Public Infrastructure for Monte Carlo Simulation: publicMC@BATAN
Waskita, A A; Akbar, Z; Handoko, L T; 10.1063/1.3462759
2010-01-01
The first cluster-based public computing for Monte Carlo simulation in Indonesia is introduced. The system has been developed to enable public to perform Monte Carlo simulation on a parallel computer through an integrated and user friendly dynamic web interface. The beta version, so called publicMC@BATAN, has been released and implemented for internal users at the National Nuclear Energy Agency (BATAN). In this paper the concept and architecture of publicMC@BATAN are presented.
McStas 1.1: A tool for building neutron Monte Carlo simulations
DEFF Research Database (Denmark)
Lefmann, K.; Nielsen, K.; Tennant, D.A.
2000-01-01
McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron...
McStas 1.1: a tool for building neutron Monte Carlo simulations
Lefmann, K.; Nielsen, K.; Tennant, A.; Lake, B.
2000-03-01
McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron scattering instrument. The method compares well with the analytical calculations of Popovici.
CloudMC: a cloud computing application for Monte Carlo simulation.
Miras, H; Jiménez, R; Miras, C; Gomà, C
2013-04-21
This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.
Quantum Monte Carlo simulation
Wang, Yazhen
2011-01-01
Contemporary scientific studies often rely on the understanding of complex quantum systems via computer simulation. This paper initiates the statistical study of quantum simulation and proposes a Monte Carlo method for estimating analytically intractable quantities. We derive the bias and variance for the proposed Monte Carlo quantum simulation estimator and establish the asymptotic theory for the estimator. The theory is used to design a computational scheme for minimizing the mean square er...
CAD-based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC
Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin
2014-06-01
Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as routine method for nuclear design and analysis in the future. High fidelity simulation with MC method coupled with multi-physical phenomenon simulation has significant impact on safety, economy and sustainability of nuclear systems. However, great challenges to current MC methods and codes prevent its application in real engineering project. SuperMC is a CAD-based Monte Carlo program for integrated simulation of nuclear system developed by FDS Team, China, making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC were presented in this paper. SuperMC2.1, the latest version for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. SuperMC is still in its evolution process toward a general and routine tool for nuclear system. Warning, no authors found for 2014snam.conf06023.
Monte Carlo simulations of neutron-scattering instruments using McStas
Nielsen, K.; Lefmann, K.
2000-06-01
Monte Carlo simulations have become an essential tool for improving the performance of neutron-scattering instruments, since the level of sophistication in the design of instruments is defeating purely analytical methods. The program McStas, being developed at Risø National Laboratory, includes an extension language that makes it easy to adapt it to the particular requirements of individual instruments, and thus provides a powerful and flexible tool for constructing such simulations. McStas has been successfully applied in such areas as neutron guide design, flux optimization, non-Gaussian resolution functions of triple-axis spectrometers, and time-focusing in time-of-flight instruments.
A novel Monte Carlo algorithm for simulating crystals with McStas
Energy Technology Data Exchange (ETDEWEB)
Alianelli, L.; Sanchez del Rio, M.; Felici, R.; Andersen, K.H.; Farhi, E
2004-07-15
We developed an original Monte Carlo algorithm for the simulation of Bragg diffraction by mosaic, bent and gradient crystals. It has practical applications, as it can be used for simulating imperfect crystals (monochromators, analyzers and perhaps samples) in neutron ray-tracing packages, like McStas. The code we describe here provides a detailed description of the particle interaction with the microscopic homogeneous regions composing the crystal, therefore it can be used also for the calculation of quantities having a conceptual interest, as multiple scattering, or for the interpretation of experiments aiming at characterizing crystals, like diffraction topographs.
A novel Monte Carlo algorithm for simulating crystals with McStas
Alianelli, L.; Sánchez del Río, M.; Felici, R.; Andersen, K. H.; Farhi, E.
2004-07-01
We developed an original Monte Carlo algorithm for the simulation of Bragg diffraction by mosaic, bent and gradient crystals. It has practical applications, as it can be used for simulating imperfect crystals (monochromators, analyzers and perhaps samples) in neutron ray-tracing packages, like McStas. The code we describe here provides a detailed description of the particle interaction with the microscopic homogeneous regions composing the crystal, therefore it can be used also for the calculation of quantities having a conceptual interest, as multiple scattering, or for the interpretation of experiments aiming at characterizing crystals, like diffraction topographs.
An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy
Energy Technology Data Exchange (ETDEWEB)
Ying, C. K. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu (Malaysia); Kamil, W. A. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and Radiology Department, Hospital USM, Kota Bharu (Malaysia); Shuaib, I. L. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang (Malaysia); Matsufuji, Naruhiro [Research Centre of Charged Particle Therapy, National Institute of Radiological Sciences, NIRS, Chiba (Japan)
2014-02-12
Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.
An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy
Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro
2014-02-01
Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.
Simulating Controlled Radical Polymerizations with mcPolymer—A Monte Carlo Approach
Directory of Open Access Journals (Sweden)
Georg Drache
2012-07-01
Full Text Available Utilizing model calculations may lead to a better understanding of the complex kinetics of the controlled radical polymerization. We developed a universal simulation tool (mcPolymer, which is based on the widely used Monte Carlo simulation technique. This article focuses on the software architecture of the program, including its data management and optimization approaches. We were able to simulate polymer chains as individual objects, allowing us to gain more detailed microstructural information of the polymeric products. For all given examples of controlled radical polymerization (nitroxide mediated radical polymerization (NMRP homo- and copolymerization, atom transfer radical polymerization (ATRP, reversible addition fragmentation chain transfer polymerization (RAFT, we present detailed performance analyses demonstrating the influence of the system size, concentrations of reactants, and the peculiarities of data. Different possibilities were exemplarily illustrated for finding an adequate balance between precision, memory consumption, and computation time of the simulation. Due to its flexible software architecture, the application of mcPolymer is not limited to the controlled radical polymerization, but can be adjusted in a straightforward manner to further polymerization models.
The MC21 Monte Carlo Transport Code
Energy Technology Data Exchange (ETDEWEB)
Sutton TM, Donovan TJ, Trumbull TH, Dobreff PS, Caro E, Griesheimer DP, Tyburski LJ, Carpenter DC, Joo H
2007-01-09
MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities.
Metropolis Methods for Quantum Monte Carlo Simulations
Ceperley, D. M.
2003-01-01
Since its first description fifty years ago, the Metropolis Monte Carlo method has been used in a variety of different ways for the simulation of continuum quantum many-body systems. This paper will consider some of the generalizations of the Metropolis algorithm employed in quantum Monte Carlo: Variational Monte Carlo, dynamical methods for projector monte carlo ({\\it i.e.} diffusion Monte Carlo with rejection), multilevel sampling in path integral Monte Carlo, the sampling of permutations, ...
A comparison of Monte-Carlo simulations using RESTRAX and McSTAS with experiment on IN14
Wildes, A. R.; S̆aroun, J.; Farhi, E.; Anderson, I.; Høghøj, P.; Brochier, A.
2000-03-01
Monte-Carlo simulations of a focusing supermirror guide after the monochromator on the IN14 cold neutron three-axis spectrometer, I.L.L. were carried out using the instrument simulation programs RESTRAX and McSTAS. The simulations were compared to experiment to check their accuracy. Comparisons of the flux ratios over both a 100 and a 1600 mm 2 area at the sample position compare well, and there is a very close agreement between simulation and experiment for the energy spread of the incident beam.
Proton Upset Monte Carlo Simulation
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
Monte Carlo Simulations: Number of Iterations and Accuracy
2015-07-01
Jessica Schultheis for her editorial review. vi INTENTIONALLY LEFT BLANK. 1 1. Introduction Monte Carlo (MC) methods1 are often used...ARL-TN-0684 ● JULY 2015 US Army Research Laboratory Monte Carlo Simulations: Number of Iterations and Accuracy by William...needed. Do not return it to the originator. ARL-TN-0684 ● JULY 2015 US Army Research Laboratory Monte Carlo Simulations: Number
Efficient kinetic Monte Carlo simulation
Schulze, Tim P.
2008-02-01
This paper concerns kinetic Monte Carlo (KMC) algorithms that have a single-event execution time independent of the system size. Two methods are presented—one that combines the use of inverted-list data structures with rejection Monte Carlo and a second that combines inverted lists with the Marsaglia-Norman-Cannon algorithm. The resulting algorithms apply to models with rates that are determined by the local environment but are otherwise arbitrary, time-dependent and spatially heterogeneous. While especially useful for crystal growth simulation, the algorithms are presented from the point of view that KMC is the numerical task of simulating a single realization of a Markov process, allowing application to a broad range of areas where heterogeneous random walks are the dominate simulation cost.
Monte Carlo simulation for the transport beamline
Energy Technology Data Exchange (ETDEWEB)
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)
2013-07-26
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
Monte Carlo simulations of neutron-scattering instruments using McStas
DEFF Research Database (Denmark)
Nielsen, K.; Lefmann, K.
2000-01-01
an extension language that makes it easy to adapt it to the particular requirements of individual instruments, and thus provides a powerful and flexible tool for constructing such simulations. McStas has been successfully applied in such areas as neutron guide design, flux optimization, non-Gaussian resolution...... functions of triple-axis spectrometers, and time-focusing in time-of-flight instruments. (C) 2000 Published by Elsevier Science B.V. All rights reserved....
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential......Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...
Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls)
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls).xml
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls).
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls)
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Accelerated GPU based SPECT Monte Carlo simulations
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-07
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction......, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....
Monte Carlo simulation of neutron scattering instruments
Energy Technology Data Exchange (ETDEWEB)
Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.
1998-12-01
A code package consisting of the Monte Carlo Library MCLIB, the executing code MC{_}RUN, the web application MC{_}Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC{_}RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown.
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Lattice gauge theories and Monte Carlo simulations
Rebbi, Claudio
1983-01-01
This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.
Energy Technology Data Exchange (ETDEWEB)
Prettyman, T.H.; Gardner, R.P.; Verghese, K. (North Carolina State Univ., Raleigh, NC (United States). Center for Engineering Applications and Radioisotopes)
1993-08-01
A new specific purpose Monte Carlo code called McENL for modeling the time response of epithermal neutron lifetime tools is described. The code was developed so that the Monte Carlo neophyte can easily use it. A minimum amount of input preparation is required and specified fixed values of the parameters used to control the code operation can be used. The weight windows technique, employing splitting and Russian Roulette, is used with an automated importance function based on the solution of an adjoint diffusion model to improve the code efficiency. Complete composition and density correlated sampling is also included in the code and can be used to study the effect on tool response of small variations in the formation, borehole, or logging tool composition and density. An illustration of the latter application is given here for the density of a thermal neutron filter. McENL was benchmarked against test-pit data for the Mobil pulsed neutron porosity (PNP) tool and found to be very accurate. Results of the experimental validation and details of code performance are presented.
Simulation and the Monte Carlo method
Rubinstein, Reuven Y
2016-01-01
Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Atomistic Monte Carlo simulation of lipid membranes.
Wüstner, Daniel; Sklenar, Heinz
2014-01-24
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.
Atomistic Monte Carlo Simulation of Lipid Membranes
Directory of Open Access Journals (Sweden)
Daniel Wüstner
2014-01-01
Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.
Parallel Monte Carlo Simulation of Aerosol Dynamics
Directory of Open Access Journals (Sweden)
Kun Zhou
2014-02-01
Full Text Available A highly efficient Monte Carlo (MC algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process. Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI. The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles.
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
A brief introduction to Monte Carlo simulation.
Bonate, P L
2001-01-01
Simulation affects our life every day through our interactions with the automobile, airline and entertainment industries, just to name a few. The use of simulation in drug development is relatively new, but its use is increasing in relation to the speed at which modern computers run. One well known example of simulation in drug development is molecular modelling. Another use of simulation that is being seen recently in drug development is Monte Carlo simulation of clinical trials. Monte Carlo simulation differs from traditional simulation in that the model parameters are treated as stochastic or random variables, rather than as fixed values. The purpose of this paper is to provide a brief introduction to Monte Carlo simulation methods.
Parallel Markov chain Monte Carlo simulations.
Ren, Ruichao; Orkoulas, G
2007-06-07
With strict detailed balance, parallel Monte Carlo simulation through domain decomposition cannot be validated with conventional Markov chain theory, which describes an intrinsically serial stochastic process. In this work, the parallel version of Markov chain theory and its role in accelerating Monte Carlo simulations via cluster computing is explored. It is shown that sequential updating is the key to improving efficiency in parallel simulations through domain decomposition. A parallel scheme is proposed to reduce interprocessor communication or synchronization, which slows down parallel simulation with increasing number of processors. Parallel simulation results for the two-dimensional lattice gas model show substantial reduction of simulation time for systems of moderate and large size.
Monte carlo simulations of organic photovoltaics.
Groves, Chris; Greenham, Neil C
2014-01-01
Monte Carlo simulations are a valuable tool to model the generation, separation, and collection of charges in organic photovoltaics where charges move by hopping in a complex nanostructure and Coulomb interactions between charge carriers are important. We review the Monte Carlo techniques that have been applied to this problem, and describe the results of simulations of the various recombination processes that limit device performance. We show how these processes are influenced by the local physical and energetic structure of the material, providing information that is useful for design of efficient photovoltaic systems.
LCG MCDB - a Knowledgebase of Monte Carlo Simulated Events
Belov, S; Galkin, E; Gusev, A; Pokorski, Witold; Sherstnev, A V
2008-01-01
In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project.
Monte Carlo simulations of Protein Adsorption
Sharma, Sumit; Kumar, Sanat K.; Belfort, Georges
2008-03-01
Amyloidogenic diseases, such as, Alzheimer's are caused by adsorption and aggregation of partially unfolded proteins. Adsorption of proteins is a concern in design of biomedical devices, such as dialysis membranes. Protein adsorption is often accompanied by conformational rearrangements in protein molecules. Such conformational rearrangements are thought to affect many properties of adsorbed protein molecules such as their adhesion strength to the surface, biological activity, and aggregation tendency. It has been experimentally shown that many naturally occurring proteins, upon adsorption to hydrophobic surfaces, undergo a helix to sheet or random coil secondary structural rearrangement. However, to better understand the equilibrium structural complexities of this phenomenon, we have performed Monte Carlo (MC) simulations of adsorption of a four helix bundle, modeled as a lattice protein, and studied the adsorption behavior and equilibrium protein conformations at different temperatures and degrees of surface hydrophobicity. To study the free energy and entropic effects on adsorption, Canonical ensemble MC simulations have been combined with Weighted Histogram Analysis Method(WHAM). Conformational transitions of proteins on surfaces will be discussed as a function of surface hydrophobicity and compared to analogous bulk transitions.
Monte Carlo Simulation of Counting Experiments.
Ogden, Philip M.
A computer program to perform a Monte Carlo simulation of counting experiments was written. The program was based on a mathematical derivation which started with counts in a time interval. The time interval was subdivided to form a binomial distribution with no two counts in the same subinterval. Then the number of subintervals was extended to…
ERSN-OpenMC, a Java-based GUI for OpenMC Monte Carlo code
Directory of Open Access Journals (Sweden)
Jaafar EL Bakkali
2016-07-01
Full Text Available OpenMC is a new Monte Carlo transport particle simulation code focused on solving two types of neutronic problems mainly the k-eigenvalue criticality fission source problems and external fixed fission source problems. OpenMC does not have any Graphical User Interface and the creation of one is provided by our java-based application named ERSN-OpenMC. The main feature of this application is to provide to the users an easy-to-use and flexible graphical interface to build better and faster simulations, with less effort and great reliability. Additionally, this graphical tool was developed with several features, as the ability to automate the building process of OpenMC code and related libraries as well as the users are given the freedom to customize their installation of this Monte Carlo code. A full description of the ERSN-OpenMC application is presented in this paper.
Monte Carlo Simulations of the Photospheric Process
Santana, Rodolfo; Hernandez, Roberto A; Kumar, Pawan
2015-01-01
We present a Monte Carlo (MC) code we wrote to simulate the photospheric process and to study the photospheric spectrum above the peak energy. Our simulations were performed with a photon to electron ratio $N_{\\gamma}/N_{e} = 10^{5}$, as determined by observations of the GRB prompt emission. We searched an exhaustive parameter space to determine if the photospheric process can match the observed high-energy spectrum of the prompt emission. If we do not consider electron re-heating, we determined that the best conditions to produce the observed high-energy spectrum are low photon temperatures and high optical depths. However, for these simulations, the spectrum peaks at an energy below 300 keV by a factor $\\sim 10$. For the cases we consider with higher photon temperatures and lower optical depths, we demonstrate that additional energy in the electrons is required to produce a power-law spectrum above the peak-energy. By considering electron re-heating near the photosphere, the spectrum for these simulations h...
Assessing Excel VBA Suitability for Monte Carlo Simulation
2015-01-01
Monte Carlo (MC) simulation includes a wide range of stochastic techniques used to quantitatively evaluate the behavior of complex systems or processes. Microsoft Excel spreadsheets with Visual Basic for Applications (VBA) software is, arguably, the most commonly employed general purpose tool for MC simulation. Despite the popularity of the Excel in many industries and educational institutions, it has been repeatedly criticized for its flaws and often described as questionable, if not complet...
Monte Carlo simulations for focusing elliptical guides
Energy Technology Data Exchange (ETDEWEB)
Valicu, Roxana [FRM2 Garching, Muenchen (Germany); Boeni, Peter [E20, TU Muenchen (Germany)
2009-07-01
The aim of the Monte Carlo simulations using McStas Programme was to improve the focusing of the neutron beam existing at PGAA (FRM II) by prolongation of the existing elliptic guide (coated now with supermirrors with m=3) with a new part. First we have tried with an initial length of the additional guide of 7,5cm and coatings for the neutron guide of supermirrors with m=4,5 and 6. The gain (calculated by dividing the intensity in the focal point after adding the guide by the intensity at the focal point with the initial guide) obtained for this coatings indicated that a coating with m=5 would be appropriate for a first trial. The next step was to vary the length of the additional guide for this m value and therefore choosing the appropriate length for the maximal gain. With the m value and the length of the guide fixed we have introduced an aperture 1 cm before the focal point and we have varied the radius of this aperture in order to obtain a focused beam. We have observed a dramatic decrease in the size of the beam in the focal point after introducing this aperture. The simulation results, the gains obtained and the evolution of the beam size will be presented.
Spada, F.M.; Krol, M.C.|info:eu-repo/dai/nl/078760410; Stammes, P.
2006-01-01
A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy) is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth’s radius, and can
Spada, F.; Krol, M.C.; Stammes, P.
2006-01-01
A new multiple-scatteringMonte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIA-machy) is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can
Monte Carlo Simulation for Particle Detectors
Pia, Maria Grazia
2012-01-01
Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...
Monte Carlo simulation code modernization
CERN. Geneva
2015-01-01
The continual development of sophisticated transport simulation algorithms allows increasingly accurate description of the effect of the passage of particles through matter. This modelling capability finds applications in a large spectrum of fields from medicine to astrophysics, and of course HEP. These new capabilities however come at the cost of a greater computational intensity of the new models, which has the effect of increasing the demands of computing resources. This is particularly true for HEP, where the demand for more simulation are driven by the need of both more accuracy and more precision, i.e. better models and more events. Usually HEP has relied on the "Moore's law" evolution, but since almost ten years the increase in clock speed has withered and computing capacity comes in the form of hardware architectures of many-core or accelerated processors. To harness these opportunities we need to adapt our code to concurrent programming models taking advantages of both SIMD and SIMT architectures. Th...
Mosaic crystal algorithm for Monte Carlo simulations
Seeger, P A
2002-01-01
An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)
Archimedes, the Free Monte Carlo simulator
Sellier, Jean Michel D
2012-01-01
Archimedes is the GNU package for Monte Carlo simulations of electron transport in semiconductor devices. The first release appeared in 2004 and since then it has been improved with many new features like quantum corrections, magnetic fields, new materials, GUI, etc. This document represents the first attempt to have a complete manual. Many of the Physics models implemented are described and a detailed description is presented to make the user able to write his/her own input deck. Please, feel free to contact the author if you want to contribute to the project.
Cluster hybrid Monte Carlo simulation algorithms
Plascak, J. A.; Ferrenberg, Alan M.; Landau, D. P.
2002-06-01
We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
Kern, Christoph
2016-03-23
This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.
On the time scale associated with Monte Carlo simulations.
Bal, Kristof M; Neyts, Erik C
2014-11-28
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
On the time scale associated with Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Bal, Kristof M., E-mail: kristof.bal@uantwerpen.be; Neyts, Erik C. [Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium)
2014-11-28
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
Díez, A; Largo, J; Solana, J R
2006-08-21
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.
Validation of Compton Scattering Monte Carlo Simulation Models
Weidenspointner, Georg; Hauf, Steffen; Hoff, Gabriela; Kuster, Markus; Pia, Maria Grazia; Saracco, Paolo
2014-01-01
Several models for the Monte Carlo simulation of Compton scattering on electrons are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. Some of these models are currently implemented in general purpose Monte Carlo systems; some have been implemented and evaluated for possible use in Monte Carlo particle transport for the first time in this study. Here we present first and preliminary results concerning total and differential Compton scattering cross sections.
Modeling neutron guides using Monte Carlo simulations
Wang, D Q; Crow, M L; Wang, X L; Lee, W T; Hubbard, C R
2002-01-01
Four neutron guide geometries, straight, converging, diverging and curved, were characterized using Monte Carlo ray-tracing simulations. The main areas of interest are the transmission of the guides at various neutron energies and the intrinsic time-of-flight (TOF) peak broadening. Use of a delta-function time pulse from a uniform Lambert neutron source allows one to quantitatively simulate the effect of guides' geometry on the TOF peak broadening. With a converging guide, the intensity and the beam divergence increases while the TOF peak width decreases compared with that of a straight guide. By contrast, use of a diverging guide decreases the intensity and the beam divergence, and broadens the width (in TOF) of the transmitted neutron pulse.
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Monte Carlo simulation for simultaneous particle coagulation and deposition
Institute of Scientific and Technical Information of China (English)
ZHAO; Haibo; ZHENG; Chuguang
2006-01-01
The process of dynamic evolution in dispersed systems due to simultaneous particle coagulation and deposition is described mathematically by general dynamic equation (GDE). Monte Carlo (MC) method is an important approach of numerical solutions of GDE. However, constant-volume MC method exhibits the contradictory of low computation cost and high computation precision owing to the fluctuation of the number of simulation particles; constant-number MC method can hardly be applied to engineering application and general scientific quantitative analysis due to the continual contraction or expansion of computation domain. In addition, the two MC methods depend closely on the "subsystem" hypothesis, which constraints their expansibility and the scope of application. A new multi-Monte Carlo (MMC) method is promoted to take account of GDE for simultaneous particle coagulation and deposition. MMC method introduces the concept of "weighted fictitious particle" and is based on the "time-driven" technique. Furthermore MMC method maintains synchronously the computational domain and the total number of fictitious particles, which results in the latent expansibility of simulation for boundary condition, the space evolution of particle size distribution and even particle dynamics. The simulation results of MMC method for two special cases in which analytical solutions exist agree with analytical solutions well, which proves that MMC method has high and stable computational precision and low computation cost because of the constant and limited number of fictitious particles. Lastly the source of numerical error and the relative error of MMC method are analyzed, respectively.
QUANTUM MONTE-CARLO SIMULATIONS - ALGORITHMS, LIMITATIONS AND APPLICATIONS
DERAEDT, H
1992-01-01
A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown
Quantum Monte Carlo Simulations : Algorithms, Limitations and Applications
Raedt, H. De
1992-01-01
A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown
Sensitivity of Monte Carlo simulations to input distributions
Energy Technology Data Exchange (ETDEWEB)
RamoRao, B. S.; Srikanta Mishra, S.; McNeish, J.; Andrews, R. W.
2001-07-01
The sensitivity of the results of a Monte Carlo simulation to the shapes and moments of the probability distributions of the input variables is studied. An economical computational scheme is presented as an alternative to the replicate Monte Carlo simulations and is explained with an illustrative example. (Author) 4 refs.
Benchmarking of Proton Transport in Super Monte Carlo Simulation Program
Wang, Yongfeng; Li, Gui; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Wu, Yican
2014-06-01
The Monte Carlo (MC) method has been traditionally applied in nuclear design and analysis due to its capability of dealing with complicated geometries and multi-dimensional physics problems as well as obtaining accurate results. The Super Monte Carlo Simulation Program (SuperMC) is developed by FDS Team in China for fusion, fission, and other nuclear applications. The simulations of radiation transport, isotope burn-up, material activation, radiation dose, and biology damage could be performed using SuperMC. Complicated geometries and the whole physical process of various types of particles in broad energy scale can be well handled. Bi-directional automatic conversion between general CAD models and full-formed input files of SuperMC is supported by MCAM, which is a CAD/image-based automatic modeling program for neutronics and radiation transport simulation. Mixed visualization of dynamical 3D dataset and geometry model is supported by RVIS, which is a nuclear radiation virtual simulation and assessment system. Continuous-energy cross section data from hybrid evaluated nuclear data library HENDL are utilized to support simulation. Neutronic fixed source and critical design parameters calculates for reactors of complex geometry and material distribution based on the transport of neutron and photon have been achieved in our former version of SuperMC. Recently, the proton transport has also been intergrated in SuperMC in the energy region up to 10 GeV. The physical processes considered for proton transport include electromagnetic processes and hadronic processes. The electromagnetic processes include ionization, multiple scattering, bremsstrahlung, and pair production processes. Public evaluated data from HENDL are used in some electromagnetic processes. In hadronic physics, the Bertini intra-nuclear cascade model with exitons, preequilibrium model, nucleus explosion model, fission model, and evaporation model are incorporated to treat the intermediate energy nuclear
Forest canopy BRDF simulation using Monte Carlo method
Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.
2006-01-01
Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.
Forest canopy BRDF simulation using Monte Carlo method
Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.
2006-01-01
Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.
Monte Carlo simulations for plasma physics
Energy Technology Data Exchange (ETDEWEB)
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Reaction Ensemble Monte Carlo Simulation of Complex Molecular Systems.
Rosch, Thomas W; Maginn, Edward J
2011-02-08
Acceptance rules for reaction ensemble Monte Carlo (RxMC) simulations containing classically modeled atomistic degrees of freedom are derived for complex molecular systems where insertions and deletions are achieved gradually by utilizing the continuous fractional component (CFC) method. A self-consistent manner in which to utilize statistical mechanical data contained in ideal gas free energy parameters during RxMC moves is presented. The method is tested by applying it to two previously studied systems containing intramolecular degrees of freedom: the propene metathesis reaction and methyl-tert-butyl-ether (MTBE) synthesis. Quantitative agreement is found between the current results and those of Keil et al. (J. Chem. Phys. 2005, 122, 164705) for the propene metathesis reaction. Differences are observed between the equilibrium concentrations of the present study and those of Lísal et al. (AIChE J. 2000, 46, 866-875) for the MTBE reaction. It is shown that most of this difference can be attributed to an incorrect formulation of the Monte Carlo acceptance rule. Efficiency gains using CFC MC as opposed to single stage molecule insertions are presented.
Monte Carlo simulations for heavy ion dosimetry
Energy Technology Data Exchange (ETDEWEB)
Geithner, O.
2006-07-26
Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Monte Carlo simulations of the NIMROD diffractometer
Energy Technology Data Exchange (ETDEWEB)
Botti, A. [University of Roma TRE, Rome (Italy)]. E-mail: botti@fis.uniroma3.it; Ricci, M.A. [University of Roma TRE, Rome (Italy); Bowron, D.T. [ISIS-Rutherford Appleton Laboratory, Chilton (United Kingdom); Soper, A.K. [ISIS-Rutherford Appleton Laboratory, Chilton (United Kingdom)
2006-11-15
The near and intermediate range order diffractometer (NIMROD) has been selected as a day one instrument on the second target station at ISIS. Uniquely, NIMROD will provide continuous access to particle separations ranging from the interatomic (<1A) to the mesoscopic (<300A). This instrument is mainly designed for structural investigations, although the possibility of putting a Fermi chopper (and corresponding NIMONIC chopper) in the incident beam line, will potentially allow the performance of low resolution inelastic scattering measurements. The performance characteristics of the TOF diffractometer have been simulated by means of a series of Monte Carlo calculations. In particular, the flux as a function of the transferred momentum Q as well as the resolution in Q and transferred energy have been estimated. Moreover, the possibility of including a honeycomb collimator in order to achieve better resolution has been tested. Here, we want to present the design of this diffractometer that will bridge the gap between wide- and small-angle neutron scattering experiments.
Monte Carlo Simulation of River Meander Modelling
Posner, A. J.; Duan, J. G.
2010-12-01
This study first compares the first order analytical solutions for flow field by Ikeda et. al. (1981) and Johanesson and Parker (1989b). Ikeda et. al.’s (1981) linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g. cohesiveness, stratigraphy, vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations. Several measures are formulated in order to determine which of the resulting planform is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model. Quasi-2D Ikeda (1989) flow solution with Monte Carlo Simulation of Bank Erosion Coefficient.
Monte Carlo simulation of neutron scattering instruments
Energy Technology Data Exchange (ETDEWEB)
Seeger, P.A.
1995-12-31
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.
MONTE CARLO SIMULATION OF CHARGED PARTICLE IN AN ELECTRONEGATIVE PLASMA
Directory of Open Access Journals (Sweden)
L SETTAOUTI
2003-12-01
Full Text Available Interest in radio frequency (rf discharges has grown tremendously in recent years due to their importance in microelectronic technologies. Especially interesting are the properties of discharges in electronegative gases which are most frequently used for technological applications. Monte Carlo simulation have become increasingly important as a simulation tool particularly in the area of plasma physics. In this work, we present some detailed properties of rf plasmas obtained by Monte Carlo simulation code, in SF6
GATE Monte Carlo simulation in a cloud computing environment
Rowedder, Blake Austin
The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Monte Carlo simulation of large electron fields
Faddegon, Bruce A.; Perl, Joseph; Asai, Makoto
2008-03-01
Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.
Monte-Carlo simulation-based statistical modeling
Chen, John
2017-01-01
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.
Monte Carlo simulations on SIMD computer architectures
Energy Technology Data Exchange (ETDEWEB)
Burmester, C.P.; Gronsky, R. [Lawrence Berkeley Lab., CA (United States); Wille, L.T. [Florida Atlantic Univ., Boca Raton, FL (United States). Dept. of Physics
1992-03-01
Algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SMM) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures.
Coherent Scattering Imaging Monte Carlo Simulation
Hassan, Laila Abdulgalil Rafik
Conventional mammography has poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter potentially provides more information because interference of coherently scattered radiation depends on the average intermolecular spacing, and can be used to characterize tissue types. However, typical coherent scatter analysis techniques are not compatible with rapid low dose screening techniques. Coherent scatter slot scan imaging is a novel imaging technique which provides new information with higher contrast. In this work a simulation of coherent scatter was performed for slot scan imaging to assess its performance and provide system optimization. In coherent scatter imaging, the coherent scatter is exploited using a conventional slot scan mammography system with anti-scatter grids tilted at the characteristic angle of cancerous tissues. A Monte Carlo simulation was used to simulate the coherent scatter imaging. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The contrast increased as the grid tilt angle increased beyond the characteristic angle for the modeled carcinoma. A grid tilt angle of 16 degrees yielded the highest contrast and signal to noise ratio (SNR). Also, contrast increased as the source voltage increased. Increasing grid ratio improved contrast at the expense of decreasing SNR. A grid ratio of 10:1 was sufficient to give a good contrast without reducing the intensity to a noise level. The optimal source to sample distance was determined to be such that the source should be located at the focal distance of the grid. A carcinoma lump of 0.5x0.5x0.5 cm3 in size was detectable which is reasonable considering the high noise due to the usage of relatively small number of incident photons for computational reasons. A further study is needed to study the effect of breast density and breast thickness
Monte Carlo Simulation of Optical Properties of Wake Bubbles
Institute of Scientific and Technical Information of China (English)
CAO Jing; WANG Jiang-An; JIANG Xing-Zhou; SHI Sheng-Wei
2007-01-01
Based on Mie scattering theory and the theory of multiple light scattering, the light scattering properties of air bubbles in a wake are analysed by Monte Carlo simulation. The results show that backscattering is enhanced obviously due to the existence of bubbles, especially with the increase of bubble density, and that it is feasible to use the Monte Carlo method to study the properties of light scattering by air bubbles.
Inhomogeneous Monte Carlo simulations of dermoscopic spectroscopy
Gareau, Daniel S.; Li, Ting; Jacques, Steven; Krueger, James
2012-03-01
Clinical skin-lesion diagnosis uses dermoscopy: 10X epiluminescence microscopy. Skin appearance ranges from black to white with shades of blue, red, gray and orange. Color is an important diagnostic criteria for diseases including melanoma. Melanin and blood content and distribution impact the diffuse spectral remittance (300-1000nm). Skin layers: immersion medium, stratum corneum, spinous epidermis, basal epidermis and dermis as well as laterally asymmetric features (eg. melanocytic invasion) were modeled in an inhomogeneous Monte Carlo model.
Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations
Radak, Brian K.; Roux, Benoît
2016-10-01
Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Finally, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.
Virtual detector characterisation with Monte-Carlo simulations
Sukowski, F.; Yaneu Yaneu, J. F.; Salamon, M.; Ebert, S.; Uhlmann, N.
2009-08-01
In the field of X-ray imaging flat-panel detectors which convert X-rays into electrical signals, are widely used. For different applications, detectors differ in several specific parameters that can be used for characterizing the detector. At the Development Center X-ray Technology EZRT we studied the question how well these characteristics can be determined by only knowing the layer composition of a detector. In order to determine the required parameters, the Monte-Carlo (MC) simulation program ROSI [J. Giersch et al., Nucl. Instr. and Meth. A 509 (2003) 151] was used while taking into account all primary and secondary particle interactions as well as the focal spot size of the X-ray tube. For the study, the Hamamatsu C9311DK [Technical Datasheet Hamamatsu C9311DK flat panel sensor, Hamamatsu Photonics, ( www.hamamatsu.com)], a scintillator-based detector, and the Ajat DIC 100TL [Technical description of Ajat DIC 100TL, Ajat Oy Ltd., ( www.ajat.fi)], a direct converting semiconductor detector, were used. The layer compositions of the two detectors were implemented into the MC simulation program. The following characteristics were measured [N. Uhlmann et al., Nucl. Instr. and Meth. A 591 (2008) 46] and compared to simulation results: The basic spatial resolution (BSR), the modulation transfer function (MTF), the contrast sensitivity (CS) and the specific material thickness range (SMTR). To take scattering of optical photons into account DETECT2000 [C. Moisan et al., DETECT2000—A Program for Modeling Optical Properties of Scintillators, Department of Electrical and Computer Engineering, Laval University, Quebec City, 2000], another Monte-Carlo simulation was used.
Institute of Scientific and Technical Information of China (English)
吴宜灿; 孙光耀; 吴斌; 杨琪; 陈朝斌; 党同强; 方菱; 裴曦; 王芳; 汪进; 蒋洁琼; 宋婧; 汪建业; 赵柱民; FDS团队; 胡丽琴; 龙鹏程; 何桃; 程梦云; 郑华庆; 郝丽娟; 俞盛朋
2016-01-01
Monte Carlo method has distinct advantages in simulating complicated nuclear systems. However,great challenges to current MC methods and codes prevent its application in engineering proj ects, such as difficulties in the accurate modeling of complex geometries and material distribution,slow convergence of calculation,prompt and effective analysis of massive data. Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC)is designed to perform the comprehensive neutronics calculation,taking the radiation transport as the core and including the depletion,radiation source term/dose/biohazard,material activation and transmutation,etc. It supports the multi-physics coupling calculation including thermo-hydraulics,structural mechanics,chemistry,biology,etc. Key techniques including automatic and accurate modeling,high efficient calculation,4D visualization were developed and more than 2000 international benchmark models and experiments were used to verify and validate SuperMC. SuperMC has been widely used in reactor engineering proj ects and etc. In this paper,the overview of SuperMC development was introduced.%蒙特卡罗方法对于复杂核系统的模拟具有明显优势，然而在实际工程应用中存在巨大的挑战，如复杂结构与材料分布精准建模难度大、计算收敛速度慢、海量数据难以及时有效分析等。超级蒙特卡罗核计算仿真软件系统 SuperMC设计为支持以辐射输运为核心，包含燃耗、辐射源项/剂量/生物危害、材料活化与嬗变等的综合中子学计算，支持热工水力学、结构力学、化学、生物学等多物理耦合模拟。 SuperMC目前已发展了精准建模、高效计算、四维可视化等关键技术，通过2000余个国际基准模型及实验的验证与确认，在反应堆工程等方面获得广泛应用，本文对其发展概况进行介绍。
Monte Carlo modelling of Schottky diode for rectenna simulation
Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.
2017-09-01
Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.
Data decomposition of Monte Carlo particle transport simulations via tally servers
Energy Technology Data Exchange (ETDEWEB)
Romano, Paul K., E-mail: paul.k.romano@gmail.com [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegala@mcs.anl.gov [Argonne National Laboratory, Theory and Computing Sciences, 9700 S Cass Ave., Argonne, IL 60439 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Smith, Kord, E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)
2013-11-01
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.
Probabilistic fire simulator - Monte Carlo simulation tool for fire scenarios
Energy Technology Data Exchange (ETDEWEB)
Hostikka, S.; Keski-Rahkonen, O. [VTT Building and Transport, Espoo (Finland)
2002-11-01
Risk analysis tool is developed for computing of the distributions of fire model output variables. The tool, called Probabilistic Fire Simulator, combines Monte Carlo simulation and CFAST two-zone fire model. In this work, it is used to calculate failure probability of redundant cables and fire detector activation times in a cable tunnel fire. Sensitivity of the output variables to the input variables is calculated in terms of the rank order correlations. (orig.)
Monte Carlo simulations to replace film dosimetry in IMRT verification.
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.
Accuracy Analysis of Assembly Success Rate with Monte Carlo Simulations
Institute of Scientific and Technical Information of China (English)
仲昕; 杨汝清; 周兵
2003-01-01
Monte Carlo simulation was applied to Assembly Success Rate (ASR) analyses.ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes,manufacturing tolerances and robot repeatability into account.A statistic arithmetic expression was proposed and deduced in this paper,which offers an alternative method of estimating the accuracy of ASR,without having to repeat the simulations.This statistic method also helps to choose a suitable sample size,if error reduction is desired.Monte Carlo simulation results demonstrated the feasibility of the method.
Monte Carlo Simulation in Statistical Physics An Introduction
Binder, Kurt
2010-01-01
Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. The fifth edition covers Classical as well as Quantum Monte Carlo methods. Furthermore a new chapter on the sampling of free-energy landscapes has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was awarded the Berni J. Alder CECAM Award for Computational Physics 2001 as well ...
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Determining MTF of digital detector system with Monte Carlo simulation
Jeong, Eun Seon; Lee, Hyung Won; Nam, Sang Hee
2005-04-01
We have designed a detector based on a-Se(amorphous Selenium) and done simulation the detector with Monte Carlo method. We will apply the cascaded linear system theory to determine the MTF for whole detector system. For direct comparison with experiment, we have simulated 139um pixel pitch and used simulated X-ray tube spectrum.
Stochastic simulation and Monte-Carlo methods; Simulation stochastique et methodes de Monte-Carlo
Energy Technology Data Exchange (ETDEWEB)
Graham, C. [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France); Ecole Polytechnique, 91 - Palaiseau (France); Talay, D. [Institut National de Recherche en Informatique et en Automatique (INRIA), 78 - Le Chesnay (France); Ecole Polytechnique, 91 - Palaiseau (France)
2011-07-01
This book presents some numerical probabilistic methods of simulation with their convergence speed. It combines mathematical precision and numerical developments, each proposed method belonging to a precise theoretical context developed in a rigorous and self-sufficient manner. After some recalls about the big numbers law and the basics of probabilistic simulation, the authors introduce the martingales and their main properties. Then, they develop a chapter on non-asymptotic estimations of Monte-Carlo method errors. This chapter gives a recall of the central limit theorem and precises its convergence speed. It introduces the Log-Sobolev and concentration inequalities, about which the study has greatly developed during the last years. This chapter ends with some variance reduction techniques. In order to demonstrate in a rigorous way the simulation results of stochastic processes, the authors introduce the basic notions of probabilities and of stochastic calculus, in particular the essential basics of Ito calculus, adapted to each numerical method proposed. They successively study the construction and important properties of the Poisson process, of the jump and deterministic Markov processes (linked to transport equations), and of the solutions of stochastic differential equations. Numerical methods are then developed and the convergence speed results of algorithms are rigorously demonstrated. In passing, the authors describe the probabilistic interpretation basics of the parabolic partial derivative equations. Non-trivial applications to real applied problems are also developed. (J.S.)
Monte Carlo simulation of electron slowing down in indium
Energy Technology Data Exchange (ETDEWEB)
Rouabah, Z.; Hannachi, M. [Materials and Electronic Systems Laboratory (LMSE), University of Bordj Bou Arreridj, Bordj Bou Arreridj (Algeria); Champion, C. [Université de Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux-Gradignan, (CENBG), Gradignan (France); Bouarissa, N., E-mail: n_bouarissa@yahoo.fr [Laboratory of Materials Physics and its Applications, University of M' sila, 28000 M' sila (Algeria)
2015-07-15
Highlights: • Electron scattering in indium targets. • Modeling of elastic cross-sections. • Monte Carlo simulation of low energy electrons. - Abstract: In the current study, we aim at simulating via a detailed Monte Carlo code, the electron penetration in a semi-infinite indium medium for incident energies ranging from 0.5 to 5 keV. Electron range, backscattering coefficients, mean penetration depths as well as stopping profiles are then reported. The results may be seen as the first predictions for low-energy electron penetration in indium target.
Utilising Monte Carlo Simulation for the Valuation of Mining Concessions
Directory of Open Access Journals (Sweden)
Rosli Said
2005-12-01
Full Text Available Valuation involves the analyses of various input data to produce an estimated value. Since each input is itself often an estimate, there is an element of uncertainty in the input. This leads to uncertainty in the resultant output value. It is argued that a valuation must also convey information on the uncertainty, so as to be more meaningful and informative to the user. The Monte Carlo simulation technique can generate the information on uncertainty and is therefore potentially useful to valuation. This paper reports on the investigation that has been conducted to apply Monte Carlo simulation technique in mineral valuation, more specifically, in the valuation of a quarry concession.
THE APPLICATION OF MONTE CARLO SIMULATION FOR A DECISION PROBLEM
Directory of Open Access Journals (Sweden)
Çiğdem ALABAŞ
2001-01-01
Full Text Available The ultimate goal of the standard decision tree approach is to calculate the expected value of a selected performance measure. In the real-world situations, the decision problems become very complex as the uncertainty factors increase. In such cases, decision analysis using standard decision tree approach is not useful. One way of overcoming this difficulty is the Monte Carlo simulation. In this study, a Monte Carlo simulation model is developed for a complex problem and statistical analysis is performed to make the best decision.
Monte Carlo simulation of electrons in dense gases
Tattersall, Wade; Boyle, Greg; Cocks, Daniel; Buckman, Stephen; White, Ron
2014-10-01
We implement a Monte-Carlo simulation modelling the transport of electrons and positrons in dense gases and liquids, by using a dynamic structure factor that allows us to construct structure-modified effective cross sections. These account for the coherent effects caused by interactions with the relatively dense medium. The dynamic structure factor also allows us to model thermal gases in the same manner, without needing to directly sample the velocities of the neutral particles. We present the results of a series of Monte Carlo simulations that verify and apply this new technique, and make comparisons with macroscopic predictions and Boltzmann equation solutions. Financial support of the Australian Research Council.
Implementation of Monte Carlo Simulations for the Gamma Knife System
Energy Technology Data Exchange (ETDEWEB)
Xiong, W [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Huang, D [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Lee, L [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Feng, J [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Morris, K [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Calugaru, E [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Burman, C [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Li, J [Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 17111 (United States); Ma, C-M [Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 17111 (United States)
2007-06-15
Currently the Gamma Knife system is accompanied with a treatment planning system, Leksell GammaPlan (LGP) which is a standard, computer-based treatment planning system for Gamma Knife radiosurgery. In LGP, the dose calculation algorithm does not consider the scatter dose contributions and the inhomogeneity effect due to the skull and air cavities. To improve the dose calculation accuracy, Monte Carlo simulations have been implemented for the Gamma Knife planning system. In this work, the 201 Cobalt-60 sources in the Gamma Knife unit are considered to have the same activity. Each Cobalt-60 source is contained in a cylindric stainless steel capsule. The particle phase space information is stored in four beam data files, which are collected in the inner sides of the 4 treatment helmets, after the Cobalt beam passes through the stationary and helmet collimators. Patient geometries are rebuilt from patient CT data. Twenty two Patients are included in the Monte Carlo simulation for this study. The dose is calculated using Monte Carlo in both homogenous and inhomogeneous geometries with identical beam parameters. To investigate the attenuation effect of the skull bone the dose in a 16cm diameter spherical QA phantom is measured with and without a 1.5mm Lead-covering and also simulated using Monte Carlo. The dose ratios with and without the 1.5mm Lead-covering are 89.8% based on measurements and 89.2% according to Monte Carlo for a 18mm-collimator Helmet. For patient geometries, the Monte Carlo results show that although the relative isodose lines remain almost the same with and without inhomogeneity corrections, the difference in the absolute dose is clinically significant. The average inhomogeneity correction is (3.9 {+-} 0.90) % for the 22 patients investigated. These results suggest that the inhomogeneity effect should be considered in the dose calculation for Gamma Knife treatment planning.
Monte Carlo simulation of laser attenuation characteristics in fog
Wang, Hong-Xia; Sun, Chao; Zhu, You-zhang; Sun, Hong-hui; Li, Pan-shi
2011-06-01
Based on the Mie scattering theory and the gamma size distribution model, the scattering extinction parameter of spherical fog-drop is calculated. For the transmission attenuation of the laser in the fog, a Monte Carlo simulation model is established, and the impact of attenuation ratio on visibility and field angle is computed and analysed using the program developed by MATLAB language. The results of the Monte Carlo method in this paper are compared with the results of single scattering method. The results show that the influence of multiple scattering need to be considered when the visibility is low, and single scattering calculations have larger errors. The phenomenon of multiple scattering can be interpreted more better when the Monte Carlo is used to calculate the attenuation ratio of the laser transmitting in the fog.
Meaningful timescales from Monte Carlo simulations of molecular systems
Costa, Liborio I
2016-01-01
A new Markov Chain Monte Carlo method for simulating the dynamics of molecular systems with atomistic detail is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.
Direct determination of liquid phase coexistence by Monte Carlo simulations
Zweistra, H.J.A.; Besseling, N.A.M.
2006-01-01
A formalism to determine coexistence points by means of Monte Carlo simulations is presented. The general idea of the method is to perform a simulation simultaneously in several unconnected boxes which can exchange particles. At equilibrium, most of the boxes will be occupied by a homogeneous phase.
Research of Monte Carlo Simulation in Commercial Bank Risk Management
Institute of Scientific and Technical Information of China (English)
BeimingXiao
2004-01-01
Simulation method is an important-tool in financial risk management. It can simulate financial variable or economic wriable and deal with non-linear or non-nominal issue. This paper analyzes the usage of "Monte Carlo" approach in commercial bank risk management.
Yoshizumi, Maíra T; Yoriyaz, Hélio; Caldas, Linda V E
2010-01-01
Backscattered radiation (BSR) from field-defining collimators can affect the response of a monitor chamber in X-radiation fields. This contribution must be considered since this kind of chamber is used to monitor the equipment response. In this work, the dependence of a transmission ionization chamber response on the aperture diameter of the collimators was studied experimentally and using a Monte Carlo (MC) technique. According to the results, the BSR increases the chamber response of over 4.0% in the case of a totally closed collimator and 50 kV energy beam, using both techniques. The results from Monte Carlo simulation confirm the validity of the simulated geometry.
Fission source sampling in coupled Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Olsen, Boerge; Dufek, Jan [KTH Royal Inst. of Technology, Stockholm (Sweden). Div. of Nuclear Research Technology
2017-05-15
We study fission source sampling methods suitable for the iterative way of solving coupled Monte Carlo neutronics problems. Specifically, we address the question as to how the initial Monte Carlo fission source should be optimally sampled at the beginning of each iteration step. We compare numerically two approaches of sampling the initial fission source; the tested techniques are derived from well-known methods for iterating the neutron flux in coupled simulations. The first technique samples the initial fission source using the source from the previous iteration step, while the other technique uses a combination of all previous steps for this purpose. We observe that the previous-step approach performs the best.
Cosmological Markov Chain Monte Carlo simulation with Cmbeasy
Müller, C M
2004-01-01
We introduce a Markov Chain Monte Carlo simulation and data analysis package for the cosmological computation package Cmbeasy. We have taken special care in implementing an adaptive step algorithm for the Markov Chain Monte Carlo in order to improve convergence. Data analysis routines are provided which allow to test models of the Universe against up-to-date measurements of the Cosmic Microwave Background, Supernovae Ia and Large Scale Structure. The observational data is provided with the software for convenient usage. The package is publicly available as part of the Cmbeasy software at www.cmbeasy.org.
Direct Monte Carlo simulation of nanoscale mixed gas bearings
Directory of Open Access Journals (Sweden)
Kyaw Sett Myo
2015-06-01
Full Text Available The conception of sealed hard drives with helium gas mixture has been recently suggested over the current hard drives for achieving higher reliability and less position error. Therefore, it is important to understand the effects of different helium gas mixtures on the slider bearing characteristics in the head–disk interface. In this article, the helium/air and helium/argon gas mixtures are applied as the working fluids and their effects on the bearing characteristics are studied using the direct simulation Monte Carlo method. Based on direct simulation Monte Carlo simulations, the physical properties of these gas mixtures such as mean free path and dynamic viscosity are achieved and compared with those obtained from theoretical models. It is observed that both results are comparable. Using these gas mixture properties, the bearing pressure distributions are calculated under different fractions of helium with conventional molecular gas lubrication models. The outcomes reveal that the molecular gas lubrication results could have relatively good agreement with those of direct simulation Monte Carlo simulations, especially for pure air, helium, or argon gas cases. For gas mixtures, the bearing pressures predicted by molecular gas lubrication model are slightly larger than those from direct simulation Monte Carlo simulation.
In silico radiobiology: Have we reached the limit of Monte Carlo simulations?
Gholami, Y.; Toghyani, M.; Champion, C.; Kuncic, Z.
2014-03-01
Monte Carlo radiation transport models are increasingly being used to simulate biological damage. However, such radiation biophysics simulations require realistic molecular models for water, whereas existing Monte Carlo models are limited by their use of atomic cross-sections, which become inadequate for accurately modelling interactions of the very low-energy electrons that are responsible for biological damage. In this study, we borrow theoretical methods commonly employed in molecular dynamics simulations to model the molecular wavefunction of the water molecule as the first step towards deriving new molecular cross-sections. We calculate electron charge distributions for molecular water and find non-negligible differences between the vapor and liquid phases that can be attributed to intermolecular bonding in the condensed phase. We propose that a hybrid Monte Carlo - Molecular Dynamics (MC-MD) approach to modelling radiation biophysics will provide new insights into radiation damage and new opportunities to develop targeted molecular therapy strategies.
Monte Carlo simulation of gamma ray tomography for image reconstruction
Energy Technology Data Exchange (ETDEWEB)
Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)
2015-07-01
The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)
Monte Carlo simulation of quantum statistical lattice models
Raedt, Hans De; Lagendijk, Ad
1985-01-01
In this article we review recent developments in computational methods for quantum statistical lattice problems. We begin by giving the necessary mathematical basis, the generalized Trotter formula, and discuss the computational tools, exact summations and Monte Carlo simulation, that will be used t
Monte Carlo Simulation of Partially Confined Flexible Polymers
Hermsen, G.F.; de Geeter, B.A.; van der Vegt, N.F.A.; Wessling, Matthias
2002-01-01
We have studied conformational properties of flexible polymers partially confined to narrow pores of different size using configurational biased Monte Carlo simulations under athermal conditions. The asphericity of the chain has been studied as a function of its center of mass position along the por
Monte Carlo simulation of magnetic nanostructured thin films
Institute of Scientific and Technical Information of China (English)
Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu
2004-01-01
@@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata; Kimura, Taro
2016-12-01
We study the electron-electron interaction effects on topological phase transitions by the ab initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Monte Carlo Simulation Optimizing Design of Grid Ionization Chamber
Institute of Scientific and Technical Information of China (English)
ZHENG; Yu-lai; WANG; Qiang; YANG; Lu
2013-01-01
The grid ionization chamber detector is often used for measuring charged particles.Based on Monte Carlo simulation method,the energy loss distribution and electron ion pairs of alpha particle with different energy have been calculated to determine suitable filling gas in the ionization chamber filled with
Testing Dependent Correlations with Nonoverlapping Variables: A Monte Carlo Simulation
Silver, N. Clayton; Hittner, James B.; May, Kim
2004-01-01
The authors conducted a Monte Carlo simulation of 4 test statistics or comparing dependent correlations with no variables in common. Empirical Type 1 error rates and power estimates were determined for K. Pearson and L. N. G. Filon's (1898) z, O. J. Dunn and V. A. Clark's (1969) z, J. H. Steiger's (1980) original modification of Dunn and Clark's…
Play It Again: Teaching Statistics with Monte Carlo Simulation
Sigal, Matthew J.; Chalmers, R. Philip
2016-01-01
Monte Carlo simulations (MCSs) provide important information about statistical phenomena that would be impossible to assess otherwise. This article introduces MCS methods and their applications to research and statistical pedagogy using a novel software package for the R Project for Statistical Computing constructed to lessen the often steep…
Simulating Strongly Correlated Electron Systems with Hybrid Monte Carlo
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2000-01-01
Using the path integral representation, the Hubbard and the periodic Anderson model on D-dimensional cubic lattice are transformed into field theories of fermions in D + 1 dimensions. These theories at half-filling possess a positive definite real symmetry fermion matrix and can be simulated using the hybrid Monte Carlo method.
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata
2016-01-01
We study the electron-electron interaction effects on topological phase transitions by the ab-initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Monte Carlo Simulation on Glueball Search at BESⅢ
Institute of Scientific and Technical Information of China (English)
QIN Hu; SHEN Xiao-Yan
2007-01-01
The J/ψ radiative decays are suggested as promising modes for glueball search. A full Monte Carlo simulation of J/ψ→γηη and γηη', based on the design of BESⅢ detector, is performed to study the sensitivity of searching for a possible tensor glueball at BESⅢ.
Monte Carlo Simulation of Partially Confined Flexible Polymers
Hermsen, G.F.; de Geeter, B.A.; van der Vegt, N.F.A.; Wessling, Matthias
2002-01-01
We have studied conformational properties of flexible polymers partially confined to narrow pores of different size using configurational biased Monte Carlo simulations under athermal conditions. The asphericity of the chain has been studied as a function of its center of mass position along the
Monte Carlo simulation of NSE at reactor and spallation sources
Energy Technology Data Exchange (ETDEWEB)
Zsigmond, G.; Wechsler, D.; Mezei, F. [Hahn-Meitner-Institut Berlin, Berlin (Germany)
2001-03-01
A MC (Monte Carlo) computation study of NSE (Neutron Spin Echo) has been performed by means of VITESS investigating the classic and TOF-NSE options at spallation sources. The use of white beams in TOF-NSE makes the flipper efficiency in function of the neutron wavelength an important issue. The emphasis was put on exact evaluation of flipper efficiencies for wide wavelength-band instruments. (author)
Monte Carlo simulations to replace film dosimetry in IMRT verification
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assu...
Souris, Kevin; Lee, John Aldo; Sterpin, Edmond
2016-04-01
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
Nonequilibrium Candidate Monte Carlo Simulations with Configurational Freezing Schemes.
Giovannelli, Edoardo; Gellini, Cristina; Pietraperzia, Giangaetano; Cardini, Gianni; Chelli, Riccardo
2014-10-14
Nonequilibrium Candidate Monte Carlo simulation [Nilmeier et al., Proc. Natl. Acad. Sci. U.S.A. 2011, 108, E1009-E1018] is a tool devised to design Monte Carlo moves with high acceptance probabilities that connect uncorrelated configurations. Such moves are generated through nonequilibrium driven dynamics, producing candidate configurations accepted with a Monte Carlo-like criterion that preserves the equilibrium distribution. The probability of accepting a candidate configuration as the next sample in the Markov chain basically depends on the work performed on the system during the nonequilibrium trajectory and increases with decreasing such a work. It is thus strategically relevant to find ways of producing nonequilibrium moves with low work, namely moves where dissipation is as low as possible. This is the goal of our methodology, in which we combine Nonequilibrium Candidate Monte Carlo with Configurational Freezing schemes developed by Nicolini et al. (J. Chem. Theory Comput. 2011, 7, 582-593). The idea is to limit the configurational sampling to particles of a well-established region of the simulation sample, namely the region where dissipation occurs, while leaving fixed the other particles. This allows to make the system relaxation faster around the region perturbed by the finite-time switching move and hence to reduce the dissipated work, eventually enhancing the probability of accepting the generated move. Our combined approach enhances significantly configurational sampling, as shown by the case of a bistable dimer immersed in a dense fluid.
Global Monte Carlo Simulation with High Order Polynomial Expansions
Energy Technology Data Exchange (ETDEWEB)
William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin
2007-12-13
The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as “local” piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi’s method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source
Monte Carlo simulations of Photospheric emission in relativistic outflows
Bhattacharya, Mukul; Santana, Rodolfo; Kumar, Pawan
2016-01-01
We study the spectra of photospheric emission from highly relativistic gamma-ray burst outflows using a Monte Carlo (MC) code. We consider the Comptonization of photons with a fast cooled synchrotron spectrum in a relativistic jet with photon to electron number ratio $N_{\\gamma}/N_e = 10^5$. For all our simulations, we use mono-energetic protons which interact with thermalised electrons through the Coulomb interaction. The photons, electrons and protons are cooled adiabatically as the jet expands outwards. We find that the initial energy distribution of the protons and electrons do not have any appreciable effect on the photon peak energy and the power-law spectrum above the peak energy. We also find that the Coulomb interaction between the electrons and the protons does not affect the output photon spectrum significantly as the energy of the electrons is elevated only marginally. The peak energy and the spectral indices for the low and high energy power-law tails of the photon spectrum remain practically unc...
Monte Carlo simulations of the SANS instrument in Petten
Energy Technology Data Exchange (ETDEWEB)
Uca, O. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755 LE, Petten (Netherlands)], E-mail: oktay.uca@jrc.nl; Ohms, C. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755 LE, Petten (Netherlands)], E-mail: carsten.ohms@jrc.nl
2008-11-30
The small-angle neutron-scattering facility at the 45 MW high-flux reactor in Petten, The Netherlands, was constructed in the late 1980s. It has a q-range of 5x10{sup -3} to 0.4 A{sup -1}, operating at a fixed wavelength of 4.75 A, which is realized by six pairs of double pyrolytic graphite monochromators. In this paper, we study the flux gain for the instrument installed at a neutron guide by Monte Carlo simulations using the program packages McStas [L. Lefmann, K. Nielsen, Neutron News 10 (1999) 320; P. Willendrup, E. Farhi and K. Lefmann, Physica B 350 (2004) 735] and Vitess [G. Zsigmond et al., Nucl. Instrum. Methods A 529 (2004) 218; (http://www.hmi.de/projects/ess/vitess/)]. In doing so, the instrument is relocated from its current position to the HB10 radial beam tube, the double monochromator is replaced by a velocity selector and neutron guides are used for transporting the neutrons.
Monte Carlo simulations of the SANS instrument in Petten
Uca, O.; Ohms, C.
2008-11-01
The small-angle neutron-scattering facility at the 45 MW high-flux reactor in Petten, The Netherlands, was constructed in the late 1980s. It has a q-range of 5×10 -3 to 0.4 Å -1, operating at a fixed wavelength of 4.75 Å, which is realized by six pairs of double pyrolytic graphite monochromators. In this paper, we study the flux gain for the instrument installed at a neutron guide by Monte Carlo simulations using the program packages McStas [L. Lefmann, K. Nielsen, Neutron News 10 (1999) 320; P. Willendrup, E. Farhi and K. Lefmann, Physica B 350 (2004) 735] and Vitess [G. Zsigmond et al., Nucl. Instrum. Methods A 529 (2004) 218; http://www.hmi.de/projects/ess/vitess/]. In doing so, the instrument is relocated from its current position to the HB10 radial beam tube, the double monochromator is replaced by a velocity selector and neutron guides are used for transporting the neutrons.
Monte Carlo Simulation of K Fluorescence Radiation Spectrum and Fluorescence Yield%K 荧光能谱及荧光产额 MC 模拟
Institute of Scientific and Technical Information of China (English)
陈成; 吴金杰; 周四春; 陈法君; 王佳; 葛良全
2015-01-01
K荧光X射线辐射装置能够开展各类核辐射探测器的校准和研究工作，基于MCNP5模拟程序建立了K荧光发生装置的模型。荧光辐射束是影响探测器校准的关键，辐射体厚度决定荧光的产额。通过蒙特卡罗模拟Cs2 SO4辐射体材料，得到辐射束各个位置的荧光出射谱、荧光产额和纯度与辐射体厚度的变化关系。结果表明，辐射束在1m处的半径大于25 cm且散射成分对荧光能谱的干扰小，辐射体存在饱和厚度。该研究结果可对实验制作各种辐射体以及荧光的定性和定量分析具有参考作用。%K fluorescent X ray radiation device can carry out various kinds of radiation detector calibration and research work.The fluorescence of K generator model is established based on MCNP5 simulation program.The fluorescence radiation beam is the key factor to influence detector calibration, radiator thickness decide the fluo-rescence yield.Through Monte Carlo simulation,Cs2 SO4 radiator material is studied, the fluorescence radiation beam emitted spectrum at each position, the relationship between fluorescence yield and purity as a fuction of the radiator thickness are obtained.The results show that, the radiation radius of the beam at the 1m is greater than 25 cm and scattering components of interference spectrum is small, and the various radiators have a satu-rated thickness.The results of this study can provided a reference for the experimental production of various ra-diators and the qualitative and quantitative analysis of fluorescence.
Monte Carlo Simulation of Argon in Nano-Space
Institute of Scientific and Technical Information of China (English)
CHEN Min; YANG Chun; GUO Zeng-Yuan
2000-01-01
Monte Carlo simulations are performed to investigate the thermodynamic properties of argon confined in nano-scale cubes constructed of graphite walls. A remarkable depression of the system pressures is observed. The simulations reveal that the length-scale of the cube, the magnitude of the interaction between the fluid and the graphite wall and the density of the fluid exhibit reasonable effects on the thermodynamic property shifts of the luid.
Monte Carlo simulation of photon migration path in turbid media
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A new method of Monte Carlo simulation is developed to simulate the photon migration path in a scattering medium after an ultrashort-pulse laser beam comes into the medium.The most probable trajectory of photons at an instant can be obtained with this method.How the photon migration paths are affected by the optical parameters of the scattering medium is analyzed.It is also concluded that the absorption coefficient has no effect on the most probable trajectory of photons.
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2014-01-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved ...
Monte Carlo Simulations of Neutron Oil well Logging Tools
Azcurra, M
2002-01-01
Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition
Monte Carlo simulations of single and coupled synthetic molecular motors.
Chen, C-M; Zuckermann, M
2012-11-01
We use a minimal model to study the processive motion of coupled synthetic molecular motors along a DNA track and we present data from Monte Carlo (MC) computer simulations based on this model. The model was originally proposed by Bromley et al. [HFSP J. 3, 204 (2009)] for studying the properties of a synthetic protein motor, the "Tumbleweed" (TW), and involves rigid Y-shaped motors diffusively rotating along the track while controlled by a series of periodically injected ligand pulses into the solution. The advantage of the model is that it mimics the mechanical properties of the TW motor in detail. Both the average first passage time which measures the diffusive motion of the motors, and the average dwell time on the track which measures their processivity are investigated by varying the parameters of the model. The latter includes ligand concentration and the range and strength of the binding interaction between motors and the track. In particular, it is of experimental interest to study the dependence of these dynamic time scales of the motors on the ligand concentration. Single rigid TW motors were first studied since no previous MC simulations of these motors have been performed. We first studied single motors for which we found a logarithmic decrease of the average first passage time and a logarithmic increase of the average dwell time with increasing ligand concentration. For two coupled motors, the dependence on ligand concentration is still logarithmic for the average first passage time but becomes linear for the average dwell time. This suggests a much greater stability in the processive motion of coupled motors as compared to single motors in the limit of large ligand concentration. By increasing the number of coupled motors, m, it was found that the average first passage time of the coupled motors only increases slowly with m while the average dwell time increases exponentially with m. Thus the stability of coupled motors on the track can be
Review of Monte Carlo simulations for backgrounds from radioactivity
Selvi, Marco
2013-08-01
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.
Application of Monte Carlo Simulations to Improve Basketball Shooting Strategy
Min, Byeong June
2016-01-01
The underlying physics of basketball shooting seems to be a straightforward example of the Newtonian mechanics that can easily be traced by numerical methods. However, a human basketball player does not make use of all the possible basketball trajectories. Instead, a basketball player will build up a database of successful shots and select the trajectory that has the greatest tolerance to small variations of the real world. We simulate the basketball player's shooting training as a Monte Carlo sequence to build optimal shooting strategies, such as the launch speed and angle of the basketball, and whether to take a direct shot or a bank shot, as a function of the player's court positions and height. The phase space volume that belongs to the successful launch velocities generated by Monte Carlo simulations are then used as the criterion to optimize a shooting strategy that incorporates not only mechanical, but human factors as well.
Shielding evaluation of neutron generator hall by Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)
2017-04-01
A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce.
Pratx, Guillem; Xing, Lei
2011-12-01
Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100 billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program. The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s. The distributed simulation produced the same output as the original implementation and was resilient to hardware failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes.
Stock Price Simulation Using Bootstrap and Monte Carlo
Directory of Open Access Journals (Sweden)
Pažický Martin
2017-06-01
Full Text Available In this paper, an attempt is made to assessment and comparison of bootstrap experiment and Monte Carlo experiment for stock price simulation. Since the stock price evolution in the future is extremely important for the investors, there is the attempt to find the best method how to determine the future stock price of BNP Paribas′ bank. The aim of the paper is define the value of the European and Asian option on BNP Paribas′ stock at the maturity date. There are employed four different methods for the simulation. First method is bootstrap experiment with homoscedastic error term, second method is blocked bootstrap experiment with heteroscedastic error term, third method is Monte Carlo simulation with heteroscedastic error term and the last method is Monte Carlo simulation with homoscedastic error term. In the last method there is necessary to model the volatility using econometric GARCH model. The main purpose of the paper is to compare the mentioned methods and select the most reliable. The difference between classical European option and exotic Asian option based on the experiment results is the next aim of tis paper.
Stabilization effect of fission source in coupled Monte Carlo simulations
Directory of Open Access Journals (Sweden)
Börge Olsen
2017-08-01
Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.
Conceptual design and Monte Carlo simulations of the AGATA array
Energy Technology Data Exchange (ETDEWEB)
Farnea, E., E-mail: Enrico.Farnea@pd.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Recchia, F.; Bazzacco, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Kroell, Th. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany); Podolyak, Zs. [Department of Physics, University of Surrey, Guildford (United Kingdom); Quintana, B. [Departamento de Fisica Fundamental, Universidad de Salamanca, Salamanca (Spain); Gadea, A. [Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, Valencia (Spain)
2010-09-21
The aim of the Advanced GAmma Tracking Array (AGATA) project is the construction of an array based on the novel concepts of pulse shape analysis and {gamma}-ray tracking with highly segmented Ge semiconductor detectors. The conceptual design of AGATA and its performance evaluation under different experimental conditions has required the development of a suitable Monte Carlo code. In this article, the description of the code as well as simulation results relevant for AGATA, are presented.
Cassandra: An open source Monte Carlo package for molecular simulation.
Shah, Jindal K; Marin-Rimoldi, Eliseo; Mullen, Ryan Gotchy; Keene, Brian P; Khan, Sandip; Paluch, Andrew S; Rai, Neeraj; Romanielo, Lucienne L; Rosch, Thomas W; Yoo, Brian; Maginn, Edward J
2017-07-15
Cassandra is an open source atomistic Monte Carlo software package that is effective in simulating the thermodynamic properties of fluids and solids. The different features and algorithms used in Cassandra are described, along with implementation details and theoretical underpinnings to various methods used. Benchmark and example calculations are shown, and information on how users can obtain the package and contribute to it are provided. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
An Introduction to Monte Carlo Simulation of Statistical physics Problem
Murthy, K. P. N.
2001-01-01
A brief introduction to the technique of Monte Carlo simulations in statistical physics is presented. The topics covered include statistical ensembles random and pseudo random numbers, random sampling techniques, importance sampling, Markov chain, Metropolis algorithm, continuous phase transition, statistical errors from correlated and uncorrelated data, finite size scaling, n-fold way, critical slowing down, blocking technique,percolation, cluster algorithms, cluster counting, histogram tech...
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Monte Carlo Simulation as a Research Management Tool
Energy Technology Data Exchange (ETDEWEB)
Douglas, L. J.
1986-06-01
Monte Carlo simulation provides a research manager with a performance monitoring tool to supplement the standard schedule- and resource-based tools such as the Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM). The value of the Monte Carlo simulation in a research environment is that it 1) provides a method for ranking competing processes, 2) couples technical improvements to the process economics, and 3) provides a mechanism to determine the value of research dollars. In this paper the Monte Carlo simulation approach is developed and applied to the evaluation of three competing processes for converting lignocellulosic biomass to ethanol. The technique is shown to be useful for ranking the processes and illustrating the importance of the timeframe of the analysis on the decision process. The results show that acid hydrolysis processes have higher potential for near-term application (2-5 years), while the enzymatic hydrolysis approach has an equal chance to be competitive in the long term (beyond 10 years).
Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography
Energy Technology Data Exchange (ETDEWEB)
Amendt, P.; Estabrook, K.; Everett, M.; London, R.A.; Maitland, D.; Zimmerman, G.; Colston, B.; da Silva, L.; Sathyam, U.
2000-02-01
The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of spherical dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.
Accelerated Monte Carlo simulations with restricted Boltzmann machines
Huang, Li; Wang, Lei
2017-01-01
Despite their exceptional flexibility and popularity, Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feed-forward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine to propose efficient Monte Carlo updates to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate an improved acceptance ratio and autocorrelation time near the phase transition point.
Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines
Huang, Li
2016-01-01
Despite their exceptional flexibility and popularity, the Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feedforward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine for efficient Monte Carlo updates and to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate improved acceptance ratio and autocorrelation time near the phase transition point.
The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature
Pia, Maria Grazia; Bell, Zane W; Dressendorfer, Paul V
2010-01-01
A scientometric analysis of Monte Carlo simulation and Monte Carlo codes has been performed over a set of representative scholarly journals related to radiation physics. The results of this study are reported and discussed. They document and quantitatively appraise the role of Monte Carlo methods and codes in scientific research and engineering applications.
Estimating return period of landslide triggering by Monte Carlo simulation
Peres, D. J.; Cancelliere, A.
2016-10-01
Assessment of landslide hazard is a crucial step for landslide mitigation planning. Estimation of the return period of slope instability represents a quantitative method to map landslide triggering hazard on a catchment. The most common approach to estimate return periods consists in coupling a triggering threshold equation, derived from an hydrological and slope stability process-based model, with a rainfall intensity-duration-frequency (IDF) curve. Such a traditional approach generally neglects the effect of rainfall intensity variability within events, as well as the variability of initial conditions, which depend on antecedent rainfall. We propose a Monte Carlo approach for estimating the return period of shallow landslide triggering which enables to account for both variabilities. Synthetic hourly rainfall-landslide data generated by Monte Carlo simulations are analysed to compute return periods as the mean interarrival time of a factor of safety less than one. Applications are first conducted to map landslide triggering hazard in the Loco catchment, located in highly landslide-prone area of the Peloritani Mountains, Sicily, Italy. Then a set of additional simulations are performed in order to evaluate the traditional IDF-based method by comparison with the Monte Carlo one. Results show that return period is affected significantly by variability of both rainfall intensity within events and of initial conditions, and that the traditional IDF-based approach may lead to an overestimation of the return period of landslide triggering, or, in other words, a non-conservative assessment of landslide hazard.
A New Approach to Monte Carlo Simulations in Statistical Physics
Landau, David P.
2002-08-01
Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).
MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, Jiao Y Y; Granroth, Garrett E; Abernathy, Douglas L; Lumsden, Mark D; Winn, Barry; Aczel, Adam A; Aivazis, Michael; Fultz, Brent
2015-01-01
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adopting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scatteri...
Monte Carlo simulation of proton track structure in biological matter
Quinto, Michele A.; Monti, Juan M.; Weck, Philippe F.; Fojón, Omar A.; Hanssen, Jocelyn; Rivarola, Roberto D.; Senot, Philippe; Champion, Christophe
2017-05-01
Understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V - devoted to the modeling of the slowing-down of 10 keV-100 MeV protons in both water and DNA - where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.
Monte Carlo Simulation for Statistical Decay of Compound Nucleus
Directory of Open Access Journals (Sweden)
Chadwick M.B.
2012-02-01
Full Text Available We perform Monte Carlo simulations for neutron and γ-ray emissions from a compound nucleus based on the Hauser-Feshbach statistical theory. This Monte Carlo Hauser-Feshbach (MCHF method calculation, which gives us correlated information between emitted particles and γ-rays. It will be a powerful tool in many applications, as nuclear reactions can be probed in a more microscopic way. We have been developing the MCHF code, CGM, which solves the Hauser-Feshbach theory with the Monte Carlo method. The code includes all the standard models that used in a standard Hauser-Feshbach code, namely the particle transmission generator, the level density module, interface to the discrete level database, and so on. CGM can emit multiple neutrons, as long as the excitation energy of the compound nucleus is larger than the neutron separation energy. The γ-ray competition is always included at each compound decay stage, and the angular momentum and parity are conserved. Some calculations for a fission fragment 140Xe are shown as examples of the MCHF method, and the correlation between the neutron and γ-ray is discussed.
Monte Carlo Simulation of HERD Calorimeter
Xu, M; Dong, Y W; Lu, J G; Quan, Z; Wang, L; Wang, Z G; Wu, B B; Zhang, S N
2014-01-01
The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measure...
Combining cellular automata and Monte Carlo algorithm to simulate three-dimensional grain growth
Institute of Scientific and Technical Information of China (English)
WANG Wei; CHEN Ju-hua; GUO Pei-quan; ZHAO Ping
2006-01-01
A 3-D simulation of grain growth was conducted by utilizing cellular automata (CA) and Monte Carlo (MC) algorithm. In the simulating procedure, the three-dimensional space is divided into a large number of 2-D isometric planes. Then, each of the planes is divided into identical square cells. Finally, the cellular automata and Monte Carlo algorithm are combined together to simulate the grain growth. Through an evolutionary simulation, the recrystallized microstructure, the grain growth rate and the grain size distribution are acceptably predicted. The simulation routine can be used to simulate the real physical-metallurgy processes and to predict quantitative dynamic information of the evolution of microstructure. Further more, the method is also useful for optimization of materials properties by controlling the microstructure evolution.
Bieda, Bogusław
2013-01-01
The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball® (CB), simulation program that helps analyze the uncertainties associated with Microsoft® Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection-dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Kraków, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design.
GPU-accelerated Monte Carlo simulation of particle coagulation based on the inverse method
Wei, J.; Kruis, F. E.
2013-09-01
Simulating particle coagulation using Monte Carlo methods is in general a challenging computational task due to its numerical complexity and the computing cost. Currently, the lowest computing costs are obtained when applying a graphic processing unit (GPU) originally developed for speeding up graphic processing in the consumer market. In this article we present an implementation of accelerating a Monte Carlo method based on the Inverse scheme for simulating particle coagulation on the GPU. The abundant data parallelism embedded within the Monte Carlo method is explained as it will allow an efficient parallelization of the MC code on the GPU. Furthermore, the computation accuracy of the MC on GPU was validated with a benchmark, a CPU-based discrete-sectional method. To evaluate the performance gains by using the GPU, the computing time on the GPU against its sequential counterpart on the CPU were compared. The measured speedups show that the GPU can accelerate the execution of the MC code by a factor 10-100, depending on the chosen particle number of simulation particles. The algorithm shows a linear dependence of computing time with the number of simulation particles, which is a remarkable result in view of the n2 dependence of the coagulation.
Monte Carlo simulation of a prototype photodetector used in radiotherapy
Kausch, C; Albers, D; Schmidt, R; Schreiber, B
2000-01-01
The imaging performance of prototype electronic portal imaging devices (EPID) has been investigated. Monte Carlo simulations have been applied to calculate the modulation transfer function (MTF( f )), the noise power spectrum (NPS( f )) and the detective quantum efficiency (DQE( f )) for different new type of EPIDs, which consist of a detector combination of metal or polyethylene (PE), a phosphor layer of Gd sub 2 O sub 2 S and a flat array of photodiodes. The simulated results agree well with measurements. Based on simulated results, possible optimization of these devices is discussed.
Computed radiography simulation using the Monte Carlo code MCNPX
Energy Technology Data Exchange (ETDEWEB)
Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)
2010-09-15
Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.
Investigating Transmission Efficiency of Light Guide by Monte Carlo Simulation
Institute of Scientific and Technical Information of China (English)
LiChen; XiaoGuoqing; GuoZhongyan; ZhanWenlongt; SunZhiyu; WangMeng; ChenZhiqiang; MaoRuishi; BaiJie; HuZhengguo; ChenLixin
2003-01-01
A large area neutron detector to detect the energy of about 1 GeV neutron by time-of flight method will be installed at RIBLL II of CSR. To obtain good energy resolution, the time resolution of the detector is a crucial parameter. For this purpose, the transmission efficiency of the light guide to transport the photons from detec-tor unit to light sensitive detector has been investigated by Monte-Carlo simulation. Here, the simulations were done mainly with two types of the light guides, namely type A and type B as shown in Figs.1 and 2 respectively.
Monte Carlo Simulation of Kinesin Movement with a Lattice Model
Institute of Scientific and Technical Information of China (English)
WANG Hong; DOU Shuo-Xing; WANG Peng-Ye
2005-01-01
@@ Kinesin is a processive double-headed molecular motor that moves along a microtubule by taking about 8nm steps. It generally hydrolyzes one ATP molecule for taking each forward step. The processive movement of the kinesin molecular motors is numerically simulated with a lattice model. The motors are considered as Brownian particles and the ATPase processes of both heads are taken into account. The Monte Carlo simulation results agree well with recent experimental observations, especially on the relation of velocity versus ATP and ADP concentrations.
Monte Carlo simulation of charge mediated magnetoelectricity in multiferroic bilayers
Energy Technology Data Exchange (ETDEWEB)
Ortiz-Álvarez, H.H. [Universidad de Caldas, Manizales (Colombia); Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Bedoya-Hincapié, C.M. [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Universidad Santo Tomás, Bogotá (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia)
2014-12-01
Simulations of a bilayer ferroelectric/ferromagnetic multiferroic system were carried out, based on the Monte Carlo method and Metropolis dynamics. A generic model was implemented with a Janssen-like Hamiltonian, taking into account magnetoelectric interactions due to charge accumulation at the interface. Two different magnetic exchange constants were considered for accumulation and depletion states. Several screening lengths were also included. Simulations exhibit considerable magnetoelectric effects not only at low temperature, but also at temperature near to the transition point of the ferromagnetic layer. The results match experimental observations for this kind of structure and mechanism.
More about Zener drag studies with Monte Carlo simulations
Di Prinzio, Carlos L.; Druetta, Esteban; Nasello, Olga Beatriz
2013-03-01
Grain growth (GG) processes in the presence of second-phase and stationary particles have been widely studied but the results found are inconsistent. We present new GG simulations in two- and three-dimensional (2D and 3D) polycrystalline samples with second phase stationary particles, using the Monte Carlo technique. Simulations using values of particle concentration greater than 15% and particle radii different from 1 or 3 are performed, thus covering a range of particle radii and concentrations not previously studied. It is shown that only the results for 3D samples follow Zener's law.
National Research Council Canada - National Science Library
Zimmermann, Leonard W; Amoush, Ahmad; Wilkinson, Douglas A
2015-01-01
... for an Eye Physics model EP917 eye plaque. Monte Carlo (MC) simulation using MCNPX 2.7 was used to calculate the central axis dose in water for an EP917 eye plaque fully loaded with 17 IsoAid Advantage (125)I seeds...
National Research Council Canada - National Science Library
Zimmermann, Leonard W; Amoush, Ahmad; Wilkinson, Douglas A
2015-01-01
... for an Eye Physics model EP917 eye plaque. Monte Carlo (MC) simulation using MCNPX 2.7 was used to calculate the central axis dose in water for an EP917 eye plaque fully loaded with 17 IsoAid Advantage 125 I seeds...
Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
Martinov, Martin P; Thomson, Rowan M
2017-02-01
To introduce the heterogeneous multiscale (HetMS) model for Monte Carlo simulations of gold nanoparticle dose-enhanced radiation therapy (GNPT), a model characterized by its varying levels of detail on different length scales within a single phantom; to apply the HetMS model in two different scenarios relevant for GNPT and to compare computed results with others published. The HetMS model is implemented using an extended version of the EGSnrc user-code egs_chamber; the extended code is tested and verified via comparisons with recently published data from independent GNP simulations. Two distinct scenarios for the HetMS model are then considered: (a) monoenergetic photon beams (20 keV to 1 MeV) incident on a cylinder (1 cm radius, 3 cm length); (b) isotropic point source (brachytherapy source spectra) at the center of a 2.5 cm radius sphere with gold nanoparticles (GNPs) diffusing outwards from the center. Dose enhancement factors (DEFs) are compared for different source energies, depths in phantom, gold concentrations, GNP sizes, and modeling assumptions, as well as with independently published values. Simulation efficiencies are investigated. The HetMS MC simulations account for the competing effects of photon fluence perturbation (due to gold in the scatter media) coupled with enhanced local energy deposition (due to modeling discrete GNPs within subvolumes). DEFs are most sensitive to these effects for the lower source energies, varying with distance from the source; DEFs below unity (i.e., dose decreases, not enhancements) can occur at energies relevant for brachytherapy. For example, in the cylinder scenario, the 20 keV photon source has a DEF of 3.1 near the phantom's surface, decreasing to less than unity by 0.7 cm depth (for 20 mg/g). Compared to discrete modeling of GNPs throughout the gold-containing (treatment) volume, efficiencies are enhanced by up to a factor of 122 with the HetMS approach. For the spherical phantom, DEFs vary with time for diffusion
Monte Carlo simulation on backward steps of single kinesin molecule
Institute of Scientific and Technical Information of China (English)
Wang Hong; Zhang Yong; Dou Shuo-Xing; Wang Peng-Ye
2008-01-01
Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward steps of kinesin under different loads and temperatures start to attract interests, and the relations among them are revealed. This paper aims to theoretically understand these relations observed in experiments. After introducing a backward pathway into the previous model of the ATPase cycle of kinesin movement, the dependence of the backward movement on the load and the temperature is explored through Monte Carlo simulation. Our results agree well with previous experiments.
Monte Carlo simulation experiments on box-type radon dosimeter
Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-11-01
Epidemiological studies show that inhalation of radon gas (222Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222Rn concentrations (Bq/m3) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter's dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (ηint) and alpha hit efficiency (ηhit). The ηint depends upon only on the dimensions of the dosimeter and ηhit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon concentration from the
Monte-Carlo Simulation on Neutron Instruments at CARR
Institute of Scientific and Technical Information of China (English)
2001-01-01
The design of high resolution neutron powder diffractometer(HRPD) and two cold neutron guides(CNGs) to be built at China advanced research reactor(CARR) are studied by Monte-Carlo simulation technique.The HRPD instrument is desiged to have a minimum resolution of 0.2% and neutron fluence rate of greater than 106 cm-2 ·s-1 at sample position. The resolution curves, neutron fluence rate and effective neutron beam size at sample position are given. Differences in resolutions and intensity between the
Monte Carlo simulation of AB-copolymers with saturating bonds
DEFF Research Database (Denmark)
Chertovich, A.C.; Ivanov, V.A.; Khokhlov, A.R.
2003-01-01
Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A- and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending...... to those of diblock sequences than to the properties of random sequences. The model (although quite rough) is expected to represent some basic features of real RNA molecules, i.e. the formation of secondary structure of RNA due to hydrogen bonding of corresponding bases and stacking interactions...
Monte Carlo Simulation for the MAGIC-II System
Carmona, E; Moralejo, A; Vitale, V; Sobczynska, D; Haffke, M; Bigongiari, C; Otte, N; Cabras, G; De Maria, M; De Sabata, F
2007-01-01
Within the year 2007, MAGIC will be upgraded to a two telescope system at La Palma. Its main goal is to improve the sensitivity in the stereoscopic/coincident operational mode. At the same time it will lower the analysis threshold of the currently running single MAGIC telescope. Results from the Monte Carlo simulations of this system will be discussed. A comparison of the two telescope system with the performance of one single telescope will be shown in terms of sensitivity, angular resolution and energy resolution.
Cluster Monte Carlo simulations of the nematic-isotropic transition
Priezjev, N. V.; Pelcovits, Robert A.
2001-06-01
We report the results of simulations of the three-dimensional Lebwohl-Lasher model of the nematic-isotropic transition using a single cluster Monte Carlo algorithm. The algorithm, first introduced by Kunz and Zumbach to study two-dimensional nematics, is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size. We thus obtain an upper estimate of the value of the transition temperature in the thermodynamic limit.
A generalized hard-sphere model for Monte Carlo simulation
Hassan, H. A.; Hash, David B.
1993-01-01
A new molecular model, called the generalized hard-sphere, or GHS model, is introduced. This model contains, as a special case, the variable hard-sphere model of Bird (1981) and is capable of reproducing all of the analytic viscosity coefficients available in the literature that are derived for a variety of interaction potentials incorporating attraction and repulsion. In addition, a new procedure for determining interaction potentials in a gas mixture is outlined. Expressions needed for implementing the new model in the direct simulation Monte Carlo methods are derived. This development makes it possible to employ interaction models that have the same level of complexity as used in Navier-Stokes calculations.
Implict Monte Carlo Radiation Transport Simulations of Four Test Problems
Energy Technology Data Exchange (ETDEWEB)
Gentile, N
2007-08-01
Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.
Monte Carlo simulation experiments on box-type radon dosimeter
Energy Technology Data Exchange (ETDEWEB)
Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-11-11
Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper
Proceedings of the first symposium on Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-01-01
The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)
Probabilistic Assessments of the Plate Using Monte Carlo Simulation
Energy Technology Data Exchange (ETDEWEB)
Ismail, A E [Department of Mechanical Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400 Johor (Malaysia); Ariffin, A K; Abdullah, S; Ghazali, M J, E-mail: kamal@eng.ukm.my, E-mail: shahrum@eng.ukm.my, E-mail: maryam@eng.ukm.my, E-mail: emran@uthm.edu.my [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)
2011-02-15
This paper presents the probabilistic analysis of the plate with a hole using several multiaxial high cycle fatigue criteria (MHFC). Dang Van, Sines, Crossland criteria were used and von Mises criterion was also considered for comparison purpose. Parametric finite element model of the plate was developed and several important random variable parameters were selected and Latin Hypercube Sampling Monte-Carlo Simulation (LHS-MCS) was used for probabilistic analysis tool. It was found that, different structural reliability and sensitivity factors were obtained using different failure criteria. According to the results multiaxial fatigue criteria are the most significant criteria need to be considered in assessing all the structural behavior especially under complex loadings.
Probabilistic Assessments of the Plate Using Monte Carlo Simulation
Ismail, A. E.; Ariffin, A. K.; Abdullah, S.; Ghazali, M. J.
2011-02-01
This paper presents the probabilistic analysis of the plate with a hole using several multiaxial high cycle fatigue criteria (MHFC). Dang Van, Sines, Crossland criteria were used and von Mises criterion was also considered for comparison purpose. Parametric finite element model of the plate was developed and several important random variable parameters were selected and Latin Hypercube Sampling Monte-Carlo Simulation (LHS-MCS) was used for probabilistic analysis tool. It was found that, different structural reliability and sensitivity factors were obtained using different failure criteria. According to the results multiaxial fatigue criteria are the most significant criteria need to be considered in assessing all the structural behavior especially under complex loadings.
Monte Carlo simulations of charge transport in heterogeneous organic semiconductors
Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta
2015-03-01
The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.
New electron multiple scattering distributions for Monte Carlo transport simulation
Energy Technology Data Exchange (ETDEWEB)
Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))
1994-10-01
New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))
Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations
Fiorentini, G; Sarkar, S; Villante, F L
1998-01-01
We present a simple method for determining the (correlated) uncertainties of the light element abundances expected from big bang nucleosynthesis, which avoids the need for lengthy Monte Carlo simulations. Our approach helps to clarify the role of the different nuclear reactions contributing to a particular elemental abundance and makes it easy to implement energy-independent changes in the measured reaction rates. As an application, we demonstrate how this method simplifies the statistical estimation of the nucleon-to-photon ratio through comparison of the standard BBN predictions with the observationally inferred abundances.
Progress and status of the OpenMC Monte Carlo code
Energy Technology Data Exchange (ETDEWEB)
Romano, P. K.; Herman, B. R.; Horelik, N. E.; Forget, B.; Smith, K. [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Siegel, A. R. [Argonne National Laboratory, Theory and Computing Sciences and Nuclear Engineering Division (United States)
2013-07-01
The present work describes the latest advances and progress in the development of the OpenMC Monte Carlo code, an open-source code originating from the Massachusetts Institute of Technology. First, an overview of the development workflow of OpenMC is given. Various enhancements to the code such as real-time XML input validation, state points, plotting, OpenMP threading, and coarse mesh finite difference acceleration are described. (authors)
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2015-12-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.
Non-Boltzmann Ensembles and Monte Carlo Simulations
Murthy, K. P. N.
2016-10-01
Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc. This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g(E, M), as a function of both energy E, and order parameter M. This is carried out in two stages. We estimate g(E) in the first stage. Employing g
Monte Carlo simulation of zinc protoporphyrin fluorescence in the retina
Chen, Xiaoyan; Lane, Stephen
2010-02-01
We have used Monte Carlo simulation of autofluorescence in the retina to determine that noninvasive detection of nutritional iron deficiency is possible. Nutritional iron deficiency (which leads to iron deficiency anemia) affects more than 2 billion people worldwide, and there is an urgent need for a simple, noninvasive diagnostic test. Zinc protoporphyrin (ZPP) is a fluorescent compound that accumulates in red blood cells and is used as a biomarker for nutritional iron deficiency. We developed a computational model of the eye, using parameters that were identified either by literature search, or by direct experimental measurement to test the possibility of detecting ZPP non-invasively in retina. By incorporating fluorescence into Steven Jacques' original code for multi-layered tissue, we performed Monte Carlo simulation of fluorescence in the retina and determined that if the beam is not focused on a blood vessel in a neural retina layer or if part of light is hitting the vessel, ZPP fluorescence will be 10-200 times higher than background lipofuscin fluorescence coming from the retinal pigment epithelium (RPE) layer directly below. In addition we found that if the light can be focused entirely onto a blood vessel in the neural retina layer, the fluorescence signal comes only from ZPP. The fluorescence from layers below in this second situation does not contribute to the signal. Therefore, the possibility that a device could potentially be built and detect ZPP fluorescence in retina looks very promising.
Utilizing Monte Carlo Simulations to Optimize Institutional Empiric Antipseudomonal Therapy
Directory of Open Access Journals (Sweden)
Sarah J. Tennant
2015-12-01
Full Text Available Pseudomonas aeruginosa is a common pathogen implicated in nosocomial infections with increasing resistance to a limited arsenal of antibiotics. Monte Carlo simulation provides antimicrobial stewardship teams with an additional tool to guide empiric therapy. We modeled empiric therapies with antipseudomonal β-lactam antibiotic regimens to determine which were most likely to achieve probability of target attainment (PTA of ≥90%. Microbiological data for P. aeruginosa was reviewed for 2012. Antibiotics modeled for intermittent and prolonged infusion were aztreonam, cefepime, meropenem, and piperacillin/tazobactam. Using minimum inhibitory concentrations (MICs from institution-specific isolates, and pharmacokinetic and pharmacodynamic parameters from previously published studies, a 10,000-subject Monte Carlo simulation was performed for each regimen to determine PTA. MICs from 272 isolates were included in this analysis. No intermittent infusion regimens achieved PTA ≥90%. Prolonged infusions of cefepime 2000 mg Q8 h, meropenem 1000 mg Q8 h, and meropenem 2000 mg Q8 h demonstrated PTA of 93%, 92%, and 100%, respectively. Prolonged infusions of piperacillin/tazobactam 4.5 g Q6 h and aztreonam 2 g Q8 h failed to achieved PTA ≥90% but demonstrated PTA of 81% and 73%, respectively. Standard doses of β-lactam antibiotics as intermittent infusion did not achieve 90% PTA against P. aeruginosa isolated at our institution; however, some prolonged infusions were able to achieve these targets.
Multi-pass Monte Carlo simulation method in nuclear transmutations.
Mateescu, Liviu; Kadambi, N Prasad; Ravindra, Nuggehalli M
2016-12-01
Monte Carlo methods, in their direct brute simulation incarnation, bring realistic results if the involved probabilities, be they geometrical or otherwise, remain constant for the duration of the simulation. However, there are physical setups where the evolution of the simulation represents a modification of the simulated system itself. Chief among such evolving simulated systems are the activation/transmutation setups. That is, the simulation starts with a given set of probabilities, which are determined by the geometry of the system, the components and by the microscopic interaction cross-sections. However, the relative weight of the components of the system changes along with the steps of the simulation. A natural measure would be adjusting probabilities after every step of the simulation. On the other hand, the physical system has typically a number of components of the order of Avogadro's number, usually 10(25) or 10(26) members. A simulation step changes the characteristics for just a few of these members; a probability will therefore shift by a quantity of 1/10(25). Such a change cannot be accounted for within a simulation, because then the simulation should have then a number of at least 10(28) steps in order to have some significance. This is not feasible, of course. For our computing devices, a simulation of one million steps is comfortable, but a further order of magnitude becomes too big a stretch for the computing resources. We propose here a method of dealing with the changing probabilities, leading to the increasing of the precision. This method is intended as a fast approximating approach, and also as a simple introduction (for the benefit of students) in the very branched subject of Monte Carlo simulations vis-à-vis nuclear reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monte Carlo simulations in small animal PET imaging
Energy Technology Data Exchange (ETDEWEB)
Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)
2007-10-01
This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.
Spatial distribution sampling and Monte Carlo simulation of radioactive isotopes
Krainer, Alexander Michael
2015-01-01
This work focuses on the implementation of a program for random sampling of uniformly spatially distributed isotopes for Monte Carlo particle simulations and in specific FLUKA. With FLUKA it is possible to calculate the radio nuclide production in high energy fields. The decay of these nuclide, and therefore the resulting radiation field, however can only be simulated in the same geometry. This works gives the tool to simulate the decay of the produced nuclide in other geometries. With that the radiation field from an irradiated object can be simulated in arbitrary environments. The sampling of isotope mixtures was tested by simulating a 50/50 mixture of $Cs^{137}$ and $Co^{60}$. These isotopes are both well known and provide therefore a first reliable benchmark in that respect. The sampling of uniformly distributed coordinates was tested using the histogram test for various spatial distributions. The advantages and disadvantages of the program compared to standard methods are demonstrated in the real life ca...
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids
Energy Technology Data Exchange (ETDEWEB)
Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morales, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-11-10
We propose a method of implementing projected wave functions for second-quantized auxiliary- field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. AS such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.
Velazquez, L.; Castro-Palacio, J. C.
2013-07-01
Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.
Burrows, John
2013-04-01
An introduction to the use of the mathematical technique of Monte Carlo simulations to evaluate least squares regression calibration is described. Monte Carlo techniques involve the repeated sampling of data from a population that may be derived from real (experimental) data, but is more conveniently generated by a computer using a model of the analytical system and a randomization process to produce a large database. Datasets are selected from this population and fed into the calibration algorithms under test, thus providing a facile way of producing a sufficiently large number of assessments of the algorithm to enable a statically valid appraisal of the calibration process to be made. This communication provides a description of the technique that forms the basis of the results presented in Parts II and III of this series, which follow in this issue, and also highlights the issues arising from the use of small data populations in bioanalysis.
SIMIND Monte Carlo simulation of a single photon emission CT
Directory of Open Access Journals (Sweden)
Bahreyni Toossi M
2010-01-01
Full Text Available In this study, we simulated a Siemens E.CAM SPECT system using SIMIND Monte Carlo program to acquire its experimental characterization in terms of energy resolution, sensitivity, spatial resolution and imaging of phantoms using 99m Tc. The experimental and simulation data for SPECT imaging was acquired from a point source and Jaszczak phantom . Verification of the simulation was done by comparing two sets of images and related data obtained from the actual and simulated systems. Image quality was assessed by comparing image contrast and resolution. Simulated and measured energy spectra (with or without a collimator and spatial resolution from point sources in air were compared. The resulted energy spectra present similar peaks for the gamma energy of 99m Tc at 140 KeV. FWHM for the simulation calculated to14.01 KeV and 13.80 KeV for experimental data, corresponding to energy resolution of 10.01and 9.86% compared to defined 9.9% for both systems, respectively. Sensitivities of the real and virtual gamma cameras were calculated to 85.11 and 85.39 cps/MBq, respectively. The energy spectra of both simulated and real gamma cameras were matched. Images obtained from Jaszczak phantom, experimentally and by simulation, showed similarity in contrast and resolution. SIMIND Monte Carlo could successfully simulate the Siemens E.CAM gamma camera. The results validate the use of the simulated system for further investigation, including modification, planning, and developing a SPECT system to improve the quality of images.
Monte Carlo Simulation Of Emission Tomography And Other Medical Imaging Techniques.
Harrison, Robert L
2010-01-05
An introduction to Monte Carlo simulation of emission tomography. This paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations.
Accelerating particle-in-cell simulations using multilevel Monte Carlo
Ricketson, Lee
2015-11-01
Particle-in-cell (PIC) simulations have been an important tool in understanding plasmas since the dawn of the digital computer. Much more recently, the multilevel Monte Carlo (MLMC) method has accelerated particle-based simulations of a variety of systems described by stochastic differential equations (SDEs), from financial portfolios to porous media flow. The fundamental idea of MLMC is to perform correlated particle simulations using a hierarchy of different time steps, and to use these correlations for variance reduction on the fine-step result. This framework is directly applicable to the Langevin formulation of Coulomb collisions, as demonstrated in previous work, but in order to apply to PIC simulations of realistic scenarios, MLMC must be generalized to incorporate self-consistent evolution of the electromagnetic fields. We present such a generalization, with rigorous results concerning its accuracy and efficiency. We present examples of the method in the collisionless, electrostatic context, and discuss applications and extensions for the future.
OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development
Romano, Paul K.; Horelik, Nicholas E.; Herman, Bryan R.; Nelson, Adam G.; Forget, Benoit; Smith, Kord
2014-06-01
This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes.
Kinetic Monte Carlo simulation of the classical nucleation process
Filipponi, A.; Giammatteo, P.
2016-12-01
We implemented a kinetic Monte Carlo computer simulation of the nucleation process in the framework of the coarse grained scenario of the Classical Nucleation Theory (CNT). The computational approach is efficient for a wide range of temperatures and sample sizes and provides a reliable simulation of the stochastic process. The results for the nucleation rate are in agreement with the CNT predictions based on the stationary solution of the set of differential equations for the continuous variables representing the average population distribution of nuclei size. Time dependent nucleation behavior can also be simulated with results in agreement with previous approaches. The method, here established for the case in which the excess free-energy of a crystalline nucleus is a smooth-function of the size, can be particularly useful when more complex descriptions are required.
Monte Carlo simulations for design of the KFUPM PGNAA facility
Naqvi, A A; Maslehuddin, M; Kidwai, S
2003-01-01
Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement samp...
A Monte Carlo Simulation Framework for Testing Cosmological Models
Directory of Open Access Journals (Sweden)
Heymann Y.
2014-10-01
Full Text Available We tested alternative cosmologies using Monte Carlo simulations based on the sam- pling method of the zCosmos galactic survey. The survey encompasses a collection of observable galaxies with respective redshifts that have been obtained for a given spec- troscopic area of the sky. Using a cosmological model, we can convert the redshifts into light-travel times and, by slicing the survey into small redshift buckets, compute a curve of galactic density over time. Because foreground galaxies obstruct the images of more distant galaxies, we simulated the theoretical galactic density curve using an average galactic radius. By comparing the galactic density curves of the simulations with that of the survey, we could assess the cosmologies. We applied the test to the expanding-universe cosmology of de Sitter and to a dichotomous cosmology.
Monte Carlo Simulation Tool Installation and Operation Guide
Energy Technology Data Exchange (ETDEWEB)
Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.
2013-09-02
This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.
Directory of Open Access Journals (Sweden)
F. Spada
2006-02-01
Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation.
First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++.
A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem. For the first time, however, the validity of the equivalence theorem is demonstrated in a spherical 3-D radiative transfer model.
Directory of Open Access Journals (Sweden)
F. Spada
2006-01-01
Full Text Available A new multiple-scattering Monte Carlo 3-D radiative transfer model named McSCIA (Monte Carlo for SCIAmachy is presented. The backward technique is used to efficiently simulate narrow field of view instruments. The McSCIA algorithm has been formulated as a function of the Earth's radius, and can thus perform simulations for both plane-parallel and spherical atmospheres. The latter geometry is essential for the interpretation of limb satellite measurements, as performed by SCIAMACHY on board of ESA's Envisat. The model can simulate UV-vis-NIR radiation. First the ray-tracing algorithm is presented in detail, and then successfully validated against literature references, both in plane-parallel and in spherical geometry. A simple 1-D model is used to explain two different ways of treating absorption. One method uses the single scattering albedo while the other uses the equivalence theorem. The equivalence theorem is based on a separation of absorption and scattering. It is shown that both methods give, in a statistical way, identical results for a wide variety of scenarios. Both absorption methods are included in McSCIA, and it is shown that also for a 3-D case both formulations give identical results. McSCIA limb profiles for atmospheres with and without absorption compare well with the one of the state of the art Monte Carlo radiative transfer model MCC++. A simplification of the photon statistics may lead to very fast calculations of absorption features in the atmosphere. However, these simplifications potentially introduce biases in the results. McSCIA does not use simplifications and is therefore a relatively slow implementation of the equivalence theorem.
MC3: Multi-core Markov-chain Monte Carlo code
Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan
2016-10-01
MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.
Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation
Dirgayussa, I. Gde Eka; Yani, Sitti; Rhani, M. Fahdillah; Haryanto, Freddy
2015-09-01
Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose
Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id [Institut Teknologi Bandung, Jl. Ganesha 10, 40132 (Indonesia); Rhani, M. Fahdillah [Tang Tock Seng Hospital (Singapore)
2015-09-30
Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Multidiscontinuity algorithm for world-line Monte Carlo simulations.
Kato, Yasuyuki
2013-01-01
We introduce a multidiscontinuity algorithm for the efficient global update of world-line configurations in Monte Carlo simulations of interacting quantum systems. This algorithm is a generalization of the two-discontinuity algorithms introduced in Refs. [N. Prokof'ev, B. Svistunov, and I. Tupitsyn, Phys. Lett. A 238, 253 (1998)] and [O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66, 046701 (2002)]. This generalization is particularly effective for studying Bose-Einstein condensates (BECs) of composite particles. In particular, we demonstrate the utility of the generalized algorithm by simulating a Hamiltonian for an S=1 antiferromagnet with strong uniaxial single-ion anisotropy. The multidiscontinuity algorithm not only solves the freezing problem that arises in this limit, but also allows the efficient computing of the off-diagonal correlator that characterizes a BEC of composite particles.
Markov chain Monte Carlo simulation for Bayesian Hidden Markov Models
Chan, Lay Guat; Ibrahim, Adriana Irawati Nur Binti
2016-10-01
A hidden Markov model (HMM) is a mixture model which has a Markov chain with finite states as its mixing distribution. HMMs have been applied to a variety of fields, such as speech and face recognitions. The main purpose of this study is to investigate the Bayesian approach to HMMs. Using this approach, we can simulate from the parameters' posterior distribution using some Markov chain Monte Carlo (MCMC) sampling methods. HMMs seem to be useful, but there are some limitations. Therefore, by using the Mixture of Dirichlet processes Hidden Markov Model (MDPHMM) based on Yau et. al (2011), we hope to overcome these limitations. We shall conduct a simulation study using MCMC methods to investigate the performance of this model.
Treatment planning in radiosurgery: parallel Monte Carlo simulation software
Energy Technology Data Exchange (ETDEWEB)
Scielzo, G. [Galliera Hospitals, Genova (Italy). Dept. of Hospital Physics; Grillo Ruggieri, F. [Galliera Hospitals, Genova (Italy) Dept. for Radiation Therapy; Modesti, M.; Felici, R. [Electronic Data System, Rome (Italy); Surridge, M. [University of South Hampton (United Kingdom). Parallel Apllication Centre
1995-12-01
The main objective of this research was to evaluate the possibility of direct Monte Carlo simulation for accurate dosimetry with short computation time. We made us of: graphics workstation, linear accelerator, water, PMMA and anthropomorphic phantoms, for validation purposes; ionometric, film and thermo-luminescent techniques, for dosimetry; treatment planning system for comparison. Benchmarking results suggest that short computing times can be obtained with use of the parallel version of EGS4 that was developed. Parallelism was obtained assigning simulation incident photons to separate processors, and the development of a parallel random number generator was necessary. Validation consisted in: phantom irradiation, comparison of predicted and measured values good agreement in PDD and dose profiles. Experiments on anthropomorphic phantoms (with inhomogeneities) were carried out, and these values are being compared with results obtained with the conventional treatment planning system.
Monte Carlo Simulation of Magnetization Behaviour of Co Nanowires
Institute of Scientific and Technical Information of China (English)
ZHONG Ke-Hua; HUANG Zhi-Gao; FENG Qian; JIANG Li-Qin; YANG Yan-Min; CHEN Zhi-Gao
2006-01-01
Based on the Monte Carlo method, we simulate the magnetization curves with various magnetic field orientations for various single Co nanowires at room temperature. The simulated switching field as a function of angle θ between the field and the wire axis is consistent well with the experimental data. Correspondingly, the coercivity as a function of angle θ is presented, which together with the switching field plays an important role on explaining the magnetic reversal mechanism. It is found that the angular dependence of coercivity depends on the diameter of nanowires, and the coercivity and switching field versus θ deviate markedly from the prediction from the classical uniform rotation mode in the chain-of-sphere model. Furthermore, the magnetic reversal configurations display that magnetization reversal in the wires with small diameters is a nucleation-propagation process, and it is similar to the curling spread process in the larger wires.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Quantitative application of Monte Carlo simulation in Fire-PSA
Energy Technology Data Exchange (ETDEWEB)
Mangs, J.; Hostikka, S.; Korhonen, T. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland); Keski-Rahkonen, O.
2007-05-15
In a power plant a fire cell forms the basic subunit. Since the fire is initially located there, the full-scale time dependent fire simulation and estimation of target response must be performed within the fire cell. Conditional, time dependent damage probabilities in a fire cell can now be calculated for arbitrary targets (component or a subsystem) combining probabilistic (Monte Carlo) and deterministic simulation. For the latter a spectrum from simple correlations up to latest computational fluid dynamics models is available. Selection of the code is made according to the requirements form the target cell. Although calculations are numerically heavy, it is now economically possible and feasible to carry out quantitative fire-PSA for a complete plant iteratively with the main PSA. From real applications examples are shown on assessment of fire spread possibility in a relay room, and potential of fire spread on cables in a tunnel. (orig.)
Monte Carlo simulation of electrical corona discharge in air
Energy Technology Data Exchange (ETDEWEB)
Settaouti, A.; Settaouti, L. [Electrotechnic Department, University of Sciences and Technology, P.O. Box 1505, El-M' naouar, Oran (Algeria)
2011-01-15
Electrical discharges play a key role in technologies; there are many industrial applications where the corona discharge is used. Air as insulator is probably the best compromise solution for many applications. All of this reflects on the great importance of the evaluation of the corona performance characteristics. Numerical simulation of the corona discharge helps to better understand the involved phenomena and optimize the corona devices. This paper is aimed at calculating the corona discharge in negative point-plane air gaps. To describe the non-equilibrium behavior of the electronic avalanches and to simulate the development of corona discharge the method of Monte Carlo has been used. This model provides the spatial-temporal local field and particles charged densities variations as well as the ionization front velocity. (author)
Monte Carlo simulations of nanoscale focused neon ion beam sputtering.
Timilsina, Rajendra; Rack, Philip D
2013-12-13
A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.
Time-quantifiable Monte Carlo method for simulating a magnetization-reversal process
Cheng, X. Z.; Jalil, M. B. A.; Lee, H. K.; Okabe, Y.
2005-09-01
We propose a time-quantifiable Monte Carlo (MC) method to simulate the thermally induced magnetization reversal for an isolated single domain particle system. The MC method involves the determination of density of states and the use of Master equation for time evolution. We derive an analytical factor to convert MC steps into real time intervals. Unlike a previous time-quantified MC method, our method is readily scalable to arbitrarily long time scales, and can be repeated for different temperatures with minimal computational effort. Based on the conversion factor, we are able to make a direct comparison between the results obtained from MC and Langevin dynamics methods and find excellent agreement between them. An analytical formula for the magnetization reversal time is also derived, which agrees very well with both numerical Langevin and time-quantified MC results, over a large temperature range and for parallel and oblique easy axis orientations.
A Monte Carlo simulation of the packing and segregation of spheres in cylinders
Directory of Open Access Journals (Sweden)
C. R. A. ABREU
1999-12-01
Full Text Available In this work, the Monte Carlo method (MC was extended to simulate the packing and segregation of particles subjected to a gravitational field and confined inside rigid walls. The method was used in systems containing spheres inside cylinders. The calculation of void fraction profiles in both the axial and radial directions was formulated, and some results are presented. In agreement with experimental data, the simulations show that the packed beds present structural ordering near the cylindrical walls up to a distance of about 4 particle diameters. The simulations also indicate that the presence of the cylindrical wall does not seem to have a strong effect on the gravitational segregation phenomenon.
Prediction of beam hardening artefacts in computed tomography using Monte Carlo simulations
DEFF Research Database (Denmark)
Thomsen, M.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær
2015-01-01
We show how radiological images of both single and multi material samples can be simulated using the Monte Carlo simulation tool McXtrace and how these images can be used to make a three dimensional reconstruction. Good numerical agreement between the X-ray attenuation coefficient in experimental......, illustrated with an example. Linearisation requires knowledge about the X-ray transmission at varying sample thickness, but in some cases homogeneous calibration phantoms are hard to manufacture, which affects the accuracy of the calibration. Using simulated data overcomes the manufacturing problems...
Complete Monte Carlo Simulation of Neutron Scattering Experiments
Drosg, M.
2011-12-01
In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of 3He(n,n)3He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the
A Variable Coefficient Method for Accurate Monte Carlo Simulation of Dynamic Asset Price
Li, Yiming; Hung, Chih-Young; Yu, Shao-Ming; Chiang, Su-Yun; Chiang, Yi-Hui; Cheng, Hui-Wen
2007-07-01
In this work, we propose an adaptive Monte Carlo (MC) simulation technique to compute the sample paths for the dynamical asset price. In contrast to conventional MC simulation with constant drift and volatility (μ,σ), our MC simulation is performed with variable coefficient methods for (μ,σ) in the solution scheme, where the explored dynamic asset pricing model starts from the formulation of geometric Brownian motion. With the method of simultaneously updated (μ,σ), more than 5,000 runs of MC simulation are performed to fulfills basic accuracy of the large-scale computation and suppresses statistical variance. Daily changes of stock market index in Taiwan and Japan are investigated and analyzed.
Institute of Scientific and Technical Information of China (English)
Nunu Ren; Heng Zhao; Shouping Zhu; Xiaochao Qu; Hongliang Liu; Zhenhua Hu; Jimin Liang; Jie Tian
2011-01-01
@@ Monte Carlo (MC) method is a statistical method for simulating photon propagation in media in the optical molecular imaging field.However, obtaining an accurate result using the method is quite time-consuming,especially because the boundary of the media is complex.A voxel classification method is proposed to reduce the computation cost.All the voxels generated by dividing the media are classified into three types (outside, boundary, and inside) according to the position of the voxel.The classified information is used to determine the relative position of the photon and the intersection between photon path and media boundary in the MC method.The influencing factor8 and effectiveness of the proposed method are analyzed and validated by simulation experiments.%Monte Carlo (MC) method is a statistical method for simulating photon propagation in media in the optical molecular imaging field. However, obtaining an accurate result using the method is quite time-consuming,especially because the boundary of the media is complex. A voxel classification method is proposed to reduce the computation cost. All the voxels generated by dividing the media are classified into three types (outside, boundary, and inside) according to the position of the voxel. The classified information is used to determine the relative position of the photon and the intersection between photon path and media boundary in the MC method. The influencing factors and effectiveness of the proposed method are analyzed and validated by simulation experiments.
Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas
Dimarco, Giacomo; Pareschi, Lorenzo
2010-01-01
We consider the development of Monte Carlo schemes for molecules with Coulomb interactions. We generalize the classic algorithms of Bird and Nanbu-Babovsky for rarefied gas dynamics to the Coulomb case thanks to the approximation introduced by Bobylev and Nanbu (Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Physical Review E, Vol. 61, 2000). Thus, instead of considering the original Boltzmann collision operator, the schemes are constructed through the use of an approximated Boltzmann operator. With the above choice larger time steps are possible in simulations; moreover the expensive acceptance-rejection procedure for collisions is avoided and every particle collides. Error analysis and comparisons with the original Bobylev-Nanbu (BN) scheme are performed. The numerical results show agreement with the theoretical convergence rate of the approximated Boltzmann operator and the better performance of Bird-type schemes with respect to t...
Measuring Renyi entanglement entropy in quantum Monte Carlo simulations.
Hastings, Matthew B; González, Iván; Kallin, Ann B; Melko, Roger G
2010-04-16
We develop a quantum Monte Carlo procedure, in the valence bond basis, to measure the Renyi entanglement entropy of a many-body ground state as the expectation value of a unitary Swap operator acting on two copies of the system. An improved estimator involving the ratio of Swap operators for different subregions enables convergence of the entropy in a simulation time polynomial in the system size. We demonstrate convergence of the Renyi entropy to exact results for a Heisenberg chain. Finally, we calculate the scaling of the Renyi entropy in the two-dimensional Heisenberg model and confirm that the Néel ground state obeys the expected area law for systems up to linear size L=32.
Monte Carlo Simulation of Diamond Deposition at Low Temperature
Institute of Scientific and Technical Information of China (English)
董丽芳; 张玉红
2001-01-01
Diamond deposition at low temperatures is investigated and the relationship between substrate temperature for diamond growth and the energy of the carbonaceous species is given. The electron energy distribution and velocity distribution during the electron assisted chemical vapour deposition have been obtained by using Monte Carlo simulation. The main results obtained are as follows. (1) The substrate temperature for diamond growth will be lower than 800 C when the carbonaceous species on the substrate have mobility energy. For example, if the energy of the carbonaceous species is 0. 75 eV, the substrate temperature will be 380℃-600℃. (2) The greatnumber of atomic H on the substrate is of importance to the growth of diamond films.
Residual entropy of ice III from Monte Carlo simulation.
Kolafa, Jiří
2016-03-28
We calculated the residual entropy of ice III as a function of the occupation probabilities of hydrogen positions α and β assuming equal energies of all configurations. To do this, a discrete ice model with Bjerrum defect energy penalty and harmonic terms to constrain the occupation probabilities was simulated by the Metropolis Monte Carlo method for a range of temperatures and sizes followed by thermodynamic integration and extrapolation to N = ∞. Similarly as for other ices, the residual entropies are slightly higher than the mean-field (no-loop) approximation. However, the corrections caused by fluctuation of energies of ice samples calculated using molecular models of water are too large for accurate determination of the chemical potential and phase equilibria.
Monte Carlo simulations of landmine detection using neutron backscattering imaging
Energy Technology Data Exchange (ETDEWEB)
Datema, Cor P. E-mail: c.datema@iri.tudelft.nl; Bom, Victor R.; Eijk, Carel W.E. van
2003-11-01
Neutron backscattering is a technique that has successfully been applied to the detection of non-metallic landmines. Most of the effort in this field has concentrated on single detectors that are scanned across the soil. Here, two new approaches are presented in which a two-dimensional image of the hydrogen distribution in the soil is made. The first method uses an array of position-sensitive {sup 3}He-tubes that is placed in close proximity of the soil. The second method is based on coded aperture imaging. Here, thermal neutrons from the soil are projected onto a detector which is typically placed one to several meters above the soil. Both methods use a pulsed D/D neutron source. The Monte Carlo simulation package GEANT 4 was used to investigate the performance of both imaging systems.
Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations
DEFF Research Database (Denmark)
Kamran, Faisal; Andersen, Peter E.
2015-01-01
Oblique incidence reflectometry has developed into an effective, noncontact, and noninvasive measurement technology for the quantification of both the reduced scattering and absorption coefficients of a sample. The optical properties are deduced by analyzing only the shape of the reflectance...... profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical...... properties in which system demands vary to be able to detect subtle changes in the structure of the medium, translated as measured optical properties. Effects of variation in anisotropy are discussed and results presented. Finally, experimental data of milk products with different fat content are considered...
Monte Carlo simulations of ABC stacked kagome lattice films.
Yerzhakov, H V; Plumer, M L; Whitehead, J P
2016-05-18
Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.
Monte Carlo simulations and benchmark studies at CERN's accelerator chain
AUTHOR|(CDS)2083190; Brugger, Markus
2016-01-01
Mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its accelerator chain are responsible for failures on electronic devices located in the vicinity of the accelerator beam lines. These radiation effects on electronics and, more generally, the overall radiation damage issues have a direct impact on component and system lifetimes, as well as on maintenance requirements and radiation exposure to personnel who have to intervene and fix existing faults. The radiation environments and respective radiation damage issues along the CERN’s accelerator chain were studied in the framework of the CERN Radiation to Electronics (R2E) project and are hereby presented. The important interplay between Monte Carlo simulations and radiation monitoring is also highlighted.
Monte Carlo simulations of ABC stacked kagome lattice films
Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.
2016-05-01
Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.
Monte Carlo simulations of systems with complex energy landscapes
Wüst, T.; Landau, D. P.; Gervais, C.; Xu, Y.
2009-04-01
Non-traditional Monte Carlo simulations are a powerful approach to the study of systems with complex energy landscapes. After reviewing several of these specialized algorithms we shall describe the behavior of typical systems including spin glasses, lattice proteins, and models for "real" proteins. In the Edwards-Anderson spin glass it is now possible to produce probability distributions in the canonical ensemble and thermodynamic results of high numerical quality. In the hydrophobic-polar (HP) lattice protein model Wang-Landau sampling with an improved move set (pull-moves) produces results of very high quality. These can be compared with the results of other methods of statistical physics. A more realistic membrane protein model for Glycophorin A is also examined. Wang-Landau sampling allows the study of the dimerization process including an elucidation of the nature of the process.
MONTE CARLO SIMULATION OF MULTIFOCAL STOCHASTIC SCANNING SYSTEM
Directory of Open Access Journals (Sweden)
LIXIN LIU
2014-01-01
Full Text Available Multifocal multiphoton microscopy (MMM has greatly improved the utilization of excitation light and imaging speed due to parallel multiphoton excitation of the samples and simultaneous detection of the signals, which allows it to perform three-dimensional fast fluorescence imaging. Stochastic scanning can provide continuous, uniform and high-speed excitation of the sample, which makes it a suitable scanning scheme for MMM. In this paper, the graphical programming language — LabVIEW is used to achieve stochastic scanning of the two-dimensional galvo scanners by using white noise signals to control the x and y mirrors independently. Moreover, the stochastic scanning process is simulated by using Monte Carlo method. Our results show that MMM can avoid oversampling or subsampling in the scanning area and meet the requirements of uniform sampling by stochastically scanning the individual units of the N × N foci array. Therefore, continuous and uniform scanning in the whole field of view is implemented.
Effect of doping of graphene structure: A Monte Carlo simulations
Masrour, R.; Jabar, A.
2016-10-01
In this work, we have studied the effect of magnetic atom doping of graphene structure using Monte Carlo simulation. The reduced critical temperature with the magnetic atom doping x has been deduced from the thermal variation of magnetization and magnetic susceptibility. The variation of magnetization versus the crystal field of grapheme structure for different x and for different reduced temperatures has been established. We also have measured the coercive field (hC) as a function x in grapheme structure, finding that hC increases with increasing x concentration as predicted experimentally. The doping-induced magnetism in graphene. Magnetically atom doping in graphene systems are potential candidates for application in future spintronic devices, magnetometry requires macroscopic quantities of graphene to detect magnetic moments directly.
Hybrid Multilevel Monte Carlo Simulation of Stochastic Reaction Networks
Moraes, Alvaro
2015-01-07
Stochastic reaction networks (SRNs) is a class of continuous-time Markov chains intended to describe, from the kinetic point of view, the time-evolution of chemical systems in which molecules of different chemical species undergo a finite set of reaction channels. This talk is based on articles [4, 5, 6], where we are interested in the following problem: given a SRN, X, defined though its set of reaction channels, and its initial state, x0, estimate E (g(X(T))); that is, the expected value of a scalar observable, g, of the process, X, at a fixed time, T. This problem lead us to define a series of Monte Carlo estimators, M, such that, with high probability can produce values close to the quantity of interest, E (g(X(T))). More specifically, given a user-selected tolerance, TOL, and a small confidence level, η, find an estimator, M, based on approximate sampled paths of X, such that, P (|E (g(X(T))) − M| ≤ TOL) ≥ 1 − η; even more, we want to achieve this objective with near optimal computational work. We first introduce a hybrid path-simulation scheme based on the well-known stochastic simulation algorithm (SSA)[3] and the tau-leap method [2]. Then, we introduce a Multilevel Monte Carlo strategy that allows us to achieve a computational complexity of order O(T OL−2), this is the same computational complexity as in an exact method but with a smaller constant. We provide numerical examples to show our results.
Monte Carlo simulation of ICRF discharge initiation in ITER
Tripský, M.; Wauters, T.; Lyssoivan, A.; Křivská, A.; Louche, F.; Van Schoor, M.; Noterdaeme, J.-M.
2015-12-01
Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC). The here presented simulations aim at ensuring that the ITER ICRH&CD system can be safely employed for ICWC and at finding optimal parameters to initiate the plasma. The 1D Monte Carlo code RFdinity1D3V was developed to simulate ICRF discharge initiation. The code traces the electron motion along one toroidal magnetic field line, accelerated by the RF field in front of the ICRF antenna. Electron collisions in the calculations are handled by a Monte Carlo procedure taking into account their energies and the related electron collision cross sections for collisions with H2, H2+ and H+. The code also includes Coulomb collisions between electrons and ions (e - e, e - H2+ , e - H+). We study the electron multiplication rate as a function of the RF discharge parameters (i) antenna input power (0.1-5MW), and (ii) the neutral pressure (H2) for two antenna phasing (monopole [0000]-phasing and small dipole [0π0π]-phasing). Furthermore, we investigate the electron multiplication rate dependency on the distance from the antenna straps. This radial dependency results from the decreasing electric amplitude and field smoothening with increasing distance from the antenna straps. The numerical plasma breakdown definition used in the code corresponds to the moment when a critical electron density nec for the low hybrid resonance (ω = ωLHR) is reached. This numerical definition was previously found in qualitative agreement with experimental breakdown times obtained from the literature and from experiments on the ASDEX Upgrade and TEXTOR.
Monte Carlo simulation of several biologically relevant molecules and zwitterions in water
Patuwo, Michael Y.; Bettens, Ryan P. A.
2012-02-01
In this work, we study the hydration free energies of butane, zwitterionic alanine, valine, serine, threonine, and asparagine, and two neuraminidase inhibitors by means of Monte Carlo (MC) simulation. The solute molecule, represented in the form of distributed multipoles and modified 6-12 potential, was varied from a non-interacting 'ghost' molecule to its full potential functions in TIP4P water. Intermediate systems with soft-core solute-solvent interaction potentials are simulated separately and then subjected to Bennett's Acceptance ratio (BAR) for the free energy calculation. Hydration shells surrounding the solute particles were used to assess the quality of potential functions.
Monte Carlo Simulation and Experimental Characterization of a Dual Head Gamma Camera
Rodrigues, S; Abreu, M C; Santos, N; Rato-Mendes, P; Peralta, L
2007-01-01
The GEANT4 Monte Carlo simulation and experimental characterization of the Siemens E.Cam Dual Head gamma camera hosted in the Particular Hospital of Algarve have been done. Imaging tests of thyroid and other phantoms have been made "in situ" and compared with the results obtained with the Monte Carlo simulation.
CONDENSED MONTE-CARLO SIMULATIONS FOR THE DESCRIPTION OF LIGHT TRANSPORT
GRAAFF, R; KOELINK, MH; DEMUL, FFM; ZIJLSTRA, WG; DASSEL, ACM; AARNOUDSE, JG
1993-01-01
A novel method, condensed Monte Carlo simulation, is presented that applies the results of a single Monte Carlo simulation for a given albedo mu(s)/(mu(a) + mu(s)) to obtaining results for other albedos; mu(s) and mu(a) are the scattering and absorption coefficients, respectively. The method require
Institute of Scientific and Technical Information of China (English)
万文应; 夏庆
2015-01-01
With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors’ effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
Zio, Enrico
2013-01-01
Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling. Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques. This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...
Energy Technology Data Exchange (ETDEWEB)
Richet, Y
2006-12-15
Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)
Lattice Monte Carlo simulation of Galilei variant anomalous diffusion
Energy Technology Data Exchange (ETDEWEB)
Guo, Gang, E-mail: hndzgg@aliyun.com [School of Information System and Management, National University of Defense Technology, Changsha, 410073 (China); Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany); Bittig, Arne, E-mail: arne.bittig@uni-rostock.de [Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany); Uhrmacher, Adelinde, E-mail: lin@informatik.uni-rostock.de [Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany)
2015-05-01
The observation of an increasing number of anomalous diffusion phenomena motivates the study to reveal the actual reason for such stochastic processes. When it is difficult to get analytical solutions or necessary to track the trajectory of particles, lattice Monte Carlo (LMC) simulation has been shown to be particularly useful. To develop such an LMC simulation algorithm for the Galilei variant anomalous diffusion, we derive explicit solutions for the conditional and unconditional first passage time (FPT) distributions with double absorbing barriers. According to the theory of random walks on lattices and the FPT distributions, we propose an LMC simulation algorithm and prove that such LMC simulation can reproduce both the mean and the mean square displacement exactly in the long-time limit. However, the error introduced in the second moment of the displacement diverges according to a power law as the simulation time progresses. We give an explicit criterion for choosing a small enough lattice step to limit the error within the specified tolerance. We further validate the LMC simulation algorithm and confirm the theoretical error analysis through numerical simulations. The numerical results agree with our theoretical predictions very well.
2015-09-01
simulation of model A for temperatures a) T = 340 K, b) T = 390 K, and c ) T = 440 K, using the solver based on the Schulze12 algorithm , and for...simulation of model B for temperatures a) T = 340 K, b) T = 390 K, and c ) T = 440 K, using the solver based on the Schulze12 algorithm , and for...schemes. These were determined using the solver based on the Schulze algorithm with row-based decomposition. 34 a) b) c ) d) Fig. 18 Effects
A zero-variance based scheme for Monte Carlo criticality simulations
Christoforou, S.
2010-01-01
The ability of the Monte Carlo method to solve particle transport problems by simulating the particle behaviour makes it a very useful technique in nuclear reactor physics. However, the statistical nature of Monte Carlo implies that there will always be a variance associated with the estimate obtain
Monte Carlo simulations: Hidden errors from ``good'' random number generators
Ferrenberg, Alan M.; Landau, D. P.; Wong, Y. Joanna
1992-12-01
The Wolff algorithm is now accepted as the best cluster-flipping Monte Carlo algorithm for beating ``critical slowing down.'' We show how this method can yield incorrect answers due to subtle correlations in ``high quality'' random number generators.
Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation
Haji-Ali, Abdul-Lateef
2017-09-12
We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean–Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $$\\\\mathrm {TOL}$$TOL, is when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of . Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.
MCViNE - An object oriented Monte Carlo neutron ray tracing simulation package
Lin, Jiao Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent
2016-02-01
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.
Kinetic Monte Carlo simulations of void lattice formation during irradiation
Heinisch, H. L.; Singh, B. N.
2003-11-01
Over the last decade, molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades and that they migrate one-dimensionally along close-packed directions with extremely low activation energies. Occasionally, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. The recently developed production bias model (PBM) of microstructure evolution under irradiation has been structured specifically to take into account the unique properties of the vacancy and interstitial clusters produced in the cascades. Atomic-scale kinetic Monte Carlo (KMC) simulations have played a useful role in understanding the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes. This has made it possible to incorporate the migration properties of crowdion clusters and changes in reaction kinetics into the PBM. In the present paper we utilize similar KMC simulations to investigate the significant role that crowdion clusters can play in the formation and stability of void lattices. The creation of stable void lattices, starting from a random distribution of voids, is simulated by a KMC model in which vacancies migrate three-dimensionally and self-interstitial atom (SIA) clusters migrate one-dimensionally, interrupted by directional changes. The necessity of both one-dimensional migration and Burgers vectors changes of SIA clusters for the production of stable void lattices is demonstrated, and the effects of the frequency of Burgers vector changes are described.
Learning About Ares I from Monte Carlo Simulation
Hanson, John M.; Hall, Charlie E.
2008-01-01
This paper addresses Monte Carlo simulation analyses that are being conducted to understand the behavior of the Ares I launch vehicle, and to assist with its design. After describing the simulation and modeling of Ares I, the paper addresses the process used to determine what simulations are necessary, and the parameters that are varied in order to understand how the Ares I vehicle will behave in flight. Outputs of these simulations furnish a significant group of design customers with data needed for the development of Ares I and of the Orion spacecraft that will ride atop Ares I. After listing the customers, examples of many of the outputs are described. Products discussed in this paper include those that support structural loads analysis, aerothermal analysis, flight control design, failure/abort analysis, determination of flight performance reserve, examination of orbit insertion accuracy, determination of the Upper Stage impact footprint, analysis of stage separation, analysis of launch probability, analysis of first stage recovery, thrust vector control and reaction control system design, liftoff drift analysis, communications analysis, umbilical release, acoustics, and design of jettison systems.
Monte Carlo simulation of the spear reflectometer at LANSCE
Energy Technology Data Exchange (ETDEWEB)
Smith, G.S. [Los Alamos National Laboratory, NM (United States)
1995-12-31
The Monte Carlo instrument simulation code, MCLIB, contains elements to represent several components found in neutron spectrometers including slits, choppers, detectors, sources and various samples. Using these elements to represent the components of a neutron scattering instrument, one can simulate, for example, an inelastic spectrometer, a small angle scattering machine, or a reflectometer. In order to benchmark the code, we chose to compare simulated data from the MCLIB code with an actual experiment performed on the SPEAR reflectometer at LANSCE. This was done by first fitting an actual SPEAR data set to obtain the model scattering-length-density profile, {Beta}(z), for the sample and the substrate. Then these parameters were used as input values for the sample scattering function. A simplified model of SPEAR was chosen which contained all of the essential components of the instrument. A code containing the MCLIB subroutines was then written to simulate this simplified instrument. The resulting data was then fit and compared to the actual data set in terms of the statistics, resolution and accuracy.
A generic algorithm for Monte Carlo simulation of proton transport
Energy Technology Data Exchange (ETDEWEB)
Salvat, Francesc, E-mail: francesc.salvat@ub.edu
2013-12-01
A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron–photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane–wave Born approximation (PWBA), making use of the Sternheimer–Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.
A generic algorithm for Monte Carlo simulation of proton transport
Salvat, Francesc
2013-12-01
A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron-photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane-wave Born approximation (PWBA), making use of the Sternheimer-Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.
Monte Carlo Simulation for LINAC Standoff Interrogation of Nuclear Material
Energy Technology Data Exchange (ETDEWEB)
Clarke, Shaun D [ORNL; Flaska, Marek [ORNL; Miller, Thomas Martin [ORNL; Protopopescu, Vladimir A [ORNL; Pozzi, Sara A [ORNL
2007-06-01
The development of new techniques for the interrogation of shielded nuclear materials relies on the use of Monte Carlo codes to accurately simulate the entire system, including the interrogation source, the fissile target and the detection environment. The objective of this modeling effort is to develop analysis tools and methods-based on a relevant scenario-which may be applied to the design of future systems for active interrogation at a standoff. For the specific scenario considered here, the analysis will focus on providing the information needed to determine the type and optimum position of the detectors. This report describes the results of simulations for a detection system employing gamma rays to interrogate fissile and nonfissile targets. The simulations were performed using specialized versions of the codes MCNPX and MCNP-PoliMi. Both prompt neutron and gamma ray and delayed neutron fluxes have been mapped in three dimensions. The time dependence of the prompt neutrons in the system has also been characterized For this particular scenario, the flux maps generated with the Monte Carlo model indicate that the detectors should be placed approximately 50 cm behind the exit of the accelerator, 40 cm away from the vehicle, and 150 cm above the ground. This position minimizes the number of neutrons coming from the accelerator structure and also receives the maximum flux of prompt neutrons coming from the source. The lead shielding around the accelerator minimizes the gamma-ray background from the accelerator in this area. The number of delayed neutrons emitted from the target is approximately seven orders of magnitude less than the prompt neutrons emitted from the system. Therefore, in order to possibly detect the delayed neutrons, the detectors should be active only after all prompt neutrons have scattered out of the system. Preliminary results have shown this time to be greater than 5 ?s after the accelerator pulse. This type of system is illustrative of a
Dick, Thomas J.; Wierzbicki, Andrzej; Madura, Jeffry D.
Free energy perturbation Monte Carlo (FEP/MC) simulations are performed for both the liquid and solid phases of water to determine the melting temperature of several popular three and four-site water models. Gibbs free energy vs. temperature plots are constructed from the simulations to determine the melting temperature. For the liquid phase, standard FEP/MC simulations are used to calculate the free energy relative to the gas phase at multiple temperatures. The free energy of the solid phase relative to the gas phase is calculated at multiple temperatures using the lattice-coupling method. The intersection of the free energy regression lines determines the estimate of the melting temperature. Additionally, simulations were carried out for simple salt solutions to determine the freezing point depressions (FPD). The simulations reproduce the FPD as a function of salt concentration for solutions of NaCl, KCl, CaCl2, and MgCl2.
Scalable Metropolis Monte Carlo for simulation of hard shapes
Anderson, Joshua A.; Eric Irrgang, M.; Glotzer, Sharon C.
2016-07-01
We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, and optimize inner loops with SIMD vector intrinsics on the CPU. Our GPU kernel proposes many trial moves in parallel on a checkerboard and uses a block-level queue to redistribute work among threads and avoid divergence. HPMC supports a wide variety of shape classes, including spheres/disks, unions of spheres, convex polygons, convex spheropolygons, concave polygons, ellipsoids/ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and concave polyhedra. NVT and NPT ensembles can be run in 2D or 3D triclinic boxes. Additional integration schemes permit Frenkel-Ladd free energy computations and implicit depletant simulations. In a benchmark system of a fluid of 4096 pentagons, HPMC performs 10 million sweeps in 10 min on 96 CPU cores on XSEDE Comet. The same simulation would take 7.6 h in serial. HPMC also scales to large system sizes, and the same benchmark with 16.8 million particles runs in 1.4 h on 2048 GPUs on OLCF Titan.
Monte Carlo simulation of electron back diffusion in argon
Radmilović, M.; Stojanović, V.; Petrović, Z. Lj.
1999-10-01
Monte Carlo simulation was applied to study the back-diffusion of electrons in argon at low and moderate values of E/N from 10Td to 10 kTd. Simulations were performed for gaps of 1 cm and for pressures corresponding to the breakdown voltages taken from experimental Paschen curves. Effects of inelastic collisions, ionization, reflection of electrons and anisotropic scattering as well as anisotropic initial and reflected angular distributions of electrons were included. A complete and detailed set of electron scattering cross sections that describes well electron transport in argon was used. We found a very good agreement of the results of simulations with the experimental data for well defined initial conditions, and with several models available in the literature.(A.V. Phelps and Z.LJ. Petrović), Plasma Sources Sci. Tehnol. 8, R21 (1999). While effect of reflection may be large, for realistic values of reflection coefficient and for realistic secondary electron productions the effect may be neglected for the accuracy required in gas discharge modeling.
Kinetic Monte Carlo simulation of thin film growth
Institute of Scientific and Technical Information of China (English)
ZHANG; Peifeng(张佩峰); ZHENG; Xiaoping(郑小平); HE; Deyan(贺德衍)
2003-01-01
A three-dimensional kinetic Monte Carlo technique has been developed for simulating growth of thin Cu films. The model involves incident atom attachment, diffusion of the atoms on the growing surface, and detachment of the atoms from the growing surface. The related effect by surface atom diffusion was taken into account. A great improvement was made on calculation of the activation energy for atom diffusion based on a reasonable assumption of interaction potential between atoms. The surface roughness and the relative density of the films were simulated as the functions of growth substrate temperature and film thickness. The results showed that there exists an optimum growth temperature Topt at a given deposition rate. When the substrate temperature approaches to Topt, the growing surface becomes smoothing and the relative density of the films increases. The surface roughness minimizes and the relative density saturates at Topt. The surface roughness increases with an increment of substrate temperature when the temperature is higher than Topt. Topt iS a function of the deposition rate and the influence of the deposition rate on the surface roughness depends on the substrate temperatures. The simulation results also showed that the relative density decreases with the increasing of the deposition rate and the average thickness of the film.
An OpenCL-based Monte Carlo dose calculation engine (oclMC) for coupled photon-electron transport
Tian, Zhen; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun
2015-01-01
Monte Carlo (MC) method has been recognized the most accurate dose calculation method for radiotherapy. However, its extremely long computation time impedes clinical applications. Recently, a lot of efforts have been made to realize fast MC dose calculation on GPUs. Nonetheless, most of the GPU-based MC dose engines were developed in NVidia CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a fast cross-platform MC dose engine oclMC using OpenCL environment for external beam photon and electron radiotherapy in MeV energy range. Coupled photon-electron MC simulation was implemented with analogue simulations for photon transports and a Class II condensed history scheme for electron transports. To test the accuracy and efficiency of our dose engine oclMC, we compared dose calculation results of oclMC and gDPM, our previously developed GPU-based MC code, for a 15 MeV electron ...
Rosenfeld, Anatoly; Wroe, Andrew; Carolan, Martin; Cornelius, Iwan
2006-01-01
In hadron therapy the spectra of secondary particles can be very broad in type and energy. The most accurate calculations of tissue equivalent (TE) absorbed dose and biological effect can be achieved using Monte Carlo (MC) simulations followed by the application of an appropriate radiobiological model. The verification of MC simulations is therefore an important quality assurance (QA) issue in dose planning. We propose a method of verification for MC dose calculations based on measurements of either the integral absorbed dose or the spectra of deposited energies from single secondary particles in non-TE material detectors embedded in a target of interest (phantom). This method was tested in boron neutron capture therapy and fast neutron therapy beams.
SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, Maarten
2015-01-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...
Optimizing the HLT Buffer Strategy with Monte Carlo Simulations
AUTHOR|(CDS)2266763
2017-01-01
This project aims to optimize the strategy of utilizing the disk buffer for the High Level Trigger (HLT) of the LHCb experiment with the help of Monte-Carlo simulations. A method is developed, which simulates the Event Filter Farm (EFF) -- a computing cluster for the High Level Trigger -- as a compound of nodes with different performance properties. In this way, the behavior of the computing farm can be analyzed at a deeper level than before. It is demonstrated that the current operating strategy might be improved when data taking is reaching a mid-year scheduled stop or the year-end technical stop. The processing time of the buffered data can be lowered by distributing the detector data according to the processing power of the nodes instead of the relative disk size as long as the occupancy level of the buffer is low enough. Moreover, this ensures that data taken and stored on the buffer at the same time is processed by different nodes nearly simultaneously, which reduces load on the infrastructure.
Monte Carlo simulation of virus introduction into the Netherlands.
Horst, H S; Dijkhuizen, A A; Huirne, R B; Meuwissen, M P
1999-07-20
In order to improve the understanding of the risk of introducing classical swine fever (CSF) and foot-and-mouth disease (FMD) into the Netherlands, a Monte Carlo simulation model was developed. The model, VIRiS (Virus Introduction Risk Simulation model) describes virus introduction into the Netherlands from outbreaks in other European countries. VIRiS is aimed at supporting decision makers involved in disease prevention. The model is based on historical and experimental data, supplemented with expert judgement, and provides the expected number, location and cause of primary outbreaks in the Netherlands. The paper gives a detailed description of the design and behaviour of VIRiS. The default outcomes of VIRiS show that in the current situation, the western and northern regions of the Netherlands are most prone to outbreaks of CSF and FMD. Most outbreaks originate from the countries neighbouring the Netherlands and the countries of southern Europe. Several alternative prevention strategies were evaluated using a combination of the VIRiS model and models describing the spread and economic consequences of outbreaks. A considerable financial window is available for measures aimed at speeding up the detection of epidemics in countries from which a Dutch outbreak may originate. Complete elimination of the risk associated with the risk factor 'returning trucks' reduces the annual losses due to FMD and CSF epidemics by approximately US$ 9 million. The approach is general and could also be applied to other diseases and countries.
Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations
Hanson, Andrea; Reed, Erik; Cavanagh, Peter
2011-01-01
Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.
Direct determination of liquid phase coexistence by Monte Carlo simulations.
Zweistra, Henk J A; Besseling, N A M
2006-07-01
A formalism to determine coexistence points by means of Monte Carlo simulations is presented. The general idea of the method is to perform a simulation simultaneously in several unconnected boxes which can exchange particles. At equilibrium, most of the boxes will be occupied by a homogeneous phase. The compositions of these boxes yield coexisting points on the binodal. However, since the overall composition is fixed, at least one of the boxes will contain an interface. We show that this does not affect the results, provided that the interface has no net curvature. We coin the name "Helmholtz-ensemble method," because the method is related to the well-known Gibbs-ensemble method, but the volume of the boxes is constant. Since the box volumes are constant, we expect that this method will be particularly useful for lattice models. The accuracy of the Helmholtz-ensemble method is benchmarked against known coexistence curves of the three-dimensional Ising model with excellent results.
Parallel cluster labeling for large-scale Monte Carlo simulations
Flanigan, M; Flanigan, M; Tamayo, P
1995-01-01
We present an optimized version of a cluster labeling algorithm previously introduced by the authors. This algorithm is well suited for large-scale Monte Carlo simulations of spin models using cluster dynamics on parallel computers with large numbers of processors. The algorithm divides physical space into rectangular cells which are assigned to processors and combines a serial local labeling procedure with a relaxation process across nearest-neighbor processors. By controlling overhead and reducing inter-processor communication this method attains good computational speed-up and efficiency. Large systems of up to 65536 X 65536 spins have been simulated at updating speeds of 11 nanosecs/site (90.7 million spin updates/sec) using state-of-the-art supercomputers. In the second part of the article we use the cluster algorithm to study the relaxation of magnetization and energy on large Ising models using Swendsen-Wang dynamics. We found evidence that exponential and power law factors are present in the relaxatio...
Monte Carlo Simulations of Cosmic Rays Hadronic Interactions
Energy Technology Data Exchange (ETDEWEB)
Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.
2011-04-01
This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.
Monte Carlo simulation of the PEMFC catalyst layer
Institute of Scientific and Technical Information of China (English)
WANG Hongxing; CAO Pengzhen; WANG Yuxin
2007-01-01
The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer.Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC.In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization,it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC.In this work,the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation.The model can predict the effects of some catalyst layer components,such as Pt/C catalyst,electrolyte and gas pores,on the utilization of the catalyst and the cell performance.The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization.The better the dispersion of the conduction grains,the larger the total effective area of the catalyst is.To achieve higher utilization,catalyst layer components must be distributed by means of engineered design,which can prevent aggregation.
Institute of Scientific and Technical Information of China (English)
Du Gang; Liu Xiao-Yan; Han Ru-Qi
2006-01-01
A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.
Zhang, G.; Lu, D.; Webster, C.
2014-12-01
The rational management of oil and gas reservoir requires an understanding of its response to existing and planned schemes of exploitation and operation. Such understanding requires analyzing and quantifying the influence of the subsurface uncertainties on predictions of oil and gas production. As the subsurface properties are typically heterogeneous causing a large number of model parameters, the dimension independent Monte Carlo (MC) method is usually used for uncertainty quantification (UQ). Recently, multilevel Monte Carlo (MLMC) methods were proposed, as a variance reduction technique, in order to improve computational efficiency of MC methods in UQ. In this effort, we propose a new acceleration approach for MLMC method to further reduce the total computational cost by exploiting model hierarchies. Specifically, for each model simulation on a new added level of MLMC, we take advantage of the approximation of the model outputs constructed based on simulations on previous levels to provide better initial states of new simulations, which will help improve efficiency by, e.g. reducing the number of iterations in linear system solving or the number of needed time-steps. This is achieved by using mesh-free interpolation methods, such as Shepard interpolation and radial basis approximation. Our approach is applied to a highly heterogeneous reservoir model from the tenth SPE project. The results indicate that the accelerated MLMC can achieve the same accuracy as standard MLMC with a significantly reduced cost.
Iba, Yukito
2000-01-01
``Extended Ensemble Monte Carlo''is a generic term that indicates a set of algorithms which are now popular in a variety of fields in physics and statistical information processing. Exchange Monte Carlo (Metropolis-Coupled Chain, Parallel Tempering), Simulated Tempering (Expanded Ensemble Monte Carlo), and Multicanonical Monte Carlo (Adaptive Umbrella Sampling) are typical members of this family. Here we give a cross-disciplinary survey of these algorithms with special emphasis on the great f...
Patchy sticky hard spheres: analytical study and Monte Carlo simulations.
Fantoni, Riccardo; Gazzillo, Domenico; Giacometti, Achille; Miller, Mark A; Pastore, Giorgio
2007-12-21
We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches, distributed so as not to overlap. Two spheres interact via a "sticky" Baxter potential if the line joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line as a function of the size of the patch (the fractional coverage of the sphere's surface) and of the number of patches within a virial expansion up to third order and within the first two terms (C0 and C1) of a class of closures Cn hinging on a density expansion of the direct correlation function. We find that the locations of the two lines depend sensitively on both the total adhesive coverage and its distribution. The treatment is almost fully analytical within the chosen approximate theory. We test our findings by means of specialized Monte Carlo simulations and find the main qualitative features of the critical behavior to be well captured in spite of the low density perturbative nature of the closure. The introduction of anisotropic attractions into a model suspension of spherical particles is a first step toward a more realistic description of globular proteins in solution.
Monte Carlo Simulation of SATs in 2D
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
In this paper we use Monte Carlo simulation method to deal with SATs on a square lattice and a triangular lattice in two dimensions in the T→∞ limit.Besides that,the SAT model has been generalized in the coordination number q→∞ limit.The characteristics of SATs in the two limits q=3 and q→∞ have been qualitatively discussed.The obtained results reveal that the SATs have intermediate behaviors between that of SAWs and RWs.The critical exponents of SATs have intermediate behaviors between that of SAWs and RWs.The critical exponents of SATs are monotonous functions of q.With different q,SATs correspondingly belong to different universality classes.For example,on a hexagonal lattice,SATs and SAWs belong to the same universality class;in the limiting situation q→∞,SATs and RWs belong to the same universality class;when q=4 or q=6,SATs and SAWs or RWs belong to the different universality class.
Hopping electron model with geometrical frustration: kinetic Monte Carlo simulations
Terao, Takamichi
2016-09-01
The hopping electron model on the Kagome lattice was investigated by kinetic Monte Carlo simulations, and the non-equilibrium nature of the system was studied. We have numerically confirmed that aging phenomena are present in the autocorrelation function C ({t,tW )} of the electron system on the Kagome lattice, which is a geometrically frustrated lattice without any disorder. The waiting-time distributions p(τ ) of hopping electrons of the system on Kagome lattice has been also studied. It is confirmed that the profile of p (τ ) obtained at lower temperatures obeys the power-law behavior, which is a characteristic feature of continuous time random walk of electrons. These features were also compared with the characteristics of the Coulomb glass model, used as a model of disordered thin films and doped semiconductors. This work represents an advance in the understanding of the dynamics of geometrically frustrated systems and will serve as a basis for further studies of these physical systems.
Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers
Institute of Scientific and Technical Information of China (English)
彭昌军; 李健康; 刘洪来; 胡英
2004-01-01
The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.
Monte Carlo simulation of electron beam air plasma characteristics
Institute of Scientific and Technical Information of China (English)
Deng Yong-Feng; Han Xian-Wei; Tan Chang
2009-01-01
A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.
Monte Carlo simulations of ionization potential depression in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Stransky, M., E-mail: stransky@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic)
2016-01-15
A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.
A Monte Carlo simulation technique to determine the optimal portfolio
Directory of Open Access Journals (Sweden)
Hassan Ghodrati
2014-03-01
Full Text Available During the past few years, there have been several studies for portfolio management. One of the primary concerns on any stock market is to detect the risk associated with various assets. One of the recognized methods in order to measure, to forecast, and to manage the existing risk is associated with Value at Risk (VaR, which draws much attention by financial institutions in recent years. VaR is a method for recognizing and evaluating of risk, which uses the standard statistical techniques and the method has been used in other fields, increasingly. The present study has measured the value at risk of 26 companies from chemical industry in Tehran Stock Exchange over the period 2009-2011 using the simulation technique of Monte Carlo with 95% confidence level. The used variability in the present study has been the daily return resulted from the stock daily price change. Moreover, the weight of optimal investment has been determined using a hybrid model called Markowitz and Winker model in each determined stocks. The results showed that the maximum loss would not exceed from 1259432 Rials at 95% confidence level in future day.
Monte Carlo Simulations for Likelihood Analysis of the PEN experiment
Glaser, Charles; PEN Collaboration
2017-01-01
The PEN collaboration performed a precision measurement of the π+ ->e+νe(γ) branching ratio with the goal of obtaining a relative uncertainty of 5 ×10-4 or better at the Paul Scherrer Institute. A precision measurement of the branching ratio Γ(π -> e ν (γ)) / Γ(π -> μ ν (γ)) can be used to give mass bounds on ``new'', or non V -A, particles and interactions. This ratio also proves to be one of the most sensitive tests for lepton universality. The PEN detector consists of beam counters, an active target, a mini-time projection chamber, multi-wire proportional chamber, a plastic scintillating hodoscope, and a CsI electromagnetic calorimeter. The Geant4 Monte Carlo simulation is used to construct ultra-realistic events by digitizing energies and times, creating synthetic target waveforms, and fully accounting for photo-electron statistics. We focus on the detailed detector response to specific decay and background processes in order to sharpen the discrimination between them in the data analysis. Work supported by NSF grants PHY-0970013, 1307328, and others.
A Monte Carlo simulation approach for flood risk assessment
Agili, Hachem; Chokmani, Karem; Oubennaceur, Khalid; Poulin, Jimmy; Marceau, Pascal
2016-04-01
Floods are the most frequent natural disaster and the most damaging in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which hit the region in 2011 causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects of buildings has been developed. This approach integrates three main components namely hydrological modeling through flow-probability functions, hydraulic modeling using flow-submersion height functions and the study of buildings damage based on damage functions adapted to the Quebec habitat. The application of this approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for local authorities to support their decisions on risk management and prevention against this disaster.
Monte Carlo simulation of terahertz generation in nitrides
Energy Technology Data Exchange (ETDEWEB)
Starikov, E.; Shiktorov, P.; Gruzinskis, V. [Semiconductor Physics Institute, Vilnius (Lithuania); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione, Istituto Nazionale di Fisica della Materia, Universite di Lecce, Lecce (Italy); Varani, L.; Vaissiere, J.C. [Centre d' Electronique et de Micro-Optoelectronique de Montpellier (CNRS UMR 5507), Universite Montpellier II, Montpellier (France); Zhao, Jian H. [SiCLAB, Department of Electrical and Computer Engineering and CAIP Center, Rutgers University, Piscataway, NJ (United States)
2001-08-13
The conditions for microwave power generation under the quasi-periodic motion of carriers caused by the combined action of carrier acceleration in a constant electric field and optical phonon emission at low temperatures are analysed by means of Monte Carlo simulations of both small- and large-signal responses in bulk nitrides such as GaN and InN. It is shown that, as a consequence of the high value of the optical phonon energy and the strong electron-phonon interaction, a dynamic negative differential mobility caused by transit-time resonance occurs over a wide frequency range which covers practically the whole submillimetre range and persists in the THz frequency range up to liquid nitrogen temperature. The efficiency of the amplification and generation is found to depend nonmonotonically on: (i) the static and microwave electric field amplitudes, (ii) the generation frequency, and (iii) the carrier concentration. Accordingly, for each generation frequency there exists an optimal range of parameter values. Under optimal conditions we predict a generation efficiency of about 1-2% in the 0.5-1.5 THz frequency range. (author)
Monte Carlo Simulation Of Emission Tomography And Other Medical Imaging Techniques
Harrison, Robert L.
2010-01-01
An introduction to Monte Carlo simulation of emission tomography. This paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations. PMID:20733931
Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia
Good, Brian
2011-01-01
Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.
GPU-based fast Monte Carlo simulation for radiotherapy dose calculation
Jia, Xun; Graves, Yan Jiang; Folkerts, Michael; Jiang, Steve B
2011-01-01
Monte Carlo (MC) simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications. In this paper, we present our recent progress towards the development a GPU-based MC dose calculation package, gDPM v2.0. It utilizes the parallel computation ability of a GPU to achieve high efficiency, while maintaining the same particle transport physics as in the original DPM code and hence the same level of simulation accuracy. In GPU computing, divergence of execution paths between threads can considerably reduce the efficiency. Since photons and electrons undergo different physics and hence attain different execution paths, we use a simulation scheme where photon transport and electron transport are separated to partially relieve the thread divergence issue. High performance random number generator and hardware linear interpolation are also utilized. We have also developed various components to hand...
Monte-Carlo simulations of a high-resolution neutron TOF instrument
Bernhardt, Ph; Demmel, F.; Magerl, A.
2000-03-01
It is proposed to build a flexible, high-resolution time-of-flight diffractometer and spectrometer at the new reactor FRM II of the Technische Universität München. To optimize the layout of individual components and to estimate the performance of the entire instrument, we have made analytical calculations and Monte-Carlo simulations mainly with “McStas”, programmed by RISØ, Denmark. MC simulation routines for neutron devices like curved guides, disc- and Fermi choppers have been added. The influence of curved guides in neutron phase space has been developed and will be presented. Line shapes of neutron pulses and transmission have been studied for a Fermi chopper with straight slits and will be compared with the results of simulation.
Gorshkov, Anton V; Kirillin, Mikhail Yu
2015-08-01
Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.
Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations
Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias
2015-01-01
Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.
Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization
Shao, Jing
2015-10-27
Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.
A Thermodynamic Model for Square-well Chain Fluid: Theory and Monte Carlo Simulation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A thermodynamic model for the freely jointed square-well chain fluids was developed based on the thermodynamic perturbation theory of Barker-Henderson, Zhang and Wertheim. In this derivation Zhang's expressions for square-well monomers improved from Barker-Henderson compressibility approximation were adopted as the reference fluid, and Wertheim＇s polymerization method was used to obtain the free energy term due to the bond connectivity. An analytic expression for the Helmholtz free energy of the square-well chain fluids was obtained. The expression without adjustable parameters leads to the thermodynamic consistent predictions of the compressibility factors, residual internal energy and constant-volume heat capacity for dimer,4-mer, 8-mer and 16-mer square-well fluids. The results are in good agreement with the Monte Carlo simulation. To obtain the MC data of residual internal energy and the constant-volume heat capacity needed, NVT MC simulations were performed for these square-well chain fluids.
Monte Carlo Simulation of Aqueous Dilute Solutions of Polyhydric Alcohols
Lilly, Arnys Clifton, Jr.
In order to investigate the details of hydrogen bonding and solution molecular conformation of complex alcohols in water, isobaric-isothermal Monte Carlo simulations were carried out on several systems. The solutes investigated were ethanol, ethylene glycol, 1,2-propylene glycol, 1,3 -propylene glycol and glycerol. In addition, propane, which does not hydrogen bond but does form water hydrates, was simulated in aqueous solution. The complex alcohol-water systems are very nonideal in their behavior as a function of solute concentration down to very dilute solutions. The water model employed was TIP4P water^1 and the intermolecular potentials employed are of the Jorgensen type^2 in which the interactions between the molecules are represented by interaction sites usually located on nuclei. The interactions are represented by a sum of Coulomb and Lennard-Jones terms between all intermolecular pairs of sites. Intramolecular rotations in the solute are modeled by torsional potential energy functions taken from ethanol, 1-propanol and 2-propanol for C-O and C-C bond rotations. Quasi-component pair correlation functions were used to analyze the hydrogen bonding. Hydrogen bonds were classified as proton acceptor and proton donor bonds by analyzing the nearest neighbor pair correlation function between hydroxyl oxygen and hydrogen and between solvent-water hydrogen and oxygen. The results obtained for partial molar heats of solution are more negative than experimental values by 3.0 to 14 kcal/mol. In solution, all solutes reached a contracted molecular geometry with the OH groups generally on one side of the molecule. There is a tendency for the solute OH groups to hydrogen bond with water, with more proton acceptor bonds than proton donor bonds. The water -solute binding energies correlate with experimental measurements of the water-binding properties of the solute. ftn ^1Jorgensen, W. L. et al, J. Chem. Phys., 79, 926 (1983). ^2Jorgensen, W. L., J. Phys Chem., 87, 5304
Monte Carlo simulation of the neutron monitor yield function
Mangeard, P.-S.; Ruffolo, D.; Sáiz, A.; Madlee, S.; Nutaro, T.
2016-08-01
Neutron monitors (NMs) are ground-based detectors that measure variations of the Galactic cosmic ray flux at GV range rigidities. Differences in configuration, electronics, surroundings, and location induce systematic effects on the calculation of the yield functions of NMs worldwide. Different estimates of NM yield functions can differ by a factor of 2 or more. In this work, we present new Monte Carlo simulations to calculate NM yield functions and perform an absolute (not relative) comparison with the count rate of the Princess Sirindhorn Neutron Monitor (PSNM) at Doi Inthanon, Thailand, both for the entire monitor and for individual counter tubes. We model the atmosphere using profiles from the Global Data Assimilation System database and the Naval Research Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended model. Using FLUKA software and the detailed geometry of PSNM, we calculated the PSNM yield functions for protons and alpha particles. An agreement better than 9% was achieved between the PSNM observations and the simulated count rate during the solar minimum of December 2009. The systematic effect from the electronic dead time was studied as a function of primary cosmic ray rigidity at the top of the atmosphere up to 1 TV. We show that the effect is not negligible and can reach 35% at high rigidity for a dead time >1 ms. We analyzed the response function of each counter tube at PSNM using its actual dead time, and we provide normalization coefficients between count rates for various tube configurations in the standard NM64 design that are valid to within ˜1% for such stations worldwide.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Claudio; Costa, Artur; Bittencourt, Euclides [TRANSPETRO - PETROBRAS Transporte, Rio de Janeiro, RJ (Brazil)
2005-07-01
Due to the growing relevance of safety and environmental protection policies in PETROBRAS and its subsidiaries, as well as official regulatory agencies and population requirements, integrity management of oil and gas pipelines became a priority activity in TRANSPETRO, involving several sectors of the company's Support Management Department. Inspection activities using intelligent PIGs, field correlations and replacement of pipeline segments are known as high cost operations and request complex logistics. Thus, it is imperative the adoption of management tools that optimize the available resources. This study presents Monte Carlo simulation method as an additional tool for evaluation and management of pipeline structural integrity. The method consists in foreseeing future physical conditions of most significant defects found in intelligent PIG In Line Inspections based on a probabilistic approach. Through Monte Carlo simulation, probability functions of failure for each defect are produced, helping managers to decide which repairs should be executed in order to reach the desired or accepted risk level. The case that illustrates this study refers to the reconditioning of ORSOL 14'' (35,56 mm) pipeline. This pipeline was constructed to transfer petroleum from Urucu's production fields to Solimoes port, in Coari, city in Brazilian Amazon Region. The result of this analysis indicated critical points for repair, in addition to the results obtained by the conventional evaluation (deterministic ASME B-31G method). Due to the difficulties to mobilize staff and execute necessary repairs in remote areas like Amazon forest, the probabilistic tool was extremely useful, improving pipeline integrity level and avoiding future additional costs. (author)
Demmel, F.; Pokhilchuk, K.
2014-12-01
The energy resolution of an indirect time of flight (tof) spectrometer is determined mainly by the pulse shape of the incoming pulse and the contribution of the crystal analyser. We performed extensive Monte Carlo simulations for the indirect near-backscattering spectrometer OSIRIS utilising the McStas neutron ray-traycing package. The simulations are accompanied by analytical calculations for the energy resolution. From simulation and calculation an excellent description for the width of the line is achieved for the PG002 and PG004 energy setting. The simulations and calculations reveal that the secondary spectrometer and hence the analyser geometry is the dominating term for the energy resolution at zero energy transfer. The remaining differences in the lineshape can be traced to a not perfectly modeled hydrogen moderator. The simulations and calculations predict a superb energy resolution of less than 100 μeV at an energy transfer of 15 meV.
Energy Technology Data Exchange (ETDEWEB)
Demmel, F., E-mail: franz.demmel@stfc.ac.uk [ISIS Facility, Didcot, OX11 0QX (United Kingdom); Pokhilchuk, K. [ISIS Facility, Didcot, OX11 0QX (United Kingdom); Loughborough University, Loughborough (United Kingdom)
2014-12-11
The energy resolution of an indirect time of flight (tof) spectrometer is determined mainly by the pulse shape of the incoming pulse and the contribution of the crystal analyser. We performed extensive Monte Carlo simulations for the indirect near-backscattering spectrometer OSIRIS utilising the McStas neutron ray-traycing package. The simulations are accompanied by analytical calculations for the energy resolution. From simulation and calculation an excellent description for the width of the line is achieved for the PG002 and PG004 energy setting. The simulations and calculations reveal that the secondary spectrometer and hence the analyser geometry is the dominating term for the energy resolution at zero energy transfer. The remaining differences in the lineshape can be traced to a not perfectly modeled hydrogen moderator. The simulations and calculations predict a superb energy resolution of less than 100 μeV at an energy transfer of 15 meV.
J. Janeček; Krienke, H.; Schmeer, G.
2007-01-01
The inhomogeneous Monte Carlo technique is used in studying the vapor-liquid interface of benzene in a broad range of temperatures using the TraPPE potential field. The obtained values of the VLE parameters are in good agreement with the experimental values as well as with the results from GEMC simulations. In contrast to the GEMC, within one simulation box the inhomogeneous MC technique also yields information on the structural properties of the interphase between the two phases. The values ...
Study of magnetic properties for co double-nanorings: Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Ye, Qingying, E-mail: qyye@fjnu.edu.cn [College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350007 (China); Chen, Shuiyuan [College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350007 (China); Electrical and Computer Engineering, Northeastern University, Boston, 02115 (United States); Liu, Jingyao; Huang, Chao; Huang, Shengkai [College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350007 (China); Huang, Zhigao, E-mail: zghuang@fjnu.edu.cn [College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350007 (China)
2016-06-15
In this paper, cobalt double-nanorings (Co D-N-rings) structure model was constructed. Based on Monte-Carlo simulation (MC) method combining with Fast Fourier Transformation and Micromagnetism (FFTM) method, the magnetic properties of Co D-N-rings with different geometric dimensions have been studied. The simulated results indicate that, the magnetization steps in hysteresis loops is the result of the special spin configurations (SCs), i.e., onion-type state and vortex-type state, which are very different from that in many other nanostructures, such as nanometer thin-films, nanotubes, etc. Besides, Co D-N-rings with different geometric dimensions present interesting magnetization behavior, which is determined by the change of both SCs and exchange interaction in Co D-N-rings. - Highlights: • A double-nanorings structure (named as D-N-rings) was proposed to construct cobalt nanometer thin film. • Monte Carlo method combining with FFTM method was used to simulate magnetic properties of the Co D-N-rings. • Magnetization dynamic processes of the Co D-N-rings were obtained and interpreted through the evolutionary process of spin configurations. • Geometric dimensions deeply influence the magnetization behavior of the Co D-N-rings, which is determined by the change of both SCs and exchange interaction.
Hartnett, Michael; Ren, Lei
2013-04-01
This paper describes the application of Ensemble Optimal Interpolation (EnOI) with Monte Carlo (MC) simulation for surface currents forecasting. Environment Fluid Dynamics Codes (EFDC) is run for 7 days with initial conditions and boundary conditions. For the assimilation process, Direct Insertion (DI), Optimal Interpolation (OI) and Ensemble Optimal Interpolation (EnOI) approaches are applied from t=5.0d, and wind forcing is switched off during updating process. For Optimal Interpolation, background error covariance is estimated from the first run combining empirical correlation function, while for Ensemble Optimal Interpolation, background error covariance is calculated from the ensemble of first run, optimal number of ensemble is acquired by comparing different assimilation. Different strategies have been proposed to obtain the measurement error covariance, optimal measurement error covariance gives the least forecast error. Different kinds of pseudo measurements are produced from Monte Carlo simulation by adding different type of perturbations, which obey certain distribution. A series of experiments with distinct perturbations are carried out to show the improvement of simulating the stochastic process. Three types of reference points: inside of the assimilation area, outside of the assimilation area, and the boundary points are analyzed to show the improvement of the assimilation process and the influence after assimilation. This study also investigates the impacts of the updating interval for the assimilation process, the felicitous updating interval is chosen by comparison. To compare the improvement of operating Ensemble Optimal Interpolation with Direct Insertion and Optimal Interpolation, RMS error and data assimilation skill are calculated.
Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy
Directory of Open Access Journals (Sweden)
Paro AD
2016-09-01
Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray
Monte Carlo simulation of the standardization of {sup 22}Na using scintillation detector arrays
Energy Technology Data Exchange (ETDEWEB)
Sato, Y., E-mail: yss.sato@aist.go.j [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Murayama, H. [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage, Chiba 263-8555 (Japan); Yamada, T. [Japan Radioisotope Association, 2-28-45, Hon-komagome, Bunkyo, Tokyo 113-8941 (Japan); National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Tohoku University, 6-6, Aoba, Aramaki, Aoba, Sendai 980-8579 (Japan); Hasegawa, T. [Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Oda, K. [Tokyo Metropolitan Institute of Gerontology, 1-1 Nakacho, Itabashi-ku, Tokyo 173-0022 (Japan); Unno, Y.; Yunoki, A. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)
2010-07-15
In order to calibrate PET devices by a sealed point source, we contrived an absolute activity measurement method for the sealed point source using scintillation detector arrays. This new method was verified by EGS5 Monte Carlo simulation.
Monte Carlo Simulation Calculation of Critical Coupling Constant for Continuum \\phi^4_2
Loinaz, Will; Willey, R. S.
1997-01-01
We perform a Monte Carlo simulation calculation of the critical coupling constant for the continuum {\\lambda \\over 4} \\phi^4_2 theory. The critical coupling constant we obtain is [{\\lambda \\over \\mu^2}]_crit=10.24(3).
Monte Carlo simulation of diffuse attenuation coefficient in presence of non uniform profiles
Digital Repository Service at National Institute of Oceanography (India)
Desa, E.S.; Desai, R.G.P.; Desa, B.A.E.
This paper presents a Monte Carlo simulation of the vertical depth structure of the downward attenuation coefficient (K sub(d)), and the irradiance reflectance (R) for a given profile of chlorophyll. The results are in quantitaive agreement...
On-the-fly nuclear data processing methods for Monte Carlo simulations of fast spectrum systems
Energy Technology Data Exchange (ETDEWEB)
Walsh, Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-31
The presentation summarizes work performed over summer 2015 related to Monte Carlo simulations. A flexible probability table interpolation scheme has been implemented and tested with results comparing favorably to the continuous phase-space on-the-fly approach.
High Fidelity Imaging Algorithm for the Undique Imaging Monte Carlo Simulator
Directory of Open Access Journals (Sweden)
Tremblay Grégoire
2016-01-01
Full Text Available The Undique imaging Monte Carlo simulator (Undique hereafter was developed to reproduce the behavior of 3D imaging devices. This paper describes its high fidelity imaging algorithm.
Exact special twist method for quantum Monte Carlo simulations
Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro
2016-12-01
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
Grand Canonical Ensemble Monte Carlo Simulation of Depletion Interactions in Colloidal Suspensions
Institute of Scientific and Technical Information of China (English)
GUO Ji-Yuan; XIAO Chang-Ming
2008-01-01
Depletion interactions in colloidal suspensions confined between two parallel plates are investigated by using acceptance ratio method with grand canonical ensemble Monte Carlo simulation.The numerical results show that both the depletion potential and depletion force are affected by the confinement from the two parallel plates.Furthermore,it is found that in the grand canonical ensemble Monte Carlo simulation,the depletion interactions are strongly affected by the generalized chemical potential.
Surface tension of water and acid gases from Monte Carlo simulations.
Ghoufi, A; Goujon, F; Lachet, V; Malfreyt, P
2008-04-21
We report direct Monte Carlo (MC) simulations on the liquid-vapor interfaces of pure water, carbon dioxide, and hydrogen sulfide. In the case of water, the recent TIP4P/2005 potential model used with the MC method is shown to reproduce the experimental surface tension and to accurately describe the coexistence curves. The agreement with experiments is also excellent for CO(2) and H(2)S with standard nonpolarizable models. The surface tensions are calculated by using the mechanical and the thermodynamic definitions via profiles along the direction normal to the surface. We also discuss the different contributions to the surface tension due to the repulsion-dispersion and electrostatic interactions. The different profiles of these contributions are proposed in the case of water.
Fast Monte Carlo simulation of a dispersive sample on the SEQUOIA spectrometer at the SNS
Energy Technology Data Exchange (ETDEWEB)
Granroth, Garrett E [ORNL; Chen, Meili [ORNL; Kohl, James Arthur [ORNL; Hagen, Mark E [ORNL; Cobb, John W [ORNL
2007-01-01
Simulation of an inelastic scattering experiment, with a sample and a large pixilated detector, usually requires days of time because of finite processor speeds. We report simulations on an SNS (Spallation Neutron Source) instrument, SEQUOIA, that reduce the time to less than 2 hours by using parallelization and the resources of the TeraGrid. SEQUOIA is a fine resolution (∆E/Ei ~ 1%) chopper spectrometer under construction at the SNS. It utilizes incident energies from Ei = 20 meV to 2 eV and will have ~ 144,000 detector pixels covering 1.6 Sr of solid angle. The full spectrometer, including a 1-D dispersive sample, has been simulated using the Monte Carlo package McStas. This paper summarizes the method of parallelization for and results from these simulations. In addition, limitations of and proposed improvements to current analysis software will be discussed.
Deterministic sensitivity analysis for first-order Monte Carlo simulations: a technical note.
Geisler, Benjamin P; Siebert, Uwe; Gazelle, G Scott; Cohen, David J; Göhler, Alexander
2009-01-01
Monte Carlo microsimulations have gained increasing popularity in decision-analytic modeling because they can incorporate discrete events. Although deterministic sensitivity analyses are essential for interpretation of results, it remains difficult to combine these alongside Monte Carlo simulations in standard modeling packages without enormous time investment. Our purpose was to facilitate one-way deterministic sensitivity analysis of TreeAge Markov state-transition models requiring first-order Monte Carlo simulations. Using TreeAge Pro Suite 2007 and Microsoft Visual Basic for EXCEL, we constructed a generic script that enables one to perform automated deterministic one-way sensitivity analyses in EXCEL employing microsimulation models. In addition, we constructed a generic EXCEL-worksheet that allows for use of the script with little programming knowledge. Linking TreeAge Pro Suite 2007 and Visual Basic enables the performance of deterministic sensitivity analyses of first-order Monte Carlo simulations. There are other potentially interesting applications for automated analysis.
Optical model for port-wine stain skin and its Monte Carlo simulation
Xu, Lanqing; Xiao, Zhengying; Chen, Rong; Wang, Ying
2008-12-01
Laser irradiation is the most acceptable therapy for PWS patient at present time. Its efficacy is highly dependent on the energy deposition rules in skin. To achieve optimal PWS treatment parameters a better understanding of light propagation in PWS skin is indispensable. Traditional Monte Carlo simulations using simple geometries such as planar layer tissue model can not provide energy deposition in the skin with enlarged blood vessels. In this paper the structure of normal skin and the pathological character of PWS skin was analyzed in detail and the true structure were simplified into a hybrid layered mathematical model to character two most important aspects of PWS skin: layered structure and overabundant dermal vessels. The basic laser-tissue interaction mechanisms in skin were investigated and the optical parameters of PWS skin tissue at the therapeutic wavelength. Monte Carlo (MC) based techniques were choused to calculate the energy deposition in the skin. Results can be used in choosing optical dosage. Further simulations can be used to predict optimal laser parameters to achieve high-efficacy laser treatment of PWS.
Zaidi, H
1999-01-01
the many applications of Monte Carlo modelling in nuclear medicine imaging make it desirable to increase the accuracy and computational speed of Monte Carlo codes. The accuracy of Monte Carlo simulations strongly depends on the accuracy in the probability functions and thus on the cross section libraries used for photon transport calculations. A comparison between different photon cross section libraries and parametrizations implemented in Monte Carlo simulation packages developed for positron emission tomography and the most recent Evaluated Photon Data Library (EPDL97) developed by the Lawrence Livermore National Laboratory was performed for several human tissues and common detector materials for energies from 1 keV to 1 MeV. Different photon cross section libraries and parametrizations show quite large variations as compared to the EPDL97 coefficients. This latter library is more accurate and was carefully designed in the form of look-up tables providing efficient data storage, access, and management. Toge...
Optical coherence tomography: Monte Carlo simulation and improvement by optical amplification
DEFF Research Database (Denmark)
Tycho, Andreas
2002-01-01
An advanced novel Monte Carlo simulation model of the detection process of an optical coherence tomography (OCT) system is presented. For the first time it is shown analytically that the applicability of the incoherent Monte Carlo approach to model the heterodyne detection process of an OCT system...... model of the OCT signal. The OCT signal from a scattering medium are obtained for several beam and sample geometries using the new Monte Carlo model, and when comparing to results of an analytical model based on the extended Huygens-Fresnel principle excellent agreement is obtained. With the greater...... flexibility of Monte Carlo simulations, this new model is demonstrated to be excellent as a numerical phantom, i.e., as a substitute for otherwise difficult experiments. Finally, a new model of the signal-to-noise ratio (SNR) of an OCT system with optical amplification of the light reflected from the sample...
Speeding up Monte Carlo molecular simulation by a non-conservative early rejection scheme
Kadoura, Ahmad Salim
2015-04-23
Monte Carlo (MC) molecular simulation describes fluid systems with rich information, and it is capable of predicting many fluid properties of engineering interest. In general, it is more accurate and representative than equations of state. On the other hand, it requires much more computational effort and simulation time. For that purpose, several techniques have been developed in order to speed up MC molecular simulations while preserving their precision. In particular, early rejection schemes are capable of reducing computational cost by reaching the rejection decision for the undesired MC trials at an earlier stage in comparison to the conventional scheme. In a recent work, we have introduced a ‘conservative’ early rejection scheme as a method to accelerate MC simulations while producing exactly the same results as the conventional algorithm. In this paper, we introduce a ‘non-conservative’ early rejection scheme, which is much faster than the conservative scheme, yet it preserves the precision of the method. The proposed scheme is tested for systems of structureless Lennard-Jones particles in both canonical and NVT-Gibbs ensembles. Numerical experiments were conducted at several thermodynamic conditions for different number of particles. Results show that at certain thermodynamic conditions, the non-conservative method is capable of doubling the speed of the MC molecular simulations in both canonical and NVT-Gibbs ensembles. © 2015 Taylor & Francis
A Monte Carlo algorithm for simulating fermions on Lefschetz thimbles
Alexandru, Andrei; Bedaque, Paulo
2016-01-01
A possible solution of the notorious sign problem preventing direct Monte Carlo calculations for systems with non-zero chemical potential is to deform the integration region in the complex plane to a Lefschetz thimble. We investigate this approach for a simple fermionic model. We introduce an easy to implement Monte Carlo algorithm to sample the dominant thimble. Our algorithm relies only on the integration of the gradient flow in the numerically stable direction, which gives it a distinct advantage over the other proposed algorithms. We demonstrate the stability and efficiency of the algorithm by applying it to an exactly solvable fermionic model and compare our results with the analytical ones. We report a very good agreement for a certain region in the parameter space where the dominant contribution comes from a single thimble, including a region where standard methods suffer from a severe sign problem. However, we find that there are also regions in the parameter space where the contribution from multiple...
Estimation of beryllium ground state energy by Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)
2015-05-15
Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.
Monte Carlo simulations of the Galileo energetic particle detector
Jun, I; Garrett, H B; McEntire, R W
2002-01-01
Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A modified Monte-Carlo(MC) method to simulate the regular growth of binary eutectic alloys is presented. It is found that the growth rate has a linear dependence on the chemical potential difference between the solid and liquid; the relation between the lamellar spacing λ and growth rate R accords well with the prediction of Jackson-Hunt(JH)theory unless the growth rate is very Iow.
Hinzke, Denise; Nowak, Ulrich
1999-01-01
Using Monte Carlo methods we investigate the thermally activated magnetization switching of small ferromagnetic particles driven by an external magnetic field. For low uniaxial anisotropy one expects that the spins rotate coherently while for sufficiently large anisotropy the reversal should be due to nucleation. The latter case has been investigated extensively by Monte Carlo simulation of corresponding Ising models. In order to study the crossover from coherent rotation to nucleation we use...
Catfish: A Monte Carlo simulator for black holes at the LHC
Cavaglià, M; Cremaldi, L; Summers, D
2006-01-01
We present a new Fortran Monte Carlo generator to simulate black hole events at CERN's Large Hadron Collider. The generator interfaces to the PYTHIA Monte Carlo fragmentation code. The physics of the BH generator includes, but not limited to, inelasticity effects, exact field emissivities, corrections to semiclassical black hole evaporation and gravitational energy loss at formation. These features are essential to realistically reconstruct the detector response and test different models of black hole formation and decay at the LHC.
Catfish: A Monte Carlo simulator for black holes at the LHC
Cavaglià, M.; Godang, R.; Cremaldi, L.; Summers, D.
2007-09-01
We present a new Fortran Monte Carlo generator to simulate black hole events at CERN's Large Hadron Collider. The generator interfaces to the PYTHIA Monte Carlo fragmentation code. The physics of the BH generator includes, but not limited to, inelasticity effects, exact field emissivities, corrections to semiclassical black hole evaporation and gravitational energy loss at formation. These features are essential to realistically reconstruct the detector response and test different models of black hole formation and decay at the LHC.
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-01-01
In the report, research results discussed in 1999 fiscal year at Nuclear Code Evaluation Committee of Nuclear Code Research Committee were summarized. Present status of Monte Carlo simulation on nuclear energy study was described. Especially, besides of criticality, shielding and core analyses, present status of applications to risk and radiation damage analyses, high energy transport and nuclear theory calculations of Monte Carlo Method was described. The 18 papers are indexed individually. (J.P.N.)
Continuous Time Quantum Monte Carlo simulation of Kondo shuttling
Zhang, Peng; Assaad, Fakher; Jarrell, Mark
2010-03-01
The Kondo shuttling problem is investigated by using the Continuous Time Quantum Monte Carlo method in both the anti-adiabatic limit φTK and the intermediate regime φ˜TK, where φ is the phonon modulation frequency and TK is the Kondo temperature. We investigate the potential emergence of Kondo effect or Kondo breakdown as a function of the phonon modulation frequency and electron-phonon coupling. This research is supported by grant OISE-0952300.
Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.
2015-07-01
Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of population-annealing Monte Carlo by computing ground states of the three-dimensional Ising spin glass with Gaussian disorder, while comparing to simulated-annealing and parallel-tempering Monte Carlo. Our results suggest that population annealing Monte Carlo is significantly more efficient than simulated annealing but comparable to parallel-tempering Monte Carlo for finding spin-glass ground states.
Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G
2015-07-01
Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of population-annealing Monte Carlo by computing ground states of the three-dimensional Ising spin glass with Gaussian disorder, while comparing to simulated-annealing and parallel-tempering Monte Carlo. Our results suggest that population annealing Monte Carlo is significantly more efficient than simulated annealing but comparable to parallel-tempering Monte Carlo for finding spin-glass ground states.
Monte Carlo computer simulation of sedimentation of charged hard spherocylinders
Energy Technology Data Exchange (ETDEWEB)
Viveros-Méndez, P. X., E-mail: xviveros@fisica.uaz.edu.mx; Aranda-Espinoza, S. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo, La Bufa s/n, 98060 Zacatecas, Zacatecas, México (Mexico); Gil-Villegas, Alejandro [Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, México (Mexico)
2014-07-28
In this article we present a NVT Monte Carlo computer simulation study of sedimentation of an electroneutral mixture of oppositely charged hard spherocylinders (CHSC) with aspect ratio L/σ = 5, where L and σ are the length and diameter of the cylinder and hemispherical caps, respectively, for each particle. This system is an extension of the restricted primitive model for spherical particles, where L/σ = 0, and it is assumed that the ions are immersed in an structureless solvent, i.e., a continuum with dielectric constant D. The system consisted of N = 2000 particles and the Wolf method was implemented to handle the coulombic interactions of the inhomogeneous system. Results are presented for different values of the strength ratio between the gravitational and electrostatic interactions, Γ = (mgσ)/(e{sup 2}/Dσ), where m is the mass per particle, e is the electron's charge and g is the gravitational acceleration value. A semi-infinite simulation cell was used with dimensions L{sub x} ≈ L{sub y} and L{sub z} = 5L{sub x}, where L{sub x}, L{sub y}, and L{sub z} are the box dimensions in Cartesian coordinates, and the gravitational force acts along the z-direction. Sedimentation effects were studied by looking at every layer formed by the CHSC along the gravitational field. By increasing Γ, particles tend to get more packed at each layer and to arrange in local domains with an orientational ordering along two perpendicular axis, a feature not observed in the uncharged system with the same hard-body geometry. This type of arrangement, known as tetratic phase, has been observed in two-dimensional systems of hard-rectangles and rounded hard-squares. In this way, the coupling of gravitational and electric interactions in the CHSC system induces the arrangement of particles in layers, with the formation of quasi-two dimensional tetratic phases near the surface.
Monte Carlo simulations of tungsten redeposition at the divertor target
Chankin, A. V.; Coster, D. P.; Dux, R.
2014-02-01
Recent modeling of controlled edge-localized modes (ELMs) in ITER with tungsten (W) divertor target plates by the SOLPS code package predicted high electron temperatures (>100 eV) and densities (>1 × 1021 m-3) at the outer target. Under certain scenarios W sputtered during ELMs can penetrate into the core in quantities large enough to cause deterioration of the discharge performance, as was shown by coupled SOLPS5.0/STRAHL/ASTRA runs. The net sputtering yield, however, was expected to be dramatically reduced by the ‘prompt redeposition’ during the first Larmor gyration of W1+ (Fussman et al 1995 Proc. 15th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research (Vienna: IAEA) vol 2, p 143). Under high ne/Te conditions at the target during ITER ELMs, prompt redeposition would reduce W sputtering by factor p-2 ˜ 104 (with p ≡ τionωgyro ˜ 0.01). However, this relation does not include the effects of multiple ionizations of sputtered W atoms and the electric field in the magnetic pre-sheath (MPS, or ‘Chodura sheath’) and Debye sheath (DS). Monte Carlo simulations of W redeposition with the inclusion of these effects are described in the paper. It is shown that for p ≪ 1, the inclusion of multiple W ionizations and the electric field in the MPS and DS changes the physics of W redeposition from geometrical effects of circular gyro-orbits hitting the target surface, to mainly energy considerations; the key effect is the electric potential barrier for ions trying to escape into the main plasma. The overwhelming majority of ions are drawn back to the target by a strong attracting electric field. It is also shown that the possibility of a W self-sputtering avalanche by ions circulating in the MPS can be ruled out due to the smallness of the sputtered W neutral energies, which means that they do not penetrate very far into the MPS before ionizing; thus the W ions do not gain a large kinetic energy as they are accelerated back to the surface by the
Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.
Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe
2015-08-07
Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.
Monte-Carlo simulation of {Pb}/{Cu (100) } surface superstructures
Tan, S.; Ghazali, A.; Lévy, J.-C. S.
1997-04-01
Three surface superstructures of {Pb}/{Cu (100) } at low lead coverage are well known experimentally: c(4 × 4),c(2 × 2) and c(5√2×√2)R45°. The present study consists in (i) using generalized Lennard-Jones pair potentials for lead-lead and copper-copper interactions fitted on structural and elastic bulk properties, (ii) deriving an effective potential for lead-copper and (iii) developing a Monte-Carlo extensive relaxation of superstructure models. The MC simulations reveal the stability of these approximate superstructures and yield structural details that are all observed in STM and LEED experiments: the adlayer corrugation, surface alloying, structural modulations as well as PbPb and PbCu spacings. The simulated results on structures and on melting temperatures are in close agreement with experimental data.
OPTIMIZATION OF THE HYSPEC DESIGN USING MONTE CARLO SIMULATIONS.
Energy Technology Data Exchange (ETDEWEB)
GHOSH, V.J.; HAGEN, M.E.; LEONHARDT, W.J.; ZALIZNYAK, I.; SHAPIRO, S.M.; PASSELL, L.
2005-04-25
HYSPEC is a direct geometry spectrometer to be installed at the SNS [1] on beamline 14B where it will view a cryogenic coupled hydrogen moderator, The ''hybrid'' design combines time-of-flight spectroscopy with focusing Bragg optics to provide a high monochromatic flux on small single crystal samples, with a very low background at an extended detector bank. The instrument is optimized for an incident energy range of 3-90meV. It will have a medium energy resolution (2-10%) and will provide a flux on sample of the order of 10{sup 6}-10{sup 7} neutrons/s-cm{sup 2}. The spectrometer will be located in a satellite building outside the SNS experimental hall at the end of a 35m curved supermirror guide. A straight-slotted Fermi chopper will be used to monochromate the neutron beam and to determine the burst width. The 15cm high, 4cm wide beam will be focused onto a 2cm by 2cm area at the sample position using Bragg reflection from one of two crystal arrays. For unpolarized neutron studies these will be Highly Oriented Pyrolitic graphite crystals while for polarized neutron studies these will be replaced with Heusler alloy crystals. These focusing crystal arrays will be placed in a drum shield similar to those used for triple axis spectrometers. Hyspec will have a movable detector bank housing 160 position sensitive detectors. This detector bank will pivot about the sample axis. It will have a radius of 4.5m, a horizontal range of 60{sup o}, and a vertical range of {+-} 7.5{sup o}. In order to reduce background at the detector bank both a curved guide and a T0 chopper will be used. A bank of 20 supermirror bender polarization analyzers [2] will be used to spatially separate the polarized neutrons in the scattered beam so that both scattered neutron spin states can be measured simultaneously. The results of Monte Carlo simulations performed to optimize the instrument design will be discussed.
Quantum Monte Carlo simulations of bosons with complex interactions
Rousseau, Valery
2015-03-01
Many of the most exciting materials and phenomena being studied today, from oxide heterostructures to topological insulators or iron-based superconductors, are the ones in which an understanding of how quantum particles interact with each other is essential. In the last decade, the development and the improvement of quantum Monte Carlo algorithms combined with the increased power of computers has opened the way to the exact simulation of Hamiltonians that include various types of interactions, such as inter-species conversion terms or ring-exchange terms. Simultaneously, developments made in the field of optical lattices, laser cooling and magneto/optical trapping techniques have led to ideal realizations of such Hamiltonians. A wide variety of phases can be present, including Mott insulators and superfluids, as well as more exotic phases such as Haldane insulators, supersolids, counter-superfluids, or the recently proposed Feshbach insulator. These experimental realizations of the various forms of the Hubbard model can have interesting applications, in particular they provide a possible way of performing quantum computing, and have also given rise to a new field known as Atomtronics, the equivalent of Electronics where the carriers are replaced by atoms. I will illustrate these ideas with examples of Hamiltonians that have been studied and some results. In order to study these systems, it is crucial to identify the various phases that are present, which can be characterized by a set of order parameters. Of particular importance in this task is the superfluid density. It is well known that the superfluid density can be related to the response of the free energy to a boundary phase twist, or to the fluctuations of the winding number. However, these relationships break down when complex interactions are involved. To address this problem, I will propose a general expression of the superfluid density, derived from real and thought experiments. I will discuss two
Rapid Monte Carlo simulation of detector DQE(f)
Energy Technology Data Exchange (ETDEWEB)
Star-Lack, Josh, E-mail: josh.starlack@varian.com; Sun, Mingshan; Abel, Eric [Varian Medical Systems, Palo Alto, California 94304-1030 (United States); Meyer, Andre; Morf, Daniel [Varian Medical Systems, CH-5405, Baden-Dattwil (Switzerland); Constantin, Dragos; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)
2014-03-15
Purpose: Performance optimization of indirect x-ray detectors requires proper characterization of both ionizing (gamma) and optical photon transport in a heterogeneous medium. As the tool of choice for modeling detector physics, Monte Carlo methods have failed to gain traction as a design utility, due mostly to excessive simulation times and a lack of convenient simulation packages. The most important figure-of-merit in assessing detector performance is the detective quantum efficiency (DQE), for which most of the computational burden has traditionally been associated with the determination of the noise power spectrum (NPS) from an ensemble of flood images, each conventionally having 10{sup 7} − 10{sup 9} detected gamma photons. In this work, the authors show that the idealized conditions inherent in a numerical simulation allow for a dramatic reduction in the number of gamma and optical photons required to accurately predict the NPS. Methods: The authors derived an expression for the mean squared error (MSE) of a simulated NPS when computed using the International Electrotechnical Commission-recommended technique based on taking the 2D Fourier transform of flood images. It is shown that the MSE is inversely proportional to the number of flood images, and is independent of the input fluence provided that the input fluence is above a minimal value that avoids biasing the estimate. The authors then propose to further lower the input fluence so that each event creates a point-spread function rather than a flood field. The authors use this finding as the foundation for a novel algorithm in which the characteristic MTF(f), NPS(f), and DQE(f) curves are simultaneously generated from the results of a single run. The authors also investigate lowering the number of optical photons used in a scintillator simulation to further increase efficiency. Simulation results are compared with measurements performed on a Varian AS1000 portal imager, and with a previously published
Golonka, P.; Pierzchała, T.; Waş, Z.
2004-02-01
of τ lepton decays (30 decay channels, 594 histograms, 82-pages booklet). Keywords: particle physics, decay simulation, Monte Carlo methods, invariant mass distributions, programs comparison Nature of the physical problem: The decays of individual particles are well defined modules of a typical Monte Carlo program chain in high energy physics. A fast, semi-automatic way of comparing results from different programs is often desirable, for the development of new programs, to check correctness of the installations or for discussion of uncertainties. Method of solution: A typical HEP Monte Carlo program stores the generated events in the event records such as HEPEVT or PYJETS. MC-TESTER scans, event by event, the contents of the record and searches for the decays of the particle under study. The list of the found decay modes is successively incremented and histograms of all invariant masses which can be calculated from the momenta of the particle decay products are defined and filled. The outputs from the two runs of distinct programs can be later compared. A booklet of comparisons is created: for every decay channel, all histograms present in the two outputs are plotted and parameter quantifying shape difference is calculated. Its maximum over every decay channel is printed in the summary table. Restrictions on the complexity of the problem: For a list of limitations see Section 6. Typical running time: Varies substantially with the analyzed decay particle. On a PC/Linux with 2.0 GHz processors MC-TESTER increases the run time of the τ-lepton Monte Carlo program TAUOLA by 4.0 seconds for every 100 000 analyzed events (generation itself takes 26 seconds). The analysis step takes 13 seconds; ? processing takes additionally 10 seconds. Generation step runs may be executed simultaneously on multi-processor machines. Accessibility: web page: http://cern.ch/Piotr.Golonka/MC/MC-TESTER e-mails: Piotr.Golonka@CERN.CH, T.Pierzchala@friend.phys.us.edu.pl, Zbigniew.Was@CERN.CH.
Zhang, Guannan; Del-Castillo-Negrete, Diego
2016-10-01
Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE in the 2 dimensional momentum space. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.
A backward Monte-Carlo method for time-dependent runaway electron simulations
Zhang, Guannan; del-Castillo-Negrete, Diego
2017-09-01
Kinetic descriptions of runaway electrons (REs) are usually based on Fokker-Planck models that determine the probability distribution function of REs in 2-dimensional momentum space. Despite the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches [e.g., continuum and particle-based Monte Carlo (MC)] can be time consuming, especially in the computation of asymptotic-type observables including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here, we present a novel backward MC approach to these problems based on backward stochastic differential equations that describe the dynamics of the runaway probability by means of the Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than direct MC methods (by significantly reducing the number of particles required to achieve a prescribed accuracy) while at the same time maintaining the advantages of particle-based methods (compared to continuum approaches). The proposed algorithm is unconditionally stable and can be parallelized as easy as the direct MC method, and its extension to dimensions higher than two is straightforward, thus paving the way for conducting large-scale RE simulation.
Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation
Directory of Open Access Journals (Sweden)
Yuan Xu
2014-03-01
Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this
Monte Carlo simulation of phonon transport in variable cross-section nanowires
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A dedicated Monte Carlo (MC) model is proposed to investigate the mechanism of phonon transport in variable cross-section silicon nanowires (NWs). Emphasis is placed on understanding the thermal rectification effect and thermal conduction in tapered cross-section and incremental cross-section NWs. In the simulations, both equal and unequal heat input conditions are discussed. Under the latter condition, the tapered cross-section NW has a more prominent thermal rectification effect. Additionally, the capacity of heat conduction in the tapered cross-section NW is always higher than that of the incremental one. Two reasons may be attributed to these behaviors: one is their different boundary conditions and the other is their different volume distribution. Although boundary scattering plays an important role in nanoscale structures, the results suggest the influence of boundary scattering on heat conduction is less obvious than that of volume distribution in NWs with variable cross-sections.
Pinna, Roberto S.; Rudić, Svemir; Parker, Stewart F.; Gorini, Giuseppe; Fernandez-Alonso, Felix
2015-01-01
We describe and assess the performance of a detailed computational description of the high-resolution TOSCA spectrometer at ISIS using neutron-transport Monte Carlo simulations. Extensive calculations using the McStas software package have been performed using the present instrument geometry and compared with available experimental data. The agreement between expected and measured performance is satisfactory in terms of the incident flux spectrum, associated time structure, and spectroscopic resolution. Encouraged by these results, we also consider the upgrade of the primary spectrometer with a tapered high-m guide. This instrument development offers the exciting prospects of providing order-of-magnitude gains in detected neutron flux over the energy-transfer range of the instrument whilst preserving its outstanding spectroscopic capabilities.
Directory of Open Access Journals (Sweden)
Pinna Roberto S.
2015-01-01
Full Text Available We describe and assess the performance of a detailed computational description of the high-resolution TOSCA spectrometer at ISIS using neutron-transport Monte Carlo simulations. Extensive calculations using the McStas software package have been performed using the present instrument geometry and compared with available experimental data. The agreement between expected and measured performance is satisfactory in terms of the incident flux spectrum, associated time structure, and spectroscopic resolution. Encouraged by these results, we also consider the upgrade of the primary spectrometer with a tapered high-m guide. This instrument development offers the exciting prospects of providing order-of-magnitude gains in detected neutron flux over the energy-transfer range of the instrument whilst preserving its outstanding spectroscopic capabilities.
Monte-Carlo Tree Search for Simulated Car Racing
DEFF Research Database (Denmark)
Fischer, Jacob; Falsted, Nikolaj; Vielwerth, Mathias
2015-01-01
Monte Carlo Tree Search (MCTS) has recently seen considerable success in playing certain types of games, most of which are discrete, fully observable zero-sum games. Consequently there is currently considerable interest within the research community in investigating what other games this algorithm...... of the action space. This combination allows the controller to effectively search the tree of potential future states. Results show that it is indeed possible to implement a competent MCTS-based racing controller. The controller generalizes to most road tracks as long as a warm-up period is provided....
Monte-Carlo Tree Search for Simulated Car Racing
DEFF Research Database (Denmark)
Fischer, Jacob; Falsted, Nikolaj; Vielwerth, Mathias
2015-01-01
Monte Carlo Tree Search (MCTS) has recently seen considerable success in playing certain types of games, most of which are discrete, fully observable zero-sum games. Consequently there is currently considerable interest within the research community in investigating what other games this algorithm...... of the action space. This combination allows the controller to effectively search the tree of potential future states. Results show that it is indeed possible to implement a competent MCTS-based racing controller. The controller generalizes to most road tracks as long as a warm-up period is provided....
Monte Carlo simulations of the stability of delta-Pu
DEFF Research Database (Denmark)
Landa, A.; Soderlind, P.; Ruban, Andrei
2003-01-01
The transition temperature (T-c) for delta-Pu has been calculated for the first time. A Monte Carlo method is employed for this purpose and the effective cluster interactions are obtained from first-principles calculations incorporated with the Connolly-Williams and generalized perturbation methods....... It is found that at T-c similar to 548 K, delta-Pu undergoes transformation from a disordered magnetic state to a structure with an anti ferromagnetic spin alignment that is mechanically unstable with respect to tetragonal distortion. The calculated transition temperature is in good agreement...
Monte Carlo simulations of the stability of delta-Pu
Landa, A; Ruban, A
2003-01-01
The transition temperature (T sub c) for delta-Pu has been calculated for the first time. A Monte Carlo method is employed for this purpose and the effective cluster interactions are obtained from first-principles calculations incorporated with the Connolly-Williams and generalized perturbation methods. It is found that at T sub c approx 548 K, delta-Pu undergoes transformation from a disordered magnetic state to a structure with an antiferromagnetic spin alignment that is mechanically unstable with respect to tetragonal distortion. The calculated transition temperature is in good agreement with the temperature measured at the gamma -> delta transition (593 K). (letter to the editor)
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Jorge A. Carrazana; Ferrera, Eduardo A. Capote; Gomez, Isis M. Fernandez; Castro, Gloria V. Rodriguez; Ricardo, Niury Martinez, E-mail: cphr@cphr.edu.cu [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba)
2013-07-01
This work shows how is established the traceability of the analytical determinations using this calibration method. Highlights the advantages offered by Monte Carlo simulation for the application of corrections by differences in chemical composition, density and height of the samples analyzed. Likewise, the results obtained by the LVRA in two exercises organized by the International Agency for Atomic Energy (IAEA) are presented. In these exercises (an intercomparison and a proficiency test) all reported analytical results were obtained based on calibrations in efficiency by Monte Carlo simulation using the DETEFF program.
Zhai, Xue; Fei, Cheng-Wei; Choy, Yat-Sze; Wang, Jian-Jun
2017-01-01
To improve the accuracy and efficiency of computation model for complex structures, the stochastic model updating (SMU) strategy was proposed by combining the improved response surface model (IRSM) and the advanced Monte Carlo (MC) method based on experimental static test, prior information and uncertainties. Firstly, the IRSM and its mathematical model were developed with the emphasis on moving least-square method, and the advanced MC simulation method is studied based on Latin hypercube sampling method as well. And then the SMU procedure was presented with experimental static test for complex structure. The SMUs of simply-supported beam and aeroengine stator system (casings) were implemented to validate the proposed IRSM and advanced MC simulation method. The results show that (1) the SMU strategy hold high computational precision and efficiency for the SMUs of complex structural system; (2) the IRSM is demonstrated to be an effective model due to its SMU time is far less than that of traditional response surface method, which is promising to improve the computational speed and accuracy of SMU; (3) the advanced MC method observably decrease the samples from finite element simulations and the elapsed time of SMU. The efforts of this paper provide a promising SMU strategy for complex structure and enrich the theory of model updating.
Energy Technology Data Exchange (ETDEWEB)
Mendes, Hitalo R.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin
2016-07-01
The dosimetry in pediatric radiology is essential due to the higher risk that children have in comparison to adults. The focus of this study is to present how the dose varies depending on the depth in a 10 year old and a newborn, for this purpose simulations are made using the Monte Carlo method. Potential differences were considered 70 and 90 kVp for the 10 year old and 70 and 80 kVp for the newborn. The results show that in both cases, the dose at the skin surface is larger for smaller potential value, however, it decreases faster for larger potential values. Another observation made is that because the newborn is less thick the ratio between the initial dose and the final is lower compared to the case of a 10 year old, showing that it is possible to make an image using a smaller entrance dose in the skin, keeping the same level of exposure at the detector. (author)
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
Energy Technology Data Exchange (ETDEWEB)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F. [Departments of Biomedical Physics and Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States); Mueller, Jonathon W. [United States Air Force, Keesler Air Force Base, Biloxi, Mississippi 39534 (United States); Cody, Dianna D. [University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); DeMarco, John J. [Departments of Biomedical Physics and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States)
2015-02-15
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
Monte Carlo simulation of classical spin models with chaotic billiards.
Suzuki, Hideyuki
2013-11-01
It has recently been shown that the computing abilities of Boltzmann machines, or Ising spin-glass models, can be implemented by chaotic billiard dynamics without any use of random numbers. In this paper, we further numerically investigate the capabilities of the chaotic billiard dynamics as a deterministic alternative to random Monte Carlo methods by applying it to classical spin models in statistical physics. First, we verify that the billiard dynamics can yield samples that converge to the true distribution of the Ising model on a small lattice, and we show that it appears to have the same convergence rate as random Monte Carlo sampling. Second, we apply the billiard dynamics to finite-size scaling analysis of the critical behavior of the Ising model and show that the phase-transition point and the critical exponents are correctly obtained. Third, we extend the billiard dynamics to spins that take more than two states and show that it can be applied successfully to the Potts model. We also discuss the possibility of extensions to continuous-valued models such as the XY model.
Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics
Doronin, Alexander; Meglinski, Igor
2012-09-01
In the framework of further development of the unified approach of photon migration in complex turbid media, such as biological tissues we present a peer-to-peer (P2P) Monte Carlo (MC) code. The object-oriented programming is used for generalization of MC model for multipurpose use in various applications of biomedical optics. The online user interface providing multiuser access is developed using modern web technologies, such as Microsoft Silverlight, ASP.NET. The emerging P2P network utilizing computers with different types of compute unified device architecture-capable graphics processing units (GPUs) is applied for acceleration and to overcome the limitations, imposed by multiuser access in the online MC computational tool. The developed P2P MC was validated by comparing the results of simulation of diffuse reflectance and fluence rate distribution for semi-infinite scattering medium with known analytical results, results of adding-doubling method, and with other GPU-based MC techniques developed in the past. The best speedup of processing multiuser requests in a range of 4 to 35 s was achieved using single-precision computing, and the double-precision computing for floating-point arithmetic operations provides higher accuracy.
Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer
Directory of Open Access Journals (Sweden)
Granroth G.E.
2015-01-01
Full Text Available Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS of Oak Ridge National Laboratory (ORNL, has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores. This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.
Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer
Granroth, G. E.; Hahn, S. E.
2015-01-01
Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory (ORNL), has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores). This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.
Monte Carlo molecular simulation of phase-coexistence for oil production and processing
Li, Jun
2011-01-01
The Gibbs-NVT ensemble Monte Carlo method is used to simulate the liquid-vapor coexistence diagram and the simulation results of methane agree well with the experimental data in a wide range of temperatures. For systems with two components, the Gibbs-NPT ensemble Monte Carlo method is employed in the simulation while the mole fraction of each component in each phase is modeled as a Leonard-Jones fluid. As the results of Monte Carlo simulations usually contain huge statistical error, the blocking method is used to estimate the variance of the simulation results. Additionally, in order to improve the simulation efficiency, the step sizes of different trial moves is adjusted automatically so that their acceptance probabilities can approach to the preset values.
Energy Technology Data Exchange (ETDEWEB)
Winnischofer, Herbert; Araujo, Marcio Peres de; Dias Junior, Lauro Camargo; Novo, Joao Batista Marques [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)
2010-07-01
A software based in the Monte Carlo method have been developed aiming the teaching of important cases of mechanisms found in luminescence and in excited states decay kinetics, including: multiple decays, consecutive decays and coupled systems decays. The Monte Carlo Method allows the student to easily simulate and visualize the luminescence mechanisms, focusing on the probabilities of the related steps. The software CINESTEX was written for FreeBASIC compiler; it assumes first-order kinetics and any number of excited states, where the pathways are allowed with probabilities assigned by the user. (author)
Lu, Dan; Zhang, Guannan; Webster, Clayton; Barbier, Charlotte
2016-12-01
In this work, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challenge in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.
A Comparison Between GATE and MCNPX Monte Carlo Codes in Simulation of Medical Linear Accelerator
Sadoughi, Hamid-Reza; Nasseri, Shahrokh; Momennezhad, Mahdi; Sadeghi, Hamid-Reza; Bahreyni-Toosi, Mohammad-Hossein
2014-01-01
Radiotherapy dose calculations can be evaluated by Monte Carlo (MC) simulations with acceptable accuracy for dose prediction in complicated treatment plans. In this work, Standard, Livermore and Penelope electromagnetic (EM) physics packages of GEANT4 application for tomographic emission (GATE) 6.1 were compared versus Monte Carlo N-Particle eXtended (MCNPX) 2.6 in simulation of 6 MV photon Linac. To do this, similar geometry was used for the two codes. The reference values of percentage depth dose (PDD) and beam profiles were obtained using a 6 MV Elekta Compact linear accelerator, Scanditronix water phantom and diode detectors. No significant deviations were found in PDD, dose profile, energy spectrum, radial mean energy and photon radial distribution, which were calculated by Standard and Livermore EM models and MCNPX, respectively. Nevertheless, the Penelope model showed an extreme difference. Statistical uncertainty in all the simulations was MCNPX, Standard, Livermore and Penelope models, respectively. Differences between spectra in various regions, in radial mean energy and in photon radial distribution were due to different cross section and stopping power data and not the same simulation of physics processes of MCNPX and three EM models. For example, in the Standard model, the photoelectron direction was sampled from the Gavrila-Sauter distribution, but the photoelectron moved in the same direction of the incident photons in the photoelectric process of Livermore and Penelope models. Using the same primary electron beam, the Standard and Livermore EM models of GATE and MCNPX showed similar output, but re-tuning of primary electron beam is needed for the Penelope model. PMID:24696804
Dynamic Monte Carlo simulation of chain growth polymerization and its concentration effect
Institute of Scientific and Technical Information of China (English)
LüWenqi
2005-01-01
[1]He, J., Zhang, H., Chen, J. et al., Monte Carlo simulation of kinetics and chain length distributions in living free-radical polymerization, Macromolecules, 1997, 30: 8010-8018.[2]Li, L., He, J., Yang, Y., Monte Carlo simulation on living radical polymerization with RAFT process, Chem. J. Chinese Univ. (in Chinese), 2000, 21(7): 1146-1148.[3]Ling, J., Shen, Z., Chen W., Algorithm and application of Monte Carlo simulation for multi-dispersive copolymerization system, Science in China, Series B, 2002, 45(3): 243-250.[4]Butte, A., Storti, G., Morbidelli, M., Evaluation of the chain length distribution in free-radical polymerization, 1. Bulk polymerization, Macromol. Theory Simul., 2002, 11: 22-36.[5]Smith, G. B., Russell, G. T., Heuts, J. P. A., Termination in dilute-solution free-radical polymerization: A composite model, Macromol. Theory Simul., 2003, 12: 299-314.[6]Zetterlund, P. B., Yamazoe, H., Yamada, B., Free radical bulk po- lymerization of styrene: Simulation of molecular weight distribu- tions to high conversion using experimentally obtained rate coef- ficients, Macromol. Theory Simul., 2003, 12: 379-385.[7]Binder, K., Paul, W., Monte Carlo simulations of polymer dy- namics: Recent advances, J. Polym. Sci., Polym. Phys. Ed., 1997, 35(1): 1-31.[8]Rouault, Y., Milchev, A., Monte Carlo study of living polymers with the bond-fluctuation method, Phys. Rev. E, 1995, 51(6): 5905-5910.[9]Jo, W. H., Lee, J. W., Lee, M. S. et al., Effect of interchange reactions on the molecular weight distribution of poly(ethylene terephthalate): A Monte Carlo simulation, J. Polym. Sci., Polym. Phys. Ed., 1996, 34: 725-729.[10]Jang, S. S., Ha, W. S., Jo, W. H. et al., Monte Carlo simulation of copolymerization by ester interchange reaction in miscible polyester blends, J. Polym. Sci., Polym. Phys. Ed., 1998, 36: 1637-1645.[11]Lee, Y. U., Jang, S. S., Jo, W. H., Off-lattice Monte Carlo simulation of hyperbranched polymers, 1. Polycondensation of AB2 type monomers, Macromol. Theory
A new Monte Carlo simulation model for laser transmission in smokescreen based on MATLAB
Lee, Heming; Wang, Qianqian; Shan, Bin; Li, Xiaoyang; Gong, Yong; Zhao, Jing; Peng, Zhong
2016-11-01
A new Monte Carlo simulation model of laser transmission in smokescreen is promoted in this paper. In the traditional Monte Carlo simulation model, the radius of particles is set at the same value and the initial cosine value of photons direction is fixed also, which can only get the approximate result. The new model is achieved based on MATLAB and can simulate laser transmittance in smokescreen with different sizes of particles, and the output result of the model is close to the real scenarios. In order to alleviate the influence of the laser divergence while traveling in the air, we changed the initial direction cosine of photons on the basis of the traditional Monte Carlo model. The mixed radius particle smoke simulation results agree with the measured transmittance under the same experimental conditions with 5.42% error rate.
Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields
Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.
2011-01-01
The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with m
Monte Carlo simulation of the hysteresis phenomena on ferromagnetic nanotubes.
Salazar-Enríquez, C D; Restrepo, J; Restrepo-Parra, E
2012-06-01
In this work the hysteretic properties of single wall ferromagnetic nanotubes were studied. Hysteresis loops were computed on the basis of a classical Heisenberg model involving nearest neighbor interactions and using a Monte Carlo method implemented with a single spin movement Metropolis dynamics. Nanotubes with square and hexagonal unit cells were studied varying their diameter, temperature and magneto-crystalline anisotropy. Effects of the diameter were found stronger in the square unit cell magnetic nanotubes (SMNTs) than in the hexagonal unit cell magnetic nanotubes (HMNTs). The ferromagnetic behavior was observed in SMNTs at higher temperature than in HMNTs. Moreover in both cases, SMNTs and HMNTs, the magneto-crystalline anisotropy in the longitudinal direction showed a linear correspondence with the coercive field.
An Efficient Approach to Ab Initio Monte Carlo Simulation
Leiding, Jeff
2013-01-01
We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison.
Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE
Camarasu-Pop, S; Benoit-Cattin, Hugues; Glatard, Tristan; Sarrut, David; Camarasu-Pop, Sorina
2010-01-01
The EGEE Grid offers the necessary infrastructure and resources for reducing the running time of particle tracking Monte-Carlo applications like GATE. However, efforts are required to achieve reliable and efficient execution and to provide execution frameworks to end-users. This paper presents results obtained with porting the GATE software on the EGEE Grid, our ultimate goal being to provide reliable, user-friendly and fast execution of GATE to radiation therapy researchers. To address these requirements, we propose a new parallelization scheme based on a dynamic partitioning and its implementation in two different frameworks using pilot jobs and workflows. Results show that pilot jobs bring strong improvement w.r.t. regular gLite submission, that the proposed dynamic partitioning algorithm further reduces execution time by a factor of two and that the genericity and user-friendliness offered by the workflow implementation do not introduce significant overhead.
Monte Carlo dose calculation improvements for low energy electron beams using eMC.
Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter
2010-08-21
The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-01
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure
Energy Technology Data Exchange (ETDEWEB)
Wang, Henry [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Ma Yunzhi; Pratx, Guillem; Xing Lei, E-mail: hwang41@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847 (United States)
2011-09-07
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)
Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi
2016-01-01
Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-07
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.
Monte Carlo Simulation of EDXRF Spectrometer for Uranium Ores
Institute of Scientific and Technical Information of China (English)
ZHAO; Jiang-bin
2013-01-01
Energy dispersive X-ray fluorescence spectrometry(EDXRF)is an important nondestructive analytical technology,which can be used for elements recognition and measurement.Before the design of the EDXRF spectrometer,it’s necessary to perform MC simulation with MCNP code about the X-ray tube high voltage,thickness of Beryllium window,geometry of filter and collimator,as well as the geometric
Public repository with Monte Carlo simulations for high-energy particle collision experiments
Chekanov, S V
2016-01-01
Planning high-energy collision experiments for the next few decades requires extensive Monte Carlo simulations in order to accomplish physics goals of these experiments. Such simulations are essential for understanding fundamental physics processes, as well as for setting up the detector parameters that help establish R&D projects required over the next few decades. This paper describes a public repository with Monte Carlo event samples before and after detector-response simulation. The goal of this repository is to facilitate the accomplishment of many goals in planning a next generation of particle experiments.
Monte Carlo Simulations of Random Frustrated Systems on Graphics Processing Units
Feng, Sheng; Fang, Ye; Hall, Sean; Papke, Ariane; Thomasson, Cade; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark
2012-02-01
We study the implementation of the classical Monte Carlo simulation for random frustrated models using the multithreaded computing environment provided by the the Compute Unified Device Architecture (CUDA) on modern Graphics Processing Units (GPU) with hundreds of cores and high memory bandwidth. The key for optimizing the performance of the GPU computing is in the proper handling of the data structure. Utilizing the multi-spin coding, we obtain an efficient GPU implementation of the parallel tempering Monte Carlo simulation for the Edwards-Anderson spin glass model. In the typical simulations, we find over two thousand times of speed-up over the single threaded CPU implementation.
Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels
Institute of Scientific and Technical Information of China (English)
WANG Moran; LI Zhixin
2005-01-01
The dense gas flow and heat transfer in micro- and nano-channels was simulated using the Enskog simulation Monte Carlo (ESMC) method. The results were compared with those from the direct simulation Monte Carlo (DSMC) method and from the consistent Boltzmann algorithm (CBA). The dense gas flow and heat transfer characteristics were thus analyzed. The results showed that when the gas density was large enough, the finite gas density effect on the flow and heat transfer cannot be ignored, which decreased the skin friction coefficient and changed the heat transfer characteristics on the channel wall surfaces.
Incorporation of polarization effects in Monte Carlo simulations of radiative heat transfer
Energy Technology Data Exchange (ETDEWEB)
Lo, C.; Palmer, B.J.; Drost, M.K. [Pacific Northwest Lab., Richland, WA (United States); Welty, J.R. [Oregon State Univ., Corvallis, OR (United States)
1995-02-01
The electric field vector of individual photons has been incorporated into Monte Carlo simulations of radiative heat transfer to examine the effects of polarization on the optical properties of arrays of fixed discrete surfaces. Simulations are performed on arrays that have specular surfaces with high and low reflectivity. Two different arrays are illuminated by polarized and unpolarized light and compared with conventional Monte Carlo simulations. The results show that if the initial illumination is either partially or fully polarized, polarization effects are substantial, especially for low-reflectivity surfaces and for arrays that favor a large number of grazing-angle reflections.
Directory of Open Access Journals (Sweden)
P.Orea
2003-01-01
Full Text Available We have performed Monte Carlo simulations in the canonical ensemble of a hard-sphere fluid adsorbed in microporous media. The pressure of the adsorbed fluid is calculated by using an original procedure that includes the calculations of the pressure tensor components during the simulation. In order to confirm the equivalence of bulk and adsorbed fluid pressures, we have exploited the mechanical condition of equilibrium and performed additional canonical Monte Carlo simulations in a super system "bulk fluid + adsorbed fluid". When the configuration of a model porous media permits each of its particles to be in contact with adsorbed fluid particles, we found that these pressures are equal. Unlike the grand canonical Monte Carlo method, the proposed calculation approach can be used efficiently to obtain adsorption isotherms over a wide range of fluid densities and porosities of adsorbent.
Energy Technology Data Exchange (ETDEWEB)
Morillon, B.
1996-12-31
With most of the traditional and contemporary techniques, it is still impossible to solve the transport equation if one takes into account a fully detailed geometry and if one studies precisely the interactions between particles and matters. Only the Monte Carlo method offers such a possibility. However with significant attenuation, the natural simulation remains inefficient: it becomes necessary to use biasing techniques where the solution of the adjoint transport equation is essential. The Monte Carlo code Tripoli has been using such techniques successfully for a long time with different approximate adjoint solutions: these methods require from the user to find out some parameters. If this parameters are not optimal or nearly optimal, the biases simulations may bring about small figures of merit. This paper presents a description of the most important biasing techniques of the Monte Carlo code Tripoli ; then we show how to calculate the importance function for general geometry with multigroup cases. We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We compare different biased simulations with the importance function calculated by collision probabilities for one-group and multigroup problems. We have run simulations with new biasing method for one-group transport problems with isotropic shocks and for multigroup problems with anisotropic shocks. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without splitting and russian roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add splitting and russian roulette technique.
Gogoi, Ankur
Light scattering is a subject of intensive research at the present time in diverse fields of research namely, physics, astronomy, meteorology, biology, nanotechnology, etc. Observation and theoretical calculation of the absorption and scattering properties of particles, whose size ranges from micrometer to nanometer, are not only essential to deduce their physical properties but also capable of giving useful information for better understanding of radiation transfer through a medium containing such scatterer. In addition to such experimental and theoretical studies on light scattering by particulate matter several other groups have been extensively using Monte Carlo (MC) method to simulate light (photon) propagation in scattering media. Importantly such methods of simulating light scattering properties of artificial particles are proving to be a very useful tool in verifying the experimental observations with real samples as well as providing new clues to improve the accuracy of the existing theoretical models. In this contribution we report a MC method developed by implementing Mie theory to simulate the light scattering pattern from size distributed homogenous and coated spherical particles in single scattering regime. The computer program was written in ANSI C-language. The accuracy, efficiency and reliability of the MC method were validated by comparing the results generated by using the MC method with other benchmark theoretical results and experimental results with standard samples. Notably the MC method reported here is found to be stable even for very large spherical particles (size parameters > 1000) with large values of real (= 10) and imaginary part (= 10) of the refractive index. The promising field of application of the reported MC method will be in simulating the light (or electromagnetic) scattering properties of different types of planetary and interplanetary dust particles.
Modelling of scintillator based flat-panel detectors with Monte-Carlo simulations
Reims, N.; Sukowski, F.; Uhlmann, N.
2011-01-01
Scintillator based flat panel detectors are state of the art in the field of industrial X-ray imaging applications. Choosing the proper system and setup parameters for the vast range of different applications can be a time consuming task, especially when developing new detector systems. Since the system behaviour cannot always be foreseen easily, Monte-Carlo (MC) simulations are keys to gain further knowledge of system components and their behaviour for different imaging conditions. In this work we used two Monte-Carlo based models to examine an indirect converting flat panel detector, specifically the Hamamatsu C9312SK. We focused on the signal generation in the scintillation layer and its influence on the spatial resolution of the whole system. The models differ significantly in their level of complexity. The first model gives a global description of the detector based on different parameters characterizing the spatial resolution. With relatively small effort a simulation model can be developed which equates the real detector regarding signal transfer. The second model allows a more detailed insight of the system. It is based on the well established cascade theory, i.e. describing the detector as a cascade of elemental gain and scattering stages, which represent the built in components and their signal transfer behaviour. In comparison to the first model the influence of single components especially the important light spread behaviour in the scintillator can be analysed in a more differentiated way. Although the implementation of the second model is more time consuming both models have in common that a relatively small amount of system manufacturer parameters are needed. The results of both models were in good agreement with the measured parameters of the real system.
On NonAsymptotic Optimal Stopping Criteria in Monte Carlo Simulations
Bayer, Christian
2014-01-01
We consider the setting of estimating the mean of a random variable by a sequential stopping rule Monte Carlo (MC) method. The performance of a typical second moment based sequential stopping rule MC method is shown to be unreliable in such settings both by numerical examples and through analysis. By analysis and approximations, we construct a higher moment based stopping rule which is shown in numerical examples to perform more reliably and only slightly less efficiently than the second moment based stopping rule.
Dosimetric investigation of proton therapy on CT-based patient data using Monte Carlo simulation
Chongsan, T.; Liamsuwan, T.; Tangboonduangjit, P.
2016-03-01
The aim of radiotherapy is to deliver high radiation dose to the tumor with low radiation dose to healthy tissues. Protons have Bragg peaks that give high radiation dose to the tumor but low exit dose or dose tail. Therefore, proton therapy is promising for treating deep- seated tumors and tumors locating close to organs at risk. Moreover, the physical characteristic of protons is suitable for treating cancer in pediatric patients. This work developed a computational platform for calculating proton dose distribution using the Monte Carlo (MC) technique and patient's anatomical data. The studied case is a pediatric patient with a primary brain tumor. PHITS will be used for MC simulation. Therefore, patient-specific CT-DICOM files were converted to the PHITS input. A MATLAB optimization program was developed to create a beam delivery control file for this study. The optimization program requires the proton beam data. All these data were calculated in this work using analytical formulas and the calculation accuracy was tested, before the beam delivery control file is used for MC simulation. This study will be useful for researchers aiming to investigate proton dose distribution in patients but do not have access to proton therapy machines.
Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit.
Leung, Terence S; Powell, Samuel
2010-01-01
Ultrasound-modulated optical tomography (UOT) is based on "tagging" light in turbid media with focused ultrasound. In comparison to diffuse optical imaging, UOT can potentially offer a better spatial resolution. The existing Monte Carlo (MC) model for simulating ultrasound-modulated light is central processing unit (CPU) based and has been employed in several UOT related studies. We reimplemented the MC model with a graphics processing unit [(GPU), Nvidia GeForce 9800] that can execute the algorithm up to 125 times faster than its CPU (Intel Core Quad) counterpart for a particular set of optical and acoustic parameters. We also show that the incorporation of ultrasound propagation in photon migration modeling increases the computational time considerably, by a factor of at least 6, in one case, even with a GPU. With slight adjustment to the code, MC simulations were also performed to demonstrate the effect of ultrasonic modulation on the speckle pattern generated by the light model (available as animation). This was computed in 4 s with our GPU implementation as compared to 290 s using the CPU.
Energy Technology Data Exchange (ETDEWEB)
Seidenberger, Katrin; Wilhelm, Florian; Scholta, Joachim [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Ulm (Germany)
2011-04-15
The life of a fuel cell is determined by the life of its components. A Monte Carlo model developed by Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZWS) focuses on the gas diffusion layer (GDL). The simulation program assumes a medium-scale water distribution, thus enabling the detection of water accumulation in the GDL. The results can be compared with experimental data, e.g. from synchrotron tomography measurements, and verified.
Modeling of hysteresis loops by Monte Carlo simulation
Directory of Open Access Journals (Sweden)
Z. Nehme
2015-12-01
Full Text Available Recent advances in MC simulations of magnetic properties are rather devoted to non-interacting systems or ultrafast phenomena, while the modeling of quasi-static hysteresis loops of an assembly of spins with strong internal exchange interactions remains limited to specific cases. In the case of any assembly of magnetic moments, we propose MC simulations on the basis of a three dimensional classical Heisenberg model applied to an isolated magnetic slab involving first nearest neighbors exchange interactions and uniaxial anisotropy. Three different algorithms were successively implemented in order to simulate hysteresis loops: the classical free algorithm, the cone algorithm and a mixed one consisting of adding some global rotations. We focus particularly our study on the impact of varying the anisotropic constant parameter on the coercive field for different temperatures and algorithms. A study of the angular acceptation move distribution allows the dynamics of our simulations to be characterized. The results reveal that the coercive field is linearly related to the anisotropy providing that the algorithm and the numeric conditions are carefully chosen. In a general tendency, it is found that the efficiency of the simulation can be greatly enhanced by using the mixed algorithm that mimic the physics of collective behavior. Consequently, this study lead as to better quantified coercive fields measurements resulting from physical phenomena of complex magnetic (nanoarchitectures with different anisotropy contributions.
Modeling of hysteresis loops by Monte Carlo simulation
Nehme, Z.; Labaye, Y.; Sayed Hassan, R.; Yaacoub, N.; Greneche, J. M.
2015-12-01
Recent advances in MC simulations of magnetic properties are rather devoted to non-interacting systems or ultrafast phenomena, while the modeling of quasi-static hysteresis loops of an assembly of spins with strong internal exchange interactions remains limited to specific cases. In the case of any assembly of magnetic moments, we propose MC simulations on the basis of a three dimensional classical Heisenberg model applied to an isolated magnetic slab involving first nearest neighbors exchange interactions and uniaxial anisotropy. Three different algorithms were successively implemented in order to simulate hysteresis loops: the classical free algorithm, the cone algorithm and a mixed one consisting of adding some global rotations. We focus particularly our study on the impact of varying the anisotropic constant parameter on the coercive field for different temperatures and algorithms. A study of the angular acceptation move distribution allows the dynamics of our simulations to be characterized. The results reveal that the coercive field is linearly related to the anisotropy providing that the algorithm and the numeric conditions are carefully chosen. In a general tendency, it is found that the efficiency of the simulation can be greatly enhanced by using the mixed algorithm that mimic the physics of collective behavior. Consequently, this study lead as to better quantified coercive fields measurements resulting from physical phenomena of complex magnetic (nano)architectures with different anisotropy contributions.
Institute of Scientific and Technical Information of China (English)
H.M. Li; Z.J. Ding
2005-01-01
A new parallel Monte Carlo simulation method of secondary electron (SE) and backscattered electron images (BSE) of scanning electron microscopy (SEM) for a complex geometric structure has been developed. This paper describes briefly the simulation method and the modification to the conventional sampling method for the step length. Example simulation results have been obtained for several artificial structures.
Ainscow, E K; Brand, M D
1998-09-21
The errors associated with experimental application of metabolic control analysis are difficult to assess. In this paper, we give examples where Monte-Carlo simulations of published experimental data are used in error analysis. Data was simulated according to the mean and error obtained from experimental measurements and the simulated data was used to calculate control coefficients. Repeating the simulation 500 times allowed an estimate to be made of the error implicit in the calculated control coefficients. In the first example, state 4 respiration of isolated mitochondria, Monte-Carlo simulations based on the system elasticities were performed. The simulations gave error estimates similar to the values reported within the original paper and those derived from a sensitivity analysis of the elasticities. This demonstrated the validity of the method. In the second example, state 3 respiration of isolated mitochondria, Monte-Carlo simulations were based on measurements of intermediates and fluxes. A key feature of this simulation was that the distribution of the simulated control coefficients did not follow a normal distribution, despite simulation of the original data being based on normal distributions. Consequently, the error calculated using simulation was greater and more realistic than the error calculated directly by averaging the original results. The Monte-Carlo simulations are also demonstrated to be useful in experimental design. The individual data points that should be repeated in order to reduce the error in the control coefficients can be highlighted.
Energy Technology Data Exchange (ETDEWEB)
Daly, Don S.; Anderson, Kevin K.; White, Amanda M.; Gonzalez, Rachel M.; Varnum, Susan M.; Zangar, Richard C.
2008-07-14
Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensity that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting
A Monte Carlo simulation model for stationary non-Gaussian processes
DEFF Research Database (Denmark)
Grigoriu, M.; Ditlevsen, Ove Dalager; Arwade, S. R.
2003-01-01
includes translation processes and is useful for both Monte Carlo simulation and analytical studies. As for translation processes, the mixture of translation processes can have a wide range of marginal distributions and correlation functions. Moreover, these processes can match a broader range of second...... athe proposed Monte Carlo algorithm and compare features of translation processes and mixture of translation processes. Keywords: Monte Carlo simulation, non-Gaussian processes, sampling theorem, stochastic processes, translation processes......A class of stationary non-Gaussian processes, referred to as the class of mixtures of translation processes, is defined by their finite dimensional distributions consisting of mixtures of finite dimensional distributions of translation processes. The class of mixtures of translation processes...
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun
2015-09-01
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun
2015-10-07
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by
Vexler, Albert; Kim, Young Min; Yu, Jihnhee; Lazar, Nicole A; Hutson, Aland
2014-12-01
Various exact tests for statistical inference are available for powerful and accurate decision rules provided that corresponding critical values are tabulated or evaluated via Monte Carlo methods. This article introduces a novel hybrid method for computing p-values of exact tests by combining Monte Carlo simulations and statistical tables generated a priori. To use the data from Monte Carlo generations and tabulated critical values jointly, we employ kernel density estimation within Bayesian-type procedures. The p-values are linked to the posterior means of quantiles. In this framework, we present relevant information from the Monte Carlo experiments via likelihood-type functions, whereas tabulated critical values are used to reflect prior distributions. The local maximum likelihood technique is employed to compute functional forms of prior distributions from statistical tables. Empirical likelihood functions are proposed to replace parametric likelihood functions within the structure of the posterior mean calculations to provide a Bayesian-type procedure with a distribution-free set of assumptions. We derive the asymptotic properties of the proposed nonparametric posterior means of quantiles process. Using the theoretical propositions, we calculate the minimum number of needed Monte Carlo resamples for desired level of accuracy on the basis of distances between actual data characteristics (e.g. sample sizes) and characteristics of data used to present corresponding critical values in a table. The proposed approach makes practical applications of exact tests simple and rapid. Implementations of the proposed technique are easily carried out via the recently developed STATA and R statistical packages.
Monte Carlo simulation of a two-field effective Hamiltonian of complete wetting
Flesia, S.
1997-04-01
Recent work on the complete wetting transition for three-dimensional systems with short-ranged forces has emphasized the role played by the coupling of order-parameter fluctuations near the wall and depinning interface. It has been proposed that an effective two-field Hamiltonian, which predicts a renormalisation of the wetting parameter, could explain the controversy between the RG analysis of the capillary-wave model and Monte Carlo simulations on the Ising model. In this letter results of extensive Monte Carlo simulations of the two-field model are presented. The results are in agreement with prediction of a renormalized wetting parameter ω.
Directory of Open Access Journals (Sweden)
Yun Hsing Cheung
2012-12-01
Full Text Available The three main Value at Risk (VaR methodologies are historical, parametric and Monte Carlo Simulation.Cheung & Powell (2012, using a step-by-step teaching study, showed how a nonparametric historical VaRmodel could be constructed using Excel, thus benefitting teachers and researchers by providing them with areadily useable teaching study and an inexpensive and flexible VaR modelling option. This article extends thatwork by demonstrating how parametric and Monte Carlo Simulation VaR models can also be constructed inExcel, thus providing a total Excel modelling package encompassing all three VaR methods.
A geometrical model for the Monte Carlo simulation of the TrueBeam linac
Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sauerwein, Wolfgang; Brualla, Lorenzo
2015-01-01
Monte Carlo (MC) simulation of linacs depends on the accurate geometrical description of the head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files (PSFs) of the flattening-filter-free (FFF) beams tallied upstream the jaws. Yet, MC simulations based on third party tallied PSFs are subject to limitations. We present an experimentally-based geometry developed for the simulation of the FFF beams of the TrueBeam linac. The upper part of the TrueBeam linac was modeled modifying the Clinac 2100 geometry. The most important modification is the replacement of the standard flattening filters by {\\it ad hoc} thin filters which were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6~MV and 10~MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements for radiation fields ranging from $3\\times3$ to $40\\times40$ cm$^2$. The same comparisons were done for dose profiles ob...
Three dimensional Monte Carlo simulations of ionized nebulae
Ercolano, Barbara
2002-12-01
The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitrary geometries and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of treating one or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations. This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this thesis. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot, 1986; Ferland et al., 1995; Pequignot et al., 2001). The results obtained for the benchmark cases are satisfactory and are presented in this work. A performance analysis has also been carried out and is discussed here. The code has been applied to construct a realistic model of the planetary nebula NGC 3918. Three different geometric models were tried, the first being the biconical density distribution already used by Clegg et al. (1987). In this model the nebula is approximated
Pia, Maria Grazia; Lechner, Anton; Quintieri, Lina; Saracco, Paolo
2010-01-01
The issue of how epistemic uncertainties affect the outcome of Monte Carlo simulation is discussed by means of a concrete use case: the simulation of the longitudinal energy deposition profile of low energy protons. A variety of electromagnetic and hadronic physics models is investigated, and their effects are analyzed. Possible systematic effects are highlighted. The results identify requirements for experimental measurements capable of reducing epistemic uncertainties in the physics models.
LCG MCDB—a knowledgebase of Monte-Carlo simulated events
Belov, S.; Dudko, L.; Galkin, E.; Gusev, A.; Pokorski, W.; Sherstnev, A.
2008-02-01
In this paper we report on LCG Monte-Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC Collaborations by experts. In many cases, the modern Monte-Carlo simulation of physical processes requires expert knowledge in Monte-Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project. Program summaryProgram title: LCG Monte-Carlo Data Base Catalogue identifier: ADZX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 30 129 No. of bytes in distributed program, including test data, etc.: 216 943 Distribution format: tar.gz Programming language: Perl Computer: CPU: Intel Pentium 4, RAM: 1 Gb, HDD: 100 Gb Operating system: Scientific Linux CERN 3/4 RAM: 1 073 741 824 bytes (1 Gb) Classification: 9 External routines:perl >= 5.8.5; Perl modules DBD-mysql >= 2.9004, File::Basename, GD::SecurityImage, GD::SecurityImage::AC, Linux::Statistics, XML::LibXML > 1.6, XML::SAX, XML::NamespaceSupport; Apache HTTP Server >= 2.0.59; mod auth external >= 2.2.9; edg-utils-system RPM package; gd >= 2.0.28; rpm package CASTOR-client >= 2.1.2-4; arc-server (optional) Nature of problem: Often, different groups of experimentalists prepare similar samples of particle collision events or turn to the same group of authors of Monte-Carlo (MC
Deasy, Joseph O; Wickerhauser, M Victor; Picard, Mathieu
2002-10-01
The Monte Carlo dose calculation method works by simulating individual energetic photons or electrons as they traverse a digital representation of the patient anatomy. However, Monte Carlo results fluctuate until a large number of particles are simulated. We propose wavelet threshold de-noising as a postprocessing step to accelerate convergence of Monte Carlo dose calculations. A sampled rough function (such as Monte Carlo noise) gives wavelet transform coefficients which are more nearly equal in amplitude than those of a sampled smooth function. Wavelet hard-threshold de-noising sets to zero those wavelet coefficients which fall below a threshold; the image is then reconstructed. We implemented the computationally efficient 9,7-biorthogonal filters in the C language. Transform results were averaged over transform origin selections to reduce artifacts. A method for selecting best threshold values is described. The algorithm requires about 336 floating point arithmetic operations per dose grid point. We applied wavelet threshold de-noising to two two-dimensional dose distributions: a dose distribution generated by 10 MeV electrons incident on a water phantom with a step-heterogeneity, and a slice from a lung heterogeneity phantom. Dose distributions were simulated using the Integrated Tiger Series Monte Carlo code. We studied threshold selection, resulting dose image smoothness, and resulting dose image accuracy as a function of the number of source particles. For both phantoms, with a suitable value of the threshold parameter, voxel-to-voxel noise was suppressed with little introduction of bias. The roughness of wavelet de-noised dose distributions (according to a Laplacian metric) was nearly independent of the number of source electrons, though the accuracy of the de-noised dose image improved with increasing numbers of source electrons. We conclude that wavelet shrinkage de-noising is a promising method for effectively accelerating Monte Carlo dose calculations
Mullen, Ryan Gotchy; Maginn, Edward J
2017-08-17
The original reaction move for the reaction ensemble Monte Carlo (RxMC) method is adapted to align both the position and orientation of inserted product molecules and deleted reactant molecules. The accuracy and efficiency of this move is demonstrated for xylene isomerization in vapor, liquid, and supercritical phases. Classical RxMC requires the ideal gas free energy of reaction ΔGrxn(ideal) as an input. We compare three methods for computing ΔGrxn(ideal): using tabulated enthalpies and entropies of formation, using the harmonic oscillator and rigid rotor approximations and using QM/MM alchemical transformation combined with multistate Bennett acceptance ratio. We find that the tabulated free energies of reaction give the best agreement with experimental equilibrium compositions in bulk fluids. RxMC simulations in a carbon nanotube with an inner diameter of approximately 6 Å show that p-xylene becomes the dominant isomer under confinement, an effect consistent with the production of p-xylene in the zeolite ZSM-5. We also show that o-xylene becomes the dominant isomer in nanotubes with an inner diameter of 7-8 Å. We find that both m- and p-xylene exhibit a loss of rotational entropy in nanotubes of this diameter, effectively allowing o-xylene to fit into cavities inaccessible to the other isomers.
MULTILEVEL MONTE CARLO (MLMC) SIMULATIONS: PERFORMANCE RESULTS FOR SPE10 (XY SLICES)
Energy Technology Data Exchange (ETDEWEB)
Kalchev, Delyan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-02-26
In this report we first describe a generic multilevel Monte Carlo method and then illustrate its superior performance over a traditional single-level Monte Carlo method for second order elliptic PDEs corresponding to two-dimensional layers in (x, y)-direction of the Tenth SPE Comparative Solution project (SPE 10) which gives high-contrast permeability coefficients. The SPE10 data set is used as a coarse level in the Monte Carlo method and the respective permeability coefficient k (provided in the SPE10 dataset) is used as a mean in the simulation. The actual coefficients are drawn based on a KL-expansion assuming that the log-mean is perturbed by a log-normal distributed samples.
Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions
Costa, Liborio I.
2016-12-01
A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.
Inclusion of Quantum Confinement Effects in Self-Consistent Monte Carlo Device Simulations
Directory of Open Access Journals (Sweden)
R. W. Kelsall
1998-01-01
Full Text Available The design of Monte Carlo FET simulations is discussed, with specific attention to the methods used to describe quantum confinement effects. A new model is presented, which employs self-consistent coupling of Schrodinger, Poisson and Monte Carlo algorithms, and explicit calculation of the scattering rates between confined and unconfined states. Comparisons between the new model and a standard semi-classical Monte Carlo model are presented for a 0.1 μm gate-length In0.52Al0.48As/In0.53 Ga0.47As/InP MODFET. Whilst the quantum model yields minor corrections in the predicted output characteristics, it is found that these results can be achieved without repeated iterations of the Schrodinger equation.
Monte Carlo simulation of MLC-shaped TrueBeam electron fields benchmarked against measurement
Lloyd, Samantha AM; Zavgorodni, Sergei
2014-01-01
Modulated electron radiotherapy (MERT) and combined, modulated photon/electron radiotherapy (MPERT) have received increased research attention, having shown capacity for reduced low dose exposure to healthy tissue and comparable, if not improved, target coverage for a number of treatment sites. Accurate dose calculation tools are necessary for clinical treatment planning, and Monte Carlo (MC) is the gold standard for electron field simulation. With many clinics replacing older accelerators, MC source models of the new machines are needed for continued development, however, Varian has kept internal schematics of the TrueBeam confidential and electron phase-space sources have not been made available. TrueBeam electron fields are not substantially different from those generated by the Clinac 21EX, so we have modified the internal schematics of the Clinac 21EX to simulate TrueBeam electrons. BEAMnrc/DOSXYZnrc were used to simulate 5x5 and 20x20 cm$^2$ electron fields with MLC-shaped apertures. Secondary collimati...
Directory of Open Access Journals (Sweden)
M.Valiskó
2005-01-01
Full Text Available A systematic Monte Carlo (MC simulation and perturbation theoretical (PT study is reported for the dielectric constant of the polarizable dipolar hard sphere (PDHS fluid. We take the polarizability of the molecules into account in two different ways. In a continuum approach we place the permanent dipole of the molecule into a sphere of dielectric constant ε∞ in the spirit of Onsager. The high frequency dielectric constant ε∞ is calculated from the Clausius-Mosotti relation, while the dielectric constant of the polarizable fluid is obtained from the Kirkwood-Fröhlich equation. In the molecular approach, the polarizability is built into the model on the molecular level, which makes the interactions non-pairwise additive. Here we use Wertheim's renormalized PT method to calculate the induced dipole moment, while the dielectric constant is calculated from our recently introduced formula. We also apply a series expansion for the dielectric constant both in the continuum and the molecular approach. These series expansions ensure a better agreement with simulation results. The agreement between our MC data and the PT results in the molecular approach is excellent for low to moderate dipole moments and polarizabilities. At stronger dipolar interactions ergodicity problems and anizotropic behaviour appear where simulation results become uncertain and the theoretical approach becomes invalid.
Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation
Kadoura, Ahmad Salim
2016-06-01
In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.
Monte Carlo simulations of radio emission from cosmic ray air showers
Huege, T.; Falcke, H.D.E.
2006-01-01
As a basis for the interpretation of data gathered by LOPES and other experiments, we have carried out Monte Carlo simulations of geosynchrotron radio emission from cosmic ray air showers. The simulations, having been verified carefully with analytical calculations, reveal a wealth of information on
Maucec, M.; Rigollet, C.
2004-01-01
The performance of a detection system based on the pulsed fast/thermal neutron analysis technique was assessed using Monte Carlo simulations. The aim was to develop and implement simulation methods, to support and advance the data analysis techniques of the characteristic gamma-ray spectra, potentia
Versluis, R.; Dorsman, R.; Thielen, L.; Roos, M.E.
2009-01-01
A new approach for performing numerical direct simulation Monte Carlo (DSMC) simulations on turbomolecular pumps in the free molecular and transitional flow regimes is described. The chosen approach is to use surfaces that move relative to the grid to model the effect of rotors and stators on a gas
Monte-Carlo simulation on the cold neutron guides at CARR
Energy Technology Data Exchange (ETDEWEB)
Guo Liping; Wang Hongli; Yang Tonghua; Cheng Zhixu; Liu Yi [China Institute of Atomic Energy, Neutron Scattering Laboratory, Beijing (China)
2003-03-01
The designs of the two cold neutron guides to be built at China Advanced Research Reactor (CARR) are simulated with Monte-Carlo simulation software VITESS. Various parameters of the guides, e.g. transmission efficiency, neutron flux, divergence, etc., are obtained. (author)
Improvements in Monte Carlo Simulation of Large Electron Fields
Energy Technology Data Exchange (ETDEWEB)
Faddegon, Bruce A.; /UC, San Francisco; Perl, Joseph; Asai, Makoto; /SLAC
2007-11-28
Two Monte Carlo systems, EGSnrc and Geant4, were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results with measurement. Both codes were capable of accurately reproducing the measured dose distributions of the 6 electron beams available on the accelerator. Depth penetration was matched to 0.1 cm. Depth dose curves generally agreed to 2% in the build-up region, although there is an additional 2-3% experimental uncertainty in this region. Dose profiles matched to 2% at the depth of maximum dose in the central region of the beam, out to the point of the profile where the dose begins to fall rapidly. A 3%/3mm match was obtained outside the central region except for the 6 MeV beam, where dose differences reached 5%. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. The different systems required different source energies, incident beam angles, thicknesses of the exit window and primary foils, and distance between the primary and secondary foil. These results underscore the requirement for an experimental benchmark of electron scatter for beam energies and foils relevant to radiotherapy.
An efficient approach to ab initio Monte Carlo simulation.
Leiding, Jeff; Coe, Joshua D
2014-01-21
We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.
Decision Assistance in Risk Assessment – Monte Carlo Simulations
Directory of Open Access Journals (Sweden)
Emil BURTESCU
2012-01-01
Full Text Available High security must be a primary and permanent concern of the leadership of an organization and it must be ensured at any time. For this, a risk analysis is compulsory and imperative to be done during the risk management cycle. Security risk analysis and security risk management components mostly use estimative data during the whole extensive process. The further evolution of the events might not be reflected in the obtained results. If we were to think about the fact that hazard must be modeled, this concern is absolutely normal. Though, we must find a way to model the events that a company is exposed to, events that damage the informational security. In the following lines of this paper we will use the Monte-Carlo method in order to model a set of security parameters that are used in security risk analysis. The frequency of unwanted events, damages and their impact will represent our main focus and will be applied to both the quantitative and qualitative security risk analysis approach. The obtained results will act as a guide for experts to better allocation of resources for decreasing or eliminating the risk and will also represent a warning for the leadership about certain absolutely necessary investments.
A unified Monte Carlo interpretation of particle simulations and applications to nonneutral plasmas
Energy Technology Data Exchange (ETDEWEB)
Aydemir, A.Y.
1993-09-01
Using a ``Monte Carlo interpretation`` a particle simulations, a general description of low-noise techniques is developed in terms well-known Monte Carlo variance reduction methods. Some of these techniques then are applied to linear and nonlinear studies of pure electron plasmas in cylindrical geometry, with emphasis on the generation and nonlinear evolution of electron vortices. Long-lived l = 1 and l and l = 2 vortices, and others produced by unstable diocotron modes in hollow profiles, are studies. It is shown that low-noise techniques make it possible to follow the linear evolution and saturation of even the very weakly unstable resonant diocotron modes.
A Monte Carlo simulation to study the effect of surface roughness on the performance of RPC
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Tapasi, E-mail: tapasi03@gmail.com [Variable Energy Cyclotron Centre, 1/AF BidhanNagar, Kolkata 700 064 (India); Chattopadhyay, Subhasis [Variable Energy Cyclotron Centre, 1/AF BidhanNagar, Kolkata 700 064 (India)
2012-01-01
The electric field inside a Resistive Plate Chamber (RPC) is likely to be influenced by the non-uniform inner surfaces of the RPC electrodes. We have studied the effect of this field perturbation on the performance of the RPC by a Monte Carlo method, which simulates the generation of signal from the detector. For the present study, we have analyzed the effect of the field variation on the time resolution and efficiency of a 0.3 mm single-gap timing RPC. Finally the results obtained from the Monte Carlo study are compared with an analytical calculation.
Monte carlo simulation of a nucleon interacting with a neutral scalar boson field
Szybisz, L.; Zabolitzky, J. G.
1985-04-01
A recently proposed Monte Carlo algorithm to solve a Schrödinger equation expressed in Fock-space representation, suitable for the case of hamiltonians describing problems in one-dimensional discrete momentum space, is now extended to the one-, two- and three-dimensional continuous k-spaces. This extension is tested by employing it for an analytically solvable hamiltonian. For this purpose the 'static source' limit of the hamiltonian corresponding to the interaction between a nucleon and a neutral, scalar boson field is simulated. The results of the Monte Carlo procedure reproduce very well the exact solution.
Monte Carlo simulation of a nucleon interacting with a neutral scalar boson field
Energy Technology Data Exchange (ETDEWEB)
Szybisz, L.; Zabolitzky, J.G.
1985-04-15
A recently proposed Monte Carlo algorithm to solve a Schroedinger equation expressed in Fock-space representation, suitable for the case of hamiltonians describing problems in one-dimensional discrete momentum space, is now extended to the one-, two- and three-dimensional continuous k-spaces. This extension is tested by employing it for an analytically solvable hamiltonian. For this purpose the static source limit of the hamiltonian corresponding to the interaction between a nucleon and a neutral, scalar boson field is simulated. The results of the Monte Carlo procedure reproduce very well the exact solution.
Quantifying the Effect of Undersampling in Monte Carlo Simulations Using SCALE
Energy Technology Data Exchange (ETDEWEB)
Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL
2014-01-01
This study explores the effect of undersampling in Monte Carlo calculations on tally estimates and tally variance estimates for burnup credit applications. Steady-state Monte Carlo simulations were performed for models of several critical systems with varying degrees of spatial and isotopic complexity and the impact of undersampling on eigenvalue and flux estimates was examined. Using an inadequate number of particle histories in each generation was found to produce an approximately 100 pcm bias in the eigenvalue estimates, and biases that exceeded 10% in fuel pin flux estimates.
Energy Technology Data Exchange (ETDEWEB)
Campioni, Guillaume; Mounier, Claude [Commissariat a l' Energie Atomique, CEA, 31-33, rue de la Federation, 75752 Paris cedex (France)
2006-07-01
The main goal of the thesis about studies of cold neutrons sources (CNS) in research reactors was to create a complete set of tools to design efficiently CNS. The work raises the problem to run accurate simulations of experimental devices inside reactor reflector valid for parametric studies. On one hand, deterministic codes have reasonable computation times but introduce problems for geometrical description. On the other hand, Monte Carlo codes give the possibility to compute on precise geometry, but need computation times so important that parametric studies are impossible. To decrease this computation time, several developments were made in the Monte Carlo code TRIPOLI-4.4. An uncoupling technique is used to isolate a study zone in the complete reactor geometry. By recording boundary conditions (incoming flux), further simulations can be launched for parametric studies with a computation time reduced by a factor 60 (case of the cold neutron source of the Orphee reactor). The short response time allows to lead parametric studies using Monte Carlo code. Moreover, using biasing methods, the flux can be recorded on the surface of neutrons guides entries (low solid angle) with a further gain of running time. Finally, the implementation of a coupling module between TRIPOLI- 4.4 and the Monte Carlo code McStas for research in condensed matter field gives the possibility to obtain fluxes after transmission through neutrons guides, thus to have the neutron flux received by samples studied by scientists of condensed matter. This set of developments, involving TRIPOLI-4.4 and McStas, represent a complete computation scheme for research reactors: from nuclear core, where neutrons are created, to the exit of neutrons guides, on samples of matter. This complete calculation scheme is tested against ILL4 measurements of flux in cold neutron guides. (authors)
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-01
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-01
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU’s shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0
Liu, Shaoying; King, Michael A.; Brill, Aaron B.; Stabin, Michael G.; Farncombe, Troy H.
2010-01-01
Monte Carlo (MC) is a well-utilized tool for simulating photon transport in single photon emission computed tomography (SPECT) due to its ability to accurately model physical processes of photon transport. As a consequence of this accuracy, it suffers from a relatively low detection efficiency and long computation time. One technique used to improve the speed of MC modeling is the effective and well-established variance reduction technique (VRT) known as forced detection (FD). With this method, photons are followed as they traverse the object under study but are then forced to travel in the direction of the detector surface, whereby they are detected at a single detector location. Another method, called convolution-based forced detection (CFD), is based on the fundamental idea of FD with the exception that detected photons are detected at multiple detector locations and determined with a distance-dependent blurring kernel. In order to further increase the speed of MC, a method named multiple projection convolution-based forced detection (MP-CFD) is presented. Rather than forcing photons to hit a single detector, the MP-CFD method follows the photon transport through the object but then, at each scatter site, forces the photon to interact with a number of detectors at a variety of angles surrounding the object. This way, it is possible to simulate all the projection images of a SPECT simulation in parallel, rather than as independent projections. The result of this is vastly improved simulation time as much of the computation load of simulating photon transport through the object is done only once for all projection angles. The results of the proposed MP-CFD method agrees well with the experimental data in measurements of point spread function (PSF), producing a correlation coefficient (r2) of 0.99 compared to experimental data. The speed of MP-CFD is shown to be about 60 times faster than a regular forced detection MC program with similar results. PMID:20811587
Efendiev, Yalchin R.
2013-08-21
(and expensive) forward simulations are run with fewer samples, while less accurate (and inexpensive) forward simulations are run with a larger number of samples. Selecting the number of expensive and inexpensive simulations based on the number of coarse degrees of freedom, one can show that MLMC methods can provide better accuracy at the same cost as Monte Carlo (MC) methods. The main objective of the paper is twofold. First, we would like to compare NLSO and LSO mixed MsFEMs. Further, we use both approaches in the context of MLMC to speedup MC calculations. © 2013 Springer Science+Business Media Dordrecht.
Ion channeling study of defects in compound crystals using Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Turos, A., E-mail: turos@fuw.edu.pl [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock (Poland); Jozwik, P. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock (Poland); Nowicki, L. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock (Poland); Sathish, N. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)
2014-08-01
Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO{sub 3}) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.
Ion channeling study of defects in compound crystals using Monte Carlo simulations
Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.
2014-08-01
Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.
Validation of Monte-Carlo simulations with measurements at the ICON beam-line at SINQ
Energy Technology Data Exchange (ETDEWEB)
Giller, L. [LRS, Physics Department, Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland); Filges, U. [LDM, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: uwe.filges@psi.ch; Kuehne, G. [ASQ, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Wohlmuther, M. [ABE, GFA Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Zanini, L. [ASQ, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)
2008-02-11
ICON is the new cold neutron imaging facility at the neutron spallation source SINQ. The ICON facility is placed at beam-line S52 with direct view to the cold liquid D{sub 2} moderator. The beam-line includes a 4.4 m long collimation section followed by a 11 m long flight path to the imaging system. The essential part of the collimation section is composed of six revolving drums and a variable aperture wheel. Depending on the investigated object, different apertures are used. Measurements have shown that each setup has a different spatial neutron flux distribution and specific beam profiles. Measured beam profiles have been used to validate results of simulations coupling the Monte-Carlo program MCNPX with the neutron ray-tracing program McStas. In a first step, MCNPX was used to calculate neutron spectra closed to the SINQ target, at the entrance of the collimation section. These results served as an input for McStas where the beam-line itself was simulated. In the present paper, experimental and theoretical results will be compared and discussed.
Validation of Monte-Carlo simulations with measurements at the ICON beam-line at SINQ
Giller, L.; Filges, U.; Kühne, G.; Wohlmuther, M.; Zanini, L.
2008-02-01
ICON is the new cold neutron imaging facility at the neutron spallation source SINQ. The ICON facility is placed at beam-line S52 with direct view to the cold liquid D 2 moderator. The beam-line includes a 4.4 m long collimation section followed by a 11 m long flight path to the imaging system. The essential part of the collimation section is composed of six revolving drums and a variable aperture wheel. Depending on the investigated object, different apertures are used. Measurements have shown that each setup has a different spatial neutron flux distribution and specific beam profiles. Measured beam profiles have been used to validate results of simulations coupling the Monte-Carlo program MCNPX with the neutron ray-tracing program McStas. In a first step, MCNPX was used to calculate neutron spectra closed to the SINQ target, at the entrance of the collimation section. These results served as an input for McStas where the beam-line itself was simulated. In the present paper, experimental and theoretical results will be compared and discussed.
Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Rachel
2016-07-08
Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD = 100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT-based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT-based anthropomorphic phantom. The MC-calculated multiplication factor (B12-factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12-factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X-ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X-ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom
Energy Technology Data Exchange (ETDEWEB)
Oramas Polo, I.
2014-07-01
This paper presents the simulation of the gamma camera Park Isocam II by Monte Carlo code SIMIND. This simulation allows detailed assessment of the functioning of the gamma camera. The parameters evaluated by means of the simulation are: the intrinsic uniformity with different window amplitudes, the system uniformity, the extrinsic spatial resolution, the maximum rate of counts, the intrinsic sensitivity, the system sensitivity, the energy resolution and the pixel size. The results of the simulation are compared and evaluated against the specifications of the manufacturer of the gamma camera and taking into account the National Protocol for Quality Control of Nuclear Medicine Instruments of the Cuban Medical Equipment Control Center. The simulation reported here demonstrates the validity of the SIMIND Monte Carlo code to evaluate the performance of the gamma camera Park Isocam II and as result a computational model of the camera has been obtained. (Author)
Hydrogen analysis depth calibration by CORTEO Monte-Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Moser, M., E-mail: marcus.moser@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Reichart, P.; Bergmaier, A.; Greubel, C. [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Schiettekatte, F. [Université de Montréal, Département de Physique, Montréal, QC H3C 3J7 (Canada); Dollinger, G., E-mail: guenther.dollinger@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany)
2016-03-15
Hydrogen imaging with sub-μm lateral resolution and sub-ppm sensitivity has become possible with coincident proton–proton (pp) scattering analysis (Reichart et al., 2004). Depth information is evaluated from the energy sum signal with respect to energy loss of both protons on their path through the sample. In first order, there is no angular dependence due to elastic scattering. In second order, a path length effect due to different energy loss on the paths of the protons causes an angular dependence of the energy sum. Therefore, the energy sum signal has to be de-convoluted depending on the matrix composition, i.e. mainly the atomic number Z, in order to get a depth calibrated hydrogen profile. Although the path effect can be calculated analytically in first order, multiple scattering effects lead to significant deviations in the depth profile. Hence, in our new approach, we use the CORTEO Monte-Carlo code (Schiettekatte, 2008) in order to calculate the depth of a coincidence event depending on the scattering angle. The code takes individual detector geometry into account. In this paper we show, that the code correctly reproduces measured pp-scattering energy spectra with roughness effects considered. With more than 100 μm thick Mylar-sandwich targets (Si, Fe, Ge) we demonstrate the deconvolution of the energy spectra on our current multistrip detector at the microprobe SNAKE at the Munich tandem accelerator lab. As a result, hydrogen profiles can be evaluated with an accuracy in depth of about 1% of the sample thickness.
Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation
Machguth, H.; Purves, R.S.; Oerlemans, J.; Hoelzle, M.; Paul, F.
2008-01-01
By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was tun
High-pressure high-temperature equation of state of graphite from Monte Carlo simulations
Colonna, F.; Fasolino, A.; Meijer, E.J.
2011-01-01
The thermoelastic behavior of graphite is experimentally accessible in a limited range of pressures and temperatures. Here we perform Monte Carlo simulations based on the accurate long range carbon bond-order potential (LCBOPII) in order to study graphite in a wider range of thermodynamic
Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.
2008-01-01
There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled
The hard ellipsoid-of-revolution fluid. I. Monte Carlo simulations - Comment
Frenkel, D; Mulder, BM
2002-01-01
We present the results of Monte Carlo simulations on a system of hard ellipsoids of revolution with length-to-breadth ratios a/b = 3, 2.75, 2, 1.25 and b/a = 3, 2.75, 2, 1.25. We identify four distinct phases, viz. isotropic fluid, nematic fluid, ordered solid and plastic solid. The coexistence poin
The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations
Frenkel, D.; Mulder, B.M.
1985-01-01
We present the results of Monte Carlo simulations on a system of hard ellipsoids of revolution with length-to-breadth ratios a/b = 3, 2·75, 2, 1·25 and b/a = 3, 2·75, 2, 1·25. We identify four distinct phases, viz. isotropic fluid, nematic fluid, ordered solid and plastic solid. The coexistence poin
Diffusion and exchange of adsorbed polymers studied by Monte Carlo simulations
Klein Wolterink, J.; Barkema, G.T.; Cohen Stuart, M.A.
2005-01-01
Monte Carlo simulations are performed of adsorbed polymers with various polymer lengths N and adsorption energies ¿s. Exchange times and the rates of lateral diffusion (along the surface) are investigated as a function of N and ¿s. Lateral diffusion is found to be a combination of reptation (diffusi
Lattice gas models and kinetic Monte Carlo simulations of epitaxial growth
Biehl, Michael; Voigt, A
2005-01-01
A brief introduction is given to Kinetic Monte Carlo (KMC) simulations of epitaxial crystal growth. Molecular Beam Epitaxy (MBE) serves as the prototype example for growth far from equilibrium. However, many of the aspects discussed here would carry over to other techniques as well. A variety of app
Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.
2008-01-01
There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled di
Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation
Minasny, B.; Vrugt, J.A.; McBratney, A.B.
2011-01-01
This paper demonstrates for the first time the use of Markov Chain Monte Carlo (MCMC) simulation for parameter inference in model-based soil geostatistics. We implemented the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm to jointly summarize the posterior distributi
Lee, Anthony; Yau, Christopher; Giles, Michael B; Doucet, Arnaud; Holmes, Christopher C
2010-12-01
We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design.
Huh, J; Angerman, H.J; ten Brinke, G.
1996-01-01
Symmetric diblock copolymer blends A(f)B(1-f)/A(1-f)B(f) (0 less than or equal to f less than or equal to 0.5) are theoretically discussed in terms of a multiorder parameter approach and numerically investigated by Monte Carlo simulations. Theoretically, our main result is that below f congruent to
Monte Carlo Simulation for Moderator of Compact D-T Neutron Generator
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In order to study the neutron moderation of D-T neutron generator, moderators with diffident materials and structures are predicted by Monte Carlo simulations. Neutron generator is simplified as the diameter 20 cm, length 25 cm cylinder. The target is very
Monte Carlo Simulation of Dosimetric Parameters for HYBRID PdI Source in Brachytherapy
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
A novel brachytherapy source model, ADVANTAGE HYBRID PdI, has been designed by CIAE For treatment of cancer. In this project, the purpose of this study is to obtain the dosimetric parameters of HYBRID PdI source. The Monte Carlo simulation
Steen Magnussen
2009-01-01
Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...
Monte Carlo simulations of in-plane stacking disorder in hard-sphere crystals
Miedema, P.S.; de Villeneuve, V.W.A.; Petukhov, A.V.
2008-01-01
On-lattice Monte Carlo simulations of colloidal random-stacking hard-sphere colloidal crystals are presented. The model yields close-packed crystals with random-stacking hexagonal structure. We find a significant amount of in-plane stacking disorder, which slowly anneals in the course of the simulat
Testing the Intervention Effect in Single-Case Experiments: A Monte Carlo Simulation Study
Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick
2017-01-01
This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…
Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation
Machguth, H.; Purves, R.S.; Oerlemans, J.; Hoelzle, M.; Paul, F.
2008-01-01
By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was tun
On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses.
Koehler, Elizabeth; Brown, Elizabeth; Haneuse, Sebastien J-P A
2009-05-01
Statistical experiments, more commonly referred to as Monte Carlo or simulation studies, are used to study the behavior of statistical methods and measures under controlled situations. Whereas recent computing and methodological advances have permitted increased efficiency in the simulation process, known as variance reduction, such experiments remain limited by their finite nature and hence are subject to uncertainty; when a simulation is run more than once, different results are obtained. However, virtually no emphasis has been placed on reporting the uncertainty, referred to here as Monte Carlo error, associated with simulation results in the published literature, or on justifying the number of replications used. These deserve broader consideration. Here we present a series of simple and practical methods for estimating Monte Carlo error as well as determining the number of replications required to achieve a desired level of accuracy. The issues and methods are demonstrated with two simple examples, one evaluating operating characteristics of the maximum likelihood estimator for the parameters in logistic regression and the other in the context of using the bootstrap to obtain 95% confidence intervals. The results suggest that in many settings, Monte Carlo error may be more substantial than traditionally thought.
Quantum Monte Carlo Methods for First Principles Simulation of Liquid Water
Gergely, John Robert
2009-01-01
Obtaining an accurate microscopic description of water structure and dynamics is of great interest to molecular biology researchers and in the physics and quantum chemistry simulation communities. This dissertation describes efforts to apply quantum Monte Carlo methods to this problem with the goal of making progress toward a fully "ab initio"…
Monte Carlo simulation - a powerful tool to support experimental activities in structure reliability
Energy Technology Data Exchange (ETDEWEB)
Yuritzinn, T. [CEA Saclay, Dept. de Mecanique et de Technologie (DRN/DMT/SEMT/LISN), 91 - Gif-sur-Yvette (France); Chapuliot, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DM2S/SEMT), 91 - Gif sur Yvette (France); Eid, M. [CEA Saclay, Dept. de Mecanique et de Technologie (DRN/DMT/SERMA/LCA), 91 - Gif-sur-Yvette (France); Masson, R.; Dahl, A.; Moinereau, D. [Electricite de France (EDF), 75 - Paris (France)
2003-07-01
Monte-Carlo Simulation (MCS) can have different uses in supporting structure reliability investigations and assessments. In this paper we focus our interest on the use of MCS as a numerical tool to support the fitting of the experimental data related to toughness experiments. (authors)
LASER-DOPPLER VELOCIMETRY AND MONTE-CARLO SIMULATIONS ON MODELS FOR BLOOD PERFUSION IN TISSUE
DEMUL, FFM; KOELINK, MH; KOK, ML; HARMSMA, PJ; GREVE, J; GRAAFF, R; AARNOUDSE, JG
1995-01-01
Laser Doppler flow measurements and Monte Carlo simulations on small blood perfusion flow models at 780 nm are presented and compared. The dimensions of the optical sample volume are investigated as functions of the distance of the laser to the detector and as functions of the angle of penetration o
Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos
Campos, I; Kirchner, R; Luckmann, S; Montvay, István; Münster, G; Spanderen, K; Westphalen, J
1999-01-01
In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with light dynamical gluinos the low energy features of the dynamics as confinement and bound state mass spectrum are investigated. The motivation is supersymmetry at vanishing gluino mass. The performance of the applied two-step multi-bosonic dynamical fermion algorithm is discussed.
Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos
Energy Technology Data Exchange (ETDEWEB)
Campos, I.; Kirchner, R.; Montvay, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feo, A.; Luckmann, S.; Muenster, G.; Spanderen, K. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1
1999-12-01
In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with light dynamical gluinos the low energy features of the dynamics as confinement and bound state mass spectrum are investigated. The motivation is supersymmetry at vanishing gluino mass. The performance of the applied two-step multi-bosonic dynamical fermion algorithm is discussed. (orig.)
Quantum Monte Carlo simulation of a dissipative chain of Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Bobbert, P.A. (Delft Univ. of Tech. (Netherlands))
1991-02-01
The phase diagram of a chain of Josephson junctions with self-capacitance and Ohmic dissipation is studied in a Monte Carlo simulation. The problem is mapped onto a generalized 2d Coulomb gas model. Apart from the expected dipole transition a theoretically predicted quadrupole transition at a critical strength of the dissipation is clearly observed. (orig.).
Decker, K. M.; Jayewardena, C.; Rehmann, R.
We describe the library lgtlib, and lgttool, the corresponding development environment for Monte Carlo simulations of lattice gauge theory on multiprocessor vector computers with shared memory. We explain why distributed memory parallel processor (DMPP) architectures are particularly appealing for compute-intensive scientific applications, and introduce the design of a general application and program development environment system for scientific applications on DMPP architectures.
Lattice gas models and kinetic Monte Carlo simulations of epitaxial growth
Biehl, Michael; Voigt, A
2005-01-01
A brief introduction is given to Kinetic Monte Carlo (KMC) simulations of epitaxial crystal growth. Molecular Beam Epitaxy (MBE) serves as the prototype example for growth far from equilibrium. However, many of the aspects discussed here would carry over to other techniques as well. A variety of app
Simulação do equilíbrio: o método de Monte Carlo Equilibrium simulation: Monte Carlo method
Directory of Open Access Journals (Sweden)
Alejandro López-Castillo
2007-01-01
Full Text Available We make several simulations using the Monte Carlo method in order to obtain the chemical equilibrium for several first-order reactions and one second-order reaction. We study several direct, reverse and consecutive reactions. These simulations show the fluctuations and relaxation time and help to understand the solution of the corresponding differential equations of chemical kinetics. This work was done in an undergraduate physical chemistry course at UNIFIEO.
Monte-carlo method for simulations of ring polymers in the melt.
Vettorel, Thomas; Reigh, Shang Yik; Yoon, Do Y; Kremer, Kurt
2009-02-18
A detailed analysis of the efficiency of a Monte-Carlo (MC) method employing non-local moves for simple lattice ring polymers is presented. While the introduction of kink-translocation moves for linear chains results in the expected speedup by a factor of the order of the number of sites, this is significantly reduced for a melt of rings. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code
Directory of Open Access Journals (Sweden)
Ayyangar Komanduri
2010-01-01
Full Text Available This investigation aims to design a practical multi-leaf collimator (MLC system for the cobalt teletherapy machine and check its radiation properties using the Monte Carlo (MC method. The cobalt machine was modeled using the BEAMnrc Omega-Beam MC system, which could be freely downloaded from the website of the National Research Council (NRC, Canada. Comparison with standard depth dose data tables and the theoretically modeled beam showed good agreement within 2%. An MLC design with low melting point alloy (LMPA was tested for leakage properties of leaves. The LMPA leaves with a width of 7 mm and height of 6 cm, with tongue and groove of size 2 mm wide by 4 cm height, produced only 4% extra leakage compared to 10 cm height tungsten leaves. With finite 60 Co source size, the interleaf leakage was insignificant. This analysis helped to design a prototype MLC as an accessory mount on a cobalt machine. The complete details of the simulation process and analysis of results are discussed.
Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms
Papadimitroulas, P.; Kagadis, G. C.; Ploussi, A.; Kordolaimi, S.; Papamichail, D.; Karavasilis, E.; Syrgiamiotis, V.; Loudos, G.
2015-09-01
The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ∼1010 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition.
Monte Carlo simulation for kinetic chemotaxis model: An application to the traveling population wave
Yasuda, Shugo
2017-02-01
A Monte Carlo simulation of chemotactic bacteria is developed on the basis of the kinetic model and is applied to a one-dimensional traveling population wave in a microchannel. In this simulation, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to calculate the macroscopic transport of the chemical cues in the environment. The simulation method can successfully reproduce the traveling population wave of bacteria that was observed experimentally and reveal the microscopic dynamics of bacterium coupled with the macroscopic transports of the chemical cues and bacteria population density. The results obtained by the Monte Carlo method are also compared with the asymptotic solution derived from the kinetic chemotaxis equation in the continuum limit, where the Knudsen number, which is defined by the ratio of the mean free path of bacterium to the characteristic length of the system, vanishes. The validity of the Monte Carlo method in the asymptotic behaviors for small Knudsen numbers is numerically verified.
A measurement-based generalized source model for Monte Carlo dose simulations of CT scans
Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun
2017-03-01
The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg–Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.
Energy Technology Data Exchange (ETDEWEB)
Bordallo, H.N. [Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL (United States); Herwig, K.W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2001-03-01
Using the Monte-Carlo simulation program McStas, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the SNS-Long Wavelength Target Station (LWTS). The LWTS will provide the high flux of long wavelength neutrons at the requisite pulse rate required by the spectrometer design. The resolution of this spectrometer lies between that routinely achieved by spin echo techniques and the design goal of the high power target station backscattering spectrometer. Covering this niche in energy resolution will allow systematic studies over the large dynamic range required by many disciplines, such as protein dynamics. (author)
Energy Technology Data Exchange (ETDEWEB)
Wildes, A.R.; Farhi, E.; Anderson, I.; Hoghoj, P.; Brochier, A. [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Saroun, J. [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Nuclear Physics Institute, 25068 Rez near Prague (Czech Republic)
2002-07-01
Two Monte-Carlo neutron instrument simulation programs, RESTRAX and McSTAS, were used to determine the effect of using a converging supermirror guide between a monochromator and sample on the divergence of the incident beam. The results are compared with the test results on implementing such a focusing guide on the IN14 cold neutron spectrometer, Institut Laue-Langevin. The measured non-trivial incident beam divergence in both real and reciprocal space is reproduced by both the programs, giving confidence in the accuracy of the calculations and highlighting the dangers of using such devices on high-resolution instruments. (orig.)
Wildes, A. R.; Saroun, J.; Farhi, E.; Anderson, I.; Hoghoj, P.; Brochier, A.
Two Monte-Carlo neutron instrument simulation programs, RESTRAX and McSTAS, were used to determine the effect of using a converging supermirror guide between a monochromator and sample on the divergence of the incident beam. The results are compared with the test results on implementing such a focusing guide on the IN14 cold neutron spectrometer, Institut Laue-Langevin. The measured non-trivial incident beam divergence in both real and reciprocal space is reproduced by both the programs, giving confidence in the accuracy of the calculations and highlighting the dangers of using such devices on high-resolution instruments.
Wildes, A R; Anderson, I; Hoghoj, P; Brochier, A; Saroun, J
2002-01-01
Two Monte-Carlo neutron instrument simulation programs, RESTRAX and McSTAS, were used to determine the effect of using a converging supermirror guide between a monochromator and sample on the divergence of the incident beam. The results are compared with the test results on implementing such a focusing guide on the IN14 cold neutron spectrometer, Institut Laue-Langevin. The measured non-trivial incident beam divergence in both real and reciprocal space is reproduced by both the programs, giving confidence in the accuracy of the calculations and highlighting the dangers of using such devices on high-resolution instruments. (orig.)
Kunikeev, Sharif D; Kim, Kwang S
2012-11-01
The Monte Carlo (MC) estimates of thermal averages are usually functions of system control parameters λ, such as temperature, volume, and interaction couplings. Given the MC average at a set of prescribed control parameters λ{0}, the problem of analytic continuation of the MC data to λ values in the neighborhood of λ{0} is considered in both classic and quantum domains. The key result is the theorem that links the differential properties of thermal averages to the higher order cumulants. The theorem and analytic continuation formulas expressed via higher order cumulants are numerically tested on the classical Lennard-Jones cluster system of N=13, 55, and 147 neon particles.
Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles
Energy Technology Data Exchange (ETDEWEB)
McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M
2004-10-20
Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.
Uncertainty assessment in geodetic network adjustment by combining GUM and Monte-Carlo-simulations
Niemeier, Wolfgang; Tengen, Dieter
2017-06-01
In this article first ideas are presented to extend the classical concept of geodetic network adjustment by introducing a new method for uncertainty assessment as two-step analysis. In the first step the raw data and possible influencing factors are analyzed using uncertainty modeling according to GUM (Guidelines to the Expression of Uncertainty in Measurements). This approach is well established in metrology, but rarely adapted within Geodesy. The second step consists of Monte-Carlo-Simulations (MC-simulations) for the complete processing chain from raw input data and pre-processing to adjustment computations and quality assessment. To perform these simulations, possible realizations of raw data and the influencing factors are generated, using probability distributions for all variables and the established concept of pseudo-random number generators. Final result is a point cloud which represents the uncertainty of the estimated coordinates; a confidence region can be assigned to these point clouds, as well. This concept may replace the common concept of variance propagation and the quality assessment of adjustment parameters by using their covariance matrix. It allows a new way for uncertainty assessment in accordance with the GUM concept for uncertainty modelling and propagation. As practical example the local tie network in "Metsähovi Fundamental Station", Finland is used, where classical geodetic observations are combined with GNSS data.
Synchrotron stereotactic radiotherapy: dosimetry by Fricke gel and Monte Carlo simulations.
Boudou, Caroline; Biston, Marie-Claude; Corde, Stéphanie; Adam, Jean-François; Ferrero, Claudio; Estève, François; Elleaume, Hélène
2004-11-21
Synchrotron stereotactic radiotherapy (SSR) consists in loading the tumour with a high atomic number element (Z), and exposing it to monochromatic x-rays from a synchrotron source (50-100 keV), in stereotactic conditions. The dose distribution results from both the stereotactic monochromatic x-ray irradiation and the presence of the high Z element. The purpose of this preliminary study was to evaluate the two-dimensional dose distribution resulting solely from the irradiation geometry, using Monte Carlo simulations and a Fricke gel dosimeter. The verification of a Monte Carlo-based dosimetry was first assessed by depth dose measurements in a water tank. We thereafter used a Fricke dosimeter to compare Monte Carlo simulations with dose measurements. The Fricke dosimeter is a solution containing ferrous ions which are oxidized to ferric ions under ionizing radiation, proportionally to the absorbed dose. A cylindrical phantom filled with Fricke gel was irradiated in stereotactic conditions over several slices with a continuous beam (beam section = 0.1 x 1 cm2). The phantom and calibration vessels were then imaged by nuclear magnetic resonance. The measured doses were fairly consistent with those predicted by Monte Carlo simulations. However, the measured maximum absolute dose was 10% underestimated regarding calculation. The loss of information in the higher region of dose is explained by the diffusion of ferric ions. Monte Carlo simulation is the most accurate tool for dosimetry including complex geometries made of heterogeneous materials. Although the technique requires improvements, gel dosimetry remains an essential tool for the experimental verification of dose distribution in SSR with millimetre precision.
Breier, R; Laubenstein, M; Povinec, P P
2017-08-01
Monte Carlo (MC) simulation of background components of an ultra-low background high purity germanium (HPGe) detector operating in a deep underground laboratory was carried out. The results show that the background of the HPGe detector is about two orders of magnitude higher than the MC prediction when accounting only for cosmic-ray induced background. The difference is due to natural radioactivity in the parts surrounding the Ge detector. To get reasonable agreement between MC simulations and the experiment, a contamination in the parts surrounding the Ge crystal from (40)K, (208)Tl and (214)Bi of 0.1mBqkg(-1) was required to include in the simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tseung, H Wan Chan; Beltran, C
2014-01-01
Purpose: Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on GPUs. However, these usually use simplified models for non-elastic (NE) proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and NE collisions. Methods: Using CUDA, we implemented GPU kernels for these tasks: (1) Simulation of spots from our scanning nozzle configurations, (2) Proton propagation through CT geometry, considering nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) Modeling of the intranuclear cascade stage of NE interactions, (4) Nuclear evaporation simulation, and (5) Statistical error estimates on the dose. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions, (2) Dose calculations in homogeneous phantoms, (3) Re-calculations of head and neck plans from a commercial treatment planning system (TPS), and compared with Geant4.9.6p2/TOPAS. Results: Yields, en...
Energy Technology Data Exchange (ETDEWEB)
Penna, Rodrigo [UNI-BH, Belo Horizonte, MG (Brazil). Dept. de Ciencias Biologicas, Ambientais e da Saude (DCBAS/DCET); Silva, Clemente Jose Gusmao Carneiro da [Universidade Estadual de Santa Cruz, UESC, Ilheus, BA (Brazil); Gomes, Paulo Mauricio Costa [Universidade FUMEC, Belo Horizonte, MG (Brazil)
2008-07-01
Viability of building a nuclear wood densimeter based on low energy photons Compton scattering was done using Monte Carlo code (MCNP- 4C). It is simulated a collimated 60 keV beam of gamma rays emitted by {sup 241}Am source reaching wood blocks. Backscattered radiation by these blocks was calculated. Photons scattered were correlated with blocks of different wood densities. Results showed a linear relationship on wood density and scattered photons, therefore the viability of this wood densimeter. (author)
GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
Jia, Xun; Gu, Xuejun; Graves, Yan Jiang; Folkerts, Michael; Jiang, Steve B
2011-11-21
Monte Carlo (MC) simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications. In this paper, we present our recent progress toward the development of a graphics processing unit (GPU)-based MC dose calculation package, gDPM v2.0. It utilizes the parallel computation ability of a GPU to achieve high efficiency, while maintaining the same particle transport physics as in the original dose planning method (DPM) code and hence the same level of simulation accuracy. In GPU computing, divergence of execution paths between threads can considerably reduce the efficiency. Since photons and electrons undergo different physics and hence attain different execution paths, we use a simulation scheme where photon transport and electron transport are separated to partially relieve the thread divergence issue. A high-performance random number generator and a hardware linear interpolation are also utilized. We have also developed various components to handle the fluence map and linac geometry, so that gDPM can be used to compute dose distributions for realistic IMRT or VMAT treatment plans. Our gDPM package is tested for its accuracy and efficiency in both phantoms and realistic patient cases. In all cases, the average relative uncertainties are less than 1%. A statistical t-test is performed and the dose difference between the CPU and the GPU results is not found to be statistically significant in over 96% of the high dose region and over 97% of the entire region. Speed-up factors of 69.1 ∼ 87.2 have been observed using an NVIDIA Tesla C2050 GPU card against a 2.27 GHz Intel Xeon CPU processor. For realistic IMRT and VMAT plans, MC dose calculation can be completed with less than 1% standard deviation in 36.1 ∼ 39.6 s using gDPM.
Energy Technology Data Exchange (ETDEWEB)
Fonseca, T.C.F.; Bastos, F.M.; Figueiredo, M.T.T.; Souza, L.S.; Guimaraes, M.C.; Silva, C.R.E.; Mello, O.A.; Castelo e Silva, L.A.; Paixao, L., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Benavente, J.A.; Paiva, F.G. [Universidade Federal de Minas Gerais (PCTN/UFMG), Belo Horizonte, MG (Brazil). Curso de Pos-Graduacao em Ciencias e Tecnicas Nucleares
2015-07-01
Computational Monte Carlo (MC) codes have been used for simulation of nuclear installations mainly for internal monitoring of workers, the well known as Whole Body Counters (WBC). The main goal of this project was the modeling and simulation of the counting efficiency (CE) of a WBC system using three different MC codes: MCNPX, EGSnrc and VMC in-vivo. The simulations were performed for three different groups of analysts. The results shown differences between the three codes, as well as in the results obtained by the same code and modeled by different analysts. Moreover, all the results were also compared to the experimental results obtained in laboratory for meaning of validation and final comparison. In conclusion, it was possible to detect the influence on the results when the system is modeled by different analysts using the same MC code and in which MC code the results were best suited, when comparing to the experimental data result. (author)
Evaluation of a commercial electron treatment planning system based on Monte Carlo techniques (eMC).
Pemler, Peter; Besserer, Jürgen; Schneider, Uwe; Neuenschwander, Hans
2006-01-01
A commercial electron beam treatment planning system on the basis of a Monte Carlo algorithm (Varian Eclipse, eMC V7.2.35) was evaluated. Measured dose distributions were used for comparison with dose distributions predicted by eMC calculations. Tests were carried out for various applicators and field sizes, irregular shaped cut outs and an inhomogeneity phantom for energies between 6 Me V and 22 MeV Monitor units were calculated for all applicator/energy combinations and field sizes down to 3 cm diameter and source-to-surface distances of 100 cm and 110 cm. A mass-density-to-Hounsfield-Units calibration was performed to compare dose distributions calculated with a default and an individual calibration. The relationship between calculation parameters of the eMC and the resulting dose distribution was studied in detail. Finally, the algorithm was also applied to a clinical case (boost treatment of the breast) to reveal possible problems in the implementation. For standard geometries there was a good agreement between measurements and calculations, except for profiles for low energies (6 MeV) and high energies (18 Me V 22 MeV), in which cases the algorithm overestimated the dose off-axis in the high-dose region. For energies of 12 MeV and higher there were oscillations in the plateau region of the corresponding depth dose curves calculated with a grid size of 1 mm. With irregular cut outs, an overestimation of the dose was observed for small slits and low energies (4% for 6 MeV), as well as for asymmetric cases and extended source-to-surface distances (12% for SSD = 120 cm). While all monitor unit calculations for SSD = 100 cm were within 3% compared to measure-ments, there were large deviations for small cut outs and source-to-surface distances larger than 100 cm (7%for a 3 cm diameter cut-out and a source-to-surface distance of 10 cm).
Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy); Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)
2014-02-15
Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the
Energy Technology Data Exchange (ETDEWEB)
Rojas C, E. L., E-mail: leticia.rojas@inin.gob.m [ININ, Gerencia de Ciencias Ambientales, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2010-07-01
At the present time the computers use to solve important problems extends to all the areas. These areas can be of social, economic, of engineering, of basic and applied science, etc. With and appropriate handling of computation programs and information can be carried out calculations and simulations of real models, to study them and to solve theoretical or application problems. The processes that contain random variables are susceptible of being approached with the Monte Carlo method. This is a numeric method that, thanks to the improvements in the processors of the computers, it can apply in many tasks more than what was made in the principles of their practical application (at the beginning of the decade of 1950). In this work the application of the Monte Carlo method will be approached in the simulation of the radiation interaction with the matter, to investigate dosimetric aspects of some problems that exist in the medical physics area. Also, contain an introduction about some historical data and some general concepts related with the Monte Carlo simulation are revised. (Author)
Dynamic Monte Carlo simulation of the NO+H reaction on Pt(100): TPR spectra
Álvarez-Falcón, L.; Alas, S. J.; Vicente, L.
2011-11-01
The catalytic reduction of nitric oxide by hydrogen over a Pt surface is studied using a dynamic Monte Carlo (MC) method on a square lattice under low pressure conditions. Using a Langmuir-Hinshelwood reaction mechanism, a simplified model with only four adsorbed species (NO, H, O, and N) is constructed. The effect on the NO dissociation rate, the limiting step in the whole reaction, is inhibited by co-adsorbed NO and H 2 molecules and is enhanced both by the presence of empty sites and adsorbed N atoms at nearest neighbors. In these simulations, several experimental parameter values are included, such as: adsorption, desorption and diffusion of the reactants. The phenomenon is studied while varying the temperature over the 300-550 K range. The model reproduces well-observed TPD and TPR experimental results. For the whole NO+H 2 reaction, the phenomena of “surface explosion” is observed and can be explained as the result of the abrupt production of N 2 due to both the autocatalytic NO decomposition favored by the presence of vacant sites and the development of inhomogeneous fluctuations. MA simulations also allow a visualization of the spatial development of the surface explosion as heating proceeds.
PENELOPE, and algorithm and computer code for Monte Carlo simulation of electron-photon showers
Energy Technology Data Exchange (ETDEWEB)
Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.
1996-10-01
The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from similar{sub t}o 1 KeV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.
PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers
Energy Technology Data Exchange (ETDEWEB)
Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.
1996-07-01
The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.
Directory of Open Access Journals (Sweden)
Miguel Arias Albornoz
2008-09-01
Full Text Available En este trabajo se aplica el método de simulación de Monte Carlo (MC para estimar el número de depresiones rápidas de tensión (dips esperados en barras de una red eléctrica. Las estimaciones obtenidas a través de MC se comparan con los resultados de otro método de cálculo conocido como Método de Posiciones de Falla (MPF. Entre los resultados se muestra tanto la convergencia del algoritmo MC a los valores de largo plazo del método MPF como la distribución completa de frecuencias para diferentes eventos, lo cual representa información valiosa para apoyar la toma de decisiones sobre el empleo de equipos sensibles a este tipo de perturbación.In this work, the Monte Carlo simulation method (MC is applied to estimate the number of expected voltage dips in the nodes of an electric network. The estimations obtained through MC are compared with the results of another method of calculation, known as Failure Position Method (MPF. In the results, both the convergence of the algorithm with the long-term values of the MPF method and the complete distribution of frequencies for different events are shown. This represents valuable information to support the decision-making process for equipment that is sensitive to this type of perturbation.
Ustinov, E. A.
2017-01-01
The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.
Directory of Open Access Journals (Sweden)
Martin J Bishop
2014-09-01
Full Text Available Light scattering during optical imaging of electrical activation within the heart is known to significantlydistort the optically-recorded action potential (AP upstroke, as well as affecting the magnitude of the measured response of ventricular tissue to strong electric shocks. Modelling approaches based on the photondiffusion equation have recently been instrumental in quantifying and helping to understand the origin of the resulting distortion. However, they are unable to faithfully represent regions of non-scattering media, such assmall cavities within the myocardium which are filled with perfusate during experiments. Stochastic Monte Carlo (MC approaches allow simulation and tracking of individual photon `packets' as they propagate through tissuewith differing scattering properties. Here, we present a novel application of the MC method of photon scattering simulation, applied for the first time to the simulation of cardiac optical mapping signals withinunstructured, tetrahedral, finite element computational ventricular models. The method faithfully allows simulation of optical signals over highly-detailed, anatomically-complex MR-based models, includingrepresentations of fine-scale anatomy and intramural cavities. We show that optical action potential upstroke is prolonged close to large subepicardial vessels than further away from vessels, at times having a distinct `humped' morphology.Furthermore, we uncover a novel mechanism by which photon scattering effects around vessels cavities interact with `virtual-electrode' regions of strong de-/hyper-polarised tissue surrounding cavitiesduring shocks, significantly reducing the apparent optically-measured epicardial polarisation. We therefore demonstrate the importance of this novel optical mapping simulation approach along with highly anatomically-detailed models to fully investigate electrophysiological phenomena driven by fine-scale structural heterogeneity.
Efficiency calibration of an extended-range Ge detector by a detailed Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Peyres, V. [Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, Madrid 28040 (Spain)], E-mail: Virginia.peyres@ciemat.es; Garcia-Torano, E. [Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, Madrid 28040 (Spain)
2007-09-21
A Monte Carlo simulation has been employed for calibrating an extended-range Ge detector in an energy range from 14 to 1800 keV. A set of sources from monoenergetic and multi-gamma emitters point were measured at 15 cm from the detector window and provided 26 experimental values to which the results of the simulations are compared. Discrepancies between simulated and experimental values are within 1 standard deviation, and relative differences are, in most cases, below 1%.
Estimation of background spectrum in a shielded HPGe detector using Monte Carlo simulations.
Medhat, M E; Wang, Yifang
2014-02-01
Monte Carlo simulations are powerful tools used to estimate the background γ-radiation detected by high-resolution gamma-ray spectrometry systems with a HPGe (high purity germanium) detector contained inside a lead shield. The purpose of this work was to examine the applicability of Monte Carlo simulations to predict the optimal lead thickness necessary to reduce the background effect in spectrometer measurements. GEANT4 code was applied to simulate the background radiation spectrum at different thicknesses of lead. The simulated results were compared with experimental measurements of background radiation taken at the same shielding thickness. The results show that the background radiation detected depends on the thickness, size and lining of the shield. Simulation showed that 12 cm lead thick is the optimal shielding thickness.
Sharma, Anupam; Long, Lyle N.
2004-10-01
A particle approach using the Direct Simulation Monte Carlo (DSMC) method is used to solve the problem of blast impact with structures. A novel approach to model the solid boundary condition for particle methods is presented. The solver is validated against an analytical solution of the Riemann shocktube problem and against experiments on interaction of a planar shock with a square cavity. Blast impact simulations are performed for two model shapes, a box and an I-shaped beam, assuming that the solid body does not deform. The solver uses domain decomposition technique to run in parallel. The parallel performance of the solver on two Beowulf clusters is also presented.
Energy Technology Data Exchange (ETDEWEB)
Smekens, F; Freud, N; Letang, J M; Babot, D [CNDRI (Nondestructive Testing using Ionizing Radiations) Laboratory, INSA-Lyon, 69621 Villeurbanne Cedex (France); Adam, J-F; Elleaume, H; Esteve, F [INSERM U-836, Equipe 6 ' Rayonnement Synchrotron et Recherche Medicale' , Institut des Neurosciences de Grenoble (France); Ferrero, C; Bravin, A [European Synchrotron Radiation Facility, Grenoble (France)], E-mail: francois.smekens@insa-lyon.fr
2009-08-07
A hybrid approach, combining deterministic and Monte Carlo (MC) calculations, is proposed to compute the distribution of dose deposited during stereotactic synchrotron radiation therapy treatment. The proposed approach divides the computation into two parts: (i) the dose deposited by primary radiation (coming directly from the incident x-ray beam) is calculated in a deterministic way using ray casting techniques and energy-absorption coefficient tables and (ii) the dose deposited by secondary radiation (Rayleigh and Compton scattering, fluorescence) is computed using a hybrid algorithm combining MC and deterministic calculations. In the MC part, a small number of particle histories are simulated. Every time a scattering or fluorescence event takes place, a splitting mechanism is applied, so that multiple secondary photons are generated with a reduced weight. The secondary events are further processed in a deterministic way, using ray casting techniques. The whole simulation, carried out within the framework of the Monte Carlo code Geant4, is shown to converge towards the same results as the full MC simulation. The speed of convergence is found to depend notably on the splitting multiplicity, which can easily be optimized. To assess the performance of the proposed algorithm, we compare it to state-of-the-art MC simulations, accelerated by the track length estimator technique (TLE), considering a clinically realistic test case. It is found that the hybrid approach is significantly faster than the MC/TLE method. The gain in speed in a test case was about 25 for a constant precision. Therefore, this method appears to be suitable for treatment planning applications.
Energy Technology Data Exchange (ETDEWEB)
Bolch, W.E.; Turner, J.E.; Yoshida, H.; Jacobson, K.B.; Hamm, R.N.; Wright, H.A.; Ritchie, R.H.; Klots, C.E.
1988-07-01
A Monte Carlo computer code is developed for simulating the radiolysis of glycylglycine in both oxygenated and deoxygenated aqueous solution. Second, this model is used to calculate the yields of various products in solutions irradiated either by 250-kVp X-rays or by /sup 60/Co gamma rays. Third, calculated product yields are compared to measured yields where available. The Monte Carlo computer codes used in this study are modified and extended versions of three existing simulation codes, written at the Oak Ridge National Laboratory (ORNL), which simulate irradiations of pure liquid water. The ORNL codes calculate the formation, diffusion, and reaction of free radicals and other species along charged-particle tracks in liquid water. As part of this research, these codes are extended to simulate irradiation of pure oxygenated water, oxygenated glycylglycine solutions, and deoxygenated glycylglycine solutions. 80 refs., 38 figs., 8 tabs.
Directory of Open Access Journals (Sweden)
He Deyu
2016-09-01
Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.
Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2017-01-01
Analytical expressions for sampling the scattering angle from a phase function in Monte Carlo simulations of light propagation are available only for a limited number of phase functions. Consequently, numerical sampling methods based on tabulated values are often required instead. By using Monte Carlo simulated reflectance, we compare two existing and propose an improved numerical sampling method and show that both the number of the tabulated values and the numerical sampling method significantly influence the accuracy of the simulated reflectance. The provided results and guidelines should serve as a good starting point for conducting computationally efficient Monte Carlo simulations with numerical phase function sampling. PMID:28663872
Rizzo, Robert C; Udier-Blagović, Marina; Wang, De-Ping; Watkins, Edward K; Kroeger Smith, Marilyn B; Smith, Richard H; Tirado-Rives, Julian; Jorgensen, William L
2002-07-04
Results of Monte Carlo (MC) simulations for more than 200 nonnucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) representing eight diverse chemotypes have been correlated with their anti-HIV activities in an effort to establish simulation protocols and methods that can be used in the development of more effective drugs. Each inhibitor was modeled in a complex with the protein and by itself in water, and potentially useful descriptors of binding affinity were collected during the MC simulations. A viable regression equation was obtained for each data set using an extended linear response approach, which yielded r(2) values between 0.54 and 0.85 and an average unsigned error of only 0.50 kcal/mol. The most common descriptors confirm that a good geometrical match between the inhibitor and the protein is important and that the net loss of hydrogen bonds with the inhibitor upon binding is unfavorable. Other physically reasonable descriptors of binding are needed on a chemotype case-by-case basis. By including descriptors in common from the individual fits, combination regressions that include multiple data sets were also developed. This procedure led to a refined "master" regression for 210 NNRTIs with an r(2) of 0.60 and a cross-validated q(2) of 0.55. The computed activities show an rms error of 0.86 kcal/mol in comparison with experiment and an average unsigned error of 0.69 kcal/mol. Encouraging results were obtained for the predictions of 27 NNRTIs, representing a new chemotype not included in the development of the regression model. Predictions for this test set using the master regression yielded a q(2) value of 0.51 and an average unsigned error of 0.67 kcal/mol. Finally, additional regression analysis reveals that use of ligand-only descriptors leads to models with much diminished predictive ability.
Interactions between ring polymers in dilute solution studied by Monte Carlo simulation
Suzuki, Jiro; Takano, Atsushi; Matsushita, Yushu
2015-01-01
The second virial coefficient, A2, for trivial-ring polymers in dilute condition was estimated from a Metropolis Monte Carlo (MC) simulation, and the temperature dependence of A2 has been discussed with their Flory's scaling exponent, ν, in Rg ∝ Nν, where Rg is radius of gyration of a polymer molecule. A limited but not too small number of polymer molecules were employed in the simulation, and the A2 values at various temperatures were calculated from the molecular density fluctuation in the solution. In the simulation, the topology of ring polymers was kept, since chain crossing was prohibited. The excluded volume effects can be screened by the attractive force between segments, which depends on the temperature, Tα, defined in the Metropolis MC method. Linear and trivial-ring polymers have the ν value of 1/2 at Tα = 10.605 and 10.504. At Tα = 10.504, the excluded volume effects are screened by the attractive force generated between segments in a ring polymer, but the A2 value for ring polymers is positive. Thus, the temperature at A2 = 0 for a ring polymer is lower than that at ν = 1/2, and this fact can be explained with the following two reasons. (a) Rg value for a ring polymer is much smaller than that for a linear polymer at the same temperature and molecular weight, where interpenetration of a ring polymer chain into neighboring chains is apparently less than a linear chain. (b) The conformation of trivial rings can be statistically described as a closed random walk at ν = 1/2, but their topologies are kept, being produced topological constraints, which strongly relate not only to the long-distance interaction between segments in a molecule but also the inter-molecular interaction.
Monte-Carlo Simulation on the Failure of Fiber in a Single Filament Composite
Institute of Scientific and Technical Information of China (English)
邢孟秋; 严灏景
2001-01-01
A Monte-Carlo method is used to simulate gradual fracture of fiber in a single filament composite with the increase of virtual stress. A simple computational algorithm is developed to judge where breaking point will happen in the composite and a probability model based on Weibull- distribution is designed to calculate the average fragment length by producing stable and uniform random number in (0, 1). Compared to the published experiment results, the simulating average fragment length is quite perfect.
Colloidal nanoparticles trapped by liquid-crystal defect lines: A lattice Monte Carlo simulation
Jose, Regina; Skačej, Gregor; Sastry, V. S. S.; Žumer, Slobodan
2014-09-01
Lattice-based Monte Carlo simulations are performed to study a confined liquid crystal system with a topological disclination line entangling a colloidal nanoparticle. In our microscopic study the disclination line is stretched by moving the colloid, as in laser tweezing experiments, which results in a restoring force attempting to minimize the disclination length. From constant-force simulations we extract the corresponding disclination line tension, estimated as ˜50 pN, and observe its decrease with increasing temperature.
Simulations of a typical CMOS amplifier circuit using the Monte Carlo method
Borges, Jacques Cousteau da Silva
2016-01-01
In the present paper of Microelectronics, some simulations of a typical circuit of amplification, using a CMOS transistor, through the computational tools were performed. At that time, PSPICE® was used, where it was possible to observe the results, which are detailed in this work. The imperfections of the component due to manufacturing processes were obtained from simulations using the Monte Carlo method. The circuit operating point, mean and standard deviation were obtained and the influence...
Thomson, R; Kawrakow, I
2012-06-01
Widely-used classical trajectory Monte Carlo simulations of low energy electron transport neglect the quantum nature of electrons; however, at sub-1 keV energies quantum effects have the potential to become significant. This work compares quantum and classical simulations within a simplified model of electron transport in water. Electron transport is modeled in water droplets using quantum mechanical (QM) and classical trajectory Monte Carlo (MC) methods. Water droplets are modeled as collections of point scatterers representing water molecules from which electrons may be isotropically scattered. The role of inelastic scattering is investigated by introducing absorption. QM calculations involve numerically solving a system of coupled equations for the electron wavefield incident on each scatterer. A minimum distance between scatterers is introduced to approximate structured water. The average QM water droplet incoherent cross section is compared with the MC cross section; a relative error (RE) on the MC results is computed. RE varies with electron energy, average and minimum distances between scatterers, and scattering amplitude. The mean free path is generally the relevant length scale for estimating RE. The introduction of a minimum distance between scatterers increases RE substantially (factors of 5 to 10), suggesting that the structure of water must be modeled for accurate simulations. Inelastic scattering does not improve agreement between QM and MC simulations: for the same magnitude of elastic scattering, the introduction of inelastic scattering increases RE. Droplet cross sections are sensitive to droplet size and shape; considerable variations in RE are observed with changing droplet size and shape. At sub-1 keV energies, quantum effects may become non-negligible for electron transport in condensed media. Electron transport is strongly affected by the structure of the medium. Inelastic scatter does not improve agreement between QM and MC simulations of low
Gabrieli, Andrea; Demontis, Pierfranco; Pazzona, Federico G; Suffritti, Giuseppe B
2011-05-01
Understanding the behaviors of molecules in tight confinement is a challenging task. Standard simulation tools like kinetic Monte Carlo have proven to be very effective in the study of adsorption and diffusion phenomena in microporous materials, but they turn out to be very inefficient when simulation time and length scales are extended. In this paper we have explored the possibility of application of a discrete version of the synchronous parallel kinetic Monte Carlo algorithm introduced by Martínez et al. [J. Comput. Phys. 227, 3804 (2008)] to the study of aromatic hydrocarbons diffusion in zeolites. The efficiency of this algorithm is investigated as a function of the number of processors and domain size. We show that with an accurate choice of domains size it is possible to achieve very good efficiencies thus permitting us to effectively extend space and time scales of the simulated system. © 2011 American Physical Society
Comparison of Geant4-DNA simulation of S-values with other Monte Carlo codes
Energy Technology Data Exchange (ETDEWEB)
André, T. [Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Morini, F. [Research Group of Theoretical Chemistry and Molecular Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Karamitros, M. [Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Delorme, R. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, 38026 Grenoble (France); CEA, LIST, F-91191 Gif-sur-Yvette (France); Le Loirec, C. [CEA, LIST, F-91191 Gif-sur-Yvette (France); Campos, L. [Departamento de Física, Universidade Federal de Sergipe, São Cristóvão (Brazil); Champion, C. [Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Groetz, J.-E.; Fromm, M. [Université de Franche-Comté, Laboratoire Chrono-Environnement, UMR CNRS 6249, Besançon (France); Bordage, M.-C. [Laboratoire Plasmas et Conversion d’Énergie, UMR 5213 CNRS-INPT-UPS, Université Paul Sabatier, Toulouse (France); Perrot, Y. [Laboratoire de Physique Corpusculaire, UMR 6533, Aubière (France); Barberet, Ph. [Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); and others
2014-01-15
Monte Carlo simulations of S-values have been carried out with the Geant4-DNA extension of the Geant4 toolkit. The S-values have been simulated for monoenergetic electrons with energies ranging from 0.1 keV up to 20 keV, in liquid water spheres (for four radii, chosen between 10 nm and 1 μm), and for electrons emitted by five isotopes of iodine (131, 132, 133, 134 and 135), in liquid water spheres of varying radius (from 15 μm up to 250 μm). The results have been compared to those obtained from other Monte Carlo codes and from other published data. The use of the Kolmogorov–Smirnov test has allowed confirming the statistical compatibility of all simulation results.
Yasuda, Shugo
2015-01-01
A Monte Carlo simulation for the chemotactic bacteria is developed on the basis of the kinetic modeling, i.e., the Boltzmann transport equation, and applied to the one-dimensional traveling population wave in a micro channel.In this method, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to solve the macroscopic transport of the chemical cues in the field. The simulation method can successfully reproduce the traveling population wave of bacteria which was observed experimentally. The microscopic dynamics of bacteria, e.g., the velocity autocorrelation function and velocity distribution function of bacteria, are also investigated. It is found that the bacteria which form the traveling population wave create quasi-periodic motions as well as a migratory movement along with the traveling population wave. Simulations are also performed with changing the sensitivity and modulation parameters in the response function of bacteria. It is found th...
Large-scale Monte Carlo simulations for the depinning transition in Ising-type lattice models
Si, Lisha; Liao, Xiaoyun; Zhou, Nengji
2016-12-01
With the developed "extended Monte Carlo" (EMC) algorithm, we have studied the depinning transition in Ising-type lattice models by extensive numerical simulations, taking the random-field Ising model with a driving field and the driven bond-diluted Ising model as examples. In comparison with the usual Monte Carlo method, the EMC algorithm exhibits greater efficiency of the simulations. Based on the short-time dynamic scaling form, both the transition field and critical exponents of the depinning transition are determined accurately via the large-scale simulations with the lattice size up to L = 8912, significantly refining the results in earlier literature. In the strong-disorder regime, a new universality class of the Ising-type lattice model is unveiled with the exponents β = 0.304(5) , ν = 1.32(3) , z = 1.12(1) , and ζ = 0.90(1) , quite different from that of the quenched Edwards-Wilkinson equation.
Numerical Study of Light Transport in Apple Models Based on Monte Carlo Simulations
Directory of Open Access Journals (Sweden)
Mohamed Lamine Askoura
2015-12-01
Full Text Available This paper reports on the quantification of light transport in apple models using Monte Carlo simulations. To this end, apple was modeled as a two-layer spherical model including skin and flesh bulk tissues. The optical properties of both tissue types used to generate Monte Carlo data were collected from the literature, and selected to cover a range of values related to three apple varieties. Two different imaging-tissue setups were simulated in order to show the role of the skin on steady-state backscattering images, spatially-resolved reflectance profiles, and assessment of flesh optical properties using an inverse nonlinear least squares fitting algorithm. Simulation results suggest that apple skin cannot be ignored when a Visible/Near-Infrared (Vis/NIR steady-state imaging setup is used for investigating quality attributes of apples. They also help to improve optical inspection techniques in the horticultural products.