WorldWideScience

Sample records for monte-carlo mc simulation

  1. CloudMC: a cloud computing application for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-01-01

    This work presents CloudMC, a cloud computing application—developed in Windows Azure®, the platform of the Microsoft® cloud—for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based—the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice. (note)

  2. CloudMC: a cloud computing application for Monte Carlo simulation.

    Science.gov (United States)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  3. Monte Carlo simulations of neutron-scattering instruments using McStas

    DEFF Research Database (Denmark)

    Nielsen, K.; Lefmann, K.

    2000-01-01

    Monte Carlo simulations have become an essential tool for improving the performance of neutron-scattering instruments, since the level of sophistication in the design of instruments is defeating purely analytical methods. The program McStas, being developed at Rise National Laboratory, includes...

  4. McStas 1.1: A tool for building neutron Monte Carlo simulations

    DEFF Research Database (Denmark)

    Lefmann, K.; Nielsen, K.; Tennant, D.A.

    2000-01-01

    McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron...

  5. Monte Carlo simulations of neutron scattering instruments

    International Nuclear Information System (INIS)

    Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.

    2001-01-01

    A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)

  6. The OpenMC Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Romano, Paul K.; Forget, Benoit

    2013-01-01

    Highlights: ► An open source Monte Carlo particle transport code, OpenMC, has been developed. ► Solid geometry and continuous-energy physics allow high-fidelity simulations. ► Development has focused on high performance and modern I/O techniques. ► OpenMC is capable of scaling up to hundreds of thousands of processors. ► Results on a variety of benchmark problems agree with MCNP5. -- Abstract: A new Monte Carlo code called OpenMC is currently under development at the Massachusetts Institute of Technology as a tool for simulation on high-performance computing platforms. Given that many legacy codes do not scale well on existing and future parallel computer architectures, OpenMC has been developed from scratch with a focus on high performance scalable algorithms as well as modern software design practices. The present work describes the methods used in the OpenMC code and demonstrates the performance and accuracy of the code on a variety of problems.

  7. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC

    International Nuclear Information System (INIS)

    Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • The new developed CAD-based Monte Carlo program named SuperMC for integrated simulation of nuclear system makes use of hybrid MC-deterministic method and advanced computer technologies. SuperMC is designed to perform transport calculation of various types of particles, depletion and activation calculation including isotope burn-up, material activation and shutdown dose, and multi-physics coupling calculation including thermo-hydraulics, fuel performance and structural mechanics. The bi-directional automatic conversion between general CAD models and physical settings and calculation models can be well performed. Results and process of simulation can be visualized with dynamical 3D dataset and geometry model. Continuous-energy cross section, burnup, activation, irradiation damage and material data etc. are used to support the multi-process simulation. Advanced cloud computing framework makes the computation and storage extremely intensive simulation more attractive just as a network service to support design optimization and assessment. The modular design and generic interface promotes its flexible manipulation and coupling of external solvers. • The new developed and incorporated advanced methods in SuperMC was introduced including hybrid MC-deterministic transport method, particle physical interaction treatment method, multi-physics coupling calculation method, geometry automatic modeling and processing method, intelligent data analysis and visualization method, elastic cloud computing technology and parallel calculation method. • The functions of SuperMC2.1 integrating automatic modeling, neutron and photon transport calculation, results and process visualization was introduced. It has been validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. - Abstract: Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as a routine

  8. The MC21 Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    Sutton TM; Donovan TJ; Trumbull TH; Dobreff PS; Caro E; Griesheimer DP; Tyburski LJ; Carpenter DC; Joo H

    2007-01-01

    MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities

  9. ERSN-OpenMC, a Java-based GUI for OpenMC Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Jaafar EL Bakkali

    2016-07-01

    Full Text Available OpenMC is a new Monte Carlo transport particle simulation code focused on solving two types of neutronic problems mainly the k-eigenvalue criticality fission source problems and external fixed fission source problems. OpenMC does not have any Graphical User Interface and the creation of one is provided by our java-based application named ERSN-OpenMC. The main feature of this application is to provide to the users an easy-to-use and flexible graphical interface to build better and faster simulations, with less effort and great reliability. Additionally, this graphical tool was developed with several features, as the ability to automate the building process of OpenMC code and related libraries as well as the users are given the freedom to customize their installation of this Monte Carlo code. A full description of the ERSN-OpenMC application is presented in this paper.

  10. Dynamic bounds coupled with Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rajabalinejad, M., E-mail: M.Rajabalinejad@tudelft.n [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands); Meester, L.E. [Delft Institute of Applied Mathematics, Delft University of Technology, Delft (Netherlands); Gelder, P.H.A.J.M. van; Vrijling, J.K. [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands)

    2011-02-15

    For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper describes a method to reduce the simulation cost even further, while retaining the accuracy of Monte Carlo, by taking into account widely present monotonicity. For models exhibiting monotonic (decreasing or increasing) behavior, dynamic bounds (DB) are defined, which in a coupled Monte Carlo simulation are updated dynamically, resulting in a failure probability estimate, as well as a strict (non-probabilistic) upper and lower bounds. Accurate results are obtained at a much lower cost than an equivalent ordinary Monte Carlo simulation. In a two-dimensional and a four-dimensional numerical example, the cost reduction factors are 130 and 9, respectively, where the relative error is smaller than 5%. At higher accuracy levels, this factor increases, though this effect is expected to be smaller with increasing dimension. To show the application of DB method to real world problems, it is applied to a complex finite element model of a flood wall in New Orleans.

  11. Dynamic bounds coupled with Monte Carlo simulations

    NARCIS (Netherlands)

    Rajabali Nejad, Mohammadreza; Meester, L.E.; van Gelder, P.H.A.J.M.; Vrijling, J.K.

    2011-01-01

    For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper

  12. Monte Carlo codes and Monte Carlo simulator program

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.

    1990-03-01

    Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)

  13. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC

    International Nuclear Information System (INIS)

    Wu, Y.; Song, J.; Zheng, H.; Sun, G.; Hao, L.; Long, P.; Hu, L.

    2013-01-01

    SuperMC is a (Computer-Aided-Design) CAD-based Monte Carlo (MC) program for integrated simulation of nuclear systems developed by FDS Team (China), making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC are presented in this paper. The taking into account of multi-physics processes and the use of advanced computer technologies such as automatic geometry modeling, intelligent data analysis and visualization, high performance parallel computing and cloud computing, contribute to the efficiency of the code. SuperMC2.1, the latest version of the code for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model

  14. MC 93 - Proceedings of the International Conference on Monte Carlo Simulation in High Energy and Nuclear Physics

    Science.gov (United States)

    Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi

    1994-01-01

    Calorimeter Geometry * Simulations with EGS4/PRESTA for Thin Si Sampling Calorimeter * SIBERIA -- Monte Carlo Code for Simulation of Hadron-Nuclei Interactions * CALOR89 Predictions for the Hanging File Test Configurations * Estimation of the Multiple Coulomb Scattering Error for Various Numbers of Radiation Lengths * Monte Carlo Generator for Nuclear Fragmentation Induced by Pion Capture * Calculation and Randomization of Hadron-Nucleus Reaction Cross Section * Developments in GEANT Physics * Status of the MC++ Event Generator Toolkit * Theoretical Overview of QCD Event Generators * Random Numbers? * Simulation of the GEM LKr Barrel Calorimeter Using CALOR89 * Recent Improvement of the EGS4 Code, Implementation of Linearly Polarized Photon Scattering * Interior-Flux Simulation in Enclosures with Electron-Emitting Walls * Some Recent Developments in Global Determinations of Parton Distributions * Summary of the Workshop on Simulating Accelerator Radiation Environments * Simulating the SDC Radiation Background and Activation * Applications of Cluster Monte Carlo Method to Lattice Spin Models * PDFLIB: A Library of All Available Parton Density Functions of the Nucleon, the Pion and the Photon and the Corresponding αs Calculations * DTUJET92: Sampling Hadron Production at Supercolliders * A New Model for Hadronic Interactions at Intermediate Energies for the FLUKA Code * Matrix Generator of Pseudo-Random Numbers * The OPAL Monte Carlo Production System * Monte Carlo Simulation of the Microstrip Gas Counter * Inner Detector Simulations in ATLAS * Simulation and Reconstruction in H1 Liquid Argon Calorimetry * Polarization Decomposition of Fluxes and Kinematics in ep Reactions * Towards Object-Oriented GEANT -- ProdiG Project * Parallel Processing of AMY Detector Simulation on Fujitsu AP1000 * Enigma: An Event Generator for Electron-Photon- or Pion-Induced Events in the ~1 GeV Region * SSCSIM: Development and Use by the Fermilab SDC Group * The GEANT-CALOR Interface

  15. Simulating Controlled Radical Polymerizations with mcPolymer—A Monte Carlo Approach

    Directory of Open Access Journals (Sweden)

    Georg Drache

    2012-07-01

    Full Text Available Utilizing model calculations may lead to a better understanding of the complex kinetics of the controlled radical polymerization. We developed a universal simulation tool (mcPolymer, which is based on the widely used Monte Carlo simulation technique. This article focuses on the software architecture of the program, including its data management and optimization approaches. We were able to simulate polymer chains as individual objects, allowing us to gain more detailed microstructural information of the polymeric products. For all given examples of controlled radical polymerization (nitroxide mediated radical polymerization (NMRP homo- and copolymerization, atom transfer radical polymerization (ATRP, reversible addition fragmentation chain transfer polymerization (RAFT, we present detailed performance analyses demonstrating the influence of the system size, concentrations of reactants, and the peculiarities of data. Different possibilities were exemplarily illustrated for finding an adequate balance between precision, memory consumption, and computation time of the simulation. Due to its flexible software architecture, the application of mcPolymer is not limited to the controlled radical polymerization, but can be adjusted in a straightforward manner to further polymerization models.

  16. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  17. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Ellis; Derek Gaston; Benoit Forget; Kord Smith

    2011-07-01

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes. An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.

  18. Modern analysis of ion channeling data by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, Lech [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, Andrzej [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Ratajczak, Renata [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Stonert, Anna [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, Frederico [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France)

    2005-10-15

    Basic scheme of ion channeling spectra Monte Carlo simulation is reformulated in terms of statistical sampling. The McChasy simulation code is described and two examples of the code applications are presented. These are: calculation of projectile flux in uranium dioxide crystal and defect analysis for ion implanted InGaAsP/InP superlattice. Virtues and pitfalls of defect analysis using Monte Carlo simulations are discussed.

  19. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...

  20. Monte Carlo simulation for the transport beamline

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  1. Monte Carlo simulation for the transport beamline

    International Nuclear Information System (INIS)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.

    2013-01-01

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery

  2. LCG MCDB - a Knowledgebase of Monte Carlo Simulated Events

    CERN Document Server

    Belov, S; Galkin, E; Gusev, A; Pokorski, Witold; Sherstnev, A V

    2008-01-01

    In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project.

  3. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ying, C. K. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu (Malaysia); Kamil, W. A. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and Radiology Department, Hospital USM, Kota Bharu (Malaysia); Shuaib, I. L. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang (Malaysia); Matsufuji, Naruhiro [Research Centre of Charged Particle Therapy, National Institute of Radiological Sciences, NIRS, Chiba (Japan)

    2014-02-12

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.

  4. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro

    2014-01-01

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations

  5. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C.K.; Kamil, W.A.; Shuaib, I.L.; Ying, C.K.; Kamil, W.A.

    2013-01-01

    Full-text: Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations. (author)

  6. Methods for Monte Carlo simulations of biomacromolecules.

    Science.gov (United States)

    Vitalis, Andreas; Pappu, Rohit V

    2009-01-01

    The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.

  7. Data decomposition of Monte Carlo particle transport simulations via tally servers

    International Nuclear Information System (INIS)

    Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit; Smith, Kord

    2013-01-01

    An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations

  8. OpenMC: A state-of-the-art Monte Carlo code for research and development

    International Nuclear Information System (INIS)

    Romano, Paul K.; Horelik, Nicholas E.; Herman, Bryan R.; Nelson, Adam G.; Forget, Benoit; Smith, Kord

    2015-01-01

    Highlights: • OpenMC is an open source Monte Carlo particle transport code. • Solid geometry and continuous-energy physics allow high-fidelity simulations. • Development has focused on high performance and modern I/O techniques. • OpenMC is capable of scaling up to hundreds of thousands of processors. • Other features include plotting, CMFD acceleration, and variance reduction. - Abstract: This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes

  9. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  10. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  11. A Monte Carlo simulation study of associated liquid crystals

    Science.gov (United States)

    Berardi, R.; Fehervari, M.; Zannoni, C.

    We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.

  12. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present Monte-Carlo simulations for heavy-ion collisions combining PYTHIA and the McGill-AMY formalism to describe the evolution of hard partons in a soft background, modelled using hydrodynamic simulations. MARTINI generates full event configurations in the high p T region that take into account thermal QCD and QED effects as well as effects of the evolving medium. This way it is possible to perform detailed quantitative comparisons with experimental observables.

  13. Monte Carlo and detector simulation in OOP [Object-Oriented Programming

    International Nuclear Information System (INIS)

    Atwood, W.B.; Blankenbecler, R.; Kunz, P.; Burnett, T.; Storr, K.M.

    1990-10-01

    Object-Oriented Programming techniques are explored with an eye toward applications in High Energy Physics codes. Two prototype examples are given: McOOP (a particle Monte Carlo generator) and GISMO (a detector simulation/analysis package)

  14. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  15. ATLAS Monte Carlo tunes for MC09

    CERN Document Server

    The ATLAS collaboration

    2010-01-01

    This note describes the ATLAS tunes of underlying event and minimum bias description for the main Monte Carlo generators used in the MC09 production. For the main shower generators, pythia and herwig (with jimmy), the MRST LO* parton distribution functions (PDFs) were used for the first time in ATLAS. Special studies on the performance of these, conceptually new, PDFs for high pt physics processes at LHC energies are presented. In addition, a tune of jimmy for CTEQ6.6 is presented, for use with MC@NLO.

  16. Comparative evaluations of the Monte Carlo-based light propagation simulation packages for optical imaging

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2018-01-01

    Full Text Available Monte Carlo simulation of light propagation in turbid medium has been studied for years. A number of software packages have been developed to handle with such issue. However, it is hard to compare these simulation packages, especially for tissues with complex heterogeneous structures. Here, we first designed a group of mesh datasets generated by Iso2Mesh software, and used them to cross-validate the accuracy and to evaluate the performance of four Monte Carlo-based simulation packages, including Monte Carlo model of steady-state light transport in multi-layered tissues (MCML, tetrahedron-based inhomogeneous Monte Carlo optical simulator (TIMOS, Molecular Optical Simulation Environment (MOSE, and Mesh-based Monte Carlo (MMC. The performance of each package was evaluated based on the designed mesh datasets. The merits and demerits of each package were also discussed. Comparative results showed that the TIMOS package provided the best performance, which proved to be a reliable, efficient, and stable MC simulation package for users.

  17. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures

    Energy Technology Data Exchange (ETDEWEB)

    Souris, Kevin, E-mail: kevin.souris@uclouvain.be; Lee, John Aldo [Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve 1348 (Belgium); Sterpin, Edmond [Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and Department of Oncology, Katholieke Universiteit Leuven, O& N I Herestraat 49, 3000 Leuven (Belgium)

    2016-04-15

    Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.

  18. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures

    International Nuclear Information System (INIS)

    Souris, Kevin; Lee, John Aldo; Sterpin, Edmond

    2016-01-01

    Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10"7 primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.

  19. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures.

    Science.gov (United States)

    Souris, Kevin; Lee, John Aldo; Sterpin, Edmond

    2016-04-01

    Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.

  20. Monte Carlo simulation for IRRMA

    International Nuclear Information System (INIS)

    Gardner, R.P.; Liu Lianyan

    2000-01-01

    Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors

  1. Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials.

    Science.gov (United States)

    Kim, Jihan; Smit, Berend

    2012-07-10

    Monte Carlo (MC) simulations are commonly used to obtain adsorption properties of gas molecules inside porous materials. In this work, we discuss various optimization strategies that lead to faster MC simulations with CO2 gas molecules inside host zeolite structures used as a test system. The reciprocal space contribution of the gas-gas Ewald summation and both the direct and the reciprocal gas-host potential energy interactions are stored inside energy grids to reduce the wall time in the MC simulations. Additional speedup can be obtained by selectively calling the routine that computes the gas-gas Ewald summation, which does not impact the accuracy of the zeolite's adsorption characteristics. We utilize two-level density-biased sampling technique in the grand canonical Monte Carlo (GCMC) algorithm to restrict CO2 insertion moves into low-energy regions within the zeolite materials to accelerate convergence. Finally, we make use of the graphics processing units (GPUs) hardware to conduct multiple MC simulations in parallel via judiciously mapping the GPU threads to available workload. As a result, we can obtain a CO2 adsorption isotherm curve with 14 pressure values (up to 10 atm) for a zeolite structure within a minute of total compute wall time.

  2. Random number generators for large-scale parallel Monte Carlo simulations on FPGA

    Science.gov (United States)

    Lin, Y.; Wang, F.; Liu, B.

    2018-05-01

    Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.

  3. Bayesian Monte Carlo method

    International Nuclear Information System (INIS)

    Rajabalinejad, M.

    2010-01-01

    To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.

  4. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  5. Fast Monte Carlo-simulator with full collimator and detector response modelling for SPECT

    International Nuclear Information System (INIS)

    Sohlberg, A.O.; Kajaste, M.T.

    2012-01-01

    Monte Carlo (MC)-simulations have proved to be a valuable tool in studying single photon emission computed tomography (SPECT)-reconstruction algorithms. Despite their popularity, the use of Monte Carlo-simulations is still often limited by their large computation demand. This is especially true in situations where full collimator and detector modelling with septal penetration, scatter and X-ray fluorescence needs to be included. This paper presents a rapid and simple MC-simulator, which can effectively reduce the computation times. The simulator was built on the convolution-based forced detection principle, which can markedly lower the number of simulated photons. Full collimator and detector response look-up tables are pre-simulated and then later used in the actual MC-simulations to model the system response. The developed simulator was validated by comparing it against 123 I point source measurements made with a clinical gamma camera system and against 99m Tc software phantom simulations made with the SIMIND MC-package. The results showed good agreement between the new simulator, measurements and the SIMIND-package. The new simulator provided near noise-free projection data in approximately 1.5 min per projection with 99m Tc, which was less than one-tenth of SIMIND's time. The developed MC-simulator can markedly decrease the simulation time without sacrificing image quality. (author)

  6. Prediction of beam hardening artefacts in computed tomography using Monte Carlo simulations

    DEFF Research Database (Denmark)

    Thomsen, M.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2015-01-01

    We show how radiological images of both single and multi material samples can be simulated using the Monte Carlo simulation tool McXtrace and how these images can be used to make a three dimensional reconstruction. Good numerical agreement between the X-ray attenuation coefficient in experimental...

  7. Parallel Monte Carlo simulation of aerosol dynamics

    KAUST Repository

    Zhou, K.

    2014-01-01

    A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.

  8. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.

    1998-01-01

    A code package consisting of the Monte Carlo Library MCLIB, the executing code MC RUN, the web application MC Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown

  9. Raman Monte Carlo simulation for light propagation for tissue with embedded objects

    Science.gov (United States)

    Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit

    2018-02-01

    Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.

  10. Speeding up Monte Carlo molecular simulation by a non-conservative early rejection scheme

    KAUST Repository

    Kadoura, Ahmad Salim; Salama, Amgad; Sun, Shuyu

    2015-01-01

    Monte Carlo (MC) molecular simulation describes fluid systems with rich information, and it is capable of predicting many fluid properties of engineering interest. In general, it is more accurate and representative than equations of state

  11. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Univ. of New Mexico, Albuquerque, NM

    2016-01-01

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  12. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications Group; Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.

    2016-11-29

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  13. Backscattered radiation into a transmission ionization chamber: Measurement and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Yoriyaz, Helio; Caldas, Linda V.E.

    2010-01-01

    Backscattered radiation (BSR) from field-defining collimators can affect the response of a monitor chamber in X-radiation fields. This contribution must be considered since this kind of chamber is used to monitor the equipment response. In this work, the dependence of a transmission ionization chamber response on the aperture diameter of the collimators was studied experimentally and using a Monte Carlo (MC) technique. According to the results, the BSR increases the chamber response of over 4.0% in the case of a totally closed collimator and 50 kV energy beam, using both techniques. The results from Monte Carlo simulation confirm the validity of the simulated geometry.

  14. Odd-flavor Simulations by the Hybrid Monte Carlo

    CERN Document Server

    Takaishi, Tetsuya; Takaishi, Tetsuya; De Forcrand, Philippe

    2001-01-01

    The standard hybrid Monte Carlo algorithm is known to simulate even flavors QCD only. Simulations of odd flavors QCD, however, can be also performed in the framework of the hybrid Monte Carlo algorithm where the inverse of the fermion matrix is approximated by a polynomial. In this exploratory study we perform three flavors QCD simulations. We make a comparison of the hybrid Monte Carlo algorithm and the R-algorithm which also simulates odd flavors systems but has step-size errors. We find that results from our hybrid Monte Carlo algorithm are in agreement with those from the R-algorithm obtained at very small step-size.

  15. Atomistic Monte Carlo Simulation of Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  16. Simulation and the Monte Carlo method

    CERN Document Server

    Rubinstein, Reuven Y

    2016-01-01

    Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...

  17. Multi-Scale Coupling Between Monte Carlo Molecular Simulation and Darcy-Scale Flow in Porous Media

    KAUST Repository

    Saad, Ahmed Mohamed; Kadoura, Ahmad Salim; Sun, Shuyu

    2016-01-01

    In this work, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell centered finite difference method with non-uniform rectangular mesh were used to discretize the simulation

  18. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    KAUST Repository

    Kadoura, Ahmad Salim; Siripatana, Adil; Sun, Shuyu; Knio, Omar; Hoteit, Ibrahim

    2016-01-01

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard

  19. Hybrid method coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in microchannels and nanochannels

    NARCIS (Netherlands)

    Nedea, S.V.; Frijns, A.J.H.; Steenhoven, van A.A.; Markvoort, Albert. J.; Hilbers, P.A.J.

    2005-01-01

    We combine molecular dynamics (MD) and Monte Carlo (MC) simulations to study the properties of gas molecules confined between two hard walls of a microchannel or nanochannel. The coupling between MD and MC simulations is introduced by performing MD near the boundaries for accuracy and MC in the bulk

  20. Flat-histogram methods in quantum Monte Carlo simulations: Application to the t-J model

    International Nuclear Information System (INIS)

    Diamantis, Nikolaos G.; Manousakis, Efstratios

    2016-01-01

    We discuss that flat-histogram techniques can be appropriately applied in the sampling of quantum Monte Carlo simulation in order to improve the statistical quality of the results at long imaginary time or low excitation energy. Typical imaginary-time correlation functions calculated in quantum Monte Carlo are subject to exponentially growing errors as the range of imaginary time grows and this smears the information on the low energy excitations. We show that we can extract the low energy physics by modifying the Monte Carlo sampling technique to one in which configurations which contribute to making the histogram of certain quantities flat are promoted. We apply the diagrammatic Monte Carlo (diag-MC) method to the motion of a single hole in the t-J model and we show that the implementation of flat-histogram techniques allows us to calculate the Green's function in a wide range of imaginary-time. In addition, we show that applying the flat-histogram technique alleviates the “sign”-problem associated with the simulation of the single-hole Green's function at long imaginary time. (paper)

  1. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Martineau, A.; Rocchisani, J.M.; Moretti, J.L.

    2010-01-01

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  2. Research on Monte Carlo simulation method of industry CT system

    International Nuclear Information System (INIS)

    Li Junli; Zeng Zhi; Qui Rui; Wu Zhen; Li Chunyan

    2010-01-01

    There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)

  3. SU-E-J-145: Validation of An Analytical Model for in Vivo Range Verification Using GATE Monte Carlo Simulation in Proton Therapy

    International Nuclear Information System (INIS)

    Lee, C; Lin, H; Chao, T; Hsiao, I; Chuang, K

    2015-01-01

    Purpose: Predicted PET images on the basis of analytical filtering approach for proton range verification has been successful developed and validated using FLUKA Monte Carlo (MC) codes and phantom measurements. The purpose of the study is to validate the effectiveness of analytical filtering model for proton range verification on GATE/GEANT4 Monte Carlo simulation codes. Methods: In this study, we performed two experiments for validation of predicted β+-isotope by the analytical model with GATE/GEANT4 simulations. The first experiments to evaluate the accuracy of predicting β+-yields as a function of irradiated proton energies. In second experiment, we simulate homogeneous phantoms of different materials irradiated by a mono-energetic pencil-like proton beam. The results of filtered β+-yields distributions by the analytical model is compared with those of MC simulated β+-yields in proximal and distal fall-off ranges. Results: The results investigate the distribution between filtered β+-yields and MC simulated β+-yields distribution in different conditions. First, we found that the analytical filtering can be applied over the whole range of the therapeutic energies. Second, the range difference between filtered β+-yields and MC simulated β+-yields at the distal fall-off region are within 1.5mm for all materials used. The findings validated the usefulness of analytical filtering model on range verification of proton therapy on GATE Monte Carlo simulations. In addition, there is a larger discrepancy between filtered prediction and MC simulated β+-yields using GATE code, especially in proximal region. This discrepancy might Result from the absence of wellestablished theoretical models for predicting the nuclear interactions. Conclusion: Despite the fact that large discrepancies of the distributions between MC-simulated and predicted β+-yields were observed, the study prove the effectiveness of analytical filtering model for proton range verification using

  4. McSUB V2.0, an upgraded version of the Monte Carlo library McSUB with inclusion of weight factors

    International Nuclear Information System (INIS)

    Hoek, M.

    1991-02-01

    The Monte Carlo library McSUB, which was described in an earlier report, has been upgraded to McSUB V2.0. McSUB V2.0 can be used to simulate the neutron transport in a medium which is a mixture of hydrogen and carbon or a mixture of deuterium and carbon. The implemented neutron energy interval is 0.1 - 20 MeV and the library can be used to simulate elastic and inelastic scattering. The inelastic scattering with carbon takes into account the four lowest excited states of the carbon nucleus. McSUB V2.0 is downward compatible with McSUB expect for the layout of the parameter file which now contains more variables. The major upgrade has been the inclusion of routines using weight factors which has speeded up the old version considerably. McSUB V2.0 also makes a biasing technique possible. It is now possible to e.g. let a neutron scatter with a selected nucleus followed by a biased scattering direction. (au)

  5. Mean field simulation for Monte Carlo integration

    CERN Document Server

    Del Moral, Pierre

    2013-01-01

    In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko

  6. Rapid Monte Carlo Simulation of Gravitational Wave Galaxies

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2015-01-01

    With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.

  7. Monte Carlo Simulation of Complete X-Ray Spectra for Use in Scanning Electron Microscopy Analysis

    International Nuclear Information System (INIS)

    Roet, David; Van Espen, Piet

    2003-01-01

    Full Text: The interactions of keV electrons and photons with matter can be simulated accurately with the aid of the Monte Carlo (MC) technique. In scanning electron microscopy x-ray analysis (SEM-EDX) such simulations can be used to perform quantitative analysis using a Reverse Monte Carlo method even if the samples have irregular geometry. Alternatively the MC technique can generate spectra of standards for use in quantization with partial least squares regression. The feasibility of these alternatives to the more classical ZAF or phi-rho-Z quantification methods has been proven already. In order to be applicable for these purposes the MC-code needs to generate accurately only the characteristic K and L x-ray lines, but also the Bremsstrahlung continuum, i.e. the complete x-ray spectrum need to be simulated. Currently two types of MC simulation codes are available. Programs like Electron Flight Simulator and CASINO simulate characteristic x-rays due to electron interaction in a fast and efficient way but lack provision for the simulation of the continuum. On the other hand, programs like EGS4, MCNP4 and PENELOPE, originally developed for high energy (MeV- GeV) applications, are more complete but difficult to use and still slow, even on todays fastest computers. We therefore started the development of a dedicated MC simulation code for use in quantitative SEM-EDX work. The selection of the most appropriate cross section for the different interactions will be discussed and the results obtained will be compared with those obtained with existing MC programs. Examples of the application of MC simulations for quantitative analysis of samples with various composition will be given

  8. Usefulness of the Monte Carlo method in reliability calculations

    International Nuclear Information System (INIS)

    Lanore, J.M.; Kalli, H.

    1977-01-01

    Three examples of reliability Monte Carlo programs developed in the LEP (Laboratory for Radiation Shielding Studies in the Nuclear Research Center at Saclay) are presented. First, an uncertainty analysis is given for a simplified spray system; a Monte Carlo program PATREC-MC has been written to solve the problem with the system components given in the fault tree representation. The second program MONARC 2 has been written to solve the problem of complex systems reliability by the Monte Carlo simulation, here again the system (a residual heat removal system) is in the fault tree representation. Third, the Monte Carlo program MONARC was used instead of the Markov diagram to solve the simulation problem of an electric power supply including two nets and two stand-by diesels

  9. Movable geometry and eigenvalue search capability in the MC21 Monte Carlo code

    International Nuclear Information System (INIS)

    Gill, D. F.; Nease, B. R.; Griesheimer, D. P.

    2013-01-01

    A description of a robust and flexible movable geometry implementation in the Monte Carlo code MC21 is described along with a search algorithm that can be used in conjunction with the movable geometry capability to perform eigenvalue searches based on the position of some geometric component. The natural use of the combined movement and search capability is searching to critical through variation of control rod (or control drum) position. The movable geometry discussion provides the mathematical framework for moving surfaces in the MC21 combinatorial solid geometry description. A discussion of the interface between the movable geometry system and the user is also described, particularly the ability to create a hierarchy of movable groups. Combined with the hierarchical geometry description in MC21 the movable group framework provides a very powerful system for inline geometry modification. The eigenvalue search algorithm implemented in MC21 is also described. The foundations of this algorithm are a regula falsi search though several considerations are made in an effort to increase the efficiency of the algorithm for use with Monte Carlo. Specifically, criteria are developed to determine after each batch whether the Monte Carlo calculation should be continued, the search iteration can be rejected, or the search iteration has converged. These criteria seek to minimize the amount of time spent per iteration. Results for the regula falsi method are shown, illustrating that the method as implemented is indeed convergent and that the optimizations made ultimately reduce the total computational expense. (authors)

  10. Movable geometry and eigenvalue search capability in the MC21 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D. F.; Nease, B. R.; Griesheimer, D. P. [Bettis Atomic Power Laboratory, PO Box 79, West Mifflin, PA 15122 (United States)

    2013-07-01

    A description of a robust and flexible movable geometry implementation in the Monte Carlo code MC21 is described along with a search algorithm that can be used in conjunction with the movable geometry capability to perform eigenvalue searches based on the position of some geometric component. The natural use of the combined movement and search capability is searching to critical through variation of control rod (or control drum) position. The movable geometry discussion provides the mathematical framework for moving surfaces in the MC21 combinatorial solid geometry description. A discussion of the interface between the movable geometry system and the user is also described, particularly the ability to create a hierarchy of movable groups. Combined with the hierarchical geometry description in MC21 the movable group framework provides a very powerful system for inline geometry modification. The eigenvalue search algorithm implemented in MC21 is also described. The foundations of this algorithm are a regula falsi search though several considerations are made in an effort to increase the efficiency of the algorithm for use with Monte Carlo. Specifically, criteria are developed to determine after each batch whether the Monte Carlo calculation should be continued, the search iteration can be rejected, or the search iteration has converged. These criteria seek to minimize the amount of time spent per iteration. Results for the regula falsi method are shown, illustrating that the method as implemented is indeed convergent and that the optimizations made ultimately reduce the total computational expense. (authors)

  11. Monte Carlo simulation of experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1977-07-01

    An outline of the technique of computer simulation of particle physics experiments by the Monte Carlo method is presented. Useful special purpose subprograms are listed and described. At each stage the discussion is made concrete by direct reference to the programs SIMUL8 and its variant MONTE-PION, written to assist in the analysis of the radiative decay experiments μ + → e + ν sub(e) antiνγ and π + → e + ν sub(e)γ, respectively. These experiments were based on the use of two large sodium iodide crystals, TINA and MINA, as e and γ detectors. Instructions for the use of SIMUL8 and MONTE-PION are given. (author)

  12. Frequency domain Monte Carlo simulation method for cross power spectral density driven by periodically pulsed spallation neutron source using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro

    2014-01-01

    Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed

  13. Monte Carlo simulation of particle-induced bit upsets

    Science.gov (United States)

    Wrobel, Frédéric; Touboul, Antoine; Vaillé, Jean-Roch; Boch, Jérôme; Saigné, Frédéric

    2017-09-01

    We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER) for a given device in a given environment.

  14. Monte Carlo simulation of particle-induced bit upsets

    Directory of Open Access Journals (Sweden)

    Wrobel Frédéric

    2017-01-01

    Full Text Available We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER for a given device in a given environment.

  15. Acceleration of Monte Carlo simulation of photon migration in complex heterogeneous media using Intel many-integrated core architecture.

    Science.gov (United States)

    Gorshkov, Anton V; Kirillin, Mikhail Yu

    2015-08-01

    Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.

  16. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom

    International Nuclear Information System (INIS)

    Garcia-Garduno, Olivia A.; Larraga-Gutierrez, Jose M.; Rodriguez-Villafuerte, Mercedes; Martinez-Davalos, Arnulfo; Celis, Miguel A.

    2010-01-01

    This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis (registered) , BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.

  17. Monte Carlo simulation applied to alpha spectrometry

    International Nuclear Information System (INIS)

    Baccouche, S.; Gharbi, F.; Trabelsi, A.

    2007-01-01

    Alpha particle spectrometry is a widely-used analytical method, in particular when we deal with pure alpha emitting radionuclides. Monte Carlo simulation is an adequate tool to investigate the influence of various phenomena on this analytical method. We performed an investigation of those phenomena using the simulation code GEANT of CERN. The results concerning the geometrical detection efficiency in different measurement geometries agree with analytical calculations. This work confirms that Monte Carlo simulation of solid angle of detection is a very useful tool to determine with very good accuracy the detection efficiency.

  18. Monte Carlo Particle Lists: MCPL

    DEFF Research Database (Denmark)

    Kittelmann, Thomas; Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik

    2017-01-01

    A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular...... simulation packages. Program summary: Program Title: MCPL. Program Files doi: http://dx.doi.org/10.17632/cby92vsv5g.1 Licensing provisions: CC0 for core MCPL, see LICENSE file for details. Programming language: C and C++ External routines/libraries: Geant4, MCNP, McStas, McXtrace Nature of problem: Saving...

  19. Randomized quasi-Monte Carlo simulation of fast-ion thermalization

    Science.gov (United States)

    Höök, L. J.; Johnson, T.; Hellsten, T.

    2012-01-01

    This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to {O}(N^{-1}) , where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 214.

  20. Monte Carlo simulation of a statistical mechanical model of multiple protein sequence alignment.

    Science.gov (United States)

    Kinjo, Akira R

    2017-01-01

    A grand canonical Monte Carlo (MC) algorithm is presented for studying the lattice gas model (LGM) of multiple protein sequence alignment, which coherently combines long-range interactions and variable-length insertions. MC simulations are used for both parameter optimization of the model and production runs to explore the sequence subspace around a given protein family. In this Note, I describe the details of the MC algorithm as well as some preliminary results of MC simulations with various temperatures and chemical potentials, and compare them with the mean-field approximation. The existence of a two-state transition in the sequence space is suggested for the SH3 domain family, and inappropriateness of the mean-field approximation for the LGM is demonstrated.

  1. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy

    Directory of Open Access Journals (Sweden)

    Paro AD

    2016-09-01

    Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray 

  2. MC21 Monte Carlo analysis of the Hoogenboom-Martin full-core PWR benchmark problem - 301

    International Nuclear Information System (INIS)

    Kelly, D.J.; Sutton, Th.M.; Trumbull, T.H.; Dobreff, P.S.

    2010-01-01

    At the 2009 American Nuclear Society Mathematics and Computation conference, Hoogenboom and Martin proposed a full-core PWR model to monitor the improvement of Monte Carlo codes to compute detailed power density distributions. This paper describes the application of the MC21 Monte Carlo code to the analysis of this benchmark model. With the MC21 code, we obtained detailed power distributions over the entire core. The model consisted of 214 assemblies, each made up of a 17x17 array of pins. Each pin was subdivided into 100 axial nodes, thus resulting in over seven million tally regions. Various cases were run to assess the statistical convergence of the model. This included runs of 10 billion and 40 billion neutron histories, as well as ten independent runs of 4 billion neutron histories each. The 40 billion neutron-history calculation resulted in 43% of all regions having a 95% confidence level of 2% or less implying a relative standard deviation of 1%. Furthermore, 99.7% of regions having a relative power density of 1.0 or greater have a similar confidence level. We present timing results that assess the MC21 performance relative to the number of tallies requested. Source convergence was monitored by analyzing plots of the Shannon entropy and eigenvalue versus active cycle. We also obtained an estimate of the dominance ratio. Additionally, we performed an analysis of the error in an attempt to ascertain the validity of the confidence intervals predicted by MC21. Finally, we look forward to the prospect of full core 3-D Monte Carlo depletion by scoping out the required problem size. This study provides an initial data point for the Hoogenboom-Martin benchmark model using a state-of-the-art Monte Carlo code. (authors)

  3. RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Ceberg, Sofie; Gagne, Isabel; Gustafsson, Helen

    2010-01-01

    The aim of this study was to verify the advanced inhomogeneous dose distribution produced by a volumetric arc therapy technique (RapidArc™) using 3D gel measurements and Monte Carlo (MC) simulations. The TPS (treatment planning system)-calculated dose distribution was compared with gel measurements...

  4. Monte Carlo simulations of multiple scattering effects in ERD measurements

    International Nuclear Information System (INIS)

    Doyle, Barney Lee; Arstila, Kai.; Nordlumd, K.; Knapp, James Arthur

    2003-01-01

    Multiple scattering effects in ERD measurements are studied by comparing two Monte Carlo simulation codes, representing different approaches to obtain acceptable statistics, to experimental spectra measured from a HfO 2 sample with a time-of-flight-ERD setup. The results show that both codes can reproduce the absolute detection yields and the energy distributions in an adequate way. The effect of the choice of the interatomic potential in multiple scattering effects is also studied. Finally the capabilities of the MC simulations in the design of new measurement setups are demonstrated by simulating the recoil energy spectra from a WC x N y sample with a low energy heavy ion beam.

  5. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    International Nuclear Information System (INIS)

    Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong

    2017-01-01

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  6. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakasuji, Toshiki, E-mail: t-nakasuji@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Morishita, Kazunori [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Ruan, Xiaoyong [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2017-02-15

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  7. Burnup calculations using Monte Carlo method

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2009-01-01

    In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code

  8. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morales, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-10

    We propose a method of implementing projected wave functions for second-quantized auxiliary-field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. As such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.

  9. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids

    International Nuclear Information System (INIS)

    Chang, C.; Morales, M. A.

    2016-01-01

    We propose a method of implementing projected wave functions for second-quantized auxiliary-field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. As such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.

  10. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  11. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms.

    Science.gov (United States)

    Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian

    2018-01-01

    We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.

    2006-01-01

    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  13. Parallel Algorithms for Monte Carlo Particle Transport Simulation on Exascale Computing Architectures

    Science.gov (United States)

    Romano, Paul Kollath

    Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with

  14. Randomized quasi-Monte Carlo simulation of fast-ion thermalization

    International Nuclear Information System (INIS)

    Höök, L J; Johnson, T; Hellsten, T

    2012-01-01

    This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to O(N -1 ), where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 2 14 . (paper)

  15. Time step length versus efficiency of Monte Carlo burnup calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Valtavirta, Ville

    2014-01-01

    Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy

  16. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) to the steel process chain: Case study

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, Bogusław

    2014-05-01

    The purpose of the paper is to present the results of application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) data of Mittal Steel Poland (MSP) complex in Kraków, Poland. In order to assess the uncertainty, the software CrystalBall® (CB), which is associated with Microsoft® Excel spreadsheet model, is used. The framework of the study was originally carried out for 2005. The total production of steel, coke, pig iron, sinter, slabs from continuous steel casting (CSC), sheets from hot rolling mill (HRM) and blast furnace gas, collected in 2005 from MSP was analyzed and used for MC simulation of the LCI model. In order to describe random nature of all main products used in this study, normal distribution has been applied. The results of the simulation (10,000 trials) performed with the use of CB consist of frequency charts and statistical reports. The results of this study can be used as the first step in performing a full LCA analysis in the steel industry. Further, it is concluded that the stochastic approach is a powerful method for quantifying parameter uncertainty in LCA/LCI studies and it can be applied to any steel industry. The results obtained from this study can help practitioners and decision-makers in the steel production management. - Highlights: • The benefits of Monte Carlo simulation are examined. • The normal probability distribution is studied. • LCI data on Mittal Steel Poland (MSP) complex in Kraków, Poland dates back to 2005. • This is the first assessment of the LCI uncertainties in the Polish steel industry.

  17. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators

    KAUST Repository

    Leung, Roger; Cheung, Howard; Gang, Hong; Ye, Wenjing

    2010-01-01

    Squeeze-film damping on microresonators is a significant damping source even when the surrounding gas is highly rarefied. This article presents a general modeling approach based on Monte Carlo (MC) simulations for the prediction of squeeze

  18. Monte Carlo simulation in statistical physics an introduction

    CERN Document Server

    Binder, Kurt

    1992-01-01

    The Monte Carlo method is a computer simulation method which uses random numbers to simulate statistical fluctuations The method is used to model complex systems with many degrees of freedom Probability distributions for these systems are generated numerically and the method then yields numerically exact information on the models Such simulations may be used tosee how well a model system approximates a real one or to see how valid the assumptions are in an analyical theory A short and systematic theoretical introduction to the method forms the first part of this book The second part is a practical guide with plenty of examples and exercises for the student Problems treated by simple sampling (random and self-avoiding walks, percolation clusters, etc) are included, along with such topics as finite-size effects and guidelines for the analysis of Monte Carlo simulations The two parts together provide an excellent introduction to the theory and practice of Monte Carlo simulations

  19. Justification of a Monte Carlo Algorithm for the Diffusion-Growth Simulation of Helium Clusters in Materials

    International Nuclear Information System (INIS)

    Yu-Lu, Zhou; Ai-Hong, Deng; Qing, Hou; Jun, Wang

    2009-01-01

    A theoretical analysis of a Monte Carlo (MC) method for the simulation of the diffusion-growth of helium clusters in materials is presented. This analysis is based on an assumption that the diffusion-growth process consists of first stage, during which the clusters diffuse freely, and second stage in which the coalescence occurs with certain probability. Since the accuracy of MC simulation results is sensitive to the coalescence probability, the MC calculations in the second stage is studied in detail. Firstly, the coalescence probability is analytically formulated for the one-dimensional diffusion-growth case. Thereafter, the one-dimensional results are employed to justify the MC simulation. The choice of time step and the random number generator used in the MC simulation are discussed

  20. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, P.A.

    1995-09-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC{_}RUN) which use the library are shown as an example.

  1. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC RUN) which use the library are shown as an example

  2. A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments

    Science.gov (United States)

    S. Healey; P. Patterson; S. Urbanski

    2014-01-01

    Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...

  3. Monte Carlo simulated dynamical magnetization of single-chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn

    2015-03-15

    Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.

  4. The Monte Carlo Simulation Method for System Reliability and Risk Analysis

    CERN Document Server

    Zio, Enrico

    2013-01-01

    Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling.   Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques.   This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...

  5. Monte Carlo simulation of continuous-space crystal growth

    International Nuclear Information System (INIS)

    Dodson, B.W.; Taylor, P.A.

    1986-01-01

    We describe a method, based on Monte Carlo techniques, of simulating the atomic growth of crystals without the discrete lattice space assumed by conventional Monte Carlo growth simulations. Since no lattice space is assumed, problems involving epitaxial growth, heteroepitaxy, phonon-driven mechanisms, surface reconstruction, and many other phenomena incompatible with the lattice-space approximation can be studied. Also, use of the Monte Carlo method circumvents to some extent the extreme limitations on simulated timescale inherent in crystal-growth techniques which might be proposed using molecular dynamics. The implementation of the new method is illustrated by studying the growth of strained-layer superlattice (SLS) interfaces in two-dimensional Lennard-Jones atomic systems. Despite the extreme simplicity of such systems, the qualitative features of SLS growth seen here are similar to those observed experimentally in real semiconductor systems

  6. Monte Carlo simulation of neutron counters for safeguards applications

    International Nuclear Information System (INIS)

    Looman, Marc; Peerani, Paolo; Tagziria, Hamid

    2009-01-01

    MCNP-PTA is a new Monte Carlo code for the simulation of neutron counters for nuclear safeguards applications developed at the Joint Research Centre (JRC) in Ispra (Italy). After some preliminary considerations outlining the general aspects involved in the computational modelling of neutron counters, this paper describes the specific details and approximations which make up the basis of the model implemented in the code. One of the major improvements allowed by the use of Monte Carlo simulation is a considerable reduction in both the experimental work and in the reference materials required for the calibration of the instruments. This new approach to the calibration of counters using Monte Carlo simulation techniques is also discussed.

  7. Monte Carlo simulation for dual head gamma camera

    International Nuclear Information System (INIS)

    Osman, Yousif Bashir Soliman

    2015-12-01

    Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The

  8. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  9. Direct Monte Carlo simulation of nanoscale mixed gas bearings

    Directory of Open Access Journals (Sweden)

    Kyaw Sett Myo

    2015-06-01

    Full Text Available The conception of sealed hard drives with helium gas mixture has been recently suggested over the current hard drives for achieving higher reliability and less position error. Therefore, it is important to understand the effects of different helium gas mixtures on the slider bearing characteristics in the head–disk interface. In this article, the helium/air and helium/argon gas mixtures are applied as the working fluids and their effects on the bearing characteristics are studied using the direct simulation Monte Carlo method. Based on direct simulation Monte Carlo simulations, the physical properties of these gas mixtures such as mean free path and dynamic viscosity are achieved and compared with those obtained from theoretical models. It is observed that both results are comparable. Using these gas mixture properties, the bearing pressure distributions are calculated under different fractions of helium with conventional molecular gas lubrication models. The outcomes reveal that the molecular gas lubrication results could have relatively good agreement with those of direct simulation Monte Carlo simulations, especially for pure air, helium, or argon gas cases. For gas mixtures, the bearing pressures predicted by molecular gas lubrication model are slightly larger than those from direct simulation Monte Carlo simulation.

  10. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  11. Assessing the convergence of LHS Monte Carlo simulations of wastewater treatment models.

    Science.gov (United States)

    Benedetti, Lorenzo; Claeys, Filip; Nopens, Ingmar; Vanrolleghem, Peter A

    2011-01-01

    Monte Carlo (MC) simulation appears to be the only currently adopted tool to estimate global sensitivities and uncertainties in wastewater treatment modelling. Such models are highly complex, dynamic and non-linear, requiring long computation times, especially in the scope of MC simulation, due to the large number of simulations usually required. However, no stopping rule to decide on the number of simulations required to achieve a given confidence in the MC simulation results has been adopted so far in the field. In this work, a pragmatic method is proposed to minimize the computation time by using a combination of several criteria. It makes no use of prior knowledge about the model, is very simple, intuitive and can be automated: all convenient features in engineering applications. A case study is used to show an application of the method, and the results indicate that the required number of simulations strongly depends on the model output(s) selected, and on the type and desired accuracy of the analysis conducted. Hence, no prior indication is available regarding the necessary number of MC simulations, but the proposed method is capable of dealing with these variations and stopping the calculations after convergence is reached.

  12. Toward high-efficiency and detailed Monte Carlo simulation study of the granular flow spallation target

    Science.gov (United States)

    Cai, Han-Jie; Zhang, Zhi-Lei; Fu, Fen; Li, Jian-Yang; Zhang, Xun-Chao; Zhang, Ya-Ling; Yan, Xue-Song; Lin, Ping; Xv, Jian-Ya; Yang, Lei

    2018-02-01

    The dense granular flow spallation target is a new target concept chosen for the Accelerator-Driven Subcritical (ADS) project in China. For the R&D of this kind of target concept, a dedicated Monte Carlo (MC) program named GMT was developed to perform the simulation study of the beam-target interaction. Owing to the complexities of the target geometry, the computational cost of the MC simulation of particle tracks is highly expensive. Thus, improvement of computational efficiency will be essential for the detailed MC simulation studies of the dense granular target. Here we present the special design of the GMT program and its high efficiency performance. In addition, the speedup potential of the GPU-accelerated spallation models is discussed.

  13. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

    Science.gov (United States)

    Ziegenhein, Peter; Pirner, Sven; Kamerling, Cornelis Ph; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37× compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25× and 1.95× faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  14. Monte Carlo Simulation in Statistical Physics An Introduction

    CERN Document Server

    Binder, Kurt

    2010-01-01

    Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. The fifth edition covers Classical as well as Quantum Monte Carlo methods. Furthermore a new chapter on the sampling of free-energy landscapes has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was awarded the Berni J. Alder CECAM Award for Computational Physics 2001 as well ...

  15. Closed-shell variational quantum Monte Carlo simulation for the ...

    African Journals Online (AJOL)

    Closed-shell variational quantum Monte Carlo simulation for the electric dipole moment calculation of hydrazine molecule using casino-code. ... Nigeria Journal of Pure and Applied Physics ... The variational quantum Monte Carlo (VQMC) technique used in this work employed the restricted Hartree-Fock (RHF) scheme.

  16. Extension of the Johnson-Mehl-Avrami-Kolmogorov theory incorporating anisotropic growth studied by Monte Carlo simulations

    NARCIS (Netherlands)

    Kooi, BJ

    An analytical theory has been developed, based on Monte Carlo (MC) simulations, describing the kinetics of isothermal phase transformations proceeding by nucleation and subsequent growth for d-1 dimensional growth in d dimensional space (with d 2 or 3). This type of growth is of interest since it is

  17. Subtle Monte Carlo Updates in Dense Molecular Systems

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Boomsma, Wouter; Johansson, Kristoffer E.

    2012-01-01

    Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce...... as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results...... suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions....

  18. Molecular dynamics simulation for PBR pebble tracking simulation via a random walk approach using Monte Carlo simulation.

    Science.gov (United States)

    Lee, Kyoung O; Holmes, Thomas W; Calderon, Adan F; Gardner, Robin P

    2012-05-01

    Using a Monte Carlo (MC) simulation, random walks were used for pebble tracking in a two-dimensional geometry in the presence of a biased gravity field. We investigated the effect of viscosity damping in the presence of random Gaussian fluctuations. The particle tracks were generated by Molecular Dynamics (MD) simulation for a Pebble Bed Reactor. The MD simulations were conducted in the interaction of noncohesive Hertz-Mindlin theory where the random walk MC simulation has a correlation with the MD simulation. This treatment can easily be extended to include the generation of transient gamma-ray spectra from a single pebble that contains a radioactive tracer. Then the inverse analysis thereof could be made to determine the uncertainty of the realistic measurement of transient positions of that pebble by any given radiation detection system designed for that purpose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Simulation of Rossi-α method with analog Monte-Carlo method

    International Nuclear Information System (INIS)

    Lu Yuzhao; Xie Qilin; Song Lingli; Liu Hangang

    2012-01-01

    The analog Monte-Carlo code for simulating Rossi-α method based on Geant4 was developed. The prompt neutron decay constant α of six metal uranium configurations in Oak Ridge National Laboratory were calculated. α was also calculated by Burst-Neutron method and the result was consistent with the result of Rossi-α method. There is the difference between results of analog Monte-Carlo simulation and experiment, and the reasons for the difference is the gaps between uranium layers. The influence of gaps decrease as the sub-criticality deepens. The relative difference between results of analog Monte-Carlo simulation and experiment changes from 19% to 0.19%. (authors)

  20. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.

    Science.gov (United States)

    Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Yan, Lei; Chen, Zhihui; Yang, Chuanghua; Luo, Xiao

    2013-03-01

    In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.

  1. Research on GPU acceleration for Monte Carlo criticality calculation

    International Nuclear Information System (INIS)

    Xu, Q.; Yu, G.; Wang, K.

    2013-01-01

    The Monte Carlo (MC) neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The 'neutron transport step' is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the 'neutron transport step' strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs. (authors)

  2. MCViNE – An object oriented Monte Carlo neutron ray tracing simulation package

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiao Y.Y., E-mail: linjiao@ornl.gov [Caltech Center for Advanced Computing Research, California Institute of Technology (United States); Department of Applied Physics and Materials Science, California Institute of Technology (United States); Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory (United States); Smith, Hillary L. [Department of Applied Physics and Materials Science, California Institute of Technology (United States); Granroth, Garrett E., E-mail: granrothge@ornl.gov [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory (United States); Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A. [Quantum Condensed Matter Division, Oak Ridge National Laboratory (United States); Aivazis, Michael [Caltech Center for Advanced Computing Research, California Institute of Technology (United States); Fultz, Brent, E-mail: btf@caltech.edu [Department of Applied Physics and Materials Science, California Institute of Technology (United States)

    2016-02-21

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  3. Lattice gauge theories and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Rebbi, C.

    1981-11-01

    After some preliminary considerations, the discussion of quantum gauge theories on a Euclidean lattice takes up the definition of Euclidean quantum theory and treatment of the continuum limit; analogy is made with statistical mechanics. Perturbative methods can produce useful results for strong or weak coupling. In the attempts to investigate the properties of the systems for intermediate coupling, numerical methods known as Monte Carlo simulations have proved valuable. The bulk of this paper illustrates the basic ideas underlying the Monte Carlo numerical techniques and the major results achieved with them according to the following program: Monte Carlo simulations (general theory, practical considerations), phase structure of Abelian and non-Abelian models, the observables (coefficient of the linear term in the potential between two static sources at large separation, mass of the lowest excited state with the quantum numbers of the vacuum (the so-called glueball), the potential between two static sources at very small distance, the critical temperature at which sources become deconfined), gauge fields coupled to basonic matter (Higgs) fields, and systems with fermions

  4. Research on Monte Carlo improved quasi-static method for reactor space-time dynamics

    International Nuclear Information System (INIS)

    Xu Qi; Wang Kan; Li Shirui; Yu Ganglin

    2013-01-01

    With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)

  5. Optimal Spatial Subdivision method for improving geometry navigation performance in Monte Carlo particle transport simulation

    International Nuclear Information System (INIS)

    Chen, Zhenping; Song, Jing; Zheng, Huaqing; Wu, Bin; Hu, Liqin

    2015-01-01

    Highlights: • The subdivision combines both advantages of uniform and non-uniform schemes. • The grid models were proved to be more efficient than traditional CSG models. • Monte Carlo simulation performance was enhanced by Optimal Spatial Subdivision. • Efficiency gains were obtained for realistic whole reactor core models. - Abstract: Geometry navigation is one of the key aspects of dominating Monte Carlo particle transport simulation performance for large-scale whole reactor models. In such cases, spatial subdivision is an easily-established and high-potential method to improve the run-time performance. In this study, a dedicated method, named Optimal Spatial Subdivision, is proposed for generating numerically optimal spatial grid models, which are demonstrated to be more efficient for geometry navigation than traditional Constructive Solid Geometry (CSG) models. The method uses a recursive subdivision algorithm to subdivide a CSG model into non-overlapping grids, which are labeled as totally or partially occupied, or not occupied at all, by CSG objects. The most important point is that, at each stage of subdivision, a conception of quality factor based on a cost estimation function is derived to evaluate the qualities of the subdivision schemes. Only the scheme with optimal quality factor will be chosen as the final subdivision strategy for generating the grid model. Eventually, the model built with the optimal quality factor will be efficient for Monte Carlo particle transport simulation. The method has been implemented and integrated into the Super Monte Carlo program SuperMC developed by FDS Team. Testing cases were used to highlight the performance gains that could be achieved. Results showed that Monte Carlo simulation runtime could be reduced significantly when using the new method, even as cases reached whole reactor core model sizes

  6. Alloy characterization of a 7th Century BC archeological bronze vase — Overcoming patina constraints using Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Manso, M. [Laboratório de Instrumentação, Engenharia Biomédica e Fisica da Radiação (LIBPhys-UNL), Departamento de Fisica, Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, 2829-516 Monte da Caparica (Portugal); Faculdade de Belas-Artes da Universidade de Lisboa, Largo da Academia Nacional de Belas-Artes, 1249-058 Lisboa (Portugal); Schiavon, N. [Hercules Laboratory, University of Évora, Palácio do Vimioso,Largo Marquês de Marialva 8, 7000-809 Évora Portugal (Portugal); Queralt, I. [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences Jaume Almera, CSIC, Solé Sabaris s/n, 08028 Barcelona (Spain); Arruda, A.M. [Centro de Arqueologia da Universidade de Lisboa (UNIARQ), Alameda da Universidade, 1600-214 Lisboa (Portugal); Sampaio, J.M. [BioISI — Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa (Portugal); Brunetti, A., E-mail: brunetti@uniss.it [Department of Political Science and Communication, University of Sassari, Via Piandanna 2, 07100 Sassari (Italy)

    2015-05-01

    In this work we evaluate the composition of a bronze alloy using X-ray fluorescence spectrometry (XRF) and Monte Carlo (MC) simulations. For this purpose, a 7th Century BC archeological vase from the SW Iberian Peninsula, displaying a well formed corrosion patina was analyzed by means of a portable X-ray fluorescence spectrometer. Realistic MC simulations of the experimental setup were performed with the XRMC code package which is based on an intensive use of variance-reduction techniques and uses XRAYLIB a constantly updated X-ray library of atomic data. A single layer model was applied for simulating XRF of polished/pristine bronze whereas a two-or-three-layer model was developed for bronze covered respectively by a corrosion patina alone or coupled with a superficial soil derived crust. These simulations took into account corrosion (cerussite (PbCO{sub 3}), cuprite (Cu{sub 2}O), malachite (Cu{sub 2}CO{sub 3}(OH){sub 2}), litharge (PbO)) and soil derived products (goethite (FeO(OH)) and quartz (SiO{sub 2})) identified by means of X-ray diffraction and Raman micro analytical techniques. Results confirm previous research indicating that the XRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + soil derived products' crust is too thick, X-rays from the alloy substrate are not able to exit the sample. Quantitative results based on MC simulations indicate that the vase is made of a lead–bronze alloy: Mn (0.2%), Fe (1.0%), Cu (81.8%), As (0.5%), Ag (0.6%), Sn (8.0%) and Pb (8.0%). - Highlights: • We study an archeological bronze vase with patina corrosion using XRF spectrometry. • The experimental setup is modeled using Monte Carlo (MC) simulations. • Combining MC simulations with XRF it is possible to derive concentrations. • We demonstrated that this is possible without removing the patina.

  7. McSnow: A Monte-Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space

    Science.gov (United States)

    Brdar, S.; Seifert, A.

    2018-01-01

    We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.

  8. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2013-01-01

    Abstract Purpose. Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from...

  9. Treatment plan evaluation for interstitial photodynamic therapy in a mouse model by Monte Carlo simulation with FullMonte

    Directory of Open Access Journals (Sweden)

    Jeffrey eCassidy

    2015-02-01

    Full Text Available Monte Carlo (MC simulation is recognized as the gold standard for biophotonic simulation, capturing all relevant physics and material properties at the perceived cost of high computing demands. Tetrahedral-mesh-based MC simulations particularly are attractive due to the ability to refine the mesh at will to conform to complicated geometries or user-defined resolution requirements. Since no approximations of material or light-source properties are required, MC methods are applicable to the broadest set of biophotonic simulation problems. MC methods also have other implementation features including inherent parallelism, and permit a continuously-variable quality-runtime tradeoff. We demonstrate here a complete MC-based prospective fluence dose evaluation system for interstitial PDT to generate dose-volume histograms on a tetrahedral mesh geometry description. To our knowledge, this is the first such system for general interstitial photodynamic therapy employing MC methods and is therefore applicable to a very broad cross-section of anatomy and material properties. We demonstrate that evaluation of dose-volume histograms is an effective variance-reduction scheme in its own right which greatly reduces the number of packets required and hence runtime required to achieve acceptable result confidence. We conclude that MC methods are feasible for general PDT treatment evaluation and planning, and considerably less costly than widely believed.

  10. Radiotherapy Monte Carlo simulation using cloud computing technology.

    Science.gov (United States)

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  11. Radiotherapy Monte Carlo simulation using cloud computing technology

    International Nuclear Information System (INIS)

    Poole, C.M.; Cornelius, I.; Trapp, J.V.; Langton, C.M.

    2012-01-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  12. Monte Carlo simulation of grain growth

    Directory of Open Access Journals (Sweden)

    Paulo Blikstein

    1999-07-01

    Full Text Available Understanding and predicting grain growth in Metallurgy is meaningful. Monte Carlo methods have been used in computer simulations in many different fields of knowledge. Grain growth simulation using this method is especially attractive as the statistical behavior of the atoms is properly reproduced; microstructural evolution depends only on the real topology of the grains and not on any kind of geometric simplification. Computer simulation has the advantage of allowing the user to visualize graphically the procedures, even dynamically and in three dimensions. Single-phase alloy grain growth simulation was carried out by calculating the free energy of each atom in the lattice (with its present crystallographic orientation and comparing this value to another one calculated with a different random orientation. When the resulting free energy is lower or equal to the initial value, the new orientation replaces the former. The measure of time is the Monte Carlo Step (MCS, which involves a series of trials throughout the lattice. A very close relationship between experimental and theoretical values for the grain growth exponent (n was observed.

  13. Study of magnetic properties for co double-nanorings: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ye, Qingying; Chen, Shuiyuan; Liu, Jingyao; Huang, Chao; Huang, Shengkai; Huang, Zhigao

    2016-01-01

    In this paper, cobalt double-nanorings (Co D-N-rings) structure model was constructed. Based on Monte-Carlo simulation (MC) method combining with Fast Fourier Transformation and Micromagnetism (FFTM) method, the magnetic properties of Co D-N-rings with different geometric dimensions have been studied. The simulated results indicate that, the magnetization steps in hysteresis loops is the result of the special spin configurations (SCs), i.e., onion-type state and vortex-type state, which are very different from that in many other nanostructures, such as nanometer thin-films, nanotubes, etc. Besides, Co D-N-rings with different geometric dimensions present interesting magnetization behavior, which is determined by the change of both SCs and exchange interaction in Co D-N-rings. - Highlights: • A double-nanorings structure (named as D-N-rings) was proposed to construct cobalt nanometer thin film. • Monte Carlo method combining with FFTM method was used to simulate magnetic properties of the Co D-N-rings. • Magnetization dynamic processes of the Co D-N-rings were obtained and interpreted through the evolutionary process of spin configurations. • Geometric dimensions deeply influence the magnetization behavior of the Co D-N-rings, which is determined by the change of both SCs and exchange interaction.

  14. MC++: A parallel, portable, Monte Carlo neutron transport code in C++

    International Nuclear Information System (INIS)

    Lee, S.R.; Cummings, J.C.; Nolen, S.D.

    1997-01-01

    MC++ is an implicit multi-group Monte Carlo neutron transport code written in C++ and based on the Parallel Object-Oriented Methods and Applications (POOMA) class library. MC++ runs in parallel on and is portable to a wide variety of platforms, including MPPs, SMPs, and clusters of UNIX workstations. MC++ is being developed to provide transport capabilities to the Accelerated Strategic Computing Initiative (ASCI). It is also intended to form the basis of the first transport physics framework (TPF), which is a C++ class library containing appropriate abstractions, objects, and methods for the particle transport problem. The transport problem is briefly described, as well as the current status and algorithms in MC++ for solving the transport equation. The alpha version of the POOMA class library is also discussed, along with the implementation of the transport solution algorithms using POOMA. Finally, a simple test problem is defined and performance and physics results from this problem are discussed on a variety of platforms

  15. Stock Price Simulation Using Bootstrap and Monte Carlo

    Directory of Open Access Journals (Sweden)

    Pažický Martin

    2017-06-01

    Full Text Available In this paper, an attempt is made to assessment and comparison of bootstrap experiment and Monte Carlo experiment for stock price simulation. Since the stock price evolution in the future is extremely important for the investors, there is the attempt to find the best method how to determine the future stock price of BNP Paribas′ bank. The aim of the paper is define the value of the European and Asian option on BNP Paribas′ stock at the maturity date. There are employed four different methods for the simulation. First method is bootstrap experiment with homoscedastic error term, second method is blocked bootstrap experiment with heteroscedastic error term, third method is Monte Carlo simulation with heteroscedastic error term and the last method is Monte Carlo simulation with homoscedastic error term. In the last method there is necessary to model the volatility using econometric GARCH model. The main purpose of the paper is to compare the mentioned methods and select the most reliable. The difference between classical European option and exotic Asian option based on the experiment results is the next aim of tis paper.

  16. Domain Decomposition strategy for pin-wise full-core Monte Carlo depletion calculation with the reactor Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jingang; Wang, Kan; Qiu, Yishu [Dept. of Engineering Physics, LiuQing Building, Tsinghua University, Beijing (China); Chai, Xiao Ming; Qiang, Sheng Long [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu (China)

    2016-06-15

    Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

  17. Monte-Carlo Simulation for PDC-Based Optical CDMA System

    Directory of Open Access Journals (Sweden)

    FAHIM AZIZ UMRANI

    2010-10-01

    Full Text Available This paper presents the Monte-Carlo simulation of Optical CDMA (Code Division Multiple Access systems, and analyse its performance in terms of the BER (Bit Error Rate. The spreading sequence chosen for CDMA is Perfect Difference Codes. Furthermore, this paper derives the expressions of noise variances from first principles to calibrate the noise for both bipolar (electrical domain and unipolar (optical domain signalling required for Monte-Carlo simulation. The simulated results conform to the theory and show that the receiver gain mismatch and splitter loss at the transceiver degrades the system performance.

  18. OpenMC: a state-of-the-Art Monte Carlo code for research and development

    International Nuclear Information System (INIS)

    Romano, P.K.; Horelik, N.E.; Herman, B.R.; Forget, B.; Smith, K.; Nelson, A.G.

    2013-01-01

    This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes. (authors)

  19. Specialized Monte Carlo codes versus general-purpose Monte Carlo codes

    International Nuclear Information System (INIS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi

    2002-01-01

    The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)

  20. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    Science.gov (United States)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  1. Suppression of the initial transient in Monte Carlo criticality simulations; Suppression du regime transitoire initial des simulations Monte-Carlo de criticite

    Energy Technology Data Exchange (ETDEWEB)

    Richet, Y

    2006-12-15

    Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)

  2. Monte Carlo simulations in skin radiotherapy

    International Nuclear Information System (INIS)

    Sarvari, A.; Jeraj, R.; Kron, T.

    2000-01-01

    The primary goal of this work was to develop a procedure for calculation the appropriate filter shape for a brachytherapy applicator used for skin radiotherapy. In the applicator a radioactive source is positioned close to the skin. Without a filter, the resultant dose distribution would be highly nonuniform.High uniformity is usually required however. This can be achieved using an appropriately shaped filter, which flattens the dose profile. Because of the complexity of the transport and geometry, Monte Carlo simulations had to be used. An 192 Ir high dose rate photon source was used. All necessary transport parameters were simulated with the MCNP4B Monte Carlo code. A highly efficient iterative procedure was developed, which enabled calculation of the optimal filter shape in only few iterations. The initially non-uniform dose distributions became uniform within a percent when applying the filter calculated by this procedure. (author)

  3. Initial Assessment of Parallelization of Monte Carlo Calculation using Graphics Processing Units

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Joo, Han Gyu

    2009-01-01

    Monte Carlo (MC) simulation is an effective tool for calculating neutron transports in complex geometry. However, because Monte Carlo simulates each neutron behavior one by one, it takes a very long computing time if enough neutrons are used for high precision of calculation. Accordingly, methods that reduce the computing time are required. In a Monte Carlo code, parallel calculation is well-suited since it simulates the behavior of each neutron independently and thus parallel computation is natural. The parallelization of the Monte Carlo codes, however, was done using multi CPUs. By the global demand for high quality 3D graphics, the Graphics Processing Unit (GPU) has developed into a highly parallel, multi-core processor. This parallel processing capability of GPUs can be available to engineering computing once a suitable interface is provided. Recently, NVIDIA introduced CUDATM, a general purpose parallel computing architecture. CUDA is a software environment that allows developers to manage GPU using C/C++ or other languages. In this work, a GPU-based Monte Carlo is developed and the initial assessment of it parallel performance is investigated

  4. Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation

    KAUST Repository

    Haji-Ali, Abdul-Lateef

    2017-09-12

    We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean–Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $$\\\\mathrm {TOL}$$TOL, is when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of . Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.

  5. Monte Carlo simulation of Markov unreliability models

    International Nuclear Information System (INIS)

    Lewis, E.E.; Boehm, F.

    1984-01-01

    A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)

  6. Monte Carlo simulation with the Gate software using grid computing

    International Nuclear Information System (INIS)

    Reuillon, R.; Hill, D.R.C.; Gouinaud, C.; El Bitar, Z.; Breton, V.; Buvat, I.

    2009-03-01

    Monte Carlo simulations are widely used in emission tomography, for protocol optimization, design of processing or data analysis methods, tomographic reconstruction, or tomograph design optimization. Monte Carlo simulations needing many replicates to obtain good statistical results can be easily executed in parallel using the 'Multiple Replications In Parallel' approach. However, several precautions have to be taken in the generation of the parallel streams of pseudo-random numbers. In this paper, we present the distribution of Monte Carlo simulations performed with the GATE software using local clusters and grid computing. We obtained very convincing results with this large medical application, thanks to the EGEE Grid (Enabling Grid for E-science), achieving in one week computations that could have taken more than 3 years of processing on a single computer. This work has been achieved thanks to a generic object-oriented toolbox called DistMe which we designed to automate this kind of parallelization for Monte Carlo simulations. This toolbox, written in Java is freely available on SourceForge and helped to ensure a rigorous distribution of pseudo-random number streams. It is based on the use of a documented XML format for random numbers generators statuses. (authors)

  7. Enhancement of precision and accuracy by Monte-Carlo simulation of a well-type pressurized ionization chamber used in radionuclide metrology

    International Nuclear Information System (INIS)

    Kryeziu, D.

    2006-09-01

    The aim of this work was to test and validate the Monte-Carlo (MC) ionization chamber simulation method in calculating the activity of radioactive solutions. This is required when no or not sufficient experimental calibration figures are available as well as to improve the accuracy of activity measurements for other radionuclides. Well-type or 4π γ ISOCAL IV ionization chambers (IC) are widely used in many national standard laboratories around the world. As secondary standard measuring systems these radionuclide calibrators serve to maintain measurement consistency checks and to ensure the quality of standards disseminated to users for a wide range of radionuclide where many of them are with special interest in nuclear medicine as well as in different applications on radionuclide metrology. For the studied radionuclides the calibration figures (efficiencies) and their respective volume correction factors are determined by using the PENELOPE MC computer code system. The ISOCAL IV IC filled with nitrogen gas at approximately 1 MPa is simulated. The simulated models of the chamber are designed by means of reduced quadric equation and applying the appropriate mathematical transformations. The simulations are done for various container geometries of the standard solution which take forms of: i) sealed Jena glass 5 ml PTB standard ampoule, ii) 10 ml (P6) vial and iii) 10 R Schott Type 1+ vial. Simulation of the ISOCAL IV IC is explained. The effect of density variation of the nitrogen filling gas on the sensitivity of the chamber is investigated. The code is also used to examine the effects of using lead and copper shields as well as to evaluate the sensitivity of the chamber to electrons and positrons. Validation of the Monte-Carlo simulation method has been proved by comparing the Monte-Carlo simulation calculated and experimental calibration figures available from the National Physical Laboratory (NPL) England which are deduced from the absolute activity

  8. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, F; Freud, N; Letang, J M; Babot, D [CNDRI (Nondestructive Testing using Ionizing Radiations) Laboratory, INSA-Lyon, 69621 Villeurbanne Cedex (France); Adam, J-F; Elleaume, H; Esteve, F [INSERM U-836, Equipe 6 ' Rayonnement Synchrotron et Recherche Medicale' , Institut des Neurosciences de Grenoble (France); Ferrero, C; Bravin, A [European Synchrotron Radiation Facility, Grenoble (France)], E-mail: francois.smekens@insa-lyon.fr

    2009-08-07

    A hybrid approach, combining deterministic and Monte Carlo (MC) calculations, is proposed to compute the distribution of dose deposited during stereotactic synchrotron radiation therapy treatment. The proposed approach divides the computation into two parts: (i) the dose deposited by primary radiation (coming directly from the incident x-ray beam) is calculated in a deterministic way using ray casting techniques and energy-absorption coefficient tables and (ii) the dose deposited by secondary radiation (Rayleigh and Compton scattering, fluorescence) is computed using a hybrid algorithm combining MC and deterministic calculations. In the MC part, a small number of particle histories are simulated. Every time a scattering or fluorescence event takes place, a splitting mechanism is applied, so that multiple secondary photons are generated with a reduced weight. The secondary events are further processed in a deterministic way, using ray casting techniques. The whole simulation, carried out within the framework of the Monte Carlo code Geant4, is shown to converge towards the same results as the full MC simulation. The speed of convergence is found to depend notably on the splitting multiplicity, which can easily be optimized. To assess the performance of the proposed algorithm, we compare it to state-of-the-art MC simulations, accelerated by the track length estimator technique (TLE), considering a clinically realistic test case. It is found that the hybrid approach is significantly faster than the MC/TLE method. The gain in speed in a test case was about 25 for a constant precision. Therefore, this method appears to be suitable for treatment planning applications.

  9. H1 Grid production tool for large scale Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lobodzinski, B; Wissing, Ch [DESY, Hamburg (Germany); Bystritskaya, E; Vorobiew, M [ITEP, Moscow (Russian Federation); Karbach, T M [University of Dortmund (Germany); Mitsyn, S [JINR, Moscow (Russian Federation); Mudrinic, M, E-mail: bogdan.lobodzinski@desy.d [VINS, Belgrad (Serbia)

    2010-04-01

    The H1 Collaboration at HERA has entered the period of high precision analyses based on the final data sample. These analyses require a massive production of simulated Monte Carlo (MC) events. The H1 MC framework (H1MC) is a software for mass MC production on the LCG Grid infrastructure and on a local batch system created by H1 Collaboration. The aim of the tool is a full automatisation of the MC production workflow including management of the MC jobs on the Grid down to copying of the resulting files from the Grid to the H1 mass storage tape device. The H1 MC framework has modular structure, delegating a specific task to each module, including task specific to the H1 experiment: Automatic building of steer and input files, simulation of the H1 detector, reconstruction of particle tracks and post processing calculation. Each module provides data or functionality needed by other modules via a local database. The Grid jobs created for detector simulation and reconstruction from generated MC input files are fully independent and fault-tolerant for 32 and 64-bit LCG Grid architecture and in Grid running state they can be continuously monitored using Relational Grid Monitoring Architecture (R-GMA) service. To monitor the full production chain and detect potential problems, regular checks of the job state are performed using the local database and the Service Availability Monitoring (SAM) framework. The improved stability of the system has resulted in a dramatic increase in the production rate, which exceeded two billion MC events in 2008.

  10. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes

    NARCIS (Netherlands)

    Coehoorn, R.; van Eersel, H.; Bobbert, P.A.; Janssen, R.A.J.

    2015-01-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an

  11. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    Seker, V.; Thomas, J.W.; Downar, T.J.

    2007-01-01

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k eff and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport

  12. Crop canopy BRDF simulation and analysis using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.

    2006-01-01

    This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and

  13. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z. [Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China)

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  14. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-01-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  15. Scouting the feasibility of Monte Carlo reactor dynamics simulations

    International Nuclear Information System (INIS)

    Legrady, David; Hoogenboom, J. Eduard

    2008-01-01

    In this paper we present an overview of the methodological questions related to Monte Carlo simulation of time dependent power transients in nuclear reactors. Investigations using a small fictional 3D reactor with isotropic scattering and a single energy group we have performed direct Monte Carlo transient calculations with simulation of delayed neutrons and with and without thermal feedback. Using biased delayed neutron sampling and population control at time step boundaries calculation times were kept reasonably low. We have identified the initial source determination and the prompt chain simulations as key issues that require most attention. (authors)

  16. Scouting the feasibility of Monte Carlo reactor dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Legrady, David [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Hoogenboom, J. Eduard [Delft University of Technology, Delft (Netherlands)

    2008-07-01

    In this paper we present an overview of the methodological questions related to Monte Carlo simulation of time dependent power transients in nuclear reactors. Investigations using a small fictional 3D reactor with isotropic scattering and a single energy group we have performed direct Monte Carlo transient calculations with simulation of delayed neutrons and with and without thermal feedback. Using biased delayed neutron sampling and population control at time step boundaries calculation times were kept reasonably low. We have identified the initial source determination and the prompt chain simulations as key issues that require most attention. (authors)

  17. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    Energy Technology Data Exchange (ETDEWEB)

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  18. A Monte Carlo simulation model for stationary non-Gaussian processes

    DEFF Research Database (Denmark)

    Grigoriu, M.; Ditlevsen, Ove Dalager; Arwade, S. R.

    2003-01-01

    includes translation processes and is useful for both Monte Carlo simulation and analytical studies. As for translation processes, the mixture of translation processes can have a wide range of marginal distributions and correlation functions. Moreover, these processes can match a broader range of second...... athe proposed Monte Carlo algorithm and compare features of translation processes and mixture of translation processes. Keywords: Monte Carlo simulation, non-Gaussian processes, sampling theorem, stochastic processes, translation processes......A class of stationary non-Gaussian processes, referred to as the class of mixtures of translation processes, is defined by their finite dimensional distributions consisting of mixtures of finite dimensional distributions of translation processes. The class of mixtures of translation processes...

  19. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  20. Long-term behaviour of irradiated hcp Zr using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Arevalo, C.; Caturla, M.J.; Perlado, J.M.

    2005-01-01

    Kinetic Monte Carlo (kMC) modelling has been used to study the diffusion of defects produced under irradiation in alpha-zirconiun. Database of displacement cascades created by recoils from 10 to 25 keV obtained by molecular dynamics (MD) simulations have been used as initial damage state in the metal. These cascades have been annealed for times of hours at a fixed temperature of 600 K. The number of freely migrating defects, the recombination ratio between vacancies and interstitials, the surviving defects in the bulk as well as the average cluster size for these remaining defects have been obtained

  1. Monte-Carlo simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Amatuni, Ts.A.

    1984-01-01

    The universal ELSS-1 program for Monte Carlo simulation of high energy electromagnetic showers in homogeneous absorbers of arbitrary geometry is written. The major processes and effects of electron and photon interaction with matter, particularly the Landau-Pomeranchuk-Migdal effect, are taken into account in the simulation procedures. The simulation results are compared with experimental data. Some characteristics of shower detectors and electromagnetic showers for energies up 1 TeV are calculated

  2. Non-analogue Monte Carlo method, application to neutron simulation; Methode de Monte Carlo non analogue, application a la simulation des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Morillon, B.

    1996-12-31

    With most of the traditional and contemporary techniques, it is still impossible to solve the transport equation if one takes into account a fully detailed geometry and if one studies precisely the interactions between particles and matters. Only the Monte Carlo method offers such a possibility. However with significant attenuation, the natural simulation remains inefficient: it becomes necessary to use biasing techniques where the solution of the adjoint transport equation is essential. The Monte Carlo code Tripoli has been using such techniques successfully for a long time with different approximate adjoint solutions: these methods require from the user to find out some parameters. If this parameters are not optimal or nearly optimal, the biases simulations may bring about small figures of merit. This paper presents a description of the most important biasing techniques of the Monte Carlo code Tripoli ; then we show how to calculate the importance function for general geometry with multigroup cases. We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We compare different biased simulations with the importance function calculated by collision probabilities for one-group and multigroup problems. We have run simulations with new biasing method for one-group transport problems with isotropic shocks and for multigroup problems with anisotropic shocks. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without splitting and russian roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add splitting and russian roulette technique.

  3. Atmosphere Re-Entry Simulation Using Direct Simulation Monte Carlo (DSMC Method

    Directory of Open Access Journals (Sweden)

    Francesco Pellicani

    2016-05-01

    Full Text Available Hypersonic re-entry vehicles aerothermodynamic investigations provide fundamental information to other important disciplines like materials and structures, assisting the development of thermal protection systems (TPS efficient and with a low weight. In the transitional flow regime, where thermal and chemical equilibrium is almost absent, a new numerical method for such studies has been introduced, the direct simulation Monte Carlo (DSMC numerical technique. The acceptance and applicability of the DSMC method have increased significantly in the 50 years since its invention thanks to the increase in computer speed and to the parallel computing. Anyway, further verification and validation efforts are needed to lead to its greater acceptance. In this study, the Monte Carlo simulator OpenFOAM and Sparta have been studied and benchmarked against numerical and theoretical data for inert and chemically reactive flows and the same will be done against experimental data in the near future. The results show the validity of the data found with the DSMC. The best setting of the fundamental parameters used by a DSMC simulator are presented for each software and they are compared with the guidelines deriving from the theory behind the Monte Carlo method. In particular, the number of particles per cell was found to be the most relevant parameter to achieve valid and optimized results. It is shown how a simulation with a mean value of one particle per cell gives sufficiently good results with very low computational resources. This achievement aims to reconsider the correct investigation method in the transitional regime where both the direct simulation Monte Carlo (DSMC and the computational fluid-dynamics (CFD can work, but with a different computational effort.

  4. Monte Carlo simulations of channeling spectra recorded for samples containing complex defects

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, Jacek [Institute for Electronic Materials Technology; Turos, Prof. Andrzej [Institute for Electronic Materials Technology; Nowicki, Lech [Soltan Institute for Nuclear Studies, Swierk, Poland; Jozwik, P. [Institute for Electronic Materials Technology; Shutthanandan, Vaithiyalingam [Pacific Northwest National Laboratory (PNNL); Zhang, Yanwen [ORNL; Sathish, N. [Institute for Electronic Materials Technology; Thome, Lionel [Universite Paris Sud, Orsay, France; Stonert, A. [Soltan Institute for Nuclear Studies, Swierk, Poland; Jozwik-Biala, Iwona [Institute for Electronic Materials Technology

    2012-01-01

    The aim of the present paper is to describe the current status of the development of McChasy, a Monte Carlo simulation code, to make it suitable for the analysis of dislocations and dislocation loops in crystals. Such factors like the shape of the bent channel and geometrical distortions of the crystalline structure in the vicinity of dislocation has been discussed. The results obtained demonstrate that the new procedure applied to the spectra recorded on crystals containing dislocation yields damage profiles which are independent of the energy of the analyzing beam.

  5. The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature

    CERN Document Server

    Pia, Maria Grazia; Bell, Zane W; Dressendorfer, Paul V

    2010-01-01

    A scientometric analysis of Monte Carlo simulation and Monte Carlo codes has been performed over a set of representative scholarly journals related to radiation physics. The results of this study are reported and discussed. They document and quantitatively appraise the role of Monte Carlo methods and codes in scientific research and engineering applications.

  6. Multi-Scale Coupling Between Monte Carlo Molecular Simulation and Darcy-Scale Flow in Porous Media

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-06-01

    In this work, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell centered finite difference method with non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational times by MC simulations from hours to seconds. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and the Darcy\\'s one in reservoir simulators. This leads to an accurate description of thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  7. Monte Carlo simulation for theoretical calculations of damage and sputtering processes

    International Nuclear Information System (INIS)

    Yamamura, Yasunori

    1984-01-01

    The radiation damage accompanying ion irradiation and the various problems caused with it should be determined in principle by resolving Boltzmann's equations. However, in reality, those for a semi-infinite system cannot be generally resolved. Moreover, the effect of crystals, oblique incidence and so on make the situation more difficult. The analysis of the complicated phenomena of the collision in solids and the problems of radiation damage and sputtering accompanying them is possible in most cases only by computer simulation. At present, the methods of simulating the atomic collision phenomena in solids are roughly classified into molecular dynamics method and Monte Carlo method. In the molecular dynamics, Newton's equations are numerically calculated time-dependently as they are, and it has large merits that many body effect and nonlinear effect can be taken in consideration, but much computing time is required. The features and problems of the Monte Carlo simulation and nonlinear Monte Carlo simulation are described. The comparison of the Monte Carlo simulation codes calculating on the basis of two-body collision approximation, MARLOWE, TRIM and ACAT, was carried out through the calculation of the backscattering spectra of light ions. (Kako, I.)

  8. Profit Forecast Model Using Monte Carlo Simulation in Excel

    Directory of Open Access Journals (Sweden)

    Petru BALOGH

    2014-01-01

    Full Text Available Profit forecast is very important for any company. The purpose of this study is to provide a method to estimate the profit and the probability of obtaining the expected profit. Monte Carlo methods are stochastic techniques–meaning they are based on the use of random numbers and probability statistics to investigate problems. Monte Carlo simulation furnishes the decision-maker with a range of possible outcomes and the probabilities they will occur for any choice of action. Our example of Monte Carlo simulation in Excel will be a simplified profit forecast model. Each step of the analysis will be described in detail. The input data for the case presented: the number of leads per month, the percentage of leads that result in sales, , the cost of a single lead, the profit per sale and fixed cost, allow obtaining profit and associated probabilities of achieving.

  9. Stabilization effect of fission source in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)

    2017-08-15

    A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  10. Stabilization effect of fission source in coupled Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Börge Olsen

    2017-08-01

    Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  11. Monte Carlo applications to radiation shielding problems

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2009-01-01

    Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation

  12. Simplified monte carlo simulation for Beijing spectrometer

    International Nuclear Information System (INIS)

    Wang Taijie; Wang Shuqin; Yan Wuguang; Huang Yinzhi; Huang Deqiang; Lang Pengfei

    1986-01-01

    The Monte Carlo method based on the functionization of the performance of detectors and the transformation of values of kinematical variables into ''measured'' ones by means of smearing has been used to program the Monte Carlo simulation of the performance of the Beijing Spectrometer (BES) in FORTRAN language named BESMC. It can be used to investigate the multiplicity, the particle type, and the distribution of four-momentum of the final states of electron-positron collision, and also the response of the BES to these final states. Thus, it provides a measure to examine whether the overall design of the BES is reasonable and to decide the physical topics of the BES

  13. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    Science.gov (United States)

    Ritsch, E.; Atlas Collaboration

    2014-06-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during Run 1 relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for Run 2, and beyond. A number of fast detector simulation, digitization and reconstruction techniques are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  14. Monte Carlo molecular simulation of phase-coexistence for oil production and processing

    KAUST Repository

    Li, Jun

    2011-01-01

    The Gibbs-NVT ensemble Monte Carlo method is used to simulate the liquid-vapor coexistence diagram and the simulation results of methane agree well with the experimental data in a wide range of temperatures. For systems with two components, the Gibbs-NPT ensemble Monte Carlo method is employed in the simulation while the mole fraction of each component in each phase is modeled as a Leonard-Jones fluid. As the results of Monte Carlo simulations usually contain huge statistical error, the blocking method is used to estimate the variance of the simulation results. Additionally, in order to improve the simulation efficiency, the step sizes of different trial moves is adjusted automatically so that their acceptance probabilities can approach to the preset values.

  15. Probability-neighbor method of accelerating geometry treatment in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Li, Zeguang; Xu, Qi; Wang, Kan; Yu, Ganglin

    2011-01-01

    Probability neighbor method (PNM) is proposed in this paper to accelerate geometry treatment of Monte Carlo (MC) simulation and validated in self-developed reactor Monte Carlo code RMC. During MC simulation by either ray-tracking or delta-tracking method, large amounts of time are spent in finding out which cell one particle is located in. The traditional way is to search cells one by one with certain sequence defined previously. However, this procedure becomes very time-consuming when the system contains a large number of cells. Considering that particles have different probability to enter different cells, PNM method optimizes the searching sequence, i.e., the cells with larger probability are searched preferentially. The PNM method is implemented in RMC code and the numerical results show that the considerable time of geometry treatment in MC calculation for complicated systems is saved, especially effective in delta-tracking simulation. (author)

  16. An NPT Monte Carlo Molecular Simulation-Based Approach to Investigate Solid-Vapor Equilibrium: Application to Elemental Sulfur-H2S System

    KAUST Repository

    Kadoura, Ahmad Salim; Salama, Amgad; Sun, Shuyu; Sherik, Abdelmounam

    2013-01-01

    In this work, a method to estimate solid elemental sulfur solubility in pure and gas mixtures using Monte Carlo (MC) molecular simulation is proposed. This method is based on Isobaric-Isothermal (NPT) ensemble and the Widom insertion technique

  17. On NonAsymptotic Optimal Stopping Criteria in Monte Carlo Simulations

    KAUST Repository

    Bayer, Christian; Hoel, Hakon; von Schwerin, Erik; Tempone, Raul

    2014-01-01

    We consider the setting of estimating the mean of a random variable by a sequential stopping rule Monte Carlo (MC) method. The performance of a typical second moment based sequential stopping rule MC method is shown to be unreliable in such settings both by numerical examples and through analysis. By analysis and approximations, we construct a higher moment based stopping rule which is shown in numerical examples to perform more reliably and only slightly less efficiently than the second moment based stopping rule.

  18. A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.

    2007-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the

  19. Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2006-01-01

    Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations

  20. Speeding up Monte Carlo molecular simulation by a non-conservative early rejection scheme

    KAUST Repository

    Kadoura, Ahmad Salim

    2015-04-23

    Monte Carlo (MC) molecular simulation describes fluid systems with rich information, and it is capable of predicting many fluid properties of engineering interest. In general, it is more accurate and representative than equations of state. On the other hand, it requires much more computational effort and simulation time. For that purpose, several techniques have been developed in order to speed up MC molecular simulations while preserving their precision. In particular, early rejection schemes are capable of reducing computational cost by reaching the rejection decision for the undesired MC trials at an earlier stage in comparison to the conventional scheme. In a recent work, we have introduced a ‘conservative’ early rejection scheme as a method to accelerate MC simulations while producing exactly the same results as the conventional algorithm. In this paper, we introduce a ‘non-conservative’ early rejection scheme, which is much faster than the conservative scheme, yet it preserves the precision of the method. The proposed scheme is tested for systems of structureless Lennard-Jones particles in both canonical and NVT-Gibbs ensembles. Numerical experiments were conducted at several thermodynamic conditions for different number of particles. Results show that at certain thermodynamic conditions, the non-conservative method is capable of doubling the speed of the MC molecular simulations in both canonical and NVT-Gibbs ensembles. © 2015 Taylor & Francis

  1. Investigating the impossible: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Kramer, Gary H.; Crowley, Paul; Burns, Linda C.

    2000-01-01

    Designing and testing new equipment can be an expensive and time consuming process or the desired performance characteristics may preclude its construction due to technological shortcomings. Cost may also prevent equipment being purchased for other scenarios to be tested. An alternative is to use Monte Carlo simulations to make the investigations. This presentation exemplifies how Monte Carlo code calculations can be used to fill the gap. An example is given for the investigation of two sizes of germanium detector (70 mm and 80 mm diameter) at four different crystal thicknesses (15, 20, 25, and 30 mm) and makes predictions on how the size affects the counting efficiency and the Minimum Detectable Activity (MDA). The Monte Carlo simulations have shown that detector efficiencies can be adequately modelled using photon transport if the data is used to investigate trends. The investigation of the effect of detector thickness on the counting efficiency has shown that thickness for a fixed diameter detector of either 70 mm or 80 mm is unimportant up to 60 keV. At higher photon energies, the counting efficiency begins to decrease as the thickness decreases as expected. The simulations predict that the MDA of either the 70 mm or 80 mm diameter detectors does not differ by more than a factor of 1.15 at 17 keV or 1.2 at 60 keV when comparing detectors of equivalent thicknesses. The MDA is slightly increased at 17 keV, and rises by about 52% at 660 keV, when the thickness is decreased from 30 mm to 15 mm. One could conclude from this information that the extra cost associated with the larger area Ge detectors may not be justified for the slight improvement predicted in the MDA. (author)

  2. Monte Carlo simulations to replace film dosimetry in IMRT verification

    International Nuclear Information System (INIS)

    Goetzfried, Thomas; Trautwein, Marius; Koelbi, Oliver; Bogner, Ludwig; Rickhey, Mark

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3 mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. (orig.)

  3. Monte Carlo simulation of a medical accelerator: application on a heterogeneous phantom

    International Nuclear Information System (INIS)

    Serrano, B.; Franchisseur, E.; Hachem, A.; Herault, J.; Marcie, S.; Bensadoun, R.J.

    2005-01-01

    The objective of this study is to seek an accurate and efficient method to calculate the dose distribution for small fields in high gradient heterogeneity, typical for Intensity Modulated Radiation Therapy (IMRT) technique on head and neck regions. This motivates a Monte Carlo (MC) simulation of the photon beam for the two nominal potential energies of 25 and 6 MV delivered by a medical linear electron accelerator (Linac) used at the Centre Antoine Lacassagne. These investigations were checked by means of an ionization chamber (IC). Some first adjustments on parameters given by the manufacturer for the 25 and the 6 MV data have been applied to optimize the adjustment between the IC and the MC simulation on the depth-dose and the dose profile distributions. The good agreement between the MC calculated and the measured data are only obtained when the mean energies of the electron beams are respectively 15 MeV and 5.2 MeV and the corresponding spot size diameter 2 and 3 mm. Once the validation of the MC simulation of the Linac is overcome, these results permit us in a second part to check the calculation data given by a treatment planning system (TPS) on a heterogeneous phantom. The result shows some discrepancies up to 7% between TPS and MC simulation. Those differences come from a bad approximation of the material density by the TPS. These encouraging results of the MC simulation will permit us afterwards to check the dose deposition given by the TPS on IMRT treatment. (authors)

  4. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, KIRAMS, Seoul (Korea, Republic of); Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol [Jeonbuk Department of Inhalation Research, Korea Institute of toxicology, KRICT, Jeongeup (Korea, Republic of)

    2016-12-15

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  5. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin; Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol

    2016-01-01

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  6. Autocorrelations in hybrid Monte Carlo simulations

    International Nuclear Information System (INIS)

    Schaefer, Stefan; Virotta, Francesco

    2010-11-01

    Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)

  7. Developing and investigating a pure Monte-Carlo module for transient neutron transport analysis

    International Nuclear Information System (INIS)

    Mylonakis, Antonios G.; Varvayanni, M.; Grigoriadis, D.G.E.; Catsaros, N.

    2017-01-01

    Highlights: • Development and investigation of a Monte-Carlo module for transient neutronic analysis. • A transient module developed on the open-source Monte-Carlo static code OpenMC. • Treatment of delayed neutrons is inserted. • Simulation of precursors’ decay process is performed. • Transient analysis of simplified test-cases. - Abstract: In the field of computational reactor physics, Monte-Carlo methodology is extensively used in the analysis of static problems while the transient behavior of the reactor core is mostly analyzed using deterministic algorithms. However, deterministic algorithms make use of various approximations mainly in the geometric and energetic domain that may induce inaccuracy. Therefore, Monte-Carlo methodology which generally does not require significant approximations seems to be an attractive candidate tool for the analysis of transient phenomena. One of the most important constraints towards this direction is the significant computational cost; however since nowadays the available computational resources are continuously increasing, the potential use of the Monte-Carlo methodology in the field of reactor core transient analysis seems feasible. So far, very few attempts to employ Monte-Carlo methodology to transient analysis have been reported. Even more, most of those few attempts make use of several approximations, showing the existence of an “open” research field of great interest. It is obvious that comparing to static Monte-Carlo, a straight-forward physical treatment of a transient problem requires the temporal evolution of the simulated neutrons; but this is not adequate. In order to be able to properly analyze transient reactor core phenomena, the proper simulation of delayed neutrons together with other essential extensions and modifications is necessary. This work is actually the first step towards the development of a tool that could serve as a platform for research and development on this interesting but also

  8. The HepMC C++ Monte Carlo Event Record for High Energy Physics

    CERN Document Server

    Dobbs, M

    2000-01-01

    HepMC is an Object Oriented event record written in C++ for High Energy Physics Monte Carlo Event Generators. Many extensions from HEPEVT, the Fortran HEP standard, are supported: the number of entries is unlimited, spin density matrices can be stored with each vertex, flow patterns (such as colour) can be stored and traced, random number generator states can be stored, and an arbitrary number of event weights can be included. Particles and vertices are stored separately in a graph structure, reflecting the evolution of a physics event. The added information supports the modularisation of event generators. The event record has been kept as simple as possible with minimal internal/external dependencies. Event information is accessed by means of iterators supplied with HepMC.

  9. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  10. Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia

    Science.gov (United States)

    Good, Brian

    2011-01-01

    Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.

  11. Monte Carlo Simulation of Electron Transport in 4H- and 6H-SiC

    International Nuclear Information System (INIS)

    Sun, C. C.; You, A. H.; Wong, E. K.

    2010-01-01

    The Monte Carlo (MC) simulation of electron transport properties at high electric field region in 4H- and 6H-SiC are presented. This MC model includes two non-parabolic conduction bands. Based on the material parameters, the electron scattering rates included polar optical phonon scattering, optical phonon scattering and acoustic phonon scattering are evaluated. The electron drift velocity, energy and free flight time are simulated as a function of applied electric field at an impurity concentration of 1x10 18 cm 3 in room temperature. The simulated drift velocity with electric field dependencies is in a good agreement with experimental results found in literature. The saturation velocities for both polytypes are close, but the scattering rates are much more pronounced for 6H-SiC. Our simulation model clearly shows complete electron transport properties in 4H- and 6H-SiC.

  12. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    CERN Document Server

    Chapman, J; Duehrssen, M; Elsing, M; Froidevaux, D; Harrington, R; Jansky, R; Langenberg, R; Mandrysch, R; Marshall, Z; Ritsch, E; Salzburger, A

    2014-01-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during run I relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for run II, and beyond. A number of fast detector simulation, digitization and reconstruction techniques and are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  13. A general transform for variance reduction in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Becker, T.L.; Larsen, E.W.

    2011-01-01

    This paper describes a general transform to reduce the variance of the Monte Carlo estimate of some desired solution, such as flux or biological dose. This transform implicitly includes many standard variance reduction techniques, including source biasing, collision biasing, the exponential transform for path-length stretching, and weight windows. Rather than optimizing each of these techniques separately or choosing semi-empirical biasing parameters based on the experience of a seasoned Monte Carlo practitioner, this General Transform unites all these variance techniques to achieve one objective: a distribution of Monte Carlo particles that attempts to optimize the desired solution. Specifically, this transform allows Monte Carlo particles to be distributed according to the user's specification by using information obtained from a computationally inexpensive deterministic simulation of the problem. For this reason, we consider the General Transform to be a hybrid Monte Carlo/Deterministic method. The numerical results con rm that the General Transform distributes particles according to the user-specified distribution and generally provide reasonable results for shielding applications. (author)

  14. A study on the shielding element using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Jeong [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Shim, Jae Goo [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of)

    2017-06-15

    In this research, we simulated the elementary star shielding ability using Monte Carlo simulation to apply medical radiation shielding sheet which can replace existing lead. In the selection of elements, mainly elements and metal elements having a large atomic number, which are known to have high shielding performance, recently, various composite materials have improved shielding performance, so that weight reduction, processability, In consideration of activity etc., 21 elements were selected. The simulation tools were utilized Monte Carlo method. As a result of simulating the shielding performance by each element, it was estimated that the shielding ratio is the highest at 98.82% and 98.44% for tungsten and gold.

  15. Parallel Monte Carlo simulations on an ARC-enabled computing grid

    International Nuclear Information System (INIS)

    Nilsen, Jon K; Samset, Bjørn H

    2011-01-01

    Grid computing opens new possibilities for running heavy Monte Carlo simulations of physical systems in parallel. The presentation gives an overview of GaMPI, a system for running an MPI-based random walker simulation on grid resources. Integrating the ARC middleware and the new storage system Chelonia with the Ganga grid job submission and control system, we show that MPI jobs can be run on a world-wide computing grid with good performance and promising scaling properties. Results for relatively communication-heavy Monte Carlo simulations run on multiple heterogeneous, ARC-enabled computing clusters in several countries are presented.

  16. Track 4: basic nuclear science variance reduction for Monte Carlo criticality simulations. 6. Variational Variance Reduction for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2001-01-01

    Recently, it has been shown that the figure of merit (FOM) of Monte Carlo source-detector problems can be enhanced by using a variational rather than a direct functional to estimate the detector response. The direct functional, which is traditionally employed in Monte Carlo simulations, requires an estimate of the solution of the forward problem within the detector region. The variational functional is theoretically more accurate than the direct functional, but it requires estimates of the solutions of the forward and adjoint source-detector problems over the entire phase-space of the problem. In recent work, we have performed Monte Carlo simulations using the variational functional by (a) approximating the adjoint solution deterministically and representing this solution as a function in phase-space and (b) estimating the forward solution using Monte Carlo. We have called this general procedure variational variance reduction (VVR). The VVR method is more computationally expensive per history than traditional Monte Carlo because extra information must be tallied and processed. However, the variational functional yields a more accurate estimate of the detector response. Our simulations have shown that the VVR reduction in variance usually outweighs the increase in cost, resulting in an increased FOM. In recent work on source-detector problems, we have calculated the adjoint solution deterministically and represented this solution as a linear-in-angle, histogram-in-space function. This procedure has several advantages over previous implementations: (a) it requires much less adjoint information to be stored and (b) it is highly efficient for diffusive problems, due to the accurate linear-in-angle representation of the adjoint solution. (Traditional variance-reduction methods perform poorly for diffusive problems.) Here, we extend this VVR method to Monte Carlo criticality calculations, which are often diffusive and difficult for traditional variance-reduction methods

  17. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  18. Monte Carlo simulation of the microcanonical ensemble

    International Nuclear Information System (INIS)

    Creutz, M.

    1984-01-01

    We consider simulating statistical systems with a random walk on a constant energy surface. This combines features of deterministic molecular dynamics techniques and conventional Monte Carlo simulations. For discrete systems the method can be programmed to run an order of magnitude faster than other approaches. It does not require high quality random numbers and may also be useful for nonequilibrium studies. 10 references

  19. Direct aperture optimization for IMRT using Monte Carlo generated beamlets

    International Nuclear Information System (INIS)

    Bergman, Alanah M.; Bush, Karl; Milette, Marie-Pierre; Popescu, I. Antoniu; Otto, Karl; Duzenli, Cheryl

    2006-01-01

    This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5x5.0 mm 2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is ∼33% compared to fluence-based optimization methods

  20. Understanding quantum tunneling using diffusion Monte Carlo simulations

    Science.gov (United States)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  1. Monte Carlo simulations of plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-01-01

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  2. Gamma irradiation of cultural artifacts for disinfection using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Choi, Jong-il; Yoon, Minchul; Kim, Dongho

    2012-01-01

    In this study, it has been investigated the disinfection of Korean cultural artifacts by gamma irradiation, simulating the absorbed dose distribution on the object with the Monte Carlo methodology. Fungal contamination was identified on two traditional Korean agricultural tools, Hongdukkae and Holtae, which had been stored in a museum. Nine primary species were identified from these items: Bjerkandera adusta, Dothideomycetes sp., Penicillium sp., Cladosporium tenuissimum, Aspergillus versicolor, Penicillium sp., Entrophospora sp., Aspergillus sydowii, and Corynascus sepedonium. However, these fungi were completely inactivated by gamma irradiation at an absorbed dose of 20 kGy on the front side. Monte Carlo N Particle Transport Code was used to simulate the doses applied to these cultural artifacts, and the measured dose distributions were well predicted by the simulations. These results show that irradiation is effective for the disinfection of cultural artifacts and that dose distribution can be predicted with Monte Carlo simulations, allowing the optimization of the radiation treatment. - Highlights: ► Radiation was applied for the disinfection of Korean cultural artifacts. ► Fungi on the artifacts were completely inactivated by the irradiation. ► Monte Carlo N Particle Transport Code was used to predict the dose distribution. ► This study is applicable for the preservation of cultural artifacts by irradiation.

  3. Monte Carlo simulation of damage and amorphization induced by swift-ion irradiation in LiNbO3

    International Nuclear Information System (INIS)

    Garcia, G.; Agullo-Lopez, F.; Olivares-Villegas, J.; Garcia-Navarro, A.

    2006-01-01

    This paper presents a Monte Carlo (MC) simulation tool which is applied to describe the ion beam induced damage generated by electronic excitation in LiNbO 3 . Based on a previously published thermal spike based analytical model, the MC technique allows for a more flexible and accurate treatment of the problem. A main advantage of this approach with respect to the analytical one is the possibility of studying the role of statistical fluctuations, relevant at low fluences. The paper recalls the main features of the physical model, describes the MC algorithm, and compares simulation results to experimental data (irradiations of LiNbO 3 using silicon ions at 5 and 7.5 MeV and oxygen ions at 5 MeV)

  4. Neutron point-flux calculation by Monte Carlo

    International Nuclear Information System (INIS)

    Eichhorn, M.

    1986-04-01

    A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)

  5. Monte Carlo simulations of adsorption-induced segregation

    DEFF Research Database (Denmark)

    Christoffersen, Ebbe; Stoltze, Per; Nørskov, Jens Kehlet

    2002-01-01

    Through the use of Monte Carlo simulations we study the effect of adsorption-induced segregation. From the bulk composition, degree of dispersion and the partial pressure of the gas phase species we calculate the surface composition of bimetallic alloys. We show that both segregation and adsorption...

  6. Construction of the quantitative analysis environment using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Shirakawa, Seiji; Ushiroda, Tomoya; Hashimoto, Hiroshi; Tadokoro, Masanori; Uno, Masaki; Tsujimoto, Masakazu; Ishiguro, Masanobu; Toyama, Hiroshi

    2013-01-01

    The thoracic phantom image was acquisitioned of the axial section to construct maps of the source and density with Monte Carlo (MC) simulation. The phantom was Heart/Liver Type HL (Kyoto Kagaku Co., Ltd.) single photon emission CT (SPECT)/CT machine was Symbia T6 (Siemence) with the collimator LMEGP (low-medium energy general purpose). Maps were constructed from CT images with an in-house software using Visual studio C Sharp (Microsoft). The code simulation of imaging nuclear detectors (SIMIND) was used for MC simulation, Prominence processor (Nihon Medi-Physics) for filter processing and image reconstruction, and the environment DELL Precision T7400 for all image processes. For the actual experiment, the phantom was given 15 MBq of 99m Tc assuming the uptake 2% at the dose of 740 MBq in its myocardial portion and SPECT image was acquisitioned and reconstructed with Butter-worth filter and filter back projection method. CT images were similarly obtained in 0.3 mm thick slices, which were filed in one formatted with digital imaging and communication in medicine (DICOM), and then processed for application to SIMIND for mapping the source and density. Physical and mensuration factors were examined in ideal images by sequential exclusion and simulation of those factors as attenuation, scattering, spatial resolution deterioration and statistical fluctuation. Gamma energy spectrum, SPECT projection and reconstructed images given by the simulation were found to well agree with the actual data, and the precision of MC simulation was confirmed. Physical and mensuration factors were found to be evaluable individually, suggesting the usefulness of the simulation for assessing the precision of their correction. (T.T.)

  7. Genetic algorithms and Monte Carlo simulation for optimal plant design

    International Nuclear Information System (INIS)

    Cantoni, M.; Marseguerra, M.; Zio, E.

    2000-01-01

    We present an approach to the optimal plant design (choice of system layout and components) under conflicting safety and economic constraints, based upon the coupling of a Monte Carlo evaluation of plant operation with a Genetic Algorithms-maximization procedure. The Monte Carlo simulation model provides a flexible tool, which enables one to describe relevant aspects of plant design and operation, such as standby modes and deteriorating repairs, not easily captured by analytical models. The effects of deteriorating repairs are described by means of a modified Brown-Proschan model of imperfect repair which accounts for the possibility of an increased proneness to failure of a component after a repair. The transitions of a component from standby to active, and vice versa, are simulated using a multiplicative correlation model. The genetic algorithms procedure is demanded to optimize a profit function which accounts for the plant safety and economic performance and which is evaluated, for each possible design, by the above Monte Carlo simulation. In order to avoid an overwhelming use of computer time, for each potential solution proposed by the genetic algorithm, we perform only few hundreds Monte Carlo histories and, then, exploit the fact that during the genetic algorithm population evolution, the fit chromosomes appear repeatedly many times, so that the results for the solutions of interest (i.e. the best ones) attain statistical significance

  8. A multi-microcomputer system for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Berg, B.; Krasemann, H.

    1981-01-01

    We propose a microcomputer system which allows parallel processing for Monte Carlo calculations in lattice gauge theories, simulations of high energy physics experiments and presumably many other fields of current interest. The master-n-slave multiprocessor system is based on the Motorola MC 68000 microprocessor. One attraction if this processor is that it allows up to 16 M Byte random access memory. (orig.)

  9. Parallelization of a Monte Carlo particle transport simulation code

    Science.gov (United States)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  10. Monte Carlo Simulation of Influence of Input Parameters Uncertainty on Output Data

    International Nuclear Information System (INIS)

    Sobek, Lukas

    2010-01-01

    Input parameters of a complex system in the probabilistic simulation are treated by means of probability density function (PDF). The result of the simulation have also probabilistic character. Monte Carlo simulation is widely used to obtain predictions concerning the probability of the risk. The Monte Carlo method was performed to calculate histograms of PDF for release rate given by uncertainty in distribution coefficient of radionuclides 135 Cs and 235 U.

  11. Optimizing Availability of a Framework in Series Configuration Utilizing Markov Model and Monte Carlo Simulation Techniques

    Directory of Open Access Journals (Sweden)

    Mansoor Ahmed Siddiqui

    2017-06-01

    Full Text Available This research work is aimed at optimizing the availability of a framework comprising of two units linked together in series configuration utilizing Markov Model and Monte Carlo (MC Simulation techniques. In this article, effort has been made to develop a maintenance model that incorporates three distinct states for each unit, while taking into account their different levels of deterioration. Calculations are carried out using the proposed model for two distinct cases of corrective repair, namely perfect and imperfect repairs, with as well as without opportunistic maintenance. Initially, results are accomplished using an analytical technique i.e., Markov Model. Validation of the results achieved is later carried out with the help of MC Simulation. In addition, MC Simulation based codes also work well for the frameworks that follow non-exponential failure and repair rates, and thus overcome the limitations offered by the Markov Model.

  12. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  13. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  14. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    International Nuclear Information System (INIS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon–electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783–97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48–0.53% for the electron beam cases and 0.15–0.17% for the photon beam cases. In terms of efficiency, goMC was ∼4–16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was

  15. Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations

    Science.gov (United States)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias

    2015-01-01

    Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.

  16. Monte Carlo simulations for plasma physics

    International Nuclear Information System (INIS)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  17. Monte Carlo-based simulation of dynamic jaws tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sterpin, E.; Chen, Y.; Chen, Q.; Lu, W.; Mackie, T. R.; Vynckier, S. [Department of Molecular Imaging, Radiotherapy and Oncology, Universite Catholique de Louvain, 54 Avenue Hippocrate, 1200 Brussels, Belgium and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States); 21 Century Oncology., 1240 D' onofrio, Madison, Wisconsin 53719 (United States); TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Department of Radiotherapy and Oncology, Universite Catholique de Louvain, St-Luc University Hospital, 10 Avenue Hippocrate, 1200 Brussels (Belgium)

    2011-09-15

    Purpose: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. Methods: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution/superposition (C/S) of TomoTherapy in the ''cheese'' phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed (''running start stop,'' RSS) and symmetric jaws-variable couch speed (''symmetric running start stop,'' SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. Results: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C/S for both asymmetric jaw opening/constant couch speed and symmetric jaw opening/variable couch speed, with deviations well within 2%/2 mm. For RSS procedure, agreement between C/S and measurements was within 2%/2 mm for 95% of the points and 3%/3 mm for 98% of the points, where dose is

  18. Monte Carlo-based simulation of dynamic jaws tomotherapy

    International Nuclear Information System (INIS)

    Sterpin, E.; Chen, Y.; Chen, Q.; Lu, W.; Mackie, T. R.; Vynckier, S.

    2011-01-01

    Purpose: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. Methods: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution/superposition (C/S) of TomoTherapy in the ''cheese'' phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed (''running start stop,'' RSS) and symmetric jaws-variable couch speed (''symmetric running start stop,'' SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. Results: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C/S for both asymmetric jaw opening/constant couch speed and symmetric jaw opening/variable couch speed, with deviations well within 2%/2 mm. For RSS procedure, agreement between C/S and measurements was within 2%/2 mm for 95% of the points and 3%/3 mm for 98% of the points, where dose is greater than 30% of the prescription dose (gamma analysis

  19. Self-test Monte Carlo method

    International Nuclear Information System (INIS)

    Ohta, Shigemi

    1996-01-01

    The Self-Test Monte Carlo (STMC) method resolves the main problems in using algebraic pseudo-random numbers for Monte Carlo (MC) calculations: that they can interfere with MC algorithms and lead to erroneous results, and that such an error often cannot be detected without known exact solution. STMC is based on good randomness of about 10 10 bits available from physical noise or transcendental numbers like π = 3.14---. Various bit modifiers are available to get more bits for applications that demands more than 10 10 random bits such as lattice quantum chromodynamics (QCD). These modifiers are designed so that a) each of them gives a bit sequence comparable in randomness as the original if used separately from each other, and b) their mutual interference when used jointly in a single MC calculation is adjustable. Intermediate data of the MC calculation itself are used to quantitatively test and adjust the mutual interference of the modifiers in respect of the MC algorithm. STMC is free of systematic error and gives reliable statistical error. Also it can be easily implemented on vector and parallel supercomputers. (author)

  20. Cluster evolution and critical cluster sizes for the square and triangular lattice Ising models using lattice animals and Monte Carlo simulations

    NARCIS (Netherlands)

    Eising, G.; Kooi, B. J.

    2012-01-01

    Growth and decay of clusters at temperatures below T-c have been studied for a two-dimensional Ising model for both square and triangular lattices using Monte Carlo (MC) simulations and the enumeration of lattice animals. For the lattice animals, all unique cluster configurations with their internal

  1. Suppression of the initial transient in Monte Carlo criticality simulations

    International Nuclear Information System (INIS)

    Richet, Y.

    2006-12-01

    Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)

  2. Monte Carlo Simulations of Neutron Oil well Logging Tools

    International Nuclear Information System (INIS)

    Azcurra, Mario

    2002-01-01

    Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition

  3. Monte Carlo simulations of neutron oil well logging tools

    International Nuclear Information System (INIS)

    Azcurra, Mario O.; Zamonsky, Oscar M.

    2003-01-01

    Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented. The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively. The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation. The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B. Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation. In particular, the ratio C/O was analyzed as an indicator of oil saturation. Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition. (author)

  4. Particle-transport simulation with the Monte Carlo method

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.

    1975-01-01

    Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)

  5. Exploring Various Monte Carlo Simulations for Geoscience Applications

    Science.gov (United States)

    Blais, R.

    2010-12-01

    Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.

  6. Exploring pseudo- and chaotic random Monte Carlo simulations

    Science.gov (United States)

    Blais, J. A. Rod; Zhang, Zhan

    2011-07-01

    Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer-generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as importance sampling and stratified sampling can be applied in most Monte Carlo simulations and significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on some practical examples of geodetic direct and inverse problems, conclusions and recommendations concerning their performance and general applicability are included.

  7. A virtual source model for Monte Carlo simulation of helical tomotherapy.

    Science.gov (United States)

    Yuan, Jiankui; Rong, Yi; Chen, Quan

    2015-01-08

    The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase-space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS-generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of < 1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of < 2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM-based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose-volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent

  8. Topological zero modes in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Dilger, H.

    1994-08-01

    We present an improvement of global Metropolis updating steps, the instanton hits, used in a hybrid Monte Carlo simulation of the two-flavor Schwinger model with staggered fermions. These hits are designed to change the topological sector of the gauge field. In order to match these hits to an unquenched simulation with pseudofermions, the approximate zero mode structure of the lattice Dirac operator has to be considered explicitly. (orig.)

  9. Monte Carlo simulation of VHTR particle fuel with chord length sampling

    International Nuclear Information System (INIS)

    Ji, W.; Martin, W. R.

    2007-01-01

    The Very High Temperature Gas-Cooled Reactor (VHTR) poses a problem for neutronic analysis due to the double heterogeneity posed by the particle fuel and either the fuel compacts in the case of the prismatic block reactor or the fuel pebbles in the case of the pebble bed reactor. Direct Monte Carlo simulation has been used in recent years to analyze these VHTR configurations but is computationally challenged when space dependent phenomena are considered such as depletion or temperature feedback. As an alternative approach, we have considered chord length sampling to reduce the computational burden of the Monte Carlo simulation. We have improved on an existing method called 'limited chord length sampling' and have used it to analyze stochastic media representative of either pebble bed or prismatic VHTR fuel geometries. Based on the assumption that the PDF had an exponential form, a theoretical chord length distribution is derived and shown to be an excellent model for a wide range of packing fractions. This chord length PDF was then used to analyze a stochastic medium that was constructed using the RSA (Random Sequential Addition) algorithm and the results were compared to a benchmark Monte Carlo simulation of the actual stochastic geometry. The results are promising and suggest that the theoretical chord length PDF can be used instead of a full Monte Carlo random walk simulation in the stochastic medium, saving orders of magnitude in computational time (and memory demand) to perform the simulation. (authors)

  10. Monte Carlo simulation of a gas-sampled hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C Y; Kunori, S; Rapp, P; Talaga, R; Steinberg, P; Tylka, A J; Wang, Z M

    1988-02-15

    A prototype of the OPAL barrel hadron calorimeter, which is a gas-sampled calorimeter using plastic streamer tubes, was exposed to pions at energies between 1 and 7 GeV. The response of the detector was simulated using the CERN GEANT3 Monte Carlo program. By using the observed high energy muon signals to deduce details of the streamer formation, the Monte Carlo program was able to reproduce the observed calorimeter response. The behavior of the hadron calorimeter when placed behind a lead glass electromagnetic calorimeter was also investigated.

  11. A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2012-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.

  12. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) to the steel process chain: case study.

    Science.gov (United States)

    Bieda, Bogusław

    2014-05-15

    The purpose of the paper is to present the results of application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) data of Mittal Steel Poland (MSP) complex in Kraków, Poland. In order to assess the uncertainty, the software CrystalBall® (CB), which is associated with Microsoft® Excel spreadsheet model, is used. The framework of the study was originally carried out for 2005. The total production of steel, coke, pig iron, sinter, slabs from continuous steel casting (CSC), sheets from hot rolling mill (HRM) and blast furnace gas, collected in 2005 from MSP was analyzed and used for MC simulation of the LCI model. In order to describe random nature of all main products used in this study, normal distribution has been applied. The results of the simulation (10,000 trials) performed with the use of CB consist of frequency charts and statistical reports. The results of this study can be used as the first step in performing a full LCA analysis in the steel industry. Further, it is concluded that the stochastic approach is a powerful method for quantifying parameter uncertainty in LCA/LCI studies and it can be applied to any steel industry. The results obtained from this study can help practitioners and decision-makers in the steel production management. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Multilevel Monte Carlo methods using ensemble level mixed MsFEM for two-phase flow and transport simulations

    KAUST Repository

    Efendiev, Yalchin R.

    2013-08-21

    (and expensive) forward simulations are run with fewer samples, while less accurate (and inexpensive) forward simulations are run with a larger number of samples. Selecting the number of expensive and inexpensive simulations based on the number of coarse degrees of freedom, one can show that MLMC methods can provide better accuracy at the same cost as Monte Carlo (MC) methods. The main objective of the paper is twofold. First, we would like to compare NLSO and LSO mixed MsFEMs. Further, we use both approaches in the context of MLMC to speedup MC calculations. © 2013 Springer Science+Business Media Dordrecht.

  14. Monte Carlo-molecular dynamics simulations for two-dimensional magnets

    International Nuclear Information System (INIS)

    Kawabata, C.; takeuchi, M.; Bishop, A.R.

    1985-01-01

    A combined Monte Carlo-molecular dynamics simulation technique is used to study the dynamic structure factor on a square lattice for isotropic Heisenberg and planar classical ferromagnetic spin Hamiltonians

  15. Monte Carlo Simulation of stepping source in afterloading intracavitary brachytherapy for GZP6 unit

    International Nuclear Information System (INIS)

    Toossi, M.T.B.; Abdollahi, M.; Ghorbani, M.

    2010-01-01

    Full text: Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Dose calculation accuracy plays a vital role in the outcome of brachytherapy treatment. In this study, the stepping source (channel 6) of GZP6 brachytherapy unit was simulated by Monte Carlo simulation and matrix shift method. The stepping source of GZP6 was simulated by Monte Carlo MCNPX code. The Mesh tally (type I) was employed for absorbed dose calculation in a cylindrical water phantom. 5 x 108 photon histories were scored and a 0.2% statistical uncertainty was obtained by Monte Carlo calculations. Dose distributions were obtained by our matrix shift method for esophageal cancer tumor lengths of 8 and 10 cm. Isodose curves produced by simulation and TPS were superimposed to estimate the differences. Results Comparison of Monte Carlo and TPS dose distributions show that in longitudinal direction (source movement direction) Monte Carlo and TPS dose distributions are comparable. [n transverse direction, the dose differences of 7 and 5% were observed for esophageal tumor lengths of 8 and 10 cm respectively. Conclusions Although, the results show that the maximum difference between Monte Carlo and TPS calculations is about 7%, but considering that the certified activity is given with ± I 0%, uncertainty, then an error of the order of 20% for Monte Carlo calculation would be reasonable. It can be suggested that accuracy of the dose distribution produced by TPS is acceptable for clinical applications. (author)

  16. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    Science.gov (United States)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  17. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations.

    Directory of Open Access Journals (Sweden)

    Kecheng Yang

    Full Text Available Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE, is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD-Monte Carlo (MC approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.

  18. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    International Nuclear Information System (INIS)

    Wang, Henry; Ma Yunzhi; Pratx, Guillem; Xing Lei

    2011-01-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  19. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henry [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Ma Yunzhi; Pratx, Guillem; Xing Lei, E-mail: hwang41@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847 (United States)

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  20. On the inclusion of macroscopic theory in Monte Carlo simulation using game theory

    International Nuclear Information System (INIS)

    Tatarkiewicz, J.

    1980-01-01

    This paper presents the inclusion of macroscopic damage theory into Monte Carlo particle-range simulation using game theory. A new computer code called RADDI was developed on the basis of this inclusion. Results of Monte Carlo damage simulation after 6.3 MeV proton bombardment of silicon are compared with experimental data of Bulgakov et al. (orig.)

  1. Monte Carlo theory and practice

    International Nuclear Information System (INIS)

    James, F.

    1987-01-01

    Historically, the first large-scale calculations to make use of the Monte Carlo method were studies of neutron scattering and absorption, random processes for which it is quite natural to employ random numbers. Such calculations, a subset of Monte Carlo calculations, are known as direct simulation, since the 'hypothetical population' of the narrower definition above corresponds directly to the real population being studied. The Monte Carlo method may be applied wherever it is possible to establish equivalence between the desired result and the expected behaviour of a stochastic system. The problem to be solved may already be of a probabilistic or statistical nature, in which case its Monte Carlo formulation will usually be a straightforward simulation, or it may be of a deterministic or analytic nature, in which case an appropriate Monte Carlo formulation may require some imagination and may appear contrived or artificial. In any case, the suitability of the method chosen will depend on its mathematical properties and not on its superficial resemblance to the problem to be solved. The authors show how Monte Carlo techniques may be compared with other methods of solution of the same physical problem

  2. Monte Carlo conformal treatment planning as an independent assessment

    International Nuclear Information System (INIS)

    Rincon, M.; Leal, A.; Perucha, M.; Carrasco, E.; Sanchez-Doblado, F.; Hospital Univ. Virgen Macarena, Sevilla; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L.; Medrano, J.C.

    2001-01-01

    The wide range of possibilities available in Radiotherapy with conformal fields cannot be covered experimentally. For this reason, dosimetrical and planning procedures are based on approximate algorithms or systematic measurements. Dose distribution calculations based on Monte Carlo (MC) simulations can be used to check results. In this work, two examples of conformal field treatments are shown: A prostate carcinoma and an ocular lymphoma. The dose distributions obtained with a conventional Planning System and with MC have been compared. Some significant differences have been found. (orig.)

  3. Testing results of Monte Carlo sampling processes in MCSAD

    International Nuclear Information System (INIS)

    Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, A.; Correa, C.; Demydenko, C.

    2009-01-01

    The Monte Carlo Simulation of Atom Displacements (MCSAD) is a code implemented by the authors to simulate the complete process of atom displacement (AD) formation. This code makes use of the Monte Carlo (MC) method to sample all the processes involved in the gamma and electronic radiation transport through matter. The kernel of the calculations applied to this code relies on a model based on an algorithm developed by the authors, which firstly splits out multiple electron elastic scattering events from those single ones at higher scattering angles and then, from the last one, sampling those leading to AD at high transferred atomic recoil energies. Some tests have been developed to check the sampling algorithms with the help of the corresponding theoretical distribution functions. Satisfactory results have been obtained, which indicate the strength of the methods and subroutines used in the code. (Author)

  4. A computer code package for electron transport Monte Carlo simulation

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    1999-01-01

    A computer code package was developed for solving various electron transport problems by Monte Carlo simulation. It is based on condensed history Monte Carlo algorithm. In order to get reliable results over wide ranges of electron energies and target atomic numbers, specific techniques of electron transport were implemented such as: Moliere multiscatter angular distributions, Blunck-Leisegang multiscatter energy distribution, sampling of electron-electron and Bremsstrahlung individual interactions. Path-length and lateral displacement corrections algorithms and the module for computing collision, radiative and total restricted stopping powers and ranges of electrons are also included. Comparisons of simulation results with experimental measurements are finally presented. (author)

  5. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    Science.gov (United States)

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  6. Automatic fission source convergence criteria for Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Kim, Chang Hyo

    2005-01-01

    The Monte Carlo criticality calculations for the multiplication factor and the power distribution in a nuclear system require knowledge of stationary or fundamental-mode fission source distribution (FSD) in the system. Because it is a priori unknown, so-called inactive cycle Monte Carlo (MC) runs are performed to determine it. The inactive cycle MC runs should be continued until the FSD converges to the stationary FSD. Obviously, if one stops them prematurely, the MC calculation results may have biases because the followup active cycles may be run with the non-stationary FSD. Conversely, if one performs the inactive cycle MC runs more than necessary, one is apt to waste computing time because inactive cycle MC runs are used to elicit the fundamental-mode FSD only. In the absence of suitable criteria for terminating the inactive cycle MC runs, one cannot but rely on empiricism in deciding how many inactive cycles one should conduct for a given problem. Depending on the problem, this may introduce biases into Monte Carlo estimates of the parameters one tries to calculate. The purpose of this paper is to present new fission source convergence criteria designed for the automatic termination of inactive cycle MC runs

  7. Effect of phantom dimension variation on Monte Carlo simulation speed and precision

    International Nuclear Information System (INIS)

    Lin Hui; Xu Yuanying; Xu Liangfeng; Li Guoli; Jiang Jia

    2007-01-01

    There is a correlation between Monte Carlo simulation speed and the phantom dimension. The effect of the phantom dimension on the Monte Carlo simulation speed and precision was studied based on a fast Monte Carlo code DPM. The results showed that when the thickness of the phantom was reduced, the efficiency would increase exponentially without compromise of its precision except for the position at the tailor. When the width of the phantom was reduced to outside the penumbra, the effect on the efficiency would be neglectable. However when it was reduced to within the penumbra, the efficiency would be increased at some extent without precision loss. This result was applied to a clinic head case, and the remarkable increased efficiency was acquired. (authors)

  8. Monte Carlo Simulations of Compressible Ising Models: Do We Understand Them?

    Science.gov (United States)

    Landau, D. P.; Dünweg, B.; Laradji, M.; Tavazza, F.; Adler, J.; Cannavaccioulo, L.; Zhu, X.

    Extensive Monte Carlo simulations have begun to shed light on our understanding of phase transitions and universality classes for compressible Ising models. A comprehensive analysis of a Landau-Ginsburg-Wilson hamiltonian for systems with elastic degrees of freedom resulted in the prediction that there should be four distinct cases that would have different behavior, depending upon symmetries and thermodynamic constraints. We shall provide an account of the results of careful Monte Carlo simulations for a simple compressible Ising model that can be suitably modified so as to replicate all four cases.

  9. Study of cold neutron sources: Implementation and validation of a complete computation scheme for research reactor using Monte Carlo codes TRIPOLI-4.4 and McStas

    International Nuclear Information System (INIS)

    Campioni, Guillaume; Mounier, Claude

    2006-01-01

    The main goal of the thesis about studies of cold neutrons sources (CNS) in research reactors was to create a complete set of tools to design efficiently CNS. The work raises the problem to run accurate simulations of experimental devices inside reactor reflector valid for parametric studies. On one hand, deterministic codes have reasonable computation times but introduce problems for geometrical description. On the other hand, Monte Carlo codes give the possibility to compute on precise geometry, but need computation times so important that parametric studies are impossible. To decrease this computation time, several developments were made in the Monte Carlo code TRIPOLI-4.4. An uncoupling technique is used to isolate a study zone in the complete reactor geometry. By recording boundary conditions (incoming flux), further simulations can be launched for parametric studies with a computation time reduced by a factor 60 (case of the cold neutron source of the Orphee reactor). The short response time allows to lead parametric studies using Monte Carlo code. Moreover, using biasing methods, the flux can be recorded on the surface of neutrons guides entries (low solid angle) with a further gain of running time. Finally, the implementation of a coupling module between TRIPOLI- 4.4 and the Monte Carlo code McStas for research in condensed matter field gives the possibility to obtain fluxes after transmission through neutrons guides, thus to have the neutron flux received by samples studied by scientists of condensed matter. This set of developments, involving TRIPOLI-4.4 and McStas, represent a complete computation scheme for research reactors: from nuclear core, where neutrons are created, to the exit of neutrons guides, on samples of matter. This complete calculation scheme is tested against ILL4 measurements of flux in cold neutron guides. (authors)

  10. Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer

    Directory of Open Access Journals (Sweden)

    Granroth G.E.

    2015-01-01

    Full Text Available Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS of Oak Ridge National Laboratory (ORNL, has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores. This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.

  11. Direct Simulation Monte Carlo Application of the Three Dimensional Forced Harmonic Oscillator Model

    Science.gov (United States)

    2017-12-07

    NUMBER (Include area code) 07 December 2017 Journal Article 24 February 2017 - 31 December 2017 Direct Simulation Monte Carlo Application of the...is proposed. The implementation employs precalculated lookup tables for transition probabilities and is suitable for the direct simulation Monte Carlo...method. It takes into account the microscopic reversibility between the excitation and deexcitation processes , and it satisfies the detailed balance

  12. Monte Carlo simulation of hybrid systems: An example

    International Nuclear Information System (INIS)

    Bacha, F.; D'Alencon, H.; Grivelet, J.; Jullien, E.; Jejcic, A.; Maillard, J.; Silva, J.; Zukanovich, R.; Vergnes, J.

    1997-01-01

    Simulation of hybrid systems needs tracking of particles from the GeV (incident proton beam) range down to a fraction of eV (thermic neutrons). We show how a GEANT based Monte-Carlo program can achieve this, with a realistic computer time and accompanying tools. An example of a dedicated original actinide burner is simulated with this chain. 8 refs., 5 figs

  13. Monte Carlo and Quasi-Monte Carlo Sampling

    CERN Document Server

    Lemieux, Christiane

    2009-01-01

    Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.

  14. Monte-Carlo Simulation of 3H(γ, pnn and 3He(γ, ppn Experiments at HIγS★

    Directory of Open Access Journals (Sweden)

    Han Z.

    2016-01-01

    Full Text Available We are developing an experiment to measure the two and three-body (γ, p differential cross sections (DCS for 3H and 3He. These data will be used to determine the 1S0 nn scattering length (ann and np scattering length (anp respectively. This paper describes features of the Monte-Carlo (MC simulation that will aid in the optimization of the experimental design and the data analysis approach.

  15. Monte Carlo simulation experiments on box-type radon dosimeter

    International Nuclear Information System (INIS)

    Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-01-01

    Epidemiological studies show that inhalation of radon gas ( 222 Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222 Rn concentrations (Bq/m 3 ) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η int ) and alpha hit efficiency (η hit ). The η int depends upon only on the dimensions of the dosimeter and η hit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon

  16. Monte Carlo simulation experiments on box-type radon dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-11-11

    Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper

  17. General purpose code for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wilcke, W.W.

    1983-01-01

    A general-purpose computer called MONTHY has been written to perform Monte Carlo simulations of physical systems. To achieve a high degree of flexibility the code is organized like a general purpose computer, operating on a vector describing the time dependent state of the system under simulation. The instruction set of the computer is defined by the user and is therefore adaptable to the particular problem studied. The organization of MONTHY allows iterative and conditional execution of operations

  18. Optical coherence tomography: Monte Carlo simulation and improvement by optical amplification

    DEFF Research Database (Denmark)

    Tycho, Andreas

    2002-01-01

    An advanced novel Monte Carlo simulation model of the detection process of an optical coherence tomography (OCT) system is presented. For the first time it is shown analytically that the applicability of the incoherent Monte Carlo approach to model the heterodyne detection process of an OCT system...... is firmly justified. This is obtained by calculating the heterodyne mixing of the reference and sample beams in a plane conjugate to the discontinuity in the sample probed by the system. Using this approach, a novel expression for the OCT signal is derived, which only depends uopon the intensity...... flexibility of Monte Carlo simulations, this new model is demonstrated to be excellent as a numerical phantom, i.e., as a substitute for otherwise difficult experiments. Finally, a new model of the signal-to-noise ratio (SNR) of an OCT system with optical amplification of the light reflected from the sample...

  19. Multiscale modelling of precipitation in concentrated alloys: from atomistic Monte Carlo simulations to cluster dynamics I thermodynamics

    Science.gov (United States)

    Lépinoux, J.; Sigli, C.

    2018-01-01

    In a recent paper, the authors showed how the clusters free energies are constrained by the coagulation probability, and explained various anomalies observed during the precipitation kinetics in concentrated alloys. This coagulation probability appeared to be a too complex function to be accurately predicted knowing only the cluster distribution in Cluster Dynamics (CD). Using atomistic Monte Carlo (MC) simulations, it is shown that during a transformation at constant temperature, after a short transient regime, the transformation occurs at quasi-equilibrium. It is proposed to use MC simulations until the system quasi-equilibrates then to switch to CD which is mean field but not limited by a box size like MC. In this paper, we explain how to take into account the information available before the quasi-equilibrium state to establish guidelines to safely predict the cluster free energies.

  20. Monte Carlo simulation for radiographic applications

    International Nuclear Information System (INIS)

    Tillack, G.R.; Bellon, C.

    2003-01-01

    Standard radiography simulators are based on the attenuation law complemented by built-up-factors (BUF) to describe the interaction of radiation with material. The assumption of BUF implies that scattered radiation reduces only the contrast in radiographic images. This simplification holds for a wide range of applications like weld inspection as known from practical experience. But only a detailed description of the different underlying interaction mechanisms is capable to explain effects like mottling or others that every radiographer has experienced in practice. The application of Monte Carlo models is capable to handle primary and secondary interaction mechanisms contributing to the image formation process like photon interactions (absorption, incoherent and coherent scattering including electron-binding effects, pair production) and electron interactions (electron tracing including X-Ray fluorescence and Bremsstrahlung production). It opens up possibilities like the separation of influencing factors and the understanding of the functioning of intensifying screen used in film radiography. The paper discusses the opportunities in applying the Monte Carlo method to investigate special features in radiography in terms of selected examples. (orig.) [de

  1. PC-based process distribution to solve iterative Monte Carlo simulations in physical dosimetry

    International Nuclear Information System (INIS)

    Leal, A.; Sanchez-Doblado, F.; Perucha, M.; Rincon, M.; Carrasco, E.; Bernal, C.

    2001-01-01

    A distribution model to simulate physical dosimetry measurements with Monte Carlo (MC) techniques has been developed. This approach is indicated to solve the simulations where there are continuous changes of measurement conditions (and hence of the input parameters) such as a TPR curve or the estimation of the resolution limit of an optimal densitometer in the case of small field profiles. As a comparison, a high resolution scan for narrow beams with no iterative process is presented. The model has been installed on a network PCs without any resident software. The only requirement for these PCs has been a small and temporal Linux partition in the hard disks and to be connecting by the net with our server PC. (orig.)

  2. SIMULACIÓN DE MONTE CARLO APLICADA A LA ESTIMACIÓN DE DEPRESIONES RÁPIDAS DE LA TENSIÓN EN REDES ELÉCTRICAS MONTE CARLO SIMULATION APPLIED TO THE ESTIMATION OF VOLTAGE DIPS IN ELECTRIC NETWORKS

    Directory of Open Access Journals (Sweden)

    Miguel Arias Albornoz

    2008-09-01

    Full Text Available En este trabajo se aplica el método de simulación de Monte Carlo (MC para estimar el número de depresiones rápidas de tensión (dips esperados en barras de una red eléctrica. Las estimaciones obtenidas a través de MC se comparan con los resultados de otro método de cálculo conocido como Método de Posiciones de Falla (MPF. Entre los resultados se muestra tanto la convergencia del algoritmo MC a los valores de largo plazo del método MPF como la distribución completa de frecuencias para diferentes eventos, lo cual representa información valiosa para apoyar la toma de decisiones sobre el empleo de equipos sensibles a este tipo de perturbación.In this work, the Monte Carlo simulation method (MC is applied to estimate the number of expected voltage dips in the nodes of an electric network. The estimations obtained through MC are compared with the results of another method of calculation, known as Failure Position Method (MPF. In the results, both the convergence of the algorithm with the long-term values of the MPF method and the complete distribution of frequencies for different events are shown. This represents valuable information to support the decision-making process for equipment that is sensitive to this type of perturbation.

  3. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yani, Sitti; Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam; Rhani, Moh. Fadhillah

    2015-01-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm 3 , 1 × 1 × 0.5 cm 3 , and 1 × 1 × 0.8 cm 3 . The 1 × 10 9 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d max from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm 3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm 3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important

  4. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  5. Monte Carlo Molecular Simulation with Isobaric-Isothermal and Gibbs-NPT Ensembles

    KAUST Repository

    Du, Shouhong

    2012-01-01

    This thesis presents Monte Carlo methods for simulations of phase behaviors of Lennard-Jones fluids. The isobaric-isothermal (NPT) ensemble and Gibbs-NPT ensemble are introduced in detail. NPT ensemble is employed to determine the phase diagram of pure component. The reduced simulation results are verified by comparison with the equation of state by by Johnson et al. and results with L-J parameters of methane agree considerably with the experiment measurements. We adopt the blocking method for variance estimation and error analysis of the simulation results. The relationship between variance and number of Monte Carlo cycles, error propagation and Random Number Generator performance are also investigated. We review the Gibbs-NPT ensemble employed for phase equilibrium of binary mixture. The phase equilibrium is achieved by performing three types of trial move: particle displacement, volume rearrangement and particle transfer. The simulation models and the simulation details are introduced. The simulation results of phase coexistence for methane and ethane are reported with comparison of the experimental data. Good agreement is found for a wide range of pressures. The contribution of this thesis work lies in the study of the error analysis with respect to the Monte Carlo cycles and number of particles in some interesting aspects.

  6. Monte Carlo Molecular Simulation with Isobaric-Isothermal and Gibbs-NPT Ensembles

    KAUST Repository

    Du, Shouhong

    2012-05-01

    This thesis presents Monte Carlo methods for simulations of phase behaviors of Lennard-Jones fluids. The isobaric-isothermal (NPT) ensemble and Gibbs-NPT ensemble are introduced in detail. NPT ensemble is employed to determine the phase diagram of pure component. The reduced simulation results are verified by comparison with the equation of state by by Johnson et al. and results with L-J parameters of methane agree considerably with the experiment measurements. We adopt the blocking method for variance estimation and error analysis of the simulation results. The relationship between variance and number of Monte Carlo cycles, error propagation and Random Number Generator performance are also investigated. We review the Gibbs-NPT ensemble employed for phase equilibrium of binary mixture. The phase equilibrium is achieved by performing three types of trial move: particle displacement, volume rearrangement and particle transfer. The simulation models and the simulation details are introduced. The simulation results of phase coexistence for methane and ethane are reported with comparison of the experimental data. Good agreement is found for a wide range of pressures. The contribution of this thesis work lies in the study of the error analysis with respect to the Monte Carlo cycles and number of particles in some interesting aspects.

  7. Monte Carlo simulation of radiation streaming from a radioactive material shipping cask

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Schwarz, R.A.; Tang, J.S.

    1996-01-01

    Simulated detection of gamma radiation streaming from a radioactive material shipping cask have been performed with the Monte Carlo codes MCNP4A and MORSE-SGC/S. Despite inherent difficulties in simulating deep penetration of radiation and streaming, the simulations have yielded results that agree within one order of magnitude with the radiation survey data, with reasonable statistics. These simulations have also provided insight into modeling radiation detection, notably on location and orientation of the radiation detector with respect to photon streaming paths, and on techniques used to reduce variance in the Monte Carlo calculations. 13 refs., 4 figs., 2 tabs

  8. Microcanonical Monte Carlo approach for computing melting curves by atomistic simulations

    OpenAIRE

    Davis, Sergio; Gutiérrez, Gonzalo

    2017-01-01

    We report microcanonical Monte Carlo simulations of melting and superheating of a generic, Lennard-Jones system starting from the crystalline phase. The isochoric curve, the melting temperature $T_m$ and the critical superheating temperature $T_{LS}$ obtained are in close agreement (well within the microcanonical temperature fluctuations) with standard molecular dynamics one-phase and two-phase methods. These results validate the use of microcanonical Monte Carlo to compute melting points, a ...

  9. Monte Carlo simulation of Touschek effect

    Directory of Open Access Journals (Sweden)

    Aimin Xiao

    2010-07-01

    Full Text Available We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.

  10. Applying graphics processor units to Monte Carlo dose calculation in radiation therapy

    Directory of Open Access Journals (Sweden)

    Bakhtiari M

    2010-01-01

    Full Text Available We investigate the potential in using of using a graphics processor unit (GPU for Monte-Carlo (MC-based radiation dose calculations. The percent depth dose (PDD of photons in a medium with known absorption and scattering coefficients is computed using a MC simulation running on both a standard CPU and a GPU. We demonstrate that the GPU′s capability for massive parallel processing provides a significant acceleration in the MC calculation, and offers a significant advantage for distributed stochastic simulations on a single computer. Harnessing this potential of GPUs will help in the early adoption of MC for routine planning in a clinical environment.

  11. Monte Carlo simulation of virtual compton scattering at MAMI

    International Nuclear Information System (INIS)

    D'Hose, N.; Ducret, J.E.; Gousset, TH.; Guichon, P.A.M.; Kerhoas, S.; Lhuillier, D.; Marchand, C.; Marchand, D.; Martino, J.; Mougey, J.; Roche, J.; Vanderhaeghen, M.; Vernin, P.; Bohm, H.; Distler, M.; Edelhoff, R.; Friedrich, J.M.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merkel, H.; Merle, K.; Neuhausen, R.; Pospischil, TH.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, TH.; Wolf, S.; Hyde-Wright, CH.; Boeglin, W.U.; Van de Wiele, J.

    1996-01-01

    The Monte Carlo simulation developed specially for the VCS experiments taking place at MAMI in fully described. This simulation can generate events according to the Bethe-Heitler + Born cross section behaviour and takes into account resolution deteriorating effects. It is used to determine solid angles for the various experimental settings. (authors)

  12. Monte Carlo Production Management at CMS

    CERN Document Server

    Boudoul, G.; Pol, A; Srimanobhas, P; Vlimant, J R; Franzoni, Giovanni

    2015-01-01

    The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events.During the runI of LHC (2010-2012), CMS has produced over 12 Billion simulated events,organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up).In order toaggregate the information needed for the configuration and prioritization of the events production,assure the book-keeping and of all the processing requests placed by the physics analysis groups,and to interface with the CMS production infrastructure,the web-based service Monte Carlo Management (McM) has been developed and put in production in 2012.McM is based on recent server infrastructure technology (CherryPy + java) and relies on a CouchDB database back-end.This contribution will coverthe one and half year of operational experience managing samples of simulated events for CMS,the evolution of its functionalitiesand the extension of its capabi...

  13. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)

    2017-04-01

    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)

  14. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    Science.gov (United States)

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  15. McStas 1.1. A freeware package for neutron Monte Carlo ray-tracing simulations

    International Nuclear Information System (INIS)

    Lefmann, K.; Nielsen, K.

    1999-01-01

    Neutron simulation is becoming an indispensable tool for neutron instrument design. At Risoe National Laboratory, a user-friendly, versatile, and fast simulation package, McStas has been developed, which may be freely downloaded from our website. An instrument is described in the McStas meta-language and is composed of elements from the McStas component library, which is under constant development and debugging by both the users and us. The McStas front- and back-ends take care of performing the simulations and displaying their results, respectively. McStas 1.1 facilities detailed simulations of complicated triple-axis instruments like the Riso RITA spectrometer, and it is equally well equipped for time-of flight spectrometers. At ECNS'99, a brief tutorial of McStas including a few on-line demonstrations is presented. Further, results from the latest simulation work in the growing McStas user group are presented and the future of this project is discussed. (author)

  16. Monte Carlo simulation for the design of industrial gamma-ray transmission tomography

    International Nuclear Information System (INIS)

    Kim, Jongbum; Jung, Sunghee; Moon, Jinho; Kwon, Taekyong; Cho, Gyuseong

    2011-01-01

    The Monte Carlo simulation and experiment were carried out for a large-scale industrial gamma ray tomographic scanning geometry. The geometry of the tomographic system has a moving source with 16 stationary detectors. This geometry is advantageous for the diagnosis of a large-scale industrial plant. The simulation data was carried out for the phantom with 32 views, 16 detectors, and a different energy bin. The simulation data was processed to be used for image reconstruction. Image reconstruction was performed by a Diagonally-Scaled Gradient-Ascent algorithm for simulation data. Experiments were conducted in a 78 cm diameter column filled with polypropylene grains. Sixteen 0.5-inch-thick and 1 inch long NaI(Tl) cylindrical detectors, and 20 mCi of 137 Cs radioactive source were used. The experimental results were compared to the simulation data. The experimental results were similar to Monte Carlo simulation results. This result showed that the Monte Carlo simulation is useful for predicting the result of the industrial gamma tomographic scan method And it can also give a solution for designing the industrial gamma tomography system and preparing the field experiment. (author)

  17. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Vitisha [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sarkar, P.K., E-mail: pksarkar02@gmail.com [Manipal Centre for Natural Sciences, Manipal University, Manipal 576104 (India)

    2014-02-11

    A spectrum unfolding technique GAMCD (Genetic Algorithm and Monte Carlo based spectrum Deconvolution) has been developed using the genetic algorithm methodology within the framework of Monte Carlo simulations. Each Monte Carlo history starts with initial solution vectors (population) as randomly generated points in the hyper dimensional solution space that are related to the measured data by the response matrix of the detection system. The transition of the solution points in the solution space from one generation to another are governed by the genetic algorithm methodology using the techniques of cross-over (mating) and mutation in a probabilistic manner adding new solution points to the population. The population size is kept constant by discarding solutions having lesser fitness values (larger differences between measured and calculated results). Solutions having the highest fitness value at the end of each Monte Carlo history are averaged over all histories to obtain the final spectral solution. The present method shows promising results in neutron spectrum unfolding for both under-determined and over-determined problems with simulated test data as well as measured data when compared with some existing unfolding codes. An attractive advantage of the present method is the independence of the final spectra from the initial guess spectra.

  18. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Suman, Vitisha; Sarkar, P.K.

    2014-01-01

    A spectrum unfolding technique GAMCD (Genetic Algorithm and Monte Carlo based spectrum Deconvolution) has been developed using the genetic algorithm methodology within the framework of Monte Carlo simulations. Each Monte Carlo history starts with initial solution vectors (population) as randomly generated points in the hyper dimensional solution space that are related to the measured data by the response matrix of the detection system. The transition of the solution points in the solution space from one generation to another are governed by the genetic algorithm methodology using the techniques of cross-over (mating) and mutation in a probabilistic manner adding new solution points to the population. The population size is kept constant by discarding solutions having lesser fitness values (larger differences between measured and calculated results). Solutions having the highest fitness value at the end of each Monte Carlo history are averaged over all histories to obtain the final spectral solution. The present method shows promising results in neutron spectrum unfolding for both under-determined and over-determined problems with simulated test data as well as measured data when compared with some existing unfolding codes. An attractive advantage of the present method is the independence of the final spectra from the initial guess spectra

  19. Sequential Monte Carlo simulation of collision risk in free flight air traffic

    NARCIS (Netherlands)

    Blom, H.A.P.; Bakker, G.; Krystul, J.; Everdij, M.H.C.; Klein Obbink, B.; Klompstra, M.B.

    2005-01-01

    Within HYBRIDGE a novel approach in speeding up Monte Carlo simulation of rare events has been developed. In the current report this method is extended for application to simulating collisions with a stochastic dynamical model of an air traffic operational concept. Subsequently this extended Monte

  20. Monte Carlo modelling of Schottky diode for rectenna simulation

    Science.gov (United States)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  1. Monte-Carlo simulation on the cold neutron guides at CARR

    International Nuclear Information System (INIS)

    Guo Liping; Wang Hongli; Yang Tonghua; Cheng Zhixu; Liu Yi

    2003-01-01

    The designs of the two cold neutron guides to be built at China Advanced Research Reactor (CARR) are simulated with Monte-Carlo simulation software VITESS. Various parameters of the guides, e.g. transmission efficiency, neutron flux, divergence, etc., are obtained. (author)

  2. Plasma excitation processes in flue gas simulated with Monte Carlo electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tas, M.A.; Veldhuizen, E.M. van; Rutgers, W.R. [Eindhoven University of Technology (Netherlands). Div. of Electrical Energy Systems

    1997-06-07

    The excitation of gas molecules in flue gas by electron impact is calculated with a Monte Carlo (MC) algorithm for electron dynamics in partially ionized gases. The MC algorithm is straightforward for any mixture of molecules for which cross sections are available. Electron drift is simulated in the first case for homogeneous electric fields and in the second case for secondary electrons which are produced by electron-beam irradiation. The electron energy distribution function {epsilon}-bar{sub {theta}}, V-bar{sub d}, {lambda}-bar, the energy branching and the rate of excitation are calculated for standard gas mixtures of Ar-N{sub 2}, O{sub 2} and H{sub 2}O. These fundamental process parameters are needed for the study of reactions to remove NO{sub x} from flue gas. The calculated results indicate that the production of highly excited molecules in the high electric field of a streamer corona discharge has an efficiency similar to that of electron-beam irradiation. (author)

  3. Risk Consideration and Cost Estimation in Construction Projects Using Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Claudius A. Peleskei

    2015-06-01

    Full Text Available Construction projects usually involve high investments. It is, therefore, a risky adventure for companies as actual costs of construction projects nearly always exceed the planed scenario. This is due to the various risks and the large uncertainty existing within this industry. Determination and quantification of risks and their impact on project costs within the construction industry is described to be one of the most difficult areas. This paper analyses how the cost of construction projects can be estimated using Monte Carlo Simulation. It investigates if the different cost elements in a construction project follow a specific probability distribution. The research examines the effect of correlation between different project costs on the result of the Monte Carlo Simulation. The paper finds out that Monte Carlo Simulation can be a helpful tool for risk managers and can be used for cost estimation of construction projects. The research has shown that cost distributions are positively skewed and cost elements seem to have some interdependent relationships.

  4. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Directory of Open Access Journals (Sweden)

    Lerendegui-Marco J.

    2017-01-01

    Full Text Available Monte Carlo (MC simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1, especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2 of the facility.

  5. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Science.gov (United States)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.; Meo, S. Lo; Massimi, C.; Barbagallo, M.; Colonna, N.; Mancussi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; Gómez-Hornillos, M. B.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1), especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2) of the facility.

  6. Improvements for Monte Carlo burnup calculation

    Energy Technology Data Exchange (ETDEWEB)

    Shenglong, Q.; Dong, Y.; Danrong, S.; Wei, L., E-mail: qiangshenglong@tsinghua.org.cn, E-mail: d.yao@npic.ac.cn, E-mail: songdr@npic.ac.cn, E-mail: luwei@npic.ac.cn [Nuclear Power Inst. of China, Cheng Du, Si Chuan (China)

    2015-07-01

    Monte Carlo burnup calculation is development trend of reactor physics, there would be a lot of work to be done for engineering applications. Based on Monte Carlo burnup code MOI, non-fuel burnup calculation methods and critical search suggestions will be mentioned in this paper. For non-fuel burnup, mixed burnup mode will improve the accuracy of burnup calculation and efficiency. For critical search of control rod position, a new method called ABN based on ABA which used by MC21 will be proposed for the first time in this paper. (author)

  7. Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields

    NARCIS (Netherlands)

    Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.

    2011-01-01

    The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with

  8. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Koong, Albert C; Tantawi, Sami; Dolgashev, Valery; Maxim, Peter G; Loo, Billy W

    2015-04-01

    To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0-6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4-6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0-4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. The authors demonstrate that relative dose distributions for VHEE beams of 50-70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  9. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  10. Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems

    International Nuclear Information System (INIS)

    Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.

    2001-01-01

    Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed

  11. Monte Carlo simulation of tomography techniques using the platform Gate

    International Nuclear Information System (INIS)

    Barbouchi, Asma

    2007-01-01

    Simulations play a key role in functional imaging, with applications ranging from scanner design, scatter correction, protocol optimisation. GATE (Geant4 for Application Tomography Emission) is a platform for Monte Carlo Simulation. It is based on Geant4 to generate and track particles, to model geometry and physics process. Explicit modelling of time includes detector motion, time of flight, tracer kinetics. Interfaces to voxellised models and image reconstruction packages improve the integration of GATE in the global modelling cycle. In this work Monte Carlo simulations are used to understand and optimise the gamma camera's performances. We study the effect of the distance between source and collimator, the diameter of the holes and the thick of the collimator on the spatial resolution, energy resolution and efficiency of the gamma camera. We also study the reduction of simulation's time and implement a model of left ventricle in GATE. (Author). 7 refs

  12. Monte Carlo simulation and gaussian broaden techniques for full energy peak of characteristic X-ray in EDXRF

    International Nuclear Information System (INIS)

    Li Zhe; Liu Min; Shi Rui; Wu Xuemei; Tuo Xianguo

    2012-01-01

    Background: Non-standard analysis (NSA) technique is one of the most important development directions of energy dispersive X-ray fluorescence (EDXRF). Purpose: This NSA technique is mainly based on Monte Carlo (MC) simulation and full energy peak broadening, which were studied preliminarily in this paper. Methods: A kind of MC model was established for Si-PIN based EDXRF setup, and the flux spectra were obtained for iron ore sample. Finally, the flux spectra were broadened by Gaussian broaden parameters calculated by a new method proposed in this paper, and the broadened spectra were compared with measured energy spectra. Results: MC method can be used to simulate EDXRF measurement, and can correct the matrix effects among elements automatically. Peak intensities can be obtained accurately by using the proposed Gaussian broaden technique. Conclusions: This study provided a key technique for EDXRF to achieve advanced NSA technology. (authors)

  13. On an efficient multiple time step Monte Carlo simulation of the SABR model

    NARCIS (Netherlands)

    Leitao Rodriguez, A.; Grzelak, L.A.; Oosterlee, C.W.

    2017-01-01

    In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step Monte Carlo method that we proposed in an accompanying paper Leitao et al. [Appl. Math.

  14. JMCT Monte Carlo simulation analysis of full core PWR Pin-By-Pin and shielding

    International Nuclear Information System (INIS)

    Deng, L.; Li, G.; Zhang, B.; Shangguan, D.; Ma, Y.; Hu, Z.; Fu, Y.; Li, R.; Hu, X.; Cheng, T.; Shi, D.

    2015-01-01

    This paper describes the application of the JMCT Monte Carlo code to the simulation of Kord Smith Challenge H-M model, BEAVRS model and Chinese SG-III model. For H-M model, the 6.3624 millions tally regions and the 98.3 billion neutron histories do. The detailed pin flux and energy deposition densities obtain. 95% regions have less 1% standard deviation. For BEAVRS model, firstly, we performed the neutron transport calculation of 398 axial planes in the Hot Zero Power (HZP) status. Almost the same results with MC21 and OpenMC results are achieved. The detailed pin-power density distribution and standard deviation are shown. Then, we performed the calculation of ten depletion steps in 30 axial plane cases. The depletion regions exceed 1.5 million and 12,000 processors uses. Finally, the Chinese SG-III laser model is simulated. The neutron and photon flux distributions are given, respectively. The results show that the JMCT code well suits for extremely large reactor and shielding simulation. (author)

  15. A Fast Monte Carlo Simulation for the International Linear Collider Detector

    International Nuclear Information System (INIS)

    Furse, D.

    2005-01-01

    The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptions of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results

  16. Monte Carlo simulation models of breeding-population advancement.

    Science.gov (United States)

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  17. A New Approach to Monte Carlo Simulations in Statistical Physics

    Science.gov (United States)

    Landau, David P.

    2002-08-01

    Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  18. Adaptive Multilevel Monte Carlo Simulation

    KAUST Repository

    Hoel, H

    2011-08-23

    This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).

  19. Commissioning of a Monte Carlo treatment planning system for clinical use in radiation therapy; Evaluacion de un sistema de planificacion Monte Carlo de uso clinico para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparcio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrila, J.

    2016-10-01

    The commissioning procedures of a Monte Carlo treatment planning system (MC) for photon beams from a dedicated stereotactic body radiosurgery (SBRT) unit has been reported in this document. XVMC has been the MC Code available in the treatment planning system evaluated (BrainLAB iPlan RT Dose) which is based on Virtual Source Models that simulate the primary and scattered radiation, besides the electronic contamination, using gaussian components for whose modelling are required measurements of dose profiles, percentage depth dose and output factors, performed both in water and in air. The dosimetric accuracy of the particle transport simulation has been analyzed by validating the calculations in homogeneous and heterogeneous media versus measurements made under the same conditions as the dose calculation, and checking the stochastic behaviour of Monte Carlo calculations when using different statistical variances. Likewise, it has been verified how the planning system performs the conversion from dose to medium to dose to water, applying the stopping power ratio water to medium, in the presence of heterogeneities where this phenomenon is relevant, such as high density media (cortical bone). (Author)

  20. Statistical estimation Monte Carlo for unreliability evaluation of highly reliable system

    International Nuclear Information System (INIS)

    Xiao Gang; Su Guanghui; Jia Dounan; Li Tianduo

    2000-01-01

    Based on analog Monte Carlo simulation, statistical Monte Carlo methods for unreliable evaluation of highly reliable system are constructed, including direct statistical estimation Monte Carlo method and weighted statistical estimation Monte Carlo method. The basal element is given, and the statistical estimation Monte Carlo estimators are derived. Direct Monte Carlo simulation method, bounding-sampling method, forced transitions Monte Carlo method, direct statistical estimation Monte Carlo and weighted statistical estimation Monte Carlo are used to evaluate unreliability of a same system. By comparing, weighted statistical estimation Monte Carlo estimator has smallest variance, and has highest calculating efficiency

  1. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  2. Taylor-expansion Monte Carlo simulations of classical fluids in the canonical and grand canonical ensemble

    International Nuclear Information System (INIS)

    Schoen, M.

    1995-01-01

    In this article the Taylor-expansion method is introduced by which Monte Carlo (MC) simulations in the canonical ensemble can be speeded up significantly, Substantial gains in computational speed of 20-40% over conventional implementations of the MC technique are obtained over a wide range of densities in homogeneous bulk phases. The basic philosophy behind the Taylor-expansion method is a division of the neighborhood of each atom (or molecule) into three different spatial zones. Interactions between atoms belonging to each zone are treated at different levels of computational sophistication. For example, only interactions between atoms belonging to the primary zone immediately surrounding an atom are treated explicitly before and after displacement. The change in the configurational energy contribution from secondary-zone interactions is obtained from the first-order term of a Taylor expansion of the configurational energy in terms of the displacement vector d. Interactions with atoms in the tertiary zone adjacent to the secondary zone are neglected throughout. The Taylor-expansion method is not restricted to the canonical ensemble but may be employed to enhance computational efficiency of MC simulations in other ensembles as well. This is demonstrated for grand canonical ensemble MC simulations of an inhomogeneous fluid which can be performed essentially on a modern personal computer

  3. Monte Carlo simulation: tool for the calibration in analytical determination of radionuclides

    International Nuclear Information System (INIS)

    Gonzalez, Jorge A. Carrazana; Ferrera, Eduardo A. Capote; Gomez, Isis M. Fernandez; Castro, Gloria V. Rodriguez; Ricardo, Niury Martinez

    2013-01-01

    This work shows how is established the traceability of the analytical determinations using this calibration method. Highlights the advantages offered by Monte Carlo simulation for the application of corrections by differences in chemical composition, density and height of the samples analyzed. Likewise, the results obtained by the LVRA in two exercises organized by the International Agency for Atomic Energy (IAEA) are presented. In these exercises (an intercomparison and a proficiency test) all reported analytical results were obtained based on calibrations in efficiency by Monte Carlo simulation using the DETEFF program

  4. Application of Macro Response Monte Carlo method for electron spectrum simulation

    International Nuclear Information System (INIS)

    Perles, L.A.; Almeida, A. de

    2007-01-01

    During the past years several variance reduction techniques for Monte Carlo electron transport have been developed in order to reduce the electron computation time transport for absorbed dose distribution. We have implemented the Macro Response Monte Carlo (MRMC) method to evaluate the electron spectrum which can be used as a phase space input for others simulation programs. Such technique uses probability distributions for electron histories previously simulated in spheres (called kugels). These probabilities are used to sample the primary electron final state, as well as the creation secondary electrons and photons. We have compared the MRMC electron spectra simulated in homogeneous phantom against the Geant4 spectra. The results showed an agreement better than 6% in the spectra peak energies and that MRMC code is up to 12 time faster than Geant4 simulations

  5. A New Monte Carlo Neutron Transport Code at UNIST

    International Nuclear Information System (INIS)

    Lee, Hyunsuk; Kong, Chidong; Lee, Deokjung

    2014-01-01

    Monte Carlo neutron transport code named MCS is under development at UNIST for the advanced reactor design and research purpose. This MC code can be used for fixed source calculation and criticality calculation. Continuous energy neutron cross section data and multi-group cross section data can be used for the MC calculation. This paper presents the overview of developed MC code and its calculation results. The real time fixed source calculation ability is also tested in this paper. The calculation results show good agreement with commercial code and experiment. A new Monte Carlo neutron transport code is being developed at UNIST. The MC codes are tested with several benchmark problems: ICSBEP, VENUS-2, and Hoogenboom-Martin benchmark. These benchmarks covers pin geometry to 3-dimensional whole core, and results shows good agreement with reference results

  6. Study of TXRF experimental system by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Costa, Ana Cristina M.; Leitao, Roberta G.; Lopes, Ricardo T.; Anjos, Marcelino J.; Conti, Claudio C.

    2011-01-01

    The Total-Reflection X-ray Fluorescence (TXRF) technique offers unique possibilities to study the concentrations of a wide range of trace elements in various types of samples. Besides that, the TXRF technique is widely used to study the trace elements in biological, medical and environmental samples due to its multielemental character as well as simplicity of sample preparation and quantification methods used. In general the TXRF experimental setup is not simple and might require substantial experimental efforts. On the other hand, in recent years, experimental TXRF portable systems have been developed. It has motivated us to develop our own TXRF portable system. In this work we presented a first step in order to optimize a TXRF experimental setup using Monte Carlo simulation by MCNP code. The results found show that the Monte Carlo simulation method can be used to investigate the development of a TXRF experimental system before its assembly. (author)

  7. Global Monte Carlo Simulation with High Order Polynomial Expansions

    International Nuclear Information System (INIS)

    William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin

    2007-01-01

    The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as 'local' piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi's method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source convergence

  8. Evaluation and characterization of X-ray scattering in tissues and mammographic simulators using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Oliveira, Monica G. Nunes; Braz, Delson; Silva, Regina Cely B. da S.

    2005-01-01

    The computer simulation has been widely used in physical researches by both the viability of the codes and the growth of the power of computers in the last decades. The Monte Carlo simulation program, EGS4 code is a simulation program used in the area of radiation transport. The simulators, surrogate tissues, phantoms are objects used to perform studies on dosimetric quantities and quality testing of images. The simulators have characteristics of scattering and absorption of radiation similar to tissues that make up the body. The aim of this work is to translate the effects of radiation interactions in a real healthy breast tissues, sick and on simulators using the EGS4 Monte Carlo simulation code

  9. MONTE CARLO SIMULATION AND VALUATION: A STOCHASTIC APPROACH SIMULAÇÃO DE MONTE CARLO E VALUATION: UMA ABORDAGEM ESTOCÁSTICA

    Directory of Open Access Journals (Sweden)

    Marcos Roberto Gois de Oliveira

    2013-01-01

    Full Text Available Among the various business valuation methodologies, the discounted cash flow is still the most adopted nowadays on both academic and professional environment. Although many authors support thatmethodology as the most adequate one for business valuation, its projective feature implies in an uncertaintyissue presents in all financial models based on future expectations, the risk that the projected assumptionsdoes not occur. One of the alternatives to measure the risk inherent to the discounted cash flow valuation isto add Monte Carlo Simulation to the deterministic business valuation model in order to create a stochastic model, which can perform a statistic analysis of risk. The objective of this work was to evaluate thepertinence regarding the Monte Carlo Simulation adoption to measure the uncertainty inherent to the business valuation using discounted cash flow, identifying whether the Monte Carlo simulation enhance theaccuracy of this asset pricing methodology. The results of this work assures the operational e icacy ofdiscounted cash flow business valuation using Monte Carlo Simulation, confirming that the adoption of thatmethodology allows a relevant enhancement of the results in comparison with those obtained by using thedeterministic business valuation model.Dentre as diversas metodologias de avaliação de empresas, a avaliação por fluxo de caixa descontadocontinua sendo a mais adotada na atualidade, tanto no meio acadêmico como no profissional. Embora  essametodologia seja considerada por diversos autores como a mais adequada para a avaliação de empresas no contexto atual, seu caráter projetivo remete a um componente de incerteza presente em todos os modelos baseados em expectativas futuras o risco de as premissas de projeção adotadas não se concretizarem. Uma das alternativas para a mensuração do risco inerente à avaliação de empresas pelo fluxo de caixa descontadoconsiste na incorporação da Simulação de Monte

  10. Inhomogeneous Monte Carlo simulation of the vapor-liquid equilibrium of benzene between 300 K and 530 K

    Directory of Open Access Journals (Sweden)

    J.Janeček

    2007-09-01

    Full Text Available The inhomogeneous Monte Carlo technique is used in studying the vapor-liquid interface of benzene in a broad range of temperatures using the TraPPE potential field. The obtained values of the VLE parameters are in good agreement with the experimental values as well as with the results from GEMC simulations. In contrast to the GEMC, within one simulation box the inhomogeneous MC technique also yields information on the structural properties of the interphase between the two phases. The values of the vaporization enthalpy and the vapor pressure very well satisfy the Clausius-Clapeyron equation.

  11. Adjoint electron Monte Carlo calculations

    International Nuclear Information System (INIS)

    Jordan, T.M.

    1986-01-01

    Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment

  12. Monte Carlo simulation and experimental verification of radiotherapy electron beams

    International Nuclear Information System (INIS)

    Griffin, J.; Deloar, H. M.

    2007-01-01

    Full text: Based on fundamental physics and statistics, the Monte Carlo technique is generally accepted as the accurate method for modelling radiation therapy treatments. A Monte Carlo simulation system has been installed, and models of linear accelerators in the more commonly used electron beam modes have been built and commissioned. A novel technique for radiation dosimetry is also being investigated. Combining the advantages of both water tank and solid phantom dosimetry, a hollow, thin walled shell or mask is filled with water and then raised above the natural water surface to produce a volume of water with the desired irregular shape.

  13. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system.

    Science.gov (United States)

    Gjerstad, Karl Idar; Stamnes, Jakob J; Hamre, Børge; Lotsberg, Jon K; Yan, Banghua; Stamnes, Knut

    2003-05-20

    We compare Monte Carlo (MC) and discrete-ordinate radiative-transfer (DISORT) simulations of irradiances in a one-dimensional coupled atmosphere-ocean (CAO) system consisting of horizontal plane-parallel layers. The two models have precisely the same physical basis, including coupling between the atmosphere and the ocean, and we use precisely the same atmospheric and oceanic input parameters for both codes. For a plane atmosphere-ocean interface we find agreement between irradiances obtained with the two codes to within 1%, both in the atmosphere and the ocean. Our tests cover case 1 water, scattering by density fluctuations both in the atmosphere and in the ocean, and scattering by particulate matter represented by a one-parameter Henyey-Greenstein (HG) scattering phase function. The CAO-MC code has an advantage over the CAO-DISORT code in that it can handle surface waves on the atmosphere-ocean interface, but the CAO-DISORT code is computationally much faster. Therefore we use CAO-MC simulations to study the influence of ocean surface waves and propose a way to correct the results of the CAO-DISORT code so as to obtain fast and accurate underwater irradiances in the presence of surface waves.

  14. Monte Carlo simulation of a mammographic test phantom

    International Nuclear Information System (INIS)

    Hunt, R. A.; Dance, D. R.; Pachoud, M.; Carlsson, G. A.; Sandborg, M.; Ullman, G.

    2005-01-01

    A test phantom, including a wide range of mammographic tissue equivalent materials and test details, was imaged on a digital mammographic system. In order to quantify the effect of scatter on the contrast obtained for the test details, calculations of the scatter-to-primary ratio (S/P) have been made using a Monte Carlo simulation of the digital mammographic imaging chain, grid and test phantom. The results show that the S/P values corresponding to the imaging conditions used were in the range 0.084-0.126. Calculated and measured pixel values in different regions of the image were compared as a validation of the model and showed excellent agreement. The results indicate the potential of Monte Carlo methods in the image quality-patient dose process optimisation, especially in the assessment of imaging conditions not available on standard mammographic units. (authors)

  15. GEANT Monte Carlo simulations for the GREAT spectrometer

    International Nuclear Information System (INIS)

    Andreyev, A.N.; Butler, P.A.; Page, R.D.; Appelbe, D.E.; Jones, G.D.; Joss, D.T.; Herzberg, R.-D.; Regan, P.H.; Simpson, J.; Wadsworth, R.

    2004-01-01

    GEANT Monte Carlo simulations for the recently developed GREAT spectrometer are presented. Some novel applications of the spectrometer for γ-ray, conversion-electron and β-decay spectroscopy are discussed. The conversion-electron spectroscopy of heavy nuclei with strongly converted transitions and the extension of the recoil decay tagging method to β-decaying nuclei are considered in detail

  16. Monte Carlo simulation of AB-copolymers with saturating bonds

    DEFF Research Database (Denmark)

    Chertovich, A.C.; Ivanov, V.A.; Khokhlov, A.R.

    2003-01-01

    Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A- and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending...

  17. Comparison of Single-Particle Monte Carlo Simulation with Measured Output Characteristics of an 0.1µm n-MOSFET

    Directory of Open Access Journals (Sweden)

    F. M. Bufler

    2002-01-01

    Full Text Available A comparison between non-selfconsistent single-particle Monte Carlo (MC simulations and measurements of the output characteristics of an 0.1 µm n-MOSFET is presented. First the bulk MC model, which features a new simplified treatment of inelastic acoustic intravalley scattering, is validated by comparison with experimental literature data for mobilities and velocities. The dopant distribution of the MOSFET is obtained from a 2D process simulation, which is calibrated with SIMS and electrical measurements and fine-tuned by a comparison of the measured transfer characteristics in the subthreshold regime with a coupled Schro¨dinger drift-diffusion (DD simulation. Then the quantum effect is replaced by a shift of the work function and the DD, hydrodynamic (HD and MC models are adjusted to reproduce the measured drain current in the linear regime. The results of the three models in the non-linear regime are compared without further adjustment to the measured output characteristics. While good agreement is found for the MC model, the on-current is significantly overestimated by the HD model and underestimated by the DD model.

  18. Massively parallel Monte Carlo. Experiences running nuclear simulations on a large condor cluster

    International Nuclear Information System (INIS)

    Tickner, James; O'Dwyer, Joel; Roach, Greg; Uher, Josef; Hitchen, Greg

    2010-01-01

    The trivially-parallel nature of Monte Carlo (MC) simulations make them ideally suited for running on a distributed, heterogeneous computing environment. We report on the setup and operation of a large, cycle-harvesting Condor computer cluster, used to run MC simulations of nuclear instruments ('jobs') on approximately 4,500 desktop PCs. Successful operation must balance the competing goals of maximizing the availability of machines for running jobs whilst minimizing the impact on users' PC performance. This requires classification of jobs according to anticipated run-time and priority and careful optimization of the parameters used to control job allocation to host machines. To maximize use of a large Condor cluster, we have created a powerful suite of tools to handle job submission and analysis, as the manual creation, submission and evaluation of large numbers (hundred to thousands) of jobs would be too arduous. We describe some of the key aspects of this suite, which has been interfaced to the well-known MCNP and EGSnrc nuclear codes and our in-house PHOTON optical MC code. We report on our practical experiences of operating our Condor cluster and present examples of several large-scale instrument design problems that have been solved using this tool. (author)

  19. Analytical model of the binary multileaf collimator of tomotherapy for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Sterpin, E; Vynckier, S; Salvat, F; Olivera, G H

    2008-01-01

    Helical Tomotherapy (HT) delivers intensity-modulated radiotherapy by the means of many configurations of the binary multi-leaf collimator (MLC). The aim of the present study was to devise a method, which we call the 'transfer function' (TF) method, to perform the transport of particles through the MLC much faster than the time consuming Monte Carlo (MC) simulation and with no significant loss of accuracy. The TF method consists of calculating, for each photon in the phase-space file, the attenuation factor for each leaf (up to three) that the photon passes, assuming straight propagation through closed leaves, and storing these factors in a modified phase-space file. To account for the transport through the MLC in a given configuration, the weight of a photon is simply multiplied by the attenuation factors of the leaves that are intersected by the photon ray and are closed. The TF method was combined with the PENELOPE MC code, and validated with measurements for the three static field sizes available (40x5, 40x2.5 and 40x1 cm 2 ) and for some MLC patterns. The TF method allows a large reduction in computation time, without introducing appreciable deviations from the result of full MC simulations

  20. Monte Carlo simulation: tool for the calibration in analytical determination of radionuclides; Simulacion Monte Carlo: herramienta para la calibracion en determinaciones analiticas de radionucleidos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jorge A. Carrazana; Ferrera, Eduardo A. Capote; Gomez, Isis M. Fernandez; Castro, Gloria V. Rodriguez; Ricardo, Niury Martinez, E-mail: cphr@cphr.edu.cu [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba)

    2013-07-01

    This work shows how is established the traceability of the analytical determinations using this calibration method. Highlights the advantages offered by Monte Carlo simulation for the application of corrections by differences in chemical composition, density and height of the samples analyzed. Likewise, the results obtained by the LVRA in two exercises organized by the International Agency for Atomic Energy (IAEA) are presented. In these exercises (an intercomparison and a proficiency test) all reported analytical results were obtained based on calibrations in efficiency by Monte Carlo simulation using the DETEFF program.

  1. Applications of the Monte Carlo simulation in dosimetry and medical physics problems

    International Nuclear Information System (INIS)

    Rojas C, E. L.

    2010-01-01

    At the present time the computers use to solve important problems extends to all the areas. These areas can be of social, economic, of engineering, of basic and applied science, etc. With and appropriate handling of computation programs and information can be carried out calculations and simulations of real models, to study them and to solve theoretical or application problems. The processes that contain random variables are susceptible of being approached with the Monte Carlo method. This is a numeric method that, thanks to the improvements in the processors of the computers, it can apply in many tasks more than what was made in the principles of their practical application (at the beginning of the decade of 1950). In this work the application of the Monte Carlo method will be approached in the simulation of the radiation interaction with the matter, to investigate dosimetric aspects of some problems that exist in the medical physics area. Also, contain an introduction about some historical data and some general concepts related with the Monte Carlo simulation are revised. (Author)

  2. Estimation of computed tomography dose index in cone beam computed tomography: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry; Toncheva, Greta; Yoo, Sua; Yin, Fang-Fang; Frush, Donald

    2010-05-01

    To address the lack of accurate dose estimation method in cone beam computed tomography (CBCT), we performed point dose metal oxide semiconductor field-effect transistor (MOSFET) measurements and Monte Carlo (MC) simulations. A Varian On-Board Imager (OBI) was employed to measure point doses in the polymethyl methacrylate (PMMA) CT phantoms with MOSFETs for standard and low dose modes. A MC model of the OBI x-ray tube was developed using BEAMnrc/EGSnrc MC system and validated by the half value layer, x-ray spectrum and lateral and depth dose profiles. We compared the weighted computed tomography dose index (CTDIw) between MOSFET measurements and MC simulations. The CTDIw was found to be 8.39 cGy for the head scan and 4.58 cGy for the body scan from the MOSFET measurements in standard dose mode, and 1.89 cGy for the head and 1.11 cGy for the body in low dose mode, respectively. The CTDIw from MC compared well to the MOSFET measurements within 5% differences. In conclusion, a MC model for Varian CBCT has been established and this approach may be easily extended from the CBCT geometry to multi-detector CT geometry.

  3. Optimizing maintenance and repair policies via a combination of genetic algorithms and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zio, E.

    2000-01-01

    In this paper we present an optimization approach based on the combination of a Genetic Algorithms maximization procedure with a Monte Carlo simulation. The approach is applied within the context of plant logistic management for what concerns the choice of maintenance and repair strategies. A stochastic model of plant operation is developed from the standpoint of its reliability/availability behavior, i.e. of the failure/repair/maintenance processes of its components. The model is evaluated by Monte Carlo simulation in terms of economic costs and revenues of operation. The flexibility of the Monte Carlo method allows us to include several practical aspects such as stand-by operation modes, deteriorating repairs, aging, sequences of periodic maintenances, number of repair teams available for different kinds of repair interventions (mechanical, electronic, hydraulic, etc.), components priority rankings. A genetic algorithm is then utilized to optimize the components maintenance periods and number of repair teams. The fitness function object of the optimization is a profit function which inherently accounts for the safety and economic performance of the plant and whose value is computed by the above Monte Carlo simulation model. For an efficient combination of Genetic Algorithms and Monte Carlo simulation, only few hundreds Monte Carlo histories are performed for each potential solution proposed by the genetic algorithm. Statistical significance of the results of the solutions of interest (i.e. the best ones) is then attained exploiting the fact that during the population evolution the fit chromosomes appear repeatedly many times. The proposed optimization approach is applied on two case studies of increasing complexity

  4. Lectures on Monte Carlo methods

    CERN Document Server

    Madras, Neal

    2001-01-01

    Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati

  5. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  6. Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models

    Science.gov (United States)

    Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann

    2009-02-01

    Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.

  7. Monte Carlo physical dosimetry for small photon beams

    International Nuclear Information System (INIS)

    Perucha, M.; Rincon, M.; Leal, A.; Carrasco, E.; Sanchez-Doblado, F.; Hospital Univ. Virgen Macarena, Sevilla; Nunez, L.; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L.

    2001-01-01

    Small field dosimetry is complicated due to the lack of electronic equilibrium and to the high steep dose gradients. This works compares PDD curves, profiles and output factors measured with conventional detectors (film, diode, TLD and ionisation chamber) and calculated with Monte Carlo. The 6 MV nominal energy from a Philips SL-18 linac has been simulated by using the OMEGA code. MC calculation reveals itself as a convenient method to validate OF and profiles in special conditions, such as small fields. (orig.)

  8. A general purpose code for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Rochester Univ., NY

    1984-01-01

    A general-purpose computer code MONTHY has been written to perform Monte Carlo simulations of physical systems. To achieve a high degree of flexibility the code is organized like a general purpose computer, operating on a vector describing the time dependent state of the system under simulation. The instruction set of the 'computer' is defined by the user and is therefore adaptable to the particular problem studied. The organization of MONTHY allows iterative and conditional execution of operations. (orig.)

  9. Monte Carlo simulation of a medical linear accelerator for generation of phase spaces

    International Nuclear Information System (INIS)

    Oliveira, Alex C.H.; Santana, Marcelo G.; Lima, Fernando R.A.; Vieira, Jose W.

    2013-01-01

    Radiotherapy uses various techniques and equipment for local treatment of cancer. The equipment most often used in radiotherapy to the patient irradiation are linear accelerators (Linacs) which produce beams of X-rays in the range 5-30 MeV. Among the many algorithms developed over recent years for evaluation of dose distributions in radiotherapy planning, the algorithms based on Monte Carlo methods have proven to be very promising in terms of accuracy by providing more realistic results. The MC methods allow simulating the transport of ionizing radiation in complex configurations, such as detectors, Linacs, phantoms, etc. The MC simulations for applications in radiotherapy are divided into two parts. In the first, the simulation of the production of the radiation beam by the Linac is performed and then the phase space is generated. The phase space contains information such as energy, position, direction, etc. og millions of particles (photos, electrons, positrons). In the second part the simulation of the transport of particles (sampled phase space) in certain configurations of irradiation field is performed to assess the dose distribution in the patient (or phantom). The objective of this work is to create a computational model of a 6 MeV Linac using the MC code Geant4 for generation of phase spaces. From the phase space, information was obtained to asses beam quality (photon and electron spectra and two-dimensional distribution of energy) and analyze the physical processes involved in producing the beam. (author)

  10. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  11. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.

    Science.gov (United States)

    Wu, J; Liu, Y L; Chang, S J; Chao, M M; Tsai, S Y; Huang, D E

    2012-11-01

    Monte Carlo (MC) simulation has been commonly used in the dose evaluation of radiation accidents and for medical purposes. The accuracy of simulated results is affected by the particle-tracking algorithm, cross-sectional database, random number generator and statistical error. The differences among MC simulation software packages must be validated. This study simulated the dose point kernel (DPK) and the cellular S-values of monoenergetic electrons ranging from 0.01 to 2 MeV and the radionuclides of (90)Y, (177)Lu and (103 m)Rh, using Fluktuierende Kaskade (FLUKA) and MC N-Particle Transport Code Version 5 (MCNP5). A 6-μm-radius cell model consisting of the cell surface, cytoplasm and cell nucleus was constructed for cellular S-value calculation. The mean absolute percentage errors (MAPEs) of the scaled DPKs, simulated using FLUKA and MCNP5, were 7.92, 9.64, 4.62, 3.71 and 3.84 % for 0.01, 0.1, 0.5, 1 and 2 MeV, respectively. For the three radionuclides, the MAPEs of the scaled DPKs were within 5 %. The maximum deviations of S(N←N), S(N←Cy) and S(N←CS) for the electron energy larger than 10 keV were 6.63, 6.77 and 5.24 %, respectively. The deviations for the self-absorbed S-values and cross-dose S-values of the three radionuclides were within 4 %. On the basis of the results of this study, it was concluded that the simulation results are consistent between FLUKA and MCNP5. However, there is a minor inconsistency for low energy range. The DPK and the cellular S-value should be used as the quality assurance tools before the MC simulation results are adopted as the gold standard.

  12. Experience with the Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)

    2007-06-15

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.

  13. Experience with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Hussein, E.M.A.

    2007-01-01

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed

  14. Monte Carlo simulations on a 9-node PC cluster

    International Nuclear Information System (INIS)

    Gouriou, J.

    2001-01-01

    Monte Carlo simulation methods are frequently used in the fields of medical physics, dosimetry and metrology of ionising radiation. Nevertheless, the main drawback of this technique is to be computationally slow, because the statistical uncertainty of the result improves only as the square root of the computational time. We present a method, which allows to reduce by a factor 10 to 20 the used effective running time. In practice, the aim was to reduce the calculation time in the LNHB metrological applications from several weeks to a few days. This approach includes the use of a PC-cluster, under Linux operating system and PVM parallel library (version 3.4). The Monte Carlo codes EGS4, MCNP and PENELOPE have been implemented on this platform and for the two last ones adapted for running under the PVM environment. The maximum observed speedup is ranging from a factor 13 to 18 according to the codes and the problems to be simulated. (orig.)

  15. Improved local lattice Monte Carlo simulation for charged systems

    Science.gov (United States)

    Jiang, Jian; Wang, Zhen-Gang

    2018-03-01

    Maggs and Rossetto [Phys. Rev. Lett. 88, 196402 (2002)] proposed a local lattice Monte Carlo algorithm for simulating charged systems based on Gauss's law, which scales with the particle number N as O(N). This method includes two degrees of freedom: the configuration of the mobile charged particles and the electric field. In this work, we consider two important issues in the implementation of the method, the acceptance rate of configurational change (particle move) and the ergodicity in the phase space sampled by the electric field. We propose a simple method to improve the acceptance rate of particle moves based on the superposition principle for electric field. Furthermore, we introduce an additional updating step for the field, named "open-circuit update," to ensure that the system is fully ergodic under periodic boundary conditions. We apply this improved local Monte Carlo simulation to an electrolyte solution confined between two low dielectric plates. The results show excellent agreement with previous theoretical work.

  16. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yani, Sitti, E-mail: sitti.yani@s.itb.ac.id [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Akademi Kebidanan Pelita Ibu, Kendari (Indonesia); Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Rhani, Moh. Fadhillah [Tan Tock Seng Hospital (Singapore)

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  17. Experimental and Monte Carlo simulated spectra of a liquid-metal-jet x-ray source

    International Nuclear Information System (INIS)

    Marziani, M.; Gambaccini, M.; Di Domenico, G.; Taibi, A.; Cardarelli, P.

    2014-01-01

    A prototype x-ray system based on a liquid-metal-jet anode was evaluated within the framework of the LABSYNC project. The generated spectrum was measured using a CZT-based spectrometer and was compared with spectra simulated by three Monte Carlo codes: MCNPX, PENELOPE and EGS5. Notable differences in the simulated spectra were found. These are mainly attributable to differences in the models adopted for the electron-impact ionization cross section. The simulation that more closely reproduces the experimentally measured spectrum was provided by PENELOPE. - Highlights: • The x-ray spectrum of a liquid-jet x-ray anode was measured with a CZT spectrometer. • Results were compared with Monte Carlo simulations using MCNPX, PENELOPE, EGS5. • Notable differences were found among the Monte Carlo simulated spectra. • The key role was played by the electron-impact ionization cross-section model used. • The experimentally measured spectrum was closely reproduced by the PENELOPE code

  18. Study of the quantitative analysis approach of maintenance by the Monte Carlo simulation method

    International Nuclear Information System (INIS)

    Shimizu, Takashi

    2007-01-01

    This study is examination of the quantitative valuation by Monte Carlo simulation method of maintenance activities of a nuclear power plant. Therefore, the concept of the quantitative valuation of maintenance that examination was advanced in the Japan Society of Maintenology and International Institute of Universality (IUU) was arranged. Basis examination for quantitative valuation of maintenance was carried out at simple feed water system, by Monte Carlo simulation method. (author)

  19. Studies on top-quark Monte Carlo modelling with Sherpa and MG5_aMC@NLO

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    This note presents the status of recent studies of modern Monte Carlo generator setups for the pair production of top quarks at the LHC. Samples at a center of mass energy of 13 TeV have been generated using MG5_aMC@NLO+Pythia8 at at next-to-leading order and Sherpa 2.2 at next-to-leading order precision in QCD. Results are compared to unfolded ATLAS data. The effects of varying relevant parameters are also presented for Sherpa 2.2.

  20. A Proposal on the Geometry Splitting Strategy to Enhance the Calculation Efficiency in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Gi Yeong; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    In this study, how the geometry splitting strategy affects the calculation efficiency was analyzed. In this study, a geometry splitting method was proposed to increase the calculation efficiency in Monte Carlo simulation. First, the analysis of the neutron distribution characteristics in a deep penetration problem was performed. Then, considering the neutron population distribution, a geometry splitting method was devised. Using the proposed method, the FOMs with benchmark problems were estimated and compared with the conventional geometry splitting strategy. The results show that the proposed method can considerably increase the calculation efficiency in using geometry splitting method. It is expected that the proposed method will contribute to optimizing the computational cost as well as reducing the human errors in Monte Carlo simulation. Geometry splitting in Monte Carlo (MC) calculation is one of the most popular variance reduction techniques due to its simplicity, reliability and efficiency. For the use of the geometry splitting, the user should determine locations of geometry splitting and assign the relative importance of each region. Generally, the splitting parameters are decided by the user's experience. However, in this process, the splitting parameters can ineffectively or erroneously be selected. In order to prevent it, there is a recommendation to help the user eliminate guesswork, which is to split the geometry evenly. And then, the importance is estimated by a few iterations for preserving population of particle penetrating each region. However, evenly geometry splitting method can make the calculation inefficient due to the change in mean free path (MFP) of particles.

  1. A Proposal on the Geometry Splitting Strategy to Enhance the Calculation Efficiency in Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Han, Gi Yeong; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung

    2014-01-01

    In this study, how the geometry splitting strategy affects the calculation efficiency was analyzed. In this study, a geometry splitting method was proposed to increase the calculation efficiency in Monte Carlo simulation. First, the analysis of the neutron distribution characteristics in a deep penetration problem was performed. Then, considering the neutron population distribution, a geometry splitting method was devised. Using the proposed method, the FOMs with benchmark problems were estimated and compared with the conventional geometry splitting strategy. The results show that the proposed method can considerably increase the calculation efficiency in using geometry splitting method. It is expected that the proposed method will contribute to optimizing the computational cost as well as reducing the human errors in Monte Carlo simulation. Geometry splitting in Monte Carlo (MC) calculation is one of the most popular variance reduction techniques due to its simplicity, reliability and efficiency. For the use of the geometry splitting, the user should determine locations of geometry splitting and assign the relative importance of each region. Generally, the splitting parameters are decided by the user's experience. However, in this process, the splitting parameters can ineffectively or erroneously be selected. In order to prevent it, there is a recommendation to help the user eliminate guesswork, which is to split the geometry evenly. And then, the importance is estimated by a few iterations for preserving population of particle penetrating each region. However, evenly geometry splitting method can make the calculation inefficient due to the change in mean free path (MFP) of particles

  2. Monte Carlo Simulation for Statistical Decay of Compound Nucleus

    Directory of Open Access Journals (Sweden)

    Chadwick M.B.

    2012-02-01

    Full Text Available We perform Monte Carlo simulations for neutron and γ-ray emissions from a compound nucleus based on the Hauser-Feshbach statistical theory. This Monte Carlo Hauser-Feshbach (MCHF method calculation, which gives us correlated information between emitted particles and γ-rays. It will be a powerful tool in many applications, as nuclear reactions can be probed in a more microscopic way. We have been developing the MCHF code, CGM, which solves the Hauser-Feshbach theory with the Monte Carlo method. The code includes all the standard models that used in a standard Hauser-Feshbach code, namely the particle transmission generator, the level density module, interface to the discrete level database, and so on. CGM can emit multiple neutrons, as long as the excitation energy of the compound nucleus is larger than the neutron separation energy. The γ-ray competition is always included at each compound decay stage, and the angular momentum and parity are conserved. Some calculations for a fission fragment 140Xe are shown as examples of the MCHF method, and the correlation between the neutron and γ-ray is discussed.

  3. Clinical treatment planning for stereotactic radiotherapy, evaluation by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kairn, T.; Aland, T.; Kenny, J.; Knight, R.T.; Crowe, S.B.; Langton, C.M.; Franich, R.D.; Johnston, P.N.

    2010-01-01

    Full text: This study uses re-evaluates the doses delivered by a series of clinical stereotactic radiotherapy treatments, to test the accuracy of treatment planning predictions for very small radiation fields. Stereotactic radiotherapy treatment plans for meningiomas near the petrous temporal bone and the foramen magnum (incorp rating fields smaller than I c m2) were examined using Monte Carlo simulations. Important differences between treatment planning predictions and Monte Carlo calculations of doses delivered to stereotactic radiotherapy patients are apparent. For example, in one case the Monte Carlo calculation shows that the delivery a planned meningioma treatment would spare the patient's critical structures (eyes, brainstem) more effectively than the treatment plan predicted, and therefore suggests that this patient could safely receive an increased dose to their tumour. Monte Carlo simulations can be used to test the dose predictions made by a conventional treatment planning system, for dosimetrically challenging small fields, and can thereby suggest valuable modifications to clinical treatment plans. This research was funded by the Wesley Research Institute, Australia. The authors wish to thank Andrew Fielding and David Schlect for valuable discussions of aspects of this work. The authors are also grateful to Muhammad Kakakhel, for assisting with the design and calibration of our linear accelerator model, and to the stereotactic radiation therapy team at Premion, who designed the treatment plans. Computational resources and services used in this work were provided by the HPC and Research Support Unit, QUT, Brisbane, Australia. (author)

  4. Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

    CERN Document Server

    Golec-Biernat, K; Placzek, W; Skrzypek, M

    2009-01-01

    This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.

  5. DNA strand breaks induced by electrons simulated with nanodosimetry Monte Carlo simulation code: NASIC

    International Nuclear Information System (INIS)

    Li, Junli; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Zeng, Zhi; Li, Chunyan; Wu, Zhen; Tung, Chuanjong

    2015-01-01

    The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway (authors)

  6. MBR Monte Carlo Simulation in PYTHIA8

    Science.gov (United States)

    Ciesielski, R.

    We present the MBR (Minimum Bias Rockefeller) Monte Carlo simulation of (anti)proton-proton interactions and its implementation in the PYTHIA8 event generator. We discuss the total, elastic, and total-inelastic cross sections, and three contributions from diffraction dissociation processes that contribute to the latter: single diffraction, double diffraction, and central diffraction or double-Pomeron exchange. The event generation follows a renormalized-Regge-theory model, successfully tested using CDF data. Based on the MBR-enhanced PYTHIA8 simulation, we present cross-section predictions for the LHC and beyond, up to collision energies of 50 TeV.

  7. On Monte Carlo Simulation and Analysis of Electricity Markets

    International Nuclear Information System (INIS)

    Amelin, Mikael

    2004-07-01

    This dissertation is about how Monte Carlo simulation can be used to analyse electricity markets. There are a wide range of applications for simulation; for example, players in the electricity market can use simulation to decide whether or not an investment can be expected to be profitable, and authorities can by means of simulation find out which consequences a certain market design can be expected to have on electricity prices, environmental impact, etc. In the first part of the dissertation, the focus is which electricity market models are suitable for Monte Carlo simulation. The starting point is a definition of an ideal electricity market. Such an electricity market is partly practical from a mathematical point of view (it is simple to formulate and does not require too complex calculations) and partly it is a representation of the best possible resource utilisation. The definition of the ideal electricity market is followed by analysis how the reality differs from the ideal model, what consequences the differences have on the rules of the electricity market and the strategies of the players, as well as how non-ideal properties can be included in a mathematical model. Particularly, questions about environmental impact, forecast uncertainty and grid costs are studied. The second part of the dissertation treats the Monte Carlo technique itself. To reduce the number of samples necessary to obtain accurate results, variance reduction techniques can be used. Here, six different variance reduction techniques are studied and possible applications are pointed out. The conclusions of these studies are turned into a method for efficient simulation of basic electricity markets. The method is applied to some test systems and the results show that the chosen variance reduction techniques can produce equal or better results using 99% fewer samples compared to when the same system is simulated without any variance reduction technique. More complex electricity market models

  8. SELF-ABSORPTION CORRECTIONS BASED ON MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Kamila Johnová

    2016-12-01

    Full Text Available The main aim of this article is to demonstrate how Monte Carlo simulations are implemented in our gamma spectrometry laboratory at the Department of Dosimetry and Application of Ionizing Radiation in order to calculate the self-absorption within the samples. A model of real HPGe detector created for MCNP simulations is presented in this paper. All of the possible parameters, which may influence the self-absorption, are at first discussed theoretically and lately described using the calculated results.

  9. Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?

    Science.gov (United States)

    Kim, Jihan; Rodgers, Jocelyn M; Athènes, Manuel; Smit, Berend

    2011-10-11

    In the waste recycling Monte Carlo (WRMC) algorithm, (1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.

  10. Range uncertainties in proton therapy and the role of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Paganetti, Harald

    2012-01-01

    The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This paper summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm. (topical review)

  11. Monte Carlo simulation for ion-molecule collisions at intermediate velocity

    International Nuclear Information System (INIS)

    Kadhane, U R; Mishra, P M; Rajput, J; Safvan, C P; Vig, S

    2015-01-01

    Electronic energy loss distribution estimation is done under local density distribution using Monte Carlo simulations. These results are used to compare the experimental results of proton-polycyclic aromatic hydrocarbons (PAHs) and proton-nucleobase interactions at intermediate velocity collisions. (paper)

  12. The Monte Carlo simulation of the Ladon photon beam facility

    International Nuclear Information System (INIS)

    Strangio, C.

    1976-01-01

    The backward compton scattering of laser light against high energy electrons has been simulated with a Monte Carlo method. The main features of the produced photon beam are reported as well as a careful description of the numerical calculation

  13. Monte-Carlo simulations of neutron shielding for the ATLAS forward region

    CERN Document Server

    Stekl, I; Kovalenko, V E; Vorobel, V; Leroy, C; Piquemal, F; Eschbach, R; Marquet, C

    2000-01-01

    The effectiveness of different types of neutron shielding for the ATLAS forward region has been studied by means of Monte-Carlo simulations and compared with the results of an experiment performed at the CERN PS. The simulation code is based on GEANT, FLUKA, MICAP and GAMLIB. GAMLIB is a new library including processes with gamma-rays produced in (n, gamma), (n, n'gamma) neutron reactions and is interfaced to the MICAP code. The effectiveness of different types of shielding against neutrons and gamma-rays, composed from different types of material, such as pure polyethylene, borated polyethylene, lithium-filled polyethylene, lead and iron, were compared. The results from Monte-Carlo simulations were compared to the results obtained from the experiment. The simulation results reproduce the experimental data well. This agreement supports the correctness of the simulation code used to describe the generation, spreading and absorption of neutrons (up to thermal energies) and gamma-rays in the shielding materials....

  14. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    Science.gov (United States)

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  15. Efficient hybrid non-equilibrium molecular dynamics - Monte Carlo simulations with symmetric momentum reversal

    Science.gov (United States)

    Chen, Yunjie; Roux, Benoît

    2014-09-01

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  16. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    KAUST Repository

    Kadoura, Ahmad Salim

    2016-06-01

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.

  17. Resistance scaling function for two-dimensional superconductors and Monte Carlo vortex-fluctuation simulations

    International Nuclear Information System (INIS)

    Minnhagen, P.; Weber, H.

    1985-01-01

    A Monte Carlo simulation of the Ginsburg-Landau Coulomb-gas model for vortex fluctuations is described and compared to the measured resistance scaling function for two-dimensional superconductors. This constitutes a new, more direct way of confirming the vortex-fluctuation explanation for the resistive tail of high-sheet-resistance superconducting films. The Monte Carlo data obtained indicate a striking accordance between theory and experiments

  18. Monte Carlo Simulation of a Solvated Ionic Polymer with Cluster Morphology

    National Research Council Canada - National Science Library

    Matthews, Jessica L; Lada, Emily K; Weiland, Lisa M; Smith, Ralph C; Leo, Donald J

    2005-01-01

    .... Traditional rotational isomeric state theory is applied in combination with a Monte Carlo methodology to develop a simulation model of the conformation of Nafion polymer chains on a nanoscopic level...

  19. Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nilmeier, J. P.; Crooks, G. E.; Minh, D. D. L.; Chodera, J. D.

    2011-10-24

    Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.

  20. Gamma irradiator dose mapping: a Monte Carlo simulation and experimental measurements

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio R.; Ribeiro, Mariana A.; Grynberg, Suely E.; Ferreira, Andrea V.; Meira-Belo, Luiz Claudio; Sousa, Romulo V.; Sebastiao, Rita de C.O.

    2009-01-01

    Gamma irradiator facilities can be used in a wide range of applications such as biological and chemical researches, food treatment and sterilization of medical devices and products. Dose mapping must be performed in these equipment in order to establish plant operational parameters, as dose uniformity, source utilization efficiency and maximum and minimum dose positions. The isodoses curves are generally measured using dosimeters distributed throughout the device, and this procedure often consume a large amount of dosimeters, irradiation time and manpower. However, a detailed curve doses identification of the irradiation facility can be performed using Monte Carlo simulation, which reduces significantly the monitoring with dosimeters. The present work evaluates the absorbed dose in the CDTN/CNEN Gammacell Irradiation Facility, using the Monte Carlo N-particles (MCNP) code. The Gammacell 220, serial number 39, was produced by Atomic Energy of Canada Limited and was loaded with sources of 60 Co. Dose measurements using TLD and Fricke dosimeters were also performed to validate the calculations. The good agreement of the results shows that Monte Carlo simulations can be used as a predictive tool of irradiation planning for the CDTN/CNEN Gamma Cell Irradiator. (author)

  1. Monte Carlo methods and models in finance and insurance

    CERN Document Server

    Korn, Ralf; Kroisandt, Gerald

    2010-01-01

    Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...

  2. Monte Carlo simulation of a medical linear accelerator for radiotherapy use

    International Nuclear Information System (INIS)

    Serrano, B.; Hachem, A.; Franchisseur, E.; Herault, J.; Marcie, S.; Costa, A.; Bensadoun, R. J.; Barthe, J.; Gerard, J. P.

    2006-01-01

    A Monte Carlo code MCNPX (Monte Carlo N-particle) was used to model a 25 MV photon beam from a PRIMUS (KD2-Siemens) medical linear electron accelerator at the Centre Antoine Lacassagne in Nice. The entire geometry including the accelerator head and the water phantom was simulated to calculate the dose profile and the relative depth-dose distribution. The measurements were done using an ionisation chamber in water for different square field ranges. The first results show that the mean electron beam energy is not 19 MeV as mentioned by Siemens. The adjustment between the Monte Carlo calculated and measured data is obtained when the mean electron beam energy is ∼15 MeV. These encouraging results will permit to check calculation data given by the treatment planning system, especially for small fields in high gradient heterogeneous zones, typical for intensity modulated radiation therapy technique. (authors)

  3. Power distribution system reliability evaluation using dagger-sampling Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.; Zhao, S.; Ma, Y. [North China Electric Power Univ., Hebei (China). Dept. of Electrical Engineering

    2009-03-11

    A dagger-sampling Monte Carlo simulation method was used to evaluate power distribution system reliability. The dagger-sampling technique was used to record the failure of a component as an incident and to determine its occurrence probability by generating incident samples using random numbers. The dagger sampling technique was combined with the direct sequential Monte Carlo method to calculate average values of load point indices and system indices. Results of the 2 methods with simulation times of up to 100,000 years were then compared. The comparative evaluation showed that less computing time was required using the dagger-sampling technique due to its higher convergence speed. When simulation times were 1000 years, the dagger-sampling method required 0.05 seconds to accomplish an evaluation, while the direct method required 0.27 seconds. 12 refs., 3 tabs., 4 figs.

  4. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    Science.gov (United States)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  5. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model

    Science.gov (United States)

    Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.

    2018-04-01

    While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.

  6. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    Science.gov (United States)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  7. APPLICATION OF QUEUING THEORY TO AUTOMATED TELLER MACHINE (ATM) FACILITIES USING MONTE CARLO SIMULATION

    OpenAIRE

    UDOANYA RAYMOND MANUEL; ANIEKAN OFFIONG

    2014-01-01

    This paper presents the importance of applying queuing theory to the Automated Teller Machine (ATM) using Monte Carlo Simulation in order to determine, control and manage the level of queuing congestion found within the Automated Teller Machine (ATM) centre in Nigeria and also it contains the empirical data analysis of the queuing systems obtained at the Automated Teller Machine (ATM) located within the Bank premises for a period of three (3) months. Monte Carlo Simulation is applied to th...

  8. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M

    2004-10-20

    Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.

  9. A backward Monte Carlo method for efficient computation of runaway probabilities in runaway electron simulation

    Science.gov (United States)

    Zhang, Guannan; Del-Castillo-Negrete, Diego

    2017-10-01

    Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.

  10. Foam A General Purpose Cellular Monte Carlo Event Generator

    CERN Document Server

    Jadach, Stanislaw

    2003-01-01

    A general purpose, self-adapting, Monte Carlo (MC) event generator (simulator) is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be $n$-dimensional simplices, hyperrectangles or Cartesian product of them. The grid of cells, called ``foam'', is produced in the process of the binary split of the cells. The choice of the next cell to be divided and the position/direction of the division hyper-plane is driven by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution. As any MC generator, it can also be used for the MC integration. With the typical personal computer CPU, the program is able to perform adaptive integration/simulation at relatively small number of dimensions ($\\leq 16$). With the continu...

  11. Applications of the Monte Carlo simulation in dosimetry and medical physics problems; Aplicaciones de la simulacion Monte Carlo en dosimetria y problemas de fisica medica

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L., E-mail: leticia.rojas@inin.gob.m [ININ, Gerencia de Ciencias Ambientales, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    At the present time the computers use to solve important problems extends to all the areas. These areas can be of social, economic, of engineering, of basic and applied science, etc. With and appropriate handling of computation programs and information can be carried out calculations and simulations of real models, to study them and to solve theoretical or application problems. The processes that contain random variables are susceptible of being approached with the Monte Carlo method. This is a numeric method that, thanks to the improvements in the processors of the computers, it can apply in many tasks more than what was made in the principles of their practical application (at the beginning of the decade of 1950). In this work the application of the Monte Carlo method will be approached in the simulation of the radiation interaction with the matter, to investigate dosimetric aspects of some problems that exist in the medical physics area. Also, contain an introduction about some historical data and some general concepts related with the Monte Carlo simulation are revised. (Author)

  12. Monte Carlo simulation of radiative processes in electron-positron scattering

    International Nuclear Information System (INIS)

    Kleiss, R.H.P.

    1982-01-01

    The Monte Carlo simulation of scattering processes has turned out to be one of the most successful methods of translating theoretical predictions into experimentally meaningful quantities. It is the purpose of this thesis to describe how this approach can be applied to higher-order QED corrections to several fundamental processes. In chapter II a very brief overview of the currently interesting phenomena in e +- scattering is given. It is argued that accurate information on higher-order QED corrections is very important and that the Monte Carlo approach is one of the most flexible and general methods to obtain this information. In chapter III the author describes various techniques which are useful in this context, and makes a few remarks on the numerical aspects of the proposed method. In the following three chapters he applies this to the processes e + e - → μ + μ - (γ) and e + e - → qanti q(sigma). In chapter IV he motivates his choice of these processes in view of their experimental and theoretical relevance. The formulae necessary for a computer simulation of all quantities of interest, up to order α 3 , is given. Chapters V and VI describe how this simulation can be performed using the techniques mentioned in chapter III. In chapter VII it is shown how additional dynamical quantities, namely the polarization of the incoming and outgoing particles, can be incorporated in our treatment, and the relevant formulae for the example processes mentioned above are given. Finally, in chapter VIII the author presents some examples of the comparison between theoretical predictions based on Monte Carlo simulations as outlined here, and the results from actual experiments. (Auth.)

  13. EGS4, Electron Photon Shower Simulation by Monte-Carlo

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of program or function: The EGS code system is one of a chain of three codes designed to solve the electromagnetic shower problem by Monte Carlo simulation. This chain makes possible simulation of almost any electron-photon transport problem conceivable. The structure of the system, with its global features, modular form, and structured programming, is readily adaptable to virtually any interfacing scheme that is desired on the part of the user. EGS4 is a package of subroutines plus block data with a flexible user interface. This allows for greater flexibility without requiring the user to be overly familiar with the internal details of the code. Combining this with the macro facility capabilities of the Mortran3 language, this reduces the likelihood that user edits will introduce bugs into the code. EGS4 uses material cross section and branching ratio data created and fit by the companion code, PEGS4. EGS4 allows for the implementation of importance sampling and other variance reduction techniques such as leading particle biasing, splitting, path length biasing, Russian roulette, etc. 2 - Method of solution: EGS employs the Monte Carlo method of solution. It allows all of the fundamental processes to be included and arbitrary geometries can be treated, also. Other minor processes, such as photoneutron production, can be added as a further generalization. Since showers develop randomly according to the quantum laws of probability, each shower is different. We again are led to the Monte Carlo method. 3 - Restrictions on the complexity of the problem: None noted

  14. Mosaic crystal algorithm for Monte Carlo simulations

    CERN Document Server

    Seeger, P A

    2002-01-01

    An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)

  15. Modelling of scintillator based flat-panel detectors with Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Reims, N; Sukowski, F; Uhlmann, N

    2011-01-01

    Scintillator based flat panel detectors are state of the art in the field of industrial X-ray imaging applications. Choosing the proper system and setup parameters for the vast range of different applications can be a time consuming task, especially when developing new detector systems. Since the system behaviour cannot always be foreseen easily, Monte-Carlo (MC) simulations are keys to gain further knowledge of system components and their behaviour for different imaging conditions. In this work we used two Monte-Carlo based models to examine an indirect converting flat panel detector, specifically the Hamamatsu C9312SK. We focused on the signal generation in the scintillation layer and its influence on the spatial resolution of the whole system. The models differ significantly in their level of complexity. The first model gives a global description of the detector based on different parameters characterizing the spatial resolution. With relatively small effort a simulation model can be developed which equates the real detector regarding signal transfer. The second model allows a more detailed insight of the system. It is based on the well established cascade theory, i.e. describing the detector as a cascade of elemental gain and scattering stages, which represent the built in components and their signal transfer behaviour. In comparison to the first model the influence of single components especially the important light spread behaviour in the scintillator can be analysed in a more differentiated way. Although the implementation of the second model is more time consuming both models have in common that a relatively small amount of system manufacturer parameters are needed. The results of both models were in good agreement with the measured parameters of the real system.

  16. Packing simulation code to calculate distribution function of hard spheres by Monte Carlo method : MCRDF

    International Nuclear Information System (INIS)

    Murata, Isao; Mori, Takamasa; Nakagawa, Masayuki; Shirai, Hiroshi.

    1996-03-01

    High Temperature Gas-cooled Reactors (HTGRs) employ spherical fuels named coated fuel particles (CFPs) consisting of a microsphere of low enriched UO 2 with coating layers in order to prevent FP release. There exist many spherical fuels distributed randomly in the cores. Therefore, the nuclear design of HTGRs is generally performed on the basis of the multigroup approximation using a diffusion code, S N transport code or group-wise Monte Carlo code. This report summarizes a Monte Carlo hard sphere packing simulation code to simulate the packing of equal hard spheres and evaluate the necessary probability distribution of them, which is used for the application of the new Monte Carlo calculation method developed to treat randomly distributed spherical fuels with the continuous energy Monte Carlo method. By using this code, obtained are the various statistical values, namely Radial Distribution Function (RDF), Nearest Neighbor Distribution (NND), 2-dimensional RDF and so on, for random packing as well as ordered close packing of FCC and BCC. (author)

  17. Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation

    KAUST Repository

    Haji Ali, Abdul Lateef; Tempone, Raul

    2017-01-01

    of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting

  18. Determination of the optical properties of turbid media from a single Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kienle, A.; Patterson, M.S.

    1996-01-01

    We describe a fast, accurate method for determination of the optical coefficients of 'semi-infinite' and 'infinite' turbid media. For the particular case of time-resolved reflectance from a biological medium, we show that a single Monte Carlo simulation can be used to fit the data and to derive the absorption and reduced scattering coefficients. Tests with independent Monte Carlo simulations showed that the errors in the deduced absorption and reduced scattering coefficients are smaller than 1% and 2%, respectively. (author)

  19. Quantum Monte Carlo simulations for high-Tc superconductors

    International Nuclear Information System (INIS)

    Muramatsu, A.; Dopf, G.; Wagner, J.; Dieterich, P.; Hanke, W.

    1992-01-01

    Quantum Monte Carlo simulations for a multi-band model of high-Tc superconductors are reviewed with special emphasis on the comparison of different observabels with experiments. It is shown that a give parameter set of the three-band Hubbard model leads to a consistent description of normal-state propteries as well as pairing correlation function for the copper-oxide superconductors as a function of doping and temperature. (orig.)

  20. MO-F-CAMPUS-I-03: GPU Accelerated Monte Carlo Technique for Fast Concurrent Image and Dose Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Becchetti, M; Tian, X; Segars, P; Samei, E [Clinical Imaging Physics Group, Department of Radiology, Duke University Me, Durham, NC (United States)

    2015-06-15

    Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches.

  1. MO-F-CAMPUS-I-03: GPU Accelerated Monte Carlo Technique for Fast Concurrent Image and Dose Simulation

    International Nuclear Information System (INIS)

    Becchetti, M; Tian, X; Segars, P; Samei, E

    2015-01-01

    Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches

  2. Flexible polymers in a nematic medium : a Monte Carlo simulation

    NARCIS (Netherlands)

    Vliet, J.H. van; Luyten, M.C.; Brinke, G. ten

    Monte Carlo simulations of self-avoiding random walks surrounded by aligned rods on a square lattice and a simple cubic lattice were performed to address the topological constraints involved for dilute solutions of flexible polymers in a highly oriented nematic solvent. The nematic constraint

  3. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations

    DEFF Research Database (Denmark)

    Kamran, Faisal; Andersen, Peter E.

    2015-01-01

    profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical...

  4. Monte Carlo simulation of a clinical linear accelerator

    International Nuclear Information System (INIS)

    Lin, S.-Y.; Chu, T.-C.; Lin, J.-P.

    2001-01-01

    The effects of the physical parameters of an electron beam from a Siemens PRIMUS clinical linear accelerator (linac) on the dose distribution in water were investigated by Monte Carlo simulation. The EGS4 user code, OMEGA/BEAM, was used in this study. Various incident electron beams, for example, with different energies, spot sizes and distances from the point source, were simulated using the detailed linac head structure in the 6 MV photon mode. Approximately 10 million particles were collected in the scored plane, which was set under the reticle to form the so-called phase space file. The phase space file served as a source for simulating the dose distribution in water using DOSXYZ. Dose profiles at D max (1.5 cm) and PDD curves were calculated following simulating about 1 billion histories for dose profiles and 500 million histories for percent depth dose (PDD) curves in a 30x30x30 cm 3 water phantom. The simulation results were compared with the data measured by a CEA film and an ion chamber. The results show that the dose profiles are influenced by the energy and the spot size, while PDD curves are primarily influenced by the energy of the incident beam. The effect of the distance from the point source on the dose profile is not significant and is recommended to be set at infinity. We also recommend adjusting the beam energy by using PDD curves and, then, adjusting the spot size by using the dose profile to maintain the consistency of the Monte Carlo results and measured data

  5. Fully 3D tomographic reconstruction by Monte Carlo simulation of the system matrix in preclinical PET with iodine 124

    International Nuclear Information System (INIS)

    Moreau, Matthieu

    2014-01-01

    Immuno-PET imaging can be used to assess the pharmacokinetic in radioimmunotherapy. When using iodine-124, PET quantitative imaging is limited by physics-based degrading factors within the detection system and the object, such as the long positron range in water and the complex spectrum of gamma photons. The objective of this thesis was to develop a fully 3D tomographic reconstruction method (S(MC)2PET) using Monte Carlo simulations for estimating the system matrix, in the context of preclinical imaging with iodine-124. The Monte Carlo simulation platform GATE was used for that respect. Several complexities of system matrices were calculated, with at least a model of the PET system response function. Physics processes in the object was either neglected or taken into account using a precise or a simplified object description. The impact of modelling refinement and statistical variance related to the system matrix elements was evaluated on final reconstructed images. These studies showed that a high level of complexity did not always improve qualitative and quantitative results, owing to the high-variance of the associated system matrices. (author)

  6. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.

    Science.gov (United States)

    Chow, James C L; Leung, Michael K K

    2008-06-01

    The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger

  7. Monte Carlo simulation of the ARGO

    International Nuclear Information System (INIS)

    Depaola, G.O.

    1997-01-01

    We use GEANT Monte Carlo code to design an outline of the geometry and simulate the performance of the Argentine gamma-ray observer (ARGO), a telescope based on silicon strip detector technlogy. The γ-ray direction is determined by geometrical means and the angular resolution is calculated for small variations of the basic design. The results show that the angular resolutions vary from a few degrees at low energies (∝50 MeV) to 0.2 , approximately, at high energies (>500 MeV). We also made simulations using as incoming γ-ray the energy spectrum of PKS0208-512 and PKS0528+134 quasars. Moreover, a method based on multiple scattering theory is also used to determine the incoming energy. We show that this method is applicable to energy spectrum. (orig.)

  8. Monte Carlo simulation of PET images for injection doseoptimization

    Czech Academy of Sciences Publication Activity Database

    Boldyš, Jiří; Dvořák, Jiří; Skopalová, M.; Bělohlávek, O.

    2013-01-01

    Roč. 29, č. 9 (2013), s. 988-999 ISSN 2040-7939 R&D Projects: GA MŠk 1M0572 Institutional support: RVO:67985556 Keywords : positron emission tomography * Monte Carlo simulation * biological system modeling * image quality Subject RIV: FD - Oncology ; Hematology Impact factor: 1.542, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/boldys-0397175.pdf

  9. Variational variance reduction for particle transport eigenvalue calculations using Monte Carlo adjoint simulation

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2003-01-01

    The Variational Variance Reduction (VVR) method is an effective technique for increasing the efficiency of Monte Carlo simulations [Ann. Nucl. Energy 28 (2001) 457; Nucl. Sci. Eng., in press]. This method uses a variational functional, which employs first-order estimates of forward and adjoint fluxes, to yield a second-order estimate of a desired system characteristic - which, in this paper, is the criticality eigenvalue k. If Monte Carlo estimates of the forward and adjoint fluxes are used, each having global 'first-order' errors of O(1/√N), where N is the number of histories used in the Monte Carlo simulation, then the statistical error in the VVR estimation of k will in principle be O(1/N). In this paper, we develop this theoretical possibility and demonstrate with numerical examples that implementations of the VVR method for criticality problems can approximate O(1/N) convergence for significantly large values of N

  10. Pseudo-random number generators for Monte Carlo simulations on ATI Graphics Processing Units

    Science.gov (United States)

    Demchik, Vadim

    2011-03-01

    Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is presented.

  11. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations

    International Nuclear Information System (INIS)

    Gilles, D.

    2005-01-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  12. Multi-Subband Ensemble Monte Carlo simulations of scaled GAA MOSFETs

    Science.gov (United States)

    Donetti, L.; Sampedro, C.; Ruiz, F. G.; Godoy, A.; Gamiz, F.

    2018-05-01

    We developed a Multi-Subband Ensemble Monte Carlo simulator for non-planar devices, taking into account two-dimensional quantum confinement. It couples self-consistently the solution of the 3D Poisson equation, the 2D Schrödinger equation, and the 1D Boltzmann transport equation with the Ensemble Monte Carlo method. This simulator was employed to study MOS devices based on ultra-scaled Gate-All-Around Si nanowires with diameters in the range from 4 nm to 8 nm with gate length from 8 nm to 14 nm. We studied the output and transfer characteristics, interpreting the behavior in the sub-threshold region and in the ON state in terms of the spatial charge distribution and the mobility computed with the same simulator. We analyzed the results, highlighting the contribution of different valleys and subbands and the effect of the gate bias on the energy and velocity profiles. Finally the scaling behavior was studied, showing that only the devices with D = 4nm maintain a good control of the short channel effects down to the gate length of 8nm .

  13. Monte Carlo molecular simulation of phase-coexistence for oil production and processing

    KAUST Repository

    Li, Jun; Sun, Shuyu; Calo, Victor M.

    2011-01-01

    The Gibbs-NVT ensemble Monte Carlo method is used to simulate the liquid-vapor coexistence diagram and the simulation results of methane agree well with the experimental data in a wide range of temperatures. For systems with two components

  14. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS

    International Nuclear Information System (INIS)

    Vilches, Manuel; Garcia-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M.

    2008-01-01

    Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSnrc, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed

  15. PERHITUNGAN VaR PORTOFOLIO SAHAM MENGGUNAKAN DATA HISTORIS DAN DATA SIMULASI MONTE CARLO

    Directory of Open Access Journals (Sweden)

    WAYAN ARTHINI

    2012-09-01

    Full Text Available Value at Risk (VaR is the maximum potential loss on a portfolio based on the probability at a certain time.  In this research, portfolio VaR values calculated from historical data and Monte Carlo simulation data. Historical data is processed so as to obtain stock returns, variance, correlation coefficient, and variance-covariance matrix, then the method of Markowitz sought proportion of each stock fund, and portfolio risk and return portfolio. The data was then simulated by Monte Carlo simulation, Exact Monte Carlo Simulation and Expected Monte Carlo Simulation. Exact Monte Carlo simulation have same returns and standard deviation  with historical data, while the Expected Monte Carlo Simulation satistic calculation similar to historical data. The results of this research is the portfolio VaR  with time horizon T=1, T=10, T=22 and the confidence level of 95 %, values obtained VaR between historical data and Monte Carlo simulation data with the method exact and expected. Value of VaR from both Monte Carlo simulation is greater than VaR historical data.

  16. Multiple histogram method and static Monte Carlo sampling

    NARCIS (Netherlands)

    Inda, M.A.; Frenkel, D.

    2004-01-01

    We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From

  17. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    International Nuclear Information System (INIS)

    Papadimitroulas, P; Kagadis, G C; Ploussi, A; Kordolaimi, S; Papamichail, D; Karavasilis, E; Syrgiamiotis, V; Loudos, G

    2015-01-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ∼10 10 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition. (paper)

  18. A Monte Carlo simulation of the possible use of Positron Emission Tomography in proton radiotherapy

    International Nuclear Information System (INIS)

    Del Guerra, Alberto; Di Domenico, Giovanni; Gambaccini, Mauro; Marziani, Michele

    1994-01-01

    We have used the Monte Carlo technique to evaluate the applicability of Positron Emission Tomography to in vivo dosimetry for proton radiotherapy. A fair agreement has been found between Monte Carlo results and experimental data. The simulation shows that PET can be useful especially for in vivo Bragg's peak localization. ((orig.))

  19. Comparison of film dosimetry and Monte Carlo simulations in small field IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.R.; Suh, T.S.; Choe, B.Y.; Lee, H.K. [The Catholic Univ., Seoul (Korea, Republic of); Sohn. Jason W. [Washington Univ., St. Louis (United States)

    2002-07-01

    Intensity modulated radiation therapy(IMRT) is a recent useful technique that conforms a high dose to the target volume while restricting dose to the surrounding critical organs. In IMRT, the small size beam let is used for intensity modulation. Thus, dose calculation in small field is very important. But, dose calculation in small field is not accurate in recent RTP system because electronic disequilibrium and the effect of multiple scattering electron are not considered in dose calculation. and therefore, We have evaluated the errors of depth dose and beam profile between measurement data and Monte Carlo simulation. With a homogeneous phantom and two heterogeneous phantoms, A thermoluminescent dosimeter (TLD) and radiochromic films have been selected for dose measurement in 6 MV photon beams. A linear accelerator Varian 2300C (Varian Medical Systems, USA) equipped with a multileaf collimator have been used in dose measurement. The results of simulations using the Monte Carlo systems BEAM/EGS4 (NRC, Canada) to model the beam geometry have been compared with dose measurements. Generally good agreements were found between measurements and dose calculations of Monte Carlo simulation. But some discrepancies were found in this study. Thus further study will be needed to compensate these errors.

  20. Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous two-dimensional problem

    Science.gov (United States)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Vygornitskii, Nikolai V.

    2018-02-01

    The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions and orientations was considered. The initial state before drying was produced using a model of random sequential adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC simulations were run at different initial number concentrations (the numbers of sticks per unit area), pi, and solvent evaporation rates, u . For completely dried films, the spatial distributions of the sticks, the order parameters, and the electrical conductivities of the films in both the horizontal, x , and vertical, y , directions were examined. Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed. The extent of stratification increased with increasing values of u . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi and u .

  1. Optix: A Monte Carlo scintillation light transport code

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M.J., E-mail: mjsafari@aut.ac.ir [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Afarideh, H. [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Ghal-Eh, N. [School of Physics, Damghan University, PO Box 36716-41167, Damghan (Iran, Islamic Republic of); Davani, F. Abbasi [Nuclear Engineering Department, Shahid Beheshti University, PO Box 1983963113, Tehran (Iran, Islamic Republic of)

    2014-02-11

    The paper reports on the capabilities of Monte Carlo scintillation light transport code Optix, which is an extended version of previously introduced code Optics. Optix provides the user a variety of both numerical and graphical outputs with a very simple and user-friendly input structure. A benchmarking strategy has been adopted based on the comparison with experimental results, semi-analytical solutions, and other Monte Carlo simulation codes to verify various aspects of the developed code. Besides, some extensive comparisons have been made against the tracking abilities of general-purpose MCNPX and FLUKA codes. The presented benchmark results for the Optix code exhibit promising agreements. -- Highlights: • Monte Carlo simulation of scintillation light transport in 3D geometry. • Evaluation of angular distribution of detected photons. • Benchmark studies to check the accuracy of Monte Carlo simulations.

  2. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics

    International Nuclear Information System (INIS)

    Parreno Z, F.; Paucar J, R.; Picon C, C.

    1998-01-01

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  3. Monte Carlo simulation of small field electron beams for small animal irradiation

    International Nuclear Information System (INIS)

    Lee, Chung-Chi; Chen, Ai-Mei; Tung, Chuan-Jong; Chao, Tsi-Chian

    2011-01-01

    The volume effect of detectors in the dosimetry of small fields for photon beams has been well studied due to interests in radiosurgery and small beamlets used in IMRT treatments; but there is still an unexplored research field for small electron beams used in small animal irradiation. This study proposes to use the BEAM Monte Carlo (MC) simulation to assess characteristics of small electron beams (4, 6, 14, 30 mm in diameter) with the kinetic energies of 6 and 18 MeV. Three factors influencing beam characteristics were studied (1) AE and ECUT settings, (2) photon jaw settings and (3) simulation pixel sizes. Study results reveal that AE/ECUT settings at 0.7 MeV are adequate for linear accelerator treatment head simulation, while 0.521 MeV is more favorable to be used for the phantom study. It is also demonstrated that voxel size setting at 1/4 of the simulation field width in all directions is sufficient to achieve accurate results. As for the photon jaw setting, it has great impact on the absolute output of different field size setting (i.e. output factor) but with minimum effect on the relative lateral distribution.

  4. Monte Carlo simulation for the estimation of iron in human whole ...

    Indian Academy of Sciences (India)

    2017-02-10

    Feb 10, 2017 ... Monte Carlo N-particle (MCNP) code has been used to simulate the transport of gamma photon rays ... experimental data, and better than the theoretical XCOM values. ... tions in the materials, according to probability density.

  5. 'Odontologic dosimetric card' experiments and simulations using Monte Carlo methods

    International Nuclear Information System (INIS)

    Menezes, C.J.M.; Lima, R. de A.; Peixoto, J.E.; Vieira, J.W.

    2008-01-01

    The techniques for data processing, combined with the development of fast and more powerful computers, makes the Monte Carlo methods one of the most widely used tools in the radiation transport simulation. For applications in diagnostic radiology, this method generally uses anthropomorphic phantoms to evaluate the absorbed dose to patients during exposure. In this paper, some Monte Carlo techniques were used to simulation of a testing device designed for intra-oral X-ray equipment performance evaluation called Odontologic Dosimetric Card (CDO of 'Cartao Dosimetrico Odontologico' in Portuguese) for different thermoluminescent detectors. This paper used two computational models of exposition RXD/EGS4 and CDO/EGS4. In the first model, the simulation results are compared with experimental data obtained in the similar conditions. The second model, it presents the same characteristics of the testing device studied (CDO). For the irradiations, the X-ray spectra were generated by the IPEM report number 78, spectrum processor. The attenuated spectrum was obtained for IEC 61267 qualities and various additional filters for a Pantak 320 X-ray industrial equipment. The results obtained for the study of the copper filters used in the determination of the kVp were compared with experimental data, validating the model proposed for the characterization of the CDO. The results shower of the CDO will be utilized in quality assurance programs in order to guarantee that the equipment fulfill the requirements of the Norm SVS No. 453/98 MS (Brazil) 'Directives of Radiation Protection in Medical and Dental Radiodiagnostic'. We conclude that the EGS4 is a suitable code Monte Carlo to simulate thermoluminescent dosimeters and experimental procedures employed in the routine of the quality control laboratory in diagnostic radiology. (author)

  6. Diagrammatic Monte Carlo simulations of staggered fermions at finite coupling

    CERN Document Server

    Vairinhos, Helvio

    2016-01-01

    Diagrammatic Monte Carlo has been a very fruitful tool for taming, and in some cases even solving, the sign problem in several lattice models. We have recently proposed a diagrammatic model for simulating lattice gauge theories with staggered fermions at arbitrary coupling, which extends earlier successful efforts to simulate lattice QCD at finite baryon density in the strong-coupling regime. Here we present the first numerical simulations of our model, using worm algorithms.

  7. Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system.

    Science.gov (United States)

    Hestenes, Kjersti; Nielsen, Kristian P; Zhao, Lu; Stamnes, Jakob J; Stamnes, Knut

    2007-04-20

    We perform a detailed comparison study of Monte Carlo (MC) simulations and discrete-ordinate radiative-transfer (DISORT) calculations of spectral radiances in a 1D coupled air-tissue (CAT) system consisting of horizontal plane-parallel layers. The MC and DISORT models have the same physical basis, including coupling between the air and the tissue, and we use the same air and tissue input parameters for both codes. We find excellent agreement between radiances obtained with the two codes, both above and in the tissue. Our tests cover typical optical properties of skin tissue at the 280, 540, and 650 nm wavelengths. The normalized volume scattering function for internal structures in the skin is represented by the one-parameter Henyey-Greenstein function for large particles and the Rayleigh scattering function for small particles. The CAT-DISORT code is found to be approximately 1000 times faster than the CAT-MC code. We also show that the spectral radiance field is strongly dependent on the inherent optical properties of the skin tissue.

  8. Systematic uncertainties on Monte Carlo simulation of lead based ADS

    International Nuclear Information System (INIS)

    Embid, M.; Fernandez, R.; Garcia-Sanz, J.M.; Gonzalez, E.

    1999-01-01

    Computer simulations of the neutronic behaviour of ADS systems foreseen for actinide and fission product transmutation are affected by many sources of systematic uncertainties, both from the nuclear data and by the methodology selected when applying the codes. Several actual ADS Monte Carlo simulations are presented, comparing different options both for the data and for the methodology, evaluating the relevance of the different uncertainties. (author)

  9. Monte Carlo Simulations Validation Study: Vascular Brachytherapy Beta Sources

    International Nuclear Information System (INIS)

    Orion, I.; Koren, K.

    2004-01-01

    During the last decade many versions of angioplasty irradiation treatments have been proposed. The purpose of this unique brachytherapy is to administer a sufficient radiation dose into the vein walls in order to prevent restonosis, a clinical sequel to balloon angioplasty. The most suitable sources for this vascular brachytherapy are the β - emitters such as Re-188, P-32, and Sr-90/Y-90, with a maximum energy range of up to 2.1 MeV [1,2,3]. The radioactive catheters configurations offered for these treatments can be a simple wire [4], a fluid filled balloon or a coated stent. Each source is differently positioned inside the blood vessel, and the emitted electrons ranges therefore vary. Many types of sources and configurations were studied either experimentally or with the use of the Monte Carlo calculation technique, while most of the Monte Carlo simulations were carried out using EGS4 [5] or MCNP [6]. In this study we compared the beta-source absorbed-dose versus radial-distance of two treatment configurations using MCNP and EGS4 simulations. This comparison was aimed to discover the differences between the MCNP and the EGS4 simulation code systems in intermediate energies electron transport

  10. Monte-Carlo simulation of a high-resolution inverse geometry spectrometer on the SNS. Long Wavelength Target Station

    International Nuclear Information System (INIS)

    Bordallo, H.N.; Herwig, K.W.

    2001-01-01

    Using the Monte-Carlo simulation program McStas, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the SNS-Long Wavelength Target Station (LWTS). The LWTS will provide the high flux of long wavelength neutrons at the requisite pulse rate required by the spectrometer design. The resolution of this spectrometer lies between that routinely achieved by spin echo techniques and the design goal of the high power target station backscattering spectrometer. Covering this niche in energy resolution will allow systematic studies over the large dynamic range required by many disciplines, such as protein dynamics. (author)

  11. The Cherenkov Telescope Array production system for Monte Carlo simulations and analysis

    Science.gov (United States)

    Arrabito, L.; Bernloehr, K.; Bregeon, J.; Cumani, P.; Hassan, T.; Haupt, A.; Maier, G.; Moralejo, A.; Neyroud, N.; pre="for the"> CTA Consortium, DIRAC Consortium,

    2017-10-01

    The Cherenkov Telescope Array (CTA), an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale, is the next-generation instrument in the field of very high energy gamma-ray astronomy. An average data stream of about 0.9 GB/s for about 1300 hours of observation per year is expected, therefore resulting in 4 PB of raw data per year and a total of 27 PB/year, including archive and data processing. The start of CTA operation is foreseen in 2018 and it will last about 30 years. The installation of the first telescopes in the two selected locations (Paranal, Chile and La Palma, Spain) will start in 2017. In order to select the best site candidate to host CTA telescopes (in the Northern and in the Southern hemispheres), massive Monte Carlo simulations have been performed since 2012. Once the two sites have been selected, we have started new Monte Carlo simulations to determine the optimal array layout with respect to the obtained sensitivity. Taking into account that CTA may be finally composed of 7 different telescope types coming in 3 different sizes, many different combinations of telescope position and multiplicity as a function of the telescope type have been proposed. This last Monte Carlo campaign represented a huge computational effort, since several hundreds of telescope positions have been simulated, while for future instrument response function simulations, only the operating telescopes will be considered. In particular, during the last 18 months, about 2 PB of Monte Carlo data have been produced and processed with different analysis chains, with a corresponding overall CPU consumption of about 125 M HS06 hours. In these proceedings, we describe the employed computing model, based on the use of grid resources, as well as the production system setup, which relies on the DIRAC interware. Finally, we present the envisaged evolutions of the CTA production system for the off-line data processing during CTA operations and

  12. Non-Boltzmann Ensembles and Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Murthy, K. P. N.

    2016-01-01

    Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc . This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g ( E , M ), as a function of both energy E , and order parameter M . This is carried out in two stages. We estimate g ( E ) in the first stage

  13. Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds

    Science.gov (United States)

    Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.

    2012-11-01

    A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.

  14. G4-STORK: A Geant4-based Monte Carlo reactor kinetics simulation code

    International Nuclear Information System (INIS)

    Russell, Liam; Buijs, Adriaan; Jonkmans, Guy

    2014-01-01

    Highlights: • G4-STORK is a new, time-dependent, Monte Carlo code for reactor physics applications. • G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. • G4-STORK was designed to simulate short-term fluctuations in reactor cores. • G4-STORK is well suited for simulating sub- and supercritical assemblies. • G4-STORK was verified through comparisons with DRAGON and MCNP. - Abstract: In this paper we introduce G4-STORK (Geant4 STOchastic Reactor Kinetics), a new, time-dependent, Monte Carlo particle tracking code for reactor physics applications. G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. The toolkit provides the fundamental physics models and particle tracking algorithms that track each particle in space and time. It is a framework for further development (e.g. for projects such as G4-STORK). G4-STORK derives reactor physics parameters (e.g. k eff ) from the continuous evolution of a population of neutrons in space and time in the given simulation geometry. In this paper we detail the major additions to the Geant4 toolkit that were necessary to create G4-STORK. These include a renormalization process that maintains a manageable number of neutrons in the simulation even in very sub- or supercritical systems, scoring processes (e.g. recording fission locations, total neutrons produced and lost, etc.) that allow G4-STORK to calculate the reactor physics parameters, and dynamic simulation geometries that can change over the course of simulation to illicit reactor kinetics responses (e.g. fuel temperature reactivity feedback). The additions are verified through simple simulations and code-to-code comparisons with established reactor physics codes such as DRAGON and MCNP. Additionally, G4-STORK was developed to run a single simulation in parallel over many processors using MPI (Message Passing Interface) pipes

  15. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  16. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kadoura, Ahmad, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa; Sun, Shuyu, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa [Computational Transport Phenomena Laboratory, The Earth Sciences and Engineering Department, The Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Siripatana, Adil, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa; Hoteit, Ibrahim, E-mail: ibrahim.hoteit@kaust.edu.sa [Earth Fluid Modeling and Predicting Group, The Earth Sciences and Engineering Department, The Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Knio, Omar, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa [Uncertainty Quantification Center, The Applied Mathematics and Computational Science Department, The Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2016-06-07

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH{sub 4}, N{sub 2}, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO{sub 2} and C{sub 2} H{sub 6}.

  17. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans.

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-07

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients' CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  18. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  19. Monte Carlo simulation of a CZT detector

    International Nuclear Information System (INIS)

    Chun, Sung Dae; Park, Se Hwan; Ha, Jang Ho; Kim, Han Soo; Cho, Yoon Ho; Kang, Sang Mook; Kim, Yong Kyun; Hong, Duk Geun

    2008-01-01

    CZT detector is one of the most promising radiation detectors for hard X-ray and γ-ray measurement. The energy spectrum of CZT detector has to be simulated to optimize the detector design. A CZT detector was fabricated with dimensions of 5x5x2 mm 3 . A Peltier cooler with a size of 40x40 mm 2 was installed below the fabricated CZT detector to reduce the operation temperature of the detector. Energy spectra of were measured with 59.5 keV γ-ray from 241 Am. A Monte Carlo code was developed to simulate the CZT energy spectrum, which was measured with a planar-type CZT detector, and the result was compared with the measured one. The simulation was extended to the CZT detector with strip electrodes. (author)

  20. Monte Carlo evaluation of derivative-based global sensitivity measures

    International Nuclear Information System (INIS)

    Kucherenko, S.; Rodriguez-Fernandez, M.; Pantelides, C.; Shah, N.

    2009-01-01

    A novel approach for evaluation of derivative-based global sensitivity measures (DGSM) is presented. It is compared with the Morris and the Sobol' sensitivity indices methods. It is shown that there is a link between DGSM and Sobol' sensitivity indices. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is many orders of magnitude lower than that for estimation of the Sobol' sensitivity indices. It is also lower than that for the Morris method. Efficiencies of Monte Carlo (MC) and quasi-Monte Carlo (QMC) sampling methods for calculation of DGSM are compared. It is shown that the superiority of QMC over MC depends on the problem's effective dimension, which can also be estimated using DGSM.

  1. A Pipelined and Parallel Architecture for Quantum Monte Carlo Simulations on FPGAs

    Directory of Open Access Journals (Sweden)

    Akila Gothandaraman

    2010-01-01

    Full Text Available Recent advances in Field-Programmable Gate Array (FPGA technology make reconfigurable computing using FPGAs an attractive platform for accelerating scientific applications. We develop a deeply pipelined and parallel architecture for Quantum Monte Carlo simulations using FPGAs. Quantum Monte Carlo simulations enable us to obtain the structural and energetic properties of atomic clusters. We experiment with different pipeline structures for each component of the design and develop a deeply pipelined architecture that provides the best performance in terms of achievable clock rate, while at the same time has a modest use of the FPGA resources. We discuss the details of the pipelined and generic architecture that is used to obtain the potential energy and wave function of a cluster of atoms.

  2. Hybrid Multilevel Monte Carlo Simulation of Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro

    2015-01-01

    even more, we want to achieve this objective with near optimal computational work. We first introduce a hybrid path-simulation scheme based on the well-known stochastic simulation algorithm (SSA)[3] and the tau-leap method [2]. Then, we introduce a Multilevel Monte Carlo strategy that allows us to achieve a computational complexity of order O(T OL−2), this is the same computational complexity as in an exact method but with a smaller constant. We provide numerical examples to show our results.

  3. Monte Carlo simulation of gamma ray tomography for image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)

    2015-07-01

    The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)

  4. WE-DE-BRA-05: Monte Carlo Simulation of a Novel Multi-Layer MV Imager

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Rottmann, J; Berbeco, R [Brigham and Women’s Hospital, Boston, MA (United States); Hu, Y [Dana Farber Cancer Institute, Boston, MA (United States); Wang, A; Shedlock, D; Star-Lack, J [Varian Medical Systems, Palo Alto, CA (United States); Morf, D [Varian Medical Systems, Dattwil, Aargau (Switzerland)

    2016-06-15

    Purpose: To develop and validate a Monte Carlo (MC) model of a novel multi-layer imager (MLI) for megavolt (MV) energy beams. The MC model will enable performance optimization of the MLI design for clinical applications including patient setup verification, tumor tracking and MVCBCT. Methods: The MLI is composed of four layers of converter, scintillator and light detector, each layer similar to the current clinical AS1200 detector (Varian Medical Systems, Inc). The MLI model was constructed using the Geant4 Application for Tomographic Emission (GATE v7.1) and includes interactions for x-ray photons, charged particles and optical photons. Computational experiments were performed to assess Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE) and Noise Power Spectrum normalized by photon fluence and average detector signal (qNNPS). Results were compared with experimental measurements. The current work incorporates, in one model, the complete chain of events occurring in the imager; i.e. starting from x-ray interaction to charged particle transport and energy deposition to subsequent generation, interactions and detection of optical photons. Results: There is good agreement between measured and simulated MTF, qNNPS and DQE values. Normalized root mean squared error (NRMSE) between measured and simulated values over all four layers was 2.18%, 2.43% and 6.05% for MTF, qNNPS and DQE respectively. The relative difference between simulated and measured values for qNNPS(0) was 1.68% and 1.57% for DQE(0). Current results were obtained using a 6MV Varian Truebeam™ spectrum. Conclusion: A comprehensive Monte Carlo model of the MLI prototype was developed to allow optimization of detector components. The model was assessed in terms of imaging performance using standard metrics (i.e. MTF, qNNPS, DQE). Good agreement was found between simulated and measured values. The model will be used to assess alternative detector constructions to facilitate advanced

  5. Monte Carlo simulation of the scattered component of neutron capture prompt gamma-ray analyzer responses

    International Nuclear Information System (INIS)

    Jin, Y.; Verghese, K.; Gardner, R.P.

    1986-01-01

    This paper describes a major part of our efforts to simulate the entire spectral response of the neutron capture prompt gamma-ray analyzer for bulk media (or conveyor belt) samples by the Monte Carlo method. This would allow one to use such a model to augment or, in most cases, essentially replace experiments in the calibration and optimum design of these analyzers. In previous work, we simulated the unscattered gamma-ray intensities, but would like to simulate the entire spectral response as we did with the energy-dispersive x-ray fluorescence analyzers. To accomplish this, one must account for the scattered gamma rays as well as the unscattered and one must have available the detector response function to translate the incident gamma-ray spectrum calculated by the Monte Carlo simulation into the detected pulse-height spectrum. We recently completed our work on the germanium detector response function, and the present paper describes our efforts to simulate the entire spectral response by using it with Monte Carlo predicted unscattered and scattered gamma rays

  6. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    International Nuclear Information System (INIS)

    Zhang, Guoqing

    2011-01-01

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  7. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqing

    2011-12-22

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  8. Coupling photon Monte Carlo simulation and CAD software. Application to X-ray nondestructive evaluation

    International Nuclear Information System (INIS)

    Tabary, J.; Gliere, A.

    2001-01-01

    A Monte Carlo radiation transport simulation program, EGS Nova, and a computer aided design software, BRL-CAD, have been coupled within the framework of Sindbad, a nondestructive evaluation (NDE) simulation system. In its current status, the program is very valuable in a NDE laboratory context, as it helps simulate the images due to the uncollided and scattered photon fluxes in a single NDE software environment, without having to switch to a Monte Carlo code parameters set. Numerical validations show a good agreement with EGS4 computed and published data. As the program's major drawback is the execution time, computational efficiency improvements are foreseen. (orig.)

  9. Comparative evaluation of photon cross section libraries for materials of interest in PET Monte Carlo simulations

    CERN Document Server

    Zaidi, H

    1999-01-01

    the many applications of Monte Carlo modelling in nuclear medicine imaging make it desirable to increase the accuracy and computational speed of Monte Carlo codes. The accuracy of Monte Carlo simulations strongly depends on the accuracy in the probability functions and thus on the cross section libraries used for photon transport calculations. A comparison between different photon cross section libraries and parametrizations implemented in Monte Carlo simulation packages developed for positron emission tomography and the most recent Evaluated Photon Data Library (EPDL97) developed by the Lawrence Livermore National Laboratory was performed for several human tissues and common detector materials for energies from 1 keV to 1 MeV. Different photon cross section libraries and parametrizations show quite large variations as compared to the EPDL97 coefficients. This latter library is more accurate and was carefully designed in the form of look-up tables providing efficient data storage, access, and management. Toge...

  10. Importance estimation in Monte Carlo modelling of neutron and photon transport

    International Nuclear Information System (INIS)

    Mickael, M.W.

    1992-01-01

    The estimation of neutron and photon importance in a three-dimensional geometry is achieved using a coupled Monte Carlo and diffusion theory calculation. The parameters required for the solution of the multigroup adjoint diffusion equation are estimated from an analog Monte Carlo simulation of the system under investigation. The solution of the adjoint diffusion equation is then used as an estimate of the particle importance in the actual simulation. This approach provides an automated and efficient variance reduction method for Monte Carlo simulations. The technique has been successfully applied to Monte Carlo simulation of neutron and coupled neutron-photon transport in the nuclear well-logging field. The results show that the importance maps obtained in a few minutes of computer time using this technique are in good agreement with Monte Carlo generated importance maps that require prohibitive computing times. The application of this method to Monte Carlo modelling of the response of neutron porosity and pulsed neutron instruments has resulted in major reductions in computation time. (Author)

  11. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width

  12. Simulation of transport equations with Monte Carlo

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-09-01

    The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game

  13. Monte Carlo simulation on nuclear energy study. Annual report of Nuclear Code Evaluation Committee

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro

    1999-03-01

    In this report, research results discussed in 1998 fiscal year at Nuclear Code Evaluation Special Committee of Nuclear Code Committee were summarised. Present status of Monte Carlo calculation in high energy region investigated / discussed at Monte Carlo simulation working-group and automatic compilation system for MCNP cross sections developed at MCNP high temperature library compilation working-group were described. The 6 papers are indexed individually. (J.P.N.)

  14. Monte Carlo simulation of the Leksell Gamma Knife: I. Source modelling and calculations in homogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)]. E-mail: vmoskvin@iupui.edu; DesRosiers, Colleen; Papiez, Lech; Timmerman, Robert; Randall, Marcus; DesRosiers, Paul [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2002-06-21

    The Monte Carlo code PENELOPE has been used to simulate photon flux from the Leksell Gamma Knife, a precision method for treating intracranial lesions. Radiation from a single {sup 60}Co assembly traversing the collimator system was simulated, and phase space distributions at the output surface of the helmet for photons and electrons were calculated. The characteristics describing the emitted final beam were used to build a two-stage Monte Carlo simulation of irradiation of a target. A dose field inside a standard spherical polystyrene phantom, usually used for Gamma Knife dosimetry, has been computed and compared with experimental results, with calculations performed by other authors with the use of the EGS4 Monte Carlo code, and data provided by the treatment planning system Gamma Plan. Good agreement was found between these data and results of simulations in homogeneous media. Owing to this established accuracy, PENELOPE is suitable for simulating problems relevant to stereotactic radiosurgery. (author)

  15. Algorithm simulating the atom displacement processes induced by the gamma rays on the base of Monte Carlo method

    International Nuclear Information System (INIS)

    Cruz, C. M.; Pinera, I; Abreu, Y.; Leyva, A.

    2007-01-01

    Present work concerns with the implementation of a Monte Carlo based calculation algorithm describing particularly the occurrence of Atom Displacements induced by the Gamma Radiation interactions at a given target material. The Atom Displacement processes were considered only on the basis of single elastic scattering interactions among fast secondary electrons with matrix atoms, which are ejected from their crystalline sites at recoil energies higher than a given threshold energy. The secondary electron transport was described assuming typical approaches on this matter, where consecutive small angle scattering and very low energy transfer events behave as a continuously cuasi-classical electron state changes along a given path length delimited by two discrete high scattering angle and electron energy losses events happening on a random way. A limiting scattering angle was introduced and calculated according Moliere-Bethe-Goudsmit-Saunderson Electron Multiple Scattering, which allows splitting away secondary electrons single scattering processes from multiple one, according which a modified McKinley-Feshbach electron elastic scattering cross section arises. This distribution was statistically sampled and simulated in the framework of the Monte Carlo Method to perform discrete single electron scattering processes, particularly those leading to Atom Displacement events. The possibility of adding this algorithm to present existing open Monte Carlo code systems is analyze, in order to improve their capabilities. (Author)

  16. Off-diagonal expansion quantum Monte Carlo.

    Science.gov (United States)

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  17. Exploring the use of a deterministic adjoint flux calculation in criticality Monte Carlo simulations

    International Nuclear Information System (INIS)

    Jinaphanh, A.; Miss, J.; Richet, Y.; Martin, N.; Hebert, A.

    2011-01-01

    The paper presents a preliminary study on the use of a deterministic adjoint flux calculation to improve source convergence issues by reducing the number of iterations needed to reach the converged distribution in criticality Monte Carlo calculations. Slow source convergence in Monte Carlo eigenvalue calculations may lead to underestimate the effective multiplication factor or reaction rates. The convergence speed depends on the initial distribution and the dominance ratio. We propose using an adjoint flux estimation to modify the transition kernel according to the Importance Sampling technique. This adjoint flux is also used as the initial guess of the first generation distribution for the Monte Carlo simulation. Calculated Variance of a local estimator of current is being checked. (author)

  18. A review: Functional near infrared spectroscopy evaluation in muscle tissues using Monte Carlo simulation

    Science.gov (United States)

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Monte Carlo Simulation has advanced their quantification based on number of the photon counting to solve the propagation of light inside the tissues including the absorption, scattering coefficient and act as preliminary study for functional near infrared application. The goal of this paper is to identify the optical properties using Monte Carlo simulation for non-invasive functional near infrared spectroscopy (fNIRS) evaluation of penetration depth in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in Monte Carlo simulation which focused on several important parameters include ATP, ADP and relate with blow flow and oxygen content at certain exercise intensity. This will cover the advantages and limitation of such application upon this simulation. This result may help us to prove that our human muscle is transparent to this near infrared region and could deliver a lot of information regarding to the oxygenation level in human muscle. Thus, this might be useful for non-invasive technique for detecting oxygen status in muscle from living people either athletes or working people and allowing a lots of investigation muscle physiology in future.

  19. Monte Carlo simulation of medical linear accelerator using primo code

    International Nuclear Information System (INIS)

    Omer, Mohamed Osman Mohamed Elhasan

    2014-12-01

    The use of monte Carlo simulation has become very important in the medical field and especially in calculation in radiotherapy. Various Monte Carlo codes were developed simulating interactions of particles and photons with matter. One of these codes is PRIMO that performs simulation of radiation transport from the primary electron source of a linac to estimate the absorbed dose in a water phantom or computerized tomography (CT). PRIMO is based on Penelope Monte Carlo code. Measurements of 6 MV photon beam PDD and profile were done for Elekta precise linear accelerator at Radiation and Isotopes Center Khartoum using computerized Blue water phantom and CC13 Ionization Chamber. accept Software was used to control the phantom to measure and verify dose distribution. Elektalinac from the list of available linacs in PRIMO was tuned to model Elekta precise linear accelerator. Beam parameter of 6.0 MeV initial electron energy, 0.20 MeV FWHM, and 0.20 cm focal spot FWHM were used, and an error of 4% between calculated and measured curves was found. The buildup region Z max was 1.40 cm and homogenous profile in cross line and in line were acquired. A number of studies were done to verily the model usability one of them is the effect of the number of histories on accuracy of the simulation and the resulted profile for the same beam parameters. The effect was noticeable and inaccuracies in the profile were reduced by increasing the number of histories. Another study was the effect of Side-step errors on the calculated dose which was compared with the measured dose for the same setting.It was in range of 2% for 5 cm shift, but it was higher in the calculated dose because of the small difference between the tuned model and measured dose curves. Future developments include simulating asymmetrical fields, calculating the dose distribution in computerized tomographic (CT) volume, studying the effect of beam modifiers on beam profile for both electron and photon beams.(Author)

  20. Self-learning Monte Carlo with deep neural networks

    Science.gov (United States)

    Shen, Huitao; Liu, Junwei; Fu, Liang

    2018-05-01

    The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.

  1. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung; Liang, Faming

    2009-01-01

    in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method

  2. Power-feedwater temperature operating domain for Sbwr applying Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, L. A.; Quezada G, S.; Espinosa M, E. G.; Vazquez R, A.; Varela H, J. R.; Cazares R, R. I.; Espinosa P, G., E-mail: sequega@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2014-10-15

    In this work the analyses of the feedwater temperature effects on reactor power in a simplified boiling water reactor (Sbwr) applying a methodology based on Monte Carlo simulation is presented. The Monte Carlo methodology was applied systematically to establish operating domain, due that the Sbwr are not yet in operation, the analysis of the nuclear and thermal-hydraulic processes must rely on numerical modeling, with the purpose of developing or confirming the design basis and qualifying the existing or new computer codes to enable reliable analyses. The results show that the reactor power is inversely proportional to the temperature of the feedwater, reactor power changes at 8% when the feed water temperature changes in 8%. (Author)

  3. Power-feedwater temperature operating domain for Sbwr applying Monte Carlo simulation

    International Nuclear Information System (INIS)

    Aguilar M, L. A.; Quezada G, S.; Espinosa M, E. G.; Vazquez R, A.; Varela H, J. R.; Cazares R, R. I.; Espinosa P, G.

    2014-10-01

    In this work the analyses of the feedwater temperature effects on reactor power in a simplified boiling water reactor (Sbwr) applying a methodology based on Monte Carlo simulation is presented. The Monte Carlo methodology was applied systematically to establish operating domain, due that the Sbwr are not yet in operation, the analysis of the nuclear and thermal-hydraulic processes must rely on numerical modeling, with the purpose of developing or confirming the design basis and qualifying the existing or new computer codes to enable reliable analyses. The results show that the reactor power is inversely proportional to the temperature of the feedwater, reactor power changes at 8% when the feed water temperature changes in 8%. (Author)

  4. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation

    NARCIS (Netherlands)

    Machguth, H.; Purves, R.S.; Oerlemans, J.; Hoelzle, M.; Paul, F.

    2008-01-01

    By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was

  5. TITAN: a computer program for accident occurrence frequency analyses by component Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Tamaki, Hitoshi [Department of Safety Research Technical Support, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kanai, Shigeru [Fuji Research Institute Corporation, Tokyo (Japan)

    2000-04-01

    In a plant system consisting of complex equipments and components for a reprocessing facility, there might be grace time between an initiating event and a resultant serious accident, allowing operating personnel to take remedial actions, thus, terminating the ongoing accident sequence. A component Monte Carlo simulation computer program TITAN has been developed to analyze such a complex reliability model including the grace time without any difficulty to obtain an accident occurrence frequency. Firstly, basic methods for the component Monte Carlo simulation is introduced to obtain an accident occurrence frequency, and then, the basic performance such as precision, convergence, and parallelization of calculation, is shown through calculation of a prototype accident sequence model. As an example to illustrate applicability to a real scale plant model, a red oil explosion in a German reprocessing plant model is simulated to show that TITAN can give an accident occurrence frequency with relatively good accuracy. Moreover, results of uncertainty analyses by TITAN are rendered to show another performance, and a proposal is made for introducing of a new input-data format to adapt the component Monte Carlo simulation. The present paper describes the calculational method, performance, applicability to a real scale, and new proposal for the TITAN code. In the Appendixes, a conventional analytical method is shown to avoid complex and laborious calculation to obtain a strict solution of accident occurrence frequency, compared with Monte Carlo method. The user's manual and the list/structure of program are also contained in the Appendixes to facilitate TITAN computer program usage. (author)

  6. TITAN: a computer program for accident occurrence frequency analyses by component Monte Carlo simulation

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Tamaki, Hitoshi; Kanai, Shigeru

    2000-04-01

    In a plant system consisting of complex equipments and components for a reprocessing facility, there might be grace time between an initiating event and a resultant serious accident, allowing operating personnel to take remedial actions, thus, terminating the ongoing accident sequence. A component Monte Carlo simulation computer program TITAN has been developed to analyze such a complex reliability model including the grace time without any difficulty to obtain an accident occurrence frequency. Firstly, basic methods for the component Monte Carlo simulation is introduced to obtain an accident occurrence frequency, and then, the basic performance such as precision, convergence, and parallelization of calculation, is shown through calculation of a prototype accident sequence model. As an example to illustrate applicability to a real scale plant model, a red oil explosion in a German reprocessing plant model is simulated to show that TITAN can give an accident occurrence frequency with relatively good accuracy. Moreover, results of uncertainty analyses by TITAN are rendered to show another performance, and a proposal is made for introducing of a new input-data format to adapt the component Monte Carlo simulation. The present paper describes the calculational method, performance, applicability to a real scale, and new proposal for the TITAN code. In the Appendixes, a conventional analytical method is shown to avoid complex and laborious calculation to obtain a strict solution of accident occurrence frequency, compared with Monte Carlo method. The user's manual and the list/structure of program are also contained in the Appendixes to facilitate TITAN computer program usage. (author)

  7. A Non-Stationary Approach for Estimating Future Hydroclimatic Extremes Using Monte-Carlo Simulation

    Science.gov (United States)

    Byun, K.; Hamlet, A. F.

    2017-12-01

    There is substantial evidence that observed hydrologic extremes (e.g. floods, extreme stormwater events, and low flows) are changing and that climate change will continue to alter the probability distributions of hydrologic extremes over time. These non-stationary risks imply that conventional approaches for designing hydrologic infrastructure (or making other climate-sensitive decisions) based on retrospective analysis and stationary statistics will become increasingly problematic through time. To develop a framework for assessing risks in a non-stationary environment our study develops a new approach using a super ensemble of simulated hydrologic extremes based on Monte Carlo (MC) methods. Specifically, using statistically downscaled future GCM projections from the CMIP5 archive (using the Hybrid Delta (HD) method), we extract daily precipitation (P) and temperature (T) at 1/16 degree resolution based on a group of moving 30-yr windows within a given design lifespan (e.g. 10, 25, 50-yr). Using these T and P scenarios we simulate daily streamflow using the Variable Infiltration Capacity (VIC) model for each year of the design lifespan and fit a Generalized Extreme Value (GEV) probability distribution to the simulated annual extremes. MC experiments are then used to construct a random series of 10,000 realizations of the design lifespan, estimating annual extremes using the estimated unique GEV parameters for each individual year of the design lifespan. Our preliminary results for two watersheds in Midwest show that there are considerable differences in the extreme values for a given percentile between conventional MC and non-stationary MC approach. Design standards based on our non-stationary approach are also directly dependent on the design lifespan of infrastructure, a sensitivity which is notably absent from conventional approaches based on retrospective analysis. The experimental approach can be applied to a wide range of hydroclimatic variables of interest.

  8. PENELOPE, and algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-10-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from similar{sub t}o 1 KeV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.

  9. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F; Fernandez-Varea, J M; Baro, J; Sempau, J

    1996-07-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.

  10. Monte Carlo simulations for the optimisation of low-background Ge detector designs

    Energy Technology Data Exchange (ETDEWEB)

    Hakenmueller, Janina; Heusser, Gerd; Maneschg, Werner; Schreiner, Jochen; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert; Weber, Marc; Westernmann, Jonas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Laubenstein, Matthias [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi L' Aquila (Italy)

    2015-07-01

    Monte Carlo simulations for the low-background Ge spectrometer Giove at the underground laboratory of MPI-K, Heidelberg, are presented. In order to reduce the cosmogenic background at the present shallow depth (15 m w.e.) the shielding of the spectrometer includes an active muon veto and a passive shielding (lead and borated PE layers). The achieved background suppression is comparable to Ge spectrometers operated in much greater depth. The geometry of the detector and the shielding were implemented using the Geant4-based toolkit MaGe. The simulations were successfully optimised by determining the correct diode position and active volume. With the help of the validated Monte Carlo simulation the contribution of the single components to the overall background can be examined. This includes a comparison between simulated results and measurements with different fillings of the sample chamber. Having reproduced the measured detector background in the simulation provides the possibility to improve the background by reverse engineering of the passive and active shield layers in the simulation.

  11. Characterization of array scintillation detector for follicle thyroid 2D imaging acquisition using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Carlos Borges da

    2007-05-01

    The image acquisition methods applied to nuclear medicine and radiobiology are a valuable research study for determination of thyroid anatomy to seek disorders associated to follicular cells. The Monte Carlo (MC) simulation has also been used in problems related to radiation detection in order to map medical images since the improvement of data processing compatible with personnel computers (PC). This work presents an innovative study to find out the adequate scintillation inorganic detector array that could be coupled to a specific light photo sensor, a charge coupled device (CCD) through a fiber optic plate in order to map the follicles of thyroid gland. The goal is to choose the type of detector that fits the application suggested here with spatial resolution of 10 μm and good detector efficiency. The methodology results are useful to map a follicle image using gamma radiation emission. A source - detector simulation is performed by using a MCNP4B (Monte Carlo for Neutron Photon transport) general code considering different source energies, detector materials and geometries including pixel sizes and reflector types. The results demonstrate that by using MCNP4B code is possible to searching for useful parameters related to the systems used in nuclear medicine, specifically in radiobiology applied to endocrine physiology studies to acquiring thyroid follicles images. (author)

  12. Computed radiography simulation using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)

  13. Computed radiography simulation using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.

  14. Development of three-dimensional program based on Monte Carlo and discrete ordinates bidirectional coupling method

    International Nuclear Information System (INIS)

    Han Jingru; Chen Yixue; Yuan Longjun

    2013-01-01

    The Monte Carlo (MC) and discrete ordinates (SN) are the commonly used methods in the design of radiation shielding. Monte Carlo method is able to treat the geometry exactly, but time-consuming in dealing with the deep penetration problem. The discrete ordinate method has great computational efficiency, but it is quite costly in computer memory and it suffers from ray effect. Single discrete ordinates method or single Monte Carlo method has limitation in shielding calculation for large complex nuclear facilities. In order to solve the problem, the Monte Carlo and discrete ordinates bidirectional coupling method is developed. The bidirectional coupling method is implemented in the interface program to transfer the particle probability distribution of MC and angular flux of discrete ordinates. The coupling method combines the advantages of MC and SN. The test problems of cartesian and cylindrical coordinate have been calculated by the coupling methods. The calculation results are performed with comparison to MCNP and TORT and satisfactory agreements are obtained. The correctness of the program is proved. (authors)

  15. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2015-06-15

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical

  16. Monte Carlo simulation of asymmetrical growth of cube-shaped nanoparticles

    International Nuclear Information System (INIS)

    Wang Yuanyuan; Xie Huaqing; Wu Zihua; Xing Jiaojiao

    2016-01-01

    We simulated the asymmetrical growth of cube-shaped nanoparticles by applying the Monte Carlo method. The influence of the specific mechanisms on the crystal growth of nanoparticles has been phenomenologically described by efficient growth possibilities along different directions (or crystal faces). The roles of the thermodynamic and kinetic factors have been evaluated in three phenomenological models. The simulation results would benefit the understanding about the cause and manner of the asymmetrical growth of nanoparticles. (paper)

  17. Simulation based sequential Monte Carlo methods for discretely observed Markov processes

    OpenAIRE

    Neal, Peter

    2014-01-01

    Parameter estimation for discretely observed Markov processes is a challenging problem. However, simulation of Markov processes is straightforward using the Gillespie algorithm. We exploit this ease of simulation to develop an effective sequential Monte Carlo (SMC) algorithm for obtaining samples from the posterior distribution of the parameters. In particular, we introduce two key innovations, coupled simulations, which allow us to study multiple parameter values on the basis of a single sim...

  18. Monte Carlo evaluation of derivative-based global sensitivity measures

    Energy Technology Data Exchange (ETDEWEB)

    Kucherenko, S. [Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)], E-mail: s.kucherenko@ic.ac.uk; Rodriguez-Fernandez, M. [Process Engineering Group, Instituto de Investigaciones Marinas, Spanish Council for Scientific Research (C.S.I.C.), C/ Eduardo Cabello, 6, 36208 Vigo (Spain); Pantelides, C.; Shah, N. [Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2009-07-15

    A novel approach for evaluation of derivative-based global sensitivity measures (DGSM) is presented. It is compared with the Morris and the Sobol' sensitivity indices methods. It is shown that there is a link between DGSM and Sobol' sensitivity indices. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is many orders of magnitude lower than that for estimation of the Sobol' sensitivity indices. It is also lower than that for the Morris method. Efficiencies of Monte Carlo (MC) and quasi-Monte Carlo (QMC) sampling methods for calculation of DGSM are compared. It is shown that the superiority of QMC over MC depends on the problem's effective dimension, which can also be estimated using DGSM.

  19. Monte Carlo calculated CT numbers for improved heavy ion treatment planning

    Directory of Open Access Journals (Sweden)

    Qamhiyeh Sima

    2014-03-01

    Full Text Available Better knowledge of CT number values and their uncertainties can be applied to improve heavy ion treatment planning. We developed a novel method to calculate CT numbers for a computed tomography (CT scanner using the Monte Carlo (MC code, BEAMnrc/EGSnrc. To generate the initial beam shape and spectra we conducted full simulations of an X-ray tube, filters and beam shapers for a Siemens Emotion CT. The simulation output files were analyzed to calculate projections of a phantom with inserts. A simple reconstruction algorithm (FBP using a Ram-Lak filter was applied to calculate the pixel values, which represent an attenuation coefficient, normalized in such a way to give zero for water (Hounsfield unit (HU. Measured and Monte Carlo calculated CT numbers were compared. The average deviation between measured and simulated CT numbers was 4 ± 4 HU and the standard deviation σ was 49 ± 4 HU. The simulation also correctly predicted the behaviour of H-materials compared to a Gammex tissue substitutes. We believe the developed approach represents a useful new tool for evaluating the effect of CT scanner and phantom parameters on CT number values.

  20. Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Liborio I., E-mail: liborio78@gmail.com

    2016-12-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  1. Validation of a Monte Carlo model used for simulating tube current modulation in computed tomography over a wide range of phantom conditions/challenges

    Energy Technology Data Exchange (ETDEWEB)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F. [Departments of Biomedical Physics and Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States); DeMarco, John J. [Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-01

    Purpose: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purpose of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. Methods: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of MCNPX, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x–y–z TCM, and z-axis-only TCM to obtain

  2. Study of Gamma spectra by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Cantaragiu, A.; Gheorghies, A.; Borcia, C.

    2008-01-01

    The purpose of this paper is obtaining gamma ray spectra by means of a scintillation detector applying the Monte Carlo statistic simulation method using the EGS4 program. The Monte Carlo algorithm implies that the physical system is described by the probability density function which allows generating random figures and the result is taken as an average of numbers which were observed. The EGS4 program allows the simulation of the following physical processes: the photo-electrical effect, the Compton effect, the electron positron pairs generation and the Rayleigh diffusion. The gamma rays recorded by the detector are converted into electrical pulses and the gamma ray spectra are acquired and processed by means of the Nomad Plus portable spectrometer connected to a computer. As a gamma ray sources 137Cs and 60Co are used whose spectra drawn and used for study the interaction of the gamma radiations with the scintillation detector. The parameters which varied during the acquisition of the gamma ray spectra are the distance between source and detector and the measuring time. Due to the statistical processes in the detector, the peak looks like a Gauss distribution. The identification of the gamma quantum energy value is achieved by the experimental spectra peaks, thus gathering information about the position of the peak, the width and the area of the peak respectively. By means of the EGS4 program a simulation is run using these parameters and an 'ideal' spectrum is obtained, a spectrum which is not influenced by the statistical processes which take place inside the detector. Then, the convolution of the spectra is achieved by means of a normalised Gauss function. There is a close match between the experimental results and those simulated in the EGS4 program because the interactions which occurred during the simulation have a statistical behaviour close to the real one. (authors)

  3. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung

    2009-11-01

    Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.

  4. A concept for optimizing avalanche rescue strategies using a Monte Carlo simulation approach.

    Directory of Open Access Journals (Sweden)

    Ingrid Reiweger

    Full Text Available Recent technical and strategical developments have increased the survival chances for avalanche victims. Still hundreds of people, primarily recreationists, get caught and buried by snow avalanches every year. About 100 die each year in the European Alps-and many more worldwide. Refining concepts for avalanche rescue means to optimize the procedures such that the survival chances are maximized in order to save the greatest possible number of lives. Avalanche rescue includes several parameters related to terrain, natural hazards, the people affected by the event, the rescuers, and the applied search and rescue equipment. The numerous parameters and their complex interaction make it unrealistic for a rescuer to take, in the urgency of the situation, the best possible decisions without clearly structured, easily applicable decision support systems. In order to analyse which measures lead to the best possible survival outcome in the complex environment of an avalanche accident, we present a numerical approach, namely a Monte Carlo simulation. We demonstrate the application of Monte Carlo simulations for two typical, yet tricky questions in avalanche rescue: (1 calculating how deep one should probe in the first passage of a probe line depending on search area, and (2 determining for how long resuscitation should be performed on a specific patient while others are still buried. In both cases, we demonstrate that optimized strategies can be calculated with the Monte Carlo method, provided that the necessary input data are available. Our Monte Carlo simulations also suggest that with a strict focus on the "greatest good for the greatest number", today's rescue strategies can be further optimized in the best interest of patients involved in an avalanche accident.

  5. Monte Carlo simulation of the Tomotherapy treatment unit in the static mode using MC HAMMER, a Monte Carlo tool dedicated to Tomotherapy

    International Nuclear Information System (INIS)

    Sterpin, E; Tomsej, M; Cravens, B; Salvat, F; Ruchala, K; Olivera, G H; Vynckier, S

    2007-01-01

    Helical tomotherapy (HT) is designed to deliver highly modulated IMRT treatments. The concept of HT provides new challenges in MC simulation, because simultaneous movement of the gantry, the couch and the multi-leaf collimator (MLC) must be simulated accurately. However, before accounting for gantry, couch movement and multileaf collimator configurations, high accuracy must be achieved while simulating open static fields (1 x 40, 2.5 x 40 and 5 x 40 cm 2 ). This is performed using MC HAMMER, which is a graphical user interface allowing MC simulation using PENELOPE for various configurations of HT. Since the geometry of the different elements and materials involved in the beam generation are precisely known and defined, the only parameters that need to be tuned on are therefore electron source spot size and electron energy. Beyond the build up region, good agreement (2%/1mm) is achieved for all the field sizes between measurements (ion chamber) and simulations with an electron source energy set to 5.5 MeV. The electron source spot size is modelled as a gaussian distribution with full width half maximum equal to 1.4 mm. This value was chosen to match measured and calculated penumbras in the longitudinal direction

  6. SU-E-T-314: The Application of Cloud Computing in Pencil Beam Scanning Proton Therapy Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z [Reading Hospital, West Reading, PA (United States); Gao, M [ProCure Treatment Centers, Warrenville, IL (United States)

    2014-06-01

    Purpose: Monte Carlo simulation plays an important role for proton Pencil Beam Scanning (PBS) technique. However, MC simulation demands high computing power and is limited to few large proton centers that can afford a computer cluster. We study the feasibility of utilizing cloud computing in the MC simulation of PBS beams. Methods: A GATE/GEANT4 based MC simulation software was installed on a commercial cloud computing virtual machine (Linux 64-bits, Amazon EC2). Single spot Integral Depth Dose (IDD) curves and in-air transverse profiles were used to tune the source parameters to simulate an IBA machine. With the use of StarCluster software developed at MIT, a Linux cluster with 2–100 nodes can be conveniently launched in the cloud. A proton PBS plan was then exported to the cloud where the MC simulation was run. Results: The simulated PBS plan has a field size of 10×10cm{sup 2}, 20cm range, 10cm modulation, and contains over 10,000 beam spots. EC2 instance type m1.medium was selected considering the CPU/memory requirement and 40 instances were used to form a Linux cluster. To minimize cost, master node was created with on-demand instance and worker nodes were created with spot-instance. The hourly cost for the 40-node cluster was $0.63 and the projected cost for a 100-node cluster was $1.41. Ten million events were simulated to plot PDD and profile, with each job containing 500k events. The simulation completed within 1 hour and an overall statistical uncertainty of < 2% was achieved. Good agreement between MC simulation and measurement was observed. Conclusion: Cloud computing is a cost-effective and easy to maintain platform to run proton PBS MC simulation. When proton MC packages such as GATE and TOPAS are combined with cloud computing, it will greatly facilitate the pursuing of PBS MC studies, especially for newly established proton centers or individual researchers.

  7. SU-E-T-314: The Application of Cloud Computing in Pencil Beam Scanning Proton Therapy Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Wang, Z; Gao, M

    2014-01-01

    Purpose: Monte Carlo simulation plays an important role for proton Pencil Beam Scanning (PBS) technique. However, MC simulation demands high computing power and is limited to few large proton centers that can afford a computer cluster. We study the feasibility of utilizing cloud computing in the MC simulation of PBS beams. Methods: A GATE/GEANT4 based MC simulation software was installed on a commercial cloud computing virtual machine (Linux 64-bits, Amazon EC2). Single spot Integral Depth Dose (IDD) curves and in-air transverse profiles were used to tune the source parameters to simulate an IBA machine. With the use of StarCluster software developed at MIT, a Linux cluster with 2–100 nodes can be conveniently launched in the cloud. A proton PBS plan was then exported to the cloud where the MC simulation was run. Results: The simulated PBS plan has a field size of 10×10cm 2 , 20cm range, 10cm modulation, and contains over 10,000 beam spots. EC2 instance type m1.medium was selected considering the CPU/memory requirement and 40 instances were used to form a Linux cluster. To minimize cost, master node was created with on-demand instance and worker nodes were created with spot-instance. The hourly cost for the 40-node cluster was $0.63 and the projected cost for a 100-node cluster was $1.41. Ten million events were simulated to plot PDD and profile, with each job containing 500k events. The simulation completed within 1 hour and an overall statistical uncertainty of < 2% was achieved. Good agreement between MC simulation and measurement was observed. Conclusion: Cloud computing is a cost-effective and easy to maintain platform to run proton PBS MC simulation. When proton MC packages such as GATE and TOPAS are combined with cloud computing, it will greatly facilitate the pursuing of PBS MC studies, especially for newly established proton centers or individual researchers

  8. The determination of beam quality correction factors: Monte Carlo simulations and measurements.

    Science.gov (United States)

    González-Castaño, D M; Hartmann, G H; Sánchez-Doblado, F; Gómez, F; Kapsch, R-P; Pena, J; Capote, R

    2009-08-07

    Modern dosimetry protocols are based on the use of ionization chambers provided with a calibration factor in terms of absorbed dose to water. The basic formula to determine the absorbed dose at a user's beam contains the well-known beam quality correction factor that is required whenever the quality of radiation used at calibration differs from that of the user's radiation. The dosimetry protocols describe the whole ionization chamber calibration procedure and include tabulated beam quality correction factors which refer to 60Co gamma radiation used as calibration quality. They have been calculated for a series of ionization chambers and radiation qualities based on formulae, which are also described in the protocols. In the case of high-energy photon beams, the relative standard uncertainty of the beam quality correction factor is estimated to amount to 1%. In the present work, two alternative methods to determine beam quality correction factors are prescribed-Monte Carlo simulation using the EGSnrc system and an experimental method based on a comparison with a reference chamber. Both Monte Carlo calculations and ratio measurements were carried out for nine chambers at several radiation beams. Four chamber types are not included in the current dosimetry protocols. Beam quality corrections for the reference chamber at two beam qualities were also measured using a calorimeter at a PTB Primary Standards Dosimetry Laboratory. Good agreement between the Monte Carlo calculated (1% uncertainty) and measured (0.5% uncertainty) beam quality correction factors was obtained. Based on these results we propose that beam quality correction factors can be generated both by measurements and by the Monte Carlo simulations with an uncertainty at least comparable to that given in current dosimetry protocols.

  9. Free energy and phase equilibria for the restricted primitive model of ionic fluids from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Orkoulas, G.; Panagiotopoulos, A.Z.

    1994-01-01

    In this work, we investigate the liquid--vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T * c =0.053, ρ * c =0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids

  10. A virtual source method for Monte Carlo simulation of Gamma Knife Model C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hoon; Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun Tai [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-05-15

    The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results.

  11. A virtual source method for Monte Carlo simulation of Gamma Knife Model C

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kim, Yong Kyun; Chung, Hyun Tai

    2016-01-01

    The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results

  12. Microcanonical Monte Carlo

    International Nuclear Information System (INIS)

    Creutz, M.

    1986-01-01

    The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena

  13. Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

    DEFF Research Database (Denmark)

    Zunino, Andrea; Lange, Katrine; Melnikova, Yulia

    2014-01-01

    We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear...

  14. Massive Parallelism of Monte-Carlo Simulation on Low-End Hardware using Graphic Processing Units

    International Nuclear Information System (INIS)

    Mburu, Joe Mwangi; Hah, Chang Joo Hah

    2014-01-01

    Within the past decade, research has been done on utilizing GPU massive parallelization in core simulation with impressive results but unfortunately, not much commercial application has been done in the nuclear field especially in reactor core simulation. The purpose of this paper is to give an introductory concept on the topic and illustrate the potential of exploiting the massive parallel nature of GPU computing on a simple monte-carlo simulation with very minimal hardware specifications. To do a comparative analysis, a simple two dimension monte-carlo simulation is implemented for both the CPU and GPU in order to evaluate performance gain based on the computing devices. The heterogeneous platform utilized in this analysis is done on a slow notebook with only 1GHz processor. The end results are quite surprising whereby high speedups obtained are almost a factor of 10. In this work, we have utilized heterogeneous computing in a GPU-based approach in applying potential high arithmetic intensive calculation. By applying a complex monte-carlo simulation on GPU platform, we have speed up the computational process by almost a factor of 10 based on one million neutrons. This shows how easy, cheap and efficient it is in using GPU in accelerating scientific computing and the results should encourage in exploring further this avenue especially in nuclear reactor physics simulation where deterministic and stochastic calculations are quite favourable in parallelization

  15. Massive Parallelism of Monte-Carlo Simulation on Low-End Hardware using Graphic Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Mburu, Joe Mwangi; Hah, Chang Joo Hah [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    Within the past decade, research has been done on utilizing GPU massive parallelization in core simulation with impressive results but unfortunately, not much commercial application has been done in the nuclear field especially in reactor core simulation. The purpose of this paper is to give an introductory concept on the topic and illustrate the potential of exploiting the massive parallel nature of GPU computing on a simple monte-carlo simulation with very minimal hardware specifications. To do a comparative analysis, a simple two dimension monte-carlo simulation is implemented for both the CPU and GPU in order to evaluate performance gain based on the computing devices. The heterogeneous platform utilized in this analysis is done on a slow notebook with only 1GHz processor. The end results are quite surprising whereby high speedups obtained are almost a factor of 10. In this work, we have utilized heterogeneous computing in a GPU-based approach in applying potential high arithmetic intensive calculation. By applying a complex monte-carlo simulation on GPU platform, we have speed up the computational process by almost a factor of 10 based on one million neutrons. This shows how easy, cheap and efficient it is in using GPU in accelerating scientific computing and the results should encourage in exploring further this avenue especially in nuclear reactor physics simulation where deterministic and stochastic calculations are quite favourable in parallelization.

  16. Systematic vacuum study of the ITER model cryopump by test particle Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xueli; Haas, Horst; Day, Christian [Institute for Technical Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2011-07-01

    The primary pumping systems on the ITER torus are based on eight tailor-made cryogenic pumps because not any standard commercial vacuum pump can meet the ITER working criteria. This kind of cryopump can provide high pumping speed, especially for light gases, by the cryosorption on activated charcoal at 4.5 K. In this paper we will present the systematic Monte Carlo simulation results of the model pump in a reduced scale by ProVac3D, a new Test Particle Monte Carlo simulation program developed by KIT. The simulation model has included the most important mechanical structures such as sixteen cryogenic panels working at 4.5 K, the 80 K radiation shield envelope with baffles, the pump housing, inlet valve and the TIMO (Test facility for the ITER Model Pump) test facility. Three typical gas species, i.e., deuterium, protium and helium are simulated. The pumping characteristics have been obtained. The result is in good agreement with the experiment data up to the gas throughput of 1000 sccm, which marks the limit for free molecular flow. This means that ProVac3D is a useful tool in the design of the prototype cryopump of ITER. Meanwhile, the capture factors at different critical positions are calculated. They can be used as the important input parameters for a follow-up Direct Simulation Monte Carlo (DSMC) simulation for higher gas throughput.

  17. Detailed Monte Carlo simulation of electron elastic scattering

    International Nuclear Information System (INIS)

    Chakarova, R.

    1994-04-01

    A detailed Monte Carlo model is described which simulates the transport of electrons penetrating a medium without energy loss. The trajectory of each electron is constructed as a series of successive interaction events - elastic or inelastic scattering. Differential elastic scattering cross sections, elastic and inelastic mean free paths are used to describe the interaction process. It is presumed that the cross sections data are available and the Monte Carlo algorithm does not include their evaluation. Electrons suffering successive elastic collisions are followed until they escape from the medium or (if the absorption is negligible) their path length exceeds a certain value. The inelastic events are thus treated as absorption. The medium geometry is a layered infinite slab. The electron source could be an incident electron beam or electrons created inside the material. The objective is to obtain the angular distribution, the path length and depth distribution and the collision number distribution of electrons emitted through the surface of the medium. The model is applied successfully to electrons with energy between 0.4 and 20 keV reflected from semi-infinite homogeneous materials with different scattering properties. 16 refs, 9 figs

  18. Monte Carlo methods

    Directory of Open Access Journals (Sweden)

    Bardenet Rémi

    2013-07-01

    Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.

  19. Application of MCAM in generating Monte Carlo model for ITER port limiter

    International Nuclear Information System (INIS)

    Lu Lei; Li Ying; Ding Aiping; Zeng Qin; Huang Chenyu; Wu Yican

    2007-01-01

    On the basis of the pre-processing and conversion functions supplied by MCAM (Monte-Carlo Particle Transport Calculated Automatic Modeling System), this paper performed the generation of ITER Port Limiter MC (Monte-Carlo) calculation model from the CAD engineering model. The result was validated by using reverse function of MCAM and MCNP PLOT 2D cross-section drawing program. the successful application of MCAM to ITER Port Limiter demonstrates that MCAM is capable of dramatically increasing the efficiency and accuracy to generate MC calculation models from CAD engineering models with complex geometry comparing with the traditional manual modeling method. (authors)

  20. EDITORIAL: Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012) Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012)

    Science.gov (United States)

    Spezi, Emiliano; Leal, Antonio

    2013-04-01

    code, the authors report that software has been designed in a way that it should be independent of the type of MC code, provided that simulation meets a number of operational criteria. We wish to thank Elekta/CMS Inc., the University of Seville, the Junta of Andalusia and the European Regional Development Fund for their financial support. We would like also to acknowledge the members of EWG-MCTP for their help in peer-reviewing all the abstracts, and all the invited speakers who kindly agreed to deliver keynote presentations in their area of expertise. A final word of thanks to our colleagues who worked on the reviewing process of the papers selected for this special section and to the IOP Publishing staff who made it possible. MCTP2012 was accredited by the European Federation of Organisations for Medical Physics as a CPD event for medical physicists. Emiliano Spezi and Antonio Leal Guest Editors References Chakarova R, Müntzing K, Krantz M, E Hedin E and Hertzman S 2013 Monte Carlo optimization of total body irradiation in a phantom and patient geometry Phys. Med. Biol. 58 2461-69 Czarnecki D and Zink K 2013 Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields Phys. Med. Biol. 58 2431-44 Mairani A, Böhlen T T, Schiavi A, Tessonnier T, Molinelli S, Brons S, Battistoni G, Parodi K and Patera V 2013 A Monte Carlo-based treatment planning tool for proton therapy Phys. Med. Biol. 58 2471-90 Marcatili S, Pettinato C, Daniels S, Lewis G, Edwards P, Fanti S and Spezi E 2013 Development and validation of RAYDOSE: a Geant4 based application for molecular radiotherapy Phys. Med. Biol. 58 2491-508 Miras H, Jiménez R, Miras C and Gomà C 2013 CloudMC: A cloud computing application for Monte Carlo simulation Phys. Med. Biol. 58 N125-33 Reynaert N 2007 First European Workshop on Monte Carlo Treatment Planning J. Phys.: Conf. Ser. 74 011001 Seuntjens J, Beaulieu L, El Naqa I and Després P 2012 Special section: Selected papers from the

  1. TH-A-19A-08: Intel Xeon Phi Implementation of a Fast Multi-Purpose Monte Carlo Simulation for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Souris, K; Lee, J; Sterpin, E [Universite catholique de Louvain, Brussels (Belgium)

    2014-06-15

    Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed and accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time

  2. TH-A-19A-08: Intel Xeon Phi Implementation of a Fast Multi-Purpose Monte Carlo Simulation for Proton Therapy

    International Nuclear Information System (INIS)

    Souris, K; Lee, J; Sterpin, E

    2014-01-01

    Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed and accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time

  3. Monte Carlo in radiotherapy: experience in a distributed computational environment

    Science.gov (United States)

    Caccia, B.; Mattia, M.; Amati, G.; Andenna, C.; Benassi, M.; D'Angelo, A.; Frustagli, G.; Iaccarino, G.; Occhigrossi, A.; Valentini, S.

    2007-06-01

    New technologies in cancer radiotherapy need a more accurate computation of the dose delivered in the radiotherapeutical treatment plan, and it is important to integrate sophisticated mathematical models and advanced computing knowledge into the treatment planning (TP) process. We present some results about using Monte Carlo (MC) codes in dose calculation for treatment planning. A distributed computing resource located in the Technologies and Health Department of the Italian National Institute of Health (ISS) along with other computer facilities (CASPUR - Inter-University Consortium for the Application of Super-Computing for Universities and Research) has been used to perform a fully complete MC simulation to compute dose distribution on phantoms irradiated with a radiotherapy accelerator. Using BEAMnrc and GEANT4 MC based codes we calculated dose distributions on a plain water phantom and air/water phantom. Experimental and calculated dose values below ±2% (for depth between 5 mm and 130 mm) were in agreement both in PDD (Percentage Depth Dose) and transversal sections of the phantom. We consider these results a first step towards a system suitable for medical physics departments to simulate a complete treatment plan using remote computing facilities for MC simulations.

  4. Monte Carlo simulation of boron-ion implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.

    1991-01-01

    A physically based Monte Carlo boron implantation model developed comprehends previously neglected but important implant parameters such as native oxide layers, wafer temperature, beam divergence, tilt angle, rotation (twist) angle, and dose, in addition to energy. This model uses as its foundation the MARLOWE Monte Carlo simulation code developed at Oak Ridge National Laboratory for the analysis of radiation effects in materials. This code was carefully adapted for the simulation of ion implantation, and a number of significant improvements have been made, including the addition of atomic pair specific interatomic potentials, the implementation of a newly developed local electron concentration dependent electronic stopping model, and the implementation of a newly developed cumulative damage model. This improved version of the code, known as UT-MARLOWE, allows boron implantation profiles to be accurately predicted as a function of energy, tilt angle, rotation angle, and dose. This code has also been used in the development and implementation of an accurate and efficient two-dimensional boron implantation model

  5. Statistical thermodynamics of aligned rigid rods with attractive lateral interactions: Theory and Monte Carlo simulations

    Science.gov (United States)

    dos Santos, G. J.; Linares, D. H.; Ramirez-Pastor, A. J.

    2018-04-01

    The phase behaviour of aligned rigid rods of length k (k-mers) adsorbed on two-dimensional square lattices has been studied by Monte Carlo (MC) simulations and histogram reweighting technique. The k-mers, containing k identical units (each one occupying a lattice site) were deposited along one of the directions of the lattice. In addition, attractive lateral interactions were considered. The methodology was applied, particularly, to the study of the critical point of the condensation transition occurring in the system. The process was monitored by following the fourth order Binder cumulant as a function of temperature for different lattice sizes. The results, obtained for k ranging from 2 to 7, show that: (i) the transition coverage exhibits a decreasing behaviour when it is plotted as a function of the k-mer size and (ii) the transition temperature, Tc, exhibits a power law dependence on k, Tc ∼k 0 , 4, shifting to higher values as k increases. Comparisons with an analytical model based on a generalization of the Bragg-Williams approximation (BWA) were performed in order to support the simulation technique. A significant qualitative agreement was obtained between BWA and MC results.

  6. Overcoming artificial spatial correlations in simulations of superstructure domain growth with parallel Monte Carlo algorithms

    International Nuclear Information System (INIS)

    Schleier, W.; Besold, G.; Heinz, K.

    1992-01-01

    The authors study the applicability of parallelized/vectorized Monte Carlo (MC) algorithms to the simulation of domain growth in two-dimensional lattice gas models undergoing an ordering process after a rapid quench below an order-disorder transition temperature. As examples they consider models with 2 x 1 and c(2 x 2) equilibrium superstructures on the square and rectangular lattices, respectively. They also study the case of phase separation ('1 x 1' islands) on the square lattice. A generalized parallel checkerboard algorithm for Kawasaki dynamics is shown to give rise to artificial spatial correlations in all three models. However, only if superstructure domains evolve do these correlations modify the kinetics by influencing the nucleation process and result in a reduced growth exponent compared to the value from the conventional heat bath algorithm with random single-site updates. In order to overcome these artificial modifications, two MC algorithms with a reduced degree of parallelism ('hybrid' and 'mask' algorithms, respectively) are presented and applied. As the results indicate, these algorithms are suitable for the simulation of superstructure domain growth on parallel/vector computers. 60 refs., 10 figs., 1 tab

  7. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    Science.gov (United States)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  8. Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model

    International Nuclear Information System (INIS)

    Bultinck, E; Bogaerts, A

    2011-01-01

    A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiO x thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar + ions, O 2 + ions, fast Ar atoms and sputtered Ti atoms). The deposition of the TiO x film is treated by an analytical surface model. The implementation of our so-called multi-species MC model is presented, and some typical calculation results are shown, such as densities, fluxes, energies and collision rates. The advantages and disadvantages of the multi-species MC model are illustrated by a comparison with a particle-in-cell/Monte Carlo collisions (PIC/MCC) model. Disadvantages include the fact that certain input values and assumptions are needed. However, when these are accounted for, the results are in good agreement with the PIC/MCC simulations, and the calculation time has drastically decreased, which enables us to simulate large and complicated reactor geometries. To illustrate this, the effect of larger target-substrate distances on the film properties is investigated. It is shown that a stoichiometric film is deposited at all investigated target-substrate distances (24, 40, 60 and 80 mm). Moreover, a larger target-substrate distance promotes film uniformity, but the deposition rate is much lower.

  9. Dosimetry applications in GATE Monte Carlo toolkit.

    Science.gov (United States)

    Papadimitroulas, Panagiotis

    2017-09-01

    Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. CARMEN: a system Monte Carlo based on linear programming from direct openings; CARMEN: Un sistema de planficiacion Monte Carlo basado en programacion lineal a partir de aberturas directas

    Energy Technology Data Exchange (ETDEWEB)

    Ureba, A.; Pereira-Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Salguero, F. J.; Leal, A.

    2013-07-01

    The use of Monte Carlo (MC) has shown an improvement in the accuracy of the calculation of the dose compared to other analytics algorithms installed on the systems of business planning, especially in the case of non-standard situations typical of complex techniques such as IMRT and VMAT. Our treatment planning system called CARMEN, is based on the complete simulation, both the beam transport in the head of the accelerator and the patient, and simulation designed for efficient operation in terms of the accuracy of the estimate and the required computation times. (Author)

  11. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    Science.gov (United States)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  12. SimpleGeO - new developments in the interactive creation and debugging of geometries for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Theis, Christian; Feldbaumer, Eduard; Forkel-Wirth, Doris; Jaegerhofer, Lukas; Roesler, Stefan; Vincke, Helmut; Buchegger, Karl Heinz

    2010-01-01

    Nowadays radiation transport Monte Carlo simulations have become an indispensable tool in various fields of physics. The applications are diversified and range from physics simulations, like detector studies or shielding design, to medical applications. Usually a significant amount of time is spent on the quite cumbersome and often error prone task of implementing geometries, before the actual physics studies can be performed. SimpleGeo is an interactive solid modeler which allows for the interactive creation and visualization of geometries for various Monte Carlo particle transport codes in 3D. Even though visual validation of the geometry is important, it might not reveal subtle errors like overlapping or undefined regions. These might eventually corrupt the execution of the simulation or even lead to incorrect results, the latter being sometimes hard to identify. In many cases a debugger is provided by the Monte Carlo package, but most often they lack interactive visual feedback, thus making it hard for the user to localize and correct the error. In this paper we describe the latest developments in SimpleGeo, which include debugging facilities that support immediate visual feedback, and apply various algorithms based on deterministic, Monte Carlo or Quasi Monte Carlo methods. These approaches allow for a fast and robust identification of subtle geometry errors that are also marked visually. (author)

  13. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Badal, A [U.S. Food and Drug Administration (CDRH/OSEL), Silver Spring, MD (United States); Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Bolch, W [University of Florida, Gainesville, FL (United States); Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2014-06-15

    Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the

  14. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    International Nuclear Information System (INIS)

    Badal, A; Zbijewski, W; Bolch, W; Sechopoulos, I

    2014-01-01

    Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10 7 xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual

  15. Monte Carlo simulation of discrete γ-ray detectors

    International Nuclear Information System (INIS)

    Bakkali, A.; Tamda, N.; Parmentier, M.; Chavanelle, J.; Pousse, A.; Kastler, B.

    2005-01-01

    Needs in medical diagnosis, especially for early and reliable breast cancer detection, lead us to consider developments in scintillation crystals and position sensitive photomultiplier tubes (PSPMT) in order to develop a high-resolution medium field γ-ray imaging device. However the ideal detector for γ-rays represents a compromise between many conflicting requirements. In order to optimize different parameters involved in the detection process, we have developed a Monte Carlo simulation software. Its aim was to study the light distribution produced by a gamma photon interacting with a pixellated scintillation crystal coupled to a PSPMT array. Several crystal properties were taken into account as well as the intrinsic response of PSPMTs. Images obtained by simulations are compared with experimental results. Agreement between simulation and experimental results validate our simulation model

  16. Fetal doses to pregnant patients from CT with tube current modulation calculated using Monte Carlo simulations and realistic phantoms

    International Nuclear Information System (INIS)

    Gu, J.; George Xu, X.; Caracappa, P. F.; Liu, B.

    2013-01-01

    To investigate the radiation dose to the fetus using retrospective tube current modulation (TCM) data selected from archived clinical records. This paper describes the calculation of fetal doses using retrospective TCM data and Monte Carlo (MC) simulations. Three TCM schemes were adopted for use with three pregnant patient phantoms. MC simulations were used to model CT scanners, TCM schemes and pregnant patients. Comparisons between organ doses from TCM schemes and those from non-TCM schemes show that these three TCM schemes reduced fetal doses by 14, 18 and 25 %, respectively. These organ doses were also compared with those from ImPACT calculation. It is found that the difference between the calculated fetal dose and the ImPACT reported dose is as high as 46 %. This work demonstrates methods to study organ doses from various TCM protocols and potential ways to improve the accuracy of CT dose calculation for pregnant patients. (authors)

  17. Biasing transition rate method based on direct MC simulation for probabilistic safety assessment

    Institute of Scientific and Technical Information of China (English)

    Xiao-Lei Pan; Jia-Qun Wang; Run Yuan; Fang Wang; Han-Qing Lin; Li-Qin Hu; Jin Wang

    2017-01-01

    Direct Monte Carlo (MC) simulation is a powerful probabilistic safety assessment method for accounting dynamics of the system.But it is not efficient at simulating rare events.A biasing transition rate method based on direct MC simulation is proposed to solve the problem in this paper.This method biases transition rates of the components by adding virtual components to them in series to increase the occurrence probability of the rare event,hence the decrease in the variance of MC estimator.Several cases are used to benchmark this method.The results show that the method is effective at modeling system failure and is more efficient at collecting evidence of rare events than the direct MC simulation.The performance is greatly improved by the biasing transition rate method.

  18. Herwig: The Evolution of a Monte Carlo Simulation

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Monte Carlo event generation has seen significant developments in the last 10 years starting with preparation for the LHC and then during the first LHC run. I will discuss the basic ideas behind Monte Carlo event generators and then go on to discuss these developments, focussing on the developments in Herwig(++) event generator. I will conclude by presenting the current status of event generation together with some results of the forthcoming new version of Herwig, Herwig 7.

  19. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    International Nuclear Information System (INIS)

    Paelinck, L; Reynaert, N; Thierens, H; Neve, W De; Wagter, C de

    2005-01-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 x 12 x 12 cm 3 containing a central cavity of 6 x 6 x 6 cm 3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 x 10 cm 2 field and a larger 10 x 10 cm 2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  20. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    Science.gov (United States)

    Paelinck, L.; Reynaert, N.; Thierens, H.; DeNeve, W.; DeWagter, C.

    2005-05-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 × 12 × 12 cm3 containing a central cavity of 6 × 6 × 6 cm3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 × 10 cm2 field and a larger 10 × 10 cm2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between