eric [Kenya Institute for Public Policy Research and Analysis, P.O. Box, 56445-00200, Nairobi (Kenya)

    2011-11-15

    This paper estimates price and fuel expenditure elasticities of demand by applying the linear Approximate Almost Ideal Demand system (LA-AIDS) to 3665 households sampled across Kenya in 2009. The results indicate that motor spirit premium (MSP), automotive gas oil (AGO) and lubricants are price elastic while fuel wood, kerosene, charcoal, liquefied petroleum gas (LPG) and electricity are price inelastic. Kerosene is income elastic while fuel wood, charcoal, LPG, electricity, MSP and AGO are income inelastic. The results also reveal fuel stack behaviour, that is, multiple fuel use among the households. Main policy implications of the results include increasing the penetration of alternative fuels as well as provision of more fiscal incentives to increase usage of cleaner fuels. This not withstanding however, the household income should be increased beyond a certain point for the household to completely shift and use a new fuel. - Highlights: > Fuel wood, kerosene, charcoal, LPG and electricity are price inelastic. > Kerosene is income elastic. > Fuel wood, charcoal, electricity, LPG, MSP and AGO are income inelastic. > Results reveal fuel stack behaviour among the households. > Income should be increased beyond a certain point to facilitate fuel switch.

  13. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  14. Satisfying the Energy Demand of a Rural Area by Considering the Investment on Renewable Energy Alternatives and Depreciation Costs

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2014-01-01

    Full Text Available In this paper, a fuzzy multiobjective model which chooses the best mix of renewable energy options and determines the optimal amount of energy to be transferred from each resource to each end use is proposed. The depreciation of equipment along with time value of money has been taken into account in the first objective function while the second and the third objective functions minimize the greenhouse gas emissions and water consumption, respectively. Also, this study is one of the pioneer works that has considered demand-side management (DSM as a competitive option against supply-side alternatives for making apt energy planning decisions. Moreover, the intrinsic uncertainty of demand parameter is considered and modeled by fuzzy numbers. To convert the proposed fuzzy multiobjective formulation to a crisp single-objective formulation the well-known fuzzy goal programming approach together with Jimenez defuzzifying technique is employed. The model is validated through setting up a diversity of datasets whose data were mostly derived from the literature. The obtained results show that DSM programs have greatly contributed to cost reductions in the network. Also, it is concluded that the model is capable of solving even large-scaled instances of problems in negligible central processing unit (CPU times using Lingo 8.0 software.

  15. Review of Real-time Electricity Markets for Integrating Distributed Energy Resources and Demand Response

    DEFF Research Database (Denmark)

    Wang, Qi; Zhang, Chunyu; Ding, Yi

    2015-01-01

    reviews typical RTMs respectively in the North America, Australia and Europe, focusing on their market architectures and incentive policies for integrating DER and DR in electricity markets. In this paper, RTMs are classified into three groups: Group I applies nodal prices implemented by optimal power......The high penetration of both Distributed Energy Resources (DER) and Demand Response (DR) in modern power systems requires a sequence of advanced strategies and technologies for maintaining system reliability and flexibility. Real-time electricity markets (RTM) are the nondiscriminatory transaction...... flow, which clears energy prices every 5 minutes. Group II applies zonal prices, with the time resolution of 5-min. Group III is a general balancing market, which clears zonal prices intro-hourly. The various successful RTM experiences have been summarized and discussed, which provides a technical...

  16. How to meet the increasing demands of water, food and energy in the future?

    Science.gov (United States)

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water

  17. The long-term forecast of Taiwan's energy supply and demand: LEAP model application

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yophy, E-mail: yohuanghaka@gmail.com [Deptartment of Public Finance and Tax Administration, National Taipei College of Business, Taipei Taiwan, 10051 (China); Bor, Yunchang Jeffrey [Deptartment of Economics, Chinese Culture University, Yang-Ming-Shan, Taipei, 11114, Taiwan (China); Peng, Chieh-Yu [Statistics Department, Taoyuan District Court, No. 1 Fazhi Road, Taoyuan City 33053, Taiwan (China)

    2011-11-15

    The long-term forecasting of energy supply and demand is an extremely important topic of fundamental research in Taiwan due to Taiwan's lack of natural resources, dependence on energy imports, and the nation's pursuit of sustainable development. In this article, we provide an overview of energy supply and demand in Taiwan, and a summary of the historical evolution and current status of its energy policies, as background to a description of the preparation and application of a Long-range Energy Alternatives Planning System (LEAP) model of Taiwan's energy sector. The Taiwan LEAP model is used to compare future energy demand and supply patterns, as well as greenhouse gas emissions, for several alternative scenarios of energy policy and energy sector evolution. Results of scenarios featuring 'business-as-usual' policies, aggressive energy-efficiency improvement policies, and on-schedule retirement of Taiwan's three existing nuclear plants are provided and compared, along with sensitivity cases exploring the impacts of lower economic growth assumptions. A concluding section provides an interpretation of the implications of model results for future energy and climate policies in Taiwan. - Research Highlights: > The LEAP model is useful for international energy policy comparison. > Nuclear power plants have significant, positive impacts on CO{sub 2} emission. > The most effective energy policy is to adopt demand-side management. > Reasonable energy pricing provides incentives for energy efficiency and conservation. > Financial crisis has less impact on energy demand than aggressive energy policy.

  18. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  19. Impact of kiln thermal energy demand and false air on cement kiln flue gas CO2 capture

    Directory of Open Access Journals (Sweden)

    Udara S. P. R. Arachchige, Dinesh Kawan, Lars-André Tokheim, Morten C. Melaaen

    2014-01-01

    Full Text Available The present study is focused on the effect of the specific thermal energy demand and the false air factor on carbon capture applied to cement kiln exhaust gases. The carbon capture process model was developed and implemented in Aspen Plus. The model was developed for flue gases from a typical cement clinker manufacturing plant. The specific thermal energy demand as well as the false air factor of the kiln system were varied in order to determine the effect on CO2 capture plant performance, such as the solvent regeneration energy demand. In general, an increase in the mentioned kiln system factors increases the regeneration energy demand. The reboiler energy demand is calculated as 3270, 3428 and 3589 kJ/kg clinker for a specific thermal energy of 3000, 3400 and 3800 kJ/kg clinker, respectively. Setting the false air factor to 25, 50 or 70% gives a reboiler energy demand of 3428, 3476, 3568 kJ/kg clinker, respectively.

  20. The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply-demand matching.

    Science.gov (United States)

    Umbrello, Michele; Dyson, Alex; Feelisch, Martin; Singer, Mervyn

    2013-11-10

    A mismatch between energy supply and demand induces tissue hypoxia with the potential to cause cell death and organ failure. Whenever arterial oxygen concentration is reduced, increases in blood flow--hypoxic vasodilation--occur in an attempt to restore oxygen supply. Nitric oxide (NO) is a major signaling and effector molecule mediating the body's response to hypoxia, given its unique characteristics of vasodilation (improving blood flow and oxygen supply) and modulation of energetic metabolism (reducing oxygen consumption and promoting utilization of alternative pathways). This review covers the role of oxygen in metabolism and responses to hypoxia, the hemodynamic and metabolic effects of NO, and mechanisms underlying the involvement of NO in hypoxic vasodilation. Recent insights into NO metabolism will be discussed, including the role for dietary intake of nitrate, endogenous nitrite (NO₂⁻) reductases, and release of NO from storage pools. The processes through which NO levels are elevated during hypoxia are presented, namely, (i) increased synthesis from NO synthases, increased reduction of NO₂⁻ to NO by heme- or pterin-based enzymes and increased release from NO stores, and (ii) reduced deactivation by mitochondrial cytochrome c oxidase. Several reviews covered modulation of energetic metabolism by NO, while here we highlight the crucial role NO plays in achieving cardiocirculatory homeostasis during acute hypoxia through both vasodilation and metabolic suppression. We identify a key position for NO in the body's adaptation to an acute energy supply-demand mismatch.

  1. Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation

    Directory of Open Access Journals (Sweden)

    Malek Jasemi

    2016-11-01

    Full Text Available Nowadays, due to technical and economic reasons, the distributed generation (DG units are widely connected to the low and medium voltage network and created a new structure called micro-grid. Renewable energies (especially wind and solar based DGs are one of the most important generations units among DG units. Because of stochastic behavior of these resources, the optimum and safe management and operation of micro-grids has become one of the research priorities for researchers. So, in this study, the optimal operation of a typical micro-grid is investigated in order to maximize the penetration of renewable energy sources with the lowest operation cost with respect to the limitations for the load supply and the distributed generation resources. The understudy micro-grid consists of diesel generator, battery, wind turbines and photovoltaic panels. The objective function comprises of fuel cost, start-up cost, spinning reserve cost, power purchasing cost from the upstream grid and the sales revenue of the power to the upstream grid. In this paper, the uncertainties of demand, wind speed and solar radiation are considered and the optimization will be made by using the GAMS software and mixed integer planning method (MIP. Article History: Received May 21, 2016; Received in revised form July 11, 2016; Accepted October 15, 2016; Available online How to Cite This Article: Jasemi, M.,  Adabi, F., Mozafari, B., and Salahi, S. (2016 Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation, Int. Journal of Renewable Energy Development, 5(3,233-248. http://dx.doi.org/10.14710/ijred.5.3.233-248

  2. Energy demand modelling in transport for Ukrainian national energy strategy creation

    Energy Technology Data Exchange (ETDEWEB)

    Kravchuk, V.A.; Dounaev, V. [Victoria Software developers Group (Ukraine); Perchuk, V. [Inst. of Energy Saving Problems (Ukraine)

    1996-12-01

    Among the main functions of the Ukrainian Government there are creation and implementation of economy and social development strategy for Ukraine, coordination of all economy sectors` activity, including the most important long-term solutions by means of which the Government aspires to satisfy the public interests. These tasks are complicated by the current state of economy, that is characterized by the ineffective structure serviced the former Soviet Union as a whole and by the intensive decline because of separation from the USSR, breaking of old economic ties, and attempts to proceed to market relations at all levels. Fuel and energy sectors are the most important components of the Ukrainian economy and key factors of industry`s and population`s vital activity providing. (EG)

  3. DEVELOPMENT OF RECOVERABLE ENERGY IN PETROLEUM SECTOR——Contradictions between Demand and Supply and Environmental Issues Trigger Development and Application of Recoverable and New Energy

    Institute of Scientific and Technical Information of China (English)

    Xu Yongfa

    2006-01-01

    @@ In the face of the complicated global energy situation,geopolitical situation and environmental trend, the countries all over the world currently share the identical view on meeting and ensuring the energy demand with various kinds of energy. The petroleum industry has been one of the main energy suppliers in the recent 20 years.

  4. Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche [Ostfold research, Fredrikstad (Norway); Modahl, Ingunn Saur [Ostfold research, Fredrikstad (Norway); Bakken, Tor Haakon [SINTEF Energy, Trondheim (Norway)

    2012-11-01

    Energy Demand (CED) were chosen to be reviewed and to benchmark technologies for production of electricity. In this report, generic definitions of the different energy indicators are used, making them applicable to different energy products (fuels, heat and electricity). The discussion and conclusions are also made as general as possible when the indicators are compared. In the benchmarking exercise the energy product under study is electricity.Conclusions - Comparing technologies. Hydropower clearly achieves the best energy performance according to the indicators EPR, NER and CED. Wind power achieves the second best performance while thermal power generation technologies based on biomass and fossil fuels give the lowest energy performance. There are large variations between the analysed technologies regarding the amount of primary energy needed to produce 1 kWh of electricity.The sources of primary energy used for producing electricity vary between the technologies. Electricity from hydropower, in particular, has a very high share of renewable energy as the primary source, while also wind power and bio-energy have high shares of renewables. The main energy sources required for producing electricity from coal and natural gas are fossil based.The study shows that second life cycle hydropower plants (which means upgrading and extension of old, existing plants) can have extremely high energy efficiency, measured by EPR. (Such plants are not shown in the figures in the summary, but are part of the results). For hydropower, the losses in waterways, turbines, generators and transformers are crucial for the ranking of cases when considering the whole life cycle (NER and CED). In general, this study gives no indication whether 'large' hydropower installations are more energy efficient than smaller installations, or whether reservoir hydropower plants are more energy efficient than run-of-river plants. Conclusions - Comparing indicators: The main reason for the

  5. Simulation modeling for analysis of effectiveness and prime movers electrical energy demand of liquid coupled energy recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Ardehali, M.M. [Power and Energy Management Division, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran); Torfi, S. [Energy Systems Engineering Division, Department of Mechanical Engineering, KN Toosi University of Technology (Iran)

    2006-09-15

    Realization of anticipated energy efficiency from recuperative liquid coupled run-around energy recovery (LER) systems requires identification of the system components influential parameters and accounting for the prime movers energy requirements. Because simulation modeling is considered as an integral part of the design and economic evaluation of LER systems, it is essential to calibrate the developed models and validate the performance predictions by means of comparison with data from experimental measurements. The objective of this study is to develop a simulation model for a typical LER system that accounts for (a) energy loss from the interconnecting piping, (b) temperature dependency of thermophysical properties, (c) hydraulic pressure drop as a function of liquid Reynolds number and other related physical parameters, such as bends and bypass flow, (d) heat exchangers air side convective transfer coefficients based on recent correlations reported for wavy fins and (e) varying efficiency for prime movers. To achieve the objective, several simplifying assumptions used in previous studies have been relaxed; the interactions between all system components are mathematically modeled; and the latest correlations are utilized. The results from the simulation modeling of this study are found to be within 4% of the experimental data reported in the literature. Because of the dynamics introduced by the operation of the three way valve, controlling the pump and fan motors based on the bypass ratio is recommended, as it would result in better management of the electrical energy demand. (author)

  6. Distributed Energy Systems Integration and Demand Optimization for Autonomous Operations and Electric Grid Transactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenlots, San Francisco, CA (United States); Mashayekh, Salman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Center for Energy and Innovation Technologies (Austria); Yin, Rongxin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Zhenhua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-29

    Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost, energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.

  7. Climate change and its role in forecasting energy demand in buildings: A case study of Douala City, Cameroon

    Indian Academy of Sciences (India)

    Modeste Kameni Nematchoua; Gh R Roshan; René Tchinda; T Nasrabadi; Paola Ricciardi

    2015-02-01

    The foremost role of a building is to assure the comfort of its occupants. The thermal comfort of a building depends on the outdoor climate and requires a demand in energy for heating and cooling. In this paper, demand of energy (heating/cooling) in the buildings is discussed in Douala, Cameroon. Daily data of the last 40 years coming from five weather stations of Cameroon have been studied. Some forecasts have been carried out with 14 GCM models, associated to three future climate scenarios B1, A2, and A1B. However, only INCM3 of General Circulation Model (GCM) and A2 scenario was used. Energy demand in buildings is valued by HDD (heating degree day) and CDD (cooling degree day) indices. Obtained results show that the temperature evolves more quickly in dry season than in rainy season in Douala. Climate rise indicates an increasing demand of energy in the buildings for cooling. Global Douala heating shows a definite effect on outdoor comfort. From 2045 to 2075, the demand of energy for cooling will be superior to 50%. The total demand in energy for heating in the buildings is estimated to be 67.882 kcal from 1970 to 2000 and will be around 67.774 kcal from 2013 to 2043.

  8. Residential-energy-demand modeling and the NIECS data base: an evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Cowing, T.G.; Dubin, J.A.; McFadden, D.

    1982-01-01

    The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

  9. Present status and future demand for energy for bullock-operated paddy-farms in Assam (India)

    Energy Technology Data Exchange (ETDEWEB)

    Baruah, D.C.; Das, P.K.; Dutta, P.K. [Assam Agricultural Univ., Jorhat (India). Dept. of Agricultural Engineering

    2004-10-01

    The existing energy-use pattern, based on the prevailing cultivation practices and the optimal energy-demand based on the optimal mechanization strategy for animal operated paddy farms of Assam (India) were assessed. Two categories of paddy farms, i.e. with and without the use of chemical fertilizers were identified. Lower yield (1976 kg/ha) associated with a lower energy-input (5681 MJ/ha) was the characteristic feature of farms not using fertilizer in contrast to the higher yield (3165 kg/ha) and energy input (9290 MJ/ha) of fertilizer-user farms. Human and animal (as also chemical fertilizer for fertilizer-user farms) were the major energy sources under the existing practices contributing to more than 70% of the total energy-input. The optimal demand of energy to achieve a potential paddy yield of 6000 kg/ha was estimated as 11,168 MJ/ha comprising human, animal, diesel, and fertilizers as the major energy sources. Though the overall energy demand increased, the introduction of improved tillage implements could reduce the future optimal demand of animal energy for animal-operated paddy farms in Assam. (author)

  10. Meta-Analysis of Income and Price Elasticities Energy Demand: Some Public Policy Implications for Latin America

    Directory of Open Access Journals (Sweden)

    Luis Miguel Galindo

    2015-08-01

    Full Text Available The aim of this paper is to analyze the variation in empirical estimates of the income and price elasticities of energy demand. The evidence presented, through a meta-analysis, allows identification of the weighted average of the income and price elasticities, shows that the estimates are very heterogeneous, that there is publication bias, and that factors such as region, energy sector, among others, affect its volatility. The evidence also indicates that income elasticity in Latin America is greater than in the OECD countries, and that the price elasticity of energy demand is lower in Latin America than in the OECD countries. Therefore, continued economic growth in Latin America will be accompanied by a growth in energy demand. Moreover, the establishment of a tax in Latin America, under the current elasticities, is less effective and will be insufficient to control the increase in energy consumption.

  11. A Novel Prosumer-Based Energy Sharing and Management (PESM Approach for Cooperative Demand Side Management (DSM in Smart Grid

    Directory of Open Access Journals (Sweden)

    Sohail Razzaq

    2016-10-01

    Full Text Available Increasing population and modern lifestyle have raised energy demands globally. Demand Side Management (DSM is one important tool used to manage energy demands. It employs an advanced power infrastructure along with bi-directional information flow among utilities and users in order to achieve a balanced load curve and minimize demand-supply mismatch. Traditionally, this involves shifting the electricity demand from peak hours to other times of the day in an optimized manner. Multiple users equipped with renewable resources work in coordination with each other in order to achieve mutually beneficial energy management. This, in turn, has generated the concept of cooperative DSM. Such users, called prosumers, consume and produce energy using renewable resources (solar, wind etc.. Prosumers with surplus energy sell to the grid as well as to other consumers. In this paper, a novel Prosumer-based Energy Sharing and Management (PESM scheme for cooperative DSM has been proposed. A simulation model has been developed for testing the proposed method. Different variations of the proposed methodology have been experimented with different criteria. The results show that the proposed energy sharing scheme achieves DSM purposes in a useful manner.

  12. Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management

    Directory of Open Access Journals (Sweden)

    Giovani Almeida Dávi

    2017-08-01

    Full Text Available On-site photovoltaic (PV and battery systems intend to improve buildings energy performance, however battery costs and monetary incentives are a major drawback for the introduction of these technologies into the electricity grids. This paper proposes an energy refurbishment of an office building based on multi-objective simulations. An innovative demand-side management approach is analyzed through the PV and battery control with the purpose of reducing grid power peaks and grid imported energy, as well as improving the project economy. Optimization results of load matching and grid interaction parameters, complemented with an economic analysis, are investigated in different scenarios. By means of battery use, the equivalent use of the grid connection is reduced by 12%, enhancing the grid interaction potential, and 10% of load matching rates can be increased. Project improvements indicate the grid connection capacity can be reduced by 13% and significant savings of up to 48% are achieved on yearly bills. The economy demonstrates the grid parity is only achieved for battery costs below 100 €/kWh and the payback period is large: 28 years. In the case with only PV system, the grid parity achieves better outcomes and the payback time is reduced by a half, making this a more attractive option.

  13. Operation of Battery Energy Storage System in Demand Side using Local Load Forecasting

    Science.gov (United States)

    Hida, Yusuke; Yokoyama, Ryuichi; Shimizukawa, Jun; Iba, Kenji; Tanaka, Kouji; Seki, Tomomichi

    Recently, the various political movements, which reduce CO2-emission, have been proposed against global warming. Therefore, battery energy storage systems (BESSs) such as NAS (sodium and sulfur) battery are attracting attention around the world. The first purpose of BESS was the improvement of load factors. The second purpose is the improvement of power quality, especially against voltage-sag. The recent interest is oriented to utilize BESS to mitigate the intermittency of renewable energy. NAS battery has two operation modes. The first one is a fixed pattern operation, which is time-schedule in advance. The second mode is the load following operation. Although this mode can perform more the flexible operation by adjusting the change of load, it has the risks of shortage/surplus of battery energy. In this paper, an accurate demand forecasting method, which is based on multiple regression models, is proposed. Using this load forecasting, the more advanced control of load following operation for NAS battery is proposed.

  14. Distributed demand-side management optimisation for multi-residential users with energy production and storage strategies

    Directory of Open Access Journals (Sweden)

    Emmanuel Chifuel Manasseh

    2014-12-01

    Full Text Available This study considers load control in a multi-residential setup where energy scheduler (ES devices installed in smart meters are employed for demand-side management (DSM. Several residential end-users share the same energy source and each residential user has non-adjustable loads and adjustable loads. In addition, residential users may have storage devices and renewable energy sources such as wind turbines or solar as well as dispatchable generators. The ES devices exchange information automatically by executing an iterative distributed algorithm to locate the optimal energy schedule for each end-user. This will reduce the total energy cost and the peak-to-average ratio (PAR in energy demand in the electric power distribution. Users possessing storage devices and dispatchable generators strategically utilise their resources to minimise the total energy cost together with the PAR. Simulation results are provided to evaluate the performance of the proposed game theoretic-based distributed DSM technique.

  15. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  16. Demand-driven energy requirement of world economy 2007: A multi-region input-output network simulation

    Science.gov (United States)

    Chen, Zhan-Ming; Chen, G. Q.

    2013-07-01

    This study presents a network simulation of the global embodied energy flows in 2007 based on a multi-region input-output model. The world economy is portrayed as a 6384-node network and the energy interactions between any two nodes are calculated and analyzed. According to the results, about 70% of the world's direct energy input is invested in resource, heavy manufacture, and transportation sectors which provide only 30% of the embodied energy to satisfy final demand. By contrast, non-transportation services sectors contribute to 24% of the world's demand-driven energy requirement with only 6% of the direct energy input. Commodity trade is shown to be an important alternative to fuel trade in redistributing energy, as international commodity flows embody 1.74E + 20 J of energy in magnitude up to 89% of the traded fuels. China is the largest embodied energy exporter with a net export of 3.26E + 19 J, in contrast to the United States as the largest importer with a net import of 2.50E + 19 J. The recent economic fluctuations following the financial crisis accelerate the relative expansions of energy requirement by developing countries, as a consequence China will take over the place of the United States as the world's top demand-driven energy consumer in 2022 and India will become the third largest in 2015.

  17. Sensitivity Analysis and Uncertainty Characterization of Subnational Building Energy Demand in an Integrated Assessment Model

    Science.gov (United States)

    Scott, M. J.; Daly, D.; McJeon, H.; Zhou, Y.; Clarke, L.; Rice, J.; Whitney, P.; Kim, S.

    2012-12-01

    Residential and commercial buildings are a major source of energy consumption and carbon dioxide emissions in the United States, accounting for 41% of energy consumption and 40% of carbon emissions in 2011. Integrated assessment models (IAMs) historically have been used to estimate the impact of energy consumption on greenhouse gas emissions at the national and international level. Increasingly they are being asked to evaluate mitigation and adaptation policies that have a subnational dimension. In the United States, for example, building energy codes are adopted and enforced at the state and local level. Adoption of more efficient appliances and building equipment is sometimes directed or actively promoted by subnational governmental entities for mitigation or adaptation to climate change. The presentation reports on new example results from the Global Change Assessment Model (GCAM) IAM, one of a flexibly-coupled suite of models of human and earth system interactions known as the integrated Regional Earth System Model (iRESM) system. iRESM can evaluate subnational climate policy in the context of the important uncertainties represented by national policy and the earth system. We have added a 50-state detailed U.S. building energy demand capability to GCAM that is sensitive to national climate policy, technology, regional population and economic growth, and climate. We are currently using GCAM in a prototype stakeholder-driven uncertainty characterization process to evaluate regional climate mitigation and adaptation options in a 14-state pilot region in the U.S. upper Midwest. The stakeholder-driven decision process involves several steps, beginning with identifying policy alternatives and decision criteria based on stakeholder outreach, identifying relevant potential uncertainties, then performing sensitivity analysis, characterizing the key uncertainties from the sensitivity analysis, and propagating and quantifying their impact on the relevant decisions. In the

  18. An Energy-Aware On-Demand Routing Protocol for Ad-Hoc Wireless Networks

    CERN Document Server

    Veerayya, Mallapur

    2008-01-01

    An ad-hoc wireless network is a collection of nodes that come together to dynamically create a network, with no fixed infrastructure or centralized administration. An ad-hoc network is characterized by energy constrained nodes, bandwidth constrained links and dynamic topology. With the growing use of wireless networks (including ad-hoc networks) for real-time applications, such as voice, video, and real-time data, the need for Quality of Service (QoS) guarantees in terms of delay, bandwidth, and packet loss is becoming increasingly important. Providing QoS in ad-hoc networks is a challenging task because of dynamic nature of network topology and imprecise state information. Hence, it is important to have a dynamic routing protocol with fast re-routing capability, which also provides stable route during the life-time of the flows. In this thesis, we have proposed a novel, energy aware, stable routing protocol named, Stability-based QoS-capable Ad-hoc On-demand Distance Vector (SQ-AODV), which is an enhancement...

  19. New energy efficiency technologies associated with increased natural gas demand in delivery and consumption sectors of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Alghalandis, Saeid Mansouri

    2010-09-15

    Increasing population and economic growth in developing countries has changed their energy consumption patterns. So, the conventional systems of energy supply have become inadequate to deal with rising energy demand. Iran has great reservoirs of natural gas and its natural gas usage is far more than average international standard. Dominance of natural gas share in energy basket in Iran, make it necessary to consider energy efficient technologies and solutions for this domain. In this study new technologies for increasing energy efficiency (EE) in natural gas delivery and consumption sub sectors are discussed and evaluated according to available infrastructures in Iran.

  20. A thirsty dragon. Rising Chinese crude oil demand and prospects for multilateral energy security cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Causevic, Amar

    2012-07-01

    sovereignty. Hinderances in integrating China into the IEA are a factor of the organization itself. The IEA's efficiency depends on the willingness of its members to act and coordinate. The more coordinated and synchronized energy interests are, the more powerful the organization becomes. This means that the Chinese energy policy agenda as well as those of the other IEA members should increasingly converge. Should this not materialize, any conflict would prevent this organization from acting efficiently. This occurs whenever a member country exercises its veto power; in order to reach decisions, IEA member states must unanimously agree on decisions. As a consequence, prospective Chinese membership into the IEA will imply a reform of the latter's operating practices. In spite of the difficulties, China, the West and India would be better off using their power to foster common energy security rather than undermining one another. Instead of allowing tensions to rise, they could focus on designing an order that is legitimate, durable and in the interests of all. A stronger international energy security framework would reduce the enforcement costs of maintaining order due to institutionalization, and it could lock actors in favorable arrangements that persist beyond their power zenith. Working together and building mutual consensus on energy-related issues are, indeed, a greater challenge, but prove to be a better investment for the sake of international security. The process of China's further integration into a multilateral energy system must be executed in phases that do not demand too much change in too little time nor lag behind the development of the conflict potential. Powerful parties need to have enough time to adjust their national policies, and simultaneously tackle the problems of rising global demand for petroleum. Initially, China could be offered observer status in the IEA. This option would allow Beijing to participate in the organization

  1. Physical activity, job demand-control, perceived stress-energy, and salivary cortisol in white-collar workers

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Blangsted, Anne Katrine; Hansen, Ernst Albin

    2010-01-01

    The aim of the present study is to examine the association between physical activity and perceived job demand, job control, perceived stress and energy, and physiological arousal reflected by morning and evening concentrations of cortisol in saliva among white-collar workers.......The aim of the present study is to examine the association between physical activity and perceived job demand, job control, perceived stress and energy, and physiological arousal reflected by morning and evening concentrations of cortisol in saliva among white-collar workers....

  2. Stochastic Security and Risk-Constrained Scheduling for an Autonomous Microgrid with Demand Response and Renewable Energy Resources

    DEFF Research Database (Denmark)

    Vahedipour-Dahraie, Mostafa; Rashidizadeh-Kermani, Homa; Najafi, Hamid Reza

    2017-01-01

    Increasing penetration of intermittent renewable energy sources (RESs) and the development of advanced information, give rise to questions on how responsive loads can be managed to optimize the use of resources and assets. In this context, demand response (DR) as a way for modifying the consumption...... procure energy from various sources including local generating units and demand-side resources to serve the customers. The operator sells electricity to customers under real-time pricing (RTP) scheme and the response of customers to electricity prices by adjusting their loads. The objective...

  3. Demographic determinants of energy demand of households in Germany; Demografische Determinanten der Energienachfrage der Haushalte in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Kerstin

    2010-05-28

    This thesis investigates in demographic determinants of energy demand of households in Germany, with focus on space heating and individual motor car traffic. Result of this thesis is a simulation model based on the approach of system dynamics, which is used to simulate two scenarios. The first scenario, called the reference scenario, is based on demographic data of the next decades, which is assumed to be realistic. The second alternative scenario runs without the probable demographic changes. By comparing the scenarios the role of demography in the range of energy demand is quantified. (orig.)

  4. Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses

    Directory of Open Access Journals (Sweden)

    Hsueh-Hsien Chang

    2012-11-01

    Full Text Available Energy management systems strive to use energy resources efficiently, save energy, and reduce carbon output. This study proposes transient feature analyses of the transient response time and transient energy on the power signatures of non-intrusive demand monitoring and load identification to detect the power demand and load operation. This study uses the wavelet transform (WT of the time-frequency domain to analyze and detect the transient physical behavior of loads during the load identification. The experimental results show the transient response time and transient energy are better than the steady-state features to improve the recognition accuracy and reduces computation requirements in non-intrusive load monitoring (NILM systems. The discrete wavelet transform (DWT is more suitable than short-time Fourier transform (STFT for transient load analyses.

  5. Methodological considerations for documenting the energy demand of dance activity: a review

    Science.gov (United States)

    Beck, Sarah; Redding, Emma; Wyon, Matthew A.

    2015-01-01

    Previous research has explored the intensity of dance class, rehearsal, and performance and attempted to document the body's physiological adaptation to these activities. Dance activity is frequently described as: complex, diverse, non-steady state, intermittent, of moderate to high intensity, and with notable differences between training and performance intensities and durations. Many limitations are noted in the methodologies of previous studies creating barriers to consensual conclusion. The present study therefore aims to examine the previous body of literature and in doing so, seeks to highlight important methodological considerations for future research in this area to strengthen our knowledge base. Four recommendations are made for future research. Firstly, research should continue to be dance genre specific, with detailed accounts of technical and stylistic elements of the movement vocabulary examined given wherever possible. Secondly, a greater breadth of performance repertoire, within and between genres, needs to be closely examined. Thirdly, a greater focus on threshold measurements is recommended due to the documented complex interplay between aerobic and anaerobic energy systems. Lastly, it is important for research to begin to combine temporal data relating to work and rest periods with real-time measurement of metabolic data in work and rest, in order to be able to quantify demand more accurately. PMID:25999885

  6. Methodological considerations for documenting the energy demand of dance activity: a review

    Directory of Open Access Journals (Sweden)

    Sarah eBeck

    2015-05-01

    Full Text Available Previous research has explored the intensity of dance class, rehearsal and performance, and attempted to document the body’s physiological adaptation to these activities. Dance activity is frequently described as: complex, diverse, non-steady state, intermittent, of moderate to high intensity, and with notable differences between training and performance intensities and durations. Many limitations are noted in the methodologies of previous studies creating barriers to consensual conclusion. The present study therefore aims to examine the previous body of literature and in doing so, seeks to highlight important methodological considerations for future research in this area to strengthen our knowledge base. Four recommendations are made for future research. Firstly, research should continue to be dance genre specific, with detailed accounts of technical and stylistic elements of the movement vocabulary examined given wherever possible. Secondly, a greater breadth of performance repertoire, within and between genres, needs to be closely examined. Thirdly, a greater focus on threshold measurements is recommended due to the documented complex interplay between aerobic and anaerobic energy systems. Lastly, it is important for research to begin to combine temporal data relating to work and rest periods with real-time measurement of metabolic data in work and rest, in order to be able to quantify demand more accurately.

  7. The energy demands of portable gas analysis system carriage during walking and running.

    Science.gov (United States)

    Sparks, S Andy; Chandler, Phillip; Bailey, Thomas G; Marchant, David C; Orme, Duncan

    2013-01-01

    The aim of this study was to evaluate the carriage of a portable gas analyser during prolonged treadmill exercise at a variety of speeds. Ten male participants completed six trials at different speeds (4, 8 and 12 km h(- 1)) for 40 min whilst wearing the analyser (P) or where the analyser was externally supported (L). Throughout each trial, respiratory gases, heart rate (HR), perceptions of effort and energy expenditure (EE) were measured. Significantly higher EE occurred during P12 (p = 0.01) than during L12 (855.3 ± 104.3; CI = 780.7-930.0 and 801.5 ± 82.2 kcal; CI = 742.7-860.3 kcal, respectively), but not at the other speeds; despite this, perceptions of effort and HR responses were unaffected. This additional EE is likely caused by alterations to posture which increase oxygen demand. The use of such systems is unlikely to affect low-intensity tasks, but researchers should use caution when interpreting data, particularly when exercise duration exceeds 30 min and laboratory-based analysers should be used where possible.

  8. Methodological considerations for documenting the energy demand of dance activity: a review.

    Science.gov (United States)

    Beck, Sarah; Redding, Emma; Wyon, Matthew A

    2015-01-01

    Previous research has explored the intensity of dance class, rehearsal, and performance and attempted to document the body's physiological adaptation to these activities. Dance activity is frequently described as: complex, diverse, non-steady state, intermittent, of moderate to high intensity, and with notable differences between training and performance intensities and durations. Many limitations are noted in the methodologies of previous studies creating barriers to consensual conclusion. The present study therefore aims to examine the previous body of literature and in doing so, seeks to highlight important methodological considerations for future research in this area to strengthen our knowledge base. Four recommendations are made for future research. Firstly, research should continue to be dance genre specific, with detailed accounts of technical and stylistic elements of the movement vocabulary examined given wherever possible. Secondly, a greater breadth of performance repertoire, within and between genres, needs to be closely examined. Thirdly, a greater focus on threshold measurements is recommended due to the documented complex interplay between aerobic and anaerobic energy systems. Lastly, it is important for research to begin to combine temporal data relating to work and rest periods with real-time measurement of metabolic data in work and rest, in order to be able to quantify demand more accurately.

  9. A cumulative energy demand indicator (CED), life cycle based, for industrial waste management decision making.

    Science.gov (United States)

    Puig, Rita; Fullana-I-Palmer, Pere; Baquero, Grau; Riba, Jordi-Roger; Bala, Alba

    2013-12-01

    Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport. Copyright © 2013. Published by Elsevier Ltd.

  10. Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mullendore, Seth [Clean Energy Group, Montpelier, Vermont

    2017-08-07

    This paper presents the first publicly available comprehensive survey of the magnitude of demand charges for commercial customers across the United States -- a key predictor of the financial performance of behind-the-meter battery storage systems. Notably, the analysis estimates that there are nearly 5 million commercial customers in the United States who can subscribe to retail electricity tariffs that have demand charges in excess of $15 per kilowatt (kW), over a quarter of the 18 million commercial customers in total in the United States. While the economic viability of installing battery energy storage must be determined on a case-by-case basis, high demand charges are often cited as a critical factor in battery project economics. Increasing use of demand charges in utility tariffs and anticipated future declines in storage costs will only serve to unlock additional markets and strengthen existing ones.

  11. Modelling the Variability of the Wind Energy Resource on Monthly and Seasonal Timescales

    Science.gov (United States)

    Alonzo, Bastien; Ringkjøb, Hans-Kristian; Jourdier, Benedicte; Drobinski, Philippe; Plougonven, Riwal; Tankov, Peter

    2016-04-01

    We study the variability of the wind energy resource in France on monthly to seasonal timescales. On such long-term timescales, the variability of the surface wind speed is strongly influenced by the large-scale situation of the atmosphere. As an example variations in the position of the storm track west of France directly impact surface wind in the North of France in autumn and winter. We investigate the relationship between the large scale circulation and the surface wind speed, summarizing the former by a principal component analysis, so that the large-scale mass distribution is described by a small set of coefficients. We then apply a multi polynomial relationship to model the monthly and seasonal distribution of surface wind speeds given the knowledge of these few coefficients. Different methods for this reconstruction are assessed. While the first attempts to reconstruct the wind with a daily resolution, the three others directly aim at reconstructing the distribution of the wind, assuming it is well described as a Weibull distribution : One is based on the reconstruction of 3 moments of this theoretical distribution, another is based on the reconstruction of two percentiles, and the last one is based on the direct reconstruction of the shape and scale parameter of the Weibull distribution. The last two methods show good performance and better skills to reproduce the monthly and seasonal distribution of the wind speed with respect to the climatology. We then apply those methods to seasonal forecasts from the European Center for Medium-range Weather Forecasts (ECMWF) in an attempt of forecasting the monthly and seasonal distribution of the surface wind speed. For one month time-horizon, the forecasting performance is superior to climatology.

  12. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.; Meibom, P. [Technical Univ. of Denmark, Lyngby (Denmark); Kuemmel, B. [Royal Agricultural and Veterinary Univ., Tastrup (Denmark)

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  13. Decentralized planning of energy demand for the management of robustness and discomfort

    NARCIS (Netherlands)

    Pournaras, E.; Vasirani, M.; Kooij, R.E.; Aberer, K.

    2014-01-01

    The robustness of smart grids is challenged by unpredictable power peaks or temporal demand oscillations that can cause blackouts and increase supply costs. Planning of demand can mitigate these effects and increase robustness. However, the impact on consumers in regards to the discomfort they exper

  14. Impact of waste-to-energy on the demand and supply relationships of recycled fibre

    Energy Technology Data Exchange (ETDEWEB)

    Ristola, P.

    2012-11-01

    usage of recycled fibre in papermaking. This dissertation discusses the application of modern waste-to-energy technologies in the paper industry as a means of improving individual paper mills' competitive positions and financial performance. Their impact is found to be clearly significant and therefore the on-going investment activity can be expected to continue. As the use of various solid wastes for fuel potentially interferes with the targeted increase in paper recycling, there emerges a need to analyse the impacts of this development on the recycled fibre markets. This is achieved by developing a quantifiable model for analysing the composite market for various discarded-paper-containing waste flows and by conducting a Delphi study on the supply demand behaviour of recycled fibre. The Delphi study utilised a panel of experts to (1) gain support and feedback concerning the construction of the composite market model, (2) gain qualitative insight on the likely development scenarios for the recovered paper market, and (3) create a basis for preliminary quantification and testing of the model. By combining the results of the Delphi study and the composite market model, this study paints a picture of a future scenario for the composite RCF market in Europe in 2020. The main scenario is complemented by a selection of alternative views of the future that stem from the Delphi process. It becomes evident that the times of inexpensive recycled fibre for papermaking are past, and that the energy sector is also developing significant paying capabilities for recycled-fibre-containing waste flows. (orig.)

  15. Renewable Energy Resources Portfolio Optimization in the Presence of Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Behboodi, Sahand; Chassin, David P.; Crawford, Curran; Djilali, Ned

    2016-01-15

    In this paper we introduce a simple cost model of renewable integration and demand response that can be used to determine the optimal mix of generation and demand response resources. The model includes production cost, demand elasticity, uncertainty costs, capacity expansion costs, retirement and mothballing costs, and wind variability impacts to determine the hourly cost and revenue of electricity delivery. The model is tested on the 2024 planning case for British Columbia and we find that cost is minimized with about 31% renewable generation. We also find that demand responsive does not have a significant impact on cost at the hourly level. The results suggest that the optimal level of renewable resource is not sensitive to a carbon tax or demand elasticity, but it is highly sensitive to the renewable resource installation cost.

  16. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  17. Technological progress and long-term energy demand - a survey of recent approaches and a Danish case

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2001-01-01

    technologies are covered. Technological progress is an important issue for modelling long-term energy demand and is often characterised as the main contributor to the di!erent energy demand forecasts from di!erent models. New economic theoretical developments in the "elds of endogenous growth and industrial...... organisation have important implications for the attempts to endogenise technological innovation and di!usion of new energy technologies. A range of analytical and empirical models with di!erent descriptions of technological progress is surveyed in the paper. To analyse the importance of the technology...... important for long-term projections. A limitation of the vintage modelling approach applied in the long term explains some of the di!erences in projections among the two types of models. The applied vintage model of electric appliances does not adequately describe the category of new energy...

  18. Energy demand in an isolated community: Arixi/AM, Brazil; Demandas energeticas de uma comunidade isolada - Arixi/AM

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Elen Jane de Abreu; Barbosa, Sonia Regina da Cal Seixas [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Programa de Pos-Graduacao em Planejamento de Sistemas Energeticos], e-mail: srcal@unicamp.br

    2006-07-01

    Isolated energy communities in the Amazon are known by not being integrated to the rest of the net country of generation and distribution of electric energy. Therefore, federal government proposes an equal electric energy distribution for everyone in the country in order to bring social and economic development, mainly to the isolated energy communities. In this context, the isolated Arixi community, a small village in the Amazon, is focus of the project 'Alternative Production Energy from Cell Fuel and Natural Gas in the Amazon State - CELCOMB', a partnership between Federal Amazon University and State University of Campinas, which has the objective of producing alternative energy from cell fuel and natural gas. The objective of this article is to analyze the energy aspects of the isolated community of Arixi in the Amazon, and also get to know its energy demand. To do so, this article is based on a master dissertation and also in community field research. So, despite of the fact that this article is part of a larger project, by analyzing energy data and nowadays demands of the community, we will be able to examine what are the real electric energy requirements of an isolated community in the Amazon. (author)

  19. On-demand information retrieval in sensor networks with localised query and energy-balanced data collection.

    Science.gov (United States)

    Teng, Rui; Zhang, Bing

    2011-01-01

    On-demand information retrieval enables users to query and collect up-to-date sensing information from sensor nodes. Since high energy efficiency is required in a sensor network, it is desirable to disseminate query messages with small traffic overhead and to collect sensing data with low energy consumption. However, on-demand query messages are generally forwarded to sensor nodes in network-wide broadcasts, which create large traffic overhead. In addition, since on-demand information retrieval may introduce intermittent and spatial data collections, the construction and maintenance of conventional aggregation structures such as clusters and chains will be at high cost. In this paper, we propose an on-demand information retrieval approach that exploits the name resolution of data queries according to the attribute and location of each sensor node. The proposed approach localises each query dissemination and enable localised data collection with maximised aggregation. To illustrate the effectiveness of the proposed approach, an analytical model that describes the criteria of sink proxy selection is provided. The evaluation results reveal that the proposed scheme significantly reduces energy consumption and improves the balance of energy consumption among sensor nodes by alleviating heavy traffic near the sink.

  20. LINEAR GENERAL EQUILIBRIUM MODEL OF ENERGY DEMAND AND CO2 EMISSIONS GENERATED BY THE ANDALUSIAN PRODUCTIVE SYSTEM

    Directory of Open Access Journals (Sweden)

    Manuel Alejandro Cardenete

    2012-01-01

    Full Text Available In this study we apply a multiplier decomposition methodology of a linear general equilibrium model based on the regional social accounting matrix to the Andalusian economy. The aim of this methodology is to separate the size of the different effects in terms of energy expenditure and total emissions generated by the whole productive system to satisfy the final demand of each branch of the Andalusian economy and the direct emissions generated to produce energy for each subsystem.

  1. The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ordenes, Martin; Marinoski, Deivis Luis; Braun, Priscila; Ruther, Ricardo [Laboratorio de Eficiencia Energetica em Edificacoes (LabEEE), Universidade Federal de Santa Catarina/UFSC, Caixa Postal 476, Florianopolis, SC 88040-900, (Brazil); Laboratorio de Energia Solar (LABSOLAR), Universidade Federal de Santa Catarina/UFSC, Caixa Postal 476, Florianopolis, SC 88040-900, (Brazil)

    2007-06-15

    Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasilia and Florianopolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatistica - Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informacoes de Posses de Eletrodomesticos e Habitos de Consumo - Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each facade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical facades at the sites investigated. (Author)

  2. Management and control of the electrical energy demand; Administracion y control de la demanda de la energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Johnson Controls [Comision Federal de Electricidad (Mexico)

    2005-07-01

    Administrative measures allow a reduction in the energy consumption, but not always in the electrical demand. Control measures allow a reduction in the billing of the electrical demand, but not always in the energy consumption. This is why it is explained in this document what management and control of the electrical demand is, as well as its control strategies, the control alternatives, the billing demand and at the same time graphical representations along with three practical cases on the management of demand in air compressors, air conditioning equipment and in corporative buildings are presented. [Spanish] La aplicacion de las medidas administrativas permite reducir el consumo de energia, pero no siempre la demanda electrica. La aplicacion de medidas de control permiten reducir la demanda electrica facturable, pero no siempre el consumo de energia. Es por eso que en este documento se explica que es la administracion y el control de la demanda electrica, sus estrategias de control, las alternativas de control, la demanda facturable, representaciones graficas y tres casos practicos sobre la administracion de demanda en compresores de aire, la administracion de demanda en aire acondicionado y la administracion de demanda en un edificio corporativo.

  3. Guide energy certificate. Pt. 1. Energy demand certificate: Data acquisition residential buildings. 2. ed.; Leitfaden Energieausweis. T. 1. Energiebedarfsausweis: Datenaufnahme Wohngebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Balkowski, Michael [Informations- und Beratungsinstitut fuer Energieeinsparung und Umweltschutz (IBEU) e.V., Dresden (Germany); Hausladen, Gerhard [Technische Univ. Muenchen (Germany); Kwapich, Thomas; Sager, Christina; Reichenberger, Romy [Deutsche Energie-Agentur GmbH, Berlin (Germany); Loga, Tobias [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany); Jagnow, Kati [Ingenieurbuero fuer Energieberatung, Ostfalia (Germany); Fachhochschule Braunschweig-Wolfenbuettel, Wolfenbuettel (Germany)

    2009-12-15

    In the series 'Guide Energy Certificates', the German Energy Agency (Berlin, Federal Republic of Germany) reports on all necessary fundamentals for the issue of energy certificates for specialists. The first part describes the correct approach of data acquisition for the demand-oriented energy document for residential buildings. The rules of the proclamations which can be applied as well as the simplifications permissible according to EnEV 2009 are presented. Practical hints for the preparing of energy certificates are given.

  4. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2017-01-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  5. A comparative study of floor construction on sloping sites: an analysis of cumulative energy demand and greenhouse gas emissions

    Directory of Open Access Journals (Sweden)

    Grace Ding

    2016-03-01

    Full Text Available In order to make environmentally aware decisions, there is growing interest in the comparative energy and greenhouse gas (GHG performance of competing construction methods. Little research has been done concerning competing ground floor construction methods, especially given different site variables, such as slope and soil type. A life cycle assessment approach was adopted to analyse environmental impacts, including cumulative energy demand and GHG emissions for detached housing construction in Australia. Data was drawn from 24 case study housing projects, including 12 reinforced concrete and 12 suspended timber floor projects. The data presented in the paper compares cumulative energy demand, GHG and the constituent parts of competing construction methods. The findings indicate that the timber floors use/create significantly less cumulative energy demand and GHG emissions than concrete floors—approximately 2.1 to 2.7 times less energy and 2.3 to 2.9 times less GHG. These findings are limited to the site slope and foundation soil types identified in the paper. The main application of the work is in guidance concerning the lowest environmental impact options for detached housing construction.

  6. Advancing aging society and its effect on the residential use energy demand; Shintensuru koreika shakai to kateiyo energy juyo eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The paper analyzed various factors regulating the energy demand in aged households and viewed the future residential use energy demand in the aging society. In Part 1, based on the family budget survey annual report, a study was made of the energy consumption situation of aged people and the trend of the future residential energy consumption. In Part 2, a study was conducted based on survey data on the U.K., France, Sweden and Denmark. In Western countries which are the developed countries of aging, the energy conservation policy effectively worked for the space heating demand which is highest of all, and factors of the energy consumption increase by aging were absorbed. However, since in Japan, aging is rapidly advancing and further there are relatively more factors which connect to an increase in energy consumption in aged households as compared with Western countries, it is thought that Japan is in a situation where the energy consumption increases more often, influenced by aged households. 91 refs., 130 figs., 41 tabs.

  7. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    OpenAIRE

    Stadler, Michael

    2009-01-01

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cos...

  8. Is Solar Power The Best Energy Option To Meet Our Future Demands

    Directory of Open Access Journals (Sweden)

    Samyak Shami

    2015-08-01

    Full Text Available Abstract Currently about 65 of global electricity generation now is fossil fuel-based spewing 13 giga tonnes of CO2 . With mass production and innovations in technology the prices of renewable energy sources have plummeted to such levels where have become a welcoming option even without the subsidies.China has installed nearly 100 gigawatts GW of wind power and plans to double it within the next five years while Britain is also in offshore wind power in a big way. However oil continues to be the most valued fuel source as almost all of it is consumed in internal combustion IC engines mostly for transport and some for captive power plants. Biofuels and hydrogen fuel cells may be used as alternatives to petrol but biofuels which include ethanol hamper the performance of a vehicle.The production cost of solar power panels has come down so much that they are competing with the coal-based power even without the subsidy. The solar powered lanterns made up of a few light-emitting diodes are bringing light and enhancing the quality of life in the worlds poorest regions which are also located in the equatorial region. The US Department of Energys target is to produce 27 of Americas electricity using solar power by 2050 up from less than 1 today. In Australia solar power panels most of them on rooftops cater to almost 10 of the demand. About 25 households of South Australia have solar power followed by Queensland 22 and Western Australia 18.Modern innovations in solar cells show enormous capabilities for them to be used extensively on windows buildings even cell phones or any device that has a clear surface. Similar strides have been made in concentrated solar power. The Solar power however has limitations too. It can not generate power during night or when sky is overcast. Excessive power generated by solar panels has led to a crisis in Germany and elsewhere to the extent that generating companies in addition to selling were also paying back the managers

  9. A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm

    Directory of Open Access Journals (Sweden)

    S. Sofana Reka

    2016-06-01

    Full Text Available In this paper, demand response modeling scheme is proposed for residential consumers using game theory algorithm as Generalized Tit for Tat (GTFT Dominant Game based Energy Scheduler. The methodology is established as a work flow domain model between the utility and the user considering the smart grid framework. It exhibits an algorithm which schedules load usage by creating several possible tariffs for consumers such that demand is never raised. This can be done both individually and among multiple users of a community. The uniqueness behind the demand response proposed is that, the tariff is calculated for all hours and the load during the peak hours which can be rescheduled is shifted based on the Peak Average Ratio. To enable the vitality of the work simulation results of a general case of three domestic consumers are modeled extended to a comparative performance and evaluation with other algorithms and inference is analyzed.

  10. Analysis of Water and Energy Budgets and Trends Using the NLDAS Monthly Data Sets

    Science.gov (United States)

    Vollmer, Bruce E.; Rui, Hualan; Mocko, David M.; Teng, William L.; Lei, Guang-Dih

    2012-01-01

    The North American Land Data Assimilation System (NLDAS) is a collaborative project between NASA GSFC, NOAA, Princeton University, and the University of Washington. NLDAS has created surface meteorological forcing data sets using the best-available observations and reanalyses. The forcing data sets are used to drive four separate land-surface models (LSMs), Mosaic, Noah, VIC, and SAC, to produce data sets of soil moisture, snow, runoff, and surface fluxes. NLDAS hourly data, accessible from the NASA GES DISC Hydrology Data Holdings Portal, http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings, are widely used by various user communities in modeling, research, and applications, such as drought and flood monitoring, watershed and water quality management, and case studies of extreme events. More information is available at http://ldas.gsfc.nasa.gov/. To further facilitate analysis of water and energy budgets and trends, NLDAS monthly data sets have been recently released by NASA GES DISC.

  11. An Optimization Model for Large–Scale Wind Power Grid Connection Considering Demand Response and Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2014-11-01

    Full Text Available To reduce the influence of wind power output uncertainty on power system stability, demand response (DRPs and energy storage systems (ESSs are introduced while solving scheduling optimization problems. To simulate wind power scenarios, this paper uses Latin Hypercube Sampling (LHS to generate the initial scenario set and constructs a scenario reduction strategy based on Kantorovich distance. Since DRPs and ESSs can influence the distribution of demand load, this paper constructs a joint scheduling optimization model for wind power, ESSs and DRPs under the objective of minimizing total coal cost, and constraints of power demand and supply balance, users’ demand elasticity, thermal units’ startup-shutdown, thermal units’ output power climbing and wind power backup service. To analyze the influences of ESSs and DRPs on system wind power consumption capacity, example simulation is made in a 10 thermal units system with a 1000 MW wind farm and 400 MW energy storage systems under four simulation scenarios. The simulation results show that the introduction of DRPs and ESSs could promote system wind power consumption capacity with significantly economic and environment benefits, which include less coal consumption and less pollutant emission; and the optimization effect reaches the optimum when DRPs and ESSs are both introduced.

  12. National Institute for Petroleum and Energy Research monthly progress report, May 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    Accomplishments for the month of May are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research covers: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteratom-containing compounds. Supplemental Government Program covers: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; and chemical EOR workshop.

  13. [National Institute for Petroleum and Energy Research] monthly progress report, January 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Accomplishments for the month of January are briefly described for the following tasks: energy production research; fuels research; and supplemental government programs. Energy production research includes: reservoir assessment and characterization; TORI research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modifications, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuel research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen and diheteroatom containing compounds. supplemental Government program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant- enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; and compilations and analysis of outcrop data from the Muddy and Almond formations.

  14. [National Institute for Petroleum and Energy Research], monthly progress report for March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    Accomplishments for the month of April are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nigrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant- enhanced alkaline flooding field project; process- engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams of oil production symposium; technology transfer to independent producers; compilations and analysis of outcrop data from the Muddy and Almond formations; and horizontal well production from fractured reservoirs.

  15. (National Institute for Petroleum and Energy Research) monthly progress report, July 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  16. [National Institute for Petroleum and Energy Research] monthly progress report, July 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  17. National Institute for Petroleum and Energy Research monthly progress report, May 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    Accomplishments for the month of May are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research covers: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteratom-containing compounds. Supplemental Government Program covers: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; and chemical EOR workshop.

  18. Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes

    Energy Technology Data Exchange (ETDEWEB)

    Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

    1994-07-01

    This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

  19. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  20. Scenario analyses of road transport energy demand: a case study of ethanol as a diesel substitute in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Chollacoop, N. [National Metal and Materials Technology Center (MTEC), Bioenergy Laboratory, Pathumthani (Thailand); Saisirirat, P. [King Mongkut' s University of Technology Thonburi (KMUTT), Department of Mechanical Engineering, Bangkok (Thailand); Fukuda, T.; Fukuda, A. [Asian Transportation Research Society (ATRANS), Bangkok (Thailand); Fukuda, T.; Fukuda, A. [College of Science and Technology, Nihon University, Department of Transportation Engineering and Socio-Technology, Chiba (Japan)

    2011-07-01

    Ethanol is conventionally used as a blend with gasoline due to its similar properties, especially the octane number. However, ethanol has also been explored and used as a diesel substitute. While a low-blend of ethanol with diesel is possible with use of an emulsifier additive, a high-blend of ethanol with diesel may require major adjustment of compression-ignition (CI) diesel engines. Since dedicated CI engines are commercially available for a high-blend ethanol in diesel (ED95), a fuel mixture comprised of 95% ethanol and 5% additive, this technology offers an option for an oil-importing country like Thailand to reduce its fossil import by use of its own indigenous bio-ethanol fuel. Among many strong campaigns on ethanol utilization in the transportation sector under Thailand's Alternative Energy Strategic Plan (2008-2022), the Thai Ministry of Energy has, for the first time, conducted a demonstration project with ethanol (ED95) buses on the Thai road system. The current investigation thus aims to assess and quantify the impact of using this ED95 technology to reduce fossil diesel consumption by adjusting the commercially available energy demand model called the Long range Energy Alternatives Planning system (LEAP). For this purpose, first, the necessary statistical data in the Thai transportation sector were gathered and analyzed to construct the predicative energy demand model. Then, scenario analyses were conducted to assess the benefit of ED95 technology on the basis of energy efficiency and greenhouse gas emission reduction. (authors)

  1. Does Energy Efficiency Reduce Emissions and Peak Demand? A Case Study of 50 Years of Space Heating in Melbourne

    Directory of Open Access Journals (Sweden)

    Graham Palmer

    2012-07-01

    Full Text Available This paper examines the relationship between space heating energy efficiency and two related but distinct measures; greenhouse mitigation, and peak demand. The historic role of Melbourne’s space heating provides an opportunity to assess whether improvements in energy efficiency lead to sustained reductions in energy consumption or whether rebound factors “take back” efficiency gains in the long run. Despite significant and sustained improvements in appliance efficiency, and the thermal efficiency of new building fabrics, the per-capita heating energy consumption has remained remarkably stable over the past 50 years. Space heating efficiency is bound up with notions of comfort, sufficiency and lifestyle, and the short-run gains from efficiency become incorporated into a new set of norms. It is this evolution of cultural norms that reconciles the contradiction between the short-run gains from efficiency measures, with the efficiency rebound that becomes evident over the long-term. The related, but distinct peak demand measure can be influenced by efficiency measures, but energy efficiency measures will not alter the requirement for large-scale conventional energy to provide affordable and reliable winter heating.

  2. Energy Demand-Side Management: New Perspectives for a New Era

    Science.gov (United States)

    Carley, Sanya

    2012-01-01

    Over the past decade and a half, state governments have assumed greater responsibility over demand-side management (DSM) operations. Whereas DSM programs formerly were initiated primarily by utilities or state public utility commissions, they are now becoming increasingly state-initiated and incentivized through funding mechanisms or…

  3. Implementation of Demand Side Flexibility from the perspective of Europe’s Energy Directives

    DEFF Research Database (Denmark)

    Edelenbos, Edwin; Togeby, Mikael; Wittchen, Kim Bjarne

    2015-01-01

    Demand Side Flexibility (DSF) is the capacity to change electricity usage by end-users from their normal or current consumption patterns in response to changes in the price of electricity over time, or to incentive payments. These price changes or incentives can be grid related and market related...

  4. 76 FR 16657 - Demand Response Compensation in Organized Wholesale Energy Markets

    Science.gov (United States)

    2011-03-24

    ... periods of balancing needs,\\53\\ and that, moreover, contracts with demand response providers limit the... 2005, Public Law 109-58, Sec. 1252(f), 119 Stat. 594, 965 (2005) (``It is the policy of the United... option is well-established in finance theory as the value of the resource (LMP) minus the ``strike...

  5. Optimized Energy Management of a Single-House Residential Micro-Grid With Automated Demand Response

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Monsef, Hassan; Rahimi-Kian, Ashkan

    2015-01-01

    to take part in demand response (DR) programs. The superior performance and efficiency of the proposed system is studied through several scenarios and case studies and validated in comparison with the conventional models. The simulation results demonstrate that the proposed MOEMS has the capability...

  6. Energy demand, substitution and environmental taxation: An econometric analysis of eight subsectors of the Danish economy

    DEFF Research Database (Denmark)

    Møller, Niels Framroze

    2017-01-01

    in a more environmental-friendly direction. For eight subsectors of the Danish economy, time series (1966–2011) are modeled by means of partial Cointegrated VARs. Long-run demand relations are identified for all subsectors and robust price elasticities are supported in five cases. The results are used...

  7. Study of a conceptual nuclear energy center at Green River, Utah. Power demand, load center assessment and transmission

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.R.; Thaik, A.; Pingel, P.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramification of constructing a nuclear energy center in an arid western region. In this phase of the study. The projected power demands and load center locations were reviewed and assessed. Alternative transmission systems were analysed and a conceptual transmission for bulk power transportation is proposed with potential line routes. Environmental impacts of the proposed transmission were also identified.

  8. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Supporting document

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.; Faaij, A.; Verweij, P. [Utrecht University, Utrecht (Netherlands); Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F. [Wageningen UR, Wageningen (Netherlands); Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R. [Netherlands Environmental Assessment Agency NMP, Bilthoven (Netherlands); Aiking, H. [Vrije Universiteit, Amsterdam (Netherlands); Londo, M.; Mozaffarian, H.; Smekens, K. [ECN Policy Studies, Petten (Netherlands); Lysen, E. (ed.); Van Egmond, S. (ed.) [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2008-01-15

    This supporting document contains the result from the inventory phase of the biomass assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. This study provides a comprehensive assessment of global biomass potential estimates, focusing on the various factors affecting these potentials, such as food supplies, water use, biodiversity, energy demands and agro-economics.

  9. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    Science.gov (United States)

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases.

  10. A co-integration analysis of the price and income elasticities of energy demand in Turkish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Tuerkekul, Berna, E-mail: berna.turkekul@ege.edu.t [Department of Agricultural Economics, Faculty of Agriculture, Ege University, 35100 Izmir (Turkey); Unakitan, Goekhan, E-mail: unakitan@nku.edu.t [Department of Agricultural Economics, Faculty of Agriculture, Namik Kemal University, Tekirdag (Turkey)

    2011-05-15

    Agriculture has an important role in every country's development. Particularly, the contribution of agriculture to development and competitiveness is increasing with agricultural productivity growth. Productivity, in turn, is closely associated with direct and indirect use of energy as an input. Therefore, the importance of energy in agriculture cannot be denied as one of the basic inputs to the economic growth process. Following the importance of energy in Turkish agriculture, this study aims to estimate the long- and short-run relationship of energy consumption, agricultural GDP, and energy prices via co-integration and error correction (ECM) analysis. Annual data from 1970 to 2008 for diesel and electricity consumptions are utilized to estimate long-run and short-run elasticities. According to ECM analysis, for the diesel demand model, the long-run income and price elasticities were calculated as 1.47 and -0.38, respectively. For the electricity demand model, income and price elasticities were calculated at 0.19 and -0.72, respectively, in the long run. Briefly, in Turkey, support for energy use in agriculture should be continued in order to ensure sustainability in agriculture, increase competitiveness in international markets, and balance farmers' income. - Research highlights: {yields} We estimate the long and short run elasticities for diesel and electricity demands in agriculture. {yields} The long-run income and price elasticities calculated as 1.47 and 0.38, respectively for diesel. {yields} The long run Income and price elasticities calculated as 0.19 and 0.72 for electricity.

  11. Price elasticity of the demand for soft drinks, other sugar-sweetened beverages and energy dense food in Chile.

    Science.gov (United States)

    Guerrero-López, Carlos M; Unar-Munguía, Mishel; Colchero, M Arantxa

    2017-02-10

    Chile is the second world's largest per capita consumer of caloric beverages. Caloric beverages are associated with overweight, obesity and other chronic diseases. The objective of this study is to estimate the price elasticity of demand for soft drinks, other sugar-sweetened beverages and high-energy dense foods in urban areas in Chile in order to evaluate the potential response of households' consumption to changes in prices. We used microdata from the VII Family Budget Survey 2012-2013, which collects information on expenditures made by Chilean urban households on items such as beverages and foods. We estimated a Linear Approximation of an Almost Ideal Demand System Model to derive own and cross price elasticities of milk, coffee, tea and other infusions, plain water, soft drinks, other flavored beverages, sweet snacks, sugar and honey, and desserts. We considered the censored nature of the data and included the Inverse Mills Ratio in each equation of the demand system. We estimated a Quadratic Almost Ideal Demand System and a two-part model as sensitivity analysis. We found an own price-elasticity of -1.37 for soft drinks. This implies that a price increase of 10% is associated with a reduction in consumption of 13.7%. We found that the rest of food and beverages included in the demand system behave as substitutes for soft drinks. For instance, plain water showed a cross-price elasticity of 0.63: a 10% increase in price of soft drinks could lead to an increase of 6.3% of plain water. Own and cross price elasticities were similar between models. The demand of soft drinks is price sensitive among Chilean households. An incentive system such as subsidies to non-sweetened beverages and tax to soft drinks could lead to increases in the substitutions for other healthier beverages.

  12. Bottom-up modelling of energy demand and technical energy savings potential in the Irish residential sector

    OpenAIRE

    Dineen, Denis

    2014-01-01

    The International Energy Agency has repeatedly identified increased end-use energy efficiency as the quickest, least costly method of green house gas mitigation, most recently in the 2012 World Energy Outlook, and urges all governing bodies to increase efforts to promote energy efficiency policies and technologies. The residential sector is recognised as a major potential source of cost effective energy efficiency gains. Within the EU this relative importance can be seen from a review of the ...

  13. ENERGY DEMANDS OF THE EXISTING COLLECTIVE BUILDINGS WITH BEARING STRUCTURE OF LARGE PRECAST CONCRETE PANELS FROM TIMISOARA

    Directory of Open Access Journals (Sweden)

    Pescari S.

    2015-05-01

    Full Text Available One of the targets of EU Directives on the energy performance of buildings is to reduce the energy consumption of the existing buildings by finding efficient solutions for thermal rehabilitation. In order to find the adequate solutions, the first step is to establish the current state of the buildings and to determine their actual energy consumption. The current paper aims to present the energy demands of the existing buildings with bearing structure of large precast concrete panels in the city of Timisoara. Timisoara is one of the most important cities in the west side of Romania, being on the third place in terms of size and economic development. The Census of Population and Housing of 2011 states that Timisoara has about 127841 private dwellings and 60 percent of them are collective buildings. Energy demand values of the existing buildings with bearing structure of large precast concrete panels in Timisoara, in their current condition, are higher than the accepted values provided in the Romanian normative, C107. The difference between these two values can reach up to 300 percent.

  14. Optimization Design Method and Experimental Validation of a Solar PVT Cogeneration System Based on Building Energy Demand

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2017-08-01

    Full Text Available Photovoltaic-thermal (PVT technology refers to the integration of a photovoltaic (PV and a conventional solar thermal collector, representing the deep exploitation and utilization of solar energy. In this paper, we evaluate the performance of a solar PVT cogeneration system based on specific building energy demand using theoretical modeling and experimental study. Through calculation and simulation, the dynamic heating load and electricity load is obtained as the basis of the system design. An analytical expression for the connection of PVT collector array is derived by using basic energy balance equations and thermal models. Based on analytical results, an optimized design method was carried out for the system. In addition, the fuzzy control method of frequency conversion circulating water pumps and pipeline switching by electromagnetic valves is introduced in this paper to maintain the system at an optimal working point. Meanwhile, an experimental setup is established, which includes 36 PVT collectors with every 6 PVT collectors connected in series. The thermal energy generation, thermal efficiency, power generation and photovoltaic efficiency have been given in this paper. The results demonstrate that the demonstration solar PVT cogeneration system can meet the building energy demand in the daytime in the heating season.

  15. Renewable Energy Zones: Delivering Clean Power to Meet Demand, Greening the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, David; Chernyakhovskiy, Ilya; Cochran, Jaquelin

    2016-05-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document describes the renewable energy zone concept that has emerged as a transmission planning tool to help scale up the penetration of solar, wind, and other resources on the power system.

  16. Global energy efficiency improvement in the log term: a demand- and supply-side perspective

    NARCIS (Netherlands)

    Graus, W.H.J.; Blomen, E.; Worrell, E.

    2011-01-01

    This study assessed technical potentials for energy efficiency improvement in 2050 in a global context. The reference scenario is based on the World Energy Outlook of the International Energy Agency 2007 edition and assumptions regarding gross domestic product developments after 2030. In the referen

  17. Electric Energy Demand Forecast of Nanchang based on Cellular Genetic Algorithm and BP Neural Network

    OpenAIRE

    Cheng Yugui

    2013-01-01

    A kind of power forecast model combined cellular genetic algorithm with BP neural network was established in this article. Mid-long term power demand in urban areas was done load forecasting and analysis based on material object of the actual power consumption in urban areas of Nanchang. The results show that this method has the characteristic of the minimum training times, the shortest consumption time, the minimum error and the shortest operation time to obtain the best fitting effect.  

  18. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal

  19. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Directory of Open Access Journals (Sweden)

    M. Yousefi, M. Omid, Sh. Rafiee, S.F. Ghaderi

    2013-01-01

    Full Text Available Iran's primary energy consumption (PEC was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO and artificial neural networks (ANNs techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  20. Real-time pricing strategy of micro-grid energy centre considering price-based demand response

    Science.gov (United States)

    Xu, Zhiheng; Zhang, Yongjun; Wang, Gan

    2017-07-01

    With the development of energy conversion technology such as power to gas (P2G), fuel cell and so on, the coupling between energy sources becomes more and more closely. Centralized dispatch among electricity, natural gas and heat will become a trend. With the goal of maximizing the system revenue, this paper establishes the model of micro-grid energy centre based on energy hub. According to the proposed model, the real-time pricing strategy taking into account price-based demand response of load is developed. And the influence of real-time pricing strategy on the peak load shifting is discussed. In addition, the impact of wind power predicted inaccuracy on real-time pricing strategy is analysed.

  1. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  2. 2015年世界能源供需浅析%Brief Analysis of World Energy Supply & Demand in 2015

    Institute of Scientific and Technical Information of China (English)

    王睿

    2016-01-01

    InJune2016,BPpublishedthe65theditionofBP Statistical Review of World Energy.Thedata indicate that, in 2015, fossil energy still occupied dominant position in global primary energy consumption. Global primary energy demand growth was merely 1.0%, apparently lower than the average level of recent 10 years. Among them, natural gas and petroleum demand steadily increased, coal demand set a new record of the largest decline. The carbon emission emerged a situation of decelerated growth, reflecting continuous slump of global economy and low growth of energy consumption brought about by China's economic structural readjustment.%2016年6月,BP公司发布了第65版《BP世界能源统计》。数据显示,2015年,化石能源仍然在全球一次能源消费中占据主导地位。全球一次能源需求增长仅1.0%,明显低于近10年来的平均水平。其中,天然气和石油需求稳步增长,而煤炭需求创下了有记录以来的最大降幅,助力碳排放呈现增长放缓态势,反映出了全球经济的持续疲软和中国经济结构调整所带来的能源消费低增长。

  3. Impact of changes in diet on the availability of land, energy demand, and greenhouse gas emissions of agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Fazeni, Karin; Steinmueller, Horst [Johannes Kepler Univ. (JKU Linz), Linz (Austria). Energy Inst.

    2011-12-15

    Recent scientific investigations have revealed a correlation between nutrition habits and the environmental impacts of agriculture. So, it is obviously worthwhile to study what effects a change in diet has on land use patterns, energy demand, and greenhouse gas emissions of agricultural production. This study calculates the amount of energy and emission savings as well as changes in land use that would result from different scenarios underlying a change in diet. Based on the healthy eating recommendations of the German Nutrition Society, meat consumption in Austria should decrease by about 60%, and consumption of fruits and vegetables has to increase strongly. This investigation showed that compliance with healthy eating guidelines leads to lower energy demand and a decrease in greenhouse gas emissions, largely due to a decrease in livestock numbers. Furthermore, arable land and grassland no longer needed for animal feed production becomes redundant and can possibly be used for the production of raw materials for renewable energy. The scenario examination shows that in the self-sufficiency scenario and in the import/export scenario, up to 443,100 ha and about 208,800 ha, respectively, of arable land and grassland are released for non-food uses. The cumulative energy demand of agriculture is lower by up to 38%, and the greenhouse gas emissions from agriculture decrease by up to 37% in these scenarios as against the reference situation. The land use patterns for the scenario demonstrate that animal feed production still takes up the largest share of agricultural land even though the extent of animal husbandry decreased considerably in the scenarios. (orig.)

  4. Real-time appraisal of the spatially distributed heat related health risk and energy demand of cities

    Science.gov (United States)

    Keramitsoglou, Iphigenia; Kiranoudis, Chris T.; Sismanidis, Panagiotis

    2016-08-01

    The Urban Heat Island (UHI) is an adverse environmental effect of urbanization that increases the energy demand of cities, impacts the human health, and intensifies and prolongs heatwave events. To facilitate the study of UHIs the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens (IAASARS/NOA) has developed an operational real-time system that exploits remote sensing image data from Meteosat Second Generation - Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) and generates high spatiotemporal land surface temperature (LST) and 2 m air temperature (TA) time series. These datasets form the basis for the generation of higher value products and services related to energy demand and heat-related health issues. These products are the heatwave hazard (HZ); the HUMIDEX (i.e. an index that describes the temperature felt by an individual exposed to heat and humidity); and the cooling degrees (CD; i.e. a measure that reflects the energy needed to cool a building). The spatiotemporal characteristics of HZ, HUMIDEX and CD are unique (1 km/5 min) and enable the appraisal of the spatially distributed heat related health risk and energy demand of cities. In this paper, the real time generation of the high spatiotemporal HZ, HUMIDEX and CD products is discussed. In addition, a case study corresponding to Athens' September 2015 heatwave is presented so as to demonstrate their capabilities. The overall aim of the system is to provide high quality data to several different end users, such as health responders, and energy suppliers. The urban thermal monitoring web service is available at http://snf-652558.vm.okeanos.grnet.gr/treasure/portal/info.html.

  5. Policy of energy demand control and resistance to change. A socio-anthropological approach; Politique de maitrise de la demande d'energie et resistances au changement. Une approche socio-anthropologique

    Energy Technology Data Exchange (ETDEWEB)

    Zelem, Marie-Christine

    2010-03-15

    The development of energy consuming devices, the growth of electricity consumptions, the exhaustion of fossil fuels and the increase of greenhouse gases are as many factors that contribute to the acceleration of global warming. The control of energy demand is one of the levers to influence the energy-consuming behaviours. What are such policies made of? What instruments are used and with what efficiency? What population is targeted? Using some practical examples taken in the everyday life, the first part of this book shows how professionals and consumers are reticent to change their habits, equipments and know-how, and why they have very good reasons to do so. The second part of the book treats of incentive systems and shows that they very often have problems with finding a public. The different energy saving awareness campaigns show the importance of the preliminary building of an energy saving culture to make energy saving policies efficient and socially acceptable. The next part deals with the experience gained from the energy efficiency programs implemented in Quebec and in French Guyana. In both cases, the public information tools are adapted to the culture of the targeted populations. The last part reviews some paths to explore to durably change the behaviours. (J.S.)

  6. An Economic Evalution of Demand-side Energy Storage Systems by using a Multi-agent based Electricity Market

    Science.gov (United States)

    Furusawa, Ken; Sugihara, Hideharu; Tsuji, Kiichiro

    Opened wholesale electric power market in April 2005, deregulation of electric power industry in Japan has faced a new competitive environment. In the new environment, Independent Power Producer (: IPP), Power Producer and Supplier (: PPS), Load Service Entity (: LSE) and electric utility can trade electric energy through both bilateral contracts and single-price auction at the electricity market. In general, the market clearing price (: MCP) is largely changed by amount of total load demand in the market. The influence may cause price spike, and consequently the volatility of MCP will make LSEs and their customers to face a risk of revenue and cost. DSM is attracted as a means of load leveling, and has effect on decreasing MCP at peak load period. Introducing Energy Storage systems (: ES) is one of DSM in order to change demand profile at customer-side. In case that customers decrease their own demand at jumped MCP, a bidding strategy of generating companies may be changed their strategy. As a result, MCP is changed through such complex mechanism. In this paper the authors evaluate MCP by multi-agent. It is considered that customer-side ES has an effect on MCP fluctuation. Through numerical examples, this paper evaluates the influence on MCP by controlling customer-side ES corresponding to variation of MCP.

  7. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs: An Assessment of Performance Incentive Models

    Science.gov (United States)

    Gosman, Nathaniel

    For energy utilities faced with expanded jurisdictional energy efficiency requirements and pursuing demand-side management (DSM) incentive programs in the large industrial sector, performance incentive programs can be an effective means to maximize the reliability of planned energy savings. Performance incentive programs balance the objectives of high participation rates with persistent energy savings by: (1) providing financial incentives and resources to minimize constraints to investment in energy efficiency, and (2) requiring that incentive payments be dependent on measured energy savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective to reduce at least 66 per cent of new electricity demand with DSM by 2020, the utility is faced with a higher level of DSM risk, or uncertainties that impact the costeffective acquisition of planned energy savings. For industrial DSM incentive programs, DSM risk can be broken down into project development and project performance risks. Development risk represents the project ramp-up phase and is the risk that planned energy savings do not materialize due to low customer response to program incentives. Performance risk represents the operational phase and is the risk that planned energy savings do not persist over the effective measure life. DSM project development and performance risks are, in turn, a result of industrial economic, technological and organizational conditions, or DSM risk factors. In the BC large industrial sector, and characteristic of large industrial sectors in general, these DSM risk factors include: (1) capital constraints to investment in energy efficiency, (2) commodity price volatility, (3) limited internal staffing resources to deploy towards energy efficiency, (4) variable load, process-based energy saving potential, and (5) a lack of organizational awareness of an operation's energy efficiency over time (energy performance). This research assessed the capacity

  8. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches

    Directory of Open Access Journals (Sweden)

    Mojtaba Valinejad Shoubi

    2015-03-01

    Full Text Available A sustainable building is constructed of materials that could decrease environmental impacts, such as energy usage, during the lifecycle of the building. Building Information Modeling (BIM has been identified as an effective tool for building performance analysis virtually in the design stage. The main aims of this study were to assess various combinations of materials using BIM and identify alternative, sustainable solutions to reduce operational energy consumption. The amount of energy consumed by a double story bungalow house in Johor, Malaysia, and assessments of alternative material configurations to determine the best energy performance were evaluated by using Revit Architecture 2012 and Autodesk Ecotect Analysis software to show which of the materials helped in reducing the operational energy use of the building to the greatest extent throughout its annual life cycle. At the end, some alternative, sustainable designs in terms of energy savings have been suggested.

  9. Technology Solutions Case Study: Zero Energy Ready Home and the Challenge of Hot Water on Demand

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-12

    Production builders in the Stapleton community of Denver, Colorado, now build 2,300-ft2 or larger homes that earn the U.S. Environmental Protection Agency (EPA) ENERGY STAR® through the Certified Homes Program, Version 3. These builders are repositioning to build comparably sized homes to the standards of the U.S. Department of Energy’s (DOE’s) Zero Energy Ready Home (ZERH) program. Most ZERH criteria align closely with ENERGY STAR and are familiar to these builders.

  10. Technology Solutions Case Study: Zero Energy Ready Home and the Challenge of Hot Water on Demand

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-12

    Production builders in the Stapleton community of Denver, Colorado, now build 2,300-ft2 or larger homes that earn the U.S. Environmental Protection Agency (EPA) ENERGY STAR® through the Certified Homes Program, Version 3. These builders are repositioning to build comparably sized homes to the standards of the U.S. Department of Energy’s (DOE’s) Zero Energy Ready Home (ZERH) program. Most ZERH criteria align closely with ENERGY STAR and are familiar to these builders.

  11. Evaluating the Relationship between the Population Trends, Prices, Heat Waves, and the Demands of Energy Consumption in Cities

    Directory of Open Access Journals (Sweden)

    Katherine S. Fu

    2015-11-01

    Full Text Available The demands of energy consumption have been projected as a key factor that affects an economy at the city, national, and international level. Contributions to total U.S. greenhouse gas emissions in 2012 by various urban sectors include electricity (31%, transportation (28%, industry (20%, agriculture (10%, and commercial and residential (10%. Yet the heavy demands of energy consumption in the cities by residents, commercial businesses, industries, and transportation are important for maintaining and sustaining sufficient economic growth. The purpose of this study is to investigate the relationships between population trends, historical energy consumptions, the changes of average electricity price, average annual temperature, and extreme weather events for three selected cities: New York, Chicago, and Los Angeles. These cities are exemplary of, metropolitan areas in the East, Middle, and the Western regions of the U.S. We find that the total energy consumptions of New York, Chicago, and Los Angeles are influenced to various degrees by changes in population, temperature and the average price of electricity and that only one city, Los Angeles, does price significantly affect electricity use. This finding has implications for policy making, suggesting that each city’s climate, size and general economic priorities must be considered in developing climate change mitigation strategies and incentives.

  12. Energy Needs and Environmental Demand - Seen from a Banker`s Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Tietmeyer, Hans [Deutche Bundesbank, (Germany)

    1998-12-31

    This presentation was given by the president of the Deutschen Bundesbank, who is also Chairman of the Board of Trustees of the German Federal Environmental Foundation. He said that the current low oil price had contributed to slow down the worldwide rise in prices at the various levels. The development in Japan is very important for Asia as a whole. Early stabilization of the economic and financial situation in Russia is very important for the world economy. The situation may be difficult in Southeast Asia and in the former Soviet states. But in other areas the world economy is doing well. The crisis countries must put their financial sectors in order, which involves financial restructuring and the creation of viable supervision systems and market economy conditions. Climate and environmental considerations must be borne in mind in the future progress of national and international energy policy. In the long run, more energy must come from renewable energy sources and the total energy consumption must go down. Many petroleum groups and energy suppliers are already investing substantial sums in solar energy. The German Government is sponsoring renewable energy sources by a number of programmes. Energy conservation is the simplest and cheapest way of protecting the climate and conserving resources. The idea that all energy should be renewable is a pipe dream of the future

  13. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  14. Study of influence of exchange rate change on the supply and demand of energy

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y.H.; Shin, D.C. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    The change of relative prices of trading goods and non-trading goods due to appreciation or depreciation of real exchange rates influences industrial structure and trading infrastructure by changing output, consumption, import and export, and prices of domestic economy. Considering that energy is used as intermediate input of all industrial sectors as well as in final consumption in the Korean economy which lacks energy resources and relies on imported energy resources, I believe that assessing the concrete effects of the real exchange rate change onto the energy industry must be a very important item in establishing effective energy policy. In this thesis, I measure the elasticity of the exchange rate as endogenous factors related to the energy industry using a CGE model that breaks down the energy industry. One (1) % depreciation of real exchange rate increases the domestic sales prices of all energy industry sectors, and the price increase ratios of petroleum and coal products are calculated as the highest among these. Petroleum and coal products show the highest price increase ratios while both the output and export decrease. On the other hand, depreciation increases the domestic sales prices of power generation, city gas, and heating sectors, but it is found to increase the output apart from petroleum and coal products. Depreciation of the real exchange rate is found to change the composition of the energy industry from petroleum and coal products to power generation, city gas, and heating sectors. 11 refs., 1 fig., 6 tabs.

  15. SPRING Project on Mechanical Energy on Demand from High Strain Actuators

    Science.gov (United States)

    2009-09-02

    the U pol term in equation (4) is known to be ‘made of’ two parts: −U pol = −U polel +U pold , where U polel represents the magnitude of the potential...energy of the electron in the polarization field and U pold represents the energy required to create this polarization (‘deformation energy’); with the...optimal polarization, U pold = U polel /2. Both energy functionals (1) and (4) assume that the electron and hole energies are measured from the band

  16. Report on the regional and system type disaggregation of the single family dwelling space heat energy demand sector. [BESOM and dynamic programming model

    Energy Technology Data Exchange (ETDEWEB)

    Muench, T.J.; Wooders, M.H.; McLean, R.

    1976-08-01

    Two models are developed that can estimate derived fuel demands in single-family dwellings, given fixed final demand for space heat by states. One is an extension of a single-period linear programming model of the nation's energy system, the Brookhaven Energy System Optimization Model. In it the demand for single-family space heat is disaggregated by state and type of home-heating system. The other is a multiple-period dynamic programming model of single-family space heat demand, also disaggregated by state and type of system. Preliminary results for each model are presented and compared.

  17. Electric Energy Demand Forecast of Nanchang based on Cellular Genetic Algorithm and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Cheng Yugui

    2013-07-01

    Full Text Available A kind of power forecast model combined cellular genetic algorithm with BP neural network was established in this article. Mid-long term power demand in urban areas was done load forecasting and analysis based on material object of the actual power consumption in urban areas of Nanchang. The results show that this method has the characteristic of the minimum training times, the shortest consumption time, the minimum error and the shortest operation time to obtain the best fitting effect.  

  18. Energy demand and life quality in America; Demanda de energia y calidad de vida en las Americas

    Energy Technology Data Exchange (ETDEWEB)

    Spitalnik, J. [ELETRONUCLEAR, 65, Rua da Candelaria- 10 andar, Rio de Janeiro (Brazil)]. E-mail: jspitalnik@alternex.com.br

    2004-07-01

    Being considered an intermediate growth among projections of technological development expressive or of development restricted by ecological considerations, in the next 50 years, the demand of primary energy in the countries of the American continent arrived to value sufficiently high to allow to consent at levels of quality of life but next to those enjoyed at the moment in developed countries. There will be an expansion substantial of electric power demand that rots to require the installation, in countries of Latin America and Caribbean, of power plants with total capacity of the order of 400 GW until half-filled of century. The resource to the nuclear source was accentuated starting from the decade of 2020 and an enormous challenge for the governments of the region it will be the one of driving the construction of about 2.300 MW/year nuclear power plants between 2020 and 2050. (Author)

  19. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin;

    2015-01-01

    The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric...

  20. The Role of Demand Side in the Transition to a Sustainable Energy System

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1997-01-01

    It is suggested in this paper that radical reduction in energy consumption is a precondition for reaching a sustainable development. This is the case, also in a country like Norway blessed with energy resources, for environmental, economic, and moral reasons. First is presented an overview...

  1. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing predict

  2. Systems and methods for controlling energy use during a demand limiting period

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Michael J.; Drees, Kirk H.

    2016-04-26

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  3. Balancing Renewable Electricity Energy Storage, Demand Side Management, and Network Extension from an Interdisciplinary Perspective

    CERN Document Server

    Droste-Franke, Bert; Rehtanz, Christian; Sauer, Dirk Uwe; Schneider, Jens-Peter; Schreurs, Miranda; Ziesemer, Thomas

    2012-01-01

    A significant problem of integrating renewable energies into the electricity system is the temporally fluctuating energy production by wind and solar power plants. Thus, in order to meet the ambitious long-term targets on CO2 emission reduction, long-term viable low-carbon options for balancing electricity will be needed. This interdisciplinary study analyses published future energy scenarios in order to get an impression of the required balancing capacities and shows which framework conditions should be modified to support their realisation. The authors combine their perspectives from energy engineering, technology assessment, political science, economical science and jurisprudence and address science, politics, actors in the energy sector and the interested public. Respectively, requirements for the balancing systems are analysed, considering the case of Germany as a large country with high ambitions to reduce greenhouse gas emissions. Additionally, an approach to investigate the optimal design of the techn...

  4. Commercial demand for energy: a disaggregated approach. [Model validation for 1970-1975; forecasting to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.R.; Cohn, S.; Cope, J.; Johnson, W.S.

    1978-04-01

    This report describes the structure and forecasting accuracy of a disaggregated model of commercial energy use recently developed at Oak Ridge National Laboratory. The model forecasts annual commercial energy use by ten building types, five end uses, and four fuel types. Both economic (utilization rate, fuel choice, capital-energy substitution) and technological factors (equipment efficiency, thermal characteristics of buildings) are explicitly represented in the model. Model parameters are derived from engineering and econometric analysis. The model is then validated by simulating commercial energy use over the 1970--1975 time period. The model performs well both with respect to size of forecast error and ability to predict turning points. The model is then used to evaluate the energy-use implications of national commercial buildings standards based on the ASHRAE 90-75 recommendations. 10 figs., 12 tables, 14 refs.

  5. Survey of effects of enhancement of the energy supply/demand structure on the global environment. 3; Energy jukyu kozo kodoka chikyu kankyo eikyo chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of studying how the energy supply/demand structure in Japan should be, a report on the secondary IPCC (Intergovernmental Panel on Climate Change) evaluation was analyzed. Possibilities of reducing the world CO2 emissions in association with the energy consumption were studied in the five assumed cases. Every case says that CO2 can be reduced to 1/3 of the 1990 level by 2100. In a case of the use of biomass as main fuel (1), the use of primary energy is suppressed to two times the 1990 level, and photovoltaic/wind/biomass power generation is introduced in a large quantity. Synthetic methanol and hydrogen are used for transportation and commercial/residential use fuels. There are four more assumed cases: the use of nuclear power as a substitute for renewable energy in the power generation in (1), the use of natural gas of 1.5 times that used in (1), the substitution of coal for biomass used in (1), and the assumption that the demand for primary energy in 2100 will be twice that used in (1). In Japan it is assumed that basically the nuclear power generation will be expanded, that the photovoltaic and waste power generation will be introduced in a large quantity, and that synthetic methanol and hydrogen are mainly used as transportation and commercial/residential use fuels. It is necessary, therefore, to analyze conditions under which the quantity introduction of such non-fossil energy is made possible. 11 figs., 31 tabs.

  6. Germany’s Energy Demand and Supply Until 2020: Implications for Germany’s Foreign Energy Policy

    Science.gov (United States)

    2003-06-01

    Ausfuhrkontrolle,or BAFA ), which have been very accurate for the last few years. The forecasts and predictions by the DoE/EIA, however, are from May...Reserves, Resources and Availability of Energy Resources 2002 (Berlin: FMEL, 2002), 5. 8 BAFA , EnergieINFO R12-2002 (10 February 2003), http...7% 5% 4% 3% 10% Russia Norway UK Libya Syria Kazakhstan Algeria Saudi-Arabia Others (After: BAFA , EnergieINFO R12-2002 (10 February 2003), http

  7. Energy efficiency of on-demand video caching systems and user behavior.

    Science.gov (United States)

    Chan, Chien Aun; Wong, Elaine; Nirmalathas, Ampalavanapillai; Gygax, André F; Leckie, Christopher

    2011-12-12

    Energy-efficient video distribution systems have become an important tool to deal with the rapid growth in Internet video traffic and to maintain the environmental sustainability of the Internet. Due to the limitations in terms of energy-efficiency of the conventional server centric method for delivering video services to the end users, storing video contents closer to the end users could potentially achieve significant improvements in energy-efficiency. Because of dissimilarities in user behavior and limited cache sizes, caching systems should be designed according to the behavior of user communities. In this paper, several energy consumption models are presented to evaluate the energy savings of single-level caching and multi-level caching systems that support varying levels of similarity in user behavior. The results show that single level caching systems can achieve high energy savings for communities with high similarity in user behavior. In contrast, when user behavior is dissimilar, multi-level caching systems should be used to increase the energy efficiency.

  8. Scenario Analyses of Road Transport Energy Demand: A Case Study of Ethanol as a Diesel Substitute in Thailand

    Directory of Open Access Journals (Sweden)

    Atsushi Fukuda

    2011-01-01

    Full Text Available Ethanol is conventionally used as a blend with gasoline due to its similar properties, especially the octane number. However, ethanol has also been explored and used as a diesel substitute. While a low-blend of ethanol with diesel is possible with use of an emulsifier additive, a high-blend of ethanol with diesel may require major adjustment of compression-ignition (CI diesel engines. Since dedicated CI engines are commercially available for a high-blend ethanol in diesel (ED95, a fuel mixture comprised of 95% ethanol and 5% additive, this technology offers an option for an oil-importing country like Thailand to reduce its fossil import by use of its own indigenous bio-ethanol fuel. Among many strong campaigns on ethanol utilization in the transportation sector under Thailand’s Alternative Energy Strategic Plan (2008–2022, the Thai Ministry of Energy has, for the first time, conducted a demonstration project with ethanol (ED95 buses on the Thai road system. The current investigation thus aims to assess and quantify the impact of using this ED95 technology to reduce fossil diesel consumption by adjusting the commercially available energy demand model called the Long range Energy Alternatives Planning system (LEAP. For this purpose, first, the necessary statistical data in the Thai transportation sector were gathered and analyzed to construct the predicative energy demand model. Then, scenario analyses were conducted to assess the benefit of ED95 technology on the basis of energy efficiency and greenhouse gas emission reduction.

  9. Energy intake from human milk covers the requirement of 6-month-old Senegalese exclusively breast-fed infants.

    Science.gov (United States)

    Agne-Djigo, Anta; Kwadjode, Komlan M; Idohou-Dossou, Nicole; Diouf, Adama; Guiro, Amadou T; Wade, Salimata

    2013-11-01

    Exclusive breast-feeding until 6 months is advised by the WHO as the best practice to feed infants. Yet, some studies have suggested a gap between energy requirements and the energy provided by human milk for many infants at 6 months. In order to assess the adequacy of WHO recommendations in 6-month-old Senegalese lactating infants, a comprehensive study was designed to measure human milk intake by the dose-to-the mother 2H2O turnover method. Infants’ energy intakes were calculated using daily breast milk intake and the energy content of milk was estimated on the basis of creamatocrit. Of the fifty-nine mother–infant pairs enrolled, fifteen infants were exclusively breast-fed (Ex) while forty-four were partially breast-fed (Part). Infants’ breast milk intake was significantly higher in the Ex group (993 (SD 135) g/d, n 15) compared with the Part group (828 (SD 222) g/d, n 44, P¼0·009). Breast milk energy content as well as infants' growth was comparable in both groups. However, infants’ energy intake from human milk was significantly higher (364 (SD 50) kJ/kg per d (2586 (SD 448) kJ/d)) in the Ex group than in the Part group (289 (SD 66) kJ/kg per d (2150 (SD 552) kJ/d), P,0·01). Compared with WHO recommendations, the results demonstrate that energy intake from breast milk was low in partially breast-fed infants while exclusively breast-fed 6-month-old Senegalese infants received adequate energy from human milk alone, the most complete food for infants. Therefore, advocacy of exclusive breast-feeding until 6 months should be strengthened.

  10. Energy efficiency and CO{sub 2} mitigation scenarios for French dwellings based on retrofitting and best energy demand technologies

    Energy Technology Data Exchange (ETDEWEB)

    Osso, D.; Bouia, H.; Mandrou, P.; Laurent, M.H. [Electricite de France, Energy in buildings and territories dept. (France)

    2007-07-01

    Two main targets of European and French energy policies are reduction of energy dependency and greenhouse gas mitigation. Energy conservation is unavoidable in order to reach these two goals.The Building sector is the largest end use in Europe, and also the largest CO{sub 2} emitter (if power plant emissions are included in final energy consumption). It is now well admitted that drastic decrease of buildings energy consumption and CO{sub 2} emissions need an intensive retrofitting of building stock, especially housing.This work evaluates various refurbishment scenarios outlook for 2030 of French dwelling stock: Business As Usual (BaU) or accelerate rates, usual technologies or Best Available Technologies (BATs). Emerging technologies (not yet available but with strong potential) are introduced among 'on the shelf' technologies. Studied scenarios include energy efficiency actions as well as energy substitution. Estimations of technical investment cost of studied scenarios are presented.The calculations are done using the MIeL 'Modeling of the Impact of Energy measures for housing' software, developed by EDF and built following a bottom-up approach.

  11. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  12. The planning system and its impact on sustainable urban form and energy demand

    OpenAIRE

    Wolsink, M.; Attali, S.; Métreau, E.; Prône, M.; Tillerson, K.

    2003-01-01

    The Dutch physical planning system is at a turning point. Recently the Government proposed a new institutional framework for spatial planning. Theoretically, existing planning hierarchy suggests that planning in the Netherlands is conducted systematically, including a strong notion of integrated rationality and definition of goals. Theoretically, energy efficiency might be such a goal and hence, energy efficiency could be served by the planning system. In practice, the planning process is dis...

  13. Main physical environmental drivers of occupant behaviour with regard to space heating energy demand

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Several studies have highlighted the significant gap between the predicted energy performance of buildings and their measured actual performance. Uncertainties regarding behaviour of building occupants are one of the key factors limiting the ability of energy simulation tools to accurately predic......) environmental conditions and the occupants’ heating set-point preferences. The paper aims at providing a reliable basis for a more accurate description of control action models in performance simulation applications....

  14. Simulated Annealing Approach Applied to the Energy Resource Management Considering Demand Response for Electric Vehicles

    OpenAIRE

    Sousa, Tiago; Vale, Zita; Morais, Hugo

    2013-01-01

    The aggregation and management of Distributed Energy Resources (DERs) by an Virtual Power Players (VPP) is an important task in a smart grid context. The Energy Resource Management (ERM) of theses DERs can become a hard and complex optimization problem. The large integration of several DERs, including Electric Vehicles (EVs), may lead to a scenario in which the VPP needs several hours to have a solution for the ERM problem. This is the reason why it is necessary to use metaheuristic methodolo...

  15. The changing structure of energy supply, demand, and CO{sub 2} emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Kuby, M.; He, C.F.; Trapido-Lurie, B.; Moore, N. [Arizona State University, Tempe, AZ (United States)

    2011-07-01

    Because of its enormous population, rapid economic growth, and heavy reliance on coal, China passed the United States as the world's largest source of CO{sub 2} emissions in 2006. China is also becoming a major factor in the global oil market. This article analyzes China's energy production and consumption, with a focus on the energy and CO{sub 2} emissions per capita and per unit of gross domestic product (GDP) and the mix of energy sources and end uses. Energy flow diagrams for 1987 and 2007 make it possible to visualize the allocation of energy from sources through energy transformation to final uses in units of metric tons of coal equivalent. Declining coal use by residences, agriculture, and transportation has been more than offset by a massive increase in electricity and industry usage. The article places these changes in political-economic context and helps illustrate and explain the difficulties China faces in trying to reduce its absolute CO{sub 2} emissions and why it instead proposes to reduce its CO{sub 2} per unit of GDP.

  16. An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings

    Science.gov (United States)

    Fantozzi, F.; Filipeschi, S.; Mameli, M.; Nesi, S.; Cillari, G.; Mantelli, M. B. H.; Milanez, F. H.

    2017-01-01

    Energy saving in buildings is one of most important issues for European countries. Although in the last years many studies have been carried out in order to reach the zero-consumption house the energy rate due to passive solar heating could be further enhanced. This paper proposes a method for increasing the energy rate absorbed by opaque walls by using a two phase loop thermosyphon connecting the internal and the external façade of a prefabricated house wall. The evaporator zone is embedded into the outside facade and the condenser is indoor placed to heat the domestic environment. The thermosyphon has been preliminary designed and implanted into a wall for a prefabricated house in Italy. An original dynamic thermal model of the building equipped with the thermosyphon wall allowed the evolution of the indoor temperature over time and the energy saving rates. The transient behaviour of the building has been simulated during the winter period by using the EnergyPlusTM software. The annual saving on the heating energy is higher than 50% in the case of a low consumption building.

  17. Balancing renewable electricity. Energy storage, demand side management, and network extension from an interdisciplinary perspective

    Energy Technology Data Exchange (ETDEWEB)

    Droste-Franke, Bert [Europaeische Akademie zur Erforschung von Folgen Wissenschaftlich-Technischer Entwicklungen GmbH, Bad Neuenahr-Ahrweiler (Germany); Paal, Boris P.; Rehtanz, Christian; Sauer, Dirk Uwe; Schneider, Jens-Peter; Schreurs, Miranda; Ziesemer, Thomas

    2012-07-01

    A significant problem of integrating renewable energies into the electricity system is the temporally fluctuating energy production by wind and solar power plants. Thus, in order to meet the ambitious long-term targets on CO{sub 2} emission reduction, long-term viable low-carbon options for balancing electricity will be needed. This interdisciplinary study analyses published future energy scenarios in order to get an impression of the required balancing capacities and shows which framework conditions should be modified to support their realisation. The authors combine their perspectives from energy engineering, technology assessment, political science, economical science and jurisprudence and address science, politics, actors in the energy sector and the interested public. Respectively, requirements for the balancing systems are analysed, considering the case of Germany as a large country with high ambitions to reduce greenhouse gas emissions. Additionally, an approach to investigate the optimal design of the technical system for balancing electricity over Europe is sketched. Looking at the challenges of a future energy system a mix of complementary technologies will prospectively become prevalent. In order to foster the needed innovation processes adequately, several funding mechanisms and legal regulations should be adapted. The authors give recommendations to handle major challenges in the development of the technical infrastructure, for the design of market conditions and for specific support of the application of balancing technologies. (orig.)

  18. Carbon-Neutral Energy Supply and Energy Demand-Reduction Technology Needed for Continued Economic Growth Without Dangerous Interference in the Climate System

    Science.gov (United States)

    Hoffert, M. I.; Caldeira, K.

    2007-12-01

    Stabilization of atmospheric CO2 at levels likely to avoid unacceptable climate risk will require a major transformation in the ways we produce and use energy. Most of our energy will need to come from sources that do not emit carbon dioxide to the atmosphere and that energy will need to be used efficiently. The required reduction of carbon dioxide emissions as global energy consumption and GDP grow imposes quantitative requirements on some combination of carbon-neutral primary power and energy demand reduction. (Emission reductions are expressed relative to an implicit or explicit baseline; explicit being better for policy-making. Energy demand reduction involves both efficiency improvements and lifestyle changes.) These requirements can be expressed as CO2 emission reductions needed, or as carbon-neutral primary power production needed combined with power not used by virtue of increased energy end use efficiency or lifestyle changes ("negawatts"), always subject to some reasonably well-characterized uncertainty limits. Climatic changes thus far have been closer to the more extreme zone of the climatic uncertainty envelope of global warming indicating the potential for disastrous impacts by mid-century and beyond for business-as-usual. Emission reductions needed to avoid "dangerous interference in the climate system" imply a revolutionary change in the global energy system beginning now; particularly ominous are massive conventional coal-fired electric power energy infrastructures under construction by the US, China & India. Strong arguments, based on physical science considerations, exist for prompt measures such as (1) an immediate moratorium on coal-fired plants that don't sequester CO2, (2) a gradually increasing price on carbon emissions and (3) regulatory standards, for example, that would encourage utilities and car manufacturers to improve efficiency, and (4) Apollo-scale R & D projects beginning now to develop sustainable carbon-neutral power that can be

  19. Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.

    Science.gov (United States)

    Yoon, Yourim; Kim, Yong-Hyuk

    2014-01-01

    A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.

  20. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  1. Energy Choices. Global Energy Trends and Problems to Supply the Energy Demand; Vaegval Energi. Globala energitrender och problem att tillgodose energibehoven

    Energy Technology Data Exchange (ETDEWEB)

    Radetzki, Marian (Luleaa Univ. of Technology, Luleaa (Sweden))

    2008-09-15

    Although the use of renewable fuels is increasing, oil and other fossil fuels still dominate the global energy supply the next decades, as shown by a review of energy sector development from 1990 to today and projections up to 2030. Nothing indicates that the supplies of oil or any other fossil fuel will be depleted during the coming decades. Resource Nationalism has long characterized the oil market. OPEC has since 1970 successfully controlled the supply and price of oil for its producing member countries. The cartel's grip on the oil market has been strengthened in the 2000s commodity boom, not least as a result of improved production discipline among member countries. At the same time, the long-term trend in the world's great centers of consumption is towards a lower degree of self-sufficiency in energy. The EU dependence on import of oil is expected to rise to over ninety per cent by year 2030. In order to secure a stable energy supply, clear strategies in the oil-importing countries are needed. Tools include diversified import, storage and securing supplies through futures trading on commodity exchanges. Energy policy has long been focused on supply. But the environmental aspects of energy production and use has grown in importance and now the climate issue dominates the energy policy. So far, however, the policy measures to curb the effects of climate change has been both limited and cost-ineffective. The cost to seriously limit emissions of greenhouse gases will be high. To carry out serious climate measures will annually take at least one percent of global GDP, according to an estimate by the British economist Nicholas Stern. This can be compared to the additional cost of approximately five percent of global GDP as energy consumers had to absorb between 2005 and 2008 because of rising prices for fossil fuels

  2. Energy efficiency options for the New England Demand Response Initiative (NEDRI) -- Framing paper No.4

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, Jeff

    2002-05-01

    In response to direction from the Connecticut Department of Public Utility Control (DPUC) in Docket 99-09-30, the Connecticut Light and Power Company (CL&P) has assessed the role of third parties (e.g., ESCOs) in its current energy efficiency programs as well as additional opportunities for third parties to participate in future programs. In addition to working with consultants to the Energy Conservation Management Board, CL&P asked an independent consultant to develop a descriptive framework (i.e., typology) that summarizes alternative approaches to using third parties in ratepayer-funded energy efficiency programs. For each approach, experiences of energy efficiency program administrators (EEA) in other states are summarized, major policy objectives and goals that motivated regulators or EEAs to pursue that option are identified, and lessons learned (e.g., strengths and weaknesses) are summarized. Existing program offerings of CL&P are then classified using this typology in order to characterize the current situation in Connecticut and the potential implications for Connecticut's energy efficiency programs are discussed.

  3. The Charcoal Trap: Miombo Woddlands and the Energy Demands of People

    Science.gov (United States)

    Kutsch, W. L.; Merbold, L.; Mukelabai, M. M.

    2012-04-01

    Miombo woodlands cover the transition zone between dry open savannas and moist forests in Southern Africa. They cover about 2.7 million km2 in southern Africa and provide many ecosystem services that support rural life, including medical products, wild foods, construction timber and fuel. In Zambia, as in many of its neighbouring countries, miombo woodlands are currently experiencing accelerating degradation and clearing, mostly with charcoal production as the initial driver. Domestic energy needs in the growing urban areas are largely satisfied by charcoal, which is less energy-efficient fuel on a tree-to-table basis than the firewood that is used in rural areas, but has a higher energy density and is thus cheaper to transport. This study uses data from inventories and from eddy covariance measurements of carbon exchange to characterize the impact of charcoal production on miombo woodlands. We address the following questions: (i) how much carbon is lost at local as well as at national scale and (ii) does forest degradation result in the loss of a carbon sink? On the basis of our data we (iii) estimate the per capita emissions through deforestation and forest degradation in Zambia and relate it to fossil fuel emissions. Furthermore, (iv) a rough estimate of the energy that is provided by charcoal production to private households at a national level is calculated and (v) options for alternative energy supply to private households are discussed.

  4. Economic Assessment of Network-Constrained Transactive Energy for Managing Flexible Demand in Distribution Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Xue, Yusheng

    2017-01-01

    's aggregation at distribution system level. We extend this method with: (1) a new modeling technique that allows the resulting congestion price to be directly interpreted as a locational marginal pricing in the system; (2) an explicit analysis of the benefits and costs of different actors when using the NCTE......The increasing number of distributed energy resources such as electric vehicles and heat pumps connected to power systems raises operational challenges to the network operator, for example, introducing grid congestion and voltage deviations in the distribution network level if their operations...... are not properly coordinated. Coordination and control of a large number of distributed energy resources requires innovative approaches. In this paper, we follow up on a recently proposed network-constrained transactive energy (NCTE) method for scheduling of electric vehicles and heat pumps within a retailer...

  5. Test Reference Year (TRY). Final report. [Weather data collection for building energy demand calculations

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The Test Reference Year (TRY) for a specified location is a data collection consisting of 8760 sets of hourly weather data. Its main objective is to provide data for computerized calculations regarding energy conservation, energy consumption in buildings, and indoor climate. This report recommends a suitable format for such a TRY, describes which weather data are mandatory for such a TRY to meet the main objective, and recommends how it can be published. The report does not recommend any specific procedure for generating or selecting a TRY for a given location.

  6. Influence of Taxation on Supply and Demand in Tomorrow’s Crowd Energy Paradigm

    Institute of Scientific and Technical Information of China (English)

    James Craven; Evgenia Derevyanko; Mario Gstrein; Bernd Teufel

    2015-01-01

    Abstract-The emergence of the energy self-sufficient home presents a new role for government taxation. Policymakers now face the challenge of reflecting this technological change in their decision-making and must assume a greater level of engagement. This paper proposes a number of original fiscal concepts for policymakers to implement in the support of micro-grid development. These are designed to optimise a sustainable transition away from the centralised energy system whilst creating shared value among stakeholders throughout the value chain. Concepts are based on residential micro-grid schemata in Switzerland and are applicable in other countries.

  7. ENERGY DEMANDS AND OTHER ENVIRONMENTAL IMPACTS ACROSS THE LIFE CYCLE OF BIOETHANOL USED AS FUEL

    Science.gov (United States)

    Most assessments of converting biomass to fuels are limited to energy and greenhouse gas (GHG) balances to determine if there is a net loss or gain. A fairly consistent conclusion of these studies is that the use of bio-ethanol in place of conventional fuels leads to a net gain....

  8. Direct load control for electricity supply and demand matching : increasing reliability of wind energy

    NARCIS (Netherlands)

    Hoeve ten, Marieke

    2009-01-01

    In Sweden as well as in The Netherlands energy policy is increasingly aiming at extending the use of renew-able sources. In accordance with the targets of the European Union, both countries have formulated national targets for the year 2020. For wind ener

  9. Estimates of wood energy demand for residential use in Alaska: an update

    Science.gov (United States)

    Jean M. Daniels; Michael D. Paruszkiewicz

    2016-01-01

    Efforts to amend the Tongass National Forest Land Management Plan have necessitated the development of several management scenarios to assist with planning efforts. One scenario focuses on increasing the utilization of sawmill residues and low-grade material as feedstock for expanding biomass energy markets. The development of a biomass industry is viewed as a solution...

  10. Demand Side Management Using the Internet of Energy Based on LoRaWAN Technology

    DEFF Research Database (Denmark)

    Shahryari, Kolsoom; Anvari-Moghaddam, Amjad; Shahryari, Shadi

    2017-01-01

    The smart grid, as a communication network, allows numerous connected devices such as sensors, relays and actuators to interact and cooperate with each other. An Internet-based solution for electricity that provides bidirectional flow of information and power is internet of energy (IoE) which...

  11. Demand Side Management Using the Internet of Energy based on Fog and Cloud Computing

    DEFF Research Database (Denmark)

    Shahryari, Kolsoom; Anvari-Moghaddam, Amjad

    2017-01-01

    The smart grid, as a communication network, allows numerous connected devices such as sensors, relays and actuators to interact and cooperate with each other. An Internet-based solution for electricity that provides bidirectional flow of information and power is internet of energy (IoE) which...

  12. Towards a demand-side smart domestic electrical energy management system

    CSIR Research Space (South Africa)

    Dlodlo, N

    2013-01-01

    Full Text Available technologies such as the smart phone, cloud, wireless, web server and motes. The research analyses literature on existing smart home energy systems and technologies and draws lessons from the analysis on how the proposed architecture should be structured. When...

  13. Energy demand and vehicle emissions stimate in Aburra Valley from 2000 to 2010 using LEAP model

    Directory of Open Access Journals (Sweden)

    María Victoria Toro-Gómez

    2015-01-01

    Full Text Available Este artículo presenta un análisis retrospectivo de la demanda de energía y las emisiones atmosféricas generadas por el parque automotor del Valle de Aburrá, región que tiene a Medellín como municipio cen tral. El estudio fue desarrollado usando el modelo LEAP y se llevó a cabo para el periodo comprendido entre los años 2000 y 2010, con el objetivo de generar informaci ón para la definición de est rategias que contribuyan a disminuir la contaminaci ón atmosférica en la región. Los resultados mostraron que a pesar del crecimiento ace lerado del parque automotor, la demand a de energía y emisiones de CO 2 crecieron lentamente, mientras las emisiones de contaminantes criterio decrecieron durante la última década. Además, se encontró que los camiones hicieron una importante contribución a las emisiones de CO, NO X , SO X y PM2.5, mientras las emisiones de VOC de las motos 2T representaron una proporción considerable de las emisiones totales de dicho contaminante.

  14. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  15. Impact of Demand-Side Management on Thermal Comfort and Energy Costs in a Residential nZEB

    Directory of Open Access Journals (Sweden)

    Thibault Q. Péan

    2017-05-01

    Full Text Available In this study, simulation work has been carried out to investigate the impact of a demand-side management control strategy in a residential nZEB. A refurbished apartment within a multi-family dwelling representative of Mediterranean building habits was chosen as a study case and modelled within a simulation framework. A flexibility strategy based on set-point modulation depending on the energy price was applied to the building. The impact of the control strategy on thermal comfort was studied in detail with several methods retrieved from the standards or other literature, differentiating the effects on day and night living zones. It revealed a slight decrease of comfort when implementing flexibility, although this was not prejudicial. In addition, the applied strategy caused a simultaneous increase of the electricity used for heating by up to 7% and a reduction of the corresponding energy costs by up to around 20%. The proposed control thereby constitutes a promising solution for shifting heating loads towards periods of lower prices and is able to provide benefits for both the user and the grid sides. Beyond that, the activation of energy flexibility in buildings (nZEB in the present case will participate in a more successful integration of renewable energy sources (RES in the energy mix.

  16. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data

    Science.gov (United States)

    Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott

    Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.

  17. Quantification in energy terms of the heating energy demand of an electromobile fleet; Energetische Quantifizierung des Heizenergiebedarfs einer Elektrofahrzeugflotte

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Markus; Gohla-Neudecker, Bodo; Wagner, Ulrich [Technische Univ. Muenchen (DE). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik (IfE)

    2011-08-15

    Electromobility is regarded as a key technology for sustainable mobility and environmental protection as well as for the development of new markets of the future. Forecasts see as many as one million electric powered road vehicles in operation in Germany by the year 2020. An analysis of the energy consumption or reduction in range associated with two different heating concepts shows that efficient utilisation of the heat generated in the vehicle will be indispensable for the public acceptance of electromobiles. The present study focuses on the quantification of the relevant parameters in energy terms assuming a fleet of several million vehicles.

  18. Impacts of High Resolution Extreme Events on U.S. Energy Demand and CO{sub 2} Emissions in the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Diffenbaugh, Noah [Stanford University

    2013-06-21

    Progress is reported in these areas: Validation of temperature and precipitation extremes; Time of emergence of severe heat stress in the United States; Quantifying the effects of temperature extremes on energy demand and carbon dioxide emissions.

  19. The experiences of mastery of stand-by energy demand; Les experiences de MDE stand by

    Energy Technology Data Exchange (ETDEWEB)

    Schilken, P.

    2001-07-01

    In the residential sector of the OECD countries, the electricity losses of domestic appliances in stand-by position represent 1.5% of the total electricity consumption. This study belongs to the SAVE project (pilot campaign of municipal utilities for an improved rational use of energy). Its aim is to observe the policies and experiments implemented by municipalities and municipal energy companies for the abatement of the electricity consumptions of stand-by origin. A working group consisting of the German Stadtwerke and some international partners have debated the possible actions and documents for an efficient information of the public. This document presents the brochures and local actions of this program. (J.S.)

  20. The Potential Of Fuel Cells To Reduce Energy Demands And Pollution From The UK Transport Sector

    OpenAIRE

    Adams, Victor W.

    1998-01-01

    Atmospheric carbon dioxide and pollution due to the burning of fossil fuels is increasing. Many scientists attribute global warming to the rising levels of carbon dioxide and other pollutants, some of which also pose risks to health. These can be reduced by the more efficient use of conventional fuels and the development of non-polluting energy resources. Fuel cells offer a highly efficient and low polluting method of generating electricity, and are under development for both the power genera...