WorldWideScience

Sample records for monthly average ozone

  1. Two-dimensional monthly average ozone balance from limb infrared monitor of the stratosphere and stratospheric and mesospheric sounder data

    Science.gov (United States)

    Jackman, C. H.; Stolarski, R. S.; Kaye, J. A.

    1986-01-01

    For many years, atmospheric scientists have been concerned with the balance of ozone production and loss terms in the upper stratosphere. Crutzen and Schmailzl (1983) found that the ozone loss was higher than the ozone production in the upper stratosphere. In the present investigation, previous studies are used as a basis in the conduction of a two-dimensional calculation of the production and loss of ozone. The monthly and zonally averaged loss and production rates for ozone are computed using recent Nimbus 7 satellite measurements of stratospheric constituents and accepted reaction and photodissociation rates. It is found that ozone has a loss rate which is about 40-60 percent higher than the production in the photochemical region.

  2. Monthly snow/ice averages (ISCCP)

    Data.gov (United States)

    National Aeronautics and Space Administration — September Arctic sea ice is now declining at a rate of 11.5 percent per decade, relative to the 1979 to 2000 average. Data from NASA show that the land ice sheets in...

  3. 20 CFR 226.62 - Computing average monthly compensation.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Computing average monthly compensation. 226... Compensation § 226.62 Computing average monthly compensation. The employee's average monthly compensation is computed by first determining the employee's highest 60 months of railroad compensation...

  4. 20 CFR 404.220 - Average-monthly-wage method.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Average-monthly-wage method. 404.220 Section... INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.220 Average-monthly-wage method. (a) Who is eligible for this method. You...

  5. 20 CFR 404.221 - Computing your average monthly wage.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Computing your average monthly wage. 404.221... DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.221 Computing your average monthly wage. (a) General. Under the...

  6. Average monthly and annual climate maps for Bolivia

    KAUST Repository

    Vicente-Serrano, Sergio M.

    2015-02-24

    This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control and temporal homogenization procedure. Monthly average maps at the spatial resolution of 1 km were modeled by means of a regression-based approach using topographic and geographic variables as predictors. The monthly average maximum and minimum temperatures, precipitation and potential exoatmospheric solar radiation under clear sky conditions are used to estimate the monthly average atmospheric evaporative demand by means of the Hargreaves model. Finally, the average water balance is estimated on a monthly and annual scale for each 1 km cell by means of the difference between precipitation and atmospheric evaporative demand. The digital layers used to create the maps are available in the digital repository of the Spanish National Research Council.

  7. The monthly-averaged and yearly-averaged cosine effect factor of a heliostat field

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rabghi, O.M.; Elsayed, M.M. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Thermal Engineering)

    1992-01-01

    Calculations are carried out to determine the dependence of the monthly-averaged and the yearly-averaged daily cosine effect factor on the pertinent parameters. The results are plotted on charts for each month and for the full year. These results cover latitude angles between 0 and 45[sup o]N, for fields with radii up to 50 tower height. In addition, the results are expressed in mathematical correlations to facilitate using them in computer applications. A procedure is outlined to use the present results to preliminary layout the heliostat field, and to predict the rated MW[sub th] reflected by the heliostat field during a period of a month, several months, or a year. (author)

  8. Monthly streamflow forecasting with auto-regressive integrated moving average

    Science.gov (United States)

    Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani

    2017-09-01

    Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.

  9. Ocean tides in GRACE monthly averaged gravity fields

    DEFF Research Database (Denmark)

    Knudsen, Per

    2003-01-01

    aims at. In this analysis the results of Knudsen and Andersen (2002) have been verified using actual post-launch orbit parameter of the GRACE mission. The current ocean tide models are not accurate enough to correct GRACE data at harmonic degrees lower than 47. The accumulated tidal errors may affect......The GRACE mission will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more subtle climate signals which GRACE...... the GRACE data up to harmonic degree 60. A study of the revised alias frequencies confirm that the ocean tide errors will not cancel in the GRACE monthly averaged temporal gravity fields. The S-2 and the K-2 terms have alias frequencies much longer than 30 days, so they remain almost unreduced...

  10. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis

    Science.gov (United States)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    2012-10-01

    In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.

  11. MONTHLY AVERAGE FLOW IN RÂUL NEGRU HYDROGRAPHIC BASIN

    Directory of Open Access Journals (Sweden)

    VIGH MELINDA

    2014-03-01

    Full Text Available Râul Negru hydrographic basin represents a well individualised and relatively homogenous physical-geographical unity from Braşov Depression. The flow is controlled by six hydrometric stations placed on the main collector and on two of the most powerful tributaries. Our analysis period is represented by the last 25 years (1988 - 2012 and it’s acceptable for make pertinent conclusions. The maximum discharge month is April, that it’s placed in the high flow period: March – June. Minimum discharges appear in November - because of the lack of pluvial precipitations; in January because of high solid precipitations and because of water volume retention in ice. Extreme discharge frequencies vary according to their position: in the mountain area – small basin surface; into a depression – high basin surface. Variation coefficients point out very similar variation principles, showing a relative homogeneity of flow processes.

  12. Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging

    Directory of Open Access Journals (Sweden)

    C. R. MacIntosh

    2015-04-01

    Full Text Available Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds and CO. When these ozone changes are used to calculate radiative forcing (RF (and climate metrics such as the global warming potential (GWP and global temperature-change potential (GTP there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia. We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3

  13. 20 CFR 404.210 - Average-indexed-monthly-earnings method.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Average-indexed-monthly-earnings method. 404... DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Indexed-Monthly-Earnings Method of Computing Primary Insurance Amounts § 404.210 Average-indexed-monthly-earnings method. (a) Who is...

  14. Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging

    Directory of Open Access Journals (Sweden)

    C. R. MacIntosh

    2014-10-01

    Full Text Available Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOC and CO. When these ozone changes are used to calculate radiative forcing (RF (and climate metrics such as the global warming potential (GWP and global temperature potential (GTP there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane lifetime changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in 4 regions (East Asia, Europe, North America and South Asia. We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOC and 2% for NOx. Differences of up to 60% for NOx 7% for VOC and 3% for CO are introduced into the 20 year GWP as a result of the exponential decay terms, with similar values for the 20 years GTP. However, estimates of the SD calculated from the ensemble-mean input fields (where the SD at each point on the model grid is added to or subtracted from the mean field are almost always substantially larger in RF, GWP and GTP metrics than the true SD, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. We find that the effect is generally most marked for the case of NOx emissions, where the net effect is a smaller residual of terms of opposing signs. For example, the SD for the 20 year GWP is two to three times larger using the ensemble-mean fields than using the individual models to calculate the RF. Hence, while the average of multi

  15. Vortex-averaged Arctic ozone depletion in the winter 2002/2003

    Directory of Open Access Journals (Sweden)

    T. Christensen

    2005-01-01

    Full Text Available A total ozone depletion of 68±7 Dobson units between 380 and 525K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9DU for the collar region (closest to the edge, 52±5DU for the vortex centre and 68±7DU for the middle region in between centre and collar. Our results compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4. We have made a careful comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475K level which exhibits an unexplained discrepancy.

  16. Exponential approximation for daily average solar heating or photolysis. [of stratospheric ozone layer

    Science.gov (United States)

    Cogley, A. C.; Borucki, W. J.

    1976-01-01

    When incorporating formulations of instantaneous solar heating or photolytic rates as functions of altitude and sun angle into long range forecasting models, it may be desirable to replace the time integrals by daily average rates that are simple functions of latitude and season. This replacement is accomplished by approximating the integral over the solar day by a pure exponential. This gives a daily average rate as a multiplication factor times the instantaneous rate evaluated at an appropriate sun angle. The accuracy of the exponential approximation is investigated by a sample calculation using an instantaneous ozone heating formulation available in the literature.

  17. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2011-07-01

    Full Text Available Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI and the observations from the Tropospheric Emission Spectrometer (TES instrument on board the NASA-Aura satellite from January 2005 to December 2008.

    The results show that sampling and monthly averaging of the observation operators produce zonal-mean biases of less than ±3 % for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling zonal-mean biases were also within the insignificant range of ±3 % (that is ±0.14 g kg−1 in both models. Sampling led to a temperature zonal-mean bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to −1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper

  18. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2011-03-01

    Full Text Available Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI and the observations from the Tropospheric Emission Spectrometer (TES satellite from January 2005 to December 2008.

    The results show that sampling and monthly averaging of the observation operators produce biases of less than ±3% for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling biases were also within the insignificant range of ±3% (that is ±0.14 g kg−1 in both models. Sampling led to a temperature bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to −1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper troposphere, respectively. Up to 8% bias was calculated in the upper

  19. Average Wait Time Until Hearing Held Report (By Month), September 2016 (53rd week)

    Data.gov (United States)

    Social Security Administration — A presentation of the average time (in months) from the hearing request date until a hearing is held for claims pending in the Office of Disability Adjudication and...

  20. Using of rank distributions in the study of perennial changes for monthly average temperatures

    Science.gov (United States)

    Nemirovskiy, V. B.; Stoyanov, A. K.; Tartakovsky, V. A.

    2015-11-01

    The possibility of comparing the climatic data of various years with using rank distributions is considered in this paper. As a climatic data, the annual variation of temperature on the spatial areas of meteorological observations with high variability in average temperatures is considered. The results of clustering of the monthly average temperatures values by means of a recurrent neural network were used as the basis of comparing. For a given space of weather observations the rank distribution of the clusters cardinality identified for each year of observation, is being constructed. The resulting rank distributions allow you to compare the spatial temperature distributions of various years. An experimental comparison for rank distributions of the annual variation of monthly average temperatures has confirmed the presence of scatter for various years, associated with different spatio-temporal distribution of temperature. An experimental comparison of rank distributions revealed a difference in the integral annual variation of monthly average temperatures of various years for the Northern Hemisphere.

  1. Age-specific average head template for typically developing 6-month-old infants.

    Directory of Open Access Journals (Sweden)

    Lisa F Akiyama

    Full Text Available Due to the rapid anatomical changes that occur within the brain structure in early human development and the significant differences between infant brains and the widely used standard adult templates, it becomes increasingly important to utilize appropriate age- and population-specific average templates when analyzing infant neuroimaging data. In this study we created a new and highly detailed age-specific unbiased average head template in a standard MNI152-like infant coordinate system for healthy, typically developing 6-month-old infants by performing linear normalization, diffeomorphic normalization and iterative averaging processing on 60 subjects' structural images. The resulting age-specific average templates in a standard MNI152-like infant coordinate system demonstrate sharper anatomical detail and clarity compared to existing infant average templates and successfully retains the average head size of the 6-month-old infant. An example usage of the average infant templates transforms magnetoencephalography (MEG estimated activity locations from MEG's subject-specific head coordinate space to the standard MNI152-like infant coordinate space. We also created a new atlas that reflects the true 6-month-old infant brain anatomy. Average templates and atlas are publicly available on our website (http://ilabs.washington.edu/6-m-templates-atlas.

  2. Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Bergsøe, Niels Christian; Kolarik, Barbara

    2011-01-01

    Indoor air quality in dwellings is largely determined by the air change rate (ACR) and the magnitude of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient, which may result in low ACRs. In the present study, the monthly ACR averages were measured...

  3. Monthly average daily global solar radiation in P. D. R. Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Gadhi, S.M.B.; Megdad, R.S.; Albakri, S.A.A. (Aden Univ. (Yemen). Dept. of Mechanical Engineering)

    1991-01-01

    In this paper a study has been made to estimate average global radiation using hours of bright sunshine and measured solar radiation data available for six locations in P.D.R. Yemen. For Aden, data were obtained from Aden Airport. For other locations in P.D.R. Yemen data were obtained from Agricultural Research Center's meteorological sections. Linear regression analysis of the monthly average global radiation and the sunshine duration data of six locations has been performed using the least squares technique. All the above mentioned data have been used in Angstrom's correlation to find the monthly average daily global solar radiation. Results obtained are useful for any solar energy system application in P.D.R. Yemen. (author).

  4. 20 CFR 404.222 - Use of benefit table in finding your primary insurance amount from your average monthly wage.

    Science.gov (United States)

    2010-04-01

    ... insurance amount from your average monthly wage. 404.222 Section 404.222 Employees' Benefits SOCIAL SECURITY... Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.222 Use of benefit table in finding your primary insurance amount from your average monthly wage. (a) General. We find your...

  5. Recovery of the histogram of hourly ozone distribution from weekly average concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Olcese, Luis E. [Departamento de Fisico Quimica/INFIQC, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)]. E-mail: lolcese@fcq.unc.edu.ar; Toselli, Beatriz M. [Departamento de Fisico Quimica/INFIQC, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)

    2006-05-15

    A simple method is presented for estimating hourly distribution of air pollutants, based on data collected by passive sensors on a weekly or bi-weekly basis with no need for previous measurements at a site. In order for this method to be applied to locations where no hourly records are available, reference data from other sites are required to generate calibration histograms. The proposed procedure allows one to obtain the histogram of hourly ozone values during a given week with an error of about 30%, which is good considering the simplicity of this approach. This method can be a valuable tool for sites that lack previous hourly records of pollutant ambient concentrations, where it can be used to verify compliance with regulations or to estimate the AOT40 index with an acceptable degree of exactitude. - The histogram of hourly ozone distribution can be obtained based on passive sensor data.

  6. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation

    Science.gov (United States)

    Erbs, D. G.; Klein, S. A.; Duffie, J. A.

    1982-01-01

    Hourly pyrheliometer and pyranometer data from four U.S. locations are used to establish a relationship between the hourly diffuse fraction and the hourly clearness index. This relationship is compared to the relationship established by Orgill and Hollands (1977) and to a set of data from Highett, Australia, and agreement is within a few percent in both cases. The transient simulation program TRNSYS is used to calculate the annual performance of solar energy systems using several correlations. For the systems investigated, the effect of simulating the random distribution of the hourly diffuse fraction is negligible. A seasonally dependent daily diffuse correlation is developed from the data, and this daily relationship is used to derive a correlation for the monthly-average diffuse fraction.

  7. Estimation of monthly average daily global solar irradiation using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mubiru, J.; Banda, E.J.K.B. [Department of Physics, Makerere University, P.O. Box 7062, Kampala (Uganda)

    2008-02-15

    This study explores the possibility of developing a prediction model using artificial neural networks (ANN), which could be used to estimate monthly average daily global solar irradiation on a horizontal surface for locations in Uganda based on weather station data: sunshine duration, maximum temperature, cloud cover and location parameters: latitude, longitude, altitude. Results have shown good agreement between the estimated and measured values of global solar irradiation. A correlation coefficient of 0.974 was obtained with mean bias error of 0.059 MJ/m{sup 2} and root mean square error of 0.385 MJ/m{sup 2}. The comparison between the ANN and empirical method emphasized the superiority of the proposed ANN prediction model. (author)

  8. Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties

    Directory of Open Access Journals (Sweden)

    A. Bergamo

    2008-12-01

    Full Text Available The all-sky direct radiative effect by anthropogenic aerosol (DREa is calculated in the solar (0.3–4 μm and infrared (4–200 μm spectral ranges for six Mediterranean sites. The sites are differently affected by pollution and together reflect typical aerosol impacts that are expected over land and coastal sites of the central Mediterranean basin. Central to the simulations are aerosol optical properties from AERONET sun-/sky-photometer statistics for the year 2003. A discussion on the variability of the overall (natural + anthropogenic aerosol properties with site location is provided. Supplementary data include MODIS satellite sensor based solar surface albedos, ISCCP products for high- mid- and low cloud cover and estimates for the anthropogenic aerosol fraction from global aerosol models. Since anthropogenic aerosol particles are considered to be smaller than 1 μm in size, mainly the solar radiation transfer is affected with impacts only during sun-light hours. At all sites the (daily average solar DREa is negative all year round at the top of the atmosphere (ToA. Hence, anthropogenic particles produce over coastal and land sites of the central Mediterranean a significant cooling effect. Monthly DREa values vary from site to site and are seasonally dependent as a consequence of the seasonal dependence of available sun-light and microphysical aerosol properties. At the ToA the monthly average DREa is −(4±1 W m−2 during spring-summer (SS, April–September and −(2±1 W m−2 during autumn-winter (AW, October–March at the polluted sites. In contrast, it varies between −(3±1 W m−2 and −(1±1 W m−2 on SS and AW, respectively at the less polluted site. Due to atmospheric absorption the DREa at the surface is larger than at the ToA. At the surface the monthly average DREa varies between the most and the least polluted

  9. CHAMP climate data based on inversion of monthly average bending angles

    Directory of Open Access Journals (Sweden)

    J. Danzer

    2014-07-01

    Full Text Available GNSS Radio Occultation (RO refractivity climatologies for the stratosphere can be obtained from the Abel inversion of monthly average bending-angle profiles. The averaging of large numbers of profiles suppresses random noise and this, in combination with simple exponential extrapolation above an altitude of 80 km, circumvents the need for a "statistical optimization" step in the processing. Using data from the US-Taiwanese COSMIC mission, which provides ~ 1500–2000 occultations per day, it has been shown that this Average-Profile Inversion (API technique provides a robust method for generating stratospheric refractivity climatologies. Prior to the launch of COSMIC in mid-2006, the data records rely on data from the CHAMP mission. In order to exploit the full range of available RO data, the usage of CHAMP data is also required. CHAMP only provided ~ 200 profiles per day, and the measurements were noisier than COSMIC. As a consequence, the main research question in this study was to see if the average bending angle approach is also applicable to CHAMP data. Different methods for suppression of random noise – statistical and through data quality pre-screening – were tested. The API retrievals were compared with the more conventional approach of averaging individual refractivity profiles, produced with the implementation of statistical optimization used in the EUMETSAT Radio Occultation Meteorology Satellite Application Facility (ROM SAF operational processing. In this study it is demonstrated that the API retrieval technique works well for CHAMP data, enabling the generation of long-term stratospheric RO climate data records from August 2001 and onward. The resulting CHAMP refractivity climatologies are found to be practically identical to the standard retrieval at the DMI below altitudes of 35 km. Between 35 km to 50 km the differences between the two retrieval methods started to increase, showing largest differences at high latitudes and

  10. Variability in the vertical distribution of ozone over a subtropical site in India during a winter month

    Science.gov (United States)

    Gupta, Shilpy; Lal, S.; Venkataramani, S.; Rajesh, T. A.; Acharya, Y. B.

    2007-09-01

    Six sets of electrochemical ozonesondes along with radiosondes were launched during 11 29 December 2004 from Kanpur (26.03N, 80.04E). Large variabilities in the vertical distribution of ozone have been observed during the campaign period. Higher ozone levels as compared to the average of all the profiles during this period have been observed in the height ranges of 3 7 and 10 18 km on December 18 and 25, respectively. Ozone levels in the 11 14 km range were observed to be much lower on December 29. These events have been analyzed in detail using meteorological parameters, back trajectories and potential vorticity. Higher ozone on December 18 may be associated with lateral transport from Africa and Gulf countries, where higher CO had been observed along the trajectory path. However, on December 25, enhanced ozone layers could be associated with transport from the stratosphere. Potential vorticity data suggest that a jet stream from midlatitude was approaching this location along the isentropic surface (350 K) towards the southeast direction. The lower ozone observed on December 29 originated from the marine region near the equator. These sharp changes in this period reflecting changing meteorology have given evidence of transport of ozone from different regions including stratospheric intrusion.

  11. Recovery of the histogram of hourly ozone distribution from weekly average concentrations.

    Science.gov (United States)

    Olcese, Luis E; Toselli, Beatriz M

    2006-05-01

    A simple method is presented for estimating hourly distribution of air pollutants, based on data collected by passive sensors on a weekly or bi-weekly basis with no need for previous measurements at a site. In order for this method to be applied to locations where no hourly records are available, reference data from other sites are required to generate calibration histograms. The proposed procedure allows one to obtain the histogram of hourly ozone values during a given week with an error of about 30%, which is good considering the simplicity of this approach. This method can be a valuable tool for sites that lack previous hourly records of pollutant ambient concentrations, where it can be used to verify compliance with regulations or to estimate the AOT40 index with an acceptable degree of exactitude.

  12. Monthly distribution of diurnal total column ozone based on the 2011 satellite data in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Jasim M. Rajab

    2013-06-01

    Full Text Available Ozone (O3 is a radiatively active trace gas, and naturally present in our atmosphere, that plays a prominent role in atmosphere heating rates due to its good capability to absorb the infrared radiation. O3 occurs both naturally in the Earth’s upper atmosphere and at the ground level. As we breathe the air on Earth, O3 causes damage to the lung tissue and plants as it is an injurious pollutant; it is a major constituent of smog. The atmospheric O3 observations can only be made on global and continental scales by remote sensing instruments situated in the space. The satellite-borne sensor, namely the Atmospheric Infrared Sounder (AIRS included on the EOS Aqua satellite, was employed to investigate the spatial and temporal variations of diurnal total column Ozone burden over Peninsular Malaysia for the year 2011. The analysis of O3 above five dispersed stations in the study area shows the seasonal variation in the O3 fluctuated considerably observed between NEM and SWM seasons. The mean and the standard deviation of monthly O3 was 244.7 ± 26.8 DU for the entire period, and O3 values strongly correlated with weather conditions. The highest O3 values occurred over industrial and congested urban zones (271.5 DU on May at Johor. The lowest O3 values were observed during NEM in the pristine coastal environment on December at Kuantan (217 DU; at 3.45°N, 103.20°E. The O3 has an inverse relationship with the rain and positive with temperature. The monthly O3 maps were obtained from the NASA-operated Giovanni portal (http://disc.sci.gsfc.nasa.gov/giovanni. The AIRS data and the satellite measurements are able to measure the increase of the atmosphere O3 concentrations over different areas.

  13. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Monthly Precipitation, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous...

  14. Treatment effect of ozone and fluoride varnish application on occlusal caries in primary molars: a 12-month study.

    Science.gov (United States)

    Johansson, E; van Dijken, J W V; Karlsson, L; Andersson-Wenckert, I

    2014-09-01

    The aim of this study is to evaluate the effect of ozone and fluoride varnish on occlusal caries in primary molars in a split-mouth study. Caries risk was estimated by treating Public Dental Health Service dentists. Children with occlusal caries with Ekstrand index scores ≤3 (VI ≤3) were included. Selection of caries lesions was discontinued for ethical reasons due to non-acceptable clinical results during the follow-up. In the continued evaluation pairs of teeth with non-cavitated caries lesions, Ekstrand score ≤2a (VI ≤2) were selected. Fifty pairs of carious primary molars were included, 18 boys and 15 girls (mean 4.7 years, range 3-8). At baseline, the lesions were assessed by visual inspection (VI) and laser-induced fluorescence (LF), in each pair to treatment with 40 s ozone (HealOzone(TM), 2,100 ppm) or fluoride varnish Duraphat®. The treatments and evaluations were repeated at 3, 6 9 months and evaluations only at 12 months. Medium-high caries risk was observed in VI ≤3 children and low-medium risk in VI ≤2a children. In the 15 pairs VI ≤3 lesions, 8 treated with ozone and 9 with fluoride progressed to failure. In the 35 pairs VI ≤2a lesions, one lesion failed. Median baseline LF values in the VI ≤3 group were 76 and 69, for ozone and fluoride lesions, respectively, and 21 and 19 in the VI ≤2a group. At 12 months, LF values in the VI ≤2a group were 15 and 18. No improvement or difference in LF values was found over time between the caries lesions treated with ozone or fluoride. Neither ozone nor fluoride varnish treatments stopped the progression of caries in cavitated lesions. In low and medium caries risk children, non-cavitated lesions following both treatments showed slight or no progression. The use of ozone or fluoride varnish treatments in this regime as caries preventive method, added to the daily use of fluoridated toothpaste, to arrest caries progression in primary molars must therefore be questioned.

  15. 20 CFR 404.211 - Computing your average indexed monthly earnings.

    Science.gov (United States)

    2010-04-01

    ..., recompute Ms. M.'s DIB beginning with July 1981 to give her the advantage of the child care dropout. To do... and you exercise, or have the right to exercise, parental control. See § 404.366(c) for a further... period of 3 months, or one-half the time after the child's birth or before the child attained age 3. (iii...

  16. Assessing monthly average solar radiation models: a comparative case study in Turkey.

    Science.gov (United States)

    Sonmete, Mehmet H; Ertekin, Can; Menges, Hakan O; Hacıseferoğullari, Haydar; Evrendilek, Fatih

    2011-04-01

    Solar radiation data are required by solar engineers, architects, agriculturists, and hydrologists for many applications such as solar heating, cooking, drying, and interior illumination of buildings. In order to achieve this, numerous empirical models have been developed all over the world to predict solar radiation. The main objective of this study is to examine and compare 147 solar radiation models available in the literature for the prediction of monthly solar radiation at Ankara (Turkey) based on selected statistical measures such as percentage error, mean percentage error, root mean square error, mean bias error, and correlation coefficient. Our results showed that Ball et al. (Agron J 96:391-397, 2004) model and Chen et al. (Energy Convers Manag 47:2859-2866, 2006) model performed best in the estimation of solar radiation on a horizontal surface for Ankara.

  17. CERES Monthly TOA and SRB Averages (SRBAVG) data in HDF-EOS Grid (CER_SRBAVG_Terra-FM1-MODIS_Edition2D)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2004-05-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  18. CERES Monthly TOA and SRB Averages (SRBAVG) data in HDF-EOS Grid (CER_SRBAVG_Terra-FM1-MODIS_Edition2C)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2003-02-28] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  19. CERES Monthly TOA and SRB Averages (SRBAVG) data in HDF-EOS Grid (CER_SRBAVG_TRMM-PFM-VIRS_Edition2B)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  20. CERES Monthly TOA and SRB Averages (SRBAVG) data in HDF-EOS Grid (CER_SRBAVG_Terra-FM2-MODIS_Edition2D)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2004-05-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  1. Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning.

    Science.gov (United States)

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Park, Hyo Seon

    2013-05-07

    The photovoltaic (PV) system is considered an unlimited source of clean energy, whose amount of electricity generation changes according to the monthly average daily solar radiation (MADSR). It is revealed that the MADSR distribution in South Korea has very diverse patterns due to the country's climatic and geographical characteristics. This study aimed to develop a MADSR estimation model for the location without the measured MADSR data, using an advanced case based reasoning (CBR) model, which is a hybrid methodology combining CBR with artificial neural network, multiregression analysis, and genetic algorithm. The average prediction accuracy of the advanced CBR model was very high at 95.69%, and the standard deviation of the prediction accuracy was 3.67%, showing a significant improvement in prediction accuracy and consistency. A case study was conducted to verify the proposed model. The proposed model could be useful for owner or construction manager in charge of determining whether or not to introduce the PV system and where to install it. Also, it would benefit contractors in a competitive bidding process to accurately estimate the electricity generation of the PV system in advance and to conduct an economic and environmental feasibility study from the life cycle perspective.

  2. The effect of using limited scene-dependent averaging kernels approximations for the implementation of fast observing system simulation experiments targeted on lower tropospheric ozone

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2013-08-01

    Full Text Available Practical implementations of chemical OSSEs (Observing System Simulation Experiments usually rely on approximations of the pseudo-observations by means of a predefined parametrization of the averaging kernels, which describe the sensitivity of the observing system to the target atmospheric species. This is intended to avoid the use of a computationally expensive pseudo-observations simulator, that relies on full radiative transfer calculations. Here we present an investigation on how no, or limited, scene dependent averaging kernels parametrizations may misrepresent the sensitivity of an observing system. We carried out the full radiative transfer calculation for a three-days period over Europe, to produce reference pseudo-observations of lower tropospheric ozone, as they would be observed by a concept geostationary observing system called MAGEAQ (Monitoring the Atmosphere from Geostationary orbit for European Air Quality. The selected spatio-temporal interval is characterised by an ozone pollution event. We then compared our reference with approximated pseudo-observations, following existing simulation exercises made for both the MAGEAQ and GEOstationary Coastal and Air Pollution Events (GEO-CAPE missions. We found that approximated averaging kernels may fail to replicate the variability of the full radiative transfer calculations. In addition, we found that the approximations substantially overestimate the capability of MAGEAQ to follow the spatio-temporal variations of the lower tropospheric ozone in selected areas, during the mentioned pollution event. We conclude that such approximations may lead to false conclusions if used in an OSSE. Thus, we recommend to use comprehensive scene-dependent approximations of the averaging kernels, in cases where the full radiative transfer is computationally too costly for the OSSE being investigated.

  3. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  4. Statistical comparison of models for estimating the monthly average daily diffuse radiation at a subtropical African site

    Energy Technology Data Exchange (ETDEWEB)

    Bashahu, M. [University of Burundi, Bujumbura (Burundi). Institute of Applied Pedagogy, Department of Physics and Technology

    2003-07-01

    Nine correlations have been developed in this paper to estimate the monthly average diffuse radiation for Dakar, Senegal. A 16-year period data on the global (H) and diffuse (H{sub d}) radiation, together with data on the bright sunshine hours (N), the fraction of the sky's (Ne/8), the water vapour pressure in the air (e) and the ambient temperature (T) have been used for that purpose. A model inter-comparison based on the MBE, RMSE and t statistical tests has shown that estimates in any of the obtained correlations are not significantly different from their measured counterparts, thus all the nine models are recommended for the aforesaid location. Three of them should be particularly selected for their simplicity, universal applicability and high accuracy. Those are simple linear correlations between K{sub d} and N/N{sub d}, Ne/8 or K{sub t}. Even presenting adequate performance, the remaining correlations are either simple but less accurate, or multiple or nonlinear regressions needing one or two input variables. (author)

  5. 4 km AVHRR Pathfinder v5.0 Global Day-Night Sea Surface Temperature Monthly and Yearly Averages, 1985-2009 (NODC Accession 0077816)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a set of monthly and yearly global day-night sea surface temperature averages, derived from the AVHRR Pathfinder Version 5 sea surface...

  6. ANALYSIS OF THE STATISTICAL BEHAVIOUR OF DAILY MAXIMUM AND MONTHLY AVERAGE RAINFALL ALONG WITH RAINY DAYS VARIATION IN SYLHET, BANGLADESH

    Directory of Open Access Journals (Sweden)

    G. M. J. HASAN

    2014-10-01

    Full Text Available Climate, one of the major controlling factors for well-being of the inhabitants in the world, has been changing in accordance with the natural forcing and manmade activities. Bangladesh, the most densely populated countries in the world is under threat due to climate change caused by excessive use or abuse of ecology and natural resources. This study checks the rainfall patterns and their associated changes in the north-eastern part of Bangladesh mainly Sylhet city through statistical analysis of daily rainfall data during the period of 1957 - 2006. It has been observed that a good correlation exists between the monthly mean and daily maximum rainfall. A linear regression analysis of the data is found to be significant for all the months. Some key statistical parameters like the mean values of Coefficient of Variability (CV, Relative Variability (RV and Percentage Inter-annual Variability (PIV have been studied and found to be at variance. Monthly, yearly and seasonal variation of rainy days also analysed to check for any significant changes.

  7. On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the Sunspot Cycle Using 12-Month Moving Averages

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.

  8. Averaging kernel prediction from atmospheric and surface state parameters based on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone

    Directory of Open Access Journals (Sweden)

    H. M. Worden

    2013-07-01

    Full Text Available A current obstacle to the observation system simulation experiments (OSSEs used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs. We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO and ozone (O3 based on actual retrievals from MOPITT (Measurements Of Pollution In The Troposphere on the Earth Observing System (EOS-Terra satellite and TES (Tropospheric Emission Spectrometer and OMI (Ozone Monitoring Instrument on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMRs, solar zenith angle, water vapor amount, etc. We first compute the singular value decomposition (SVD for individual cloud-free AKs and retain the first three ranked singular vectors in order to fit the most significant orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of test retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true retrieval AKs from the test set. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs

  9. A preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude in the north of Buenos Aires provence

    CERN Document Server

    Cionco, R; Rodriguez, R

    2012-01-01

    Using irradiance and temperature measurements obtained at the Facultad Regional San Nicol\\'as of UTN, we performed a preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude. The results show a very satisfactory adjustment (R = 0.848, RMS = 0.066, RMS% = 9.690 %), even taking into account the limited number of months (36). Thus, we have a formula of predictive nature, capable of estimating mean monthly solar radiation for various applications. We expect to have new data sets to expand and improve the statistical significance of these results.

  10. ACDF Using the Solis Cage with Iliac Bone Graft in Single Level: Clinical and Radiological Outcomes in Average 36 months Follow-up.

    Science.gov (United States)

    Oh, Si-Hyuck; Yoon, Kyeong-Wook; Kim, Young-Jin; Lee, Sang-Koo

    2013-06-01

    To evaluate the utility of anterior cervical discectomy and fusion (ACDF) with polyetheretherketone (PEEK) cage and autograft through long term(average 36 months) follow-up. Thirty selected patients (male:20/female:10) who suffered from cervical radiculopathy, myelopathy or radiculomyelopathy underwent a single level ACDF with PEEK cage and autograft from iliac crest from March 2006 to July 2008 in single institute. We followed patients for an average 36.4±8.1 months (ranged from 23 to 49 months). The Japanese Orthopedic Association (JOA) score for evaluation of myelopathy and visual analogue scale (VAS) for radiating pain was used to estimate postoperative clinical outcome. Plain x-ray on true lateral standing flexion, extension and neutral position view and 3D CT scan were used every 6 months after surgery during follow-up period. The mean VAS and JOA scoring improved significantly after the surgery and radiological fusion rate was accomplished by 100% 36 months after the surgery. We had no complication related with the surgery except one case of osteomyelitis. There was one case of Grade I fusion, four cases of grade II, and 25 cases of grade III by radiologic evaluation. This long term follow-up study for ACDF with PEEK cage shows that this surgical method is comparable with other anterior cervical fusion methods in terms of clinical outcomes and radiologic fusion rate.

  11. An Ozone Profile Climatology based on Ozone-sondes and AURA MLS Data with Added Profiles for Ozone Hole Conditions and Wave One Parameterization for Tropical Tropospheric Ozone.

    Science.gov (United States)

    Labow, G. J.; Ziemke, J. R.; Stauffer, R. M.; McPeters, R. D.

    2016-12-01

    An updated ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining 12 years of data from the Microwave Limb Sounder (MLS) with data from balloon sondes. The MLS instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere at 3.5 km resolution. This climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes (Z* pressure altitude coordinates) from 0 to 65 km. Ozone below 8 km (below 13 km at tropical latitudes) is based on ozonesondes, while ozone above 16 km (21 km at tropical latitudes) is based on MLS measurements. Sonde and MLS (V4.2) data are blended in the transition region. This climatology features two distinct profiles for the southern hemisphere (60-90S) from August to December. The profiles labeled "Hole" correspond to measurements taken inside the polar vortex while the profiles in the file labeled "No Hole" are averages taken from measurements outside the vortex. The filtering criteria for determining a profile inside/outside the vortex was done by analyzing the 50hPa ozone values. The 50hPa values are where the chemical depletion process is greatest and thus are a good indicator of the vortex boundary. We also include a representation of the observed zonal wave one tropospheric ozone feature in the tropics. Because ozonesonde stations are sparse in this region, we derive the tropospheric column ozone residual by subtracting the MLS stratospheric column from the Ozone Monitoring Instrument (OMI) total column. We then combine the result with ozonesonde data. A function is fitted to the data in several dimensions to better depict the climatology of both the tropospheric column and vertical distribution of tropospheric ozone in the tropics.

  12. Spatial patterns of tropospheric ozone in the mount rainier region of the cascade mountains, USA

    Science.gov (United States)

    Brace, Sarah; Peterson, David L.

    Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 -2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.

  13. Multiple trajectory analysis of MLS observed stratospheric chemical ozone loss in Arctic winter 1995/96

    Science.gov (United States)

    Lemmen, C.; Riese, R.; Grooss, J.-U.; Mueller, R.

    2003-04-01

    Daily ozone loss rates and total chemical ozone depletion during Arctic winter 1995/96 were evaluated based on ozone measurements by the Microwave Limb Sounder (MLS) instrument onboard the Upper Atmosphere Research Satellite (UARS). Employing the 3-dimensional transport scheme of the Chemical Lagrangian Model of the Stratosphere (CLaMS), trajectories from successive satellite measurements were compared with each other using a variation of the Match technique, such that ozone concentration differences between double sounded (``matched'') air parcels represent chemical ozone loss. The ensemble average of many (typically 30--150) matches yields an average ozone depletion rate for the area covered by the trajectories. Total ozone loss from late December to early March was 1.4 ppmv at the 475 K isentropic level within the vortex core (PV > 45 PVU at 475 K). Ozone loss decreased towards the edge of the vortex, no significant ozone loss could be observed in the outer vortex edge (between ≈ 27 and ≈ 35 PVU). Daily ozone loss was found to average 10 ppbv/day throughout January and throughout the extended vortex area. For the month of February daily ozone loss rates were highly variable and peaked at 40 ppbv/day in the vortex (≈ 35 PVU). In this study, no chemical ozone loss could be observed in the outer vortex edge region during February, which suggests that the dynamically defined vortex boundary separated two different chemical regimes during February, but not in January.

  14. Recovery of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve; Schauffler, Sue; Stolarski, Richard S.; Douglass, Anne R.; Pawson, Steven; Nielsen, J. Eric

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS and OMI instruments. The severity of the hole has been assessed using the minimum total ozone value from the October monthly mean (depth of the hole), the average size during the September-October period, and the ozone mass deficit. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. We use two methods to estimate ozone hole recovery. First, we use projections of halogen levels combined with age-of-air estimates in a parametric model. Second, we use a coupled chemistry climate model to assess recovery. We find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. Furthermore, full recovery to 1980 levels will not occur until approximately 2068. We will also show some error estimates of these dates and the impact of climate change on the recovery.

  15. Barreira do Inferno: Five years of ozone research

    Science.gov (United States)

    Kirchhoff, V. W. J. H.; Motta, A. G.; Azambuja, S. O.

    1983-12-01

    A five-year tropospheric ozone research project carried out from 1978 to 1983 under the aegis of the Institute of Space Research and the Launching Center at Barreira do Inferno is described. The principal means of obtaining data was by sondes launched twice a month from November 1978 until mid-1981. Measurements were made by ECC sondes and by Loki, Super-Loki, and Super-Arcas rockets equipped with optical and fluorescent sounding devices. The interest in ozone research is based on the ability of ozone to absorb ultraviolet radiation and thereby affect stratospheric temperature. Results revealed that average ozone concentration over the Brazilian state of Natal was 0.025 ppm (parts per million) with the maximum concentration occurring at 28 km altitude. It was also found that there was 30 percent higher ozone density over Natal than over regions of lower latitudes. In addition, 15 percent more ozone layer density was measured over Natal than over equatorial areas as determined by satellites. Total ozone measured by ECC sondes and by two Dobson spectrophotometers differed only by 4 percent. Higher concentrations of ozone are attributed to nitrogen concentrations, in contradiction with prevailing views. It is concluded that continued monitoring of ozone density is important for further theoretical investigation of the aeronomy of ozone.

  16. Solar-QBO Interaction and Its Impact on Stratospheric Ozone in a Zonally Averaged Photochemical Transport Model of the Middle Atmosphere

    Science.gov (United States)

    2007-08-28

    Satellite (UARS). In general, the CHEM2D zonal winds show good agreement with the UARS clima - tology, although there is an easterly bias in the CHEM2D...spheric ozone [e.g., WMO, 1991; Harris et al., 1998, and references therein]. The standard approach is to assume that the temporal behavior of a zonally...representation of the zonal wind QBO is only an approximation of the true zonal wind QBO, and as such may not capture all the temporal variability in the

  17. The mean meridional circulation and midlatitude ozone buildup

    Directory of Open Access Journals (Sweden)

    G. Nikulin

    2005-06-01

    Full Text Available The development of wintertime ozone buildup over the Northern Hemisphere (NH midlatitudes and its connection with the mean meridional circulation in the stratosphere are examined statistically on a monthly basis from October to March (1980–2002. The ozone buildup begins locally in October with positive ozone tendencies over the North Pacific, which spread eastward and westward in November and finally cover all midlatitudes in December. During October–January a longitudinal distribution of the ozone tendencies mirrors a structure of quasi-stationary planetary waves in the lower stratosphere and has less similarity with this structure in February–March when chemistry begins to play a more important role. From November to March, zonal mean ozone tendencies (50°–60° N show strong correlation (|r|=0.7 with different parameters used as proxies of the mean meridional circulation, namely: eddy heat flux, the vertical residual velocity (diabatically-derived and temperature tendency. The correlation patterns between ozone tendency and the vertical residual velocity or temperature tendency are more homogeneous from month to month than ones for eddy heat flux. A partial exception is December when correlation is strong only for the vertical residual velocity. In October zonal mean ozone tendencies have no coupling with the proxies. However, positive tendencies averaged over the North Pacific correlate well, with all of them suggesting that intensification of northward ozone transport starts locally over the Pacific already in October. We show that the NH midlatitude ozone buildup has stable statistical relation with the mean meridional circulation in all months from October to March and half of the interannual variability in monthly ozone tendencies can be explained by applying different proxies of the mean meridional circulation.

  18. Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere

    Science.gov (United States)

    Damiani, Alessandro; Funke, Bernd; Santee, Michelle L.; Cordero, Raul R.; Watanabe, Shingo

    2016-04-01

    Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis.

  19. When will the Antarctic Ozone Hole Recover?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.

  20. Ozone Layer Observations

    Science.gov (United States)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  1. Statistical downscaling of general-circulation-model- simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia

    Science.gov (United States)

    Bergant, Klemen; Kajfež-Bogataj, Lučka; Črepinšek, Zalika

    2002-02-01

    Phenological observations are a valuable source of information for investigating the relationship between climate variation and plant development. Potential climate change in the future will shift the occurrence of phenological phases. Information about future climate conditions is needed in order to estimate this shift. General circulation models (GCM) provide the best information about future climate change. They are able to simulate reliably the most important mean features on a large scale, but they fail on a regional scale because of their low spatial resolution. A common approach to bridging the scale gap is statistical downscaling, which was used to relate the beginning of flowering of Taraxacum officinale in Slovenia with the monthly mean near-surface air temperature for January, February and March in Central Europe. Statistical models were developed and tested with NCAR/NCEP Reanalysis predictor data and EARS predictand data for the period 1960-1999. Prior to developing statistical models, empirical orthogonal function (EOF) analysis was employed on the predictor data. Multiple linear regression was used to relate the beginning of flowering with expansion coefficients of the first three EOF for the Janauary, Febrauary and March air temperatures, and a strong correlation was found between them. Developed statistical models were employed on the results of two GCM (HadCM3 and ECHAM4/OPYC3) to estimate the potential shifts in the beginning of flowering for the periods 1990-2019 and 2020-2049 in comparison with the period 1960-1989. The HadCM3 model predicts, on average, 4 days earlier occurrence and ECHAM4/OPYC3 5 days earlier occurrence of flowering in the period 1990-2019. The analogous results for the period 2020-2049 are a 10- and 11-day earlier occurrence.

  2. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban area

    CERN Document Server

    Nicholson, J P; Fowler, D

    2000-01-01

    A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides concentrations in the boundary layer within and immediately around an urban area. Short time-scale photochemical processes of ozone, as well as emissions and deposition to the ground are simulated. The results show that the average surface ozone concentration in the urban area is lower than the surrounding rural areas by typically 50%. Model results are compared with observations.

  3. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    Science.gov (United States)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  4. Summertime total ozone variations over middle and polar latitudes

    OpenAIRE

    Fioletov, Vitali E.; Shepherd, Theodore G.

    2005-01-01

    The statistical relationship between springtime and summertime ozone over middle and polar latitudes is analyzed using zonally averaged total ozone data. Shortterm variations in springtime midlatitude ozone demonstrate only a modest correlation with springtime polar ozone variations. However by early summer, ozone variations throughout the extratropics are highly correlated. Analysis of correlation functions indicates that springtime midlatitude ozone, not polar ozone, is the best predictor f...

  5. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  6. [Analysis on concentration variety characteristics of atmospheric ozone under the boundary layer in Beijing].

    Science.gov (United States)

    Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian

    2007-11-01

    Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.

  7. Monitoring of the ozone layer. Annual report 1996; Overvaaking av ozonlaget. Aarsrapport 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dahlback, A.; Braathen, G.O.; Hansen, G.H.; Svenoee, T.

    1997-12-31

    This report presents the data for 1996 from the Norwegian Ozone Monitoring Programme. The measured monthly mean values of the total ozone in Oslo, Tromsoe and Ny-Aalesund are generally smaller compared with long-term monthly averages. A trend analysis based on ground measurements in Oslo 1979-1996 shows an average decrease of 0.54% in winter, 0.83% in spring, 0.24% in summer and 0.21% in autumn. The solar UV radiation is measured continuously. Frequently ozone probes are sent up in balloons from Bjoernoeya and Gardermoen. The observed distribution of ozone concentration with height does not vary as dramatically as is seen in September-November each year in Antarctic areas. 18 refs., 29 figs., 4 tabs.

  8. Recovery of the Ozone Layer: The Ozone Depleting Gas Index

    Science.gov (United States)

    Hofmann, David J.; Montzka, Stephen A.

    2009-01-01

    The stratospheric ozone layer, through absorption of solar ultraviolet radiation, protects all biological systems on Earth. In response to concerns over the depletion of the global ozone layer, the U.S. Clean Air Act as amended in 1990 mandates that NASA and NOAA monitor stratospheric ozone and ozone-depleting substances. This information is critical for assessing whether the Montreal Protocol on Substances That Deplete the Ozone Layer, an international treaty that entered into force in 1989 to protect the ozone layer, is having its intended effect of mitigating increases in harmful ultraviolet radiation. To provide the information necessary to satisfy this congressional mandate, both NASA and NOAA have instituted and maintained global monitoring programs to keep track of ozone-depleting gases as well as ozone itself. While data collected for the past 30 years have been used extensively in international assessments of ozone layer depletion science, the language of scientists often eludes the average citizen who has a considerable interest in the health of Earth's protective ultraviolet radiation shield. Are the ozone-destroying chemicals declining in the atmosphere? When will these chemicals decline to pre-ozone hole levels so that the Antarctic ozone hole might disappear? Will this timing be different in the stratosphere above midlatitudes?

  9. Detecting the Recovery of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2004-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.

  10. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  11. The variation characteristics and effect factors of surface ozone concentration in the Taklimakan Desert hinterland

    Institute of Scientific and Technical Information of China (English)

    XinChun Liu; YuTing Zhong; Qing He; YanMei Peng; XingHua Yang; Ali Mamtimin; Wen Huo

    2014-01-01

    Based on automatic continuous surface ozone concentration observation data from June 10, 2010 to March 20, 2012 in the Taklimakan Desert hinterland, combined with corresponding meteorological data, the temporal, seasonal and daily variation characteristics of surface ozone concentrations under different weather conditions were analyzed. At the same time, the main fac-tors affecting ozone variation are discussed. Results show that:(1) Daily variation of ozone concentration was characterized by one obvious peak, with gentle changes during the night and dramatic changes during the day. The lowest concentration was at 09:00 and the highest was at 18:00. Compared to urban areas, there was a slight time delay. (2) Ozone concentration variation had a weekend effect phenomenon. Weekly variation of ozone concentration decreased from Monday to Wednesday with the lowest in Wednesday, and increased after Thursday with the highest in Sunday. (3) The highest monthly average concentration was 89.6μg/m3 in June 2010, and the lowest was 32.0μg/m3 in January 2012. Ozone concentration reduced month by month from June to December in 2010. (4) Ozone concentration in spring and summer was higher than in autumn and winter. The variation trend agreed with those in other large and medium-sized cities. (5) Under four different types of weather, daily ozone concentration var-ied most dramatically in sunny days, followed by slight variation in rain days, and varied gently in cloudy days. Ozone concentra-tion varied inconspicuously before a sandstorm appearance, and dropped rapidly at the onset of a sandstorm. (6) Daily variation of radiation was also characterized by a single peak, and the variation was significantly earlier than ozone concentration variation. Sun radiation intensity had a direct influence on the photochemical reaction speed, leading to variation of ozone concentration. (7) Daily average ozone concentration in dust weather was higher than in slight rain and clear days. The

  12. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  13. State Averages

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...

  14. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part...

  15. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005

    Directory of Open Access Journals (Sweden)

    R. C. Wilson

    2011-06-01

    -annual variability on decadal based ozone trends.

    The European scale 3-D CTM CHIMERE was used to simulate hourly O3 concentrations for the period 1996–2005. Comparisons between the 158 observed ozone trends to those equivalent sites extracted from regional simulations by CHIMERE better match the observed increasing annual ozone (predominantly in Central and Northwestern Europe for 5th percentiles, than for mean or 95th ozone percentiles. The European-averaged annual ozone trend in CHIMERE 5th percentiles (0.13 ± 0.01 ppbv yr−1 matches the corresponding observed trend extremely well, but displays a negative trend for the 95th percentile (−0.03 ± 0.02 ppbv yr−1 where a positive ozone trend is observed. Inspection of the EU-averaged monthly means of ozone shows that the CHIMERE model is overestimating the summer month O3 levels.

    In comparison to trends in EMEP emissions inventories, with the exception of Austria-Hungary, we find anthropogenic NOx and VOC reductions do not appear to have a substantial effect on observed annual mean O3 trends in the rest of Europe.

  16. Use of coupled ozone fields in a 3-D circulation model of the middle atmosphere

    Directory of Open Access Journals (Sweden)

    T. Reddmann

    Full Text Available With a detailed chemistry scheme for the middle atmosphere up to 70 km which has been added to the 3-D Karlsruhe simulation model of the middle atmosphere (KASIMA, the effects of coupling chemistry and dynamics through ozone are studied for the middle atmosphere. An uncoupled version using an ozone climatology for determining heating rates and a coupled version using on-line ozone are compared in a 10-month integration with meteorological analyses for the winter 1992/93 as the lower boundary condition. Both versions simulate the meteorological situation satisfactorily, but exhibit a too cold lower stratosphere. The on-line ozone differs from the climatological data between 20 and 40 km by exhibiting too high ozone values, whereas in the lower mesosphere the ozone values are too low. The coupled model version is stable and differs only above 40 km significantly from the uncoupled version. Direct heating effects are identified to cause most of the differences. The well-known negative correlation between temperature and ozone is reproduced in the model. As a result, the coupled version slightly approaches the climatological ozone field. Further feedback effects are studied by using the on-line ozone field as a basis for an artificial climatology. For non-disturbed ozone conditions realistic monthly and zonally averaged ozone data are sufficient to determine the heating rates for modelling the middle atmosphere.

    Key words. Atmospheric composition and structure (middle atmosphere · composition and chemistry · Meteorology and atmospheric dynamics (middle atmosphere dynamics.

  17. Monthly errors

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2006 monthly average statistical metrics for 2m Q (g kg-1) domain-wide for the base and MODIS WRF simulations against MADIS observations. This dataset is...

  18. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    Science.gov (United States)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-04-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chemistry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chemistry model, focuses on the major reaction mechanisms of ozone production and loss in order to reduce the computational costs. SWIFT consists of two sub-models. 1) Inside the polar vortex, the model calculates polar vortex averaged ozone loss by solving a set of coupled differential equations for the key species in polar ozone chemistry. 2) The extra-polar regime, which this poster is going to focus on. Outside the polar vortex, the complex system of differential equations of a full stratospheric chemistry model is replaced by an explicit algebraic polynomial, which can be solved in a fraction of the time needed by the full scale model. The approach, which is used to construct the polynomial, is also referred to as repro-modeling and has been successfully applied to chemical models (Turanyi (1993), Lowe & Tomlin (2000)). The procedure uses data from the Lagrangian stratospheric chemistry and transport model ATLAS and yields one high-order polynomial for global ozone loss and production rates over 24h per month. The stratospheric ozone change rates can be sufficiently described by 9 variables. Latitude, altitude, temperature, the overhead ozone abundance, 4 mixing ratios of ozone depleting chemical families (chlorine, bromine, nitrogen-oxides and hydrogen-oxides) and the ozone concentrations itself. The ozone change rates in the lower stratosphere as a function of these 9 variables yield a sufficiently compact 9-D hyper-surface, which we can approximate with a polynomial. In the upper

  19. Monitoring of the ozone layer. Annual report 1997; Overvaaking av ozonlaget. Aarsrapport 1997

    Energy Technology Data Exchange (ETDEWEB)

    Braathen, Geir O.; Svenoee, Trond; Hansen, Georg H. [Norsk Inst. for Luftforskning, Kjeller (Norway); Dahlback, Arne [Oslo Univ. Fysisk institutt (Norway)

    1998-10-01

    The three stations in Oslo, Tromsoe and at Ny-Aalesund at Svalbard measure the total ozone levels and these show low monthly averages in 1997 compared to the long-term monthly averages. In Oslo the averages for January to April were 3-13 % below those from 1979 to 1989. Detailed measurements are presented. Analyses based on model calculations and measurements both in Norway and at other places are presented and show the low spring ozone values largely to be a result of chemical oxone decomposition. Particularly in 1997 the polar whirl lasted longer than usual. This lead to reduced ozone transport from the equator to the poles which normally is strongest in spring. At the same time the ozone was decomposed through natural processes where NO{sub x} is involved. The report concludes that the extremely low values registered are caused by a combination of chemical decomposition due to chlorofluorocarbons and halon and the particularly dynamic meteorological situation. A trend analysis for the period of 1979 to 1997 was carried out. The trend has been declining unevenly. In Oslo, Tromsoe and Ny-Aalesund the UV radiation from the sun is continually measured using GUV instrumentation. The measurements confirm that the main factors influencing the UV level are the height of the sun, the amount of clouds, the thickness of the ozone layer and the reflection properties at the earth surface. Monthly radiation doses are presented as well. Both at the Oslo and Tromsoe universities two ozone layer measuring instruments of the Dobson and Brewer types, are used. Instrumental comparisons are made. From the Bjoernoeya and the Gardermoen there are regularly lifted balloons which may reach a 35 km altitude carrying ozone probes. The ozone altitude distribution is registered. Similar measurements in the Antarctic show that the yearly ozone decomposition from September to November occurs at the heights of 14 to 24 km. Studies show there is extensive ozone decomposition in the Arctic as

  20. Ozone in rural areas of the United States

    Science.gov (United States)

    Logan, Jennifer A.

    1989-06-01

    I present the results of an analysis of ozone data from rural locations in the United States. Ozone concentrations above 80 ppb are common in the east in spring and summer, but they are unusual in the west, and ozone shows considerably more day-to-day variability in the east. Variations in ozone levels are highly correlated over distances of several hundred kilometers in the east, indicating that high values are associated with episodes of large spatial scale, >600,000 km2. There were 10 and seven such episodes in 1978 and 1979 respectively, between the months of April and September; they persisted for 3-4 days, on average, with a range of 2-8 days, and were most common in June. Daily maximum ozone values exceeded 90 ppb at over half the sites during these episodes and were often greater than 120 ppb at one or more sites. An analysis of the meteorology for each episode shows that they occurred preferentially in the presence of weak, slow-moving, and persistent high-pressure systems. Two episodes that occurred outside the summer half of the year were associated with unseasonably warm weather; only one episode, in March 1978, appeared to reflect a major stratospheric intrusion. Concentrations of NOx at rural locations in the east are frequently high enough (>1 ppb) to permit significant photochemical formation of ozone. It is clear that rural ozone in the east in spring and summer is severely impacted by anthropogenic emissions of NOx and hydrocarbons, and that ozone episodes occur when the weather is particularly conducive to photochemical formation of ozone. Ozone episodes were present on 23% of days in May-August in the east in 1978-1979. The effect of these pollution episodes on vegetation cannot be assessed with current information on dose-response characteristics, which is based primarily on exposure of crops to a given level of ozone for 7 hours a day. The results presented here may be used to design studies that account for the periodic exposure of vegetation

  1. Impact of Climate Change on Ambient Ozone Level and Mortality in Southeastern United States

    Directory of Open Access Journals (Sweden)

    Montserrat Fuentes

    2010-07-01

    Full Text Available There is a growing interest in quantifying the health impacts of climate change. This paper examines the risks of future ozone levels on non-accidental mortality across 19 urban communities in Southeastern United States. We present a modeling framework that integrates data from climate model outputs, historical meteorology and ozone observations, and a health surveillance database. We first modeled present-day relationships between observed maximum daily 8-hour average ozone concentrations and meteorology measured during the year 2000. Future ozone concentrations for the period 2041 to 2050 were then projected using calibrated climate model output data from the North American Regional Climate Change Assessment Program. Daily community-level mortality counts for the period 1987 to 2000 were obtained from the National Mortality, Morbidity and Air Pollution Study. Controlling for temperature, dew-point temperature, and seasonality, relative risks associated with short-term exposure to ambient ozone during the summer months were estimated using a multi-site time series design. We estimated an increase of 0.43 ppb (95% PI: 0.14–0.75 in average ozone concentration during the 2040’s compared to 2000 due to climate change alone. This corresponds to a 0.01% increase in mortality rate and 45.2 (95% PI: 3.26–87.1 premature deaths in the study communities attributable to the increase in future ozone level.

  2. Impact of climate change on ambient ozone level and mortality in southeastern United States.

    Science.gov (United States)

    Chang, Howard H; Zhou, Jingwen; Fuentes, Montserrat

    2010-07-01

    There is a growing interest in quantifying the health impacts of climate change. This paper examines the risks of future ozone levels on non-accidental mortality across 19 urban communities in Southeastern United States. We present a modeling framework that integrates data from climate model outputs, historical meteorology and ozone observations, and a health surveillance database. We first modeled present-day relationships between observed maximum daily 8-hour average ozone concentrations and meteorology measured during the year 2000. Future ozone concentrations for the period 2041 to 2050 were then projected using calibrated climate model output data from the North American Regional Climate Change Assessment Program. Daily community-level mortality counts for the period 1987 to 2000 were obtained from the National Mortality, Morbidity and Air Pollution Study. Controlling for temperature, dew-point temperature, and seasonality, relative risks associated with short-term exposure to ambient ozone during the summer months were estimated using a multi-site time series design. We estimated an increase of 0.43 ppb (95% PI: 0.14-0.75) in average ozone concentration during the 2040's compared to 2000 due to climate change alone. This corresponds to a 0.01% increase in mortality rate and 45.2 (95% PI: 3.26-87.1) premature deaths in the study communities attributable to the increase in future ozone level.

  3. Total ozone column distribution over peninsular Malaysia from scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY)

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; MatJafri, M. Z.

    2012-10-01

    Increasing of atmospheric ozone concentrations have received great attention around the whole because of its characteristic, in order to degrade air quality and brings hazard to human health and ecosystems. Ozone, one of the most pollutants source and brings a variety of adverse effects on plant life and human being. Continuous monitoring on ozone concentrations at atmosphere provide information and precautions for the high ozone level, which we need to be established. Satellite observation of ozone has been identified that it can provide the precise and accurate data globally, which sensitive to the small regional biases. We present measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) included on the European environmental satellite ENVISAT, launched on 1st of March 2002. Main objective of this study is to examine the ozone distribution over Peninsular Malaysia using SCIAMACHY level-2 of total ozone column WFMD version 1.0 with spatial resolution 1° x 1.25°. Maps of time averaged (yearly, tri-monthly) ozone was generated and analyzed over Peninsular Malaysia for the year 2003 using PCI Geomatica 10.3 image processing software. It was retrieved using the interpolation technique. The concentration changes within boundary layer at all altitude levels are equally sensitive through the SCIAMACHY nearinfrared nadir observations. Hence, we can make observation of ozone at surface source region. The results successfully identify the area with highest and lowest concentration of ozone at Peninsular Malaysia using SCIAMACHY data. Therefore, the study is suitable to examine the distribution of ozone at tropical region.

  4. Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India

    Indian Academy of Sciences (India)

    K K Reddy; M Naja; N Ojha; P Mahesh; S Lal

    2012-08-01

    Collocated measurements of the boundary layer evolution and surface ozone, made for the first time at a tropical rural site (Gadanki 13.5°N, 79.2°E, 375 m amsl) in India, are presented here. The boundary layer related observations were made utilizing a lower atmospheric wind profiler and surface ozone observations were made using a UV analyzer simultaneously in April month. Daytime average boundary layer height varied from 1.5 km (on a rainy day) to a maximum of 2.5 km (on a sunny day). Correlated day-to-day variability in the daytime boundary layer height and ozone mixing ratios is observed. Days of higher ozone mixing ratios are associated with the higher boundary layer height and vice versa. It is shown that higher height of the boundary layer can lead to the mixing of near surface air with the ozone rich air aloft, resulting in the observed enhancements in surface ozone. A chemical box model simulation indicates about 17% reduction in the daytime ozone levels during the conditions of suppressed PBL in comparison with those of higher PBL conditions. On a few occasions, substantially elevated ozone levels (as high as 90 ppbv) were observed during late evening hours, when photochemistry is not intense. These events are shown to be due to southwesterly wind with uplifting and northeasterly winds with downward motions bringing ozone rich air from nearby urban centers. This was further corroborated by backward trajectory simulations.

  5. Evolution of the Antarctic polar vortex in spring: Response of a GCM to a prescribed Antarctic ozone hole

    Science.gov (United States)

    Boville, B. A.; Kiehl, J. T.; Briegleb, B. P.

    1988-01-01

    The possible effect of the Antartic ozone hole on the evolution of the polar vortex during late winter and spring using a general circulation model (GCM) is examined. The GCM is a version of the NCAR Community Climate Model whose domain extends from the surface to the mesosphere and is similar to that described on Boville and Randel (1986). Ozone is not a predicted variable in the model. A zonally averaged ozone distribution is specified as a function of latitude, pressure and month for the radiation parameterization. Rather that explicitly address reasons for the formation of the ozone hole, researchers postulate its existence and ask what effect it has on the subsequent evolution of the vortex. The evolution of the model when an ozone hole is imposed is then discussed.

  6. The impact of meteorology on ozone in Houston

    Energy Technology Data Exchange (ETDEWEB)

    Eder, B.K. [National Oceanic and Atmospheric Administration, Research Triangle Park, NC (United States); Davis, J.M.; Nychka, D. [National Institute of Statistical Sciences, Research Triangle Park, NC (United States)

    1997-12-31

    This paper compares the results from both a one-stage hierarchical clustering technique (average linkage) and a two-stage technique (average linkage then k-means) as part of an objective meteorological Classification scheme designed to better elucidate ozone`s dependence on meteorology in the Houston, Texas, area. When applied to twelve years of meteorological data (1981-1992), each technique identified seven statistically distinct meteorological regimes, the majority of which exhibited significantly different daily 1-hour maximum ozone (O{sub 3}) concentrations. While both clustering approaches proved successful, the two-stage approach did appear superior in terms of better segregation of the mean O{sub 3}, concentrations. Both approaches indicated that the largest mean daily one-hour maximum concentrations are associated with migrating anticyclones and not with the quasi-permanent Bermuda High that often dominates the southeastern United States during the summer. As a result, maximum ozone concentrations are just as likely during the months of April, May, September and October as they are during the summer months. These findings support and help explain the unique O{sub 3}, climatology experienced by the Houston area.

  7. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-02-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain four months of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the aerodynamic gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of −8 × 10−3 μg m−2 s−1, respectively ~0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment, deployed at Summit for a period of four months, allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and seasonal dependencies.

  8. Chemistry and Dynamics of the Unusual 2015 Antarctic Ozone Hole

    Science.gov (United States)

    Braathen, Geir O.

    2016-04-01

    The Global Atmosphere Watch of the World Meteorological Organization includes several stations in Antarctica that keep a close eye on the ozone layer during the ozone hole season. Observations made during the unusually large ozone hole of 2015 will be compared to ozone holes from 2003 to 2014 and interpreted in light of the meteorological conditions. Satellite observations will be used to get a more general picture of the size and depth of the ozone hole and will also be used to calculate various metrics for ozone hole severity. In 2003, 2005 and 2006, the ozone hole was relatively large with more ozone loss than normal. This is in particular the case for 2006, which by most ozone hole metrics was the most severe ozone hole on record. On the other hand, the ozone holes of 2004, 2007, 2010 and 2012, 2013 and 2014 were less severe than normal, and only the very special ozone hole of 2002 had less ozone depletion when one regards the ozone holes of the last decade. The South Polar vortex of 2015 was unusually stable and long-lived, so ozone depletion lasted longer than seen in recent years. The ozone hole area, i.e. the area where total ozone is less that 220 DU, averaged over the worst 60 consecutive days was larger in 2015 than in any other year since the beginning of the ozone hole era in the early 1980s.

  9. Study of ozone "weekend effect" in Shanghai

    Institute of Scientific and Technical Information of China (English)

    TANG WenYuan; ZHAO ChunSheng; GENG FuHai; PENG Li; ZHOU GuangQiang; GAO Wei; XU JianMing; TIE XueXi

    2008-01-01

    Analysis of observed ozone data in 2006 from five monitoring sites (Xujiahui, Chongming, Baoshan, Pudong, Jinshan) in Shanghai reveals that ozone (O3) concentrations in Xujiahui are higher at weekends than those on weekdays, despite the fact that emissions of ozone precursor substances, such as oxides of nitrogen (NOX), carbon monoxide (CO) and volatile organic compounds (VOCs) are lower at weekends than those on weekdays.The possible chemical cause of ozone "weekend effect" is that NO2/NO ratio increases at weekends by 25.61% compared with those on weekdays.In addition, because of an average 12.13% reduction in NOx (NO + NO2) in the early morning (05:00-09:00) at weekends compared with that on weekdays, the ozone inhibition period ends 0.5 h earlier at weekends resulting in the longer duration of ozone accumulation and the higher ozone production rate.The rate of ozone production is a function of VOCs and NOx in the atmosphere.VOCs/NOx ratio in Xujiahui is 4.55 at weekends, and 4.37 on weekdays, belonging to the "NOx-limited".The increasing VOCs/NOx ratio at weekends leads to ozone enhancement from 73 ppbv to 80 ppbv, which are consistent with ozone "weekend effect" in Xujiahui.Furthermore, combining with MICAPS cloud amount data, the fact that ozone "weekend effect" in Xujiahui weakens gradually along with the increasing of cloud amount indicates that ozone photochemical production leads to ozone "weekend effect" in Xujiahui of Shanghai.

  10. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    , if any, threshold for ozone's impact on mortality. Additionally, the present study estimates that average daily indoor intakes of ozone oxidation products are roughly one-third to twice the indoor inhalation intake of ozone alone. Some of these oxidation products are known or suspected to adversely...... affect human health (e.g., formaldehyde, acrolein, hydro-peroxides, fine and ultrafine particles). Indirect evidence supports connections between morbidity/mortality and exposures to indoor ozone and its oxidation products. For example, cities with stronger associations between outdoor ozone...

  11. Fundamental differences between Arctic and Antarctic ozone depletion

    OpenAIRE

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J.; Min, Flora

    2014-01-01

    Fundamental differences in observed ozone depletion between the Arctic and the Antarctic are shown, clarifying distinctions between both average and extreme ozone decreases in the two hemispheres. Balloon-borne and satellite measurements in the heart of the ozone layer near 18−24 km altitude show that extreme ozone decreases often observed in the Antarctic ozone hole region have not yet been measured in the Arctic in any year, including the unusually cold Arctic spring of 2011. The data provi...

  12. Budget of tropospheric ozone during TOPSE from two chemical transport models

    Science.gov (United States)

    Emmons, L. K.; Hess, P.; Klonecki, A.; Tie, X.; Horowitz, L.; Lamarque, J.-F.; Kinnison, D.; Brasseur, G.; Atlas, E.; Browell, E.; Cantrell, C.; Eisele, F.; Mauldin, R. L.; Merrill, J.; Ridley, B.; Shetter, R.

    2003-04-01

    The tropospheric ozone budget during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign has been studied using two chemical transport models (CTMs): HANK and the Model of Ozone and Related chemical Tracers, version 2 (MOZART-2). The two models have similar chemical schemes but use different meteorological fields, with HANK using MM5 (Pennsylvania State University, National Center for Atmospheric Research Mesoscale Modeling System) and MOZART-2 driven by European Centre for Medium-Range Weather Forecasts (ECMWF) fields. Both models simulate ozone in good agreement with the observations but underestimate NOx. The models indicate that in the troposphere, averaged over the northern middle and high latitudes, chemical production of ozone drives the increase of ozone seen in the spring. Both ozone gross chemical production and loss increase greatly over the spring months. The in situ production is much larger than the net stratospheric input, and the deposition and horizontal fluxes are relatively small in comparison to chemical destruction. The net production depends sensitively on the concentrations of H2O, HO2 and NO, which differ slightly in the two models. Both models underestimate the chemical production calculated in a steady state model using TOPSE measurements, but the chemical loss rates agree well. Measures of the stratospheric influence on tropospheric ozone in relation to in situ ozone production are discussed. Two different estimates of the stratospheric fraction of O3 in the Northern Hemisphere troposphere indicate it decreases from 30-50% in February to 15-30% in June. A sensitivity study of the effect of a perturbation in the vertical flux on tropospheric ozone indicates the contribution from the stratosphere is approximately 15%.

  13. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  14. Measurement of survace ozone over New Dehli

    Science.gov (United States)

    Arya, B.; Jain, S.; Kumar, A.

    The measurement of surface ozone concentration is important for understanding and predicting photo chemical air pollution in u ban areas. In the troposphere ozone is ar green house gas trapping the long wave length radiation in 9.6 μm band. Surface ozone is a secondary pollutant its concentration in lower troposphere depends upon its precursors (CO, CH4, Non methane hydrocarbons, NO ) as well as weather and transport phenomenon. Ozone is a oxidizing agent increasing concentration of which can modulate the oxidizing efficiency of troposphere and may have significant consequences for the chemistry of atmosphere and climate. The regular information of its ground level concentrations is needed for setting ambient air quality objectives and understanding air pollution effects on human and vegetation health also. The measurements of surface ozone is being carried out in National Physical laboratory since 1997. The measurements showed that on a number of days the surface ozone values exceeds WHO ambient ozone air quality standards in summer season as well as in the months of October and November. In the annual variation of surface ozone two maxima (April and October) and two minima ( December and monsoon months) were observed . The increase of night time ozone concentrations has been observed predominantly in winter season. This may be correlated due to mixing of the remnant day time boundary layer ozone by mechanical turbulence produced by wind shear. The high nocturnal ozone has also been observed during thunderstorms. In the present paper observations and results obtained will be described.

  15. A modeling study of the impact of urban trees on ozone

    Science.gov (United States)

    David J. Nowak; Kevin L. Civerolo; S. Trivikrama Rao; Gopal Sistla; Christopher J. Luley; Daniel E. Crane

    2000-01-01

    Modeling the effects of increased urban tree cover on ozone concentrations (July 13-15, 1995) from Washington, DC, to central Massachusetts reveals that urban trees generally reduce ozone concentrations in cities, but tend to increase average ozone concentrations in the overall modeling domain. During the daytime, average ozone reductions in urban areas (1 ppb) were...

  16. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  17. Bayes统计模型在出山月均径流极小值研究中的应用%A Bayesian Analysis of Monthly Average Runoff Minima in Mountain Areas

    Institute of Scientific and Technical Information of China (English)

    刘友存; 霍雪丽; 郝永红; 崔玉环; 韩添丁; 沈永平; 王建

    2015-01-01

    Global warming has intensified hydrological extreme events and resulted in disasters around the world. For disaster management and adaption of extreme events,it is essential to improve the accuracy of extreme value statistical models. In this study,Bayes’Theorem is introduced to estimate parameters in the Generalized Pareto Distribution( GPD)model which is applied to simulate the distribution of monthly average runoff minima during dry periods in mountain areas of Ürümqi River. Bayes’Theorem treats parameters as random variables and provides machinery way to convert the prior distribution of parameters into a posterior distribution. Statistical inferences based on posterior distribution can provide a more comprehensive representation of the parameters. An improved Markov Chain Monte Carlo( MCMC)method,which can solve high-dimensional integral computation in the Bayes equation,is used to generate parameter simulations from the posterior distribution. Model diagnosis plots are made to guarantee the fitted GPD model is appropriate. Then based on the GPD model with Bayesian parameter esti-mates,monthly average minima corresponding to different return periods can be calculated. The results show that the improved MCMC method is able to make Markov chains converge at a high speed. Compared with the GPD model based on maximum likelihood parameter estimates,the GPD model based on Bayesian parameter estimates obtain more accurate estimations of minimum monthly average runoff. Moreover,the monthly average runoff minima in dry periods corresponding to 10 a,25 a,50 a and 100 a return periods are 0. 60 m3/s,0. 44 m3/s,0. 32 m3/s and 0. 20 m3/s respectively. The lower boundary of 95% confidence interval of 100a return level is -0. 238 m3/s,which implies that Ürümqi River is likely to cease when 100 a return level occurs in dry periods.%数理统计方法在解决全球气候变化引起的洪水、干旱等极端水文事件中获得了越来越广泛的

  18. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-10-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April–August 2004 of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10−3μg m−2 s−1, respectively ∼0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  19. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Science.gov (United States)

    Bocquet, F.; Helmig, D.; van Dam, B. A.; Fairall, C. W.

    2011-10-01

    A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April-August 2004) of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a) ozone gradients measured by commercial ultraviolet absorption analyzers, (b) ambient temperature gradients using aspirated thermocouple sensors, and (c) wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10-3μg m-2 s-1, respectively ∼0.01 cm s-1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach) was on the order of 10-2 cm s-1. This uncertainty typically accounted to ~20-100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  20. Latest tendency in the Antarctic ozone longitudinal distribution

    Science.gov (United States)

    Milinevsky, Gennadi; Grytsai, Asen; Klekociuk, Andrew; Evtushevsky, Olexander

    2014-05-01

    Significant ozone depletion was observed within the southern polar vortex during spring in the 1980s - early 1990s. Later, a stabilization in total ozone levels and ozone hole area has been observed. Atmosphere models predict a consequent recovery of the Antarctic ozone. Nevertheless, identification of the long-term processes is complicated by high interannual variability hiding their general regularities. In particular, a large stratosphere warming in 2002 resulted in significant increase in total ozone levels. The Antarctic ozone hole is formed inside polar stratospheric vortex, which is under influence of large-scale planetary waves. The components of the quasi-stationary wave (QSW) in the spring Southern Hemisphere (SH) stratosphere is mainly contributed by zonal wave number 1 which in turn determines the location of the total ozone extremes in spring: QSW minimum (maximum) is located in the South Atlantic (Australian) sector. In our work the satellite data of TOMS/Nimbus-7, TOMS/Earth Probe and OMI/Aura (http://ozoneaq.gsfc.nasa.gov/) have been used to investigate longitudinal distribution of the total ozone in Antarctic region. The gap in these satellite observations (1993-1995) was filled by the Multi-Sensor Reanalysis data (http://www.temis.nl/). Ozone distribution in the SH high and mid latitudes 80-50S were analyzed for southern spring season including months from September to November. The zonal distribution is considered along seven latitude circles from 80S to 50S with step of five degrees. To distinguish long-term processes and to obtain a quasi-stationary pattern, daily September - November ozone was averaged. Our previous study demonstrated a systematic eastward shift of the QSW minimum region. In this study, we extended the analysis to 2013 and obtained new results that exhibited a probable cessation in that eastward shift. Polynomial fit for all chosen latitudes is even evidence of a change in the tendency to opposite. It more time needs to

  1. Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah

    Directory of Open Access Journals (Sweden)

    Samuel Oltmans

    2014-03-01

    Full Text Available Abstract Winter maximum daily 8-hour average (MDA8 ozone concentrations in the Upper Green River Basin, Wyoming (UGRBWY and the Uintah Basin, Utah (UBUT have frequently exceeded 100 ppb in January, February and March, in the past few years. Such levels are well above the U.S. air quality standard of 75 ppb. In these two remote basins in the Rockies, local ozone precursor emissions result from intense oil and gas extraction activities that release methane, volatile organic compounds (VOCs, and nitrogen oxides (NOx to the atmosphere. These emissions become trapped beneath a stable and shallow (∼50–200 m boundary layer maintained in low wind conditions. Wintertime surface ozone formation conditions are more likely in the UBUT than in the UGRBWY as the topography of the UBUT is an enclosed basin whereas the UGRBWY is open on its southern perimeter thus allowing for more air turnover. With snow-covered ground, high ozone events regularly begin in mid-December and last into early March in the UBUT whereas they usually do not begin in earnest until about a month later in the UGRBWY and may persist until mid-March. Winters without snow cover and the accompanying cold pool meteorological conditions do not experience high ozone events in either basin. For nine years with ozone observations in the UGRBWY (2005–2013 and four in the UBUT (2010–2013, all years with adequate (≥6 inches and persistent snow cover, experienced days with ozone values ≥75 ppb except in 2012 in the UGRBWY when persistent high wind (>5 m/s conditions were prevalent. Year to year differences in the occurrences of high ozone episodes appear to be driven primarily by differing meteorological conditions rather than by variations in ozone precursor levels.

  2. Options to accelerate ozone recovery: ozone and climate benefits

    Directory of Open Access Journals (Sweden)

    J. S. Daniel

    2010-08-01

    Full Text Available Hypothetical reductions in future emissions of ozone-depleting substances (ODSs and N2O are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC, globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact on ozone depletion that regulations already in force have had. If all anthropogenic ODS and N2O emissions were halted beginning in 2011, ozone is calculated to be higher by about 1–2% during the period 2030–2100 compared to a case of no additional restrictions. Direct radiative forcing by 2100 would be about 0.23 W/m2 lower from the elimination of anthropogenic N2O emissions and about 0.005 W/m2 lower from the destruction of the chlorofluorocarbon (CFC bank. Due to the potential impact of N2O on future ozone levels, we provide an approach to incorporate it into the EESC formulation, which is used extensively in ozone depletion analyses. The ability of EESC to describe total ozone changes arising from additional ODS and N2O controls is also quantified.

  3. High ozone at rural sites in India

    Science.gov (United States)

    Chand, D.; Lal, S.

    2004-06-01

    Past observations of O3 at urban, rural and lower free tropospheric sites in India have shown generally low values rarely exceeding 60 ppbv. We show that this can not be generated to all over India. Surface ozone (O3) concentrations are obtained from measurements in rural, urban and free tropospheric environments in January 2001 and 2002 as a part of Mobile Lab Experiments (MOLEX) conducted in western India. Elevated O3 from 70 to 110 ppbv (nmole/mole) are recorded during afternoon hours at rural sites in downwind of major industrial region of Gujarat adjoining the Arabian Sea. Repeated observations during both the years indicate that this is a regular process in this region. The average background ozone is found to be 42±6 ppbv. The elevated ozone in the downwind site is about 60% higher than that in the major urban center and its surroundings and by a factor of 2 higher than the background levels of O3 in this region. In comparison to the downwind observations; the ozone observed at the continental stations in rural (Gadanki), urban (Ahmedabad) and free tropospheric (Mt. Abu) sites in India are low and rarely exceeded 60 ppbv during the month of January. Forward trajectory analysis shows that the polluted plumes from this urban area can get transported more than 3000 km to the marine boundary layer over the Arabian Sea and the Indian Ocean within a week. Similar transport of pollutants from major urban sites like Delhi and other cities can enhance O3 in their downwind rural sites and can affect the human health as well as vegetation significantly.

  4. Impact of sampling frequency in the analysis of tropospheric ozone observations

    Directory of Open Access Journals (Sweden)

    M. Saunois

    2011-10-01

    Full Text Available The measurements of the ozone vertical profiles are valuable for the evaluation of atmospheric chemistry models and contribute to the understanding of the processes controlling the distribution of tropospheric ozone. The longest record of the ozone vertical profiles is provided by ozone sondes, which have a low time resolution with a typical frequency of 12 or 4 profiles a month. Here we discuss and quantify the uncertainty in the analysis of such data sets using high frequency MOZAIC (Measurements of OZone, water vapor, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft profiles data sets, such as the one over Frankfurt. We subsampled the MOZAIC data set at the two typical ozone sonde frequencies. We find that the uncertainty introduced by the coarser sampling is around 8% for a 12 profiles a month frequency (14% for a 4 profiles a month frequency in the free troposphere over Frankfurt. As a consequence, this uncertainty at the lowest frequency is higher than the typical 10% accuracy of the ozone sondes and should be carefully considered for observation comparison and model evaluation. We found that the average intra-seasonal variability represented in the samples is similar to the sampling uncertainty and could also be used as an estimate of the sampling error in some Northern Hemisphere cases. The sampling impacts substantially the inter annual variability and the trend derived over the period 1995–2008 both in magnitude and in sign throughout the troposphere. Therefore, the sampling effect could be part of the observed discrepancies between European sites. Similar results regarding the sampling uncertainty are found at five other Northern Hemispheric sites. Also, a tropical case is discussed using the MOZAIC profiles taken over Windhoek, Namibia between 2005 and 2008.

  5. Comparison of Ozone Retrievals from the Pandora Spectrometer System and Dobson Spectrophotometer in Boulder, Colorado

    Science.gov (United States)

    Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.

    2015-01-01

    A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCO(sub corr) = TCO (1 + C(T)), using a monthly varying effective ozone temperature, T(sub E), derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T(sub E)) are C(sub Pandora) = 0.00333(T(sub E) - 225) and C(sub Dobson) = -0.0013(T(sub E) - 226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r(exp 2) = 0.97 and an average offset of 1.1 +/- 5.8 DU. In addition, the Pandora TCO data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).

  6. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  7. Surface ozone characterization at Larsemann Hills and Maitri, Antarctica.

    Science.gov (United States)

    Ali, Kaushar; Trivedi, D K; Sahu, S K

    2017-04-15

    Data are analyzed in terms of daily average ozone, its diurnal variation and its relation with meteorological parameters like dry bulb temperature (T), wet bulb temperature (Tw), atmospheric pressure and wind speed based on measurement of these parameters at two Indian Antarctic stations (Larsemann Hills, and Maitri) during 28th Indian Scientific Expedition of Antarctica (ISEA) organized during Antarctic summer of the year 2008-09. The work has been carried out to investigate summer time ozone level and its day-to-day and diurnal variability at these coastal locations and to highlight possible mechanism of ozone production and destruction. The result of the analysis indicates that daily average ozone concentration at Larsemann Hills varied from ~13 and ~20ppb with overall average value of ~16ppb and at Maitri, it varied from ~16 and ~21ppb with overall average value of ~18ppb. Photochemistry is found to partially contribute occasionally to the surface layer ozone at both the stations. Lower concentration of ozone at Maitri during beginning of the observational days may be due to destruction of ozone through activated halogens, whereas higher ozone on latter days may be due to photochemistry and advective transport from east to south-east areas. Ozone concentration during blizzard episodes at both the stations is reduced due to slow photochemical production of ozone, its photochemical removal and removal through deposition of ozone molecules on precipitation particles. Diurnal variation of ozone at Larsemann Hills and Maitri has been found to be absent.

  8. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M.J. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain)]. E-mail: mjose@ceam.es; Calatayud, V. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain); Sanchez-Pena, G. [Servicio de Proteccion de los Montes contra Agentes Nocivos, Direccion General para la Biodiversidad, Ministerio de Medio Ambiente, Gran Via de San Francisco, 4, E-28005, Madrid (Spain)

    2007-02-15

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude.

  9. Stratospheric ozone

    Directory of Open Access Journals (Sweden)

    M. Gil

    2006-01-01

    Full Text Available Stratospheric ozone acquired a huge importance two decades ago because of the discovery of strong anomalies above the Antarctica due to gases of anthropogenic origin. From that date, stratosphere has become one of the research lines receiving more funding. A result, an important progress in the development of observational techniques, the understanding of the dynamics of the polar regions and, above all, in understanding of the chemical interactions among the species that influence the chemical-radiative balance of ozone. In this article a general revision is made of the distribution of the ozone in the stratosphere, the mechanisms that determine its equilibrium, the gases that contribute to its destruction, the present situation and the forecast of the health state of the layer.

  10. Techno-economic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant.

    Science.gov (United States)

    Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero

    2013-04-01

    This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge).

  11. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  12. Emergence of healing in the Antarctic ozone layer

    OpenAIRE

    Solomon, S.; Ivy, DJ; Kinnison, D.; Mills, MJ; Neely III, RR; Schmidt, A.

    2016-01-01

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile...

  13. 鄱阳湖干旱多尺度特征及其与月均水位的相关性%Multi-scale characteristics of drought of Poyang Lake and its association to monthly average water level

    Institute of Scientific and Technical Information of China (English)

    张启旺; 张吉; 周涛

    2016-01-01

    以鄱阳湖13个气象站1957~2013年的逐月降水量、平均气温、各站点纬度和同期水位站逐月平均水位为实验数据,分别计算1、3、6、12、24、48个月尺度下标准降水指数( SPI)和标准降水蒸散指数( SPEI)时间序列,并利用Morlet小波分析理论,分析了该序列多时间尺度变化特征。基于Mann-Kendall检验,分析了鄱阳湖气象干旱趋势特征;利用Spearman秩相关系数,研究了不同时间尺度SPI和SPEI序列与月平均水位的相关关系。研究表明,鄱阳湖流域SPI和SPEI序列存在约68个月变化的主周期,两个主要特征时间尺度变化的强分布;气象干旱与湖水位的相关关系随时间尺度的增大而减弱。%The different 1-month, 3-month, 6-month, 12-month, 24-month and 48-month standardized precipitation index ( SPI) and Standardized Precipitation Evapotranspiration Index ( SPEI) time series are calculated based on the monthly precipitation, mean temperature and respective latitudes of 13 meteorological gauging stations from 1957 to 2013 and the simulta-neous monthly mean water level data in Poyang lake;the multi-scale features for these two time series are analyzed based on the wavelet theory with the Morlet function. The trend of meteorological drought of Poyang Lake is tested by the Mann -Kendall method. The correlation between the different scales of SPI and SPEI time series and the mean monthly water level is analyzed by Spearman coefficient. The results show that the SPI and SPEI time series have a cycle of 68-month period and two strong distri-butions with varied temporal scale. The relationship of meteorological drought of Poyang Lake and the water level decreases with the increase of time scale.

  14. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and air quality forecast models

    Directory of Open Access Journals (Sweden)

    P. A. Cleary

    2014-09-01

    Full Text Available Air quality forecast models typically predict large ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline Differential Optical Absorption Spectroscopy (DOAS observations in southeastern Wisconsin, and as predicted by the National Air Quality Forecast System. From 2008–2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008–2010 measurements of ambient ozone conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI and Muskegon, MI up to 6 times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha with little dependence on position of the ferry or temperature but with highest differences during evening and night. Concurrent ozone forecast images from National Weather System's National Air Quality Forecast System in the upper Midwestern region surrounding Lake Michigan were saved over the ferry ozone sampling period in 2009. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. The model 1 and 8 h ozone mean biases were both 12 ppb higher than observed ozone, and maximum daily 1 h ozone mean bias was 10 ppb, indicating substantial ozone over-prediction over water. Trends in the bias with respect to location and time of day or month were also explored showing non-uniformity in model bias. Extreme ozone events were predicted by the model but not observed by ferry measurements.

  15. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and air quality forecast models

    Science.gov (United States)

    Cleary, P. A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; Langel, T.; Williams, E. J.; Brown, S. S.

    2014-09-01

    Air quality forecast models typically predict large ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline Differential Optical Absorption Spectroscopy (DOAS) observations in southeastern Wisconsin, and as predicted by the National Air Quality Forecast System. From 2008-2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008-2010 measurements of ambient ozone conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI and Muskegon, MI up to 6 times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha with little dependence on position of the ferry or temperature but with highest differences during evening and night. Concurrent ozone forecast images from National Weather System's National Air Quality Forecast System in the upper Midwestern region surrounding Lake Michigan were saved over the ferry ozone sampling period in 2009. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. The model 1 and 8 h ozone mean biases were both 12 ppb higher than observed ozone, and maximum daily 1 h ozone mean bias was 10 ppb, indicating substantial ozone over-prediction over water. Trends in the bias with respect to location and time of day or month were also explored showing non-uniformity in model bias. Extreme ozone events were predicted by the model but not observed by ferry measurements.

  16. The Antarctic Ozone Hole

    Science.gov (United States)

    Jones, Anna E.

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For…

  17. [Monitoring and analysis of urban ozone using open path Fourier transform infrared spectrometry].

    Science.gov (United States)

    Li, Sheng; Gao, Min-guang; Zhang, Yu-jun; Liu, Wen-qing; Xu, Liang; Tong, Jing-jing; Cheng, Si-yang; Jin, Ling; Wei, Xiu-li; Wang, Ya-ping; Chen, Jun

    2011-12-01

    An ozone monitoring system was developed by the method of open path Fourier transform infrared (OP-FTIR) spectrometry based on our FTIR spectrometer. In order to improve measurement precision and detection limit, the quantitative analysis was completed to get ozone concentration by combining synthetic background spectrum method which uses information from HITRAN database and instrumental line shape, and nonlinear least squares (NLLSQ) method. The measurement methods for system detection limit were discussed and the result is 1.42 nmol x mol(-1) with sixteen times averages. The authors developed continuous monitoring experiments in the suburban area of Hefei. For the day and month measurement results, the authors analyzed their variations with the generation sources. The result has shown that this system is reliable and precise and can be used as a new device and method for national ozone monitoring.

  18. Ozone profiles and structure of lamination in Ankara, Turkey

    Science.gov (United States)

    Kahya, C.; Demirhan, D.; Topcu, S.; Incecik, S.

    2003-04-01

    The existence of the laminar layers with depleted and enhanced ozone mixing ratios in the vertical profiles of ozone has been received scientific attention. Due to the influences of the dynamic processes on the ozone mixing ratio in the lower stratosphere, laminar features are used in relation to the filaments of air shed from the dynamic processes. Stratospheric ozone observations are based on ozonesonde flown from Ankara (40^oN; 33^oE) by Turkish State Meteorological Service. Measurements of the ozone profile using ECC balloon-borne ozonesonde have been made since January 1994 at Ankara, Turkey weekly or twice in month. In this study, about 151 soundings in the measured program (Jan.1994- Dec.2001) were used for the analysis. The total ozone characteristics of Ankara are similar to the stations of located in mid-latitudes of Eastern Europe. The average value of total column ozone amount by ozone sounding is found with a 320 DU ± 43 in the period of 1994-2001 in Ankara. The laminae features in Ankara reflect the similar characteristics obtained in European mid-latitude stations. The seasonal distributions of laminae at Ankara show a peak occurrence in Spring. The numbers of laminae are found as 45, 58, 17 and 18 for winter, spring, summer and fall seasons respectively. The most of the laminae are found below 13 km. Frequency distribution magnitudes of laminae indicates 21% in 26-30 nb class. The mean magnitude and depth of the laminae is found as 45 nb and 1.1km respectively. In order to understand the influence of tropopause heights on the laminae structure, the number of laminae has been grouped according to high and low tropopause heights. The frequency of laminae for both lower and higher tropopause groups for winter and spring seasons are close. However the laminae disappearances in both summer and fall seasons for only in case of the lower tropopause. The days with the maximum laminae which are mostly occurred in winter and spring seasons have been examined

  19. Earth's Endangered Ozone

    Science.gov (United States)

    Panofsky, Hans A.

    1978-01-01

    Included are (1) a discussion of ozone chemistry; (2) the effects of nitrogen fertilizers, fluorocarbons, and high level aircraft on the ozone layer; and (3) the possible results of a decreasing ozone layer. (MR)

  20. Ozone and NOx chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI data

    Directory of Open Access Journals (Sweden)

    T. P. Canty

    2015-10-01

    Full Text Available Regulatory air quality models, such as the Community Multiscale Air Quality model (CMAQ, are used by federal and state agencies to guide policy decisions that determine how to best achieve adherence with National Ambient Air Quality Standards for surface ozone. We use observations of ozone and its important precursor NO2 to test the representation of the photochemistry and emission of ozone precursors within CMAQ. Observations of tropospheric column NO2 from the Ozone Monitoring Instrument (OMI, retrieved by two independent groups, show that the model overestimates urban NO2 and underestimates rural NO2 under all conditions examined for July and August 2011 in the US Northeast. The overestimate of the urban to rural ratio of tropospheric column NO2 for this baseline run of CMAQ (CB05 mechanism, mobile NOx emissions from the National Emissions Inventory; isoprene emissions from MEGAN v2.04 suggests this model may underestimate the importance of interstate transport of NOx. This CMAQ simulation leads to a considerable overestimate of the 2-month average of 8 h daily maximum surface ozone in the US Northeast, as well as an overestimate of 8 h ozone at AQS sites during days when the state of Maryland experienced NAAQS exceedances. We have implemented three changes within CMAQ motivated by OMI NO2 as well as aircraft observations obtained in July 2011 during the NASA DISCOVER-AQ campaign: (a the modeled lifetime of organic nitrates within CB05 has been reduced by a factor of 10, (b emissions of NOx from mobile sources has been reduced by a factor of 2, and (c isoprene emissions have been reduced by using MEGAN v2.10 rather than v2.04. Compared to the baseline simulation, the CMAQ run using all three of these changes leads to considerably better simulation of column NO2 in both urban and rural areas, better agreement with the 2-month average of daily 8 h maximum ozone in the US Northeast, fewer number of false positives of an ozone exceedance

  1. Climatic variability of the column ozone over the Iranian plateau

    Science.gov (United States)

    Mousavi, Seyyed Shafi; Farajzadeh, Manuchehr; Rahimi, Yousef Ghavidel; Bidokhti, Abbasali Aliakbari

    2017-06-01

    This study analyzes the total ozone column (TOC) variability over the Iranian plateau (Esfahan) from 1978 to 2011. Results show that the annual average of TOC in Esfahan tends to decrease with time, which is strongly dependent on the season, with maximum values during the winter-spring months (more than 2.2 %/decade). By applying a defined threshold that includes the TOC monthly -2 σ, it is found that the maximum occurrence of low ozone events (LOEs) tends to be more frequent in the second half of year with about four-fifth of the observed LOEs (last summer, autumn, and early winter). During two cases of LOE, the tropopause height (TH) was uplifted 2-4 km with temperature of 10 °C colder than the long-term mean, and the synoptic pattern was characterized by high-pressure systems in UTLS region. The extreme LOEs were consistent with the horizontal transport of ozone-poor air toward the Iranian plateau and vertical advection in UTLS region. The former mechanism plays a primary role in formation of extreme LOEs based on the observed TOC reductions during previous days over the source regions (Sahara desert and Himalaya region). Day-to-day variations of maximum UV index during LOEs show that by a decrease in TOC 14 %, while the aerosol optical depth (AOD) in the cloudless condition reach their lowest rates (lower than 0.3), UV radiation exceeds very high and extreme levels in late winter and mid-spring, respectively.

  2. Climatic variability of the column ozone over the Iranian plateau

    Science.gov (United States)

    Mousavi, Seyyed Shafi; Farajzadeh, Manuchehr; Rahimi, Yousef Ghavidel; Bidokhti, Abbasali Aliakbari

    2016-08-01

    This study analyzes the total ozone column (TOC) variability over the Iranian plateau (Esfahan) from 1978 to 2011. Results show that the annual average of TOC in Esfahan tends to decrease with time, which is strongly dependent on the season, with maximum values during the winter-spring months (more than 2.2 %/decade). By applying a defined threshold that includes the TOC monthly -2σ, it is found that the maximum occurrence of low ozone events (LOEs) tends to be more frequent in the second half of year with about four-fifth of the observed LOEs (last summer, autumn, and early winter). During two cases of LOE, the tropopause height (TH) was uplifted ~2-4 km with temperature of 10 °C colder than the long-term mean, and the synoptic pattern was characterized by high-pressure systems in UTLS region. The extreme LOEs were consistent with the horizontal transport of ozone-poor air toward the Iranian plateau and vertical advection in UTLS region. The former mechanism plays a primary role in formation of extreme LOEs based on the observed TOC reductions during previous days over the source regions (Sahara desert and Himalaya region). Day-to-day variations of maximum UV index during LOEs show that by a decrease in TOC ~14 %, while the aerosol optical depth (AOD) in the cloudless condition reach their lowest rates (lower than 0.3), UV radiation exceeds very high and extreme levels in late winter and mid-spring, respectively.

  3. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    E. Emili

    2013-08-01

    Full Text Available Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. In this study we examine the impact of assimilating ozone observations from the Microwave Limb Sounder (MLS and the Infrared Atmospheric Sounding Interferometer (IASI in a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE. The assimilation of the two instruments is performed by means of a variational algorithm (4-D-VAR and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozone-sondes measurements to verify the presence of observations and model biases. It is found that the IASI Tropospheric Ozone Column (TOC, 1000–225 hPa should be bias-corrected prior to assimilation and MLS lowermost level (215 hPa excluded from the analysis. Furthermore, a longer analysis of 6 months (July–August 2008 showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (Root Mean Square Error, RMSE of the modeled ozone columns from 30% to 15% in the Upper-Troposphere/Lower-Stratosphere (UTLS, 70–225 hPa and from 25% to 20% in the free troposphere. The positive effect of assimilating IASI tropospheric observations is very significant at low latitudes (30° S–30° N, whereas it is not demonstrated at higher latitudes. Results are confirmed by a comparison with additional ozone datasets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC data, the Ozone Monitoring Instrument (OMI total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be little sensitive to the assimilation parameters and the model chemical scheme, due to the high frequency of satellite observations compared to the average life-time of free

  4. The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009. A multi-instrument study

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, E.A.; Salvador, J.; Orte, F. [CEILAP-UNIDEF (MINDEF-CONICET), UMI-IFAECI-CNRS-3351, UMI3351, Villa Martelli (Argentina). Centro de Investigaciones en Laseres y Aplicaciones] [and others

    2012-07-01

    Record-low ozone column densities (with a minimum of 212 DU) persisted over three weeks at the Rio Gallegos NDACC (Network for the Detection of Atmospheric Composition Change) station (51.5 S, 69.3 W) in November 2009. Total ozone remained two standard deviations below the climatological mean for five consecutive days during this period. The statistical analysis of 30 years of satellite data from the Multi Sensor Reanalysis (MSR) database for Rio Gallegos revealed that such a long-lasting low-ozone episode is a rare occurrence. The event is examined using height-resolved ozone lidar measurements at Rio Gallegos, and observations from satellite and groundbased instruments. The computed relative difference between the measured total ozone and the climatological monthly mean shows reductions varying between 10 and 30% with an average decrease of 25 %. The mean absolute difference of total ozone column with respect to climatological monthly mean ozone column is around 75 DU. Extreme values of the UV index (UVI) were measured at the ground for this period, with the daily maximum UVI of around 13 on 15 and 28 November. The high-resolution MIMOSACHIM (Modelisation Isentrope du transport Meso-echelle de l'Ozone Stratospherique par Advection) model was used to interpret the ozone depletion event. An ozone decrease of about 2 ppmv was observed in mid-November at the 550 K isentropic level ({proportional_to}22 km). The position of Rio Gallegos relative to the polar vortex was classified using equivalent latitude maps. During the second week of November, the vortex was over the station at all isentropic levels, but after 20 November and until the end of the month, only the 10 lower levels in the stratosphere were affected by vortex overpasses with ozone poor air masses. A rapid recovery of the ozone column density was observed later, due to an ozone rich filament moving over Rio Gallegos between 18 and 24 km in the first two weeks of December 2009. (orig.)

  5. The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: a multi-instrument study

    Directory of Open Access Journals (Sweden)

    E. A. Wolfram

    2012-10-01

    Full Text Available Record-low ozone column densities (with a minimum of 212 DU persisted over three weeks at the Río Gallegos NDACC (Network for the Detection of Atmospheric Composition Change station (51.5° S, 69.3° W in November 2009. Total ozone remained two standard deviations below the climatological mean for five consecutive days during this period. The statistical analysis of 30 years of satellite data from the Multi Sensor Reanalysis (MSR database for Río Gallegos revealed that such a long-lasting low-ozone episode is a rare occurrence. The event is examined using height-resolved ozone lidar measurements at Río Gallegos, and observations from satellite and ground-based instruments. The computed relative difference between the measured total ozone and the climatological monthly mean shows reductions varying between 10 and 30% with an average decrease of 25%. The mean absolute difference of total ozone column with respect to climatological monthly mean ozone column is around 75 DU. Extreme values of the UV index (UVI were measured at the ground for this period, with the daily maximum UVI of around 13 on 15 and 28 November. The high-resolution MIMOSA-CHIM (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection model was used to interpret the ozone depletion event. An ozone decrease of about 2 ppmv was observed in mid-November at the 550 K isentropic level (~22 km. The position of Río Gallegos relative to the polar vortex was classified using equivalent latitude maps. During the second week of November, the vortex was over the station at all isentropic levels, but after 20 November and until the end of the month, only the 10 lower levels in the stratosphere were affected by vortex overpasses with ozone poor air masses. A rapid recovery of the ozone column density was observed later, due to an ozone rich filament moving over Río Gallegos between 18 and 24 km in the first two weeks of December 2009.

  6. Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1957−2000

    Directory of Open Access Journals (Sweden)

    D. S. Balis

    Full Text Available A number of episodes are observed when the total ozone for 2 to 3 days has fallen below 220 matm-cm in the northern mid- and polar latitudes in autumn. The occurrences of such episodes represent ozone deviations of about one-third from the pre-1976 Oct-Nov-Dec monthly mean! By using primarily quality checked Dobson data, a clear identification was made of more than three dozen short spells with extremely low ozone in the 1957–1978 period. In the following twenty-two years (1979–2000, using mainly TOMS data, one can identify ~ 46 cases with ozone values falling below 220 matm-cm for longer than 1 day, with each time over an area greater than 500,000 km2 . The Ozone Mass Deficiency (O3MD from the pre-1976 average ozone values over the affected area was ~2.8 Mt per day, i.e. four to seven times greater than it would be, assuming only a long-term trend in the Oct-Nov-Dec period. The Extremely Low Ozone (ELO3 events on the day of their appearance over the N. Atlantic/European region contribute to the O3MD by representing 16% of the deficiency due to the Oct-Nov trend in the entire 40–65° N latitudinal belt. The O3MD of the greater pool with low ozone (here taken as <260 matm-cm surrounding the area of the lowest events could contribute on the day of their appearance in Oct-Nov up to 60% and in December, ~30% to the deficiency due to the trend over the entire 40–65° N belt. Analysis of synoptic charts, supported by a backward trajectory on the isentropic surfaces 350 and 380 K, shows that in most of the events, subtropical air masses with low ozone content were transported from the Atlantic toward the UK, Scandinavia, and in many cases, further to the western sub-polar regions of Russia. This transport was sometimes combined with upward motions above a tropospheric anticyclone which lifted low ozone mixing ratios to higher altitudes. The ELO3 events cause a significant deficiency above the tropopause where, in general, the subtropical air is

  7. [Characteristics of acid red 3R wastewater treatment by ozone microbubbles].

    Science.gov (United States)

    Zhang, Jing; Du, Ya-Wei; Liu, Xiao-Jing; Zhou, Yu-Wen; Liu, Chun; Yang, Jing-Liang; Zhang, Lei

    2015-02-01

    The application of microbubble technology for ozonation wastewater treatment could enhance ozone mass transfer, improve ozonation performance and increase ozone utilization efficiency. The ozone microbubbles were used to treat synthetic acid red 3R wastewater in the present study, and compared to ozone conventional bubbles. The ozone mass transfer and ozonation characteristics of acid red 3R were investigated when ozone microbubbles and ozone conventional bubbles were applied. The results confirmed the enhanced ozone mass transfer using microbubbles. The ozone mass transfer coefficient using microbubbles was 3.6 times higher than that using conventional bubbles under the same conditions. Simultaneously, the ozone decomposition coefficient using microbubbles was 6.2 times higher than that using conventional bubbles, which would be favorable for *OH generation. The ozonation rate and mineralization efficiency of acid red 3R could be improved significantly using ozone microbubbles. A TOC removal efficiency of 78.0% was achieved using ozone microbubbles, which was about 2 times higher than that using ozone conventional bubbles. The ozone utilization efficiency using microbubbles was much higher that using conventional bubbles during ozonation treatment of acid red 3R. The average ozone utilization efficiencies were 97.8% and 69.3% when microbubbles and conventional bubbles were used, respectively. The oxidative ability of ozone microbubbles could be increased by enhancing *OH generation, and as a result, the oxidative reaction of degradation intermediates was accelerated by ozone microbubbles. Especially, the mineralization ability of small organic acid intermediates using ozone microbubbles was about 1.6 times higher than that using ozone conventional bubbles.

  8. Ozone and carbon monoxide at the Ushuaia GAW-WMO global station

    Science.gov (United States)

    Adame, Jose; Cupeiro, Manuel; Yela, Margarita; Cuevas, Emilio; Carbajal, Gerardo

    2016-04-01

    Ozone and carbon monoxide have been investigated in the GAW-WMO station of Ushuaia (Argentina), using hourly values during five years (2010-2014). This work has been developed in the framework of HELADO (Halogens in the Antarctic atmosphere and its role in the Ozone distribution) project and under the collaboration between INTA (National Institute for Aerospace Technology - Spain), SMN (National Meteorological Service - Argentina) and AEMET (State Meteorological Agency - Spain). Meteorological features have been analyzed with in-situ observations and meteorological fields from ECMWF 0.5° as spatial resolution model. These fields have been applied to compute back trajectories with HYSPLIT model. Independently of season, mostly atmospheric flows coming from W-SW (South Pacific Ocean), theses westerlies winds are associated with low pressure systems; in addition with lower frequencies are collected winds from South (Antarctic Peninsula and Weddell Sea), polar easterlies. Hourly averages of surface (in-situ) ozone and CO levels were 20±7 and 71±45 ppb respectively, typical values of remote environments. A clear seasonal pattern has been obtained for surface ozone with monthly peaks in winter of 25 ppb and minimum in summer with 12 ppb; a similar behaviour is found for CO, 93 and 48 ppb for maximum and minimum values, respectively. A weak daily cycle has been obtained in both species, amplitude for ozone of 2-4 ppb and 13-20 ppb for CO. The seasonal levels behaviour for surface ozone is also observed in upper levels, approximately from surface up to 5 km. This result has been obtained from 139 ozone profiles launched in the studied period. Since the ozone precursors and carbon monoxide emissions are low in this area, the origin of the values observed could be in the atmospheric transport processes. As hypothesis to explain the behaviour observed, we suggest that in the warm season with solar radiation, the photochemical mechanisms are active, and the elimination

  9. Tropospheric ozone columns and ozone profiles for Kiev in 2007

    CERN Document Server

    Shavrina, A V; Sheminova, V A; Synyavski, I I; Romanyuk, Ya O; Eremenko, N A; Ivanov, Yu S; Monsar, O A; Kroon, M

    2010-01-01

    We report on ground-based FTIR observations being performed within the framework of the ESA-NIVR-KNMI project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and atmospheric profiles" for the purpose of OMI data validation. FTIR observations were performed during the time frames August-October 2005, June-October 2006 and March-October 2007, mostly under cloud free and clear sky conditions and in some days from early morning to sunset covering the full range of solar zenith angles possible. Ozone column and ozone profile data were obtained for the year 2005 using spectral modeling of the ozone spectral band profile near 9.6 microns with the MODTRAN3 band model based on the HITRAN-96 molecular absorption database. The total ozone column values retrieved from FTIR observations are biased low with respect to OMI-DOAS data by 8-10 DU on average, where they have a relatively small standard error of about 2%. FTIR observations for the year 2006 were simulated by MODTRAN4 modeling. For the...

  10. Antarctic ozone loss in 1989–2010: evidence for ozone recovery?

    Directory of Open Access Journals (Sweden)

    A. Pazmiño

    2012-04-01

    Full Text Available We present a detailed estimation of chemical ozone loss in the Antarctic polar vortex from 1989 to 2010. The analyses include ozone loss estimates for 12 Antarctic ground-based (GB stations. All GB observations show minimum ozone in the late September–early October period. Among the stations, the lowest minimum ozone values are observed at South Pole and the highest at Dumont d'Urville. The ozone loss starts by mid-June at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in August–September, peaks by the end of September–early October, and recovers thereafter. The average ozone loss in the Antarctic is revealed to be about 33–50% in 1989–1992 in agreement with the increase in halogens during this period, and then stayed at around 48% due to saturation of the loss. The ozone loss in the warmer winters (e.g. 2002, and 2004 is lower (37–46% and in the colder winters (e.g. 2003, and 2006 is higher (52–55%. Because of small inter-annual variability, the correlation between ozone loss and the volume of polar stratospheric clouds yields ~0.51. The GB ozone and ozone loss values are in good agreement with those found from the space-based observations of the Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI, the Global Ozone Monitoring Experiment (GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY, and the Aura Microwave Limb Sounder (MLS, where the differences are within ±5% and are mostly within the error bars of the measurements. The piece-wise linear trends computed from the September–November vortex average GB and TOMS/OMI ozone show about −4 to −5.6 DU (Dobson Unit yr−1 in 1989–1996 and about +1 DU yr−1 in 1997–2010. The trend during the former period is significant at 95% confidence intervals, but the trend in 1997–2010 is significant only at 85% confidence intervals. Our analyses suggest a period of about 9–10

  11. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  12. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Science.gov (United States)

    Austin, J.; Hood, L. L.; Soukharev, B. E.

    2007-03-01

    The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean) and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  13. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Evora Univ. (PT). Goephysics Centre of Evora (CGE); Lopez, M.; Banon, M. [Agenica Estatal de Meteorologia (AEMET), Madrid (Spain); Costa, M.J.; Silva, A.M. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Evora Univ. (Portugal). Dept. of Physics; Serrano, A. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Bortoli, D. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75 . In addition, the relative differences remain lower than 2% at 85 . These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7{+-}1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80 . Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes. (orig.)

  14. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    Science.gov (United States)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  15. Spatial Heterogeneity in Tropospheric Column Ozone over the Indian Subcontinent: Long-Term Climatology and Possible Association with Natural and Anthropogenic Activities

    Directory of Open Access Journals (Sweden)

    Gayatry Kalita

    2011-01-01

    Full Text Available Monthly averaged tropospheric ozone residual (TOR data from TOMS and OMI during the period 1979–2009 are used to study the spatial distribution of tropospheric column ozone within the landmass of the Indian subcontinent, the Tibetan plateau in the north and the Bay of Bengal in the south. The climatological mean shows seasonal maxima in spring and minima in winter in all the regions. The oceanic regions exhibit broad summer maximum and the maximum to minimum ratio is the lowest for these regions. The concentration of tropospheric column ozone is found to be highest in North Eastern India (NE and the Indo Gangetic plains (IGP. NE ozone concentration exceeds that of IGP during spring whereas in post monsoon and winter reverse is the case. In the monsoon season, O3 levels in the two regions are equal. The spring time highest level of tropospheric column ozone over NE region is found to be associated with highest incidence of lightning and biomass burning activity. The Stratosphere-Troposphere exchange is also found to contribute to the enhanced level of ozone in spring in NE India. A net decrease in tropospheric ozone concentration over NE during the period 1979 to 2009 has been observed.

  16. Long-term variation in surface ozone and its precursors in Athens, Greece: a forecasting tool.

    Science.gov (United States)

    Varotsos, Costas A; Efstathiou, Maria N; Kondratyev, Kirill Ya

    2003-01-01

    Photochemical pollution is a very complex process involving meteorological, topographic, emission and chemical parameters. The most important chemical mechanisms involved in the atmospheric process have already been identified and studied. However, many unknown parameters still exist because of the large number of participating chemical reactions. The present study investigates the processes involved in the photochemical pollution effect of an urban station located in the greater area of the Athens basin and gives a plausible explanation for the different seasonal ozone development between that station and another rural one. Furthermore, the distribution of the mean monthly surface ozone observed at the urban station during 1987-2001 is examined in order to create a relevant forecasting tool. Averaged hourly data of O3 and NOx observations monitored at the above mentioned stations, during 1987-2001, have been used in order to derive the daytime (7:00-15:00) values. Trajectories calculated by using a 2D-trajectory code and meteorological data, during the period 1988-1996, have also been used. At the urban station, the percentage negative trend of NO and NOx data in winter and summer is higher than that in spring and autumn, while the percentage ozone trend is maximum in the summer. On the contrary, the negative surface ozone trend at the rural station exhibits a minimum in summer and a maximum in autumn and winter. The mean seasonal wind-rose for the selected months shows that the northward wind flow dominates during June, the month of the lowest negative ozone trend in the rural station. Finally, the development of the forecasting tool shows that the mean monthly surface ozone data during the period (1987-2001) demonstrates a semi-log distribution. Air transport effect on the air pollution of the rural station (not blocked by mountains) is deduced as a possible reason for the different seasonal ozone development observed between the rural and the urban station

  17. Compilation of Global Surface Ozone Observations for Earth System Model Trend Evaluation

    Science.gov (United States)

    Sofen, E. D.; Evans, M. J.

    2014-12-01

    Tropospheric ozone is detrimental to human health and ecosystems, is a greenhouse gas, and plays a role in removing pollutants from the atmosphere. Since the first observations of its concentration in the late 19th century, it has been measured by a range of different approaches (surface instrumental, sondes, satellites). In the last 40 years, global (WMO GAW) and regional networks (EMEP, CASTNET, ...) have been initiated to measure its surface concentration. For data analysis and model comparisons a synthesis of all of this data needs to be undertaken. In this work we collate these observations into a single dataset with some initial quality control and handling of meta-data. We can then generate a range of products (means, medians, percentiles, standard deviations, AOT40, SUMO35, etc.) over a range of timescales (hourly, daily, monthly, annual) on user specified grids suitable for data analysis and model evaluation. We apply objective statistical techniques developed by the paleoclimate reconstruction community to interpolate the data spatially to reconstruct a global map and time series of surface ozone. Novelly, we use global chemical transport model output to infer each measurement's spatial representativeness to account for lifetime and meteorology. We present results of the global interpolation and global and regional averages in surface ozone over the past 40 years and compare them to models. We find that the observational coverage peaked around the year 2002 with good coverage over the northern midlatitudes and Antarctica but poor coverage over the tropics and Southern Hemisphere subtropics due to both the lack of observations and the short lifetime of tropical ozone. Significantly more ozone observations are made globally than are reported to the international datasets reducing the usefulness of these individual observations and making understanding ozone on both regional and global scale more difficult. New observations of surface ozone through the

  18. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-01-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing a weighted all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.7%/decade in the Northern Hemisphere and −7.8%/decade in the Southern Hemisphere. For the period 1997 to 2008 we find that the southern mid-latitudes between 35 and 45 km show the largest ozone recovery (+3.4%/decade compared to other global regions, although the estimated trend model error is of a similar magnitude (+2.1%/decade, at the 95% confidence level. An all instrument average is also constructed from water vapour anomalies during 1984–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004 in the lower tropical stratosphere (20–25 km, and has even shown signs of increasing values in upper stratospheric mid

  19. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  20. Ozone profiles above Palmer Station, Antarctica

    Science.gov (United States)

    Torres, Arnold L.; Brothers, George

    1988-01-01

    NASA's Goddard Space Flight Center/Wallops Flight Facility conducted a series of 52 balloon-borne measurements of vertical ozone profiles over the National Science Foundation (NSF) research facility at Palmer Station, Antarctica (64 deg 46 S, 64 deg 3 W) between August 9 and October 24, 1987. High resolution measurements were made from ground level to an average of 10 mb. While much variation was seen in the profile amounts of ozone, it is clear that a progressive depletion of ozone occurred during the measurement period, with maximum depletion taking place in the 17 to 19 km altitude region. Ozone partial pressures dropped by about 95 percent in this region. Shown here are plotted time dependences of ozone amounts observed at 17 km and at arbitrarily selected altitudes below (13 km) and above (24 km) the region of maximum depletion. Ozone partial pressure at 17 km is about 150nb in early August, and has decreased to less than 10nb in the minimums in October. The loss rate is of the order of 1.5 percent/day. In summary, a progressive depletion in stratospheric ozone over Palmer Station was observed from August to October, 1987. Maximum depletion occurred in the 17 to 19 km range, and amounted to 95 percent. Total ozone overburden decreased by up to 50 percent during the same period.

  1. Differences in ozone photochemical characteristics between the megacity Tianjin and its rural surroundings

    Science.gov (United States)

    Han, Su-qin; Zhang, Min; Zhao, Chun-sheng; Lu, Xue-qiang; Ran, Liang; Han, Meng; Li, Pei-yan; Li, Xiang-jin

    2013-11-01

    Ground level ozone and its precursors were measured from July 10 to September 30, 2009 within Tianjin. The data were used to analyze differences in ozone photochemical oxidant production in urban and rural areas. Results showed more pronounced risk of O3 exposure at the rural site, Wuqing. During the observation period, ozone varied monthly, peaking in Jul. and reaching a minimum in Sep. The daily maximum ozone concentration was found to exceed 80 ppb for 28 days 100 ppb for 12 days, 120 ppb for 7 days at Wuqing, while it exceeded 80 ppb for 10 days, 100 ppb for 2 days, and 120 ppb for 1 day at the urban site, Tieta. The daily maximum ozone concentrations at Wuqing and Tieta were 193.7 ppb and 130.4 ppb. The daily maximum ozone concentration occurred at noon in Tieta and at 14:00 in Wuqing. NO and NOx peaked in September and reached minimum values in Jul., CO showed little variation at both sites. NOx and CO showed similar double-peak diurnal cycles resulted from a combination of diurnal variation of emission and the Planetary Boundary Layer During the VOCs (volatile organic compounds) sampling period, the average total VOCs concentration showed considerable day to day variation, which was 87.91 ppb with a range of 27.2 ppb-437.3 ppb at Tieta, and the average total VOCs was 197.95 ppb with a range of 63.48 ppb-473.97 ppb at Wuqing. A sensitivity study performed with the NCAR-MM model showed alkenes to be the most numerous contributors to O3 production, accounting for 53.3% of the total. Aromatics and alkanes accounted for 35.1% and 9.2%, respectively.

  2. Ozone measurements 2010. [EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hjellbrekke, Anne-Gunn; Solberg, Sverre; Fjaeraa, Ann Mari

    2012-07-01

    From the Introduction: Ozone is a natural constituent of the atmosphere and plays a vital role in many atmospheric processes. However, man-made emissions of volatile organic compounds and nitrogen oxides have increased the photochemical formation of ozone in the troposphere. Until the end of the 1960s the problem was basically believed to be one of the big cities and their immediate surroundings. In the 1970s, however, it was found that the problem of photochemical oxidant formation is much more widespread. The ongoing monitoring of ozone at rural sites throughout Europe shows that episodes of high concentrations of ground-level ozone occur over most parts of the continent every summer. During these episodes the ozone concentrations can reach values above ambient air quality standards over large regions and lead to adverse effects for human health and vegetation. Historical records of ozone measurements in Europe and North America indicate that in the last part of the nineteenth century the values were only about half of the average surface ozone concentrations measured in the same regions during the last 10-15 years (Bojkov, 1986; Volz and Kley, 1988).The formation of ozone is due to a large number of photochemical reactions taking place in the atmosphere and depends on the temperature, humidity and solar radiation as well as the primary emissions of nitrogen oxides and volatile organic compounds. Together with the non-linear relationships between the primary emissions and the ozone formation, these effects complicates the abatement strategies for ground-level ozone and makes photochemical models crucial in addition to the monitoring data. The 1999 Gothenburg Protocol is designed for a joint abatement of acidification, eutrophication and ground-level ozone. It has been estimated that once the Protocol is implemented, the number of days with excessive ozone levels will be halved and that the exposure of vegetation to excessive ozone levels will be 44% down on 1990

  3. Association of short-term exposure to ground-level ozone and respiratory outpatient clinic visits in a rural location – Sublette County, Wyoming, 2008–2011

    Energy Technology Data Exchange (ETDEWEB)

    Pride, Kerry R., E-mail: hgp3@cdc.gov [Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA (United States); Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Peel, Jennifer L. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 (United States); Robinson, Byron F. [Scientific Education and Professional Development Program Office, Office of Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, E-92, Atlanta, GA 30333 (United States); Busacker, Ashley [Field Support Branch, Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Grandpre, Joseph [Chronic Disease Epidemiologist, Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Bisgard, Kristine M. [Scientific Education and Professional Development Program Office, Office of Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, 600 Clifton Road, NE, E-92, Atlanta, GA 30333 (United States); Yip, Fuyuen Y. [Air Pollution and Respiratory Disease Branch, Centers for Disease Control and Prevention, 600 Clifton Rd, NE, E-92, Atlanta, GA 30333 (United States); Murphy, Tracy D. [Wyoming Department of Health, 101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States)

    2015-02-15

    Objective: Short-term exposure to ground-level ozone has been linked to adverse respiratory and other health effects; previous studies typically have focused on summer ground-level ozone in urban areas. During 2008–2011, Sublette County, Wyoming (population: ~10,000 persons), experienced periods of elevated ground-level ozone concentrations during the winter. This study sought to evaluate the association of daily ground-level ozone concentrations and health clinic visits for respiratory disease in this rural county. Methods: Clinic visits for respiratory disease were ascertained from electronic billing records of the two clinics in Sublette County for January 1, 2008–December 31, 2011. A time-stratified case-crossover design, adjusted for temperature and humidity, was used to investigate associations between ground-level ozone concentrations measured at one station and clinic visits for a respiratory health concern by using an unconstrained distributed lag of 0–3 days and single-day lags of 0 day, 1 day, 2 days, and 3 days. Results: The data set included 12,742 case-days and 43,285 selected control-days. The mean ground-level ozone observed was 47±8 ppb. The unconstrained distributed lag of 0–3 days was consistent with a null association (adjusted odds ratio [aOR]: 1.001; 95% confidence interval [CI]: 0.990–1.012); results for lags 0, 2, and 3 days were consistent with the null. However, the results for lag 1 were indicative of a positive association; for every 10-ppb increase in the 8-h maximum average ground-level ozone, a 3.0% increase in respiratory clinic visits the following day was observed (aOR: 1.031; 95% CI: 0.994–1.069). Season modified the adverse respiratory effects: ground-level ozone was significantly associated with respiratory clinic visits during the winter months. The patterns of results from all sensitivity analyzes were consistent with the a priori model. Conclusions: The results demonstrate an association of increasing ground

  4. Variability of ozone near the tropopause from GASP data

    Science.gov (United States)

    Nastrom, G. D.

    1978-01-01

    The first 22 months of ozone data from the Global Atmospheric Sampling Program are summarized. Variations in space and time were examined at nearly all scales permitted by the data. Case studies in the tropics suggest that local ozone maxima may be found in or near clouds. Preliminary seasonal mean maps of ozone during spring are presented for the Northern Hemisphere. In the troposphere over the United States during summer there is a distinct midcontinental ozone maximum. There is a diurnal variation in ozone in the upper troposphere and the daily range is about 5 ppbv. Correlations between ozone and other variables are given for the synoptic-scale and on a hemispheric scale. The possible bearing of these results on ozone transport computations is discussed.

  5. Emergence of healing in the Antarctic ozone layer.

    Science.gov (United States)

    Solomon, Susan; Ivy, Diane J; Kinnison, Doug; Mills, Michael J; Neely, Ryan R; Schmidt, Anja

    2016-07-15

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or "healing") is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.

  6. Emergence of healing in the Antarctic ozone layer

    Science.gov (United States)

    Solomon, Susan; Ivy, Diane J.; Kinnison, Doug; Mills, Michael J.; Neely, Ryan R.; Schmidt, Anja

    2016-07-01

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.

  7. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J.; Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1995-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  8. Investigation of the structure and dynamics of the ozone layer in the Eastern Arctic region during EASOE Campaign

    Science.gov (United States)

    Khattatov, V.; Yushkov, V.; Rudakov, V.; Zaitsev, I.; Rosen, J.; Kjome, N.

    1994-01-01

    Balloon measurements of the vertical distribution of ozone and aerosol were made at Dickson Island (73 deg N, 81 deg E), Kiruna (68 deg N, 20 deg E) and Heiss Island (81 deg N, 58 deg E) from December 1991 to March 1992. To acquire data on the seasonal variability of the vertical ozone distribution, electrochemical ozonesondes ECC-4A were flown three times a week. With ozonesondes on the same balloons, backscattersondes were flown on the average of two or three times per month. Using these instruments, altitude profiles of backscatter ratio were measured at two wavelengths centered at 490 nm and 940 nm. Additionally, at Heiss Island, Dickson, and Yakutsk (63 deg N, 130 deg E) regular total ozone measurements were obtained using Brewer spectrophotometers. Based on measurements of backscatter ratio it was found that after the Pinatubo eruption in June 1991 significant amount of stratospheric aerosols were formed and transported to the Arctic before the polar vortex was well developed. Analysis of ozone data has shown a deep decrease of ozone concentration in the lower stratosphere in times of intensive transportation of air masses from low latitudes to the polar region in the second half of January and also for some periods in February and March of 1992. When the values of backscatter ratio beta were more than 8-10 at a wavelength of 940 nm strong anticorrelation occurred between aerosol loading and ozone concentration in the lower stratosphere. At 50-70 deg N, the mean monthly values of total ozone in winter-spring 1992 proved to be much lower than the climatic mean values.

  9. Ozone measurements in Zagreb, Croatia, at the end of 19{sup th} century compared to the present data

    Energy Technology Data Exchange (ETDEWEB)

    Lisac, Inga; Vujnovic, Vladis; Marki, Antun [Andrija Mohorovicic Geophysical Inst., Univ. of Zagreb (Croatia)

    2010-04-15

    Surface ozone measurements at the Zagreb-Gric Meteorological Observatory (founded in 1861), applying the Schoenbein colorimetric method, were introduced at the end of the 19{sup th} century (1889-1900), at the time of the city's most intensive development. The data measured in 11 (0-10) grade Schoenbein scale were published in the Observatory annual journals. The well-known geophysicist, Andrija Mohorovicic, then a leader of the Observatory, supervised the surface ozone measurements. The ozone data, converted into quantitative units (ppb (the symbol ppb in the text relates to volume ratios (ppbv)), which differ from mass ratios (ppbm), but as only volume ratios are used in the article, the simple unit symbol ppb is used.) after applying several statistical tests for the data quality check, were compared with recent ozone data. These first results, including the conversion method used, were published. In our study some additional quality data tests and ozone data comparisons were made, and a description of significant environmental conditions surrounding the measuring site in Zagreb was presented. A comparison between the multiannual data from the pre-industrial period and the ones from the recent multiannual period was made, based on annual and monthly averages. The average value of the surface ozone at the end of the 20{sup th} century (1989-1994) in Zagreb is by 24% higher compared to the end of the 19{sup th} century. The rise relates to daily maxima in both time series. A bi-modal shape of the annual run of the surface ozone monthly average was found in the older as well as in the more recent data sets. The position of the primary maximum in the cold part of the year (winter/spring) during the last decade of the 19{sup th} century points at the rural surface-air characteristics. The annual primary maximum during the recent observation period was found in the summer months, and it demonstrates an increase in air pollution, mostly of anthropogenic origin

  10. Ozone depletion at northern and southern latitudes derived from January 1979 to December 1991 Total Ozone Mapping Spectrometer data

    Science.gov (United States)

    Herman, J. R.; Mcpeters, R.; Larko, D.

    1993-01-01

    An extended version of the Nimbus 7/TOMS ozone data set from the period January 1, 1979 to December 31, 1991 is presented. It is shown that the ozone-trend data indicate that regions of enhanced ozone depletion rates have formed at middle and high latitudes during recent years. The seasonal dependence and geographical extent of the enhanced ozone-depletion rates for the Northern and Southern hemispheres are examined. The variability of the long-term ozone trend determination is discussed via consideration of the differences among 11-, 12-, and 13-yr trend calculations. The effects of the Mount Pinatubo eruption and other volcanic eruptions on the TOMS equatorial zonal average ozone measurements, and its influence on long-term trend determinations are discussed. On the basis of a determination of the aerosol phase function using TOMS data, the effect of stratospheric aerosols on determination of ozone amounts from TOMS are shown to be less than 1 percent.

  11. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  12. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2012-09-01

    Full Text Available Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into a Geostationary (GEO platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on tropospheric ozone retrievals is insignificant. However, the stratospheric ozone information decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ∼1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ∼20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those between OMI and MLS above ∼3 hPa (∼40 km except with slightly larger biases and larger

  13. Averaged Electroencephalic Audiometry in Infants

    Science.gov (United States)

    Lentz, William E.; McCandless, Geary A.

    1971-01-01

    Normal, preterm, and high-risk infants were tested at 1, 3, 6, and 12 months of age using averaged electroencephalic audiometry (AEA) to determine the usefulness of AEA as a measurement technique for assessing auditory acuity in infants, and to delineate some of the procedural and technical problems often encountered. (KW)

  14. Effects of Zonal Wind on Stratospheric Ozone Variations over Nigeria

    Science.gov (United States)

    Chidinma Okoro, Eucharia,

    2016-07-01

    The effects of zonal wind on stratospheric ozone variation over Nigeria have been studied. The areas covered in this study include; Maiduguri, Ikeja, Port-Harcourt, Calabar, Makurdi, Ilorin, Akure, Yola, Minna, Jos, Kano and Enugu in Nigeria, from 1986 to 2008. Zonal wind was computed from the iso-velocity map employing MATLAB software. The mean monthly variations of AAM and LOD at pressure levels of 20, 30 and 50 mb in the atmosphere depict a trend of maximum amplitude between April and September, and minimum amplitude between December and March. The trend observed in seasonal variation of O3 column data in the low latitude had maximum amount from May through August and minimum values from December through February. The mean monthly maximum O3 concentrations was found to be 284.70 Du (Kano) occurring in May 1989 while, an average monthly minimum O3 concentration was found to be 235.60 Du (Port-Harcourt and Calabar) occurring in January 1998. It has been established in this study that, the variation in atmospheric angular momentum (AAM) caused by variation of the universal time or length of day (LOD) transfer ozone (O3) by means of zonal wind from the upper troposphere to the lower stratosphere in the stations understudy. The strong effect of the pressure levels of the atmosphere on O3 variation could be attributed to its effect on the AAM and LOD. Variation in the LOD is significant in the tropics, suggesting that, the effects of the extra-tropical suction pump (ETSP) action is not the only driver responsible for O3 transportation from the tropics to extra-tropical zones. Consequently, these findings lead to a deduction that weather pattern alteration observed due to these changes could lead to climate change. Keywords: ozone variations; dynamical processes; harmattan wind; ETSP; and climatic variability

  15. Options to accelerate ozone recovery:ozone and climate benefits

    Directory of Open Access Journals (Sweden)

    J. S. Daniel

    2010-04-01

    Full Text Available Hypothetical reductions in future emissions of ozone-depleting substances (ODSs, including N2O, are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC, globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact that regulations already in force have had. If all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1–2{%} during the period 2030–2100 compared to a case of no additional ODS restrictions. Radiative forcing by 2100 would be about 0.23 W/m2 lower due to the elimination of N2O emissions and about 0.005 W/m2 lower due to destruction of the chlorofluorocarbon (CFC bank. The ability of EESC to be a suitable metric for total ozone is also quantified. Responding to the recent suggestion that N2O should be considered an ODS, we provide an approach to incorporate N2O into the EESC formulation.

  16. GOME-2 total ozone columns from MetOp-A/MetOp-B and assimilation in the MACC system

    Directory of Open Access Journals (Sweden)

    N. Hao

    2014-03-01

    Full Text Available The two Global Ozone Monitoring Instrument (GOME-2 sensors operated in tandem are flying onboard EUMETSAT's MetOp-A and MetOp-B satellites, launched in October 2006 and September 2012 respectively. This paper presents the operational GOME-2/MetOp-A (GOME-2A and GOME-2/MetOp-B (GOME-2B total ozone products provided by the EUMETSAT Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF. These products are generated using the latest version of the GOME Data Processor (GDP version 4.7. The enhancements in GDP 4.7, including the application of Brion–Daumont–Malicet ozone absorption cross-sections, are presented here. On a global scale, GOME-2B has the same high accuracy as the corresponding GOME-2A products. There is an excellent agreement between the ozone total columns from the two sensors, with GOME-2B values slightly lower with a mean difference of only 0.55 ± 0.29%. First global validation results for 6 months of GOME-2B total ozone using ground-based measurements show that on average the GOME-2B total ozone data obtained with GDP 4.7 slightly overestimate Dobson observations by about 2.0 ± 1.0% and Brewer observations by about 1.0 ± 0.8%. It is concluded that the total ozone columns (TOCs provided by GOME-2A and GOME-2B are consistent and may be used simultaneously without introducing trends or other systematic effects. GOME-2A total ozone data have been used operationally in the Copernicus atmospheric service project MACC-II (Monitoring Atmospheric Composition and Climate – Interim Implementation near-real-time (NRT system since October 2013. The magnitude of the bias correction needed for assimilating GOME-2A ozone is reduced (to about −6 DU in the global mean when the GOME-2 ozone retrieval algorithm changed to GDP 4.7.

  17. Ozone Climate Penalty and Mortality in a Changing World

    Science.gov (United States)

    Hakami, A.; Zhao, S.; Pappin, A.; Mesbah, M.

    2013-12-01

    The expected increase in ozone concentrations with temperature is referred to as the climate penalty factor (CPF). Observed ozone trends have resulted in estimations of regional CPFs in the range of 1-3 ppb/K in the Eastern US, and larger values around the globe. We use the adjoint of a regional model (CMAQ) for attributing changes in ozone mortality and attainment metrics to increased temperature levels at each location in North America during the summer of 2007. Unlike previous forward sensitivity analysis studies, we estimate how changes in temperatures at various locations influence such policy-relevant metrics. Our analysis accounts for separate temperature impact pathways through gas-phase chemistry, moisture abundance, and biogenic emissions. We find that water vapor impact, while mostly negative, is positive and large for temperature changes in urban areas. We also find that increased biogenic emissions plays an important role in the overall temperature influence. Our simulations show a wide range of spatial variability in CPFs between -0.4 and 6.2 ppb/K with largest values in urban areas. We also estimate mortality-based CPFs of up to 4 deaths/K for each grid cell, again with large localization in urban areas. This amounts to an estimated 370 deaths/K for the 3-month period of the simulation. We find that this number is almost equivalent to 5% reduction in anthropogenic NOx emissions for each degree increase in temperature. We show how the CPF will change as the result progressive NOx emission controls from various anthropogenic sectors and sources at different locations. Our findings suggest that urban NOx control can be regarded as an adaptation strategy with regards to ozone air quality. Also, the strong temperature dependence in urban environments suggests that the health and attainment burden of urban heat island may be more substantial than previously thought. Spatial distribution of average adjoint-based CPFs Adjoint-based CPF and Mortality CPF

  18. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  19. 2003 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  20. 1996 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  1. 2000 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  2. Basic Ozone Layer Science

    Science.gov (United States)

    Learn about the ozone layer and how human activities deplete it. This page provides information on the chemical processes that lead to ozone layer depletion, and scientists' efforts to understand them.

  3. Ozone Layer Protection

    Science.gov (United States)

    ... Search Search Ozone Layer Protection Share Facebook Twitter Google+ Pinterest Contact Us Ozone Layer Protection Welcome to ... Managing Refrigerant Emissions Stationary Refrigeration and Air Conditioning Car and Other Mobile Air Conditioning GreenChill Partnership Responsible ...

  4. 环境空气中臭氧API评价探讨%Study on Air Ozone API Evaluation

    Institute of Scientific and Technical Information of China (English)

    徐建平

    2012-01-01

    Air ozone API evaluation is considered that area of influence on ozone concentration exceed ambient air quality, ozone API correction on hours on ozone concentration exceed ambient air quality and Ozone average concentration exceed ambient air quality.%环境空气中臭氧API评价应考虑臭氧超标影响范围、臭氧超标小时数和超标平均浓度对臭氧API修正.

  5. Surface ozone measurements using differential absorption lidar

    Science.gov (United States)

    Jain, Sohan L.; Arya, B. C.; Ghude, Sachin D.; Arora, Arun K.; Sinha, Randhir K.

    2005-01-01

    Human activities have been influencing the global atmosphere since the beginning of the industrial era, causing shifts from its natural state. The measurements have shown that tropospheric ozone is increasing gradually due to anthropogenic activities. Surface ozone is a secondary pollutant, its concentration in lower troposphere depends upon its precursors (CO, CH4, non methane hydrocarbons, NOx) as well as weather and transport phenomenon. The surface ozone exceeding the ambient air quality standard is health hazard to human being, animal and vegetation. The regular information of its concentrations on ground levels is needed for setting ambient air quality objectives and understanding photo chemical air pollution in urban areas. A Differential Absorption Lidar (DIAL) using a tunable CO2 laser has been designed and developed at National Physical Laboratory, New Delhi, to monitor water vapour, surface ozone, ammonia, ethylene etc. Some times ethylene and surface ozone was found to be more than 40 ppb and 140 ppb respectively which is a health hazard. Seasonal variation in ozone concentrations shows maximum in the months of summer and autumn and minimum in monsoon and winter months. In present communication salient features of experimental set up and results obtained will be presented in detail.

  6. The effects of global changes upon regional ozone pollution in the United States

    Science.gov (United States)

    Chen, J.; Avise, J.; Lamb, B.; Salathé, E.; Mass, C.; Guenther, A.; Wiedinmyer, C.; Lamarque, J.-F.; O'Neill, S.; McKenzie, D.; Larkin, N.

    2009-02-01

    A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two 10-year simulations: 1990-1999 as a present-day base case and 2045-2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H) ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC) A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC) due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2) and VOC (volatile organic carbon) emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045-2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%). The changes were higher in the spring and winter (25%) and smaller in the summer (17%). The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone season was projected to increase with

  7. The effects of global changes upon regional ozone pollution in the United States

    Directory of Open Access Journals (Sweden)

    J. Chen

    2009-02-01

    Full Text Available A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2, coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model and CMAQ (Community Multi-scale Air Quality model. The modeling system was applied for two 10-year simulations: 1990–1999 as a present-day base case and 2045–2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2 and VOC (volatile organic carbon emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045–2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%. The changes were higher in the spring and winter (25% and smaller in the summer (17%. The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone

  8. An estimation of ozone flux in a stratosphere-troposphere exchange event

    Institute of Scientific and Technical Information of China (English)

    CUI Hong; ZHAO Chunsheng; QIN Yu; ZHENG Xiangdong; ZHENG Yongguang; CHAN Chuen Yu; CHAN Lo Yin

    2004-01-01

    A new method based on mass fluxes and observed ozone profiles was developed to estimate cross- tropopause ozone flux. Using this method, we estimated the cross-tropopause ozone flux in a stratospheric-tropospheric exchange event that occurred over East Asia in March 2001. The result revealed that the ozone flux across the tropopause in this event was an order of magnitude higher than the global and hemispheric average. Compared to the traditional method using a linear relationship between ozone mixing ratio and potential vorticity near the tropopause, the cross-tropopause ozone flux evaluated with ozonesonde data was somewhat higher, although the orders of the two values were the same.

  9. Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs

    Directory of Open Access Journals (Sweden)

    H. Garny

    2011-01-01

    Full Text Available Chemistry-climate models (CCMs are commonly used to simulate the past and future development of Earth's ozone layer. The fully coupled chemistry schemes calculate the chemical production and destruction of ozone interactively and ozone is transported by the simulated atmospheric flow. Due to the complexity of the processes acting on ozone it is not straightforward to disentangle the influence of individual processes on the temporal development of ozone concentrations. A method is introduced here that quantifies the influence of chemistry and transport on ozone concentration changes and that is easily implemented in CCMs and chemistry-transport models (CTMs. In this method, ozone tendencies (i.e. the time rate of change of ozone are partitioned into a contribution from ozone production and destruction (chemistry and a contribution from transport of ozone (dynamics. The influence of transport on ozone in a specific region is further divided into export of ozone out of that region and import of ozone from elsewhere into that region. For this purpose, a diagnostic is used that disaggregates the ozone mixing ratio field into 9 separate fields according to in which of 9 predefined regions of the atmosphere the ozone originated. With this diagnostic the ozone mass fluxes between these regions are obtained. Furthermore, this method is used here to attribute long-term changes in ozone to chemistry and transport. The relative change in ozone from one period to another that is due to changes in production or destruction rates, or due to changes in import or export of ozone, are quantified. As such, the diagnostics introduced here can be used to attribute changes in ozone on monthly, interannual and long-term time-scales to the responsible mechanisms. Results from a CCM simulation are shown here as examples, with the main focus of the paper being on introducing the method.

  10. A novel tropopause-related climatology of ozone profiles

    NARCIS (Netherlands)

    Sofieva, V.F.; Tamminen, J.; Kyrola, E.; Mielonen, T.; Veefkind, J.P.; Hassler, B.; Bodeker, G.E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local tropopaus

  11. First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system

    Directory of Open Access Journals (Sweden)

    J. Hadji-Lazaro

    2009-07-01

    Full Text Available With the use of data assimilation, we study the quality of the Infrared Atmospheric Sounding Interferometer (IASI total ozone column measurements. The IASI data are provided by the inversion of IASI radiances performed at the Laboratoire ATmosphères, Milieux, Observations Spatiales (LATMOS. This data set is initially compared on a five-month period to a three-dimensional time varying ozone field that we take as a reference. This reference field results from the combined assimilation of ozone profiles from the Microwave Limb Sounder (MLS instrument and of total ozone columns from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY instrument. It has low systematic and random errors when compared to ozonesondes and Ozone Monitoring Instrument (OMI data. The comparison shows that on average, the LATMOS-IASI data tends to overestimate the total ozone columns by 2% to 8%. The random observation error of the LATMOS-IASI data is estimated to about 7%, except over polar regions and deserts where it is higher. The daytime data have generally lower biases but higher random error than the nighttime data. Using this information, the LATMOS-IASI data are then assimilated, combined with the MLS data. This first LATMOS-IASI data assimilation experiment shows that the resulting analysis is quite similar to the one obtained from the combined MLS and SCIAMACHY data assimilation. The differences are mainly due to the lack of SCIAMACHY measurements during polar night, and to the higher LATMOS-IASI random errors especially over the southern polar region.

  12. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    Science.gov (United States)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets

  13. Simple measures of ozone depletion in the polar stratosphere

    Directory of Open Access Journals (Sweden)

    R. Müller

    2008-01-01

    Full Text Available We investigate the extent to which quantities that are based on total column ozone are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO and also to assess the performance of chemistry-climate models. The most commonly considered quantities are March and October mean column ozone poleward of geometric latitude 63° and the spring minimum of daily total ozone minima poleward of a given latitude. Particularly in the Arctic, the former measure is affected by vortex variability and vortex break-up in spring. The minimum of daily total ozone minima poleward of a particular latitude is debatable, insofar as it relies on one single measurement or model grid point. We find that, for Arctic conditions, this minimum value often occurs in air outside the polar vortex, both in the observations and in a chemistry-climate model. Neither of the two measures shows a good correlation with chemical ozone loss in the vortex deduced from observations. We recommend that the minimum of daily minima should no longer be used when comparing polar ozone loss in observations and models. As an alternative to the March and October mean column polar ozone we suggest considering the minimum of daily average total ozone poleward of 63° equivalent latitude in spring (except for winters with an early vortex break-up. Such a definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex break-up on ozone loss measures. Further, this measure shows a reasonable correlation (r=–0.75 with observed chemical ozone loss. Nonetheless, simple measures of polar ozone loss must be used with caution; if possible, it is preferable to use more sophisticated measures that include additional information to disentangle the impact of transport and chemistry on ozone.

  14. Monitoring and future projections of the Antarctic Ozone Hole using the new Ozone Mapping and Profiler Suite (OMPS)

    Science.gov (United States)

    Kramarova, N. A.; Newman, P. A.; Nash, E. R.; Bhartia, P. K.; McPeters, R. D.; Rault, D. F.; Seftor, C. J.; Xu, P.

    2013-12-01

    Using the new Ozone Mapping and Profiler Suite (OMPS), launched October 2011 on board the Suomi National Polar-orbiting Partnership satellite, we have studied the structure and evolution of the 2012 and 2013 ozone holes. The 1st ozone hole observations by OMPS began in 2012. We quality check the OMPS measurements by comparing to other satellite instruments (Aura MLS, OMI and SBUV) and ozone sonde balloon measurements. The comparisons reveal that OMPS is producing excellent Antarctic ozone hole information, and, thus, OMPS data can be used to continue the historical record of Antarctic ozone observations. In 2012 the ozone hole developed quite normally in the August to-late September 2012 period, but disappeared much more rapidly during the late-September to November period than it would be expected in a normal year. This resulted in the second weakest ozone hole observed since 1988. Some have suggested that the rapid 2012 disappearance is evidence that the Montreal Protocol is working. However, the development of the ozone hole in August and September is largely driven by chlorine and bromine from human-produced compounds, and the normal development of the ozone hole in August-September 2012 suggests that chlorine and bromine levels were roughly the same as previous years. At the same time, observations from meteorological data show that there were stronger than average weather systems, faster warming during the September -November period, and stronger vertical motions, that led to a rapid decay of the 2012 ozone hole. Hence, the weak ozone hole of 2012 is not evidence that the Montreal Protocol has impacted the ozone hole. The characteristics of the 2013 ozone hole, as observed by OMPS, will also be shown in the presentation. Model predictions suggest that the ozone hole will begin showing signs of recovery in about 2018, and it will be fully recovered back to 1980 levels in about 2065. We will update projections of the ozone hole recovery using a parametric model

  15. Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

    Directory of Open Access Journals (Sweden)

    J. L. Schnell

    2015-04-01

    Full Text Available We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 and monthly (mid-June peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (~ 25 ppb is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb is underestimated by about 5 ppb except in the most polluted regions where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80% of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The observed linear relationship showing increases in ozone by up to 6 ppb for larger-sized episodes is also matched.

  16. Observed seasonal cycles in tropospheric ozone at three marine boundary layer locations and their comparison with models

    Science.gov (United States)

    Derwent, Richard

    2016-04-01

    Observational data have been used to define the seasonal cycles in tropospheric ozone at the surface at three marine boundary layer (MBL) locations at Mace Head in Ireland, Trinidad Head in the USA and at Cape Grim in Tasmania. Least-squares fits of a sine function to the observed monthly mean ozone mixing ratios allowed ozone seasonal cycles to be defined quantitatively, as follows: y = Y0 + A1 sin(θ + φ1) + A2 sin(2θ + φ2), where Y0 is the annual average ozone mixing ratio over the entire set of observations or model results, A1 and A2 are amplitudes, φ1 and φ2 are phase angles and θ is a variable that spans one year's time period in radians. The seasonal cycles of fourteen tropospheric ozone models, together with our own STOCHEM-CRI model, at the three MBL stations were then analysed by fitting sine curves and defining the five parameters: Y0, A1, φ1, A2, φ2. Compared to the fundamental term: A1 sin(θ + φ1), all models more accurately reproduced the observed second harmonic terms: A2 sin(2θ + φ2). This accurate agreement both in amplitude and phase angle suggested that the term arose from a cyclic phenomenon that was well predicted by all models, namely, the photochemical destruction of ozone. Model treatments of the fundamental term were in many cases far removed from the observations and it was not clear why there was so much variability across the tropospheric ozone models.

  17. Statistic analysis of annual total ozone extremes for the period 1964-1988

    Science.gov (United States)

    Krzyscin, Janusz W.

    1994-01-01

    Annual extremes of total column amount of ozone (in the period 1964-1988) from a network of 29 Dobson stations have been examined using the extreme value analysis. The extremes have been calculated as the highest deviation of daily mean total ozone from its long-term monthly mean, normalized by the monthly standard deviations. The extremes have been selected from the direct-Sun total ozone observations only. The extremes resulting from abrupt changes in ozone (day to day changes greater than 20 percent) have not been considered. The ordered extremes (maxima in ascending way, minima in descending way) have been fitted to one of three forms of the Fisher-Tippet extreme value distribution by the nonlinear least square method (Levenberg-Marguard method). We have found that the ordered extremes from a majority of Dobson stations lie close to Fisher-Tippet type III. The extreme value analysis of the composite annual extremes (combined from averages of the annual extremes selected at individual stations) has shown that the composite maxima are fitted by the Fisher-Tippet type III and the composite minima by the Fisher-Tippet type I. The difference between the Fisher-Tippet types of the composite extremes seems to be related to the ozone downward trend. Extreme value prognoses for the period 1964-2014 (derived from the data taken at: all analyzed stations, the North American, and the European stations) have revealed that the prognostic extremes are close to the largest annual extremes in the period 1964-1988 and there are only small regional differences in the prognoses.

  18. Characteristics of urban ozone level in Hong kong

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The long term trend of ozone level in Hong Kong has been investigated. One of the characteristics of ozone level in Hong Kong is the existence of autumn maximum and summer minimum. Observations of the diurnal variation of ozone level have been made in different area categories. There are early morning peak and afternoon peak occurred in the diurnal variation, which are different from some metropolitans where only an afternoon peak is observed. A negative correlation coefficient was found between monthly ozone level with nitric oxide level. On the contrary, there is a positive correlation between ozone and nitrogen dioxide. The positive correlation coefficient between nitric oxide and nitrogen dioxide shows that the total amount of nitric oxide emitted from a series of moving and fixed sources greatly exceeded the stoichiometric amount of ozone formed from chemical reactions of precursors and long distance transportation.

  19. Ozone Treatment for Chronic Anal Fistula: It Is Not Promising.

    Science.gov (United States)

    Ozturk, Alaattin; Atalay, Talha; Cipe, Gokhan; Luleci, Nurettin

    2017-08-01

    The aim of this study is to assess the effect of ozone gas in the treatment of anorectal fistulae. The tip of a 20 G intravenous cannula was inserted from the fistula orifice. Medical ozone was introduced into the fistula. A total of 10 sessions of ozone gas insufflation was performed on alternate days. Treatment was considered to be successful if fistula discharge ceased and the outer fistula orifice closed; however, if discharge was continued or outer fistula orifice was open, the treatment considered to be failed. A total of 12 adult patients were included in the study. The fistula was closed in three patients (25 %), in nine patients (75 %) without closure. In one patient who had fistula closure, the fistula recurred after 2 months. Patients did not express any discomfort during ozone insufflation. There were no side effects or complications due to ozone insufflation. The success rate of ozone insufflation in anorectal fistulae closure is low.

  20. Global solar irradiation in Italy during 1994 : monthly average daily values for 1614 sites estimated from Meteosat images; Radiazione solare globale al suolo in Italia nel 1994 : valori medi mensili per 1.614 localita` italiane stimate a partire dalle immagini fornite dal satellite Meteosat

    Energy Technology Data Exchange (ETDEWEB)

    Cogliani, E.; Mancini, M.; Petrarca, S.; Spinelli, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-10-01

    The global solar radiation over Italy is estimated from Meteosat secondary images in the visible band. The stimation method relies on the fact that the cloud cover on a given area of the Earth`s surface statistically determines the amount of solar radiation falling on that area. Estimated values of the monthly average daily global radiation on a horizontal surface for the 1994 have been compared with values computed from data measured by the stations of the two Italian radiation networks: the Meteorological Service of the Italian Air Force and the National Agrometeorological Network (a total of 36 stations have been considered). The mean percentage difference between estimated and computed values over the year is 6 per cent. In the present report, the monthly maps of radiation over Italy and the estimated monthly average daily values for over 1600 sites (having more than 10,000 inhabitants) are given. In the yearly reports to be issued in the years to come, maps and mean values over the period starting with 1994 will be given as well.

  1. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  2. Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004

    Directory of Open Access Journals (Sweden)

    J.-M. Cousin

    2007-01-01

    Full Text Available The PAES (French acronym for synoptic scale atmospheric pollution network focuses on the chemical composition (ozone, CO, NOx/y and aerosols of the lower troposphere (0–3000 m. Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program. They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios with those of the last decade found in the literature for two high-elevation sites (Pic du Midi, 2877 m and Jungfraujoch, 3580 m leads to a trend that has slowed down compared to old trends but remains positive. This could be attribuable to the reduction of ozone precursors at European scale, that however do not compensate an ozone increase at the global scale. Averaged levels of ozone increase with elevation in good agreement with data provided by the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft, showing a highly stratified ozone field in the lower troposphere, with a transition at about 1000 m asl between a sharp gradient (30 ppb/km below but a gentler gradient (3 ppb/km above. Ozone variability also reveals a clear transition between boundary-layer and free-tropospheric regimes at the same altitude. Below, diurnal photochemistry accounts for about the third of the variability in summer, but less than 20% above – and at all levels in winter – where ozone variability is mostly due to day-to-day changes (linked to weather

  3. Antarctic ozone loss in 1979–2010: first sign of ozone recovery

    Directory of Open Access Journals (Sweden)

    A. Pazmiño

    2013-02-01

    Full Text Available A long-term ozone loss time series is necessary to understand the evolution of ozone in Antarctica. Therefore, we construct the time series using ground-based, satellite and bias-corrected multi-sensor reanalysis (MSR data sets for the period 1989–2010. The trends in ozone over 1979–2010 are also estimated to further elucidate its evolution in the wake of decreasing halogen levels in the stratosphere. Our analysis with ground-based observations shows that the average ozone loss in the Antarctic is about −33 to −50% (−90 to −155 DU (Dobson Unit in 1989–1992, and then stayed at around −48% (−160 DU. The ozone loss in the warmer winters (e.g. 2002 and 2004 is lower (−37 to −46%, and in the very cold winters (e.g. 2003 and 2006 it is higher (−52 to −55%. These loss estimates are in good agreement with those estimated from satellite observations, where the differences are less than ±3%. The ozone trends based on the equivalent effective Antarctic stratospheric chlorine (EEASC and piecewise linear trend (PWLT functions for the vortex averaged ground-based, Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI, and MSR data averaged over September–November exhibit about −4.6 DU yr−1 over 1979–1999, corroborating the role of halogens in the ozone decrease during the period. The ozone trends computed for the 2000–2010 period are about +1 DU yr−1 for EEASC and +2.6 DU yr−1 for the PWLT functions. The larger positive PWLT trends for the 2000–2010 period indicate the influence of dynamics and other basis functions on the increase of ozone. The trends in both periods are significant at 95% confidence intervals for all analyses. Therefore, our study suggests that Antarctic ozone shows a significant positive trend toward its recovery, and hence, leaves a clear signature of the successful implementation of the Montreal Protocol.

  4. Impact of Ozone Exposure on OPV Efficiency

    Science.gov (United States)

    Palankar, Aneeket Jaisukhlal

    Organic solar cells are a considerable promise for alternate energy sources owing to their plentiful, easily accessible and renewable source of power. Degradation on organic film and anode layer are the major factors that determine device reliability and ozone can induce damage to these materials due to its strong oxidizing property. This study measured the sustainability of a type of organic photovoltaic (OPV) film (P3HT:PC71BM) and its anodes (Al and MoO3) to different levels of ozone environment and investigated the impact of ozone exposure on OPV film and anodes efficiency. The devices were fabricated in a Glove Box under controlled N2 atmosphere using Spin Coating and Physical Vapor Deposition and exposed to varied ozone concentrations, followed by J-V measurements to determine the Power Conversion Efficiency and Fill Factor. The effects of ozone exposure on the films were compared vs. the effects of exposure on complete devices with anodes (Al and MoO 3). The results show that the devices decay from normal efficiency (4%) to 0% in 12 hours under 300 ppb (+/-10%) ozone concentration and decay to 0% in 6 hours when the ozone concentration was 600 ppb (+/-10%), when only the polymer thin films are exposed. This established an inverse linear relationship between the decay rate and ozone exposure at high concentrations on the OPV films. Furthermore, the effect of exposure to ambient ozone concentration on the polymer films, which is 70 ppb (+/-15%), was also investigated and the devices were found to decay to 0% in 28 hours, which is much faster than expected. The decay resistance of complete devices when the polymer films are coated with thermally evaporated anodes (Al and MoO3) before exposure to 400 ppb ozone concentration was investigated. The average efficiency of the complete device after 2, 6, 10, 15, 28 and 42 hours exposure in 400 ppb ozone environment was 4.16% with a standard deviation of 0.12%. The test findings for the complete device with coated

  5. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  6. Study of ozone “weekend effect” in Shanghai

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Analysis of observed ozone data in 2006 from five monitoring sites (Xujiahui, Chongming, Baoshan, Pudong, Jinshan) in Shanghai reveals that ozone (O3) concentrations in Xujiahui are higher at week-ends than those on weekdays, despite the fact that emissions of ozone precursor substances, such as oxides of nitrogen (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs) are lower at weekends than those on weekdays. The possible chemical cause of ozone "weekend effect" is that NO2/NO ratio increases at weekends by 25.61% compared with those on weekdays. In addition, because of an average 12.13% reduction in NOx (NO + NO2) in the early morning (05:00-09:00) at weekends compared with that on weekdays, the ozone inhibition period ends 0.5 h earlier at weekends resulting in the longer duration of ozone accumulation and the higher ozone production rate. The rate of ozone production is a function of VOCs and NOx in the atmosphere. VOCs/NOx ratio in Xujiahui is 4.55 at weekends, and 4.37 on weekdays, belonging to the "NOx-limited". The increasing VOCs/NOx ratio at weekends leads to ozone enhancement from 73 ppbv to 80 ppbv, which are consistent with ozone "weekend effect" in Xujiahui. Furthermore, combining with MICAPS cloud amount data, the fact that ozone "weekend effect" in Xujiahui weakens gradually along with the increasing of cloud amount indicates that ozone photochemical production leads to ozone "weekend effect" in Xujiahui of Shanghai.

  7. Potential of the future thermal infrared space-borne sensor IASI-NG to monitor lower tropospheric ozone

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2012-09-01

    Full Text Available The lower tropospheric (LT ozone concentration is a key factor for air quality (AQ. Observing efficiently LT ozone from space is crucial to monitor and better understand pollution phenomena occurring from inter-continental to local scales, and that have a proven noxious effect on the human health and the biosphere. The Infrared Atmospheric Sounder Interferometer (IASI flies on MetOp-A spacecraft and is planned to be launched in the next future as part of the other MetOp modules, i.e. MetOp-B and C. IASI has demonstrated to have the capability to single out the LT ozone signal only at favourable conditions, i.e. in presence of high thermal contrast scenarios. New generation satellite instruments are being designed to address several pressing geophysical issues, including a better observation capability of LT ozone. IASI-NG (New Generation, now having reached the accomplishment of design phase-A for launch in the 2020 timeframe as part of the EPS-SG (EUMETSAT Polar System-Second Generation, formerly post-EPS mission, may render feasible a better observation of AQ in terms of LT ozone. To evaluate the added-value brought by IASI-NG in this context, we developed a pseudo-observation simulator, including a direct simulator of thermal infrared spectra and a full inversion scheme to retrieve ozone concentration profiles. We produced one month (August 2009 of tropospheric ozone pseudo-observations based on both IASI and IASI-NG instrumental configurations. We compared the pseudo-observations and we found a clear improvement of LT ozone (up to 6 km altitude pseudo-observations quality for IASI-NG. The estimated total error is expected to be more than 35% smaller at 5 km, and 20% smaller for the LT ozone column. The total error on the LT ozone column is, on average, lower than 10% for IASI-NG. IASI-NG is expected to have a significantly better vertical sensitivity (monthly average degrees of freedom surface-6 km of 0.70 and to be sensitive at lower

  8. Discólisis con ozono intradiscal en el tratamiento de la ciática por hernia discal: Seguimiento de 100 pacientes en 24 meses Ozone discolysis in the treatment of sciatica due to a herniated disc: A 24-month follow-up of 100 patients

    Directory of Open Access Journals (Sweden)

    L.M. Torres

    2009-04-01

    symptoms of intense lumbosciatic pain, visual analog scale (VAS > 6 and onset more than 3 months previously, who were unresponsive to analgesics and systemic corticosteroids for a minimum period of 1 month and who showed signs of radicular pain and radiation to the affected dermatome. The radiological inclusion criteria consisted of magnetic resonance imaging (MRI evidence of a contained herniated disc. The treatment applied consisted of the following: a first session with epidural administration of 10 ml of ozone at 30 μg/ml, 4 mg of triamcinolone and 5 ml of bupivacaine 0.25% plus paravertebral administration of 10 ml of O3 at 30 μg/ml, 4 mg of triamcinolone and 5 ml bupivacaine 0.25% on the affected side; a second session between 7 and 10 days after the first, consisting of the same treatment; and a third session with intradiscal administration of 10-20 ml of O3 at 50 μg/ml plus prophylactic antibiotic therapy. Analgesic efficacy was evaluated at 1, 3, 6, 12 and 24 months through VAS and radiological evaluation with MRI at 3, 12 and 24 months. A result was considered: a excellent when the patient was asymptomatic and able to fully return to work and resume physical exercise and VAS decreased > 70%; b good when the patient had occasional back or sciatic pain, with complete return to work, occasional use of analgesics and VAS decreased > 40%, and c poor when there was insufficient symptom improvement, daily medication intake, limitation of physical activity, change of work and VAS decreased by > 40%. P values of < 0.05 were considered signifi cant. Results: Of the 100 patients, 91 could be evaluated at 24 months (52 men and 39 women. Age ranged from 26 to 77 years with a mean age of 52±7 years. By order of frequency, the vertebrae affected were L4-L5 (49%, L5-S1 (41%, L3-L4 (9%, other vertebrae (11%. By month, an excellent result was obtained in the following percentages of patients: 1 month 95.6%; 3 months 91.3%; 6 months 90.7%; 12 months 87.7%; 2 and 24 months 81

  9. Reaction Kinetics of Ozonation of Trichloroethylene and Benzene in Gas and Liquid Phases

    Institute of Scientific and Technical Information of China (English)

    钟理; KuoChiane-Hai

    2000-01-01

    The kinetics of ozonation reactions of trichloroethylene (TCE) and benzene in gas and liquid phases at 101.3 kPa and 298 K was investigated in this paper. The ozonation of TCE is first order with respect to the ozone concentration and one and half order to TCE in the gas phase with the average rate constant 57.30 (mol·L-1 )-l.5·s-1,and the TCE ozonation in aqueous medium is first order with respect to both ozone and trichloroethylene with the average rate constant 6.30 (mol·L-1)-l·s-1. The ozonation of benzene in the gas phase is first order in ozone but independent of the benzene concentration with the average reaction rate constant 0.0011s-1. The overall kinetics of reaction between ozone and benzene in aqueous solution is found to be first order with one-half order in both ozone and bezene, with the average reaction rate constant 2.67s-1. It is found that the ozonation rate of pallutants is much quicker than that of self-decomposition of ozone in both gas and aqueous phase.

  10. A New SBUV Ozone Profile Time Series

    Science.gov (United States)

    McPeters, Richard

    2011-01-01

    Under NASA's MEaSUREs program for creating long term multi-instrument data sets, our group at Goddard has re-processed ozone profile data from a series of SBUV instruments. We have processed data from the Nimbus 7 SBUV instrument (1979-1990) and data from SBUV/2 instruments on NOAA-9 (1985-1998), NOAA-11 (1989-1995), NOAA-16 (2001-2010), NOAA-17 (2002-2010), and NOAA-18 (2005-2010). This reprocessing uses the version 8 ozone profile algorithm but now uses the Brion, Daumont, and Malicet (BMD) ozone cross sections instead of the Bass and Paur cross sections. The new cross sections have much better resolution, and extended wavelength range, and a more consistent temperature dependence. The re-processing also uses an improved cloud height climatology based on the Raman cloud retrievals of OMI. Finally, the instrument-to-instrument calibration is set using matched scenes so that ozone diurnal variation in the upper stratosphere does not alias into the ozone trands. Where there is no instrument overlap, SAGE and MLS are used to estimate calibration offsets. Preliminary analysis shows a more coherent time series as a function of altitude. The net effect on profile total column ozone is on average an absolute reduction of about one percent. Comparisons with ground-based systems are significantly better at high latitudes.

  11. Interannual Variability of Ozone and Ultraviolet Exposure

    Science.gov (United States)

    Herman, J. R.; Piacentini, R. D.; Ziemke, J.; Celarier, E.; Larko. D.

    1999-01-01

    Annual zonal averages of ozone amounts from Nimbus-7/TOMS (Total Ozone Mapping Spectrometer) (1979 to 1992) are used to estimate the interannual variability of ozone and UVB (290 - 315 nm) irradiance between plus or minus 60 deg. latitude. Clear-sky interannual ozone and UVB changes are mainly caused by the Quasi Biennial Oscillation (QBO) of stratospheric winds, and can amount to plus or minus 15% at 300 nm and plus or minus 5% at 310 nm (or erythemal irradiance) at the equator and at middle latitudes. Near the equator, the interannual variability of ozone amounts and UV irradiance caused by the combination of the 2.3 year QBO and annual cycles implies that there is about a 5-year periodicity in UVB variability. At higher latitudes, the appearance of the interannual UVB maximum is predicted by the QBO, but without the regular periodicity. The 5-year periodic QBO effects on UVB irradiance are larger than the currently evaluated long-term changes caused by the decrease in ozone amounts.

  12. Ozone columns obtained by ground-based remote sensing in Kiev for Aura Ozone Measuring Instrument validation

    Science.gov (United States)

    Shavrina, A. V.; Pavlenko, Y. V.; Veles, A.; Syniavskyi, I.; Kroon, M.

    2007-12-01

    Ground-based observations with a Fourier transform spectrometer in the infrared region (FTIR) were performed in Kiev (Ukraine) during the time frames August-October 2005 and June-October 2006 within the Ozone Monitoring Instrument (OMI) validation project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and profiles" in the frame of the international European Space Agency/Netherlands Agency for Aerospace Programmes/Royal Dutch Meteorological Institute OMI Announcement of Opportunity effort. Ozone column data for 2005 were obtained by modeling the ozone spectral band at 9.6 μm with the radiative transfer code MODTRAN3.5. Our total ozone column values were found to be lower than OMI Differential Optical Absorption Spectroscopy (DOAS) total ozone column data by 8-10 Dobson units (DU, 1 DU = 0.001 atm cm) on average, while our observations have a relatively small standard error of about 2 DU. Improved modeling of the ozone spectral band, now based on HITRAN-2004 spectral data as calculated by us, moves our results toward better agreement with the OMI DOAS total ozone column data. The observations made during 2006 with a modernized FTIR spectrometer and higher signal-to-noise ratio were simulated by the MODTRAN4 model computations. For ozone column estimates the Aqua Atmospheric Infrared Sounder satellite water vapor and temperature profiles were combined with the Aura Microwave Limb Sounder stratospheric ozone profiles and Tropospheric Emission Monitoring Internet Service-Koninklijk Nederlands Meteorologisch Instituut climatological profiles to create a priori input files for spectral modeling. The MODTRAN4 estimates of ozone columns from the 2006 observations compare rather well with the OMI total ozone column data: standard errors are of 1.11 DU and 0.68 DU, standard deviation are of 8.77 DU and 5.37 DU for OMI DOAS and OMI Total Ozone Mapping Spectrometer, respectively.

  13. Transport and deposition of nitrogen oxides and ozone in the atmospheric surface layer

    Science.gov (United States)

    Li, Yongxian

    Tropospheric ozone is an important photochemical air pollutant, which increases respiratory-related diseases, decreases crop yields, and causes other environmental problems. This research has focused on the measurement of soil biogenic emissions of nitric oxide (NO), one of the precursors for ozone formation, from intensively managed soils in the Southeast US, and examined the transport and deposition of NOx (NO + NO2) and ozone in the atmospheric surface layer, and the effects of NO emissions and its chemical reactions on ozone flux and deposition to the earth's surface. Emissions of nitric oxide were measured from an intensively managed agricultural soil, in the lower coastal plain of North Carolina (near Plymouth, NC), using a dynamic chamber technique. Measurements of soil NO emissions in several crop canopies were conducted at four different sites in North Carolina during late spring and summer of 1994-1996. The turbulent fluxes of NO2 and O3 at 5 m and 10 m above the ground were measured using the eddy-correlation technique near Plymouth, NC during late spring of 1995 and summer of 1996, concurrent with measurements of soil NO emissions using the dynamic chamber system. Soil NO emission from within the corn field was high averaging approximately 35 ng N/m2/s during the measurement period of 1995. In another study, vertical measurements of ozone were made on a 610 m tall tower located 15 km Southeast of Raleigh, NC during the summers of 1993-1997, as part of an effort by the State of North Carolina to develop a State Implementation Plan (SIP) for ozone control in the Raleigh Metropolitan Statistical Area. A strong correlation was observed between the nighttime and early morning ozone concentrations in the residual layer (CR) above the NBL and the maximum ground level concentration (C o max) the following afternoon. Based on this correlation, an empirical regression equation (Co max = 27.67*exp(0.016 CR)) was developed for predicting maximum ground level ozone

  14. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  15. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  16. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest

    Science.gov (United States)

    Gerken, Tobias; Wei, Dandan; Chase, Randy J.; Fuentes, Jose D.; Schumacher, Courtney; Machado, Luiz A. T.; Andreoli, Rita V.; Chamecki, Marcelo; Ferreira de Souza, Rodrigo A.; Freire, Livia S.; Jardine, Angela B.; Manzi, Antonio O.; Nascimento dos Santos, Rosa M.; von Randow, Celso; dos Santos Costa, Patrícia; Stoy, Paul C.; Tóta, Julio; Trowbridge, Amy M.

    2016-01-01

    From April 2014 to January 2015, ozone (O3) dynamics were investigated as part of GoAmazon 2014/5 project in the central Amazon rainforest of Brazil. Just above the forest canopy, maximum hourly O3 mixing ratios averaged 20 ppbv (parts per billion on a volume basis) during the June-September dry months and 15 ppbv during the wet months. Ozone levels occasionally exceeded 75 ppbv in response to influences from biomass burning and regional air pollution. Individual convective storms transported O3-rich air parcels from the mid-troposphere to the surface and abruptly enhanced the regional atmospheric boundary layer by as much as 25 ppbv. In contrast to the individual storms, days with multiple convective systems produced successive, cumulative ground-level O3 increases. The magnitude of O3 enhancements depended on the vertical distribution of O3 within storm downdrafts and origin of downdrafts in the troposphere. Ozone mixing ratios remained enhanced for > 2 h following the passage of storms, which enhanced chemical processing of rainforest-emitted isoprene and monoterpenes. Reactions of isoprene and monoterpenes with O3 are modeled to generate maximum hydroxyl radical formation rates of 6 × 106 radicals cm-3s-1. Therefore, one key conclusion of the present study is that downdrafts of convective storms are estimated to transport enough O3 to the surface to initiate a series of reactions that reduce the lifetimes of rainforest-emitted hydrocarbons.

  17. Artificial ozone holes

    OpenAIRE

    Dolya, S. N.

    2014-01-01

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total ma...

  18. Model Simulations of Ozone in the Summer Lower Stratosphere

    Science.gov (United States)

    Douglass, Anne R.; Kawa, S. R.

    1998-01-01

    The Goddard 3D chemistry and transport model (CTM) uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System (GEOS DAS); thus CTM simulations can be compared directly with observations from satellite, balloon and aircraft. In general, aspects of these comparisons show remarkable agreement between observation and model. One significant difference is that the model ozone is high biased below the ozone peak. The bias is apparently largest at high latitudes during the summer months. At the same time, comparisons with HALOE observations show that at mid to high latitudes, the ozone mixing ratio peak appears persistently at a lower altitude than observed by HALOE; the peak mixing ratio is also overestimated by the model. Both transport and photochemistry are possible contributors to the biased ozone in the lower stratosphere - excessive downward motion would increase lower stratospheric ozone, as would a too large vertical gradient in ozone. On the other hand, comparisons of model N2O and NOy with observations suggest transport deficiencies in the opposite sense, i.e., model N2O can be high relative to observations (particularly during winter), suggesting the need for stronger downward transport. Sensitivity studies have been carried out using parameterizations for ozone production and loss, NOy production and loss, and N2O loss. The goal of these studies is to clarify how problems in the photochemical scheme at and above the ozone peak influence the lower stratospheric ozone.

  19. The impact of meteorological persistence on the distribution and extremes of ozone

    Science.gov (United States)

    Sun, Wenxiu; Hess, Peter; Liu, Chengji

    2017-02-01

    CASTNET (Clean Air Status and Trends Network) ozone and temperature data and large-scale meteorological analysis are used to quantify the extent to which meteorological events and their persistence impact ozone with an emphasis on the high end of the ozone distribution (greater than the 90th percentile). Ozone increases with each successive stagnation day in all regions of the U.S., with the highest increase in the Northeastern U.S. (0.4 standard deviation or ˜4.7 ppb per successive stagnation day). Ozone increases with days since cyclone passage only in the Northeastern and Mid-Atlantic regions of the U.S., but on average not enough to reach the 90th percentile concentration. Persistent high temperature does not result in further ozone increases in any region. On the interannual timescale there is little evidence that summers with large numbers of the above events increase ozone preferentially on the high end of the ozone distribution.

  20. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  1. Depletion of tropospheric ozone associated with mineral dust outbreaks.

    Science.gov (United States)

    Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J

    2016-10-01

    From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.

  2. Analysis of the potential of one possible instrumental configuration of the next generation of IASI instruments to monitor lower tropospheric ozone

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2013-03-01

    Full Text Available To evaluate the added value brought by the next generation of IASI (Infrared Atmospheric Sounder Interferometer instruments to monitor lower tropospheric (LT ozone, we developed a pseudo-observation simulator, including a direct simulator of thermal infrared spectra and a full inversion scheme to retrieve ozone concentration profiles. We based our simulations on the instrumental configuration of IASI and of an IASI-like instrument, with a factor 2 improvement in terms of spectral resolution and radiometric noise. This scenario, that will be referred to as IASI/2, is one possible configuration of the IASI-NG (New Generation instrument (the configuration called IASI-NG/IRS2 currently designed by CNES (Centre National d'Études Spatiales. IASI-NG is expected to be launched in the 2020 timeframe as part of the EPS-SG (EUMETSAT Polar System-Second Generation, formerly post-EPS mission. We produced one month (August 2009 of tropospheric ozone pseudo-observations based on these two instrumental configurations. We compared the pseudo-observations and we found a clear improvement of LT ozone (up to 6 km altitude pseudo-observations quality for IASI/2. The estimated total error is expected to be more than 35% smaller at 5 km, and 20% smaller for the LT ozone column. The total error on the LT ozone column is, on average, lower than 10% for IASI/2. IASI/2 is expected to have a significantly better vertical sensitivity (monthly average degrees of freedom surface–6 km of 0.70 and to be sensitive at lower altitudes (more than 0.5 km lower than IASI, reaching nearly 3 km. Vertical ozone layers of 4 to 5 km thickness are expected to be resolved by IASI/2, while IASI has a vertical resolution of 6–8 km. According to our analyses, IASI/2 is expected to have the possibility of effectively separate lower from upper tropospheric ozone information even for low sensitivity scenarios. In addition, IASI/2 is expected to be able to better monitor LT ozone patterns at

  3. Depletions in winter total ozone values over southern England

    Science.gov (United States)

    Lapworth, A.

    1994-01-01

    A study has been made of the recently re-evaluated time series of daily total ozone values for the period 1979 to 1992 for southern England. The series consists of measurements made at two stations, Bracknell and Camborne. The series shows a steady decline in ozone values in the spring months over the period, and this is consistent with data from an earlier decade that has been published but not re-evaluated. Of exceptional note is the monthly mean for January 1992 which was very significantly reduced from the normal value, and was the lowest so far measured for this month. This winter was also noteworthy for a prolonged period during which a blocking anticyclone dominated the region, and the possibility existed that this was related to the ozone anomaly. It was possible to determine whether the origin of the low ozone value lay in ascending stratospheric motions. A linear regression analysis of ozone value deviation against 100hPa temperature deviations was used to reduce ozone values to those expected in the absence of high pressure. The assumption was made that the normal regression relation was not affected by atmospheric anomalies during the winter. This showed that vertical motions in the stratosphere only accounted for part of the ozone anomaly and that the main cause of the ozone deficit lay either in a reduced stratospheric circulation to which the anticyclone may be related or in chemical effects in the reduced stratospheric temperatures above the high pressure area. A study of the ozone time series adjusted to remove variations correlated with meteorological quantities, showed that during the period since 1979, one other winter, that of 1982/3, showed a similar although less well defined deficit in total ozone values.

  4. Aggregation and Averaging.

    Science.gov (United States)

    Siegel, Irving H.

    The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)

  5. Comparison of temporal and Spatial Characteristics of Ozone Pollution at Ground Level in the Eastern China

    Institute of Scientific and Technical Information of China (English)

    Liu Houfeng

    2006-01-01

    Monitoring data from ozone(O3) automatic stations in three typical cities with different climatic areas in the southern and northern parts of eastern China are used to analyze temporal and spatial characteristics of ozone pollution at ground level. The results show that ozone pollution level has distinct regional differences and the concentration in the suburbs is higher than that in the urban areas. The seasonal variation of ozone concentration in different climatic areas is greatly affected by the variation of precipitation. Ozone concentration in Shenyang and Beijing , in the temperate zone, has one perennial peak concentration, occurring in early summer,May or June. Ozone concentration in Guangzhou, in sub-tropical zone, has two peak values year round. The highest values occur in October and the secondary high value in June. The ozone season in the south is longer than that in the north. The annual average daily peak value of ozone concentrations in different climates usually occur around 3 pm. The diurnal variation range of ozone concentration declines with the increase of latitude. Ozone concentration does not elevate with the increase of traffic flow. Ozone concentration in Guangzhou has a distinct reverse relation to CO and NOx. This complicated non-linearity indicates that the equilibrium of ozone photochemical reaction has regional differences.Exceeding the rate of Beijing's 1h ozone concentration is higher than that of Guangzhou, whereas the average 8h ozone level is lower than that of Guangzhou, indicating that areas in low latitude are more easily affected by moderate ozone concentrations and longer exposure. Thus,China should work out standards for 8h ozone concentration.

  6. MN Temperature Average (1961-1990) - Line

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...

  7. MN Temperature Average (1961-1990) - Polygon

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...

  8. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  9. Relationship between ozone and the air pollutants in Peninsular Malaysia for 2003 retrieved from SCIAMACHY

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2013-05-01

    Since few decades ago, air pollution has become a hot topic of environmental and atmospheric research due to the impact of air pollution on human health. Ozone is one of the important chemical constituent of the atmosphere, which plays a key role in atmospheric energy budget and chemistry, air quality and global change. Results from the analysis of the retrieved monthly data from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) were utilized, in order to analyze the impact of air pollutants (CO2, CH4, H2O, and NO2) on the ozone in Peninsular Malaysia for 2003 using multiple regression analysis. SCIAMACHY onboard ENVISAT as part of the atmospheric chemistry payload of the third European Space Agency (ESA) Earth observation, is the first satellite instrument whose measurements is enough precise and sensitive for all the greenhouse gases to make observation at all atmospheric altitude levels down to the Earth's surface. Among the four pollutants, ozone was most affected by water vapor (H2O vapor), indicated by a strong beta coefficient (-0.769 - 0.997), depends on the seasonal variety. In addition, CO2 also shows a strong Beta coefficient (-0.654 - 0.717) and also affected by the seasonal variation. The variation of pollutants on the average explains change 50.1% of the ozone. This means that about 50.1% of the ozone is attributed to these pollutant gases. The SCIAMACHY data and the satellite measurements successfully identify the increase of the atmospheric air pollutants over the study area.

  10. Reaction Kinetics of Ozonation of Trichloroethylene and Benzene in Gas and Liquid Phase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The kinetics of ozonation reactions oftrichloroethylene (TCE) and benzene in gas and liquid phases at101.3 kPa and 298 K was investigated in this paper. The ozonation ofTCE is first order with respect to the ozone concentration and one andhalf order to TCE in the gas phase with the average rate constant 57.30(mol*L-1)-1.5 *s-1, and the TCE ozonation inaqueous medium is first order with respect to both ozone andtrichloroethylene with the average rate constant 6.30(mol*L-1)-1 *s-1. The ozonation of benzene inthe gas phase is first order in ozone but independent of the benzeneconcentration with the average reaction rate constant 0.0011 s-1.The overall kinetics of reaction between ozone and benzene in aqueoussolution is found to be first order with one-half order in both ozoneand bezene, with the average reaction rate constant 2.67 s-1. Itis found that the ozonation rate of pallutants is much quicker than that ofself-decomposition of ozone in both gas and aqueous phase.

  11. Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park

    Science.gov (United States)

    Peterson, D.L.; Bowers, Darci

    1999-01-01

    We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.

  12. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Allen, Joseph G.; Weschler, Charles J.

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking...... was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were...

  13. Use of North American and European Air Quality Networks to Evaluate Global Chemistry-Climate Modeling of Surface Ozone

    Science.gov (United States)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; Nagashima, T.; Shindell, D. T.; Faluvegi, G.; Strode, S. A.

    2015-01-01

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1 degree by 1 degree grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (approximately 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (25 ppb) is underestimated in all regions by about 7 parts per billion, and the observed seasonal range (approximately 21 parts per billion) is underestimated by about 5 parts per billion except in the most polluted regions, where it is overestimated by about 5 parts per billion. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 percent of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 parts per billion for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.

  14. Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data

    Directory of Open Access Journals (Sweden)

    X. Liu

    2003-01-01

    Full Text Available This study investigates anomalous ozone distributions over cloudy areas in Nimbus-7 (N7 and Earth-Probe (EP TOMS version-7 data and analyzes the causes for ozone anomaly formation. A 5°-longitude by 5°-latitude region is defined to contain a Positive Ozone Anomaly (POA or Negative Ozone Anomaly (NOA if the correlation coefficient between total ozone and reflectivity is > 0.5 or -0.5. The average fractions of ozone anomalies among all cloud fields are 31.8 ± 7.7% and 35.8 ± 7.7% in the N7 and EP TOMS data, respectively. Some ozone anomalies are caused by ozone retrieval errors, and others are caused by actual geophysical phenomena. Large cloud-height errors are found in the TOMS version-7 algorithm in comparison to the Temperature Humidity Infrared Radiometer (THIR cloud data. On average, cloud-top pressures are overestimated by ~200 hPa (THIR cloud-top pressure 200 hPa for high-altitude clouds and underestimated by ~150 hPa for low-altitude clouds (THIR cloud-top pressure > 750 hPa. Most tropical NOAs result from negative errors induced by large cloud-height errors, and most tropical POAs are caused by positive errors due to intra-cloud ozone absorption enhancement. However, positive and negative errors offset each other, reducing the ozone anomaly occurrence in TOMS data. Large ozone/reflectivity slopes for mid-latitude POAs show seasonal variation consistent with total ozone fluctuation, indicating that they result mainly from synoptic and planetary wave disturbances. POAs with an occurrence fraction of 30--60% occur in regions of marine stratocumulus off the west coast of South Africa and off the west coast of South America. Both fractions and ozone/reflectivity slopes of these POAs show seasonal variations consistent with that in the tropospheric ozone. About half the ozone/reflectivity slope can be explained by ozone retrieval errors over clear and cloudy areas. The remaining slope may result from there being more ozone production

  15. Observations of ozone depletion associated with solar proton events

    Science.gov (United States)

    Mcpeters, R. D.; Jackman, C. H.; Stassinopoulos, E. G.

    1981-01-01

    Ozone profiles from the solar proton events (SPE) of January and September 1971 and August 1972 were obtained after the backscattered ultraviolet (BUV) measured radiances were corrected for the direct effects of protons on the instrument. The SPE of August 1972 produced an ozone depletion of 15% at 42 km that persisted for one month in both northern and southern polar regions. This long recovery time indicates that NO(x) was produced in a quantity sufficient to alter the ozone chemistry. The two SPE in 1971 were of moderate size, but produced ozone depletions of 10-30% at 50 km with a 36 hour recovery time. This rapid recovery is consistent with the assumption that HO(x) is responsible for altering the ozone chemistry (Weeks et al., 1972). The magnitude of the observed depletion, however, exceeds that predicted by the chemical models.

  16. The Hole in the Ozone Layer.

    Science.gov (United States)

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  17. Total ozone columns and vertical ozone profiles above Kiev in 2005-2008

    CERN Document Server

    Shavrina, A V; Sheminova, V A; Pavlenko, Ya V; Veles, A A; Synyavski, I I; Romanyuk, Ya O

    2010-01-01

    The study of total ozone columns above Kiev and variations of ozone concentrations in the troposphere at different altitudes above Kiev was carried out using ground-based Fourier Transform InfraRed (FTIR) spectrometric observations that are taken on a routine basis at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (MAO NASU). This study was performed within the framework of the international ESA-NIVR-KNMI OMI-AO project no.2907 entitled OMI validation by ground-based remote sensing: ozone columns and atmospheric profiles during the time frame 2005-2008. The infrared FTIR spectral observations of direct solar radiation in the wavelength range of 2-12 micron as transmitted through the Earth's atmosphere were performed during the months of April-October of each year. The aim of the project was the validation of total ozone columns and vertical ozone profiles as obtained by the Ozone Monitoring Instrument (OMI)) onboard of the NASA EOS-Aura scientific satellite platform. The mode...

  18. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  19. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  20. Your Average Nigga

    Science.gov (United States)

    Young, Vershawn Ashanti

    2004-01-01

    "Your Average Nigga" contends that just as exaggerating the differences between black and white language leaves some black speakers, especially those from the ghetto, at an impasse, so exaggerating and reifying the differences between the races leaves blacks in the impossible position of either having to try to be white or forever struggling to…

  1. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  2. Tropospheric ozone from IASI: comparison of different inversion algorithms and validation with ozone sondes in the northern middle latitudes

    Directory of Open Access Journals (Sweden)

    C. Keim

    2009-05-01

    Full Text Available This paper presents a first statistical validation of tropospheric ozone products derived from measurements of the satellite instrument IASI. Since end of 2006, IASI (Infrared Atmospheric Sounding Interferometer aboard the polar orbiter Metop-A measures infrared spectra of the Earth's atmosphere in nadir geometry. This validation covers the northern mid-latitudes and the period from July 2007 to August 2008. The comparison of the ozone products with the vertical ozone concentration profiles from balloon sondes leads to estimates of the systematic and random errors in the IASI ozone products. The intercomparison of the retrieval results from four different sources (including the EUMETSAT ozone products shows systematic differences due to the used methods and algorithms. On average the tropospheric columns have a small bias of less than 2 Dobson Units (DU when compared to the sonde measured columns. The comparison of the still pre-operational EUMETSAT columns shows higher mean differences of about 5 DU.

  3. Greenhouse gases and recovery of the Earth's ozone layer

    Science.gov (United States)

    Dyominov, I. G.; Zadorozhny, A. M.

    A numerical two-dimension zonally average interactive dynamical radiative-photochemical model of the atmosphere is used for investigation the role of the greenhouse gases CO2, CH4, and N2O in the recovery of the Earth's ozone layer after reduction of anthropogenic discharges in the atmosphere of chlorine and bromine compounds. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of types I and II. The scenarios of future changes of the greenhouse gases and chlorine and bromine species are taken from Climate Change 1995. The calculations show that expected cooling of the stratosphere caused by the increasing of the greenhouse gases, particularly CO2, enhances the ozone concentration in the stratosphere due to a weakness of the efficiencies of all catalytic cycles of the ozone destruction caused by temperature dependencies of photochemical reactions. The result of this effect is a significant acceleration of the ozone layer recovery after reduction of anthropogenic discharges in the atmosphere of chlorine and bromine species. On the other hand, the cooling of the stratosphere intensifies a formation of the polar stratospheric clouds in the lower stratosphere in the Polar Regions. Heterogeneous reactions on the polar stratospheric clouds, which are the key processes in the destruction of the ozone layer at the high latitudes, lead to more intensive ozone depletion here, which causes a delay of the ozone layer recovery. The calculations show that this effect is weaker than the first one so that the global ozone will recover faster under conditions of continuing anthropogenic growth of the greenhouse gases. The model predicts in this case that the annual average global ozone will reach its undisturbed level of 1980 by about 2040. If the growth of the

  4. Quantification of source region influences on the ozone burden

    Energy Technology Data Exchange (ETDEWEB)

    Treffeisen, R. [Alfred Wegener Inst. fuer Meeres- und Polarforschung, Potsdam (Germany); Grunow, K. [Freie Univ., Berlin (Germany). Inst. fuer Meteorologie; Moeller, D. [Brandenburgische Technische Universitaet Cottbus (Germany). Lehrstule fuer Luftchemie und Luftreinhaltung; Hainsch, A. [Technische Univ., Berlin (Germany). Lehrstule Luftreinhaltung

    2002-08-01

    A project was performed to quantify different influences on the ozone burden. It could be shown that large-scale meteorological influences determine a very large percentage of the ozone concentration. Local measures intended to reduce peak ozone concentrations in summer turn out to be not very effective as a result. The aim of this paper is to quantify regional emission influences on the ozone burden. The investigation of these influences is possible by comparison of the ozone (O{sub 3}) and oxidant (O{sub x}=O{sub 3}+NO{sub 2}) concentrations at high-elevation sites downwind and upwind of a source region by using back trajectories. It has been shown that a separation between large-scale influenced meteorological and regional ozone burdens at these sites is possible. This method is applied for an important emission area in Germany-the Ruhrgebiet. On average, no significant ozone contribution of this area to the regional ozone concentration could be found. A large part of the ozone concentration is highly correlated with synoptic weather systems, which exhibit a dominant influence on the local ozone concentrations. Significant contributions of related photochemical ozone formation of the source area of 13-15% have been found only during favourable meteorological situations, identified by the hourly maximum day temperature being above 25{sup o}C. This is important with respect to the EU daughter directive to EU96/62/EC (Official Journal L296 (1996) 55) because Member States should explore the possibilities of local measures to avoid the exceedance of threshold values and, if effective local measures exist, to implement them. (author)

  5. Instantaneous longwave radiative impact of ozone: an application on IASI/MetOp observations

    Directory of Open Access Journals (Sweden)

    S. Doniki

    2015-11-01

    Full Text Available Ozone is an important greenhouse gas in terms of anthropogenic radiative forcing (RF. RF calculations for ozone were until recently entirely model based, and significant discrepancies were reported due to different model characteristics. However, new instantaneous radiative kernels (IRKs calculated from hyperspectral thermal IR satellites have been able to help adjudicate between different climate model RF calculations. IRKs are defined as the sensitivity of the outgoing longwave radiation (OLR flux with respect to the ozone vertical distribution in the full 9.6 μm band. Previous methods applied to measurements from the Tropospheric Emission Spectrometer (TES on Aura rely on an anisotropy approximation for the angular integration. In this paper, we present a more accurate but more computationally expensive method to calculate these kernels. The method of direct integration is based on similar principles to the anisotropy approximation, but it deals more precisely with the integration of the Jacobians. We describe both methods and highlight their differences with respect to the IRKs and the ozone longwave radiative effect (LWRE, i.e., the radiative impact in OLR due to absorption by ozone, for both tropospheric and total columns, from measurements of the Infrared Atmospheric Sounding Interferometer (IASI onboard MetOp-A. Biases between the two methods vary from −25 to +20 % for the LWRE, depending on the viewing angle. These biases point to the inadequacy of the anisotropy method, especially at nadir, suggesting that the TES-derived LWREs are biased low by around 25 % and that chemistry–climate model OLR biases with respect to TES are underestimated. In this paper we also exploit the sampling performance of IASI to obtain first daily global distributions of the LWRE, for 12 days (the 15th of each month in 2011, calculated with the direct integration method. We show that the temporal variation of global and latitudinal averages of the LWRE

  6. Instantaneous longwave radiative impact of ozone: an application on IASI/MetOp observations

    Directory of Open Access Journals (Sweden)

    S. Doniki

    2015-08-01

    Full Text Available Ozone is an important greenhouse gas in terms of anthropogenic radiative forcing (RF. RF calculations for ozone were until recently entirely model based and significant discrepancies were reported due to different model characteristics. However, new instantaneous radiative kernels (IRKs calculated from hyperspectral thermal IR satellites have been able to help adjudicate between different climate model RF calculations. IRKs are defined as the sensitivity of the outgoing longwave radiation (OLR flux with respect to the ozone vertical distribution in the full 9.6 μm band. Previous methods applied to measurements from the Tropospheric Emission Spectrometer (TES on Aura, rely on an anisotropy approximation for the angular integration. In this paper, we present a more accurate but more computationally expensive method to calculate these kernels. The method of direct integration is based on similar principles with the anisotropy approximation, but deals more precisely with the integration of the Jacobians. We describe both methods and highlight their differences with respect to the IRKs and the ozone longwave radiative effect (LWRE, i.e. the radiative impact in OLR due to absorption by ozone, for both tropospheric and total columns, from measurements of the Infrared Atmospheric Sounding Interferometer (IASI onboard MetOp-A. Biases between the two methods vary from −25 to +20 % for the LWRE, depending on the viewing angle. These biases point to the inadequacy of the anisotropy method, especially at nadir, suggesting that the TES derived LWRE are biased low by around 25 % and that chemistry-climate model OLR biases with respect to TES are underestimated. In this paper we also exploit the sampling performance of IASI to obtain first daily global distributions of the LWRE, for 12 days (the 15th of each month in 2011, calculated with the direct integration method. We show that the temporal variation of global and latitudinal averages of the LWRE shows

  7. The impact of synoptic weather on UK surface ozone and implications for premature mortality

    Science.gov (United States)

    Pope, R. J.; Butt, E. W.; Chipperfield, M. P.; Doherty, R. M.; Fenech, S.; Schmidt, A.; Arnold, S. R.; Savage, N. H.

    2016-12-01

    Air pollutants, such as ozone, have adverse impacts on human health and cause, for example, respiratory and cardiovascular problems. In the United Kingdom (UK), peak surface ozone concentrations typically occur in the spring and summer and are controlled by emission of precursor gases, tropospheric chemistry and local meteorology which can be influenced by large-scale synoptic weather regimes. In this study we composite surface and satellite observations of summer-time (April to September) ozone under different UK atmospheric circulation patterns, as defined by the Lamb weather types. Anticyclonic conditions and easterly flows are shown to significantly enhance ozone concentrations over the UK relative to summer-time average values. Anticyclonic stability and light winds aid the trapping of ozone and its precursor gases near the surface. Easterly flows (NE, E, SE) transport ozone and precursor gases from polluted regions in continental Europe (e.g. the Benelux region) to the UK. Cyclonic conditions and westerly flows, associated with unstable weather, transport ozone from the UK mainland, replacing it with clean maritime (North Atlantic) air masses. Increased cloud cover also likely decrease ozone production rates. We show that the UK Met Office regional air quality model successfully reproduces UK summer-time ozone concentrations and ozone enhancements under anticyclonic and south-easterly conditions for the summer of 2006. By using established ozone exposure-health burden metrics, anticyclonic and easterly condition enhanced surface ozone concentrations pose the greatest public health risk.

  8. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  9. Utilization of 100 mb midlatitude height fields as an indicator of sampling effects on total ozone variations

    Science.gov (United States)

    Miller, A. J.; Nagatani, R. M.; Laver, J. D.; Korty, B.

    1979-01-01

    Midlatitude 100-mb height fields are employed to determine the effects of ground based sampling locations on measurements of variations in the total ozone content of the atmosphere. The precision of the zonal average heights computed by the technique of Angell and Korshover (1978) from data over ozone sampling areas at 50 deg N is compared to the zonal average computed from the entire data set. Linear regressions of ozone contents determined by an analysis of backscatter UV satellite data with respect to 100 mb heights are utilized to transform zonal differences in height to ozone levels. The zonal average total ozone sampling error is found to be on the order of 2% for midlatitudes of the Northern hemisphere, indicating that the general shape of ozone trends determined by ground-based observations appears to be real and the increase of ozone from the mid-1960's to the early 1970's may be greater than previously suggested.

  10. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    Science.gov (United States)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  11. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000-2015 using quantile and multiple line regression models

    Science.gov (United States)

    Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo

    2016-11-01

    The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.

  12. Covariant approximation averaging

    CERN Document Server

    Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph

    2014-01-01

    We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in $N_f=2+1$ lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte-Carlo calculations over conventional methods for the same cost.

  13. Ozone - plant surface reactions an important ozone loss term?

    Science.gov (United States)

    Hansel, Armin; Jud, Werner; Fischer, Lukas; Canaval, Eva; Wohlfahrt, Georg; Tissier, Alain

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants responsible for global crop losses with associated economic costs of several billions dollar per year. Plant injuries have been related to the uptake of ozone through stomatal pores and oxidative effects damaging the internal leaf tissue. But a striking question remains: How much ozone enters the plant through open stomata and how much ozone is lost by chemical reactions at the plant surface? Until now surface losses are estimated from measured total ozone deposition fluxes and calculated stomatal conductance values. While stomatal conductance of CO2 and H2O is well understood and extensively used in describing plant atmosphere gas exchange, stomatal conductance of ozone is not well known. Here we use different Nicotiana tabacum varieties and find that surface reactions of ozone with diterpenoids synthesized by glandular trichomes reduce ozone flux through open stomata. Our measurements reveal that fast ozone loss at the plant surface is accompanied with prompt release of oxygenated volatile compounds. In the ozone fumigation experiments of different Nicotiana tabacum varieties the release of specific volatile oxy-VOCs allowed to identify the semi volatile precursor compounds at the plant surface. Ozone fumigation experiments with Norway spruce (Picea abies) and Scots Pine (Pinus sylvestris), two common species in the Northern Hemisphere, show also a significant ozone loss at the plant surface for Picea abies. Fluid dynamic calculations of ozone transport in the diffusive leaf boundary layer reveal a vertical but no horizontal ozone gradient thus reducing ozone fluxes through the pores in case of efficient ozone scavenging plant surfaces. We explain this efficient ozone protection mechanism by the porous surface architecture of plants in combination with unsaturated semi-volatile compounds deposited at the plant surface. These results show that unsaturated semi-volatile compounds at

  14. Brewer spectrometer total ozone column measurements in Sodankylä

    Science.gov (United States)

    Karppinen, Tomi; Lakkala, Kaisa; Karhu, Juha M.; Heikkinen, Pauli; Kivi, Rigel; Kyrö, Esko

    2016-06-01

    Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.

  15. Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements

    Directory of Open Access Journals (Sweden)

    E. Eckert

    2013-07-01

    Full Text Available Drifts, trends and periodic variations were calculated from monthly zonally averaged ozone profiles. The ozone profiles, among many other species, were derived from level-1b data of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS by means of the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorlogy and Climate Research (IMK. All trend and drift analyses were performed using a multilinear parametric trend model which includes a linear term, several harmonics with period lengths from three to twenty four months and the quasi-biennial oscillation (QBO. Drifts at 2-sigma significance level were mainly negative for ozone relative to Aura MLS and Odin OSIRIS and negative or near zero for most of the comparisons to Lidar measurements. Lidar stations used here include those at Hohenpeissenberg (47.8° N, 11.0° E, Lauder (45.0° S, 169.7° E, Mauna Loa (19.5° N, 155.6° W, Observatoire Haute Provence (43.9° N, 5.7° E and Table Mountain (34.4° N, 117.7° W. Drifts against ACE-FTS were found to be mostly insignificant. The assessed MIPAS ozone trends cover the time period of July 2002 to April 2012 and range from -0.5 ppmv decade-1 to +0.5 ppmv decade-1 depending on altitude and latitude. From the drift analyses we derive that the real ozone trends might be slighly more positive/less negative than those calculated from the MIPAS data, by conceding the possibility of MIPAS having a very small (approx. within -0.3 ppmv decade-1 negative drift for ozone. This leads to drift-corrected trends of -0.4 ppmv decade-1 to +0.55 ppmv decade-1 for the time period covered by MIPAS Envisat measurements with very few negative and large areas of positive trends, which is in good agreement with recent literature. Differences of the trends compared with recent literature could be explained by a possible shift of the subtropical mixing barriers. Results for the altitude-latitude distribution of

  16. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  17. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  18. On applicability of the photochemical-equilibrium approach for retrieval of O and H mesospheric distributions from the satellite-based measurements of the airglow emission and ozone concentration

    Science.gov (United States)

    Feigin, Alexander; Belikovich, Mikhail; Kulikov, Mikhail

    2016-04-01

    daytime and nighttime mesosphere depending on the altitude, latitude and a month in the annual cycle. The studies performed yielded the following results: 1. The uncontracted daily condition of photochemical ozone equilibrium is fulfilled well (with an average deviation and relative dispersion of nor more than 1-3%) during the entire annual cycle within the entire range of altitudes and latitudes. 2. The truncated daily condition of photochemical ozone equilibrium is violated significantly at altitudes exceeding 70-75 km, where the deviation from the correct values of ozone density, which is averaged with respect to the longitude, local time, and month, can exceed 50% with a variance of 20-30%, and the spatial location of such "abnormal" zones is significantly dependent on the latitude and month. 3. The uncontracted nighttime condition of the photochemical ozone equilibrium is fulfilled satisfactorily (with a deviation and variance of less than 10%) in the range of altitudes from 80-85 km to 100 km. 4. The truncated nighttime condition of the photochemical ozone equilibrium is fulfilled satisfactorily at altitudes up to 90 km. However, at higher altitudes, the deviation of monthly values, which are averaged with respect to the longitude and local time, away from the correct ozone values can reach 20% and more. The obtained results demonstrate that retrieval of O and H distributions by using truncated conditions of the photochemical ozone equilibrium can lead to significant uncontrolled errors. The presentation discusses possible modifications of the currently used approach, which allow one to improve the quality of retrieval of the O and H mesospheric distributions from the satellite-based probing of other mesosphere constituents. The work was supported by the Russian Science Foundation (Contract No. 15-17-10024)

  19. Stratospheric ozone loss in the 1996/1997 Arctic winter: Evaluation based on multiple trajectory analysis for double-sounded air parcels by ILAS

    Science.gov (United States)

    Terao, Yukio; Sasano, Yasuhiro; Nakajima, Hideaki; Tanaka, H. L.; Yasunari, Tetsuzo

    2002-12-01

    Quantitative chemical ozone loss rates and amounts in the Arctic polar vortex for the spring of 1997 are analyzed based on ozone profile data obtained by the Improved Limb Atmospheric Spectrometer (ILAS) using an extension of the Match technique. In this study, we calculated additional multiple trajectories and set very strict criteria to overcome the weakness of the satellite sensor data (lower vertical resolution and larger sampling air mass volume) and to identify more accurately a double-sounded air mass. On the average inside the inner edge of the vortex boundary (north of about 70°N equivalent latitude), the local ozone loss rate was 50-80 ppbv/day at the maximum during late February between the levels of 450 and 500 K potential temperatures. The integrated ozone loss during February to March reached 2.0 ± 0.1 ppmv at 475-529 K levels, and the column ozone loss between 400 and 600 K during the 2 months was 96 ± 0.3 DU. Using a relative potential vorticity (rPV) scale, the vortex was divided into some rPV belts, and it was shown that the magnitude of the ozone loss increased gradually toward the vortex center from the edge. The maximum ozone loss rate of 6.0 ± 0.6 ppbv/sunlit hour near the vortex center was higher than near the vortex edge by a factor of 2-3. When we expanded the area of interest to include all the data obtained inside the vortex edge (north of about 65°N equivalent latitude), the local ozone loss rate was about 50 ppbv/day at the maximum. This value is slightly larger than that estimated by the Match analysis using ozonesondes for the same winter by ˜10 ppbv/day. Temperature histories of double-sounded air parcels indicated that the extreme ozone loss in the innermost part of the vortex was observed when the air parcel experienced temperatures below TNAT during the two soundings and had experienced temperatures near Tice in the 10 days prior to the first sounding. These facts suggest that the high ozone loss rate deep inside the vortex

  20. Artificial ozone holes

    CERN Document Server

    Dolya, S N

    2014-01-01

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total mass of bromine equal to the following four tons.

  1. The Quasi-biennial Oscillation and annual variations in tropical ozone from SHADOZ and HALOE

    Directory of Open Access Journals (Sweden)

    J. C. Witte

    2008-03-01

    Full Text Available We examine the tropical ozone mixing ratio perturbation fields generated from a monthly ozone climatology using 1998 to 2006 ozonesonde data from the Southern Hemisphere Additional Ozonesondes (SHADOZ network and the 13 year satellite record from 1993 to 2005 obtained from the Halogen Occultation Experiment (HALOE. The lengthy time series and high vertical resolution of the ozone and temperature profiles from the SHADOZ sondes coupled with good tropical coverage north and south of the equator gives a detailed picture of the ozone structure in the lowermost stratosphere down through the tropopause where the picture obtained from HALOE measurements is blurred by coarse vertical resolution. Ozone perturbations respond to annual variations in the Brewer-Dobson Circulation (BDC in the region just above the cold-point tropopause to around 20 km. Strong annual signals of alternating positive and negative ozone anomalies are observed and correlate well with temperature anomalies. Above 20 km, ozone and temperature perturbations are dominated by the Quasi-biennial Oscillation (QBO. Both satellite and sonde records show good agreement between positive and negative ozone mixing ratio anomalies and alternating QBO easterly and westerly wind shears from the Singapore rawinsondes with a mean periodicity of 26 months for SHADOZ and 25 months for HALOE. There is a temporal offset of one to three months with the ozone QBO preceding the wind shear. Horizontal length scales for the annual cycle and the QBO, obtained using the temperature anomalies and wind shears in the thermal wind equation, compare well with theoretical calculations.

  2. A comparison of ozone trends from SME and SBUV satellite observations and model calculations

    Science.gov (United States)

    Rusch, D. W.; Clancy, R. T.

    1988-01-01

    Data on monthly ozone abundance trends near the stratopause, observed by the Ultraviolet Spectrometer (UVS) on the SME and by the Solar Backscatter Ultraviolet Instrument (SBUV) on NIMBUS-7 are presented for June, September, and January of the years 1982-1986. Globally averaged trends determined from the SME data (-0.5 + or - 1.3 percent/yr) were found to fall within model calculations by Rusch and Clancy (1988); the SBUV trends, on the other hand, were found to exceed maximum predicted ozone decreases by a factor of 3 or more. Detailed comparison of the two data sets indicated that an absolute offset of 3 percent/yr accounts for much of the difference between the two trends; the offset is considered to be due to incomplete characterization of the SBUV calibration drift. Both the UVS and SBUV data exhibited similar seasonal and latitudinal variations in ozone trends, which were reproduced by photochemical model calculations that included latitude-dependent NMC temperature trends over the 1982-1986 period.

  3. Negative Average Preference Utilitarianism

    Directory of Open Access Journals (Sweden)

    Roger Chao

    2012-03-01

    Full Text Available For many philosophers working in the area of Population Ethics, it seems that either they have to confront the Repugnant Conclusion (where they are forced to the conclusion of creating massive amounts of lives barely worth living, or they have to confront the Non-Identity Problem (where no one is seemingly harmed as their existence is dependent on the “harmful” event that took place. To them it seems there is no escape, they either have to face one problem or the other. However, there is a way around this, allowing us to escape the Repugnant Conclusion, by using what I will call Negative Average Preference Utilitarianism (NAPU – which though similar to anti-frustrationism, has some important differences in practice. Current “positive” forms of utilitarianism have struggled to deal with the Repugnant Conclusion, as their theory actually entails this conclusion; however, it seems that a form of Negative Average Preference Utilitarianism (NAPU easily escapes this dilemma (it never even arises within it.

  4. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  5. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  6. Variability and transport of ozone at the tropopause from the first year of GASP data

    Science.gov (United States)

    Nastrom, G. D.

    1977-01-01

    The relationships of ozone near the tropopause with potential vorticity temperature, and distance from the tropopause are examined. Data are also used to estimate the vertical and horizontal fluxes of ozone near the tropopause. The present estimates of the total flux of ozone into the troposphere verify the model results. Although the distribution of flux between mean motions and diffusion is different and thus suggests that models with coarse horizontal resolution must continue to parameterize much vertical transport by diffusion coefficients. Monthly estimates of the horizontal transient eddy flux of ozone are generally smaller than seasonal or yearly results based on ozonesonde data. This is perhaps because the present estimates are made over monthly periods to reduce the influence of correlation between the annual variations in ozone and meridional wind. The available data support the hypothesis that transient eddy fluxes of ozone have large longitudinal variations.

  7. COMPRESSOR TYPE OZONATOR

    Directory of Open Access Journals (Sweden)

    Gulyaev P. V.

    2016-05-01

    Full Text Available The article is devoted to the development of a compressor type ozonator. It describes the design of a high-productivity compressor ozone generator, which can be used for industrial decontamination of mixed feeds, water, milk, and in the system of presowing treatment of seeds. This construction allows generating ozone with high concentration to 5 g/m3 at high feed air or oxygen from the compressor station (up to 2000 l/min. The article describes the design of the basic elements of tubular ozone generator, examines the factors influencing the productivity of the ozonator. The proposed mathematical model allows calculating the productivity of the ozonator when considering multiple influencing factors. These factors take into account: the parameters of supply voltage, such as the magnitude and frequency of the supply voltage; the configuration and geometrical parameters of electrodes such as, the area of the electrodes, the configuration of the surface of the electrodes and distance between electrodes; parameters dielectric barrier; and the transported gas parameters such as volume, temperature, pressure and composition. Special attention is paid to the design of the electrodes made of woven wire mesh with mesh sizes from 1.5×1.5 to 2.0×2.0 mm. It is noted, that such electrodes allow obtaining the maximum productivity of an ozonator, and they do not lead to overheating of the dielectric barrier, and do not output down the generator. In the same way, the article presents the results of the mathematical modeling of ozone generator productivity while changing various factors

  8. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  9. ADVANCED TREATMENT OF SAHEBGHARANIEH SECONDARY EFFLUENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    F. Vaezi

    2000-08-01

    Full Text Available Chemical oxidation is one of the most suitable treatment methods for reducing organic pollutants and the number of pathogens remaining in secondary effluents. Ozone is the most powerful oxidizing agent commonly used because of it's many advantages over chlorination. In this study the efficiency of ozonation in advanced wastewater treatment of Sahebgharanieh Plant has been determined. Ozone generation has been performed by irradiation of compressed air with 4 special UV lamps. The total output of these lamps was determined to be 0.74 mg ozone per minute at established conditions. Considering 3 periods of ozonation of effluent samples (30, 60 and 120 min and ozone transfer coefficient of 95%, the concentrations of applied ozone for wastewater treatment were specified to be 10.5, 21 and 42 mg/l, respectively. Ozonation of secondary effluents at these periods has resulted in 17, 24 and 30 percent reduction in average COD and about 20, 18 and 32 percent decrease in BOD5. It is believed that the 2 percent increase observed in BOD after 30 minutes is caused by changing some amount of COD to BOD5 by applied ozone. According to the prescribed reduction values it could be concluded that the final effluent of a typical treatment plant would become better qualified for water reuse in irrigation. But it should be declared that the effluent might not be completely disinfected irrespective of about 99.0% decrease determined in MPN of total coliforms. Also it must be noted that this degree of disinfection was accomplished only for 62.5% of samples. Ozonation of effluent samples has caused an increase in pH value which was at least 0.4 of a pH unit.

  10. Ozone-vegetation interaction in the Earth system: implications for air quality, ecosystems and agriculture

    Science.gov (United States)

    Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.; Heald, C. L.

    2015-12-01

    Surface ozone is one of the most significant air pollutants due to its damaging effects not only on human health, but also on vegetation and crop productivity. Chronic ozone exposure has been shown to reduce photosynthesis and interfere with gas exchange in plants, which in turn affect the surface energy balance, carbon sink and other biogeochemical fluxes. Ozone damage on vegetation can thus have major ramifications on climate and atmospheric composition, including possible feedbacks onto ozone itself (see figure) that are not well understood. The damage of ozone on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to ozone-vegetation interaction. Using the Community Earth System Model, we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is modified by -20 to +4 ppbv depending on the relative importance of competing mechanisms in different regions. We also perform a statistical analysis of multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures to characterize the spatial variability of crop sensitivity to ozone and temperature extremes, specifically accounting for the confounding effect of ozone-temperature covariation. We find that several crops exhibit stronger sensitivity to ozone than found by previous field studies, with a strong anticorrelation between the sensitivity and average ozone levels that reflects biological adaptive ozone resistance. Our results show that a more complete understanding of ozone-vegetation interaction is necessary to derive more realistic future projections of climate, air quality and agricultural production, and thereby to formulate optimal strategies to safeguard public health and food security.

  11. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2013-02-01

    Full Text Available South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those

  12. IASI measurements of tropospheric ozone over Chinese megacities: Beijing, Shanghai, and Hong Kong

    OpenAIRE

    J.-M. Flaud; Orphal, J; Eremenko, M.; Dufour, G.

    2009-01-01

    IASI observations of tropospheric ozone over Beijing, Shanghai and Hong Kong during one year have been analysed, demonstrating the capability of space-borne infrared nadir measurements to probe both seasonal and daily variations of lower tropospheric ozone around megacities on the regional scale. The monthly variations of lower tropospheric ozone retrieved from IASI show the influence of the Asian summer monsoon that brings clean air masses from the Pacific during summer. They exhibit indeed ...

  13. Model for forecasting of monthly average insulation at ground level taking into account the radiation absorption losses crossing atmosphere in the thermal solar applications; Modelo de previsao da insolacao media mensal ao nivel do solo levando em conta a perda por absorcao na atmosfera em aplicacoes solares termicas

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, J.C.; Apolinario, F.R.; Silva, E.P. da [Universidade Estadual de Campinas, SP (Brazil). Lab. de Hidrogenio]. E-mails: joaoc@fem.unicamp.br; rezende@ifi.unicamp.br; lh2ennio@ifi.unicamp.br

    2000-07-01

    The use of the solar energy, for thermal or photovoltaic ends, depends basically on the amount of radiation that reaches the ground in the place where desires to carry through this use, defining the necessary area of the collectors, or panels, that in turn are the main components of the final cost of the system and, therefore, of the viability or not on its use. The incident radiation in the terrestrial surface is minor that one reaches the top of the atmosphere due to the absorption and dispersion factors. The objective of this work is to present a model of forecast the monthly average radiation for ends of use in systems of flat solar collectors for heating water, in the city of Campinas - Sao Paulo, Brazil. This work has been developed by the Hydrogen Laboratory of the Institute of Physics of the UNICAMP, being also used for other applications with solar energy. Based in the radiation data, taken from a local station, a theoretical study was developed to calculate a parameter of loss of radiation when this cross the atmosphere. This Kt loss factor, has basic importance for the knowledge of the effective available energy for use. With this data it is possible to determine, on the basis of the incident radiation in the top of the atmosphere, the value of the radiation on a surface. (author)

  14. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Science.gov (United States)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  15. Can a global model reproduce observed trends in summertime surface ozone levels?

    OpenAIRE

    S. Koumoutsaris; I. Bey

    2012-01-01

    Quantifying trends in surface ozone concentrations are critical for assessing pollution control strategies. Here we use observations and results from a global chemical transport model to examine the trends (1991–2005) in daily maximum 8-hour average concentrations in summertime surface ozone at rural sites in Europe and the United States. We find a decrease in observed ozone concentrations at the high end of the probability distribution at many of the sites in both regions. The model attribut...

  16. Impact of Climate Change on Ambient Ozone Level and Mortality in Southeastern United States

    OpenAIRE

    Montserrat Fuentes; Chang, Howard H.; Jingwen Zhou

    2010-01-01

    There is a growing interest in quantifying the health impacts of climate change. This paper examines the risks of future ozone levels on non-accidental mortality across 19 urban communities in Southeastern United States. We present a modeling framework that integrates data from climate model outputs, historical meteorology and ozone observations, and a health surveillance database. We first modeled present-day relationships between observed maximum daily 8-hour average ozone concentrations an...

  17. Modeling the interaction of nitrate anions with ozone and atmospheric moisture

    Institute of Scientific and Technical Information of China (English)

    A. Y. Galashev

    2015-01-01

    The molecular dynamics method is used to investigate the interaction between one–six nitrate anions and water clus-ters absorbing six ozone molecules. The infrared (IR) absorption and reflection spectra are reshaped significantly, and new peaks appear at Raman spectra due to the addition of ozone and nitrate anions to the disperse water system. After ozone and nitrate anions are captured, the average (in frequency) IR reflection coefficient of the water disperse system increased drastically and the absorption coefficient fell.

  18. Antarctic ozone hole as observed by IASI/MetOp for 2008–2010

    Directory of Open Access Journals (Sweden)

    C. Scannell

    2012-01-01

    Full Text Available In this paper we present a study of the ozone hole as observed by the Infrared Atmospheric Sounding Interferometer (IASI on-board the MetOp-A European satellite platform from the beginning of data dissemination, August 2008, to the end of December 2010. Here we demonstrate IASI's ability to capture the seasonal characteristics of the ozone hole, in particular during polar night. We compare IASI ozone total columns and vertical profiles with those of the Global Ozone Monitoring Experiment 2 (GOME-2, also on-board MetOp-A and electrochemical concentration cell (ECC ozone sonde measurements. Total ozone column from IASI and GOME-2 were found to be in excellent agreement for this region with a correlation coefficient of 0.97, for September, October and November 2009. On average IASI exhibits a positive bias of approximately 7% compared to the GOME-2 measurements over the entire ozone hole period. Comparisons between IASI and ozone sonde measurements were also found to be in good agreement with the difference between both ozone profile measurements being less than ±30% over the altitude range of 0–40 km. The vertical structure of the ozone profile inside the ozone hole is captured remarkably well by IASI.

  19. What Would Have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?

    Science.gov (United States)

    Newman, Paul A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; Nielsen, J. E.; Pawson, S.; Stolarski, R. S.; Velders, G. J. M.

    2008-01-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the sci entific connection between ozone losses and CFCs and other ozone depl eting substances (ODSs) has been firmly established with laboratory m easurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements t hat largely stopped the production of ODSs. In this study we use a fu lly-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an ann ual rate of 3%. In this "world avoided" simulation 1.7 % of the globa lly-average column ozone is destroyed by 2020, and 67% is destroyed b y 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observ ed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower strat osphere remain constant until about 2053 and then collapse to near ze ro by 2058 as a result of heterogeneous chemical processes (as curren tly observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increa ses, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  20. What would have happened to the ozone layer if chlorofluorocarbons (CFCs had not been regulated?

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2009-03-01

    Full Text Available Ozone depletion by chlorofluorocarbons (CFCs was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs has been firmly established with laboratory measurements, atmospheric observations, and modeling studies. This science research led to the implementation of international agreements that largely stopped the production of ODSs. In this study we use a fully-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an annual rate of 3%. In this "world avoided" simulation, 17% of the globally-averaged column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole. The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increases, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  1. What would have happened to the ozone layer if chlorofluorocarbons (CFCs had not been regulated?

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2008-12-01

    Full Text Available Ozone depletion by chlorofluorocarbons (CFCs was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs has been firmly established with laboratory measurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements that largely stopped the production of ODSs. In this study we use a fully-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an annual rate of 3%. In this "world avoided" simulation, 17% of the globally-average column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole. The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increases, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  2. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  3. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  4. VOC reactivity and its effect on ozone production during the HaChi summer campaign

    Directory of Open Access Journals (Sweden)

    L. Ran

    2011-05-01

    Full Text Available Measurements of ozone and its precursors conducted within the HaChi (Haze in China project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP. Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %, isoprene (15 %, trimethylbenzenes (11 %, xylenes (8.5 %, 3-methylhexane (6 %, n-hexane (5 % and toluene (4.5 %. Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR_MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present.

  5. Ozone Depletion by Hydrofluorocarbons

    Science.gov (United States)

    Hurwitz, M.; Fleming, E. L.; Newman, P. A.; Li, F.; Mlawer, E. J.; Cady-Pereira, K. E.; Bailey, R.

    2015-12-01

    Hydrofluorocarbons (HFCs) are second-generation replacements for the chlorofluorocarbons (CFCs), halons and other substances that caused the 'ozone hole'. Atmospheric concentrations of HFCs are projected to increase dramatically in the coming decades. Coupled chemistry-climate simulations forced by these projections show that HFCs will impact the global atmosphere in 2050. As strong radiative forcers, HFCs modulate atmospheric temperature, thereby changing ozone-destroying catalytic cycles and enhancing the stratospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Sensitivity simulations with the NASA Goddard Space Flight Center (GSFC) 2D model show that HFC-125 is the most important contributor to atmospheric change in 2050, as compared with HFC-23, HFC-32, HFC-134a and HFC-143a. Incorporating the interactions between chemistry, radiation and dynamics, for a likely 2050 climate, ozone depletion potentials (ODPs) for HFCs range from 4.3x10-4 to 3.5x10-2; previously HFCs were assumed to have negligible ODPs since these species lack chlorine or bromine atoms. The ozone impacts of HFCs are further investigated with the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). The GEOSCCM is a three-dimensional, fully coupled ocean-atmosphere model with interactive stratospheric chemistry. Sensitivity simulations in which CO2, CFC-11 and HCFC-22 are enhanced individually are used as proxies for the atmospheric response to the HFC concentrations expected by the mid-21st century. Sensitivity simulations provide quantitative estimates of the impacts of these greenhouse gases on global total ozone, and can be used to assess their effects on the recovery of Antarctic ozone.

  6. 2011年春季北极臭氧异常低值监测和特征分析%MONITORING RESULTS AND ANALYSIS OF ANOMALOUSLY LOW OZONE IN THE 2011 ARCTIC SPRING

    Institute of Scientific and Technical Information of China (English)

    王维和; 张艳; 李晓静; 张兴赢; 郑照军; 刘瑞霞

    2011-01-01

    利用中国第二代极轨气象卫星“风云三号”A星(FY-3A)搭载的紫外臭氧总量探测仪(TOU),连续监测全球臭氧总量分布的遥感数据,分析后发现,自2011年3月初开始,北极地区臭氧总量急剧下降,形成一个臭氧低值区,3月中旬低值区中心部分臭氧总量日平均值只有同期的一半左右.分析风云三号气象卫星及国外卫星1979-2011年北极地区春季臭氧监测结果与北极平流层低层极涡活动的关系.研究结果表明,2011年春季北极臭氧总量异常低值是极冷的极涡引起的,自20世纪80年代以来北极春季臭氧总量呈现下降的趋势,而北极春季臭氧总量的年际变化主要取决于北极极涡的强弱.%Total ozone observations from the Total Ozone Unit ( TOU ) on board the second-generation polar orbiting meteorological satellite of China, Fengyun-3/A (FY-3/A) , reveal that total column ozone over the Arctic declined rapidly from the beginning of March 2011. An extensive region of low column ozone formed around mid March. Monthly mean total column ozone in March 2011 was about 20% lower than the average from 1979 to 2010. The daily total column density of ozone near the center of low ozone area in mid march was less than 240 DU, about half of the total column ozone observed during the same period over the last 10 years. Total column ozone data observed by different satellites from 1979 to 2011 are analyzed. Results show that the Arctic depletion of ozone in spring of 2011 was initiated by the cold polar vortex in the lower stratosphere. The mean value of total ozone in March over the Arctic has a decreasing trend over the past 32 years, and its variation is strongly correlated with the polar vortex.

  7. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia

    Science.gov (United States)

    Toh, Ying Ying; Lim, Sze Fook; von Glasow, Roland

    2013-05-01

    The surface ozone concentrations at the Tanah Rata regional Global Atmosphere Watch (GAW) station, Malaysia (4°28‧N, 101°23‧E, 1545 m above Mean Sea Level (MSL)) from June 2006 to August 2008 were analyzed in this study. Overall the ozone mixing ratios are very low; the seasonal variations show the highest mixing ratios during the Southwest monsoon (average 19.1 ppb) and lowest mixing ratios during the spring intermonsoon (average 14.2 ppb). The diurnal variation of ozone is characterised by an afternoon maximum and night time minimum. The meteorological conditions that favour the formation of high ozone levels at this site are low relative humidity, high temperature and minimum rainfall. The average ozone concentration is lower during precipitation days compared to non-precipitation days. The hourly averaged ozone concentrations show significant correlations with temperature and relative humidity during the Northeast monsoon and spring intermonsoon. The highest concentrations are observed when the wind is blowing from the west. We found an anticorrelation between the atmospheric pressure tide and ozone concentrations. The ozone mixing ratios do not exceed the recommended Malaysia Air Quality Guidelines for 1-h and 8-h averages. Five day backward trajectories on two high ozone episodes in 07 August 2006 (40.0 ppb) and 24 February 2008 (45.7 ppb) are computed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the origin of the pollutants and influence of regional transport. The high ozone episode during 07 August 2006 (burning season during southwest monsoon) is mainly attributed to regional transport from biomass burning in Sumatra, whereas favourable meteorological conditions (i.e. low relative humidity, high temperature and solar radiation, zero rainfall) and long range transport from Indo-China have elevated the ozone concentrations during 24 February 2008.

  8. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  9. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  10. Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects

    Directory of Open Access Journals (Sweden)

    A. F. Bais

    2011-08-01

    Full Text Available Monthly averaged surface erythemal solar irradiance (UV-Ery for local noon from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM, as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate change due to increasing greenhouse gas concentrations. The latter include effects of both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and the spread in the CCM projections. The calculations suggest that relative to 1980, annually mean UV-Ery in the 2090s will be on average ~12 % lower at high latitudes in both hemispheres, ~3 % lower at mid latitudes, and marginally higher (~1 % in the tropics. The largest reduction (~16 % is projected for Antarctica in October. Cloud effects are responsible for 2–3 % of the reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (~1 %. The year of return of erythemal irradiance to values of certain milestones (1965 and 1980 depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone transport by global circulation changes due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances. At northern high latitudes (60°–90°, the projected decreases in cloud

  11. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  12. Spatio-temporal modeling for real-time ozone forecasting.

    Science.gov (United States)

    Paci, Lucia; Gelfand, Alan E; Holland, David M

    2013-05-01

    The accurate assessment of exposure to ambient ozone concentrations is important for informing the public and pollution monitoring agencies about ozone levels that may lead to adverse health effects. High-resolution air quality information can offer significant health benefits by leading to improved environmental decisions. A practical challenge facing the U.S. Environmental Protection Agency (USEPA) is to provide real-time forecasting of current 8-hour average ozone exposure over the entire conterminous United States. Such real-time forecasting is now provided as spatial forecast maps of current 8-hour average ozone defined as the average of the previous four hours, current hour, and predictions for the next three hours. Current 8-hour average patterns are updated hourly throughout the day on the EPA-AIRNow web site. The contribution here is to show how we can substantially improve upon current real-time forecasting systems. To enable such forecasting, we introduce a downscaler fusion model based on first differences of real-time monitoring data and numerical model output. The model has a flexible coefficient structure and uses an efficient computational strategy to fit model parameters. Our hybrid computational strategy blends continuous background updated model fitting with real-time predictions. Model validation analyses show that we are achieving very accurate and precise ozone forecasts.

  13. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    D. W. Tarasick

    2009-12-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals in year 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. As a result statistical relationships between models and ozone sonde measurements are far less satisfactory than for surface measurements at all seasons. The lowest bias between model calculated ozone profiles and the ozone sonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months the spread in model results increases and the agreement between ozone sonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are presented. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by

  14. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes

    Science.gov (United States)

    Avise, J.; Chen, J.; Lamb, B.; Wiedinmyer, C.; Guenther, A.; Salathé, E.; Mass, C.

    2009-02-01

    The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC) A2 scenario are derived through the downscaling of Parallel Climate Model (PCM) output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4) global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES) A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS), and changes in land-use are projected using data from the Community Land Model (CLM) and the Spatially Explicit Regional Growth Model (SERGOM). For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv) on average daily maximum 8-h (DM8H) ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (-2.6 ppbv). Changes in average 24-h (A24-h) PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m-3), while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2

  15. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-02-01

    Full Text Available The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC A2 scenario are derived through the downscaling of Parallel Climate Model (PCM output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4 global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS, and changes in land-use are projected using data from the Community Land Model (CLM and the Spatially Explicit Regional Growth Model (SERGOM. For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv on average daily maximum 8-h (DM8H ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv. Changes in average 24-h (A24-h PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3, while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2

  16. Evaluation of near-tropopause ozone distributions in the Global Modeling Initiative combined stratosphere/troposphere model with ozonesonde data

    Directory of Open Access Journals (Sweden)

    D. B. Considine

    2008-01-01

    Full Text Available The NASA Global Modeling Initiative has developed a combined stratosphere/troposphere chemistry and transport model which fully represents the processes governing atmospheric composition near the tropopause. We evaluate model ozone distributions near the tropopause, using two high vertical resolution monthly mean ozone profile climatologies constructed with ozonesonde data, one by averaging on pressure levels and the other relative to the thermal tropopause. Model ozone is high-biased at the SH tropical and NH midlatitude tropopause by ~45% in a 4° latitude × 5° longitude model simulation. Increasing the resolution to 2°×2.5° increases the NH tropopause high bias to ~60%, but decreases the tropical tropopause bias to ~30%, an effect of a better-resolved residual circulation. The tropopause ozone biases appear not to be due to an overly vigorous residual circulation or excessive stratosphere/troposphere exchange, but are more likely due to insufficient vertical resolution or excessive vertical diffusion near the tropopause. In the upper troposphere and lower stratosphere, model/measurement intercomparisons are strongly affected by the averaging technique. NH and tropical mean model lower stratospheric biases are <20%. In the upper troposphere, the 2°×2.5° simulation exhibits mean high biases of ~20% and~35% during April in the tropics and NH midlatitudes, respectively, compared to the pressure-averaged climatology. However, relative-to-tropopause averaging produces upper troposphere high biases of ~30% and 70% in the tropics and NH midlatitudes. This is because relative-to-tropopause averaging better preserves large cross-tropopause O3 gradients, which are seen in the daily sonde data, but not in daily model profiles. The relative annual cycle of ozone near the tropopause is reproduced very well in the model Northern Hemisphere midlatitudes. In the tropics, the model amplitude of the near-tropopause annual cycle is weak

  17. Stratospheric ClO and ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Froidevaux, L.; Read, W. G.; Manney, G. L.; Elson, L. S.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.

    1993-01-01

    Concentrations of atmospheric ozone and of ClO (the predominant form of reactive chlorine responsible for stratospheric ozone depletion) are reported for both the Arctic and Antarctic winters of the past 18 months. Chlorine in the lower stratosphere was almost completely converted to chemically reactive forms in both the northern and southern polar winter vortices. This occurred in the south long before the development of the Antarctic ozone hole, suggesting that ozone loss can be masked by influx of ozone-rich air.

  18. Source apportionment of emissions from light-duty gasoline vehicles and other sources in the United States for ozone and particulate matter.

    Science.gov (United States)

    Vijayaraghavan, Krish; Lindhjem, Chris; Koo, Bonyoung; DenBleyker, Allison; Tai, Edward; Shah, Tejas; Alvarez, Yesica; Yarwood, Greg

    2016-02-01

    Federal Tier 3 motor vehicle emission and fuel sulfur standards have been promulgated in the United States to help attain air quality standards for ozone and PM2.5 (particulate matter with an aerodynamic diameter Emission Vehicle [LEV] III standards) and prior Tier 2 standards for on-road gasoline-fueled light-duty vehicles (gLDVs) to assess incremental air quality benefits in the United States (U.S.) and the relative contributions of gLDVs and other major source categories to ozone and PM2.5 in 2030. Strengthening Tier 2 to a Tier 3-like (LEV III) standard reduces the summertime monthly mean of daily maximum 8-hr average (MDA8) ozone in the eastern U.S. by up to 1.5 ppb (or 2%) and the maximum MDA8 ozone by up to 3.4 ppb (or 3%). Reducing gasoline sulfur content from 30 to 10 ppm is responsible for up to 0.3 ppb of the improvement in the monthly mean ozone and up to 0.8 ppb of the improvement in maximum ozone. Across four major urban areas-Atlanta, Detroit, Philadelphia, and St. Louis-gLDV contributions range from 5% to 9% and 3% to 6% of the summertime mean MDA8 ozone under Tier 2 and Tier 3, respectively, and from 7% to 11% and 3% to 7% of the maximum MDA8 ozone under Tier 2 and Tier 3, respectively. Monthly mean 24-hr PM2.5 decreases by up to 0.5 μg/m(3) (or 3%) in the eastern U.S. from Tier 2 to Tier 3, with about 0.1 μg/m(3) of the reduction due to the lower gasoline sulfur content. At the four urban areas under the Tier 3 program, gLDV emissions contribute 3.4-5.0% and 1.7-2.4% of the winter and summer mean 24-hr PM2.5, respectively, and 3.8-4.6% and 1.5-2.0% of the mean 24-hr PM2.5 on days with elevated PM2.5 in winter and summer, respectively. Following U.S. Tier 3 emissions and fuel sulfur standards for gasoline-fueled passenger cars and light trucks, these vehicles are expected to contribute less than 6% of the summertime mean daily maximum 8-hr ozone and less than 7% and 4% of the winter and summer mean 24-hr PM2.5 in the eastern U.S. in 2030. On days

  19. Impacts of Ozone-vegetation Interactions and Biogeochemical Feedbacks on Atmospheric Composition and Air Quality Under Climate Change

    Science.gov (United States)

    Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.

    2015-12-01

    Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.

  20. Solar Backscatter UV (SBUV total ozone and profile algorithm

    Directory of Open Access Journals (Sweden)

    P. K. Bhartia

    2013-10-01

    Full Text Available We describe the algorithm that has been applied to develop a 42 yr record of total ozone and ozone profiles from eight Solar Backscatter UV (SBUV instruments launched on NASA and NOAA satellites since April 1970. The Version 8 (V8 algorithm was released more than a decade ago and has been in use since then at NOAA to produce their operational ozone products. The current algorithm (V8.6 is basically the same as V8, except for updates to instrument calibration, incorporation of new ozone absorption cross-sections, and new ozone and cloud height climatologies. Since the V8 algorithm has been optimized for deriving monthly zonal mean (MZM anomalies for ozone assessment and model comparisons, our emphasis in this paper is primarily on characterizing the sources of errors that are relevant for such studies. When data are analyzed this way the effect of some errors, such as vertical smoothing of short-term variability, and noise due to clouds and aerosols diminish in importance, while the importance of others, such as errors due to vertical smoothing of the quasi-biennial oscillation (QBO and other periodic and aperiodic variations, become more important. With V8.6 zonal mean data we now provide smoothing kernels that can be used to compare anomalies in SBUV profile and partial ozone columns with models. In this paper we show how to use these kernels to compare SBUV data with Microwave Limb Sounder (MLS ozone profiles. These kernels are particularly useful for comparisons in the lower stratosphere where SBUV profiles have poor vertical resolution but partial column ozone values have high accuracy. We also provide our best estimate of the smoothing errors associated with SBUV MZM profiles. Since smoothing errors are the largest source of uncertainty in these profiles, they can be treated as error bars in deriving interannual variability and trends using SBUV data and for comparing with other measurements. In the V8 and V8.6 algorithms we derive total

  1. Characteristics of Ozone Variations in Lhasa in Recent Years%近几年拉萨上空大气臭氧变化特征

    Institute of Scientific and Technical Information of China (English)

    杨勇; 张勇; 唐小萍

    2013-01-01

    The variation characteristics of ozone in Lhasa in recent years were ana-lyzed by using Brewer spectrometer observation data. The results showed that ozone was mainly distributed in 15-35 km in atmosphere in Lhasa; the peak value by in-version was in 21-25 km; by comparison of ozone vertical distribution in Lhasa, it can be concluded that ozone differs insignificantly in middle-to-high layers in strato-sphere and the distribution is similar over 36 km. The difference can be observed from the fact that ozone concentration is higher in winter and spring compared with summer and autumn from ground to the height at 21 km. In recent 4 years, annual average of total ozone in Lhasa was of little variations and extreme values of ozone appeared in winter and spring. Monthly averages were lower in August and September, and the lower value of ozone kept longer in 2008 for 23 d.%利用 Brewer分光光谱仪观测资料分析青藏高原拉萨站近几年大气臭氧的变化特征,结果表明,拉萨上空臭氧主要分布在15~35 km,反演结果的峰值出现在21~25 km。对比拉萨四季臭氧垂直分布发现,它们在平流层中上层的差异不大,且在36 km以上的分布大致相同,差异主要表现在从地面到21 km,冬春季的臭氧数密度大于夏秋季,近4年来拉萨的年平均臭氧总量的变化不大,臭氧总量的极值出现在冬春季节,臭氧总量的月平均值在8和9月较低,2008年6~9月臭氧低值的持续时间是近几年中最长的,达23 d。

  2. Ozone bioindication in Barcelona and surrounding area of Catalonia

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, A.; Penuelas, J. [Univ. Autonoma de Barcelona, Barcelona (Spain). Ecophysiology Unit of CSIC

    2002-07-01

    A field study was conducted from July to September 2000 to assess ozone (O{sub 3}) phytotoxicity in Barcelona and surrounding areas of Catalonia (NE Spain) by using tobacco plants Bel-W3 and Populus nigra 'Brandaris' as bioindicators. The study was conducted simultaneously at eight sites where ozone concentrations and meteorological variables were continuously monitored. The ozone levels correlated well with ozone injury on the Bel-W3 cultivar, especially at stations established in the urban area of Barcelona, and in the first months of summer. In the second half of summer plants showed a decreasing efficiency in its biomonitoring capacity. The behaviour of Populus as bioindicator or biomonitor was less satisfactory. For both species it is necessary to improve cultivation conditions since water deficits seem to play an important role in bioindication in the Mediterranean region. (orig.)

  3. Winter rain and summer ozone: a predictive relationship.

    Science.gov (United States)

    Sandberg, J S; Basso, M J; Okin, B A

    1978-06-01

    Insights from dendrochronology have provided a new seasonal predictor for air pollution meteorology. In the San Francisco Bay Area summer ozone excesses over the federal ozone standard are correlated (correlation coefficient r = .87) with precipitation for the two preceding winters, a factor related to tree-ring width in a precipitation-stressed climate. The hypothesis that reactive hydrocarbon emissions from vegetative biomass affects these ozone excesses was supported by a similar correlation between summer hydrocarbon average maximums and the two-winter precipitation factor, reaching r = .88 at suburban stations. A weak tendency for hot summers to follow wet winters (in 16 years of California data) explains only a minor part of the ozone-rain relationship in multiple correlations.

  4. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  5. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  6. Observing entrainment mixing, photochemical ozone production, and regional methane emissions by aircraft using a simple mixed-layer framework

    Science.gov (United States)

    Trousdell, Justin F.; Conley, Stephen A.; Post, Andy; Faloona, Ian C.

    2016-12-01

    In situ flight data from two distinct campaigns during winter and summer seasons in the San Joaquin Valley (SJV) of California are used to calculate boundary-layer entrainment rates, ozone photochemical production rates, and regional methane emissions. Flights near Fresno, California, in January and February 2013 were conducted in concert with the NASA DISCOVER-AQ project. The second campaign (ArvinO3), consisting of 11 days of flights spanning June through September 2013 and 2014, focused on the southern end of the SJV between Bakersfield and the small town of Arvin, California - a region notorious for frequent violations of ozone air quality standards. Entrainment velocities, the parameterized rates at which free tropospheric air is incorporated into the atmospheric boundary layer (ABL), are estimated from a detailed budget of the inversion base height. During the winter campaign near Fresno, we find an average midday entrainment velocity of 1.5 cm s-1, and a maximum of 2.4 cm s-1. The entrainment velocities derived during the summer months near Bakersfield averaged 3 cm s-1 (ranging from 0.9 to 6.5 cm s-1), consistent with stronger surface heating in the summer months. Using published data on boundary-layer heights we find that entrainment rates across the Central Valley of California have a bimodal annual distribution peaking in spring and fall when the lower tropospheric stability (LTS) is changing most rapidly.Applying the entrainment velocities to a simple mixed-layer model of three other scalars (O3, CH4, and H2O), we solve for ozone photochemical production rates and find wintertime ozone production (2.8 ± 0.7 ppb h-1) to be about one-third as large as in the summer months (8.2 ± 3.1 ppb h-1). Moreover, the summertime ozone production rates observed above Bakersfield-Arvin exhibit an inverse relationship to a proxy for the volatile organic compound (VOC) : NOx ratio (aircraft [CH4] divided by surface [NO2]), consistent with a NOx-limited photochemical

  7. Ozone Therapy in Dentistry

    Directory of Open Access Journals (Sweden)

    Ramachandran Sudarshan

    2013-02-01

    Full Text Available With the advancements in the field of dentistry, new treatment protocols are budding day by day to combat human ailments in a much natural better and simpler way. One such advancement is the application of ozone in dentistry. Ozone is a natural element protects us from ultraviolet rays. It has several properties including analgesics, immunostimulant and antimicrobial properties. In Dentistry its uses are abundance from gingival diseases, infection control, temporomandibular disorders, radiation and chemotherapy induced mucositis, lichen planus etc. Researchers believe that this therapy is in state of equilibrium with benefit and drawback. This review throws light on the history, properties, methods of administration, uses in the field of medicine and dentistry, toxicity, contraindications of ozone. [Archives Medical Review Journal 2013; 22(1.000: 45-54

  8. Learning about ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, J. P. [Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany; Oppenheimer M. [Woodrow Wilson School of Public and International Affairs, Department of Geosciences, Princeton University, Princeton, NJ (United States)

    2008-07-15

    Stratospheric ozone depletion has been much studied as a case history in the interaction between environmental science and environmental policy. The positive influence of science on policy is often underscored, but here we review the photochemistry of ozone in order to illustrate how scientific learning has the potential to mislead policy makers. The latter may occur particularly in circumstances where limited observations are combined with simplified models of a complex system, such as may generally occur in the global change arena. Even for the well-studied case of ozone depletion, further research is needed on the dynamics of scientific learning, particularly the scientific assessment process, and how assessments influence the development of public policy.

  9. Evaluating the potential of IASI ozone observations to constrain simulated surface ozone concentrations

    Directory of Open Access Journals (Sweden)

    M. Beekmann

    2009-11-01

    Full Text Available A tracer study has been performed for two summers in 2003 and 2004 with a regional chemistry-transport model in order to evaluate the potential constraint that tropospheric ozone observations from nadir viewing infrared sounders like IASI or TES exert on modelled near surface ozone. As these instruments show high sensitivity in the free troposphere, but low sensitivity at ground, it is important to know how much of the information gained in the free troposphere is transferred to ground through vertical transport processes. Within the European model domain, and within a time span of 4 days, only ozone like tracers initialised in vertical layers above 500 hPa are transported to the surface. For a tracer initialised between 800 and 700 hPa, seven percent reaches the surface within one to three days, on the average over the European model domain but more than double over the Mediterranean Sea. For this region, trajectory analysis shows that this is related to strong subsident transport. These results are confirmed by a second tracer study taking into account averaging kernels related to IASI retrievals, indicating the potential of these measurements to efficiently constrain surface ozone values.

  10. OZONE: ALTERNATIVE METHOD FOR MITE CONTROL ON SPECK

    Directory of Open Access Journals (Sweden)

    C. Cantoni

    2013-02-01

    Full Text Available This study is aimed at the development of a method for integrated mite control in the industrial production of speck. The investigation were carried out on the premises of five factories in the north-east of Italy. Tyrophagus putrescentiae and T. longior were predominant. The gaseous ozone treatment at low level (0.4 ppm was able to kill mites in a period within 15 days and 1 month. The characteristic layer of mould on the product surface reappears within 1 month from the end of treatment with ozone.

  11. A Multi-sensor Upper Tropospheric Ozone Product (MUTOP based on TES ozone and GOES water vapor: derivation

    Directory of Open Access Journals (Sweden)

    S. R. Felker

    2010-12-01

    Full Text Available The Tropospheric Emission Spectrometer (TES, a hyperspectral infrared instrument on the Aura satellite, retrieves a vertical profile of tropospheric ozone. However, polar-orbiting instruments like TES provide limited nadir-view coverage. This work illustrates the value of these observations when taken in context with information about synoptic-scale weather patterns. The goal of this study is to create map-view products of upper troposphere (UT ozone through the integration of TES ozone measurements with two synoptic dynamical tracers of stratospheric influence: specific humidity derived from the GOES Imager, and potential vorticity from an operational forecast model. As a mixing zone between tropospheric and stratospheric reservoirs, the upper troposphere (UT exhibits a complex chemical makeup. Determination of ozone mixing ratios in this layer is especially difficult without direct in-situ measurement. However, it is well understood that UT ozone is correlated with dynamical tracers like low specific humidity and high potential vorticity. Blending the advantages of two remotely sensed quantities (GOES water vapor and TES ozone is at the core of the Multi-sensor Upper Tropospheric Ozone Product (MUTOP.

    Our approach results in the temporal and spatial coverage of a geostationary platform, a major improvement over individual polar overpasses, while retaining TES's ability to characterize UT ozone. Results suggest that over 70% of TES-observed UT ozone variability can be explained by correlation with the two dynamical tracers. MUTOP reproduces TES retrievals across the GOES-West domain with a root mean square error (RMSE of 19.2 ppbv. There are several advantages to this multi-sensor derived product approach: (1 it is calculated from 2 operational fields (GOES specific humidity and GFS PV, so the layer-average ozone can be created and used in near real-time; (2 the product provides the spatial resolution and coverage of a geostationary

  12. A climatological study of rural surface ozone in central Greece

    Directory of Open Access Journals (Sweden)

    P. D. Kalabokas

    2004-01-01

    Full Text Available Recent studies show that surface ozone levels at rural sites in Greece are generally high when compared with rural ozone measurements at northern European sites. The area of SE Europe, including Greece, is not very well monitored regarding rural ozone in comparison to central and northern Europe. In order to have the best possible picture of the rural surface ozone climatology in the area, based on the available data-sets of long-term continuous monitoring stations, the 10-year measurement records (1987-1996 of the Athens peripheral station of Liossia, (12 km N of the city center and the urban background station of Geoponiki (3 km W as well as the 4-year record (1996-1999 of the rural station of Aliartos (100 km NW of Athens, are analyzed in this paper. The data for Liossia and Geoponiki stations are screened for cases of strong airflow from rural areas (N-NE winds stronger than 5 m/s. The variation characteristics of the average rural ozone afternoon levels (12:00-18:00, with the best vertical atmospheric mixing, are mainly examined since these measurements are expected to be representative of the broader area. In all three stations there is a characteristic seasonal variation of rural ozone concentrations with lowest winter afternoon values at about 50 μg/m3 in December-January and average summer afternoon values at about 120 μg/m3 in July-August, indicating that high summer values are observed all over the area. The rural summer afternoon ozone values are very well correlated between the three stations, implying spatial homogeneity all over the area but also temporal homogeneity, since during the 13-year period 1987-1999 the rural afternoon ozone levels remained almost constant around the value of 120 μg/m3.

  13. Ozone and cardiovascular injury

    Directory of Open Access Journals (Sweden)

    Rainaldi Giuseppe

    2009-06-01

    Full Text Available Abstract Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular diseases in urban communities. The potential detrimental effects are both acute and chronic having a strong impact on morbidity and mortality. The acute exposure to pollutants has been linked to adverse cardiovascular events such as myocardial infarction, heart failure and life-threatening arrhythmias. The long-terms effects are related to the lifetime risk of death from cardiac causes. The WHO estimates that air pollution is responsible for 3 million premature deaths each year. The evidence supporting these data is very strong nonetheless, epidemiologic and observational data have the main limitation of imprecise measurements. Moreover, the lack of clinical experimental models makes it difficult to demonstrate the individual risk. The other limitation is related to the lack of a clear mechanism explaining the effects of pollution on cardiovascular mortality. In the present review we will explore the epidemiological, clinical and experimental evidence of the effects of ozone on cardiovascular diseases. The pathophysiologic consequences of air pollutant exposures have been extensively investigated in pulmonary systems, and it is clear that some of the major components of air pollution (e.g. ozone and particulate matter can initiate and exacerbate lung disease in humans 1. It is possible that pulmonary oxidant stress mediated by particulate matter and/or ozone (O3 exposure can result in downstream perturbations in the cardiovasculature, as the pulmonary and cardiovascular systems are intricately associated, and it is well documented that specific environmental toxins (such as tobacco smoke 2 introduced through the lungs can initiate and/or accelerate cardiovascular disease development. Indeed, several epidemiologic studies have proved that there is an association between PM and O3 and the increased incidence of cardiovascular morbidity

  14. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  15. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  16. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  17. Validation of OMI total ozone retrievals from the SAO ozone profile algorithm and three operational algorithms with Brewer measurements

    Directory of Open Access Journals (Sweden)

    J. Bak

    2014-02-01

    Full Text Available The accuracy of total ozone computed from the Smithsonian Astrophysical Observatory (SAO optimal estimation (OE ozone profile algorithm (SOE applied to the Ozone Monitoring Instrument (OMI is assessed through comparisons with ground-based Brewer spectrometer measurements from 2005 to 2008. We also make comparisons with the three OMI operational ozone products, derived from the NASA Total Ozone Mapping Spectrometer (TOMS, KNMI Differential Optical Absorption Spectroscopy (DOAS, and KNMI OE (KOE algorithms. Excellent agreement is observed between SAO and Brewer, with a mean difference of less than ±1% at most individual stations. The KNMI OE algorithm systematically overestimates Brewer total ozone by 2% at low/mid latitudes and 5% at high latitudes while the TOMS and DOAS algorithms underestimate it by ~1.65% on average. Standard deviations of ~1.8% are found for both SOE and TOMS, but DOAS and KOE have scatters of 2.2% and 2.6%, respectively. The stability of the SOE algorithm is found to have insignificant dependence on viewing geometry, cloud parameters, total ozone column. In comparison, the KOE differences to Brewer values are significantly correlated with solar and viewing zenith angles, with a significant deviation depending on cloud parameters and total ozone amount. The TOMS algorithm exhibits similar stability to SOE with respect to viewing geometry and total column ozone, but stronger cloud parameter dependence. The dependence of DOAS on the algorithmic variables is marginal compared to KOE, but distinct compared to the SOE and TOMS algorithms. Comparisons of All four OMI products with Brewer show no apparent long-term drift but a seasonally affected feature, especially for KOE and TOMS. The substantial differences in the KOE vs. SOE algorithm performance cannot be sufficiently explained by the use of soft calibration (in SOE and the use of different a priori error covariance matrix, but other algorithm details cause larger fitting

  18. DEVELOPMENTS IN OZONATION OF WATERS

    Directory of Open Access Journals (Sweden)

    Ensar OĞUZ

    2001-03-01

    Full Text Available Ozone, has been used in both industrial and synthetic chemistry. From this point of view, ozone-organic chemistry related papaers have been published by many researcher. Forthermore; its role in air and water pollution problems is more important today. As a result of ozone researches, it is clear that ozone is to be the brightest expection for future in industrial, domestic, and driking water treatment. Ozone, a high grade oxidation matter, has been used for removing the pollutants and toxic materials from waste waters.

  19. Total Ozone Prediction: Stratospheric Dynamics

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Ramdy; Douglass, Anne R.

    2003-01-01

    The correct prediction of total ozone as a function of latitude and season is extremely important for global models. This exercise tests the ability of a particular model to simulate ozone. The ozone production (P) and loss (L) will be specified from a well- established global model and will be used in all GCMs for subsequent prediction of ozone. This is the "B-3 Constrained Run" from M&MII. The exercise mostly tests a model stratospheric dynamics in the prediction of total ozone. The GCM predictions will be compared and contrasted with TOMS measurements.

  20. Surface modification of carbon nanohorns by helium plasma and ozone treatments

    Science.gov (United States)

    Lin, Zaw; Iijima, Toru; Selvam Karthik, Paneer; Yoshida, Mitsunobu; Hada, Masaki; Nishikawa, Takeshi; Hayashi, Yasuhiko

    2017-01-01

    In this paper, we describe the effects of helium plasma and ozone treatments on the dispersibility of carbon nanohorns (CNHs) in water. The experimental setups have been designed to efficiently generate helium plasma and ozone by dielectric barrier discharge at atmospheric pressure. After being treated with ozone, the oxygen-containing functional groups were introduced to the surface of CNHs, and are responsible for better dispersion. Helium plasma treatment was performed separately and it resulted in hydroxyl functional groups on the surface of CNHs. It was also found that the sizes of CNHs in water were smaller after ozone treatment. However, plasma-treated CNHs were bigger than ozone treated CNHs. The dispersed CNHs modified by ozone treatment were stable for more than three months without precipitation. In contrast, though helium plasma treatment introduced hydroxyl groups to the surface of CNHs, the dispersibility decreased and the flocculation of CNHs was observed in a few minutes.

  1. Surface ozone scenario at Pune and Delhi during the decade of 1990s

    Indian Academy of Sciences (India)

    Kaushar Ali; S R Inamdar; G Beig; S Ghude; Sunil Peshin

    2012-04-01

    Data on surface ozone concentration compiled for a 10-year period from 1990 to 1999 for Pune and Delhi are analyzed in terms of its frequency distribution, annual trend, diurnal variation and its relation with various meteorological and chemical parameters. It is found that the surface ozone concentration range showing highest frequency of occurrence at Pune is 0–5 ppb during winter and post-monsoon seasons and 15–20 ppb and 5–10 ppb during summer and monsoon seasons, respectively. It is 0–5 ppb at Delhi during all the seasons. The surface ozone concentration has shown a decreasing trend at Pune during the observational period with an average rate of decrease of 1.54 ppb/year. On the other hand, there is no trend whatsoever in the variation of surface ozone concentration at Delhi. Minimum value of surface ozone occurs before sunrise and maximum in the afternoon hours. Regression analyses of surface ozone with maximum temperature ( = 0.46 for Pune and 0.51 for Delhi, significant at more than 0.1%) and NO2 at respective locations indicate that surface ozone at these locations is mainly produced by photochemistry. Transport mechanism is also understood to have contributed significantly to the total concentration of ozone. Inverse relationship obtained between surface ozone concentration and relative humidity indicates that major photochemical paths for removal of ozone become effective when humidity increases at these locations.

  2. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  3. Quinoxaline ozonation in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, R.; Caprio, V.; D' Amore, M.G.; Insola, A. (Universita di Napoli (Italy))

    The oxidation of quinoxaline by ozone in aqueous solution is investigated. The chemical and kinetic evolution of the oxidation process at varying pH are followed by means of semi-batch and batch ozonation experiments. Results indicate that quinoxaline ozonation can develop according to both radical and ionic mechanisms whose relative occurrence can be varied by means of addition to the reacting system of radical scavengers or ozone decomposition promoters. It is shown that each mechanism involves an initial attack of ozone to both the homocyclic and heterocyclic rings of quinoxaline. Pyrazinedicarboxylic acid is formed as a stable final product in ionic ozonation, whereas it appears as an intermediate still reactive towards ozone in radical ozonation. Despite this, the radical ozonation of quinoxaline appears to be more selective than ionic ozonation with respect to production of pyrazinedicarboxylic acid. Reaction schemes are proposed to account for the observed kinetic behaviors and product formations. Oxidation experiments have also been extended to pyrazine, and its sensitivity to only radical ozonation is shown.

  4. Degradation of Acenaphthene by Ozone

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the oxidation of acenaphthene (Ace), a polycyclic aromatic hydrocarbon (PAH) with a saturated C-C bond by ozone and to characterize the intermediate products of ozonation. Methods Ozone was generated from filtered dry oxygen by an ozone generator and continually bubbled into a reactor containing 1g/L Ace dissolved in an acetonitrile/water solvent mixture (90/10, v/v) at a rate of 0.5 mg/s. HPLC was used to analyze the Ace concentration. Total organic carbon (TOC) was used to measure the amount of water soluble organic compounds. GC-MS was used to identify the ozonized products. Oxygen uptake rate (OUR) of activated sludge was used to characterize the biodegradability of ozonized products. Results During the ozonation process, Ace was degraded, new organic compounds were produced and these intermediate products were difficult mineralize by ozone, with increasing TOC of soluble organics. The ozonized products were degraded by activated sludge more easily than Ace. Conclusion Ozonation decomposes the Ace and improves its biodegradability. The ozonation combined with biological treatment is probably an efficient and economical way to mineralize acenaphthene in wastewater.

  5. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    Science.gov (United States)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus

  6. Geospatial Interpolation and Mapping of Tropospheric Ozone Pollution Using Geostatistics

    Directory of Open Access Journals (Sweden)

    Swatantra R. Kethireddy

    2014-01-01

    Full Text Available Tropospheric ozone (O3 pollution is a major problem worldwide, including in the United States of America (USA, particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.

  7. Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics.

    Science.gov (United States)

    Kethireddy, Swatantra R; Tchounwou, Paul B; Ahmad, Hafiz A; Yerramilli, Anjaneyulu; Young, John H

    2014-01-10

    Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.

  8. Effect of some climatic parameters on tropospheric and total ozone column over Alipore (22.52°N, 88.33°E), India

    Indian Academy of Sciences (India)

    P K Jana; S Bhattacharyya; A Banerjee

    2014-10-01

    The paper presents the nature of variations of tropospheric and total ozone column retrieved from the Convective Cloud Differential (CCD) technique, Ozone Monitoring Instrument (OMI), and Total Ozone Mapping Spectrometer (TOMS) data, National Aeronautics and Space Administrations (NASA), USA, respectively; surface temperature, relative humidity, total rainfall, ozone precursors (non-methane hydrocarbon, carbon monoxide, nitrogen dioxide, and sulphur dioxide) that are collected from India Meteorological Department (IMD), Alipore, Kolkata; solar insolation obtained from Solar Geophysical Data Book and El-ñ index collected from National Climatic Data Center, US Department of Commerce, National Oceanic and Atmospheric Administration, USA. The effect of these climatic parameters and ozone precursors on ozone variations is critically analyzed and explained on the basis of linear regression and correlation. It has been observed that the maximum, minimum and mean temperature, relative humidity, solar insolation, tropospheric, and total ozone column (TOC) showed slight increasing tendencies from October 2004 to December 2011, while total rainfall and El-ñ index showed little decreasing tendencies for the same period. Amongst selected climatic parameters and ozone precursors, the solar insolation and the average temperature had a significant influence on both, the tropospheric ozone and total ozone column formation. The solar insolation had contributed more in tropospheric ozone than in total ozone column; while El-ñ index had played a more significant role in total ozone column build up than in tropospheric ozone. Negative correlation was observed between almost all ozone precursors with the tropospheric and total ozone. The tropospheric ozone and total ozone column were also significantly correlated. The level of significance and contribution of different climatic parameters are determined from correlation technique and Multiple Linear Regression (MLR) method. The

  9. Impact of greenhouse gases on the Earth's ozone layer

    Science.gov (United States)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the

  10. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  11. Ozone Layer Educator's Guide.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This guide has been developed through a collaborative effort involving the U.S. Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA), and the National Aeronautics and Space Administration (NASA). It is part of an ongoing commitment to ensure that the results of scientific research on ozone depletion are…

  12. Ozone decomposing filter

    Science.gov (United States)

    Simandl, Ronald F.; Brown, John D.; Whinnery, Jr., LeRoy L.

    1999-01-01

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  13. Ozone and Cavitation Combination

    Science.gov (United States)

    Carreon, Ernestina; Traversoni, Leonardo

    2009-09-01

    From laboratory measurements it is well known that the addition of ozone and cavitation enhances the properties of both, understanding for that the ones related to disinfection and carbon removal from waste water. This paper shows modeling of such phenomena that gives some light to the understanding of it and also provides the opportunity to improve the effectiveness of the current procedures.

  14. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  15. CT引导下射频热凝联合臭氧消融术治疗腰椎间盘突出症%CT-guided radiofrequency thermocoagulation combined with ozone nucleus pulposus ablation in treatment of lumbar disc herniation

    Institute of Scientific and Technical Information of China (English)

    高笛

    2012-01-01

    目的 观察CT引导下射频热凝联合臭氧消融术治疗腰椎间盘突出症(LDH)的临床疗效及安全性.方法 选取80例LDH患者,随机分臭氧组(40例)和联合组(40例),臭氧组给予单纯的臭氧溶核术,联合组先行射频热凝治疗,后行椎间盘内、盘外臭氧溶核术.采用视觉模拟疼痛评分(VAS)作为疼痛水平评价指标,改良Macnab标准评估治疗效果.观察术后1、3、6、12个月VAS评分及术后12个月总有效率.结果 2组术后1、3、6、12个月腰腿痛VAS评分显著低于治疗前(P均<0.01);且联合组VAS评分显著低于臭氧组(P<0.05或P<0.01).术后12个月联合组的总有效率(91.9%)显著高于臭氧组(74.3%),差异有统计学意义(P<0.05).2组患者均无过敏反应、椎间隙感染或脊髓、神经、血管及腹腔脏器损伤等严重并发症.结论 CT引导下靶点射频热凝加臭氧消融术治疗LDH安全、微创,较单纯臭氧消融术疗效更好,恢复更快.%Objective To observe the effects and safety of CT-guided radiofrequency thennocoagulation combined with ozone nucleus pulposus ablation in treatment of lumbar disc hemiation. Methods Eighty cases with lumbar disc hemia-tion were randomly divided into ozone treatment group ( 40 cases ) and combination treatment group ( 40 cases ). The cases in the ozone group were treated with ozone nucleus pulposus ablation therapy alone, another 40 cases in the combination group were treated with ozone nucleus pulposus ablation therapy at once after radiofrequency thermocoagulation. Therapeutic effects were evaluated at the time points of 1 month, 3 months,6 months and 12 months after surgery by using the average scores of VAS and Macnabs standard. Results The average scores of VAS at the time points of 1 month,3 months,6 months and 12 months after surgery in both groups were significantly lower than before treatment ( all P < 0. 01 ), and it was more obviously in the combination treatment group than that in the

  16. Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC data

    Directory of Open Access Journals (Sweden)

    B. Sauvage

    2005-01-01

    Full Text Available We analyze ozone observations recorded over Equatorial Africa between April 1997 and March 2003 by the MOZAIC programme, providing the first ozone climatology deriving from continental in-situ data over this region. Three-dimensional streamlines strongly suggests connections between the characteristics of the ozone monthly mean vertical profiles, the most persistent circulation patterns in the troposphere over Equatorial Africa (on a monthly basis such as the Harmattan, the African Easterly Jet, the Trades and the regions of ozone precursors emissions by biomass burning. During the biomass burning season in each hemisphere, the lower troposphere exhibits layers of enhanced ozone (i.e. 70 ppbv over the coast of Gulf of Guinea in December-February and 85 ppbv over Congo in June-August. The characteristics of the ozone monthly mean vertical profiles are clearly connected to the regional flow regime determined by seasonal dynamic forcing. The mean ozone profile over the coast of Gulf of Guinea in the burning season is characterized by systematically high ozone below 650hPa ; these are due to the transport by the Harmattan and the AEJ of the pollutants originating from upwind fires. The confinement of high ozone to the lower troposphere is due to the high stability of the Harmattan and the blocking Saharan anticyclone which prevents efficient vertical mixing. In contrast, ozone enhancements observed over Central Africa during the local dry season (June-August are not only found in the lower troposphere but throughout the troposphere. Moreover, this study highlights a connection between the regions of the coast of Gulf of Guinea and regions of Congo to the south that appears on a semi annual basis. Vertical profiles in wet-season regions exhibit ozone enhancements in the lower troposphere due to biomass burning products transport from fires situated in the opposite dry-season hemisphere.

  17. A multi-sensor upper tropospheric ozone product (MUTOP based on TES Ozone and GOES water vapor: derivation

    Directory of Open Access Journals (Sweden)

    S. R. Felker

    2011-07-01

    Full Text Available The Tropospheric Emission Spectrometer (TES, a hyperspectral infrared instrument on the Aura satellite, retrieves a vertical profile of tropospheric ozone. However, polar-orbiting instruments like TES provide limited nadir-view coverage. This work illustrates the value of these observations when taken in context with geostationary imagery describing synoptic-scale weather patterns. The goal of this study is to create map-view products of upper troposphere (UT ozone through the integration of TES ozone measurements with two synoptic dynamic tracers of stratospheric influence: specific humidity derived from the GOES Imager water vapor absorption channel, and potential vorticity (PV from an operational forecast model. As a mixing zone between tropospheric and stratospheric reservoirs, the upper troposphere (UT exhibits a complex chemical makeup. Determination of ozone mixing ratios in this layer is especially difficult without direct in situ measurement. However, it is well understood that UT ozone is correlated with dynamical tracers like low specific humidity and high potential vorticity. Blending the advantages of two remotely sensed quantities (GOES water vapor and TES ozone is at the core of the Multi-sensor Upper Tropospheric Ozone Product (MUTOP.

    Our results suggest that 72 % of TES-observed UT ozone variability can be explained by its correlation with dry air and high PV. MUTOP reproduces TES retrievals across the GOES-West domain with a root mean square error (RMSE of 18 ppbv (part per billion by volume. There are several advantages to this multi-sensor derived product approach: (1 it is calculated from two operational fields (GOES specific humidity and GFS PV, so maps of layer-average ozone can be created and used in near real-time; (2 the product provides the spatial resolution and coverage of a geostationary image as it depicts the variable distribution of ozone in the UT; and (3 the 6 h temporal resolution of the derived

  18. Effect of ozone on biopolymers in biofiltration and ultrafiltration processes.

    Science.gov (United States)

    Siembida-Lösch, Barbara; Anderson, William B; Wang, Yulang Michael; Bonsteel, Jane; Huck, Peter M

    2015-03-01

    The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance.

  19. Influence of the Bermuda High on interannual variability of summertime ozone in the Houston-Galveston-Brazoria region

    Science.gov (United States)

    Wang, Yuxuan; Jia, Beixi; Wang, Sing-Chun; Estes, Mark; Shen, Lu; Xie, Yuanyu

    2016-12-01

    The Bermuda High (BH) quasi-permanent pressure system is the key large-scale circulation pattern influencing summertime weather over the eastern and southern US. Here we developed a multiple linear regression (MLR) model to characterize the effect of the BH on year-to-year changes in monthly-mean maximum daily 8 h average (MDA8) ozone in the Houston-Galveston-Brazoria (HGB) metropolitan region during June, July, and August (JJA). The BH indicators include the longitude of the BH western edge (BH-Lon) and the BH intensity index (BHI) defined as the pressure gradient along its western edge. Both BH-Lon and BHI are selected by MLR as significant predictors (p control whether or not low-ozone maritime air from the Gulf of Mexico can enter southeastern Texas and affect air quality. This mechanism also applies to other coastal urban regions along the Gulf Coast (e.g., New Orleans, LA, Mobile, AL, and Pensacola, FL), suggesting that the BH circulation pattern can affect surface ozone variability through a large portion of the Gulf Coast.

  20. Species transformation and structure variation of fulvic acid during ozonation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The species transformation and structure variation of fulvic acid (FA) during ozonation were investi- gated in this study. The molecular weight (MW) distribution, the species of intermediate products and the variation of polar functional groups were studied by ultrafiltration, gas chromatography/mass spectrometry (GC/MS) and titration analyses respectively. The average MW of FA decreased signifi- cantly during ozonation. The amount of polar functional groups (carboxylic and phenolic (ph-OH) groups) per unit DOC (mol/kg C) increased with increasing ozonation time. Furthermore, GC/MS ex- periments demonstrated the formation of polar species (e.g., hexadecanoic acid, benzoic acid and oc- tadecanoic alcohol) and less-polar species (e.g., aliphatic hydrocarbons and butanedioic acid, bis(2-methylpropyl) ester). Electron spin resonance (ESR) measurements proved the presence of ·OH radicals in the ozonation system. Based on our experimental results, it appears that the oxidations by ozone molecule and ·OH radicals were responsible for the transformation of organics (FA and its oxi- dation products) during ozonation. These two oxidants showed significant influence on organics transformation and exhibited different mechanisms contributing to these processes.

  1. Comparison of modelled and measured ozone concentrations and meteorology for a site in south-west Sweden: implications for ozone uptake calculations.

    Science.gov (United States)

    Klingberg, Jenny; Danielsson, Helena; Simpson, David; Pleijel, Håkan

    2008-09-01

    Measurements of ground-level ozone concentrations and meteorology (temperature, vapour pressure deficit (VPD), solar radiation) at the monitoring site Ostad (south-west Sweden) were compared to data from the corresponding grid in the EMEP photo-oxidant model for 1997, 1999 and 2000. The influence of synoptic weather on the agreement between model and measurements was studied. Implications of differences between modelled and observed inputs for ozone flux calculations for wheat and potato were investigated. The EMEP model output of ozone, temperature and VPD correlated well with measurements during daytime. Deviations were larger during the night, especially in calm conditions, attributed to local climatological conditions at the monitoring site deviating from average conditions of the grid. These differences did not lead to significant differences in calculated ozone uptake, which was reproduced remarkably well. The uptake calculations were sensitive to errors in the ozone and temperature input data, especially when including a flux threshold.

  2. Multi-year ozone concentration and its spectra in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Fuhai; Mao, Xiaoqin [Shanghai Meteorological Bureau, Shanghai (China); Shanghai Key Laboratory of Meteorology and Health, Shanghai (China); Zhou, Mingyu, E-mail: mingyuzhou34@163.com [National Marine Environmental Forecasts Center, State Oceanic Administration, Beijing (China); Zhong, Shiyuan [Department of Geography, Michigan State University, East Lansing, MI (United States); Lenschow, Donald [National Center for Atmospheric Research, Boulder, CO (United States)

    2015-07-15

    The periodic properties of surface ozone variation were studied at five stations with different environmental conditions in Shanghai based on multi-year observations of ozone concentration and UV radiation using spectral decomposition methods. The spectra of surface ozone have distinct peaks at semi-diurnal, diurnal, intraseasonal, semiannual, annual, and quasi-biennial periods. The spectra for the frequency band larger than the semi-diurnal follow a − 5/3 power law at all the stations. The diurnal peak values for all stations in different years are similar to each other, while the semi-diurnal peak values are somewhat different among the stations. The peak value of semi-diurnal cycle at the station Dongtan (ecological environment area) is smaller than that at the other stations. The monthly mean of surface ozone has a significant seasonal variation with a maximum in May, a secondary maximum in fall, a lower value in summer (July and August), and a minimum in December or January. However the seasonal variation of UV radiation monthly mean shows a relatively higher value in summer (July and August), and for other months it is closely related to the ozone monthly mean. These secondary peaks of the ozone monthly mean in fall might be caused by the UV radiation coming back to its relevant value after falling off during the Asia summer monsoon; it was not related to biomass burning. The intraseasonal cycling of ozone might be related to the MJO (Madden–Julian Oscillation). Further studies are needed to understand the relationship between the local ozone intraseasonal variation and the MJO. The quasi-biennial variation of ozone in Shanghai might be a local reflection of climate change and could be associated with ENSO (El-Nino Southern Oscillation). Further studies will be needed to understand the relationship of the quasi-biennial variation of ozone to ENSO. - Highlights: • The spectral decomposition methods are used. • The spectra of surface ozone have multi

  3. Physical Theories with Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violat...

  4. Fundamental differences between Arctic and Antarctic ozone depletion.

    Science.gov (United States)

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J; Min, Flora

    2014-04-29

    Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic "hole" contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares with others. We show that the averaged depletions near 20 km across the cold part of each pole are deeper in Antarctica than in the Arctic for all years, although 2011 Arctic values do rival those seen in less-depleted years in Antarctica. We focus not only on averages but also on extremes, to address whether or not Arctic ozone depletion can be as extreme as that observed in the Antarctic. This information provides unique insights into the contrasts between Arctic and Antarctic ozone chemistry. We show that extreme Antarctic ozone minima fall to or below 0.1 parts per million by volume (ppmv) at 18 and 20 km (about 70 and 50 mbar) whereas the lowest Arctic ozone values are about 0.5 ppmv at these altitudes. At a higher altitude of 24 km (30-mbar level), no Arctic data below about 2 ppmv have been observed, including in 2011, in contrast to values more than an order of magnitude lower in Antarctica. The data show that the lowest ozone values are associated with temperatures below -80 °C to -85 °C depending upon altitude, and are closely associated with reduced gaseous nitric acid concentrations due to uptake and/or sedimentation in polar stratospheric cloud particles.

  5. Average Convexity in Communication Situations

    NARCIS (Netherlands)

    Slikker, M.

    1998-01-01

    In this paper we study inheritance properties of average convexity in communication situations. We show that the underlying graph ensures that the graphrestricted game originating from an average convex game is average convex if and only if every subgraph associated with a component of the underlyin

  6. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2010-06-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and

  7. Degradation of carbofuran by ozonation.

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2009-04-01

    Degradation of commercial grade carbofuran (2, 3 dihydro-2, 2-dimethyl-7 benzo furanyl-N-methyl carbamate) in aqueous solution by ozone oxidation was investigated using bench scale experiments. The degradation rate was strongly influenced by the ozone dosage, pH, initial concentration of carbofuran and contact time of ozonation. Carbofuran solution of 200ppm concentration was degraded by 79% within 10 minutes consuming 87 mg of ozone at pH 4. The associated TOC reduction was observed to be 53%. Ammonium (20 mg/L) and nitrate (30 mg/L) ions were detected in the effluent as degradation products of ozonation. The results support the effectiveness of ozonation for degradation of organic pesticides such as carbofuran.

  8. 8 Hour Ozone Design Value for 1998-2000

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Ozone design value is based on the average of the annual 4th highest daily 8-hour maximum over a 3-year period (1998-2000) in this case. This is a human health...

  9. Understanding and improving global crop response to ozone pollution

    Science.gov (United States)

    Concentrations of ground-level ozone ([O3]) over much of the Earth’s land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to ...

  10. Mallows statistic in the selection of models to predict the monthly and annual average rainfall in Rio Grande do Sul, Brazil. = Estatística de Mallows na seleção de modelos de predição da precipitação média mensal e anual no Rio Grande do Sul.

    Directory of Open Access Journals (Sweden)

    Claudia Fernanda Almeida Teixeira

    2013-08-01

    Full Text Available The Mallows Cp statistic can be used in the selection of the best subsets in hydrological modeling, especially in cases where many variables are used. Besause there are, in many cases, the interest in estimating the monthly and annual average rainfall based on geographic coordinates of latitude and longitude, and altitude. Consequently, the aim of this study was to verify the information gain when applied to statistical Cp Mallows in the selection of the best subsets of multiple linear regression to predict the precipitation of some municipalities in the state of Rio Grande do Sul. Daily precipitation data from 26 meteorological stations, in addition to seven others, used to validation of the proposed linear models, belonging to seven mesoregions of Rio Grande do Sul were collected and analyzed. After the formation of the series, precipitation values were adjusted from linear models, using multiple linear regression in which the dependent variable was the precipitation and independent variables, the geographic coordinates of latitude and longitude, and altitude. The Cp statistic was used in the selection of sets and, subsequently applied statistical indexes mean square error, standard error of prediction bias factor wereused to obtain the accuracy factor for comparison between observed versus predicted precipitation. From the results obtained itcan be concluded that, from the point of view of parsimony, the statistic proposed by Mallows proved adequate in the selectionof models for prediction of monthly and annual rainfall of the stations analyzed. = A estatística Cp de Mallows pode ser utilizada na seleção de melhores subconjuntos na modelagem hidrológica,principalmente nos casos em que são utilizadas muitas variáveis. Com base no fato de que há, em muitos casos, o interesse em estimar a precipitação média mensal e anual baseada nas coordenadas geográficas latitude e longitude, e altitude, objetivouse com este trabalho verificar o

  11. Sampling Based Average Classifier Fusion

    Directory of Open Access Journals (Sweden)

    Jian Hou

    2014-01-01

    fusion algorithms have been proposed in literature, average fusion is almost always selected as the baseline for comparison. Little is done on exploring the potential of average fusion and proposing a better baseline. In this paper we empirically investigate the behavior of soft labels and classifiers in average fusion. As a result, we find that; by proper sampling of soft labels and classifiers, the average fusion performance can be evidently improved. This result presents sampling based average fusion as a better baseline; that is, a newly proposed classifier fusion algorithm should at least perform better than this baseline in order to demonstrate its effectiveness.

  12. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2010-10-01

    Full Text Available We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL, and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. While for global HALOE observations the diabatic prediction underestimates the vertical ozone gradient, for SCOUT-O3 in-situ observations the kinematic prediction shows a clear high bias above 390 K. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity. In turn, ozone may provide constraints on aspects of transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  13. Protecting the ozone layer.

    Science.gov (United States)

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  14. The Effect of Air Pollution on Ozone Layer Thickness in Troposphere over the State of Kuwait

    Directory of Open Access Journals (Sweden)

    H. O. Al Jeran

    2009-01-01

    Full Text Available Troposphere ozone layer acts as a shield against all ultraviolet radiation approaching the planet Earth through absorption. It was noticed in mid 80s that ozone layer has thinned on the poles of the planet due to release of man-made substances commonly known as Ozone Depleting Substances, (ODS into its atmosphere. The consequences of this change are adverse as the harmful radiations reach to the surface of the earth, strongly influencing the crops yield and vegetation. These radiations are major cause of skin cancer that has long exposure to Ultra Violet (UV radiation. United States environmental protection agency and European community have imposed strict regulations to curb the emission of ODS and phase out schedules for the manufacture and use of ODS that was specified by Montreal protocol in 1987. Problem statement: This research deled with data analysis of ozone layer thickness obtained from Abu-Dhabi station and detailed measurement of air pollution levels in Kuwait. Approach: The ozone layer thickness in stratosphere had been correlated with the measured pollution levels in the State of Kuwait. The influence of import of ozone depletion substances for the last decade had been evaluated. Other factor that strongly affects the ozone layer thickness in stratosphere is local pollution levels of primary pollutants such as total hydrocarbon compounds and nitrogen oxides. Results: The dependency of ozone layer thickness on ambient pollutant levels presented in detail reflecting negative relation of both non-methane hydrocarbon and nitrogen oxide concentrations in ambient air. Conclusion: Ozone layer thickness in stratosphere had been measured for five years (1999-2004 reflecting minimum thickness in the month of December and maximum in the month of June. The ozone thickness related to the ground level concentration of non-methane hydrocarbon and can be used as an indicator of the health of ozone layer thickness in the stratosphere.

  15. Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

    Directory of Open Access Journals (Sweden)

    S. Chatani

    2014-04-01

    Full Text Available A regional air quality simulation framework including the Weather Research and Forecasting modelling system (WRF, the Community Multi-scale Air Quality modeling system (CMAQ, and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitorings, ozone zondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2, nitrogen oxides (NOx, and volatile organic compound (VOC emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around north eastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

  16. Ozone the one and only drug.

    Science.gov (United States)

    Alberto, Pepa Osvaldo

    2011-01-01

    Experience based on evidence shows the use of one drug over time.Ozone has great therapeutic properties. Nowadays, hardly anyone questions its effectiveness.We treated 270 patients with discal hernia of one or multiple levels in a minimally invasive way and under fluoroscopic control in real time, between 1 and 7 ml intradiscal and 3 ml periganglionic, in a concentration of 30 mg/ml of a mixture of oxygen and ozone as the one and only drug.A second group was created, out of which 120 patients were treated with physiatric and kinetic treatment (magnetotherapy) prior to any other type of treatment, whether surgical or minimally invasive.The time period was 3 months. All the patients were followed up from April 2004 to July 2008 with the MacNab, VAS and Owestry scales. We obtained 86% of excellent results, 12% satisfactory results, and 2% poor results.To sum up, we can say that ozone therapy has opened up a new future in the medical field.Discussions go on. New effects, new concentrations and the combination with bioenergetic therapies are the future in the treatment for backaches.

  17. Regional-Scale Ozone Deposition to North-East Atlantic Waters

    Directory of Open Access Journals (Sweden)

    L. Coleman

    2010-01-01

    Full Text Available A regional climate model is used to evaluate dry deposition of ozone over the North East Atlantic. Results are presented for a deposition scheme accounting for turbulent and chemical enhancement of oceanic ozone deposition and a second non-chemical, parameterised gaseous dry deposition scheme. The first deposition scheme was constrained to account for sea-surface ozone-iodide reactions and the sensitivity of modelled ozone concentrations to oceanic iodide concentration was investigated. Simulations were also performed using nominal reaction rate derived from in-situ ozone deposition measurements and using a preliminary representation of organic chemistry. Results show insensitivity of ambient ozone concentrations modelled by the chemical-enhanced scheme to oceanic iodide concentrations, and iodide reactions alone cannot account for observed deposition velocities. Consequently, we suggest a missing chemical sink due to reactions of ozone with organic matter at the air-sea interface. Ozone loss rates are estimated to be in the range of 0.5–6 ppb per day. A potentially significant ozone-driven flux of iodine to the atmosphere is estimated to be in the range of 2.5–500 M molec cm−2  s−1, leading to a mixing-layer enhancement of organo-iodine concentrations of 0.1–22.0 ppt, with an average increase in the N.E. Atlantic of around 4 ppt per day.

  18. Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylenediurea (EDU).

    Science.gov (United States)

    Yuan, Xiangyang; Calatayud, Vicent; Jiang, Lijun; Manning, William J; Hayes, Felicity; Tian, Yuan; Feng, Zhaozhong

    2015-10-01

    Four genotypes of snap bean (Phaseolus vulgaris L.) were selected to study the effects of ambient ozone concentration at a cropland area around Beijing by using 450 ppm of ethylenediurea (EDU) as a chemical protectant. During the growing season, the 8h (9:00-17:00) average ozone concentration was very high, approximately 71.3 ppb, and AOT40 was 29.0 ppm.h. All genotypes showed foliar injury, but ozone-sensitive genotypes exhibited much more injury than ozone-tolerant ones. Compared with control, EDU significantly alleviated foliar injury, increased photosynthesis rate and chlorophyll a fluorescence, Vcmax and Jmax, and seed and pod weights in ozone-sensitive genotypes but not in ozone-tolerant genotypes. EDU did not significantly affect antioxidant contents in any of the genotypes. Therefore, EDU effectively protected sensitive genotypes from ambient ozone damage, while protection on ozone-tolerant genotypes was limited. EDU can be regarded as a useful tool in risk assessment of ambient ozone on food security.

  19. Possible ozone depletions following nuclear explosions

    Science.gov (United States)

    Whitten, R. C.; Borucki, W. J.; Turco, R. P.

    1975-01-01

    The degree of depletion of the ozone layer ensuing after delivery of strategic nuclear warheads (5000 and 10,000 Mton) due to production of nitrogen oxides is theoretically assessed. Strong depletions are calculated for 16-km and 26-km altitudes, peaking 1-2 months after detonation and lasting for three years, while a significant depletion at 36 km would peak after one year. Assuming the explosions occur between 30 and 70 deg N, these effects should be much more pronounced in this region than over the Northern Hemisphere as a whole. It is concluded that Hampson's concern on this matter (1974) is well-founded.-

  20. Quasi-biennial oscillation in atmospheric ozone, and its possible consequences for damaging UV-B radiation and for determination of long-term ozone trends

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The quasi-biennial oscillation (QBO) in ozone is supposed to be related to the QBO of zonal wind in the tropical stratosphere, with an approximate period of 29 months. Generally speaking, mechanisms of QBO-related effects in the extratropical atmosphere should depend on season and region, resulting in other periodicities (e.g., a 20-month periodicity) due to nonlinear interaction between the `pure` QBO and an annual cycle. Seasonal and regional dependences of QBO-related effects in ozone not only influence the regime of ozone variability itself, but can have important consequences, for example, for interannual changes in biologically active UV-B radiation and for determination of long-term ozone trends. This work is concerned with these problems

  1. Benchmarking monthly homogenization algorithms

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2011-08-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  2. Is Ozone Going Up Now?

    Science.gov (United States)

    Steinbrecht, W.; Froidevaux, L.; Davis, S. M.; Degenstein, D. A.; Wild, J.; Roth, C.; Kaempfer, N.; Leblanc, T.; Godin-Beekmann, S.; Vigouroux, C.; Swart, D. P. J.; Querel, R.; Harris, N.; Nedoluha, G. E.

    2016-12-01

    The last WMO ozone assessment (WMO, 2014) concluded that observations show significant ozone increase, 3% per decade (±2% per decade, 2σ), in the upper stratosphere since 2000. At other levels, or for total ozone, increases were not found or not significant. Overall, this is consistent with expectations from model simulations, (e.g. CCMVal2, Eyring et al., 2010). These simulations indicate that declining chlorine levels and stratospheric cooling due to CO2 increase should contribute roughly equal parts to ozone increase in the upper stratosphere. Shortly after the assessment, results from the SI2N initiative (Harris et al., 2015) confirmed increasing ozone in the upper stratosphere. However, the SI2N results indicated smaller increases (+1.5% per decade) than the WMO assessment, and substantially larger uncertainties (±5% per decade, 2σ). Differences can be attributed to time period, 1998 to 2012, compared to 2000 to 2013/14 for the assessment, and to larger assumed instrumental drift uncertainties, 6% per decade, (only 1 to 2% per decade in WMO 2014, see also Hubert et al., 2016). Here, we explore how additional ground-based and satellite data since 2013, as well as new and improved records, affect ozone trends and uncertainties. The focus will be on ozone in the upper stratosphere, because this is the region where the earliest signs of beginning ozone recovery are expected. ReferencesEyring, V., et al.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010. Harris, N. R. P., et al.: Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015, 2015. Hubert, D., et al.: Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, doi:10.5194/amt-9

  3. Evaluating the potential of IASI ozone observations to constrain simulated surface ozone concentrations

    Directory of Open Access Journals (Sweden)

    G. Foret

    2009-06-01

    Full Text Available A tracer study has been performed for two summers in 2003 and 2004 with a regional chemistry- transport model in order to evaluate the potential constraint that tropospheric ozone observations from nadir viewing infrared sounders like IASI or TES exert on modeled near surface ozone. As these instruments show high sensitivity in the free troposphere, but low sensitivity at ground, our study addresses which amount of this information is transferred to ground through vertical transport processes. Within the European model domain, and within a time span of 4 days, only ozone like tracers initialised in vertical layers above 500 hPa are transported to the surface. For a tracer initialised between 800 and 700 hPa, seven percent reaches the surface within one to three days, when averaging over the whole European model domain, but more than double of it over the Mediterranean sea. These results are confirmed by a second tracer study taking into account averaging kernels related to IASI retrievals.

  4. Physical Theories with Average Symmetry

    CERN Document Server

    Alamino, Roberto C

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.

  5. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  6. Variation of surface ozone exceedance around Klang Valley, Malaysia

    Science.gov (United States)

    Ahamad, Fatimah; Latif, Mohd Talib; Tang, Rosy; Juneng, Liew; Dominick, Doreena; Juahir, Hafizan

    2014-03-01

    The total hourly surface ozone (O3) exceedance from the 100 ppbv hourly O3 standard set by the Department of Environment Malaysia (DOE) was analysed, as elevated O3 concentrations pose health risks to humans and harms vegetation. Air quality data from 2008 to 2010 were obtained from a total of seven stations located around the west coast of Peninsular Malaysia. Cheras and Shah Alam monitoring stations consistently showed a high frequency of noncompliance to the DOE standards. Hierarchical Agglomerative Cluster Analysis (HACA) was performed on the daily maximum O3 concentration to analyse the spatial variability. Three distinct clusters were obtained from HACA runs on the daily maximum O3 and the results reflected O3 exceedance pattern among the stations. Analysis of the monthly average O3, nitrogen oxide (NO), and nitrogen dioxide (NO2) concentrations indicated a strong localised influence on the O3 exceedance patterns. It can be concluded that the O3 exceedance pattern in the Klang Valley area is strongly influenced by local pollutant emission and dispersion characteristics.

  7. Mass tracking for chemical analysis: the causes of ozone formation in southern Ontario during BAQS-Met 2007

    Directory of Open Access Journals (Sweden)

    P. A. Makar

    2010-11-01

    Full Text Available A three-level nested regional air pollution model has been used to study the processes leading to high ozone concentrations in the southern Great Lakes region of North America. The highest resolution simulations show that complex interactions between the lake-breeze circulation and the synoptic flow lead to significant enhancements in the photochemical production and transport of ozone at the local scale. Mass tracking of individual model processes show that Lakes Erie and St. Clair frequently act as photochemical ozone production regions, with average mid-day production rates of up to 3 ppbv per hour. Enhanced ozone levels are evident over these two lakes in 23-day-average surface ozone fields. Analysis of other model fields and aircraft measurements suggests that vertical circulation enhances ozone levels at altitudes up to 1500 m over Lake St. Clair, whereas subsidence enhances ozone over Lake Erie in a shallow layer only 250 m deep. Mass tracking of model transport shows that lake-breeze surface convergence zones combined with the synoptic flow can then carry ozone and its precursors hundreds of kilometers from these source areas, in narrow, elongated features. Comparison with surface mesonet ozone observations confirm the presence, magnitude, and timing of these features, which can create local ozone enhancements on the order of 30 ppbv above the regional ozone levels. Sensitivity analyses of model-predicted ozone and HOx concentrations show that most of the region is VOC-limited, and that the secondary oxidation pathways of aromatic hydrocarbons have a key role in setting the region's ozone and HOx levels.

  8. Evaluating Small Spatial Scale Ozone Levels in Riverside, CA using a Low-Cost Sensor Network

    Science.gov (United States)

    Coffey, E.; Sadighi, K.; Lv, Q.; Gao, D.; Polidori, A.; Feenstra, B. J.; Henze, D. K.; Shang, L.; Dick, R.; Qu, Z.; Hannigan, M.

    2016-12-01

    Ground-level ozone is an EPA criteria pollutant that causes negative human health effects, and damages plant life. Currently, it is the responsibility of individual states to designate attainment areas within their borders often by means of regional air quality boards. The goal of this project is to show that ozone has spatial and temporal variability on smaller scales than preexisting attainment areas and demonstrate the reliability of finer resolution air quality data using a low-cost sensor system (called a UPod) in the field. During the summer of 2015, thirteen UPods were collocated in Riverside, CA at the SCAQMD (South Coast Air Quality Management District) Rubidoux reference station for two weeks at the end of July. Following, the UPods were deployed throughout a small (10x10 km) region for two months then returned to Rubidoux for a post calibration. Ozone data was collected using e2v MiCS-2611 metal oxide sensors (SGX Tech.) at a frequency of about 4-6 times per minute - which were later minute averaged. Field normalization calibrations were generated converting sensor signal outputs (mV) to concentrations (ppbv) and cross-validation against reference-grade monitors in the field were 3-6.8 ppbv (RMSE) at minute resolution. Further analysis will include examining the data for statistical information through space and time exploring variability. Having cost effective, reliable and fine-resolution air quality data in a region displaying variability may help regulatory agencies make policy decisions that can impact people living on community scales.

  9. Plant responses to tropospheric ozone

    Science.gov (United States)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  10. Quantized average consensus with delay

    NARCIS (Netherlands)

    Jafarian, Matin; De Persis, Claudio

    2012-01-01

    Average consensus problem is a special case of cooperative control in which the agents of the network asymptotically converge to the average state (i.e., position) of the network by transferring information via a communication topology. One of the issues of the large scale networks is the cost of co

  11. A 15-year climatology of wind pattern impacts on surface ozone in Houston, Texas

    Science.gov (United States)

    Souri, Amir Hossein; Choi, Yunsoo; Li, Xiangshang; Kotsakis, Alexander; Jiang, Xun

    2016-06-01

    Houston is recognized for its large petrochemical industrial facilities providing abundant radicals for tropospheric ozone formation. Fortunately, maximum daily 8-h average (MDA8) surface ozone concentrations have declined in Houston (- 0.6 ± 0.3 ppbv yr- 1) during the summers (i.e., May to September) of 2000 to 2014, possibly due to the reductions in precursor emissions by effective control policies. However, it is also possible that changes in meteorological variables have affected ozone concentrations. This study focused on the impact of long-term wind patterns which have the highest impact on ozone in Houston. The analysis of long-term wind patterns can benefit surface ozone studies by 1) providing wind patterns that distinctly changed ozone levels, 2) investigating the frequency of patterns and the respective changes and 3) estimating ozone trends in specific wind patterns that local emissions are mostly involved, thus separating emissions impacts from meteorology to some extent. To this end, the 900-hPa flow patterns in summers of 2000 to 2014 were clustered in seven classes (C1-C7) by deploying an unsupervised partitioning method. We confirm the characteristics of the clusters from a backward trajectory analysis, monitoring networks, and a regional chemical transport model simulation. The results indicate that Houston has experienced a statistically significant downward trend (- 0.6 ± 0.4 day yr- 1) of the cluster of weak easterly and northeasterly days (C4), when the highest fraction of ozone exceedances (MDA8 > 70 ppbv) occurred. This suggests that the reduction in ozone precursors was not the sole reason for the decrease in ozone exceedance days (- 1.5 ± 0.6 day yr- 1). Further, to examine the efficiency of control policies intended to reduce the amount of ozone, we estimated the trend of MDA8 ozone in C4 and C5 (weak winds) days when local emissions are primarily responsible for high ambient ozone levels. Both C4 and C5 show a large reduction in the

  12. Probabilistic Forecasting of Surface Ozone with a Novel Statistical Approach

    Science.gov (United States)

    Balashov, Nikolay V.; Thompson, Anne M.; Young, George S.

    2017-01-01

    The recent change in the Environmental Protection Agency's surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a step wise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.

  13. Probabilistic Forecasting of Surface Ozone with a Novel Statistical Approach

    Science.gov (United States)

    Balashov, Nikolay V.; Thompson, Anne M.; Young, George S.

    2017-01-01

    The recent change in the Environmental Protection Agency's surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a step wise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.

  14. Plant injury induced by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A.C.; Pack, M.R.; Treshow, M.; Downs, R.J.; Transtrum, L.G.

    1961-06-01

    Phytotoxicity of ozone to 34 plant species was studied in controlled-atmosphere greenhouses. Plants were subjected at various stages of growth to 0.13-0.72 ppm ozone for 2-hour periods. Injury symptoms developed on 28 species. Some of the most sensitive species were small grains, alfalfa, spinach, and tobacco. There was a general tendency for sensitivity to increase with maturity of tissue. Palisade cells were most readily injured by ozone. On plants with adaxial palisade parenchyma, chlorotic spots and bleached necrotic areas developed on the upper leaf surface. Injury was equally apparent from either leaf surface of plants with undifferentiated mesophyll. Necrotic spots extending completely through the leaf developed on plants with either mesophyll structure when injury was severe. Ozone caused conspicuous tumors to develop on broccoli leaves. Symptoms similar to those produced by ozone fumigations have been observed on a wide range of plant species growing near several large metropolitan centers. 18 references, 8 figures, 2 tables.

  15. Geostatistics as a validation tool for setting ozone standards for durum wheat.

    Science.gov (United States)

    De Marco, Alessandra; Screpanti, Augusto; Paoletti, Elena

    2010-02-01

    Which is the best standard for protecting plants from ozone? To answer this question, we must validate the standards by testing biological responses vs. ambient data in the field. A validation is missing for European and USA standards, because the networks for ozone, meteorology and plant responses are spatially independent. We proposed geostatistics as validation tool, and used durum wheat in central Italy as a test. The standards summarized ozone impact on yield better than hourly averages. Although USA criteria explained ozone-induced yield losses better than European criteria, USA legal level (75 ppb) protected only 39% of sites. European exposure-based standards protected > or =90%. Reducing the USA level to the Canadian 65 ppb or using W126 protected 91% and 97%, respectively. For a no-threshold accumulated stomatal flux, 22 mmol m(-2) was suggested to protect 97% of sites. In a multiple regression, precipitation explained 22% and ozone explained <0.9% of yield variability.

  16. Effects of the 2004 El Nino on Tropospheric Ozone and Water Vapor

    Science.gov (United States)

    Chandra, S.; Ziemke, J. R.; Schoeberl, M. R.; Froidevaux, L.; Read, W. G.; Levelt, P. F.; Bhartia, P. K.

    2007-01-01

    The global effects of the 2004 El Nino on tropospheric ozone and H2O based on Aura OM1 and MLS measurements are analyzed. Although it was a weak El Nino from a historical perspective, it produced significant changes in these parameters in tropical latitudes. Tropospheric ozone increased by 10-20% over most of the western Pacific region and decreased by about the same amount over the eastern Pacific region. H2O in the upper troposphere showed similar changes but with opposite sign. These zonal changes in tropospheric ozone and H2O are caused by the eastward shift in the Walker circulation in the tropical pacific region during El Nino. For the 2004 El Nino, biomass burning did not have a significant effect on the ozone budget in the troposphere unlike the 1997 El Nino. Zonally averaged tropospheric column ozone did not change significantly either globally or over the tropical and subtropical latitudes.

  17. Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2009-10-01

    Full Text Available An observation-based box model approach was undertaken to estimate concentrations of OH, HO2, and RO2 radicals and the net photochemical production rate of ozone at the top of Mount Tai, located in the middle of Central East China, in June 2006. The model calculation was constrained by the measurements of O3, H2O, CO, NO, NO2, hydrocarbon, HCHO, and CH3CHO concentrations, and temperature and J values. The net production rate of ozone was estimated to be 6.4 ppb h−1 as a 6-h average (09:00–15:00 CST, suggesting 58±37 ppb of ozone is produced in one day. Thus the daytime buildup of ozone recorded at the mountain top as ~23 ppb on average is likely affected by in situ photochemistry as well as by the upward transport of polluted air mass in the daytime. On days with high ozone concentrations (hourly values exceeding 100 ppb at least once, in situ photochemistry was more active than it was on low ozone days, suggesting that in situ photochemistry is an important factor controlling ozone concentrations. Sensitivity model runs for which different NOx and hydrocarbon concentrations were assumed suggested that the ozone production occurred normally under NOx-limited conditions, with some exceptional periods (under volatile-organic-compound-limited conditions in which there was fresh pollution. We also examined the possible influence of the heterogeneous loss of gaseous HO2 radicals in contact with aerosol particle surfaces on the rate and regimes of ozone production.

  18. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    Science.gov (United States)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; bt Mohammad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S-Y; Da Silva, F. Raimundo; Paes Leme, N. M.; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stubi, Rene; Levrat, Gilbert; Calpini, Bertrand; Thouret, Valerie; Tsuruta, Haruo; Canossa, Jessica Valverde; Voemel, Holger; Yonemura, S.; Andres Diaz, Jorge; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  19. The Sodankyla Total Ozone Intercomparison and Validation Campaign: ozonesonde observations

    Science.gov (United States)

    Kivi, Rigel; Bojkov, Bojan; Kyro, Esko; Heikkinen, Pauli; McGee, Thomas; Brinksma, Ellen

    Ozonesondes are widely used to validate satellite borne atmospheric remote sensing measurements. Sonde data quality depends on the sonde type and the preparation procedure. It is important to assess the accuracy of sonde measurements to be used for the validation of satellite instruments. Here we investigate the performance of ENSCI ozonesondes during the Sodankyl¨ a Total Ozone Intercomparison and Validation Campaign (SAUNA), which took place in March -April 2006 and in February-March 2007 in Sodankyl¨, Finland (67.4 ° N, 26.6 ° E). The cama paign provided a large set of ground-based observational data to validate the performance of ground-based and satellite borne ozone sensors at a high latitude site. We present comparisons with satellite instruments, an ozone lidar and Brewer spectrophotometers and results from dual ozonesonde flights. During March 22- April 14, 2006 we performed altogether 31 balloon flights, and from February 1 to March 3, 2007 in total 54 flights. The balloon launches were timed to the ozone measurements on board the NASA Aura satellite. In each payload an ENSCI ozonesonde was flown prepared with the cathode solution concentration of 0.5% KI. In addition, we made a series of dual sonde flights, which included also a SPC ozonesonde with the cathode solution concentration of 1 % KI. As a result of all dual sonde flights we found relative difference less than 2 % between the sonde types in the stratosphere, and from 3 to 4 % in the troposphere. Total ozone from sondes was in good agreement with the Ozone Monitoring Instrument (OMI) observations on board the Aura satellite. During the first campaign phase the average ratio OMI/ sonde was 0.99 +/- 0.02 % and during the second phase 1.00 +/- 0.05 %. The average ratio Brewer/sonde was 1.00 +/- 0.02 %.

  20. Photochemical Process Modeling and Analysis of Ozone Generation

    Institute of Scientific and Technical Information of China (English)

    王冰; 邱彤; 陈丙珍

    2014-01-01

    Air pollution in modern city and industrial zones has become a serious public concern in recent years in China. Significance of air quality assessment and emission control strategy design is increasing. Most studies in China focus on particulate matter (PM), especially PM2.5, while few account for photochemical secondary air pol-lutions represented by ozone (O3). In this paper, a procedure for air quality simulation with comprehensive air quality model with extensions (CAMx) is demonstrated for studying the photochemical process and ozone generation in the troposphere. As a case study, the CAMx photochemical grid model is used to model ozone over southern part of Beijing city in winter, 2011. The input parameters to CAMx include emission sources, meteorology field data, terrain definition, photolysis status, initial and boundary conditions. The simulation results are verified by theoretical analysis of the ozone generation tendency. The simulated variation tendency of domain-wide average value of hourly ozone concentration coincides reasonably well with the theoretical analysis on the atmospheric photochemical process, demonstrating the effectiveness of the procedure. An integrated model system that cooperates with CAMx will be established in our future work.

  1. Inheritance of resistance to ozone in Phaseolus vulgaris L

    Energy Technology Data Exchange (ETDEWEB)

    Butler, L.K.; Tibbitts, T.W.; Bliss, F.A.

    1979-03-01

    Ozone sensitivity was compared in F/sub 1/ and F/sub 2/ populations from crosses between 2 ozone-sensitive bean cultivars, Spurt and Blue Lake Stringless, and 2 ozone-resistant cultivars, Black Turtle Soup and French's Horticultural, under controlled environmental conditions. F/sub 1/ plants were as sensitive as the sensitive parent. About 10% of the F/sub 2/ progeny obtained by selfing F/sub 1/ plants appeared to be as resistant as the resistant parent and 90% of the progeny could be divided equally between a group as sensitive as the sensitive parent and a group intermediate in sensitivity between the parent plants. However, precise separation of F/sub 2/ progeny was not possible because of the variability in injury expression. The average injury on the F/sub 2/ plants was greater than the parental midpoint value and the variance in injury on the F/sub 2/ plants was about 3.5x greater than that for the parents. The heritability of resistance to ozone was estimated to be 0.83. It was concluded that ozone resistance is recessive in P. vulgaris and appears to be regulated by a few major genes. 12 references, 2 figures, 2 tables.

  2. Gaussian moving averages and semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    2008-01-01

    In the present paper we study moving averages (also known as stochastic convolutions) driven by a Wiener process and with a deterministic kernel. Necessary and sufficient conditions on the kernel are provided for the moving average to be a semimartingale in its natural filtration. Our results...... are constructive - meaning that they provide a simple method to obtain kernels for which the moving average is a semimartingale or a Wiener process. Several examples are considered. In the last part of the paper we study general Gaussian processes with stationary increments. We provide necessary and sufficient...

  3. Source apportionment of biogenic contributions to ozone formation over the United States

    Science.gov (United States)

    Zhang, Rui; Cohan, Alexander; Pour Biazar, Arastoo; Cohan, Daniel S.

    2017-09-01

    Vegetation is the leading emitter of volatile organic compounds (VOC), a key ingredient for ozone formation. The contribution of biogenic VOC (BVOC) emissions to regional ozone formation needs better quantification so that air quality regulators can effectively design emission control strategies. One of the key uncertainties for modeling BVOC emissions comes from the estimation of photosynthetically active radiation (PAR) reaching canopy. Satellite insolation retrieval data provide an alternative to prognostic meteorological models for representing the spatial and temporal variations of PAR. In this study, biogenic emission estimates generated with the MEGAN and BEIS biogenic emissions models using satellite or prognostic PAR are used to examine the contribution of BVOC to ozone in the United States. The Comprehensive Air Quality Model with Extensions (CAMx) is applied with Ozone Source Apportionment Technology (OSAT) and brute force zero-out sensitivity runs to quantify the biogenic contributions to ozone formation during May through September 2011. The satellite PAR retrievals are on average lower than modeled PAR and exhibit better agreement with SCAN and SURFRAD network measurements. Using satellite retrievals instead of modeled PAR reduces BEIS and MEGAN estimates of isoprene by an average of 3%-4% and 9%-12%, respectively. The simulations still overestimate observed ground-level isoprene concentrations by a factor of 1.1 for BEIS and 2.6 for MEGAN. The spatial pattern of biogenic ozone contribution diagnosed from OSAT differs from the brute force zero-out sensitivity results, with the former more smoothly distributed and the latter exhibiting peak impacts near metropolitan regions with intense anthropogenic NOx emissions. OSAT tends to apportion less ozone to biogenics as BVOC emissions increase, since that shifts marginal ozone formation toward more NOx-limited conditions. By contrast, zero-out source apportionment of ozone to biogenics increases with BVOC

  4. Contributors to ozone episodes in three US/Mexico border twin-cities.

    Science.gov (United States)

    Shi, Chune; Fernando, H J S; Yang, Jie

    2009-09-01

    The Process Analysis tools of the Community Multiscale Air Quality (CMAQ) modeling system together with back-trajectory analysis were used to assess potential contributors to ozone episodes that occurred during June 1-4, 2006, in three populated U.S.-Mexico border twin cities: San Diego/Tijuana, Imperial/Mexicali and El Paso/Ciudad Juárez. Validation of CMAQ output against surface ozone measurements indicates that the predictions are acceptable with regard to commonly recommended statistical standards and comparable to other reported studies. The mean normalized bias test (MNBT) and mean normalized gross error (MNGE) for hourly ozone fall well within the US EPA suggested range of +/-15% and 35%, respectively, except MNBT for El Paso. The MNBTs for maximum 8-h average ozone are larger than those for hourly ozone, but all the simulated maximum 8-h average ozone are within a factor of 2 of those measured in all three regions. The process and back-trajectory analyses indicate that the main sources of daytime ground-level ozone are the local photochemical production and regional transport. By integrating the effects of each process over the depth of the daytime planetary boundary layer (PBL), it is found that in the San Diego area (SD), chemistry and vertical advection contributed about 36%/48% and 64%/52% for June 2 and 3, respectively. This confirms the previous finding that high-altitude regional transport followed by fumigation contributes significantly to ozone in SD. The back-trajectory analysis shows that this ozone was mostly transported from the coastal area of southern California. For the episodes in Imperial Valley and El Paso, respectively, ozone was transported from the coastal areas of southern California and Mexico and from northern Texas and Oklahoma.

  5. Influence of wildfires on the variability and trend of ozone concentrations in the U.S. Intermountain West

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu

    2016-04-01

    Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with

  6. Transport effects on the vertical distribution of tropospheric ozone over western India

    Science.gov (United States)

    Lal, S.; Venkataramani, S.; Chandra, N.; Cooper, O. R.; Brioude, J.; Naja, M.

    2014-08-01

    In situ tropospheric ozone measurements by balloon-borne electrochemical concentration cell (ECC) sensors above Ahmedabad in western India from May 2003 to July 2007 are presented, along with an analysis of the transport processes responsible for the observed vertical ozone distribution. This analysis is supported by 12 day back trajectory calculations using the FLEXPART Lagrangian particle dispersion model. Lowest ozone (~20 ppbv) is observed near the surface during September at the end of the Asian summer monsoon season. Average midtropospheric (5-10 km above sea level) ozone is greatest (70-75 ppbv) during April-June and lowest (40-50 ppbv) during winter. Ozone variability is greatest in the upper troposphere with higher ozone during March-May. The FLEXPART retroplume results show that the free tropospheric vertical ozone distribution above this location is affected by long-range transport from the direction of North Africa and North America. Ozone levels are also affected by transport from the stratosphere particularly during March-April. The lower tropospheric (<3 km) ozone distribution during the Asian summer monsoon is affected by transport from the Indian Ocean via the east coast of Africa and the Arabian Sea. Influence from deep convection in the upper troposphere confined over central Asia has been simulated by FLEXPART. Lower ozone levels are observed during August-November than in any other season at 10-14 km above sea level. These in situ observations are in contrast to other studies based on satellite data which show that the lowest ozone values at these altitudes occur during the Asian summer monsoon.

  7. A statistical modeling framework for projecting future ambient ozone and its health impact due to climate change

    Science.gov (United States)

    Chang, Howard H.; Hao, Hua; Sarnat, Stefanie Ebelt

    2014-06-01

    The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041-2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999-2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: -7%-24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models.

  8. Survey the Efficiency of Catalytic Ozonation Process with Carbosieve in the Removal of Benzene from Polluted Air Stream

    Directory of Open Access Journals (Sweden)

    M. Samarghandi

    2014-01-01

    Full Text Available Introduction & Objective: Benzene is one of the most common volatile organic compounds in the indoor and outdoor environments that has always been considered as one of the causes of air pollution. Thus before being discharged to the environment, it must be treated from pol-luted air stream. The aim of this study was to determine the efficiency of catalytic ozonation process with carbosieve in the removal of benzene from polluted air stream. Materials & Methods: The study was experimental in which catalytic ozonation process with carbosieve was used in the removal of benzene from polluted air stream. The experiments were carried out in a reactor with continuous system and the results of catalytic ozonation were compared with the results of single ozonation and carbosieve adsorbent .The sampling, benzene analyzing and determining of ozone concentration in samples were done with 1501 NMAM method by GC equipped with FID detector and iodometry , respectively. Results: The results of this study showed that the removal effectiveness of single ozonation process is averagely less than 19%. Also the efficiency of absorbent decreased with the con-centration increase of benzene.The increase ratio of efficiency in catalytic ozonation process to efficiency of carbosieve adsorbent was averagely 45%. Conclusion: With regard to high efficiency of catalytic ozonation process and increasing the benzene removal , the catalytic ozonation process is suggested as a promising and alternative technology for elimination of VOCs from the polluted air stream. (Sci J Hamadan Univ Med Sci 2014; 20 (4:303-311

  9. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  10. Variation Characteristics of Ozone over Lhasa in Recent Years%近几年拉萨上空大气臭氧变化特征

    Institute of Scientific and Technical Information of China (English)

    杨勇; 张勇; 唐小萍

    2013-01-01

    利用Brewer分光光谱仪观测资料分析青藏高原拉萨站近几年大气臭氧的变化特征,结果表明,拉萨上空臭氧主要分布在15 ~ 35km,反演结果的峰值出现在21 ~25 km.对比拉萨四季臭氧垂直分布发现,它们在平流层中上层的差异不大,且在36 km以上的分布大致相同,差异主要表现在从地面到21 km,冬春季的臭氧数密度大于夏秋季,近4年来拉萨的年平均臭氧总量的变化不大,臭氧总量的极值出现在冬春季节,臭氧总量的月平均值在8和9月较低,2008年6~9月臭氧低值的持续时间是近几年中最长的,达23 d.%The variation characteristics of ozone in Lhasa in recent years were analyzed by using Brewer spectrometer observation data.The results showed that,ozone over Lhasa mainly distributed in 15-35 km,peak value of inversion results is in 21-25 km.Compared with ozone vertical distribution in Lhasa,there are small differences in upper layer of stratosphere.The distribution above 36 km is similar,the difference is mainly from ground to 21 km.The density of ozone in winter and spring is bigger than summer and autumn.The variation of annual average total amount of ozone in Lhasa in recent 4 years is little,the extreme value is in winter and spring.The monthly mean of ozone in Aug.and Sep.is relatively lower,the duration of ozone low value during Jun.-Sep.in 2008 is the longest,up to 23 d.

  11. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    Directory of Open Access Journals (Sweden)

    Borowiak Klaudia

    2014-06-01

    Full Text Available Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40 were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  12. A Bayesian model for quantifying the change in mortality associated with future ozone exposures under climate change.

    Science.gov (United States)

    Alexeeff, Stacey E; Pfister, Gabriele G; Nychka, Doug

    2016-03-01

    Climate change is expected to have many impacts on the environment, including changes in ozone concentrations at the surface level. A key public health concern is the potential increase in ozone-related summertime mortality if surface ozone concentrations rise in response to climate change. Although ozone formation depends partly on summertime weather, which exhibits considerable inter-annual variability, previous health impact studies have not incorporated the variability of ozone into their prediction models. A major source of uncertainty in the health impacts is the variability of the modeled ozone concentrations. We propose a Bayesian model and Monte Carlo estimation method for quantifying health effects of future ozone. An advantage of this approach is that we include the uncertainty in both the health effect association and the modeled ozone concentrations. Using our proposed approach, we quantify the expected change in ozone-related summertime mortality in the contiguous United States between 2000 and 2050 under a changing climate. The mortality estimates show regional patterns in the expected degree of impact. We also illustrate the results when using a common technique in previous work that averages ozone to reduce the size of the data, and contrast these findings with our own. Our analysis yields more realistic inferences, providing clearer interpretation for decision making regarding the impacts of climate change.

  13. Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

    Science.gov (United States)

    Chatani, S.; Amann, M.; Goel, A.; Hao, J.; Klimont, Z.; Kumar, A.; Mishra, A.; Sharma, S.; Wang, S. X.; Wang, Y. X.; Zhao, B.

    2014-09-01

    A regional air quality simulation framework including the Weather Research and Forecasting modeling system (WRF), the Community Multi-scale Air Quality modeling system (CMAQ), and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitoring, ozonesondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2), nitrogen oxides (NOx), and volatile organic compound (VOC) emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU) pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around northeastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

  14. Monthly Meteorological Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly forms that do not fit into any regular submission. Tabulation sheets and generic monthly forms designed to capture miscellaneous monthly observations.

  15. Airborne measurements of stratospheric constituents over Antarctica in the austral spring 1987. I - Method and ozone observations

    Science.gov (United States)

    Mankin, William G.; Coffey, M. T.

    1989-01-01

    A Fourier transform spectrometer was flown aboard a DC-8 on 10 flights over Antarctica during August and September, 1987, as part of the Airborne Antarctic Ozone Experiment (AAOE). Observing the sun at infrared wavelengths, it was possible to determine the integrated column amount above the flight altitude for ozone and a number of other chemical species that are believed to be important in the perturbed chemistry of the 'ozone hole'. The paper describes the method, the observations, the data analysis procedure, and the ozone results. During the observation period, ozone developed a steep gradient near the edge of the polar vortex; deep within the vortex, the average ozone column decreased by about 1.6 percent per day during September.

  16. "Cloud Slicing" : A New Technique to Derive Tropospheric Ozone Profile Information from Satellite Measurements

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    troposphere around the month of March which is not observed in the upper troposphere. The eastern Pacific indicates weak seasonal variability of upper, lower, and total tropospheric ozone compared to the western Pacific which shows largest TCO amounts in both hemispheres around spring months. Ozone variability in the western Pacific is expected to have greater variability caused by strong convection, pollution and biomass burning, land/sea contrast and monsoon developments.

  17. DMAH ozone measurement net

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2006-01-01

    Full Text Available The complexity of the study of tropospheric ozone lies in the fact that it is a secondary pollutant. It is not emitted by a source, instead its concentration in the air depends on other compounds (especially the nitrogen oxides emitted by motor vehicles and the volatile organic compounds emitted by the industry and the vegetation and meteorological factors (especially solar radiation and temperature. The European legislation compells to make measurements of the tropospheric ozone due to its effects on people (fatigue, irritation of the mucous membranes, aggravation of asthma ... and on environment (decrease of the production of cereals, synergy with plagues .... The measuring net in Catalonia belongs to the Department of Environment and Housing (DMAH. It has a pyramidal structure and it allows a surveillance to notify in case of exceeding a certain threshold. From the registered data of last years it is shown that the number of incidences is related to meteorology. They are more frequent during afternoon and the behaviour of this pollutant is different according to the proximity of the point of measurement to the sources of its precursors.

  18. Ozone Therapy in the Management of Persistent Radiation-Induced Rectal Bleeding in Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Bernardino Clavo

    2015-01-01

    Full Text Available Introduction. Persistent radiation-induced proctitis and rectal bleeding are debilitating complications with limited therapeutic options. We present our experience with ozone therapy in the management of such refractory rectal bleeding. Methods. Patients (n=12 previously irradiated for prostate cancer with persistent or severe rectal bleeding without response to conventional treatment were enrolled to receive ozone therapy via rectal insufflations and/or topical application of ozonized-oil. Ten (83% patients had Grade 3 or Grade 4 toxicity. Median follow-up after ozone therapy was 104 months (range: 52–119. Results. Following ozone therapy, the median grade of toxicity improved from 3 to 1 (p<0.001 and the number of endoscopy treatments from 37 to 4 (p=0.032. Hemoglobin levels changed from 11.1 (7–14 g/dL to 13 (10–15 g/dL, before and after ozone therapy, respectively (p=0.008. Ozone therapy was well tolerated and no adverse effects were noted, except soft and temporary flatulence for some hours after each session. Conclusions. Ozone therapy was effective in radiation-induced rectal bleeding in prostate cancer patients without serious adverse events. It proved useful in the management of rectal bleeding and merits further evaluation.

  19. Can a global model reproduce observed trends in summertime surface ozone levels?

    Directory of Open Access Journals (Sweden)

    S. Koumoutsaris

    2012-01-01

    Full Text Available Quantifying trends in surface ozone concentrations are critical for assessing pollution control strategies. Here we use observations and results from a global chemical transport model to examine the trends (1991–2005 in daily maximum 8-hour average concentrations in summertime surface ozone at rural sites in Europe and the United States. We find a decrease in observed ozone concentrations at the high end of the probability distribution at many of the sites in both regions. The model attributes these trends to a decrease in local anthropogenic ozone precursors, although simulated decreasing trends are overestimated in comparison with observed ones. The low end of observed distribution show small upward trends over Europe and the western US and downward trends in Eastern US. The model cannot reproduce these observed trends, especially over Europe and the western US. In particular, simulated changes between the low and high end of the distributions in these two regions are not significant. Sensitivity simulations indicate that emissions from far away source regions do not affect significantly ozone trends at both ends of the distribution. This is in contrast with previously available results, which indicated that increasing ozone trends at the low percentiles may reflect an increase in ozone background associated with increasing remote sources of ozone precursors. Possible reasons for discrepancies between observed and simulated trends are discussed.

  20. Ozone-temperature radiative feedback in the Integrated Forecasting System (IFS) of ECMWF

    Science.gov (United States)

    Flemming, Johannes; Inness, Antje; Bozzo, Alessio; Huijnen, Vincent

    2016-04-01

    The IFS develops biases in the stratospheric temperatures at longer forecast lead times. Lower stratospheric values tend to be too cold and upper stratospheric values too warm. We will show to what extent an improved representation of ozone in the IFS radiation scheme could mitigate these biases. Currently, a monthly mean ozone climatology derived from the MACC re-analysis is used in the IFS radiation scheme. We pursued two ways to improve the realism of ozone fields in the radiation scheme: (I) to use on-line simulated (prognostic) ozone in the radiation scheme and (II) to correct biases in the monthly mean climatology of the MACC-re-analysis. We will discuss the usefulness of the schemes to investigate ozone-temperature feedback and the correlation between ozone and temperature errors. An improved climatology leads to improved T and wind fields in initialised 10 day forecast and long-term simulations (1yr). This finding highlights the importance of the correct reproduction of atmospheric profiles in the ozone assimilation process.

  1. Ozone and urban forests in Italy.

    Science.gov (United States)

    Paoletti, Elena

    2009-05-01

    Ozone levels along urban-to-rural gradients in three Italian cities (Milan, Florence, Bari) showed that average AOT40 values at rural and suburban sites were 2.6 times higher than those determined at urban sites. However, O(3) also exceeded the European criteria to protect forest health at urban sites, even when the standards for human health protection were met. For protecting street trees in Mediterranean cities, the objectives of measurement at urban sites should extend from the protection of human health to the protection of vegetation as well. A review of forest effects on O(3) pollution and of O(3) pollution on forest conditions in Italian cities showed that it was not possible to distinguish the effect of O(3) in the complex mixture of urban pollutants and stressors. A preliminary list of tree species for urban planning in the Mediterranean area shows the average tree capacity of O(3) removal and VOC emission.

  2. Electric power monthly, April 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  3. Electric power monthly, May 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  4. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles p. 967-973. [2] Smith, D. and A. Chughtai, Reaction kinetics of ozone at low concentrations with n-hexane soot. Journal of geophysical research, 1996. 101(D14): p. 19607-19,620. [3] Kamm, S., et al., The heterogeneous reaction of ozone with soot aerosol. Atmospheric Environment, 1999. 33(28): p. 4651-4661. [4] Stephens, S., M.J. Rossi, and D.M. Golden, The heterogeneous reaction of ozone on carbonaceous surfaces. International journal of chemical kinetics, 1986. 18(10): p. 1133-1149. [5] Pöschl, U., et al., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo [a] pyrene: O3 and H2O adsorption, benzo [a] pyrene degradation, and atmospheric implications. The Journal of Physical Chemistry A, 2001. 105(16): p. 4029-4041.

  5. The impact of drought on ozone dry deposition over eastern Texas

    Science.gov (United States)

    Huang, Ling; McDonald-Buller, Elena C.; McGaughey, Gary; Kimura, Yosuke; Allen, David T.

    2016-02-01

    Dry deposition represents a critical pathway through which ground-level ozone is removed from the atmosphere. Understanding the effects of drought on ozone dry deposition is essential for air quality modeling and management in regions of the world with recurring droughts. This work applied the widely used Zhang dry deposition algorithm to examine seasonal and interannual changes in estimated ozone dry deposition velocities and component resistances/conductances over eastern Texas during years with drought (2006 and 2011) as well as a year with slightly cooler temperatures and above average rainfall (2007). Simulated area-averaged daytime ozone dry deposition velocities ranged between 0.26 and 0.47 cm/s. Seasonal patterns reflected the combined seasonal variations in non-stomatal and stomatal deposition pathways. Daytime ozone dry deposition velocities during the growing season were consistently larger during 2007 compared to 2006 and 2011. These differences were associated with differences in stomatal conductances and were most pronounced in forested areas. Reductions in stomatal conductances under drought conditions were highly sensitive to increases in vapor pressure deficit and warmer temperatures in Zhang's algorithm. Reductions in daytime ozone deposition velocities and deposition mass during drought years were associated with estimates of higher surface ozone concentrations.

  6. Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion

    Science.gov (United States)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.

  7. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    Science.gov (United States)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  8. Surface ozone observations during voyages to the Arctic and Antarctic regions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Surface ozone concentration and UV-B data between 75°N and 70°S were obtained aboard the Chinese polar scientific vessel "Xue-long" (Snow-Dragon) during the first voyage to the Arctic and the 16th to the Antarctic in 1999-2000. Analysis of these data presents that variations of the surface ozone concentration have small amplitude during voyages except the mid-latitude in the Northern Hemisphere. As a whole, average surface ozone concentration in the Northern Hemisphere is higher than that in the Southern, and high value occurred when the ship sailed close to the continents. The average diurnal variations of the surface ozone in the Northern Hemisphere are also higher compared to the southern counterparts, and high diurnal variations were found at low latitudes, and relative low level in the polar region.

  9. Comparison of high-latitude line-of-sight ozone column density with derived ozone fields and the effects of horizontal inhomogeneity

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2006-01-01

    Full Text Available Extensive ozone measurements were made during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II. We compare high-latitude line-of-sight (LOS slant column ozone measurements from the NASA DC-8 to ozone simulated by forward integration of measurement-derived ozone fields constructed both with and without the assumption of horizontal homogeneity. The average bias and rms error of the simulations assuming homogeneity are relatively small (−6 and 10%, respectively in comparison to the LOS measurements. The comparison improves significantly (−2% bias; 8% rms error using forward integrations of three-dimensional proxy ozone fields reconstructed from potential vorticity-O3 correlations. The comparisons provide additional verification of the proxy fields and quantify the influence of large-scale ozone inhomogeneity. The spatial inhomogeneity of the atmosphere is a source of error in the retrieval of trace gas vertical profiles and column abundance from LOS measurements, as well as a complicating factor in intercomparisons that include LOS measurements at large solar zenith angles.

  10. Ozone Applications in Food Industry

    Directory of Open Access Journals (Sweden)

    Elif Savaş

    2014-03-01

    Full Text Available Known as active oxygen Ozone (O3, are among the most effective antimicrobials. The sun's ultraviolet rays and ozone caused by electric arcs of lightning occurring instantly around the world, and is available as a protective shield protects the animals against the effects of the sun's radiation. In the food industry, directly or indirectly in contact with food during processing of foods and chemical treatment of water disinfection bacteriological emerges as an alternative protection method. In this study, the effects of the ozone applications will evaluated as an alternative to conventional disinfectants in food industry.

  11. Validation of Aura Microwave Limb Sounder Ozone by Ozonesonde and Lidar Measurements

    Science.gov (United States)

    Jiang, Y. B.; Froidevaux, L.; Lambert, A.; Livesey, N. J.; Read, W. G.; Waters, J. W.; Bojkov, B.; Leblanc, T.; McDermid, I. S.; Godin-Beekmann, S.; Filipiak, M. J.; Harwood, R. S.; Fuller, R. A.; Daffer, W. H.; Drouin, B. J.; Cofield, R. E.; Cuddy, D. T.; Jarnot, R. F.; Knosp, B. W.; Perun, V. S.; Schwartz, W. V.; Snyder, P. C.; Stek, R. P.; Thurstans, P. A.; Wagner, M. J.

    2007-01-01

    We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by approximately 20% at middle to high latitude, although there is a lot of variability in this altitude region.

  12. The role of midlatitude mixing barriers in creating the annual variation of total ozone in high northern latitudes

    Science.gov (United States)

    Gille, John; Karol, Svetlana; Kinnison, Douglas; Lamarque, Jean-Francois; Yudin, Valery

    2014-08-01

    Data from the HIgh Resolution Dynamics Limb Sounder (HIRDLS), the Microwave Limb Sounder (MLS), and the Whole Atmosphere Community Climate Model (WACCM) are used to investigate the annual variation of total column ozone in high northern latitudes. Downward transport of ozone-rich air by the residual mean circulation during autumn and winter bends ozone isopleths down and increases the high-latitude ozone amounts, leading to an ozone maximum at the end of the winter. During the summer months eddy mixing acts to restore pre-fall distributions of ozone. In this study the large-scale mixing in the lower stratosphere is analyzed using Nakamura's (1996) equivalent length formulation with observed and simulated ozone. The analysis of ozone mixing is performed in the tracer equivalent latitude-potential temperature coordinate system. Steep latitudinal gradients of ozone isopleths below about 500 K occur during the winter, where there are minima in the equivalent length, indicating barriers to mixing at 30°N-40°N. This transport barrier allows large ozone maxima to develop poleward of it. The barrier disappears over the summer, permitting latitudinal mixing of the high ozone air. Above 500 K mixing is more effective during the winter, so a large winter maximum does not occur. In both midlatitude and high latitude the lower stratospheric layer from 330 to 500 K doubles its ozone content from autumn to spring, compared with much smaller changes in the layer from 500 to 650 K. Our results confirm that the presence of the winter transport barrier in the lower stratosphere controls the seasonal variation of total ozone.

  13. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    Science.gov (United States)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  14. Ozone and ozonated oils in skin diseases: a review

    National Research Council Canada - National Science Library

    Travagli, V; Zanardi, I; Valacchi, G; Bocci, V

    2010-01-01

    .... Today the stability and efficacy of the ozonated oils have been already demonstrated, but owing to a plethora of commercial products, the present paper aims to analyze these derivatives suggesting the strategy to obtain products with the best characteristics.

  15. Ozone and Ozonated Oils in Skin Diseases: A Review

    National Research Council Canada - National Science Library

    Travagli, V; Zanardi, I; Valacchi, G; Bocci, V

    2010-01-01

    .... Today the stability and efficacy of the ozonated oils have been already demonstrated, but owing to a plethora of commercial products, the present paper aims to analyze these derivatives suggesting the strategy to obtain products with the best characteristics.

  16. Ozone and Ozonated Oils in Skin Diseases: A Review

    Directory of Open Access Journals (Sweden)

    V. Travagli

    2010-01-01

    Full Text Available Although orthodox medicine has provided a variety of topical anti-infective agents, some of them have become scarcely effective owing to antibiotic- and chemotherapeutic-resistant pathogens. For more than a century, ozone has been known to be an excellent disinfectant that nevertheless had to be used with caution for its oxidizing properties. Only during the last decade it has been learned how to tame its great reactivity by precisely dosing its concentration and permanently incorporating the gas into triglycerides where gaseous ozone chemically reacts with unsaturated substrates leading to therapeutically active ozonated derivatives. Today the stability and efficacy of the ozonated oils have been already demonstrated, but owing to a plethora of commercial products, the present paper aims to analyze these derivatives suggesting the strategy to obtain products with the best characteristics.

  17. Vocal attractiveness increases by averaging.

    Science.gov (United States)

    Bruckert, Laetitia; Bestelmeyer, Patricia; Latinus, Marianne; Rouger, Julien; Charest, Ian; Rousselet, Guillaume A; Kawahara, Hideki; Belin, Pascal

    2010-01-26

    Vocal attractiveness has a profound influence on listeners-a bias known as the "what sounds beautiful is good" vocal attractiveness stereotype [1]-with tangible impact on a voice owner's success at mating, job applications, and/or elections. The prevailing view holds that attractive voices are those that signal desirable attributes in a potential mate [2-4]-e.g., lower pitch in male voices. However, this account does not explain our preferences in more general social contexts in which voices of both genders are evaluated. Here we show that averaging voices via auditory morphing [5] results in more attractive voices, irrespective of the speaker's or listener's gender. Moreover, we show that this phenomenon is largely explained by two independent by-products of averaging: a smoother voice texture (reduced aperiodicities) and a greater similarity in pitch and timbre with the average of all voices (reduced "distance to mean"). These results provide the first evidence for a phenomenon of vocal attractiveness increases by averaging, analogous to a well-established effect of facial averaging [6, 7]. They highlight prototype-based coding [8] as a central feature of voice perception, emphasizing the similarity in the mechanisms of face and voice perception.

  18. Variation characteristics of carbon monoxide and ozone over the course of the 2014 Chinese National Arctic Research Expedition

    Institute of Scientific and Technical Information of China (English)

    LI Bokun; BIAN Lingen; ZHENG Xiangdong; DING Minghu; XIE Zhouqing

    2015-01-01

    The concentrations of carbon monoxide and ozone in the marine boundary layer were measured during the 6th Chinese National Arctic Research Expedition (from July to September, 2014). Carbon monoxide concentration ranged between 47.00 and 528.52 ppbv with an average of 103.59 ± 40.37 ppbv. A slight decrease with increasing latitude was observed, except for the extremely high values over the East China Sea which may be attributed to anthropogenic emissions. Ozone concentration ranged between 3.27 and 77.82 ppbv with an average of 29.46±10.48 ppbv. Ozone concentration decreased sharply with increasing latitude outside the Arctic Ocean (during both the northward and the southward course), while no significant variation was observed over the Arctic Ocean. The positive correlation between carbon monoxide and ozone in most sections suggests that the ozone in the marine boundary layer mainly originated from photochemical reactions involving carbon monoxide.

  19. Ensemble-based air quality forecasts: A multimodel approach applied to ozone

    OpenAIRE

    Mallet, Vivien; Sportisse, Bruno

    2006-01-01

    International audience; The potential of ensemble techniques to improve ozone forecasts is investigated. Ensembles with up to 48 members (models) are generated using the modeling system Polyphemus. Members differ in their physical parameterizations, their numerical approximations, and their input data. Each model is evaluated during 4 months (summer 2001) over Europe with hundreds of stations from three ozone-monitoring networks. We found that several linear combinations of models have the po...

  20. Future Arctic ozone recovery: the importance of chemistry and dynamics

    Science.gov (United States)

    Bednarz, Ewa M.; Maycock, Amanda C.; Abraham, N. Luke; Braesicke, Peter; Dessens, Olivier; Pyle, John A.

    2016-09-01

    Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a seven-member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ˜ 11.5 DU decade-1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ˜ 50-100 DU below the corresponding long-term ensemble mean for that period, reaching values characteristic of the near-present-day average level. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen-induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of 2 between the periods 2001-2020 and 2061-2080. However, in the presence of a cold and strong polar vortex, elevated halogen-induced ozone losses well above the corresponding long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a significant cooling trend in the Arctic winter mid- and upper stratosphere, but there is less confidence in the projected temperature trends in the lower stratosphere (100-50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively driven stratospheric cooling. However, individual winters characterised by significantly suppressed downwelling, reduced transport and anomalously low temperatures continue to occur in the future. We conclude that, despite the projected long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue in the future, thereby facilitating episodic reductions in springtime ozone columns

  1. Highlights of TOMS Version 9 Total Ozone Algorithm

    Science.gov (United States)

    Bhartia, Pawan; Haffner, David

    2012-01-01

    benefit of this algorithm is that it is considerably simpler than the present algorithm that uses a database of 1512 profiles to retrieve total ozone. These profiles are tedious to construct and modify. Though conceptually similar to the SBUV V8 algorithm that was developed about a decade ago, the SBUV and TOMS V9 algorithms differ in detail. The TOMS algorithm uses 3 wavelengths to retrieve the profile while the SBUV algorithm uses 6-9 wavelengths, so TOMS provides less profile information. However both algorithms have comparable total ozone information and TOMS V9 can be easily adapted to use additional wavelengths from instruments like GOME, OMI and OMPS to provide better profile information at smaller SZAs. The other significant difference between the two algorithms is that while the SBUV algorithm has been optimized for deriving monthly zonal means by making an appropriate choice of the a priori error covariance matrix, the TOMS algorithm has been optimized for tracking short-term variability using month and latitude dependent covariance matrices.

  2. A Multi-sensor Upper Tropospheric Ozone Product (MUTOP based on TES ozone and GOES water vapor: validation with ozonesondes

    Directory of Open Access Journals (Sweden)

    J. L. Moody

    2011-11-01

    Full Text Available Accurate representation of ozone in the extratropical upper troposphere (UT remains a challenge. However, the implementation of hyper-spectral remote sensing using satellite instruments such as the Tropospheric Emission Spectrometer (TES provides an avenue for mapping ozone in this region, from 500 to 300 hPa. As a polar orbiting satellite TES observations are limited, but in this paper they are combined with geostationary satellite observations of water vapor. This paper describes a validation of the Multi-sensor UT Ozone Product (MUTOP. MUTOP is statistical retrieval method, a derived product image based on the correlation of two remotely sensed quantities, TES ozone, against geostationary (GOES specific humidity and modeled potential vorticity, a dynamical tracer in the UT. These TES-derived UT ozone mixing ratios are compared to coincident ozonesonde measurements of layer-average UT ozone mixing ratios made during the NASA INTEX/B field campaign in the spring of 2006; the region for this study is effectively the GOES west domain covering the Eastern North Pacific Ocean and the Western United States. This intercomparison evaluates MUTOP skill at representing ozone magnitude and variability in this region of complex dynamics. In total, 11 ozonesonde launch sites were available for this study, providing 127 individual sondes for comparison; the overall mean ozone of the 500–300 hPa layer for these sondes was 78.0 ppbv. MUTOP reproduces in-situ measurements reasonably well, producing an UT mean of 82.3 ppbv, with a mean absolute error of 12.2 ppbv and a root mean square error of 16.4 ppbv relative to ozonesondes across all sites. An overall UT mean bias of 4.3 ppbv relative to sondes was determined for MUTOP. Considered in the context of past TES validation studies, these results illustrate that MUTOP is able to maintain accuracy similar to TES while expanding coverage to the entire GOES-West satellite domain. In addition MUTOP provides six

  3. Ozone - Current Air Quality Index

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... credits available from CDC. Learn more more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  4. Extrapolating future Arctic ozone losses

    Directory of Open Access Journals (Sweden)

    B. M. Knudsen

    2004-06-01

    Full Text Available Future increases in the concentration of greenhouse gases and water vapour are likely to cool the stratosphere further and to increase the amount of polar stratospheric clouds (PSCs. Future Arctic PSC areas have been extrapolated using the highly significant trends in the temperature record from 1958–2001. Using a tight correlation between PSC area and the total vortex ozone depletion and taking the decreasing amounts of ozone depleting substances into account we make empirical estimates of future ozone. The result is that Arctic ozone losses increase until 2010–2020 and only decrease slightly up to 2030. This approach is an alternative method of prediction to that based on the complex coupled chemistry-climate models (CCMs.

  5. Ozone Nonattainment Areas - 1 Hour

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Ozone - 1hour (Legacy...

  6. Modeled population exposures to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — Population exposures to ozone from APEX modeling for combinations of potential future air quality and demographic change scenarios. This dataset is not publicly...

  7. Ergodic averages via dominating processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Mengersen, Kerrie

    2006-01-01

    We show how the mean of a monotone function (defined on a state space equipped with a partial ordering) can be estimated, using ergodic averages calculated from upper and lower dominating processes of a stationary irreducible Markov chain. In particular, we do not need to simulate the stationary ...

  8. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  9. Ozonation of Common Textile Auxiliaries

    Science.gov (United States)

    Iskender, Gulen; Arslan-Alaton, Idil; Koyunluoglu, Sebnem; Yilmaz, Zeynep; Germirli Babuna, Fatos

    2016-10-01

    The treatability of four different commonly applied textile auxiliary chemicals, namely two tannin formulations (Tannin 1: a condensation product of aryl sulphonate; Tannin 2: natural tannic acid) and two biocidal finishing agents (Biocide 1: 2,4,4’-trichloro-2’- hydroxydiphenyl ether; Biocide 2: a nonionic diphenyl alkane derivative) with ozone was investigated. Increasing the ozone dose yielded higher COD removals for the natural tannin. Optimum ozone doses of 485 and 662 mg/h were obtained at a pH of 3.5 for natural and synthetic tannin carrying textile bath discharges, respectively. When the reaction pH was increased from 3.5 to 7.0, a slight decrease in COD removal was observed for the natural tannin due to ozone selectivity towards its polyaromatic structure. The same increase in ozonation pH enhanced COD removals for the synthetic tannin as a result of enhanced ozone decomposition rendering free radical chain reactions dominant. Optimum ozone doses of 499 and 563 mg/h were established for Biocide 1 and 2, respectively. With the increase of ozonation, pH exhibited a positive influence on COD removals for both textile tannins. A substantial improvement in terms of TOC removals was observed as the reaction pH was increased from 3.5 to 7.0 for the synthetic tannin, and from 7 to 12 for both textile biocides. Higher AOX removals were evident at pH 7 than at pH 12 for Biocide 1 as a result of the higher selectivity of the dehalogenation reaction at neutral pH.

  10. Ozone Treatment For Cooling Towers

    Science.gov (United States)

    Blackwelder, Rick; Baldwin, Leroy V.; Feeney, Ellen S.

    1990-01-01

    Report presents results of study of cooling tower in which water treated with ozone instead of usual chemical agents. Bacteria and scale reduced without pollution and at low cost. Operating and maintenance costs with treatment about 30 percent of those of treatment by other chemicals. Corrosion rates no greater than with other chemicals. Advantage of ozone, even though poisonous, quickly detected by smell in very low concentrations.

  11. Ozone therapy: A clinical review

    OpenAIRE

    Elvis, A. M.; Ekta, J. S.

    2011-01-01

    Ozone (O3) gas discovered in the mid-nineteenth century is a molecule consisting of three atoms of oxygen in a dynamically unstable structure due to the presence of mesomeric states. Although O3 has dangerous effects, yet researchers believe it has many therapeutic effects. Ozone therapy has been utilized and heavily studied for more than a century. Its effects are proven, consistent, safe and with minimal and preventable side effects. Medical O3 is used to disinfect and treat disease. Mechan...

  12. Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  13. Effect of regional precursor emission controls on long-range ozone transport – Part 1: short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-03-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  14. Electric power monthly, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  15. Electric power monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-13

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  16. Electric power monthly, April 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the U.S., Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. This April 1994 issue contains 1993 year-end data and data through January 1994.

  17. Electric power monthly, September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-17

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  18. Electric Power Monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-12

    The Electric Power Monthly (EPM) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost in fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 12 refs., 4 figs., 48 tabs.

  19. Is there adaptation in the ozone mortality relationship: A multi-city case-crossover analysis

    Directory of Open Access Journals (Sweden)

    Schwartz Joel

    2008-05-01

    Full Text Available Abstract Background Ozone has been associated with daily mortality, mainly in the summer period. Despite the ample literature on adaptation of inflammatory and pulmonary responses to ozone, and the link, in cohort studies, between lung function and mortality risk there has been little done to date to examine the question of adaptation in the acute mortality risk associated with ambient ozone. Methods We applied a case-crossover design in 48 US cities to examine the ozone effect by season, by month and by age groups, particularly focusing on whether there was an adaptation effect. Results We found that the same day ozone effect was highest in summer with a 0.5% (95% CI: 0.38, 0.62 increase in total mortality for 10 ppb increase in 8-hr ozone, whilst the effect decrease to null in autumn and winter. We found higher effects in the months May- July with a 0.46% (95% CI: 0.24, 0.68 increase in total mortality for 10 ppb increase in ozone in June, and a 0.65% (95% CI: 0.47, 0.82 increase in mortality during July. The effect decreased in August and became null in September. We found similar effects from the age group 51–60 up to age 80 and a lower effect in 80 years and older. Conclusion The mortality effects of ozone appear diminished later in the ozone season, reaching the null effect previously reported in winter by September. More work should address this issue and examine the biological mechanism of adaptation.

  20. [Health impact of ozone in 13 Italian cities].

    Science.gov (United States)

    Mitis, Francesco; Iavarone, Ivano; Martuzzi, Marco

    2007-01-01

    to estimate the health impact of ozone in 13 Italian cities over 200,000 inhabitants and to produce basic elements to permit the reproducibility of the study in other urban locations. the following data have been used: population data (2001), health data (2001 or from scientific literature), environmental data (2002-2004), from urban background monitoring station and concentration/response risk coefficients derived from recent metanalyses. The indicators SOMO35 and SOMO0 have been used as a proxi of the average exposure to calcolate attributable deaths (and years of life lost) and several causes of morbility for ozone concentrations over 70 microg/m3. acute mortality for all causes and for cardiovascular mortality, respiratory-related hospital admissions in elderly, asthma exacerbation in children and adults, minor restricted activity days, lower respiratory symptoms in children. over 500 (1900) deaths, the 0.6% (2.1%) of total mortality, equivalent to about 6000 (22,000) years of life lost are attributable to ozone levels over 70 microg/m3 in the 13 Italian cities under study. Larger figures, in the order of thousands, are attributable to less severe morbidity outcomes. The health impact of ozone in Italian towns is relevant in terms of acute mortality and morbidity, although less severe than PM10 impact. Background ozone levels are increasing. Abatement strategies for ozone concentrations should consider the whole summer and not only "peak" days and look at policies limiting the concentration of precursors produced by traffic sources. Relevant health benefits can be obtained also under levels proposed as guidelines in the present environmental regulations.

  1. Stratospheric ozone depletion from future nitrous oxide increases

    Directory of Open Access Journals (Sweden)

    W. Wang

    2014-12-01

    Full Text Available We have investigated the impact of the assumed nitrous oxide (N2O increases on stratospheric chemistry and dynamics using a series of idealized simulations with a coupled chemistry-climate model (CCM. In a future cooler stratosphere the net yield of NOy from N2O is shown to decrease in a reference run following the IPCC A1B scenario, but NOy can still be significantly increased by extra increases of N2O over 2001–2050. Over the last decade of simulations, 50% increases in N2O result in a maximal 6% reduction in ozone mixing ratios in the middle stratosphere at around 10 hPa and an average 2% decrease in the total ozone column (TCO compared with the control run. This enhanced destruction could cause an ozone decline in the first half of this century in the middle stratosphere around 10 hPa, while global TCO still shows an increase at the same time. The results from a multiple linear regression analysis and sensitivity simulations with different forcings show that the chemical effect of N2O increases dominates the N2O-induced ozone depletion in the stratosphere, while the dynamical and radiative effects of N2O increases are overall insignificant. The analysis of the results reveals that the ozone depleting potential of N2O varies with the time period and is influenced by the environmental conditions. For example, carbon dioxide (CO2 increases can strongly offset the ozone depletion effect of N2O.

  2. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  3. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2011-01-01

    Full Text Available We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL, and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. Compared to global HALOE observations, the diabatic model prediction underestimates the vertical ozone gradient. Comparison of the kinematic prediction with observations obtained during the tropical SCOUT-O3 campaign shows a large high bias above 390 K potential temperature. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity between tropical ozone production and in-mixing from the stratosphere. In turn, ozone provides constraints on transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  4. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL)

    Science.gov (United States)

    Ploeger, F.; Fueglistaler, S.; Grooß, J.-U.; Günther, G.; Konopka, P.; Liu, Y. S.; Müller, R.; Ravegnani, F.; Schiller, C.; Ulanovski, A.; Riese, M.

    2011-01-01

    We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL), and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE) and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data) are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. Compared to global HALOE observations, the diabatic model prediction underestimates the vertical ozone gradient. Comparison of the kinematic prediction with observations obtained during the tropical SCOUT-O3 campaign shows a large high bias above 390 K potential temperature. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity between tropical ozone production and in-mixing from the stratosphere. In turn, ozone provides constraints on transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  5. A statistical model to predict total column ozone in Peninsular Malaysia

    Institute of Scientific and Technical Information of China (English)

    K.C.TAN; H.S.LIM; M.Z.MAT JAFRI

    2016-01-01

    This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases.Data pertaining to five atmospheric gases (CO2,O3,CH4,NO2,and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia.Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately.Based on the Pearson correlation matrices,columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008.This result was expected because NO2 is a precursor of ozone.Therefore,an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor.In the NEM season,columnar ozone was negatively correlated with H2O (-0.847),NO2 (0.754),and CO2 (0.477);columnar ozone was also negatively but weakly correlated with CH4 (-0.035).In the SWM season,columnar ozone was highly positively correlated with NO2 (0.855),CO2 (0.572),and CH4 (0.321) and also highly negatively correlated with H2O (-0.832).Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia.We obtained the best-fitting regression equations for the columnar ozone data using four independent variables.Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

  6. The effect of lightning NOx production on surface ozone in the continental United States

    Directory of Open Access Journals (Sweden)

    Y. Choi

    2008-03-01

    Full Text Available Lightning NOx emissions calculated using the U.S. National Lightning Detection Network data were found to account for 30% of the total NOx emissions for July–August 2004, a period chosen both for having higher lightning NOx production and high ozone levels, thus maximizing the likelihood that such emissions could impact peak ozone levels. Including such emissions led to modest, but sometimes significant increases in simulated surface ozone when using the Community Multi-scale Air Quality Model (CMAQ. Three model simulations were performed, two with the addition of lightning NOx emissions, and one without. Domain-wide daily maximum 8-h ozone changes due to lightning NOx were less than 2 ppbv in 71% of the cases with a maximum of 10-ppbv; whereas the difference in 1-h ozone was less than 2 ppbv in 77% of the cases with a maximum of 6 ppbv. Daily maximum 1-h and 8-h ozone for grids containing O3 monitoring stations changed slightly, with more than 43% of the cases differing less than 2 ppbv. The greatest differences were 42-ppbv for both 1-h and 8-h O3, though these tended to be on days of lower ozone. Lightning impacts on the season-wide maximum 1-h and 8-h averaged ozone decreased starting from the 1st to 4th highest values (an average of 4th highest, 8-h values is used for attainment demonstration in the U.S.. Background ozone values from the y-intercept of O3 versus NOz curve were 42.2 and 43.9 ppbv for simulations without and with lightning emissions, respectively. Results from both simulations with lightning NOx suggest that while North American lightning production of NOx can lead to significant local impacts on a few occasions, they will have a relatively small impact on typical maximum levels and determination of Policy Relevant Background levels.

  7. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  8. Biofiltration of high formaldehyde loads with ozone additions in long-term operation.

    Science.gov (United States)

    Maldonado-Diaz, G; Arriaga, S

    2015-01-01

    Formaldehyde (FA) biofiltration was evaluated over 310 days with and without ozone addition. Without ozone, the biofilter was able to treat formaldehyde at inlet loads (ILs) lower than 40 g m(-3) h(-1), maintaining, under this condition, an average removal efficiency (RE) of 88 % for a few days before collapsing to zero. The continuous addition of ozone (90 ppbv) helped to recover the RE from zero to 98 ± 2 % and made it possible to operate at an IL of 40 g m(-3) h(-1) for long periods of operation (107 days). Furthermore, the ozone addition aided in operating the biofilter at a formaldehyde IL of up to 120 g m(-3) h(-1) values that have never before been reached. GC-mass spectrometry (MS) analysis showed that dimethoxymethane was the common compound in leachate during the performance decay. Also, the addition of ozone aided in maintaining an optimal pH in the biofilter with values between 7.5 and 8.2, due to the carbonate species formed during the ozone reactions with formaldehyde and its by-products. Thus, the pH control was confirmed and the alkalinity of the biofilter increased from 334.1 ± 100.3 to 1450 ± 127 mg CaCO3 L(-1) when ozone was added. Ozone addition diminished the exopolymeric substances (EPS) content of biofilm and biofilm thickness without affecting cell viability. Kinetic parameters suggested that the best conditions for carrying out FA biofiltration were reached under ozone addition. The addition of ozone during formaldehyde biofiltration could be a good strategy to maintain the pH and the steady state of the system under high ILs and for long periods of operation.

  9. Outdoor and indoor ozone level: A potential impact on human health

    Directory of Open Access Journals (Sweden)

    Valuntaitė Vaida

    2015-01-01

    Full Text Available Background/Aim. Air pollution outside and inside is still one of the most sensitive issues. The aim of this study was to assess the ozone level in ambient air and working premises in terms of its possible influence on human health. Methods. The study was based on the results obtained in Lithuanian conditions. Continuous ozone measurement data from the rural monitoring station in Preila over the period 1995-2011 were analyzed. More than 180,000 hourly values were examined according to the requirements in the Directive 2008/50/EC. The World Health Organization (WHO and European Union indicators the Sum of Ozone Means Over 35 ppb (SOMO 35, the maximum daily 8-hour mean concentration of ozone higher than 100 and 120 μg/m3 were estimated. Indoor ozone concentrations in copying and welding rooms were evaluated. The ozone concentration was measured with the ozone analyzer O341M. Results. The frequency distribution of ozone hourly concentrations at the Preila station showed that less than 1% of the data were higher than 120 μg/m3 and 6% of them higher than 100 μg/m3, that could have the adverse effect on human health, during 1995-2011. The investigations made in working premises showed that near a copying machine the ozone concentration can reach 330 μg/m3, however in the room, i.e. 0.5 m from the machine, the average ozone concentration during automatic copying was 165 μg/m³ and during manual copying it was 50 μg/m³. Measurements in a welding room showed that the ozone concentration was in the range of 380-1,850 μg/m3 at the distance of 25 cm from the electrode and at the distance of 1 m from the source the ozone concentration decreased 2.5 times. Conclusion. The danger of the ambient ozone level to human health practically was not observed in Lithuanian conditions. However, almost 6% of the data exceed the new WHO guideline of 100 μg/m3 during the measurement time. Indoor ozone during welding reached a higher level than during copying that

  10. Impact of sampling frequency in the analysis of tropospheric ozone observations

    Directory of Open Access Journals (Sweden)

    M. Saunois

    2012-08-01

    Full Text Available Measurements of ozone vertical profiles are valuable for the evaluation of atmospheric chemistry models and contribute to the understanding of the processes controlling the distribution of tropospheric ozone. The longest record of ozone vertical profiles is provided by ozone sondes, which have a typical frequency of 4 to 12 profiles a month. Here we quantify the uncertainty introduced by low frequency sampling in the determination of means and trends. To do this, the high frequency MOZAIC (Measurements of OZone, water vapor, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft profiles over airports, such as Frankfurt, have been subsampled at two typical ozone sonde frequencies of 4 and 12 profiles per month. We found the lowest sampling uncertainty on seasonal means at 700 hPa over Frankfurt, with around 5% for a frequency of 12 profiles per month and 10% for a 4 profile-a-month frequency. However the uncertainty can reach up to 15 and 29% at the lowest altitude levels. As a consequence, the sampling uncertainty at the lowest frequency could be higher than the typical 10% accuracy of the ozone sondes and should be carefully considered for observation comparison and model evaluation. We found that the 95% confidence limit on the seasonal mean derived from the subsample created is similar to the sampling uncertainty and suggest to use it as an estimate of the sampling uncertainty. Similar results are found at six other Northern Hemisphere sites. We show that the sampling substantially impacts on the inter-annual variability and the trend derived over the period 1998–2008 both in magnitude and in sign throughout the troposphere. Also, a tropical case is discussed using the MOZAIC profiles taken over Windhoek, Namibia between 2005 and 2008. For this site, we found that the sampling uncertainty in the free troposphere is around 8 and 12% at 12 and 4 profiles a month respectively.

  11. The evaluation of ozone and betahistine in the treatment of tinnitus.

    Science.gov (United States)

    Sönmez, Onur; Külahlı, Ismail; Vural, Alperen; Sahin, Mehmet Ilhan; Aydın, Mesut

    2013-07-01

    The aim of the study is to evaluate the effectiveness of ozone and betahistine treatments in the treatment of tinnitus. Sixty-eight patients were enrolled in this randomized, prospective controlled study. The ozone group consisted of 27, betahistine group consisted of 26 and control group consisted of 15 patients. The patients in ozone group received 10 sessions of ozone treatment via major autohemotherapy. Betahistine group received 48 mg/day betahistine tablets per oral for 3 months duration. The control group was followed up without any treatment given. The evaluation of tinnitus was made by tinnitus loudness and tinnitus handicap inventory (THI). The changes in findings from baseline to 3rd and 6th months were assessed, and the group results were compared. Comparison of the initial mean tinnitus loudness and 3 and 6 months after treatment in each of the three groups did not reveal a significant difference. The comparison between the groups in terms of the improvement of tinnitus loudness was not significant (p = 0.821). Comparison of the initial mean THI and 3 and 6 months after treatment revealed a significant difference in ozone and betahistine groups but not in the control group. When the delta (Δ) THI (the change of mean THI between the initial and 6th month) was compared between the groups, there was no significant difference. This randomized controlled study investigating the effects of ozone in tinnitus tries to shed light to a new method of treatment in tinnitus. The findings of the study does not provide enough evidence to support ozone and betahistine as a treatment for tinnitus and further research on the subject is necessary.

  12. Scientific assessment of ozone depletion: 1991

    Science.gov (United States)

    1991-01-01

    Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.

  13. Determination of the UV solar risk in Argentina with high-resolution maps calculated using TOMS ozone climatology

    Science.gov (United States)

    Piacentini, Rubén D.; Cede, Alexander; Luccini, Eduardo; Stengel, Fernando

    2004-01-01

    The connection between ultraviolet (UV) radiation and various skin diseases is well known. In this work, we present the computer program "UVARG", developed in order to prevent the risk of getting sunburn for persons exposed to solar UV radiation in Argentina, a country that extends from low (tropical) to high southern hemisphere latitudes. The software calculates the so-called "erythemal irradiance", i.e., the spectral irradiance weighted by the McKinlay and Diffey action spectrum for erythema and integrated in wavelength. The erythemal irradiance depends mainly on the following geophysical parameters: solar elevation, total ozone column, surface altitude, surface albedo, total aerosol optical depth and Sun-Earth distance. Minor corrections are due to the variability in the vertical ozone, aerosol, pressure, humidity and temperature profiles and the extraterrestrial spectral solar UV irradiance. Key parameter in the software is a total ozone column climatology incorporating monthly averages, standard deviations and tendencies for the particular geographical situation of Argentina that was obtained from TOMS/NASA satellite data from 1978 to 2000. Different skin types are considered in order to determine the sunburn risk at any time of the day and any day of the year, with and without sunscreen protection. We present examples of the software for three different regions: the high altitude tropical Puna of Atacama desert in the North-West, Tierra del Fuego in the South when the ozone hole event overpasses and low summertime ozone conditions over Buenos Aires, the largest populated city in the country. In particular, we analyzed the maximum time for persons having different skin types during representative days of the year (southern hemisphere equinoxes and solstices). This work was made possible by the collaboration between the Argentine Skin Cancer Foundation, the Institute of Physics Rosario (CONICET-National University of Rosario, Argentina) and the Institute of

  14. Modulation of age-related changes in oxidative stress markers and energy status in the rat heart and hippocampus: a significant role for ozone therapy.

    Science.gov (United States)

    El-Sawalhi, Maha M; Darwish, Hebatallah A; Mausouf, Mohamed N; Shaheen, Amira A

    2013-08-01

    Oxidative stress emerges as a key player in the ageing process. Controlled ozone administration is known to promote an oxidative preconditioning or adaptation to oxidative stress. The present study investigated whether prophylactic ozone administration could interfere with the age-related changes in the heart and the hippocampus of rats. Four groups of rats, aged about 3 months old, were used. Group 1 (Prophylactic ozone group) received ozone/oxygen mixture by rectal insufflations (0.6 mg/kg) twice/week for the first 3 months, then once/week till the age of 15 months. Group 2 (Oxygen group) received oxygen as vehicle for ozone in a manner similar to group 1. Group 3 (Aged control group) was kept without any treatment until the age of 15 months. A fourth group of rats (Adult control group) was evaluated at 3 months of age to provide baseline data. Ozone alleviated age-associated redox state imbalance as evidenced by reduction of lipid and protein oxidation markers, lessening of lipofuscin deposition, restoration of glutathione levels in both tissues and normalization of glutathione peroxidase activity in the heart tissue. Ozone also mitigated age-associated energy failure in the heart and the hippocampus, improved cardiac cytosolic Ca(2+) homeostasis and restored the attenuated Na(+) , K(+) -ATPase activity in the hippocampus of aged rats. These data provide new evidence concerning the anti-ageing potential of prophylactic ozone administration.

  15. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    J C Travers

    2010-11-01

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium. The most common experimental arrangements are described, including both continuous wave fibre laser systems with over 100 W pump power, and picosecond mode-locked, master oscillator power fibre amplifier systems, with over 10 kW peak pump power. These systems can produce broadband supercontinua with over 50 and 1 mW/nm average spectral power, respectively. Techniques for numerical modelling of the supercontinuum sources are presented and used to illustrate some supercontinuum dynamics. Some recent experimental results are presented.

  16. Dependability in Aggregation by Averaging

    CERN Document Server

    Jesus, Paulo; Almeida, Paulo Sérgio

    2010-01-01

    Aggregation is an important building block of modern distributed applications, allowing the determination of meaningful properties (e.g. network size, total storage capacity, average load, majorities, etc.) that are used to direct the execution of the system. However, the majority of the existing aggregation algorithms exhibit relevant dependability issues, when prospecting their use in real application environments. In this paper, we reveal some dependability issues of aggregation algorithms based on iterative averaging techniques, giving some directions to solve them. This class of algorithms is considered robust (when compared to common tree-based approaches), being independent from the used routing topology and providing an aggregation result at all nodes. However, their robustness is strongly challenged and their correctness often compromised, when changing the assumptions of their working environment to more realistic ones. The correctness of this class of algorithms relies on the maintenance of a funda...

  17. Measuring Complexity through Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2015-01-01

    This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalised, including to continuous cases an...

  18. Transient cortical blindness after intradiscal oxygen–ozone therapy

    Directory of Open Access Journals (Sweden)

    Agostino Salvatore Vaiano

    2016-01-01

    Full Text Available A 54-year-old caucasian male developed bilateral blindness during an oxygen–ozone injection for disc herniation. The visual loss (VL was immediately followed by severe frontal headache, vomiting, and nausea. The patient underestimated the VL showing Anton's syndrome, with a complete visual recovery after 2-month follow-up. Magnetic resonance data were consistent with recent ischemic lesions in bilateral vascular territories of posterior cerebral arteries.

  19. Transient cortical blindness after intradiscal oxygen-ozone therapy.

    Science.gov (United States)

    Vaiano, Agostino Salvatore; Valente, Cristiana; De Benedetti, Giacomo; Caramello, Guido

    2016-12-01

    A 54-year-old caucasian male developed bilateral blindness during an oxygen-ozone injection for disc herniation. The visual loss (VL) was immediately followed by severe frontal headache, vomiting, and nausea. The patient underestimated the VL showing Anton's syndrome, with a complete visual recovery after 2-month follow-up. Magnetic resonance data were consistent with recent ischemic lesions in bilateral vascular territories of posterior cerebral arteries.

  20. OZONE NUCLEOLYSIS IN LUMBAR INTERVERTEBRAL DISC HERNIATION: NON - RANDOMIZED PROSPECTIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Vivekananda S

    2015-05-01

    Full Text Available STUDY DESI GN: Non - randomized, prospective analysis of 68 patients of lumbar disc herniation treated with ozone nucleolysis. OBJECTIVE: To assess the patients with lumbar disc herniation treated with intradiscal ozone, pre and post ozone nucleolysis, for pain using Visual Analog Scale (VAS functional & disability score using Japanese Orthopedic Association (JOA Clinical Symptom Score. SUMMARY OF BACKGROUN D DATA: Ozone therapy for disc herniation is becoming popu lar because of its minimal invasive, lesser recurrences and remarkably fewer side effects. Successful outcomes of ozone therapy have been reported from various European & Indian centers. METHODS: A series of 68 patients were treated with ozone therapy for lumbar disc herniation from January 2009 to January 2012. The procedure is done under C - arm guidance under local anesthesia by “Single sitting double injection technique”. All patients were assessed using VAS for radiation pain & back pain, Clinical Symptom Score of the Japanese Orthopaedic Association (JOA for a Patient with Lumbar Disc Herniation, pre op and post op, on day one, after a week, two weeks, first month, third months, sixth month one year second year. Were classified them as Good, Moder ate & Poor outcome. RESULTS: Out of 68 patients 89.7% (61/68 patients had good outcome, 7.35% (5/68 patients had moderate outcome, 2.95% (2/68 had poor outcome. Intra - op in 1 patient where ozone spread in Para spinal muscles but had no postoperative pro blem.4 patients had mild nausea, 2 had mild headache & No infection. CONCLUSIONS: Ozone nucleolysis is a new, minimally invasive procedure done under local anesthesia & has shown effective results in the treatment of contained intervertebral disc herniatio n with no side effects.

  1. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  2. Proposing Chinese Pharmacists Month

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Dear Pharmacists: Today I would like to share with you about the American Pharmacists Month which is celebrated in October every year.This month-long observance is promoted by American Pharmacist Association.

  3. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    Science.gov (United States)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; Pawson, S.; Duncan, B. N.; Newman, P. A.; Bhartia, K.; Heney, M. K.

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  4. Effect of ozone on vascular endothelial growth factor (VEGF) and related inflammatory cytokines in rats with diabetic retinopathy.

    Science.gov (United States)

    Xie, T Y; Yan, W; Lou, J; Chen, X Y

    2016-05-13

    The aim of this study was to investigate the effect of ozone on inflammatory cytokines in diabetic retinopathy (DR) rats. Male rats (40) weighing 300-360 g were included in this study. Thirty rats were randomly divided into the model and ozone groups after DR was induced by streptozotocin. Ten rats served as the blank group. After the diabetic models were established for one month, the rats in the ozone group were treated with 50 mg/kg ozone coloclysis for one month (three times a week). After the rats were anesthetized by intraperitoneal injection, blood samples from the abdominal aorta were collected, and the supernatant was obtained by centrifugation. Vascular endothelial growth factor (VEGF) and inflammatory cytokine content in the serum was detected by enzyme linked immunosorbent assay. The values of VEGF, intercellular cell adhesion molecule-1, interleukin-1 beta, tumor necrosis factor-a, and IL-6 were significantly different among the three groups (P ozone group was higher than that in the blank group. Compared with the model group, the cytokine levels in the ozone group were significantly reduced (P Ozone had no effect on the blood glucose of diabetic rats. Treatment with ozone coloclysis may effectively reduce the secretion of VEGF and inflammatory cytokines in diabetic retinopathy rats.

  5. Geomagnetic effects on the average surface temperature

    Science.gov (United States)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  6. Sensitivity and uncertainty analysis of atmospheric ozone photochemistry models. Final report, September 30, 1993--December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.P.

    1999-03-01

    The author has examined the kinetic reliability of ozone model predictions by computing direct first-order sensitivities of model species concentrations to input parameters: S{sub ij} = [dC{sub i}/C{sub i}]/[dk{sub j}/k{sub j}], where C{sub i} is the abundance of species i (e.g., ozone) and k{sub j} is the rate constant of step j (reaction, photolysis, or transport), for localized boxes from the LLNL 2-D diurnally averaged atmospheric model. An ozone sensitivity survey of boxes at altitudes of 10--55 km, 2--62N latitude, for spring, equinox, and winter is presented. Ozone sensitivities are used to evaluate the response of model predictions of ozone to input rate coefficient changes, to propagate laboratory rate uncertainties through the model, and to select processes and regions suited to more precise measurements. By including the local chemical feedbacks, the sensitivities quantify the important roles of oxygen and ozone photolysis, transport from the tropics, and the relation of key catalytic steps and cycles in regulating stratospheric ozone as a function of altitude, latitude, and season. A sensitivity-uncertainty analysis uses the sensitivity coefficients to propagate laboratory error bars in input photochemical parameters and estimate the net model uncertainties of predicted ozone in isolated boxes; it was applied to potential problems in the upper stratospheric ozone budget, and also highlights superior regions for model validation.

  7. Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Yue, Xu; Zhang, Jiachen; Jaffe, Daniel A.; Stohl, Andreas; Zhao, Yuanhong; Shao, Jingyuan

    2016-11-01

    Increasing wildfire activities in the mountainous western US may present a challenge for the region to attain a recently revised ozone air quality standard in summer. Using current Eulerian chemical transport models to examine the wildfire ozone influences is difficult due to uncertainties in fire emissions, inadequate model chemistry, and resolution. Here we quantify the wildfire influence on the ozone variability, trends, and number of high MDA8 (daily maximum 8 h average) ozone days over this region in summers (June, July, and August) 1989-2010 using a new approach. We define a fire index using retroplumes (plumes of back-trajectory particles) computed by a Lagrangian dispersion model (FLEXPART) and develop statistical models based on the fire index and meteorological parameters to interpret MDA8 ozone concentrations measured at 13 Intermountain West surface sites. We show that the statistical models are able to capture the ozone enhancements by wildfires and give results with some features different from the GEOS-Chem Eulerian chemical transport model. Wildfires enhance the Intermountain West regional summer mean MDA8 ozone by 0.3-1.5 ppbv (daily episodic enhancements reach 10-20 ppbv at individual sites) with large interannual variability, which are strongly correlated with the total MDA8 ozone. We find large fire impacts on the number of exceedance days; for the 13 CASTNet sites, 31 % of the summer days with MDA8 ozone exceeding 70 ppbv would not occur in the absence of wildfires.

  8. Variations of Ground-level Ozone Concentration in Malaysia: A Case Study in West Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hashim Nur Izzah Mohamad

    2017-01-01

    Full Text Available Hourly ground ozone concentration, measured from the monitoring stations in the West Coast of Peninsular Malaysia for the period of 10 years (2003-2012 were used to analyse the ozone characteristic in Nilai, Melaka and Petaling Jaya. The prediction of tropospheric ozone concentrations is very important due to the negative impacts of ozone on human health, climate and vegetation. The mean concentration of ozone at the studied areas had not exceeded the recommended value of Malaysia Ambient Air Quality Guideline (MAAQG for 8-hour average (0.06 ppm, however some of the measurements exceeded the hourly permitted concentration by MAAQG that is 0.1 ppm. Higher concentration of ozone can be observed during the daytime since ozone needs sunlight for the photochemical reactions. The diurnal cycle of ozone concentration has a mid-day peak (14:00-15:00 and lower night-time concentrations. The ozone concentration slowly rises after the sun rises (08:00, reaching a maximum during daytime and then decreases until the next morning.

  9. Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M.; Serrano, A. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica; Loyola, D.; Zimmer, W. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Lopez, M.; Banon, M. [Agencia Estatal de Meteorologia (AEMet), Madrid (Spain); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere. (orig.)

  10. Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula

    Science.gov (United States)

    Antón, M.; Loyola, D.; López, M.; Vilaplana, J. M.; Bañón, M.; Zimmer, W.; Serrano, A.

    2009-04-01

    The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere.

  11. Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions

    Science.gov (United States)

    Cooper, O. R.; Oltmans, S. J.; Johnson, B. J.; Brioude, J.; Angevine, W.; Trainer, M.; Parrish, D. D.; Ryerson, T. R.; Pollack, I.; Cullis, P. D.; Ives, M. A.; Tarasick, D. W.; Al-Saadi, J.; Stajner, I.

    2011-11-01

    Since 1997, baseline ozone monitoring from the surface to the tropopause along the U.S. west coast has been limited to the weekly ozonesondes from Trinidad Head, California. To explore baseline ozone at other latitudes, an ozonesonde network was implemented during spring 2010, including four launch sites along the California coast. Modeling indicated that North American pollution plumes impacted the California coast primarily below 3 km, but had no measurable impact on the average coastal ozone profiles. Vertical and latitudinal variation in free tropospheric baseline ozone appears to be partly explained by polluted and stratospheric air masses that descend isentropically along the west coast. Above 3 km, the dominant sources of ozone precursors were China and international shipping, while international shipping was the greatest source below 2 km. Approximately 8-10% of the baseline ozone that enters California in the 0-6 km range impacts the surface of the USA, but very little reaches the eastern USA. Within California, the major impact of baseline ozone above 2 km is on the high elevation terrain of eastern California. Baseline ozone below 2 km has its strongest impact on the low elevation sites throughout the state. To quantify ozone production within California we compared inland ozone measurements to baseline measurements. For average daytime conditions, we found no enhancements of lower tropospheric ozone in the northern Central Valley, but enhancements of 12-23% were found in the southern Central Valley. Enhancements above Joshua Tree were greater, 33-41%, while the greatest enhancements occurred over the LA Basin, 32-63%.

  12. Unraveling the sources of ground level ozone in the Intermountain Western United States using Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, John N. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Weiss-Penzias, Peter [University of California at Santa Cruz, Santa Cruz, CA (United States); Fine, Rebekka [University of Nevada, Reno, NV (United States); McDade, Charles E.; Trzepla, Krystyna [University of California at Davis, Crocker Nuclear Laboratory, Davis, CA (United States); Brown, Shaun T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gustin, Mae Sexauer [University of Nevada, Reno, NV (United States)

    2015-10-15

    Ozone as an atmospheric pollutant is largely produced by anthropogenic precursors and can significantly impact human and ecosystem health, and climate. The U.S. Environmental Protection Agency has recently proposed lowering the ozone standard from 75 ppbv (MDA8 = Maximum Daily 8-Hour Average) to between 65 and 70 ppbv. This will result in remote areas of the Intermountain West that includes many U.S. National Parks being out of compliance, despite a lack of significant local sources. We used Pb isotope fingerprinting and back-trajectory analysis to distinguish sources of imported ozone to Great Basin National Park in eastern Nevada. During discrete Chinese Pb events (> 1.1 ng/m{sup 3} & > 80% Asian Pb) trans-Pacific transported ozone was 5 ± 5.5 ppbv above 19 year averages for those dates. In contrast, concentrations during regional transport from the Los Angeles and Las Vegas areas were 15 ± 2 ppbv above the long-term averages, and those characterized by high-altitude transport 3 days prior to sampling were 19 ± 4 ppbv above. However, over the study period the contribution of trans-Pacific transported ozone increased at a rate of 0.8 ± 0.3 ppbv/year, suggesting that Asian inputs will exceed regional and high altitude sources by 2015–2020. All of these sources will impact regulatory compliance with a new ozone standard, given increasing global background. - Highlights: • Ozone can significantly impact human and ecosystem health and climate. • Pb isotopes and back-trajectory analysis were used to distinguish sources of O{sub 3}. • Baseline concentrations in the Western US are ~ 54 ppbv. • During discrete Asia events O{sub 3} increased by 5 ± 5.5 ppbv and during S CA events by 15 ± 2 ppbv. • Data indicate that Asian ozone inputs will exceed other sources by 2015–2020.

  13. Setting maximum emission rates from ozone emitting consumer appliances in the United States and Canada

    Science.gov (United States)

    Morrison, Glenn; Shaughnessy, Richard; Shu, Shi

    2011-02-01

    A Monte Carlo analysis of indoor ozone levels in four cities was applied to provide guidance to regulatory agencies on setting maximum ozone emission rates from consumer appliances. Measured distributions of air exchange rates, ozone decay rates and outdoor ozone levels at monitoring stations were combined with a steady-state indoor air quality model resulting in emission rate distributions (mg h -1) as a function of % of building hours protected from exceeding a target maximum indoor concentration of 20 ppb. Whole-year, summer and winter results for Elizabeth, NJ, Houston, TX, Windsor, ON, and Los Angeles, CA exhibited strong regional differences, primarily due to differences in air exchange rates. Infiltration of ambient ozone at higher average air exchange rates significantly reduces allowable emission rates, even though air exchange also dilutes emissions from appliances. For Houston, TX and Windsor, ON, which have lower average residential air exchange rates, emission rates ranged from -1.1 to 2.3 mg h -1 for scenarios that protect 80% or more of building hours from experiencing ozone concentrations greater than 20 ppb in summer. For Los Angeles, CA and Elizabeth, NJ, with higher air exchange rates, only negative emission rates were allowable to provide the same level of protection. For the 80th percentile residence, we estimate that an 8-h average limit concentration of 20 ppb would be exceeded, even in the absence of an indoor ozone source, 40 or more days per year in any of the cities analyzed. The negative emission rates emerging from the analysis suggest that only a zero-emission rate standard is prudent for Los Angeles, Elizabeth, NJ and other regions with higher summertime air exchange rates. For regions such as Houston with lower summertime air exchange rates, the higher emission rates would likely increase occupant exposure to the undesirable products of ozone reactions, thus reinforcing the need for zero-emission rate standard.

  14. Seasonal prediction of US summertime ozone using statistical analysis of large scale climate patterns

    Science.gov (United States)

    Mickley, Loretta J.

    2017-01-01

    We develop a statistical model to predict June–July–August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean–atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean–atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region. PMID:28223483

  15. A scaling analysis of ozone photochemistry

    Directory of Open Access Journals (Sweden)

    B. Ainslie

    2006-01-01

    Full Text Available A scaling analysis has been used to capture the integrated behaviour of several photochemical mechanisms for a wide range of precursor concentrations and a variety of environmental conditions. The Buckingham Pi method of dimensional analysis was used to express the relevant variables in terms of dimensionless groups. These grouping show maximum ozone, initial NOx and initial VOC concentrations are made non-dimensional by the average NO2 photolysis rate (jav and the rate constant for the NO–O3 titration reaction (kNO; temperature by the NO–O3 activation energy (ENO and Boltzmann constant (k and total irradiation time by the cumulative javΔt photolysis rate. The analysis shows dimensionless maximum ozone concentration can be described by a product of powers of dimensionless initial NOx concentration, dimensionless temperature, and a similarity curve directly dependent on the ratio of initial VOC to NOx concentration and implicitly dependent on the cumulative NO2 photolysis rate. When Weibull transformed, the similarity relationship shows a scaling break with dimensionless model output clustering onto two straight line segments, parameterized using four variables: two describing the slopes of the line segments and two giving the location of their intersection. A fifth parameter is used to normalize the model output. The scaling analysis, similarity curve and parameterization appear to be independent of the details of the chemical mechanism, hold for a variety of VOC species and mixtures and a wide range of temperatures and actinic fluxes.

  16. Extending the satellite data record of tropospheric ozone profiles from Aura-TES to MetOp-IASI

    Directory of Open Access Journals (Sweden)

    H. Oetjen

    2014-07-01

    Full Text Available We apply the Tropospheric Emission Spectrometer (TES ozone retrieval algorithm to Infrared Atmospheric Sounding Instrument (IASI radiances and characterise the uncertainties and information content of the retrieved ozone profiles. This study focuses on mid-latitudes for the year 2008. We validate our results by comparing the IASI ozone profiles to ozone sondes. In the sonde comparisons, we find a positive bias in the IASI ozone profiles in the UTLS region of up to 14% on average. For the described cases, the degrees of freedom for signal are on average 3.2, 0.3, 0.8, and 0.9 for the columns 0 km–top of atmosphere, (0–6 km, (0–11 km, and (8–16 km, respectively. We find that our biases with respect to sondes and our degrees of freedom for signal for ozone are comparable to previously published results from other IASI ozone algorithms. In addition to evaluating biases, we validate the retrieval errors by comparing predicted errors to the sample covariance matrix of the IASI observations themselves. For the predicted vs. empirical error comparison, we find that these errors are consistent and that the measurement noise and the interference of temperature and water vapour on the retrieval together mostly explain the empirically derived random errors. In general, the precision of the IASI ozone profiles is better than 20%.

  17. Assimilation of MLS and OMI Ozone Data

    Science.gov (United States)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.

    2005-01-01

    Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).

  18. Ambient Ozone and Emergency Department Visits for Cellulitis

    Directory of Open Access Journals (Sweden)

    Mieczysław Szyszkowicz

    2010-11-01

    Full Text Available Objectives were to assess and estimate an association between exposure to ground-level ozone and emergency department (ED visits for cellulitis. All ED visits for cellulitis in Edmonton, Canada, in the period April 1992–March 2002 (N = 69,547 were examined. Case-crossover design was applied to estimate odds ratio (OR, and 95% confidence interval per one interquartile range (IQR increase in ozone concentration (IQR = 14.0 ppb. Delay of ED visit relating to exposure was probed using 0- to 5-day exposure lags. For all patients in the all months (January–December and lags 0 to 2 days, OR = 1.05 (1.02, 1.07. For male patients during the cold months (October-March: OR = 1.05 (1.02, 1.09 for lags 0 and 2 and OR = 1.06 (1.02, 1.10 for lag 3. For female patients in the warm months (April-September: OR = 1.12 (1.06, 1.18 for lags 1 and 2. Cellulitis developing on uncovered (more exposed skin was analyzed separately, observed effects being stronger. Cellulitis may be associated with exposure to ambient ground level ozone; the exposure may facilitate cellulitis infection and aggravate acute symptoms.

  19. Mechanism of Fixation of Ozone and Its Medical Value

    Institute of Scientific and Technical Information of China (English)

    ZHU Lei; MIN Xinmin; WANG Xuchao

    2014-01-01

    Because of both ozone gas and ozone solution are instable which limits the application of ozone, to solve the storage problem, it is necessary to find a kind of ideal ozone carrier which can combine ozone as an “ozonic compound” in which the bond strength between ozone and carrier should not be too high or too low, to appropriately release ozone from the ozonic compound. Combining Criegee’s three-step reaction mechanism of ozone and olefins, the charge, covalent bond levels and energy levels of ozone, ethylene, butadiene and their ozonic compounds were calculated by the first-principles calculation method based on density functional theory methods. The stability of the ozonide, or the bond strength between ozone and ions of carrier were controlled felicitously to release ozone from the ozonide with proper velocity. Ozone antimicrobial was composed on the above principle. It can be used conveniently, especially for common families.

  20. Hydrological controls on the tropospheric ozone greenhouse gas effect

    Directory of Open Access Journals (Sweden)

    Le Kuai

    2017-03-01

    Full Text Available The influence of the hydrological cycle in the greenhouse gas (GHG effect of tropospheric ozone (O3 is quantified in terms of the O3longwave radiative effect (LWRE, which is defined as the net reduction of top-of-atmosphere flux due to total tropospheric O3absorption. The O3LWRE derived from the infrared spectral measurements by Aura’s Tropospheric Emission Spectrometer (TES show that the spatiotemporal variation of LWRE is relevant to relative humidity, surface temperature, and tropospheric O3column. The zonally averaged subtropical LWRE is ~0.2 W m-2higher than the zonally averaged tropical LWRE, generally due to lower water vapor concentrations and less cloud coverage at the downward branch of the Hadley cell in the subtropics. The largest values of O3LWRE over the Middle East (>1 W/m2 are further due to large thermal contrasts and tropospheric ozone enhancements from atmospheric circulation and pollution. Conversely, the low O3LWRE over the Inter-Tropical Convergence Zone (on average 0.4 W m-2 is due to strong water vapor absorption and cloudiness, both of which reduce the tropospheric O3absorption in the longwave radiation. These results show that changes in the hydrological cycle due to climate change could affect the magnitude and distribution of ozone radiative forcing.

  1. Effects of laser and ozone therapies on bone healing in the calvarial defects.

    Science.gov (United States)

    Kazancioglu, Hakki Oguz; Ezirganli, Seref; Aydin, Mehmet Serif

    2013-11-01

    This study aims to analyze the effect of the low-level laser therapy (LLLT) and ozone therapy on the bone healing of critical size defect (CSD) in rat calvaria. A total of 30 Wistar male rats were used. A 5-mm-diameter trephine bur was used to create CSD on the right side of the parietal bone of each rat calvarium. Once the bone was excised, a synthetic biphasic calcium phosphate graft material was implanted to all the bone defect sites. The animals were randomly divided into 3 groups as follows: the control group (n = 10), which received no LLLT or ozone therapy; the LLLT group (n = 10), which received only LLLT (120 seconds, 3 times a week for 2 weeks); and the ozone therapy group (n = 10) (120 seconds, 3 times a week for 2 weeks). After 1 month, all the rats were killed, and the sections were examined to evaluate the presence of inflammatory infiltrate, connective tissue, and new bone formation areas. Histomorphometric analyses showed that in the LLLT and ozone groups, the new bone areas were significantly higher than in the control group (P ozone group (P ozone and laser therapies had a positive effect on bone formation in rat calvarial defect, compared with the control group; however, ozone therapy was more effective than LLLT (808 nm; 0.1 W; 4 J/cm(2); 0.028 cm(2), continuous wave mode).

  2. Mexico City ozone concentrations as a function of readily-available meteorological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.

    1994-03-01

    Daily maximum ozone concentrations measured at four sites within the Mexico City basin during the winter months are plotted as functions of different meteorological parameters that are routinely measured at surface stations. We found that ozone concentrations are most strongly correlated to the increase in daytime temperature and the maximum daytime wind speed. We also discovered that high ozone values at the sites in the southern end of the basin occur when winds come out of the northeast. In contrast, wind direction was found to be uncorrelated with high ozone values at the northern sites. From straightforward combinations of the meteorological variables, we derived some simple rules for estimating lower and upper bounds on the ozone concentration. Scatter in the data was too long to give significance to best-fit equations and statistics. Additionally, a small rawinsonde data set was used