WorldWideScience

Sample records for monte-carlo based simulations

  1. Accelerated GPU based SPECT Monte Carlo simulations

    Science.gov (United States)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  2. Accelerated GPU based SPECT Monte Carlo simulations.

    Science.gov (United States)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  3. Monte-Carlo simulation-based statistical modeling

    CERN Document Server

    Chen, John

    2017-01-01

    This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

  4. Quantum Monte Carlo simulation

    OpenAIRE

    Wang, Yazhen

    2011-01-01

    Contemporary scientific studies often rely on the understanding of complex quantum systems via computer simulation. This paper initiates the statistical study of quantum simulation and proposes a Monte Carlo method for estimating analytically intractable quantities. We derive the bias and variance for the proposed Monte Carlo quantum simulation estimator and establish the asymptotic theory for the estimator. The theory is used to design a computational scheme for minimizing the mean square er...

  5. Proton Upset Monte Carlo Simulation

    Science.gov (United States)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  6. Metropolis Methods for Quantum Monte Carlo Simulations

    OpenAIRE

    Ceperley, D. M.

    2003-01-01

    Since its first description fifty years ago, the Metropolis Monte Carlo method has been used in a variety of different ways for the simulation of continuum quantum many-body systems. This paper will consider some of the generalizations of the Metropolis algorithm employed in quantum Monte Carlo: Variational Monte Carlo, dynamical methods for projector monte carlo ({\\it i.e.} diffusion Monte Carlo with rejection), multilevel sampling in path integral Monte Carlo, the sampling of permutations, ...

  7. A new Monte Carlo simulation model for laser transmission in smokescreen based on MATLAB

    Science.gov (United States)

    Lee, Heming; Wang, Qianqian; Shan, Bin; Li, Xiaoyang; Gong, Yong; Zhao, Jing; Peng, Zhong

    2016-11-01

    A new Monte Carlo simulation model of laser transmission in smokescreen is promoted in this paper. In the traditional Monte Carlo simulation model, the radius of particles is set at the same value and the initial cosine value of photons direction is fixed also, which can only get the approximate result. The new model is achieved based on MATLAB and can simulate laser transmittance in smokescreen with different sizes of particles, and the output result of the model is close to the real scenarios. In order to alleviate the influence of the laser divergence while traveling in the air, we changed the initial direction cosine of photons on the basis of the traditional Monte Carlo model. The mixed radius particle smoke simulation results agree with the measured transmittance under the same experimental conditions with 5.42% error rate.

  8. Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation

    NARCIS (Netherlands)

    Minasny, B.; Vrugt, J.A.; McBratney, A.B.

    2011-01-01

    This paper demonstrates for the first time the use of Markov Chain Monte Carlo (MCMC) simulation for parameter inference in model-based soil geostatistics. We implemented the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm to jointly summarize the posterior distributi

  9. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg–Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  10. Fault Risk Assessment of Underwater Vehicle Steering System Based on Virtual Prototyping and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    He Deyu

    2016-09-01

    Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.

  11. Efficient kinetic Monte Carlo simulation

    Science.gov (United States)

    Schulze, Tim P.

    2008-02-01

    This paper concerns kinetic Monte Carlo (KMC) algorithms that have a single-event execution time independent of the system size. Two methods are presented—one that combines the use of inverted-list data structures with rejection Monte Carlo and a second that combines inverted lists with the Marsaglia-Norman-Cannon algorithm. The resulting algorithms apply to models with rates that are determined by the local environment but are otherwise arbitrary, time-dependent and spatially heterogeneous. While especially useful for crystal growth simulation, the algorithms are presented from the point of view that KMC is the numerical task of simulating a single realization of a Markov process, allowing application to a broad range of areas where heterogeneous random walks are the dominate simulation cost.

  12. Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media

    Science.gov (United States)

    Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2017-01-01

    Analytical expressions for sampling the scattering angle from a phase function in Monte Carlo simulations of light propagation are available only for a limited number of phase functions. Consequently, numerical sampling methods based on tabulated values are often required instead. By using Monte Carlo simulated reflectance, we compare two existing and propose an improved numerical sampling method and show that both the number of the tabulated values and the numerical sampling method significantly influence the accuracy of the simulated reflectance. The provided results and guidelines should serve as a good starting point for conducting computationally efficient Monte Carlo simulations with numerical phase function sampling. PMID:28663872

  13. A zero-variance based scheme for Monte Carlo criticality simulations

    NARCIS (Netherlands)

    Christoforou, S.

    2010-01-01

    The ability of the Monte Carlo method to solve particle transport problems by simulating the particle behaviour makes it a very useful technique in nuclear reactor physics. However, the statistical nature of Monte Carlo implies that there will always be a variance associated with the estimate obtain

  14. GPU-accelerated Monte Carlo simulation of particle coagulation based on the inverse method

    Science.gov (United States)

    Wei, J.; Kruis, F. E.

    2013-09-01

    Simulating particle coagulation using Monte Carlo methods is in general a challenging computational task due to its numerical complexity and the computing cost. Currently, the lowest computing costs are obtained when applying a graphic processing unit (GPU) originally developed for speeding up graphic processing in the consumer market. In this article we present an implementation of accelerating a Monte Carlo method based on the Inverse scheme for simulating particle coagulation on the GPU. The abundant data parallelism embedded within the Monte Carlo method is explained as it will allow an efficient parallelization of the MC code on the GPU. Furthermore, the computation accuracy of the MC on GPU was validated with a benchmark, a CPU-based discrete-sectional method. To evaluate the performance gains by using the GPU, the computing time on the GPU against its sequential counterpart on the CPU were compared. The measured speedups show that the GPU can accelerate the execution of the MC code by a factor 10-100, depending on the chosen particle number of simulation particles. The algorithm shows a linear dependence of computing time with the number of simulation particles, which is a remarkable result in view of the n2 dependence of the coagulation.

  15. Simulation model based on Monte Carlo method for traffic assignment in local area road network

    Institute of Scientific and Technical Information of China (English)

    Yuchuan DU; Yuanjing GENG; Lijun SUN

    2009-01-01

    For a local area road network, the available traffic data of traveling are the flow volumes in the key intersections, not the complete OD matrix. Considering the circumstance characteristic and the data availability of a local area road network, a new model for traffic assignment based on Monte Carlo simulation of intersection turning movement is provided in this paper. For good stability in temporal sequence, turning ratio is adopted as the important parameter of this model. The formulation for local area road network assignment problems is proposed on the assumption of random turning behavior. The traffic assignment model based on the Monte Carlo method has been used in traffic analysis for an actual urban road network. The results comparing surveying traffic flow data and determining flow data by the previous model verify the applicability and validity of the proposed methodology.

  16. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  17. Adaptive Multilevel Monte Carlo Simulation

    KAUST Repository

    Hoel, H

    2011-08-23

    This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).

  18. Monte Carlo Simulation of Counting Experiments.

    Science.gov (United States)

    Ogden, Philip M.

    A computer program to perform a Monte Carlo simulation of counting experiments was written. The program was based on a mathematical derivation which started with counts in a time interval. The time interval was subdivided to form a binomial distribution with no two counts in the same subinterval. Then the number of subintervals was extended to…

  19. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    Energy Technology Data Exchange (ETDEWEB)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M [Grupo de Fisica Nuclear, Departmento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid (Spain); Vaquero, J J; Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2009-03-21

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  20. X-ray imaging plate performance investigation based on a Monte Carlo simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Yao, M., E-mail: philippe.duvauchelle@insa-lyon.fr [Laboratoire Vibration Acoustique (LVA), INSA de Lyon, 25 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Duvauchelle, Ph.; Kaftandjian, V. [Laboratoire Vibration Acoustique (LVA), INSA de Lyon, 25 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Peterzol-Parmentier, A. [AREVA NDE-Solutions, 4 Rue Thomas Dumorey, 71100 Chalon-sur-Saône (France); Schumm, A. [EDF R& D SINETICS, 1 Avenue du Général de Gaulle, 92141 Clamart Cedex (France)

    2015-01-01

    Computed radiography (CR) based on imaging plate (IP) technology represents a potential replacement technique for traditional film-based industrial radiography. For investigating the IP performance especially at high energies, a Monte Carlo simulation tool based on PENELOPE has been developed. This tool tracks separately direct and secondary radiations, and monitors the behavior of different particles. The simulation output provides 3D distribution of deposited energy in IP and evaluation of radiation spectrum propagation allowing us to visualize the behavior of different particles and the influence of different elements. A detailed analysis, on the spectral and spatial responses of IP at different energies up to MeV, has been performed. - Highlights: • A Monte Carlo tool for imaging plate (IP) performance investigation is presented. • The tool outputs 3D maps of energy deposition in IP due to different signals. • The tool also provides the transmitted spectra along the radiation propagation. • An industrial imaging case is simulated with the presented tool. • A detailed analysis, on the spectral and spatial responses of IP, is presented.

  1. Mean field simulation for Monte Carlo integration

    CERN Document Server

    Del Moral, Pierre

    2013-01-01

    In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko

  2. CAD-based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC

    Science.gov (United States)

    Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin

    2014-06-01

    Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as routine method for nuclear design and analysis in the future. High fidelity simulation with MC method coupled with multi-physical phenomenon simulation has significant impact on safety, economy and sustainability of nuclear systems. However, great challenges to current MC methods and codes prevent its application in real engineering project. SuperMC is a CAD-based Monte Carlo program for integrated simulation of nuclear system developed by FDS Team, China, making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC were presented in this paper. SuperMC2.1, the latest version for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. SuperMC is still in its evolution process toward a general and routine tool for nuclear system. Warning, no authors found for 2014snam.conf06023.

  3. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model

    Science.gov (United States)

    Morin, Mario A.; Ficarazzo, Francesco

    2006-04-01

    Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.

  4. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology.

    Science.gov (United States)

    Schreiber, Eric C; Chang, Sha X

    2012-08-01

    Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy∕min∕A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Monte Carlo simulations demonstrate that the proposed compact MRT system

  5. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  6. A Strategy for Finding the Optimal Scale of Plant Core Collection Based on Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Jiancheng Wang

    2014-01-01

    Full Text Available Core collection is an ideal resource for genome-wide association studies (GWAS. A subcore collection is a subset of a core collection. A strategy was proposed for finding the optimal sampling percentage on plant subcore collection based on Monte Carlo simulation. A cotton germplasm group of 168 accessions with 20 quantitative traits was used to construct subcore collections. Mixed linear model approach was used to eliminate environment effect and GE (genotype × environment effect. Least distance stepwise sampling (LDSS method combining 6 commonly used genetic distances and unweighted pair-group average (UPGMA cluster method was adopted to construct subcore collections. Homogeneous population assessing method was adopted to assess the validity of 7 evaluating parameters of subcore collection. Monte Carlo simulation was conducted on the sampling percentage, the number of traits, and the evaluating parameters. A new method for “distilling free-form natural laws from experimental data” was adopted to find the best formula to determine the optimal sampling percentages. The results showed that coincidence rate of range (CR was the most valid evaluating parameter and was suitable to serve as a threshold to find the optimal sampling percentage. The principal component analysis showed that subcore collections constructed by the optimal sampling percentages calculated by present strategy were well representative.

  7. Fission yield calculation using toy model based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90

  8. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code

    Science.gov (United States)

    Merheb, C.; Petegnief, Y.; Talbot, J. N.

    2007-02-01

    within 9%. For a 410-665 keV energy window, the measured sensitivity for a centred point source was 1.53% and mouse and rat scatter fractions were respectively 12.0% and 18.3%. The scattered photons produced outside the rat and mouse phantoms contributed to 24% and 36% of total simulated scattered coincidences. Simulated and measured single and prompt count rates agreed well for activities up to the electronic saturation at 110 MBq for the mouse and rat phantoms. Volumetric spatial resolution was 17.6 µL at the centre of the FOV with differences less than 6% between experimental and simulated spatial resolution values. The comprehensive evaluation of the Monte Carlo modelling of the Mosaic™ system demonstrates that the GATE package is adequately versatile and appropriate to accurately describe the response of an Anger logic based animal PET system.

  9. A method based on Monte Carlo simulation for the determination of the G(E) function.

    Science.gov (United States)

    Chen, Wei; Feng, Tiancheng; Liu, Jun; Su, Chuanying; Tian, Yanjie

    2015-02-01

    The G(E) function method is a spectrometric method for the exposure dose estimation; this paper describes a method based on Monte Carlo method to determine the G(E) function of a 4″ × 4″ × 16″ NaI(Tl) detector. Simulated spectrums of various monoenergetic gamma rays in the region of 40 -3200 keV and the corresponding deposited energy in an air ball in the energy region of full-energy peak were obtained using Monte Carlo N-particle Transport Code. Absorbed dose rate in air was obtained according to the deposited energy and divided by counts of corresponding full-energy peak to get the G(E) function value at energy E in spectra. Curve-fitting software 1st0pt was used to determine coefficients of the G(E) function. Experimental results show that the calculated dose rates using the G(E) function determined by the authors' method are accordant well with those values obtained by ionisation chamber, with a maximum deviation of 6.31 %.

  10. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation

    CERN Document Server

    Jia, Xun; Graves, Yan Jiang; Folkerts, Michael; Jiang, Steve B

    2011-01-01

    Monte Carlo (MC) simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications. In this paper, we present our recent progress towards the development a GPU-based MC dose calculation package, gDPM v2.0. It utilizes the parallel computation ability of a GPU to achieve high efficiency, while maintaining the same particle transport physics as in the original DPM code and hence the same level of simulation accuracy. In GPU computing, divergence of execution paths between threads can considerably reduce the efficiency. Since photons and electrons undergo different physics and hence attain different execution paths, we use a simulation scheme where photon transport and electron transport are separated to partially relieve the thread divergence issue. High performance random number generator and hardware linear interpolation are also utilized. We have also developed various components to hand...

  11. Quasi-Monte Carlo Simulation-Based SFEM for Slope Reliability Analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Yuzhen; Xie Liquan; Zhang Bingyin

    2005-01-01

    Considering the stochastic spatial variation of geotechnical parameters over the slope, a Stochastic Finite Element Method (SFEM) is established based on the combination of the Shear Strength Reduction (SSR) concept and quasi-Monte Carlo simulation. The shear strength reduction FEM is superior to the slice method based on the limit equilibrium theory in many ways, so it will be more powerful to assess the reliability of global slope stability when combined with probability theory. To illustrate the performance of the proposed method, it is applied to an example of simple slope. The results of simulation show that the proposed method is effective to perform the reliability analysis of global slope stability without presupposing a potential slip surface.

  12. GPU-based high performance Monte Carlo simulation in neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Heimlich, Adino; Mol, Antonio C.A.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Inteligencia Artificial Aplicada], e-mail: cmnap@ien.gov.br

    2009-07-01

    Graphics Processing Units (GPU) are high performance co-processors intended, originally, to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this work is to evaluate the impact of using GPU in neutron transport simulation by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multicore) approaches were developed and applied to a simple, but time-consuming problem. Comparisons demonstrated that the GPU-based approach is about 15 times faster than a parallel 8-core CPU-based approach also developed in this work. (author)

  13. On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses.

    Science.gov (United States)

    Koehler, Elizabeth; Brown, Elizabeth; Haneuse, Sebastien J-P A

    2009-05-01

    Statistical experiments, more commonly referred to as Monte Carlo or simulation studies, are used to study the behavior of statistical methods and measures under controlled situations. Whereas recent computing and methodological advances have permitted increased efficiency in the simulation process, known as variance reduction, such experiments remain limited by their finite nature and hence are subject to uncertainty; when a simulation is run more than once, different results are obtained. However, virtually no emphasis has been placed on reporting the uncertainty, referred to here as Monte Carlo error, associated with simulation results in the published literature, or on justifying the number of replications used. These deserve broader consideration. Here we present a series of simple and practical methods for estimating Monte Carlo error as well as determining the number of replications required to achieve a desired level of accuracy. The issues and methods are demonstrated with two simple examples, one evaluating operating characteristics of the maximum likelihood estimator for the parameters in logistic regression and the other in the context of using the bootstrap to obtain 95% confidence intervals. The results suggest that in many settings, Monte Carlo error may be more substantial than traditionally thought.

  14. Simulation of Cone Beam CT System Based on Monte Carlo Method

    CERN Document Server

    Wang, Yu; Cao, Ruifen; Hu, Liqin; Li, Bingbing

    2014-01-01

    Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral dose profiles under 1cm water were compared with the dose calculated by DOSXYZnrc program. The calculated PDD was better than 1% within the depth of 10cm. More than 85% points of calculated lateral dose profiles was within 2%. The correct CBCT system model helps to improve CBCT image quality for dose verification in ART and assess the CBCT image concomitant dose risk.

  15. Modelling of scintillator based flat-panel detectors with Monte-Carlo simulations

    Science.gov (United States)

    Reims, N.; Sukowski, F.; Uhlmann, N.

    2011-01-01

    Scintillator based flat panel detectors are state of the art in the field of industrial X-ray imaging applications. Choosing the proper system and setup parameters for the vast range of different applications can be a time consuming task, especially when developing new detector systems. Since the system behaviour cannot always be foreseen easily, Monte-Carlo (MC) simulations are keys to gain further knowledge of system components and their behaviour for different imaging conditions. In this work we used two Monte-Carlo based models to examine an indirect converting flat panel detector, specifically the Hamamatsu C9312SK. We focused on the signal generation in the scintillation layer and its influence on the spatial resolution of the whole system. The models differ significantly in their level of complexity. The first model gives a global description of the detector based on different parameters characterizing the spatial resolution. With relatively small effort a simulation model can be developed which equates the real detector regarding signal transfer. The second model allows a more detailed insight of the system. It is based on the well established cascade theory, i.e. describing the detector as a cascade of elemental gain and scattering stages, which represent the built in components and their signal transfer behaviour. In comparison to the first model the influence of single components especially the important light spread behaviour in the scintillator can be analysed in a more differentiated way. Although the implementation of the second model is more time consuming both models have in common that a relatively small amount of system manufacturer parameters are needed. The results of both models were in good agreement with the measured parameters of the real system.

  16. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  17. Lattice gauge theories and Monte Carlo simulations

    CERN Document Server

    Rebbi, Claudio

    1983-01-01

    This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.

  18. Considerable variation in NNT - A study based on Monte Carlo simulations

    DEFF Research Database (Denmark)

    Wisloff, T.; Aalen, O. O.; Sønbø Kristiansen, Ivar

    2011-01-01

    Objective: The aim of this analysis was to explore the variation in measures of effect, such as the number-needed-to-treat (NNT) and the relative risk (RR). Study Design and Setting: We performed Monte Carlo simulations of therapies using binominal distributions based on different true absolute...... risk reductions (ARR), number of patients (n), and the baseline risk of adverse events (p(0)) as parameters and presented results in histograms with NNT and RR. We also estimated the probability of observing no or a negative treatment effect, given that the true effect is positive. Results: When RR...... is used to express treatment effectiveness, it has a regular distribution around the expected value for various values of true ARR, n, and p(0). The equivalent distribution of NNT is by definition nonconnected at zero and is also irregular. The probability that the observed treatment effectiveness is zero...

  19. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  20. Numerical Study of Light Transport in Apple Models Based on Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine Askoura

    2015-12-01

    Full Text Available This paper reports on the quantification of light transport in apple models using Monte Carlo simulations. To this end, apple was modeled as a two-layer spherical model including skin and flesh bulk tissues. The optical properties of both tissue types used to generate Monte Carlo data were collected from the literature, and selected to cover a range of values related to three apple varieties. Two different imaging-tissue setups were simulated in order to show the role of the skin on steady-state backscattering images, spatially-resolved reflectance profiles, and assessment of flesh optical properties using an inverse nonlinear least squares fitting algorithm. Simulation results suggest that apple skin cannot be ignored when a Visible/Near-Infrared (Vis/NIR steady-state imaging setup is used for investigating quality attributes of apples. They also help to improve optical inspection techniques in the horticultural products.

  1. Simulation and the Monte Carlo method

    CERN Document Server

    Rubinstein, Reuven Y

    2016-01-01

    Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...

  2. Monte Carlo simulation for the transport beamline

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  3. Geant4-based Monte Carlo simulations on GPU for medical applications.

    Science.gov (United States)

    Bert, Julien; Perez-Ponce, Hector; El Bitar, Ziad; Jan, Sébastien; Boursier, Yannick; Vintache, Damien; Bonissent, Alain; Morel, Christian; Brasse, David; Visvikis, Dimitris

    2013-08-21

    Monte Carlo simulation (MCS) plays a key role in medical applications, especially for emission tomography and radiotherapy. However MCS is also associated with long calculation times that prevent its use in routine clinical practice. Recently, graphics processing units (GPU) became in many domains a low cost alternative for the acquisition of high computational power. The objective of this work was to develop an efficient framework for the implementation of MCS on GPU architectures. Geant4 was chosen as the MCS engine given the large variety of physics processes available for targeting different medical imaging and radiotherapy applications. In addition, Geant4 is the MCS engine behind GATE which is actually the most popular medical applications' simulation platform. We propose the definition of a global strategy and associated structures for such a GPU based simulation implementation. Different photon and electron physics effects are resolved on the fly directly on GPU without any approximations with respect to Geant4. Validations have shown equivalence in the underlying photon and electron physics processes between the Geant4 and the GPU codes with a speedup factor of 80-90. More clinically realistic simulations in emission and transmission imaging led to acceleration factors of 400-800 respectively compared to corresponding GATE simulations.

  4. A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation

    Science.gov (United States)

    Zhai, Xue; Fei, Cheng-Wei; Choy, Yat-Sze; Wang, Jian-Jun

    2017-01-01

    To improve the accuracy and efficiency of computation model for complex structures, the stochastic model updating (SMU) strategy was proposed by combining the improved response surface model (IRSM) and the advanced Monte Carlo (MC) method based on experimental static test, prior information and uncertainties. Firstly, the IRSM and its mathematical model were developed with the emphasis on moving least-square method, and the advanced MC simulation method is studied based on Latin hypercube sampling method as well. And then the SMU procedure was presented with experimental static test for complex structure. The SMUs of simply-supported beam and aeroengine stator system (casings) were implemented to validate the proposed IRSM and advanced MC simulation method. The results show that (1) the SMU strategy hold high computational precision and efficiency for the SMUs of complex structural system; (2) the IRSM is demonstrated to be an effective model due to its SMU time is far less than that of traditional response surface method, which is promising to improve the computational speed and accuracy of SMU; (3) the advanced MC method observably decrease the samples from finite element simulations and the elapsed time of SMU. The efforts of this paper provide a promising SMU strategy for complex structure and enrich the theory of model updating.

  5. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    Science.gov (United States)

    Kanjilal, Oindrila; Manohar, C. S.

    2017-07-01

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.

  6. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.

    Science.gov (United States)

    Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe

    2015-08-07

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  7. A brief introduction to Monte Carlo simulation.

    Science.gov (United States)

    Bonate, P L

    2001-01-01

    Simulation affects our life every day through our interactions with the automobile, airline and entertainment industries, just to name a few. The use of simulation in drug development is relatively new, but its use is increasing in relation to the speed at which modern computers run. One well known example of simulation in drug development is molecular modelling. Another use of simulation that is being seen recently in drug development is Monte Carlo simulation of clinical trials. Monte Carlo simulation differs from traditional simulation in that the model parameters are treated as stochastic or random variables, rather than as fixed values. The purpose of this paper is to provide a brief introduction to Monte Carlo simulation methods.

  8. Parallel Markov chain Monte Carlo simulations.

    Science.gov (United States)

    Ren, Ruichao; Orkoulas, G

    2007-06-07

    With strict detailed balance, parallel Monte Carlo simulation through domain decomposition cannot be validated with conventional Markov chain theory, which describes an intrinsically serial stochastic process. In this work, the parallel version of Markov chain theory and its role in accelerating Monte Carlo simulations via cluster computing is explored. It is shown that sequential updating is the key to improving efficiency in parallel simulations through domain decomposition. A parallel scheme is proposed to reduce interprocessor communication or synchronization, which slows down parallel simulation with increasing number of processors. Parallel simulation results for the two-dimensional lattice gas model show substantial reduction of simulation time for systems of moderate and large size.

  9. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0% and 3.7% of the prescribed dose, respectively. Comparing the results of simulation using the interface software with those of simulation using the standard MCNP geometry entry showed a less than 1

  10. Public Infrastructure for Monte Carlo Simulation: publicMC@BATAN

    CERN Document Server

    Waskita, A A; Akbar, Z; Handoko, L T; 10.1063/1.3462759

    2010-01-01

    The first cluster-based public computing for Monte Carlo simulation in Indonesia is introduced. The system has been developed to enable public to perform Monte Carlo simulation on a parallel computer through an integrated and user friendly dynamic web interface. The beta version, so called publicMC@BATAN, has been released and implemented for internal users at the National Nuclear Energy Agency (BATAN). In this paper the concept and architecture of publicMC@BATAN are presented.

  11. IVF cycle cost estimation using Activity Based Costing and Monte Carlo simulation.

    Science.gov (United States)

    Cassettari, Lucia; Mosca, Marco; Mosca, Roberto; Rolando, Fabio; Costa, Mauro; Pisaturo, Valerio

    2016-03-01

    The Authors present a new methodological approach in stochastic regime to determine the actual costs of an healthcare process. The paper specifically shows the application of the methodology for the determination of the cost of an Assisted reproductive technology (ART) treatment in Italy. The reason of this research comes from the fact that deterministic regime is inadequate to implement an accurate estimate of the cost of this particular treatment. In fact the durations of the different activities involved are unfixed and described by means of frequency distributions. Hence the need to determine in addition to the mean value of the cost, the interval within which it is intended to vary with a known confidence level. Consequently the cost obtained for each type of cycle investigated (in vitro fertilization and embryo transfer with or without intracytoplasmic sperm injection), shows tolerance intervals around the mean value sufficiently restricted as to make the data obtained statistically robust and therefore usable also as reference for any benchmark with other Countries. It should be noted that under a methodological point of view the approach was rigorous. In fact it was used both the technique of Activity Based Costing for determining the cost of individual activities of the process both the Monte Carlo simulation, with control of experimental error, for the construction of the tolerance intervals on the final result.

  12. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.

    Science.gov (United States)

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-01

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  13. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy

    Science.gov (United States)

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-01

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU’s shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  14. Accelerated SPECT Monte Carlo Simulation Using Multiple Projection Sampling and Convolution-Based Forced Detection

    Science.gov (United States)

    Liu, Shaoying; King, Michael A.; Brill, Aaron B.; Stabin, Michael G.; Farncombe, Troy H.

    2010-01-01

    Monte Carlo (MC) is a well-utilized tool for simulating photon transport in single photon emission computed tomography (SPECT) due to its ability to accurately model physical processes of photon transport. As a consequence of this accuracy, it suffers from a relatively low detection efficiency and long computation time. One technique used to improve the speed of MC modeling is the effective and well-established variance reduction technique (VRT) known as forced detection (FD). With this method, photons are followed as they traverse the object under study but are then forced to travel in the direction of the detector surface, whereby they are detected at a single detector location. Another method, called convolution-based forced detection (CFD), is based on the fundamental idea of FD with the exception that detected photons are detected at multiple detector locations and determined with a distance-dependent blurring kernel. In order to further increase the speed of MC, a method named multiple projection convolution-based forced detection (MP-CFD) is presented. Rather than forcing photons to hit a single detector, the MP-CFD method follows the photon transport through the object but then, at each scatter site, forces the photon to interact with a number of detectors at a variety of angles surrounding the object. This way, it is possible to simulate all the projection images of a SPECT simulation in parallel, rather than as independent projections. The result of this is vastly improved simulation time as much of the computation load of simulating photon transport through the object is done only once for all projection angles. The results of the proposed MP-CFD method agrees well with the experimental data in measurements of point spread function (PSF), producing a correlation coefficient (r2) of 0.99 compared to experimental data. The speed of MP-CFD is shown to be about 60 times faster than a regular forced detection MC program with similar results. PMID:20811587

  15. Monte-Carlo simulation of an ultra small-angle neutron scattering instrument based on Soller slits

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, T. [Univ. of New Mexico, Albuquerque, NM (United States); Hubbard, P. [Sandia National Labs., Albuquerque, NM (United States)

    1997-09-01

    Monte Carlo simulations are used to investigate an ultra small-angle neutron scattering instrument for use at a pulsed source based on a Soller slit collimator and analyzer. The simulations show that for a q{sub min} of {approximately}le-4 {angstrom}{sup -1} (15 {angstrom} neutrons) a few tenths of a percent of the incident flux is transmitted through both collimators at q=0.

  16. Monte Carlo based NMR simulations of open fractures in porous media

    Science.gov (United States)

    Lukács, Tamás; Balázs, László

    2014-05-01

    According to the basic principles of nuclear magnetic resonance (NMR), a measurement's free induction decay curve has an exponential characteristic and its parameter is the transversal relaxation time, T2, given by the Bloch equations in rotating frame. In our simulations we are observing that particular case when the bulk's volume is neglectable to the whole system, the vertical movement is basically zero, hence the diffusion part of the T2 relation can be editted out. This small-apertured situations are common in sedimentary layers, and the smallness of the observed volume enable us to calculate with just the bulk relaxation and the surface relaxation. The simulation uses the Monte-Carlo method, so it is based on a random-walk generator which provides the brownian motions of the particles by uniformly distributed, pseudorandom generated numbers. An attached differential equation assures the bulk relaxation, the initial and the iterated conditions guarantee the simulation's replicability and enable having consistent estimations. We generate an initial geometry of a plain segment with known height, with given number of particles, the spatial distribution is set to equal to each simulation, and the surface-volume ratio remains at a constant value. It follows that to the given thickness of the open fracture, from the fitted curve's parameter, the surface relaxivity is determinable. The calculated T2 distribution curves are also indicating the inconstancy in the observed fracture situations. The effect of varying the height of the lamina at a constant diffusion coefficient also produces characteristic anomaly and for comparison we have run the simulation with the same initial volume, number of particles and conditions in spherical bulks, their profiles are clear and easily to understand. The surface relaxation enables us to estimate the interaction beetwen the materials of boundary with this two geometrically well-defined bulks, therefore the distribution takes as a

  17. Monte carlo simulations of organic photovoltaics.

    Science.gov (United States)

    Groves, Chris; Greenham, Neil C

    2014-01-01

    Monte Carlo simulations are a valuable tool to model the generation, separation, and collection of charges in organic photovoltaics where charges move by hopping in a complex nanostructure and Coulomb interactions between charge carriers are important. We review the Monte Carlo techniques that have been applied to this problem, and describe the results of simulations of the various recombination processes that limit device performance. We show how these processes are influenced by the local physical and energetic structure of the material, providing information that is useful for design of efficient photovoltaic systems.

  18. Monte Carlo Simulation of Optical Properties of Wake Bubbles

    Institute of Scientific and Technical Information of China (English)

    CAO Jing; WANG Jiang-An; JIANG Xing-Zhou; SHI Sheng-Wei

    2007-01-01

    Based on Mie scattering theory and the theory of multiple light scattering, the light scattering properties of air bubbles in a wake are analysed by Monte Carlo simulation. The results show that backscattering is enhanced obviously due to the existence of bubbles, especially with the increase of bubble density, and that it is feasible to use the Monte Carlo method to study the properties of light scattering by air bubbles.

  19. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.

    Science.gov (United States)

    Jia, Xun; Gu, Xuejun; Graves, Yan Jiang; Folkerts, Michael; Jiang, Steve B

    2011-11-21

    Monte Carlo (MC) simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications. In this paper, we present our recent progress toward the development of a graphics processing unit (GPU)-based MC dose calculation package, gDPM v2.0. It utilizes the parallel computation ability of a GPU to achieve high efficiency, while maintaining the same particle transport physics as in the original dose planning method (DPM) code and hence the same level of simulation accuracy. In GPU computing, divergence of execution paths between threads can considerably reduce the efficiency. Since photons and electrons undergo different physics and hence attain different execution paths, we use a simulation scheme where photon transport and electron transport are separated to partially relieve the thread divergence issue. A high-performance random number generator and a hardware linear interpolation are also utilized. We have also developed various components to handle the fluence map and linac geometry, so that gDPM can be used to compute dose distributions for realistic IMRT or VMAT treatment plans. Our gDPM package is tested for its accuracy and efficiency in both phantoms and realistic patient cases. In all cases, the average relative uncertainties are less than 1%. A statistical t-test is performed and the dose difference between the CPU and the GPU results is not found to be statistically significant in over 96% of the high dose region and over 97% of the entire region. Speed-up factors of 69.1 ∼ 87.2 have been observed using an NVIDIA Tesla C2050 GPU card against a 2.27 GHz Intel Xeon CPU processor. For realistic IMRT and VMAT plans, MC dose calculation can be completed with less than 1% standard deviation in 36.1 ∼ 39.6 s using gDPM.

  20. Dosage assessment of valnemulin in pigs based on population pharmacokinetic and Monte Carlo simulation.

    Science.gov (United States)

    Yuan, L G; Tang, Y Z; Zhang, Y X; Sun, J; Luo, X Y; Zhu, L X; Zhang, Z; Wang, R; Liu, Y H

    2015-08-01

    To estimate the valnemulin pharmacokinetic profile in a swine population and to assess a dosage regimen for increasing the likelihood of optimization. This study was, respectively, performed in 22 sows culled by p.o. administration and in 80 growing-finishing pigs by i.v. administration at a single dose of 10 mg/kg to develop a population pharmacokinetic model and Monte Carlo simulation. The relationships among the plasma concentration, dose, and time of valnemulin in pigs were illustrated as C(i,v) = X(0 )(8.4191 × 10(-4) × e(-0.2371t) + 1.2788 × 10(-5) × e(-0.0069t)) after i.v. and C(p.o) = X(0) (-8.4964 × 10(-4) × e(-0.5840t) + 8.4195 × e(-0.2371t) + 7.6869 × 10(-6) × e(-0.0069t)) after p.o. Monte Carlo simulation showed that T(>MIC) was more than 24 h when a single daily dosage at 13.5 mg/kg BW in pigs was administrated by p.o., and MIC was 0.031 mg/L. It was concluded that the current dosage regimen at 10-12 mg/kg BW led to valnemulin underexposure if the MIC was more than 0.031 mg/L and could increase the risk of treatment failure and/or drug resistance.

  1. Experimental validation of a rapid Monte Carlo based micro-CT simulator

    Science.gov (United States)

    Colijn, A. P.; Zbijewski, W.; Sasov, A.; Beekman, F. J.

    2004-09-01

    We describe a newly developed, accelerated Monte Carlo simulator of a small animal micro-CT scanner. Transmission measurements using aluminium slabs are employed to estimate the spectrum of the x-ray source. The simulator incorporating this spectrum is validated with micro-CT scans of physical water phantoms of various diameters, some containing stainless steel and Teflon rods. Good agreement is found between simulated and real data: normalized error of simulated projections, as compared to the real ones, is typically smaller than 0.05. Also the reconstructions obtained from simulated and real data are found to be similar. Thereafter, effects of scatter are studied using a voxelized software phantom representing a rat body. It is shown that the scatter fraction can reach tens of per cents in specific areas of the body and therefore scatter can significantly affect quantitative accuracy in small animal CT imaging.

  2. GPU Acceleration of Mean Free Path Based Kernel Density Estimators for Monte Carlo Neutronics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Burke, TImothy P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kiedrowski, Brian C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, William R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-19

    Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics for one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.

  3. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    Science.gov (United States)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  4. Monte Carlo simulation of neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, P.A.

    1995-12-31

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.

  5. Comment on "A study on tetrahedron-based inhomogeneous Monte-Carlo optical simulation".

    Science.gov (United States)

    Fang, Qianqian

    2011-04-19

    The Monte Carlo (MC) method is a popular approach to modeling photon propagation inside general turbid media, such as human tissue. Progress had been made in the past year with the independent proposals of two mesh-based Monte Carlo methods employing ray-tracing techniques. Both methods have shown improvements in accuracy and efficiency in modeling complex domains. A recent paper by Shen and Wang [Biomed. Opt. Express 2, 44 (2011)] reported preliminary results towards the cross-validation of the two mesh-based MC algorithms and software implementations, showing a 3-6 fold speed difference between the two software packages. In this comment, we share our views on unbiased software comparisons and discuss additional issues such as the use of pre-computed data, interpolation strategies, impact of compiler settings, use of Russian roulette, memory cost and potential pitfalls in measuring algorithm performance. Despite key differences between the two algorithms in handling of non-tetrahedral meshes, we found that they share similar structure and performance for tetrahedral meshes. A significant fraction of the observed speed differences in the mentioned article was the result of inconsistent use of compilers and libraries.

  6. Monte Carlo simulations of compact gamma cameras based on avalanche photodiodes.

    Science.gov (United States)

    Després, Philippe; Funk, Tobias; Shah, Kanai S; Hasegawa, Bruce H

    2007-06-07

    Avalanche photodiodes (APDs), and in particular position-sensitive avalanche photodiodes (PSAPDs), are an attractive alternative to photomultiplier tubes (PMTs) for reading out scintillators for PET and SPECT. These solid-state devices offer high gain and quantum efficiency, and can potentially lead to more compact and robust imaging systems with improved spatial and energy resolution. In order to evaluate this performance improvement, we have conducted Monte Carlo simulations of gamma cameras based on avalanche photodiodes. Specifically, we investigated the relative merit of discrete and PSAPDs in a simple continuous crystal gamma camera. The simulated camera was composed of either a 4 x 4 array of four channels 8 x 8 mm2 PSAPDs or an 8 x 8 array of 4 x 4 mm2 discrete APDs. These configurations, requiring 64 channels readout each, were used to read the scintillation light from a 6 mm thick continuous CsI:Tl crystal covering the entire 3.6 x 3.6 cm2 photodiode array. The simulations, conducted with GEANT4, accounted for the optical properties of the materials, the noise characteristics of the photodiodes and the nonlinear charge division in PSAPDs. The performance of the simulated camera was evaluated in terms of spatial resolution, energy resolution and spatial uniformity at 99mTc (140 keV) and 125I ( approximately 30 keV) energies. Intrinsic spatial resolutions of 1.0 and 0.9 mm were obtained for the APD- and PSAPD-based cameras respectively for 99mTc, and corresponding values of 1.2 and 1.3 mm FWHM for 125I. The simulations yielded maximal energy resolutions of 7% and 23% for 99mTc and 125I, respectively. PSAPDs also provided better spatial uniformity than APDs in the simple system studied. These results suggest that APDs constitute an attractive technology especially suitable to build compact, small field of view gamma cameras dedicated, for example, to small animal or organ imaging.

  7. Web-Based Parallel Monte Carlo Simulation Platform for Financial Computation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using Java, Java-enabled Web and object-oriented programming technologies, a framework is designed to organize multicomputer system on Intranet quickly to complete Monte Carlo simulation parallelizing. The high-performance computing environment is embedded in Web server so it can be accessed more easily. Adaptive parallelism and eager scheduling algorithm are used to realize load balancing, parallel processing and system fault-tolerance. Independent sequence pseudo-random number generator schemes to keep the parallel simulation availability. Three kinds of stock option pricing models as instances, ideal speedup and pricing results obtained on test bed. Now, as a Web service, a high-performance financial derivative security-pricing platform is set up for training and studying. The framework can also be used to develop other SPMD (single procedure multiple data) application. Robustness is still a major problem for further research.

  8. LCG Monte-Carlo Data Base

    CERN Document Server

    Bartalini, P.; Kryukov, A.; Selyuzhenkov, Ilya V.; Sherstnev, A.; Vologdin, A.

    2004-01-01

    We present the Monte-Carlo events Data Base (MCDB) project and its development plans. MCDB facilitates communication between authors of Monte-Carlo generators and experimental users. It also provides a convenient book-keeping and an easy access to generator level samples. The first release of MCDB is now operational for the CMS collaboration. In this paper we review the main ideas behind MCDB and discuss future plans to develop this Data Base further within the CERN LCG framework.

  9. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  10. Auxiliary-field based trial wave functions in quantum Monte Carlo simulations

    Science.gov (United States)

    Chang, Chia-Chen; Rubenstein, Brenda; Morales, Miguel

    We propose a simple scheme for generating correlated multi-determinant trial wave functions for quantum Monte Carlo algorithms. The method is based on the Hubbard-Stratonovich transformation which decouples a two-body Jastrow-type correlator into one-body projectors coupled to auxiliary fields. We apply the technique to generate stochastic representations of the Gutzwiller wave function, and present benchmark resuts for the ground state energy of the Hubbard model in one dimension. Extensions of the proposed scheme to chemical systems will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, 15-ERD-013.

  11. LCG MCDB - a Knowledgebase of Monte Carlo Simulated Events

    CERN Document Server

    Belov, S; Galkin, E; Gusev, A; Pokorski, Witold; Sherstnev, A V

    2008-01-01

    In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project.

  12. Experimental Validation of Monte Carlo Simulations Based on a Virtual Source Model for TomoTherapy in a RANDO Phantom.

    Science.gov (United States)

    Yuan, Jiankui; Zheng, Yiran; Wessels, Barry; Lo, Simon S; Ellis, Rodney; Machtay, Mitchell; Yao, Min

    2016-12-01

    A virtual source model for Monte Carlo simulations of helical TomoTherapy has been developed previously by the authors. The purpose of this work is to perform experiments in an anthropomorphic (RANDO) phantom with the same order of complexity as in clinical treatments to validate the virtual source model to be used for quality assurance secondary check on TomoTherapy patient planning dose. Helical TomoTherapy involves complex delivery pattern with irregular beam apertures and couch movement during irradiation. Monte Carlo simulation, as the most accurate dose algorithm, is desirable in radiation dosimetry. Current Monte Carlo simulations for helical TomoTherapy adopt the full Monte Carlo model, which includes detailed modeling of individual machine component, and thus, large phase space files are required at different scoring planes. As an alternative approach, we developed a virtual source model without using the large phase space files for the patient dose calculations previously. In this work, we apply the simulation system to recompute the patient doses, which were generated by the treatment planning system in an anthropomorphic phantom to mimic the real patient treatments. We performed thermoluminescence dosimeter point dose and film measurements to compare with Monte Carlo results. Thermoluminescence dosimeter measurements show that the relative difference in both Monte Carlo and treatment planning system is within 3%, with the largest difference less than 5% for both the test plans. The film measurements demonstrated 85.7% and 98.4% passing rate using the 3 mm/3% acceptance criterion for the head and neck and lung cases, respectively. Over 95% passing rate is achieved if 4 mm/4% criterion is applied. For the dose-volume histograms, very good agreement is obtained between the Monte Carlo and treatment planning system method for both cases. The experimental results demonstrate that the virtual source model Monte Carlo system can be a viable option for the

  13. Development and validation of a measurement-based source model for kilovoltage cone-beam CT Monte Carlo dosimetry simulations

    Science.gov (United States)

    McMillan, Kyle; McNitt-Gray, Michael; Ruan, Dan

    2013-01-01

    underestimated measurements by 1.35%–5.31% (mean difference = −3.42%, SD = 1.09%). Conclusions: This work demonstrates the feasibility of using a measurement-based kV CBCT source model to facilitate dose calculations with Monte Carlo methods for both the radiographic and CBCT mode of operation. While this initial work validates simulations against measurements for simple geometries, future work will involve utilizing the source model to investigate kV CBCT dosimetry with more complex anthropomorphic phantoms and patient specific models. PMID:24320440

  14. Determining MTF of digital detector system with Monte Carlo simulation

    Science.gov (United States)

    Jeong, Eun Seon; Lee, Hyung Won; Nam, Sang Hee

    2005-04-01

    We have designed a detector based on a-Se(amorphous Selenium) and done simulation the detector with Monte Carlo method. We will apply the cascaded linear system theory to determine the MTF for whole detector system. For direct comparison with experiment, we have simulated 139um pixel pitch and used simulated X-ray tube spectrum.

  15. Evaluation of the interindividual human variation in bioactivation of methyleugenol using physiologically based kinetic modeling and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Subeihi, Ala' A.A., E-mail: subeihi@yahoo.com [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); BEN-HAYYAN-Aqaba International Laboratories, Aqaba Special Economic Zone Authority (ASEZA), P. O. Box 2565, Aqaba 77110 (Jordan); Alhusainy, Wasma; Kiwamoto, Reiko; Spenkelink, Bert [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); Bladeren, Peter J. van [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); Nestec S.A., Avenue Nestlé 55, 1800 Vevey (Switzerland); Rietjens, Ivonne M.C.M.; Punt, Ans [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands)

    2015-03-01

    The present study aims at predicting the level of formation of the ultimate carcinogenic metabolite of methyleugenol, 1′-sulfooxymethyleugenol, in the human population by taking variability in key bioactivation and detoxification reactions into account using Monte Carlo simulations. Depending on the metabolic route, variation was simulated based on kinetic constants obtained from incubations with a range of individual human liver fractions or by combining kinetic constants obtained for specific isoenzymes with literature reported human variation in the activity of these enzymes. The results of the study indicate that formation of 1′-sulfooxymethyleugenol is predominantly affected by variation in i) P450 1A2-catalyzed bioactivation of methyleugenol to 1′-hydroxymethyleugenol, ii) P450 2B6-catalyzed epoxidation of methyleugenol, iii) the apparent kinetic constants for oxidation of 1′-hydroxymethyleugenol, and iv) the apparent kinetic constants for sulfation of 1′-hydroxymethyleugenol. Based on the Monte Carlo simulations a so-called chemical-specific adjustment factor (CSAF) for intraspecies variation could be derived by dividing different percentiles by the 50th percentile of the predicted population distribution for 1′-sulfooxymethyleugenol formation. The obtained CSAF value at the 90th percentile was 3.2, indicating that the default uncertainty factor of 3.16 for human variability in kinetics may adequately cover the variation within 90% of the population. Covering 99% of the population requires a larger uncertainty factor of 6.4. In conclusion, the results showed that adequate predictions on interindividual human variation can be made with Monte Carlo-based PBK modeling. For methyleugenol this variation was observed to be in line with the default variation generally assumed in risk assessment. - Highlights: • Interindividual human differences in methyleugenol bioactivation were simulated. • This was done using in vitro incubations, PBK modeling

  16. Lattice based Kinetic Monte Carlo Simulations of a complex chemical reaction network

    Science.gov (United States)

    Danielson, Thomas; Savara, Aditya; Hin, Celine

    Lattice Kinetic Monte Carlo (KMC) simulations offer a powerful alternative to using ordinary differential equations for the simulation of complex chemical reaction networks. Lattice KMC provides the ability to account for local spatial configurations of species in the reaction network, resulting in a more detailed description of the reaction pathway. In KMC simulations with a large number of reactions, the range of transition probabilities can span many orders of magnitude, creating subsets of processes that occur more frequently or more rarely. Consequently, processes that have a high probability of occurring may be selected repeatedly without actually progressing the system (i.e. the forward and reverse process for the same reaction). In order to avoid the repeated occurrence of fast frivolous processes, it is necessary to throttle the transition probabilities in such a way that avoids altering the overall selectivity. Likewise, as the reaction progresses, new frequently occurring species and reactions may be introduced, making a dynamic throttling algorithm a necessity. We present a dynamic steady-state detection scheme with the goal of accurately throttling rate constants in order to optimize the KMC run time without compromising the selectivity of the reaction network. The algorithm has been applied to a large catalytic chemical reaction network, specifically that of methanol oxidative dehydrogenation, as well as additional pathways on CeO2(111) resulting in formaldehyde, CO, methanol, CO2, H2 and H2O as gas products.

  17. Monte Carlo simulation code modernization

    CERN Document Server

    CERN. Geneva

    2015-01-01

    The continual development of sophisticated transport simulation algorithms allows increasingly accurate description of the effect of the passage of particles through matter. This modelling capability finds applications in a large spectrum of fields from medicine to astrophysics, and of course HEP. These new capabilities however come at the cost of a greater computational intensity of the new models, which has the effect of increasing the demands of computing resources. This is particularly true for HEP, where the demand for more simulation are driven by the need of both more accuracy and more precision, i.e. better models and more events. Usually HEP has relied on the "Moore's law" evolution, but since almost ten years the increase in clock speed has withered and computing capacity comes in the form of hardware architectures of many-core or accelerated processors. To harness these opportunities we need to adapt our code to concurrent programming models taking advantages of both SIMD and SIMT architectures. Th...

  18. Dosimetric investigation of proton therapy on CT-based patient data using Monte Carlo simulation

    Science.gov (United States)

    Chongsan, T.; Liamsuwan, T.; Tangboonduangjit, P.

    2016-03-01

    The aim of radiotherapy is to deliver high radiation dose to the tumor with low radiation dose to healthy tissues. Protons have Bragg peaks that give high radiation dose to the tumor but low exit dose or dose tail. Therefore, proton therapy is promising for treating deep- seated tumors and tumors locating close to organs at risk. Moreover, the physical characteristic of protons is suitable for treating cancer in pediatric patients. This work developed a computational platform for calculating proton dose distribution using the Monte Carlo (MC) technique and patient's anatomical data. The studied case is a pediatric patient with a primary brain tumor. PHITS will be used for MC simulation. Therefore, patient-specific CT-DICOM files were converted to the PHITS input. A MATLAB optimization program was developed to create a beam delivery control file for this study. The optimization program requires the proton beam data. All these data were calculated in this work using analytical formulas and the calculation accuracy was tested, before the beam delivery control file is used for MC simulation. This study will be useful for researchers aiming to investigate proton dose distribution in patients but do not have access to proton therapy machines.

  19. Performance evaluation of Biograph PET/CT system based on Monte Carlo simulation

    Science.gov (United States)

    Wang, Bing; Gao, Fei; Liu, Hua-Feng

    2010-10-01

    Combined lutetium oxyorthosilicate (LSO) Biograph PET/CT is developed by Siemens Company and has been introduced into medical practice. There is no septa between the scintillator rings, the acquisition mode is full 3D mode. The PET components incorporate three rings of 48 detector blocks which comprises a 13×13 matrix of 4×4×20mm3 elements. The patient aperture is 70cm, the transversal field of view (FOV) is 58.5cm, and the axial field of view is 16.2cm. The CT components adopt 16 slices spiral CT scanner. The physical performance of this PET/CT scanner has been evaluated using Monte Carlo simulation method according to latest NEMA NU 2-2007 standard and the results have been compared with real experiment results. For PET part, in the center FOV the average transversal resolution is 3.67mm, the average axial resolution is 3.94mm, and the 3D-reconstructed scatter fraction is 31.7%. The sensitivities of the PET scanner are 4.21kcps/MBq and 4.26kcps/MBq at 0cm and 10cm off the center of the transversal FOV. The peak NEC is 95.6kcps at a concentration of 39.2kBq/ml. The spatial resolution of CT part is up to 1.12mm at 10mm off the center. The errors between simulated and real results are permitted.

  20. Statistical Modification Analysis of Helical Planetary Gears based on Response Surface Method and Monte Carlo Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; GUO Fan

    2015-01-01

    Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system’s dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system’s dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.

  1. Implementation of Monte Carlo Simulations for the Gamma Knife System

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, W [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Huang, D [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Lee, L [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Feng, J [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Morris, K [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Calugaru, E [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Burman, C [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Li, J [Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 17111 (United States); Ma, C-M [Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 17111 (United States)

    2007-06-15

    Currently the Gamma Knife system is accompanied with a treatment planning system, Leksell GammaPlan (LGP) which is a standard, computer-based treatment planning system for Gamma Knife radiosurgery. In LGP, the dose calculation algorithm does not consider the scatter dose contributions and the inhomogeneity effect due to the skull and air cavities. To improve the dose calculation accuracy, Monte Carlo simulations have been implemented for the Gamma Knife planning system. In this work, the 201 Cobalt-60 sources in the Gamma Knife unit are considered to have the same activity. Each Cobalt-60 source is contained in a cylindric stainless steel capsule. The particle phase space information is stored in four beam data files, which are collected in the inner sides of the 4 treatment helmets, after the Cobalt beam passes through the stationary and helmet collimators. Patient geometries are rebuilt from patient CT data. Twenty two Patients are included in the Monte Carlo simulation for this study. The dose is calculated using Monte Carlo in both homogenous and inhomogeneous geometries with identical beam parameters. To investigate the attenuation effect of the skull bone the dose in a 16cm diameter spherical QA phantom is measured with and without a 1.5mm Lead-covering and also simulated using Monte Carlo. The dose ratios with and without the 1.5mm Lead-covering are 89.8% based on measurements and 89.2% according to Monte Carlo for a 18mm-collimator Helmet. For patient geometries, the Monte Carlo results show that although the relative isodose lines remain almost the same with and without inhomogeneity corrections, the difference in the absolute dose is clinically significant. The average inhomogeneity correction is (3.9 {+-} 0.90) % for the 22 patients investigated. These results suggest that the inhomogeneity effect should be considered in the dose calculation for Gamma Knife treatment planning.

  2. Monte Carlo simulation of laser attenuation characteristics in fog

    Science.gov (United States)

    Wang, Hong-Xia; Sun, Chao; Zhu, You-zhang; Sun, Hong-hui; Li, Pan-shi

    2011-06-01

    Based on the Mie scattering theory and the gamma size distribution model, the scattering extinction parameter of spherical fog-drop is calculated. For the transmission attenuation of the laser in the fog, a Monte Carlo simulation model is established, and the impact of attenuation ratio on visibility and field angle is computed and analysed using the program developed by MATLAB language. The results of the Monte Carlo method in this paper are compared with the results of single scattering method. The results show that the influence of multiple scattering need to be considered when the visibility is low, and single scattering calculations have larger errors. The phenomenon of multiple scattering can be interpreted more better when the Monte Carlo is used to calculate the attenuation ratio of the laser transmitting in the fog.

  3. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    Science.gov (United States)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  4. Prediction of activity for nonnucleoside inhibitors with HIV-1 reverse transcriptase based on Monte Carlo simulations.

    Science.gov (United States)

    Rizzo, Robert C; Udier-Blagović, Marina; Wang, De-Ping; Watkins, Edward K; Kroeger Smith, Marilyn B; Smith, Richard H; Tirado-Rives, Julian; Jorgensen, William L

    2002-07-04

    Results of Monte Carlo (MC) simulations for more than 200 nonnucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) representing eight diverse chemotypes have been correlated with their anti-HIV activities in an effort to establish simulation protocols and methods that can be used in the development of more effective drugs. Each inhibitor was modeled in a complex with the protein and by itself in water, and potentially useful descriptors of binding affinity were collected during the MC simulations. A viable regression equation was obtained for each data set using an extended linear response approach, which yielded r(2) values between 0.54 and 0.85 and an average unsigned error of only 0.50 kcal/mol. The most common descriptors confirm that a good geometrical match between the inhibitor and the protein is important and that the net loss of hydrogen bonds with the inhibitor upon binding is unfavorable. Other physically reasonable descriptors of binding are needed on a chemotype case-by-case basis. By including descriptors in common from the individual fits, combination regressions that include multiple data sets were also developed. This procedure led to a refined "master" regression for 210 NNRTIs with an r(2) of 0.60 and a cross-validated q(2) of 0.55. The computed activities show an rms error of 0.86 kcal/mol in comparison with experiment and an average unsigned error of 0.69 kcal/mol. Encouraging results were obtained for the predictions of 27 NNRTIs, representing a new chemotype not included in the development of the regression model. Predictions for this test set using the master regression yielded a q(2) value of 0.51 and an average unsigned error of 0.67 kcal/mol. Finally, additional regression analysis reveals that use of ligand-only descriptors leads to models with much diminished predictive ability.

  5. Mosaic crystal algorithm for Monte Carlo simulations

    CERN Document Server

    Seeger, P A

    2002-01-01

    An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)

  6. Direct Monte Carlo simulation of nanoscale mixed gas bearings

    Directory of Open Access Journals (Sweden)

    Kyaw Sett Myo

    2015-06-01

    Full Text Available The conception of sealed hard drives with helium gas mixture has been recently suggested over the current hard drives for achieving higher reliability and less position error. Therefore, it is important to understand the effects of different helium gas mixtures on the slider bearing characteristics in the head–disk interface. In this article, the helium/air and helium/argon gas mixtures are applied as the working fluids and their effects on the bearing characteristics are studied using the direct simulation Monte Carlo method. Based on direct simulation Monte Carlo simulations, the physical properties of these gas mixtures such as mean free path and dynamic viscosity are achieved and compared with those obtained from theoretical models. It is observed that both results are comparable. Using these gas mixture properties, the bearing pressure distributions are calculated under different fractions of helium with conventional molecular gas lubrication models. The outcomes reveal that the molecular gas lubrication results could have relatively good agreement with those of direct simulation Monte Carlo simulations, especially for pure air, helium, or argon gas cases. For gas mixtures, the bearing pressures predicted by molecular gas lubrication model are slightly larger than those from direct simulation Monte Carlo simulation.

  7. Monte Carlo Simulation Optimizing Design of Grid Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yu-lai; WANG; Qiang; YANG; Lu

    2013-01-01

    The grid ionization chamber detector is often used for measuring charged particles.Based on Monte Carlo simulation method,the energy loss distribution and electron ion pairs of alpha particle with different energy have been calculated to determine suitable filling gas in the ionization chamber filled with

  8. Monte Carlo Simulation on Glueball Search at BESⅢ

    Institute of Scientific and Technical Information of China (English)

    QIN Hu; SHEN Xiao-Yan

    2007-01-01

    The J/ψ radiative decays are suggested as promising modes for glueball search. A full Monte Carlo simulation of J/ψ→γηη and γηη', based on the design of BESⅢ detector, is performed to study the sensitivity of searching for a possible tensor glueball at BESⅢ.

  9. Archimedes, the Free Monte Carlo simulator

    CERN Document Server

    Sellier, Jean Michel D

    2012-01-01

    Archimedes is the GNU package for Monte Carlo simulations of electron transport in semiconductor devices. The first release appeared in 2004 and since then it has been improved with many new features like quantum corrections, magnetic fields, new materials, GUI, etc. This document represents the first attempt to have a complete manual. Many of the Physics models implemented are described and a detailed description is presented to make the user able to write his/her own input deck. Please, feel free to contact the author if you want to contribute to the project.

  10. Cluster hybrid Monte Carlo simulation algorithms

    Science.gov (United States)

    Plascak, J. A.; Ferrenberg, Alan M.; Landau, D. P.

    2002-06-01

    We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.

  11. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of non-elastic interactions

    CERN Document Server

    Tseung, H Wan Chan; Beltran, C

    2014-01-01

    Purpose: Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on GPUs. However, these usually use simplified models for non-elastic (NE) proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and NE collisions. Methods: Using CUDA, we implemented GPU kernels for these tasks: (1) Simulation of spots from our scanning nozzle configurations, (2) Proton propagation through CT geometry, considering nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) Modeling of the intranuclear cascade stage of NE interactions, (4) Nuclear evaporation simulation, and (5) Statistical error estimates on the dose. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions, (2) Dose calculations in homogeneous phantoms, (3) Re-calculations of head and neck plans from a commercial treatment planning system (TPS), and compared with Geant4.9.6p2/TOPAS. Results: Yields, en...

  12. Optimization strategy integrity for watershed agricultural non-point source pollution control based on Monte Carlo simulation

    Science.gov (United States)

    Gong, Y.; Yu, Y. J.; Zhang, W. Y.

    2016-08-01

    This study has established a set of methodological systems by simulating loads and analyzing optimization strategy integrity for the optimization of watershed non-point source pollution control. First, the source of watershed agricultural non-point source pollution is divided into four aspects, including agricultural land, natural land, livestock breeding, and rural residential land. Secondly, different pollution control measures at the source, midway and ending stages are chosen. Thirdly, the optimization effect of pollution load control in three stages are simulated, based on the Monte Carlo simulation. The method described above is applied to the Ashi River watershed in Heilongjiang Province of China. Case study results indicate that the combined three types of control measures can be implemented only if the government promotes the optimized plan and gradually improves implementation efficiency. This method for the optimization strategy integrity for watershed non-point source pollution control has significant reference value.

  13. Monte-Carlo Simulations of Spin-Crossover Phenomena Based on a Vibronic Ising-like Model with Realistic Parameters

    CERN Document Server

    Ye, Hong-zhou; Jiang, Hong

    2014-01-01

    Materials with spin-crossover (SCO) properties hold great potentials in information storage and therefore have received a lot of concerns in the recent decades. The hysteresis phenomena accompanying SCO is attributed to the intermolecular cooperativity whose underlying mechanism may have a vibronic origin. In this work, a new vibronic Ising-like model in which the elastic coupling between SCO centers is included by considering harmonic stretching and bending (SAB) interactions is proposed and solved by Monte Carlo simulations. The key parameters in the new model, $k_1$ and $k_2$, corresponding to the elastic constant of the stretching and bending mode, respectively, can be directly related to the macroscopic bulk and shear modulus of the material in study, which can be readily estimated either based on experimental measurements or first-principles calculations. The convergence issue in the MC simulations of the thermal hysteresis has been carefully checked, and it was found that the stable hysteresis loop can...

  14. Monte Carlo Simulations: Number of Iterations and Accuracy

    Science.gov (United States)

    2015-07-01

    Jessica Schultheis for her editorial review. vi INTENTIONALLY LEFT BLANK. 1 1. Introduction Monte Carlo (MC) methods1 are often used...ARL-TN-0684 ● JULY 2015 US Army Research Laboratory Monte Carlo Simulations: Number of Iterations and Accuracy by William...needed. Do not return it to the originator. ARL-TN-0684 ● JULY 2015 US Army Research Laboratory Monte Carlo Simulations: Number

  15. Monte Carlo method based radiative transfer simulation of stochastic open forest generated by circle packing application

    Science.gov (United States)

    Jin, Shengye; Tamura, Masayuki

    2013-10-01

    Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is

  16. Monte Carlo simulations based on phase 1 studies predict target attainment of ceftobiprole in nosocomial pneumonia patients: a validation study

    NARCIS (Netherlands)

    Muller, A.E.; Schmitt-Hoffmann, A.H.; Punt, N.; Mouton, J.W.

    2013-01-01

    Monte Carlo simulation (MCS) of antimicrobial dosage regimens during drug development to derive predicted target attainment values is frequently used to choose the optimal dose for the treatment of patients in phase 2 and 3 studies. A criticism is that pharmacokinetic (PK) parameter estimates and va

  17. Neutrals density profiles in EXTRAP-T2R based on Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cecconello, M

    2002-07-01

    The role of neutral particles in fusion plasmas is very important affecting several aspects of the discharge properties. In particular the neutrals affect the particle and energy balance, the plasma confinement properties, the density profile, the particle and energy fluxes at the wall and the wall erosion. In addition, highly energetic neutrals are used as a diagnostic of the plasma ion temperature. This report describes MCNC a Monte Carlo code used in EXTRAP T2R for the calculation of the neutrals density profile of hydrogen plasma.

  18. Thermodynamic properties of van der Waals fluids from Monte Carlo simulations and perturbative Monte Carlo theory.

    Science.gov (United States)

    Díez, A; Largo, J; Solana, J R

    2006-08-21

    Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.

  19. Validation of Compton Scattering Monte Carlo Simulation Models

    CERN Document Server

    Weidenspointner, Georg; Hauf, Steffen; Hoff, Gabriela; Kuster, Markus; Pia, Maria Grazia; Saracco, Paolo

    2014-01-01

    Several models for the Monte Carlo simulation of Compton scattering on electrons are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. Some of these models are currently implemented in general purpose Monte Carlo systems; some have been implemented and evaluated for possible use in Monte Carlo particle transport for the first time in this study. Here we present first and preliminary results concerning total and differential Compton scattering cross sections.

  20. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    , as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential......Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...

  1. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction......, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  2. Modeling neutron guides using Monte Carlo simulations

    CERN Document Server

    Wang, D Q; Crow, M L; Wang, X L; Lee, W T; Hubbard, C R

    2002-01-01

    Four neutron guide geometries, straight, converging, diverging and curved, were characterized using Monte Carlo ray-tracing simulations. The main areas of interest are the transmission of the guides at various neutron energies and the intrinsic time-of-flight (TOF) peak broadening. Use of a delta-function time pulse from a uniform Lambert neutron source allows one to quantitatively simulate the effect of guides' geometry on the TOF peak broadening. With a converging guide, the intensity and the beam divergence increases while the TOF peak width decreases compared with that of a straight guide. By contrast, use of a diverging guide decreases the intensity and the beam divergence, and broadens the width (in TOF) of the transmitted neutron pulse.

  3. Global Monte Carlo Simulation with High Order Polynomial Expansions

    Energy Technology Data Exchange (ETDEWEB)

    William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin

    2007-12-13

    The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as “local” piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi’s method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source

  4. Monte Carlo simulation of neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.

    1998-12-01

    A code package consisting of the Monte Carlo Library MCLIB, the executing code MC{_}RUN, the web application MC{_}Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC{_}RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown.

  5. Coherent Scattering Imaging Monte Carlo Simulation

    Science.gov (United States)

    Hassan, Laila Abdulgalil Rafik

    Conventional mammography has poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter potentially provides more information because interference of coherently scattered radiation depends on the average intermolecular spacing, and can be used to characterize tissue types. However, typical coherent scatter analysis techniques are not compatible with rapid low dose screening techniques. Coherent scatter slot scan imaging is a novel imaging technique which provides new information with higher contrast. In this work a simulation of coherent scatter was performed for slot scan imaging to assess its performance and provide system optimization. In coherent scatter imaging, the coherent scatter is exploited using a conventional slot scan mammography system with anti-scatter grids tilted at the characteristic angle of cancerous tissues. A Monte Carlo simulation was used to simulate the coherent scatter imaging. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The contrast increased as the grid tilt angle increased beyond the characteristic angle for the modeled carcinoma. A grid tilt angle of 16 degrees yielded the highest contrast and signal to noise ratio (SNR). Also, contrast increased as the source voltage increased. Increasing grid ratio improved contrast at the expense of decreasing SNR. A grid ratio of 10:1 was sufficient to give a good contrast without reducing the intensity to a noise level. The optimal source to sample distance was determined to be such that the source should be located at the focal distance of the grid. A carcinoma lump of 0.5x0.5x0.5 cm3 in size was detectable which is reasonable considering the high noise due to the usage of relatively small number of incident photons for computational reasons. A further study is needed to study the effect of breast density and breast thickness

  6. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  7. QUANTUM MONTE-CARLO SIMULATIONS - ALGORITHMS, LIMITATIONS AND APPLICATIONS

    NARCIS (Netherlands)

    DERAEDT, H

    1992-01-01

    A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown

  8. Quantum Monte Carlo Simulations : Algorithms, Limitations and Applications

    NARCIS (Netherlands)

    Raedt, H. De

    1992-01-01

    A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown

  9. Sensitivity of Monte Carlo simulations to input distributions

    Energy Technology Data Exchange (ETDEWEB)

    RamoRao, B. S.; Srikanta Mishra, S.; McNeish, J.; Andrews, R. W.

    2001-07-01

    The sensitivity of the results of a Monte Carlo simulation to the shapes and moments of the probability distributions of the input variables is studied. An economical computational scheme is presented as an alternative to the replicate Monte Carlo simulations and is explained with an illustrative example. (Author) 4 refs.

  10. A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging

    Science.gov (United States)

    Kotalczyk, G.; Kruis, F. E.

    2017-07-01

    Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named 'stochastic resolution' in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope of a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named 'random removal' in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.

  11. A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging

    Energy Technology Data Exchange (ETDEWEB)

    Kotalczyk, G., E-mail: Gregor.Kotalczyk@uni-due.de; Kruis, F.E.

    2017-07-01

    Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named ‘stochastic resolution’ in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope of a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named ‘random removal’ in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.

  12. Adaptation of a Fortran-Based Monte-Carlo Microscopic Black Hole Simulation Program to C++ Based Root

    Science.gov (United States)

    Jenkins, C. M.; Godang, R.; Cavaglia, M.; Cremaldi, L.; Summers, D.

    2008-10-01

    The 14 TeV center of mass proton-proton collisions at the LHC opens the possibility for new Physics, including the possible formation of microscopic black holes. A Fortran-based Monte Carlo event generator program called CATFISH (Collider grAviTational FIeld Simulator for black Holes) has been developed at the University of Mississippi to study signatures of microscopic black hole production (http://www.phy.olemiss.edu/GR/catfish). This black hole event generator includes many of the currently accepted theoretical results for microscopic black hole formation. High energy physics data analysis is shifting from Fortran to C++ as the CERN data analysis packages HBOOK and PAW are no longer supported. The C++ based root is replacing these packages. Work done at the University of South Alabama has resulted in a successful inclusion of CATFISH into root. The methods used to interface the Fortran-based CATFISH into the C++ based root will be presented. Benchmark histograms will be presented demonstrating the conversion. Preliminary results will be presented for selecting black hole candidate events in 14 TeV/ center of mass proton-proton collisions.

  13. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.

    2006-01-01

    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  14. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.

    2006-01-01

    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  15. Monte Carlo simulations for plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  16. Conceptual design and Monte Carlo simulations of the AGATA array

    Energy Technology Data Exchange (ETDEWEB)

    Farnea, E., E-mail: Enrico.Farnea@pd.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Recchia, F.; Bazzacco, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Kroell, Th. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany); Podolyak, Zs. [Department of Physics, University of Surrey, Guildford (United Kingdom); Quintana, B. [Departamento de Fisica Fundamental, Universidad de Salamanca, Salamanca (Spain); Gadea, A. [Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, Valencia (Spain)

    2010-09-21

    The aim of the Advanced GAmma Tracking Array (AGATA) project is the construction of an array based on the novel concepts of pulse shape analysis and {gamma}-ray tracking with highly segmented Ge semiconductor detectors. The conceptual design of AGATA and its performance evaluation under different experimental conditions has required the development of a suitable Monte Carlo code. In this article, the description of the code as well as simulation results relevant for AGATA, are presented.

  17. Monte Carlo Simulations of the Photospheric Process

    CERN Document Server

    Santana, Rodolfo; Hernandez, Roberto A; Kumar, Pawan

    2015-01-01

    We present a Monte Carlo (MC) code we wrote to simulate the photospheric process and to study the photospheric spectrum above the peak energy. Our simulations were performed with a photon to electron ratio $N_{\\gamma}/N_{e} = 10^{5}$, as determined by observations of the GRB prompt emission. We searched an exhaustive parameter space to determine if the photospheric process can match the observed high-energy spectrum of the prompt emission. If we do not consider electron re-heating, we determined that the best conditions to produce the observed high-energy spectrum are low photon temperatures and high optical depths. However, for these simulations, the spectrum peaks at an energy below 300 keV by a factor $\\sim 10$. For the cases we consider with higher photon temperatures and lower optical depths, we demonstrate that additional energy in the electrons is required to produce a power-law spectrum above the peak-energy. By considering electron re-heating near the photosphere, the spectrum for these simulations h...

  18. Parallel Monte Carlo Simulation of Aerosol Dynamics

    Directory of Open Access Journals (Sweden)

    Kun Zhou

    2014-02-01

    Full Text Available A highly efficient Monte Carlo (MC algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process. Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI. The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles.

  19. Parallel Monte Carlo simulation of aerosol dynamics

    KAUST Repository

    Zhou, K.

    2014-01-01

    A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.

  20. Stock Price Simulation Using Bootstrap and Monte Carlo

    Directory of Open Access Journals (Sweden)

    Pažický Martin

    2017-06-01

    Full Text Available In this paper, an attempt is made to assessment and comparison of bootstrap experiment and Monte Carlo experiment for stock price simulation. Since the stock price evolution in the future is extremely important for the investors, there is the attempt to find the best method how to determine the future stock price of BNP Paribas′ bank. The aim of the paper is define the value of the European and Asian option on BNP Paribas′ stock at the maturity date. There are employed four different methods for the simulation. First method is bootstrap experiment with homoscedastic error term, second method is blocked bootstrap experiment with heteroscedastic error term, third method is Monte Carlo simulation with heteroscedastic error term and the last method is Monte Carlo simulation with homoscedastic error term. In the last method there is necessary to model the volatility using econometric GARCH model. The main purpose of the paper is to compare the mentioned methods and select the most reliable. The difference between classical European option and exotic Asian option based on the experiment results is the next aim of tis paper.

  1. Atomistic Monte Carlo simulation of lipid membranes.

    Science.gov (United States)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-24

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  2. Atomistic Monte Carlo Simulation of Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  3. Estimating return period of landslide triggering by Monte Carlo simulation

    Science.gov (United States)

    Peres, D. J.; Cancelliere, A.

    2016-10-01

    Assessment of landslide hazard is a crucial step for landslide mitigation planning. Estimation of the return period of slope instability represents a quantitative method to map landslide triggering hazard on a catchment. The most common approach to estimate return periods consists in coupling a triggering threshold equation, derived from an hydrological and slope stability process-based model, with a rainfall intensity-duration-frequency (IDF) curve. Such a traditional approach generally neglects the effect of rainfall intensity variability within events, as well as the variability of initial conditions, which depend on antecedent rainfall. We propose a Monte Carlo approach for estimating the return period of shallow landslide triggering which enables to account for both variabilities. Synthetic hourly rainfall-landslide data generated by Monte Carlo simulations are analysed to compute return periods as the mean interarrival time of a factor of safety less than one. Applications are first conducted to map landslide triggering hazard in the Loco catchment, located in highly landslide-prone area of the Peloritani Mountains, Sicily, Italy. Then a set of additional simulations are performed in order to evaluate the traditional IDF-based method by comparison with the Monte Carlo one. Results show that return period is affected significantly by variability of both rainfall intensity within events and of initial conditions, and that the traditional IDF-based approach may lead to an overestimation of the return period of landslide triggering, or, in other words, a non-conservative assessment of landslide hazard.

  4. Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al–Cu alloys

    Science.gov (United States)

    Joshi, Kaushik; Chaudhuri, Santanu

    2016-10-01

    Ability to accelerate the morphological evolution of nanoscale precipitates is a fundamental challenge for atomistic simulations. Kinetic Monte Carlo (KMC) methodology is an effective approach for accelerating the evolution of nanoscale systems that are dominated by so-called rare events. The quality and accuracy of energy landscape used in KMC calculations can be significantly improved using DFT-informed interatomic potentials. Using newly developed computational framework that uses molecular simulator LAMMPS as a library function inside KMC solver SPPARKS, we investigated formation and growth of Guiner–Preston (GP) zones in dilute Al–Cu alloys at different temperature and copper concentrations. The KMC simulations with angular dependent potential (ADP) predict formation of coherent disc-shaped monolayers of copper atoms (GPI zones) in early stage. Such monolayers are then gradually transformed into energetically favored GPII phase that has two aluminum layers sandwiched between copper layers. We analyzed the growth kinetics of KMC trajectory using Johnson–Mehl–Avrami (JMA) theory and obtained a phase transformation index close to 1.0. In the presence of grain boundaries, the KMC calculations predict the segregation of copper atoms near the grain boundaries instead of formation of GP zones. The computational framework presented in this work is based on open source potentials and MD simulator and can predict morphological changes during the evolution of the alloys in the bulk and around grain boundaries.

  5. Monte Carlo Simulation as a Research Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, L. J.

    1986-06-01

    Monte Carlo simulation provides a research manager with a performance monitoring tool to supplement the standard schedule- and resource-based tools such as the Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM). The value of the Monte Carlo simulation in a research environment is that it 1) provides a method for ranking competing processes, 2) couples technical improvements to the process economics, and 3) provides a mechanism to determine the value of research dollars. In this paper the Monte Carlo simulation approach is developed and applied to the evaluation of three competing processes for converting lignocellulosic biomass to ethanol. The technique is shown to be useful for ranking the processes and illustrating the importance of the timeframe of the analysis on the decision process. The results show that acid hydrolysis processes have higher potential for near-term application (2-5 years), while the enzymatic hydrolysis approach has an equal chance to be competitive in the long term (beyond 10 years).

  6. Rare event simulation using Monte Carlo methods

    CERN Document Server

    Rubino, Gerardo

    2009-01-01

    In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...

  7. Monte Carlo simulations of Protein Adsorption

    Science.gov (United States)

    Sharma, Sumit; Kumar, Sanat K.; Belfort, Georges

    2008-03-01

    Amyloidogenic diseases, such as, Alzheimer's are caused by adsorption and aggregation of partially unfolded proteins. Adsorption of proteins is a concern in design of biomedical devices, such as dialysis membranes. Protein adsorption is often accompanied by conformational rearrangements in protein molecules. Such conformational rearrangements are thought to affect many properties of adsorbed protein molecules such as their adhesion strength to the surface, biological activity, and aggregation tendency. It has been experimentally shown that many naturally occurring proteins, upon adsorption to hydrophobic surfaces, undergo a helix to sheet or random coil secondary structural rearrangement. However, to better understand the equilibrium structural complexities of this phenomenon, we have performed Monte Carlo (MC) simulations of adsorption of a four helix bundle, modeled as a lattice protein, and studied the adsorption behavior and equilibrium protein conformations at different temperatures and degrees of surface hydrophobicity. To study the free energy and entropic effects on adsorption, Canonical ensemble MC simulations have been combined with Weighted Histogram Analysis Method(WHAM). Conformational transitions of proteins on surfaces will be discussed as a function of surface hydrophobicity and compared to analogous bulk transitions.

  8. Monte Carlo simulations for focusing elliptical guides

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Roxana [FRM2 Garching, Muenchen (Germany); Boeni, Peter [E20, TU Muenchen (Germany)

    2009-07-01

    The aim of the Monte Carlo simulations using McStas Programme was to improve the focusing of the neutron beam existing at PGAA (FRM II) by prolongation of the existing elliptic guide (coated now with supermirrors with m=3) with a new part. First we have tried with an initial length of the additional guide of 7,5cm and coatings for the neutron guide of supermirrors with m=4,5 and 6. The gain (calculated by dividing the intensity in the focal point after adding the guide by the intensity at the focal point with the initial guide) obtained for this coatings indicated that a coating with m=5 would be appropriate for a first trial. The next step was to vary the length of the additional guide for this m value and therefore choosing the appropriate length for the maximal gain. With the m value and the length of the guide fixed we have introduced an aperture 1 cm before the focal point and we have varied the radius of this aperture in order to obtain a focused beam. We have observed a dramatic decrease in the size of the beam in the focal point after introducing this aperture. The simulation results, the gains obtained and the evolution of the beam size will be presented.

  9. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in

    2017-07-15

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.

  10. Monte Carlo simulations for heavy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, O.

    2006-07-26

    Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)

  11. Monte Carlo simulations of the NIMROD diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Botti, A. [University of Roma TRE, Rome (Italy)]. E-mail: botti@fis.uniroma3.it; Ricci, M.A. [University of Roma TRE, Rome (Italy); Bowron, D.T. [ISIS-Rutherford Appleton Laboratory, Chilton (United Kingdom); Soper, A.K. [ISIS-Rutherford Appleton Laboratory, Chilton (United Kingdom)

    2006-11-15

    The near and intermediate range order diffractometer (NIMROD) has been selected as a day one instrument on the second target station at ISIS. Uniquely, NIMROD will provide continuous access to particle separations ranging from the interatomic (<1A) to the mesoscopic (<300A). This instrument is mainly designed for structural investigations, although the possibility of putting a Fermi chopper (and corresponding NIMONIC chopper) in the incident beam line, will potentially allow the performance of low resolution inelastic scattering measurements. The performance characteristics of the TOF diffractometer have been simulated by means of a series of Monte Carlo calculations. In particular, the flux as a function of the transferred momentum Q as well as the resolution in Q and transferred energy have been estimated. Moreover, the possibility of including a honeycomb collimator in order to achieve better resolution has been tested. Here, we want to present the design of this diffractometer that will bridge the gap between wide- and small-angle neutron scattering experiments.

  12. Monte Carlo Simulation of River Meander Modelling

    Science.gov (United States)

    Posner, A. J.; Duan, J. G.

    2010-12-01

    This study first compares the first order analytical solutions for flow field by Ikeda et. al. (1981) and Johanesson and Parker (1989b). Ikeda et. al.’s (1981) linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g. cohesiveness, stratigraphy, vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations. Several measures are formulated in order to determine which of the resulting planform is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model. Quasi-2D Ikeda (1989) flow solution with Monte Carlo Simulation of Bank Erosion Coefficient.

  13. Development of modern approach to absorbed dose assessment in radionuclide therapy, based on Monte Carlo method simulation of patient scintigraphy

    Science.gov (United States)

    Lysak, Y. V.; Klimanov, V. A.; Narkevich, B. Ya

    2017-01-01

    One of the most difficult problems of modern radionuclide therapy (RNT) is control of the absorbed dose in pathological volume. This research presents new approach based on estimation of radiopharmaceutical (RP) accumulated activity value in tumor volume, based on planar scintigraphic images of the patient and calculated radiation transport using Monte Carlo method, including absorption and scattering in biological tissues of the patient, and elements of gamma camera itself. In our research, to obtain the data, we performed modeling scintigraphy of the vial with administered to the patient activity of RP in gamma camera, the vial was placed at the certain distance from the collimator, and the similar study was performed in identical geometry, with the same values of activity of radiopharmaceuticals in the pathological target in the body of the patient. For correct calculation results, adapted Fisher-Snyder human phantom was simulated in MCNP program. In the context of our technique, calculations were performed for different sizes of pathological targets and various tumors deeps inside patient’s body, using radiopharmaceuticals based on a mixed β-γ-radiating (131I, 177Lu), and clear β- emitting (89Sr, 90Y) therapeutic radionuclides. Presented method can be used for adequate implementing in clinical practice estimation of absorbed doses in the regions of interest on the basis of planar scintigraphy of the patient with sufficient accuracy.

  14. Monte Carlo Simulation for Statistical Decay of Compound Nucleus

    Directory of Open Access Journals (Sweden)

    Chadwick M.B.

    2012-02-01

    Full Text Available We perform Monte Carlo simulations for neutron and γ-ray emissions from a compound nucleus based on the Hauser-Feshbach statistical theory. This Monte Carlo Hauser-Feshbach (MCHF method calculation, which gives us correlated information between emitted particles and γ-rays. It will be a powerful tool in many applications, as nuclear reactions can be probed in a more microscopic way. We have been developing the MCHF code, CGM, which solves the Hauser-Feshbach theory with the Monte Carlo method. The code includes all the standard models that used in a standard Hauser-Feshbach code, namely the particle transmission generator, the level density module, interface to the discrete level database, and so on. CGM can emit multiple neutrons, as long as the excitation energy of the compound nucleus is larger than the neutron separation energy. The γ-ray competition is always included at each compound decay stage, and the angular momentum and parity are conserved. Some calculations for a fission fragment 140Xe are shown as examples of the MCHF method, and the correlation between the neutron and γ-ray is discussed.

  15. Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation

    NARCIS (Netherlands)

    Cong, F.; Oosterlee, C.W.

    2016-01-01

    We propose a simulation-based approach for solving the constrained dynamic mean– variance portfolio managemen tproblem. For this dynamic optimization problem, we first consider a sub-optimal strategy, called the multi-stage strategy, which can be utilized in a forward fashion. Then, based on this fa

  16. Monte-Carlo Simulation and Automated Test Bench for Developing a Multichannel NIR-Based Vital-Signs Monitor.

    Science.gov (United States)

    Bruser, Christoph; Strutz, Nils; Winter, Stefan; Leonhardt, Steffen; Walter, Marian

    2015-06-01

    Unobtrusive, long-term monitoring of cardiac (and respiratory) rhythms using only non-invasive vibration sensors mounted in beds promises to unlock new applications in home and low acuity monitoring. This paper presents a novel concept for such a system based on an array of near infrared (NIR) sensors placed underneath a regular bed mattress. We focus on modeling and analyzing the underlying technical measurement principle with the help of a 2D model of a polyurethane foam mattress and Monte-Carlo simulations of the opto-mechanical interaction responsible for signal genesis. Furthermore, a test rig to automatically and repeatably impress mechanical vibrations onto a mattress is introduced and used to identify the properties of a prototype implementation of the proposed measurement principle. Results show that NIR-based sensing is capable of registering miniscule deformations of the mattress with a high spatial specificity. As a final outlook, proof-of-concept measurements with the sensor array are presented which demonstrate that cardiorespiratory movements of the body can be detected and that automatic heart rate estimation at competitive error levels is feasible with the proposed approach.

  17. Warranty optimisation based on the prediction of costs to the manufacturer using neural network model and Monte Carlo simulation

    Science.gov (United States)

    Stamenkovic, Dragan D.; Popovic, Vladimir M.

    2015-02-01

    Warranty is a powerful marketing tool, but it always involves additional costs to the manufacturer. In order to reduce these costs and make use of warranty's marketing potential, the manufacturer needs to master the techniques for warranty cost prediction according to the reliability characteristics of the product. In this paper a combination free replacement and pro rata warranty policy is analysed as warranty model for one type of light bulbs. Since operating conditions have a great impact on product reliability, they need to be considered in such analysis. A neural network model is used to predict light bulb reliability characteristics based on the data from the tests of light bulbs in various operating conditions. Compared with a linear regression model used in the literature for similar tasks, the neural network model proved to be a more accurate method for such prediction. Reliability parameters obtained in this way are later used in Monte Carlo simulation for the prediction of times to failure needed for warranty cost calculation. The results of the analysis make possible for the manufacturer to choose the optimal warranty policy based on expected product operating conditions. In such a way, the manufacturer can lower the costs and increase the profit.

  18. MONTE CARLO SIMULATION OF CHARGED PARTICLE IN AN ELECTRONEGATIVE PLASMA

    Directory of Open Access Journals (Sweden)

    L SETTAOUTI

    2003-12-01

    Full Text Available Interest in radio frequency (rf discharges has grown tremendously in recent years due to their importance in microelectronic technologies. Especially interesting are the properties of discharges in electronegative gases which are most frequently used for technological applications. Monte Carlo simulation have become increasingly important as a simulation tool particularly in the area of plasma physics. In this work, we present some detailed properties of rf plasmas obtained by Monte Carlo simulation code, in SF6

  19. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Antonio; Golosio, Bruno [Universita degli Studi di Sassari, Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell' Informazione, Sassari (Italy); Melis, Maria Grazia [Universita degli Studi di Sassari, Dipartimento di Storia, Scienze dell' Uomo e della Formazione, Sassari (Italy); Mura, Stefania [Universita degli Studi di Sassari, Dipartimento di Agraria e Nucleo di Ricerca sulla Desertificazione, Sassari (Italy)

    2014-11-08

    X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed. (orig.)

  20. Reconciliation between experimental and Monte Carlo-based simulation of the pore size distribution in mesoporous silicon.

    Science.gov (United States)

    Tadvani, Jalil Khajepour; Falamaki, Cavus

    2008-07-23

    It is demonstrated for the first time that mesoporous PS structures obtained by the electrochemical etching of p(+)(100) oriented silicon wafers might assume the peculiarity of invariance of the first peak positions in their pore size distribution curves, albeit for current densities far from the electropolishing region and at constant electrolyte composition. A new Monte Carlo-based simulation model is presented that predicts reasonably the pore size distribution of the PS layers and the observed invariance of peak position with respect to changes in current density. The main highlight of the new model is the introduction of a 'light avalanche breakdown' process in a mathematical fashion. The model is also able to predict an absolute value of 4.23 Å for the smallest pore created experimentally. It is discussed that the latter value has an exact physical meaning: it corresponds with great accuracy to the width of a void created on the surface due to the exclusion of one Si atom.

  1. Reconciliation between experimental and Monte Carlo-based simulation of the pore size distribution in mesoporous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tadvani, Jalil Khajepour [Ceramics Department, Materials and Energy Research Center, PO Box 14155-4777, Tehran (Iran, Islamic Republic of); Falamaki, Cavus [Chemical Engineering Department, Amirkabir University of Technology, Hafez Avenue, PO Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2008-07-23

    It is demonstrated for the first time that mesoporous PS structures obtained by the electrochemical etching of p{sup +}(100) oriented silicon wafers might assume the peculiarity of invariance of the first peak positions in their pore size distribution curves, albeit for current densities far from the electropolishing region and at constant electrolyte composition. A new Monte Carlo-based simulation model is presented that predicts reasonably the pore size distribution of the PS layers and the observed invariance of peak position with respect to changes in current density. The main highlight of the new model is the introduction of a 'light avalanche breakdown' process in a mathematical fashion. The model is also able to predict an absolute value of 4.23 A for the smallest pore created experimentally. It is discussed that the latter value has an exact physical meaning: it corresponds with great accuracy to the width of a void created on the surface due to the exclusion of one Si atom.

  2. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  3. Monte Carlo simulation of a prototype photodetector used in radiotherapy

    CERN Document Server

    Kausch, C; Albers, D; Schmidt, R; Schreiber, B

    2000-01-01

    The imaging performance of prototype electronic portal imaging devices (EPID) has been investigated. Monte Carlo simulations have been applied to calculate the modulation transfer function (MTF( f )), the noise power spectrum (NPS( f )) and the detective quantum efficiency (DQE( f )) for different new type of EPIDs, which consist of a detector combination of metal or polyethylene (PE), a phosphor layer of Gd sub 2 O sub 2 S and a flat array of photodiodes. The simulated results agree well with measurements. Based on simulated results, possible optimization of these devices is discussed.

  4. Monte Carlo simulation of large electron fields

    Science.gov (United States)

    Faddegon, Bruce A.; Perl, Joseph; Asai, Makoto

    2008-03-01

    Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.

  5. SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations

    CERN Document Server

    Baes, Maarten

    2015-01-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...

  6. Suppression of the initial transient in Monte Carlo criticality simulations; Suppression du regime transitoire initial des simulations Monte-Carlo de criticite

    Energy Technology Data Exchange (ETDEWEB)

    Richet, Y

    2006-12-15

    Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)

  7. Monte Carlo simulation of charge mediated magnetoelectricity in multiferroic bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Álvarez, H.H. [Universidad de Caldas, Manizales (Colombia); Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Bedoya-Hincapié, C.M. [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Universidad Santo Tomás, Bogotá (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia)

    2014-12-01

    Simulations of a bilayer ferroelectric/ferromagnetic multiferroic system were carried out, based on the Monte Carlo method and Metropolis dynamics. A generic model was implemented with a Janssen-like Hamiltonian, taking into account magnetoelectric interactions due to charge accumulation at the interface. Two different magnetic exchange constants were considered for accumulation and depletion states. Several screening lengths were also included. Simulations exhibit considerable magnetoelectric effects not only at low temperature, but also at temperature near to the transition point of the ferromagnetic layer. The results match experimental observations for this kind of structure and mechanism.

  8. Monte Carlo Simulation of RPC-based PET with GEANT4

    CERN Document Server

    Weizheng, Zhou; Cheng, Li; Hongfang, Chen; Yongjie, Sun; Tianxiang, Chen

    2014-01-01

    The Resistive Plate Chambers (RPC) are low-cost charged-particle detectors with good timing resolution and potentially good spatial resolution. Using RPC as gamma detector provides an opportunity for application in positron emission tomography (PET). In this work, we use GEANT4 simulation package to study various methods improving the detection efficiency of a realistic RPC-based PET model for 511keV photons, by adding more detection units, changing the thickness of each layer, choosing different converters and using multi-gaps RPC (MRPC) technique. Proper balance among these factors are discussed. It's found that although RPC with materials of high atomic number can reach a higher efficiency, they may contribute to a poor spatial resolution and higher background level.

  9. Monte Carlo simulations on SIMD computer architectures

    Energy Technology Data Exchange (ETDEWEB)

    Burmester, C.P.; Gronsky, R. [Lawrence Berkeley Lab., CA (United States); Wille, L.T. [Florida Atlantic Univ., Boca Raton, FL (United States). Dept. of Physics

    1992-03-01

    Algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SMM) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures.

  10. A new approach to integrate GPU-based Monte Carlo simulation into inverse treatment plan optimization for proton therapy

    Science.gov (United States)

    Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2017-01-01

    Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6  ±  15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.

  11. Inhomogeneous Monte Carlo simulations of dermoscopic spectroscopy

    Science.gov (United States)

    Gareau, Daniel S.; Li, Ting; Jacques, Steven; Krueger, James

    2012-03-01

    Clinical skin-lesion diagnosis uses dermoscopy: 10X epiluminescence microscopy. Skin appearance ranges from black to white with shades of blue, red, gray and orange. Color is an important diagnostic criteria for diseases including melanoma. Melanin and blood content and distribution impact the diffuse spectral remittance (300-1000nm). Skin layers: immersion medium, stratum corneum, spinous epidermis, basal epidermis and dermis as well as laterally asymmetric features (eg. melanocytic invasion) were modeled in an inhomogeneous Monte Carlo model.

  12. Density Functional Theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion

    Science.gov (United States)

    Obot, I. B.; Kaya, Savaş; Kaya, Cemal; Tüzün, Burak

    2016-06-01

    DFT and Monte Carlo simulation were performed on three Schiff bases namely, 4-(4-bromophenyl)-N‧-(4-methoxybenzylidene)thiazole-2-carbohydrazide (BMTC), 4-(4-bromophenyl)-N‧-(2,4-dimethoxybenzylidene)thiazole-2-carbohydrazide (BDTC), 4-(4-bromophenyl)-N‧-(4-hydroxybenzylidene)thiazole-2-carbohydrazide (BHTC) recently studied as corrosion inhibitor for steel in acid medium. Electronic parameters relevant to their inhibition activity such as EHOMO, ELUMO, Energy gap (ΔE), hardness (η), softness (σ), the absolute electronegativity (χ), proton affinity (PA) and nucleophilicity (ω) etc., were computed and discussed. Monte Carlo simulations were applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are in most cases in agreement with experimental results.

  13. Simulation of Ni-63 based nuclear micro battery using Monte Carlo modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-10-15

    The radioisotope batteries have an energy density of 100-10000 times greater than chemical batteries. Also, Li ion battery has the fundamental problems such as short life time and requires recharge system. In addition to these things, the existing batteries are hard to operate at internal human body, national defense arms or space environment. Since the development of semiconductor process and materials technology, the micro device is much more integrated. It is expected that, based on new semiconductor technology, the conversion device efficiency of betavoltaic battery will be highly increased. Furthermore, the radioactivity from the beta particle cannot penetrate a skin of human body, so it is safer than Li battery which has the probability to explosion. In the other words, the interest for radioisotope battery is increased because it can be applicable to an artificial internal organ power source without recharge and replacement, micro sensor applied to arctic and special environment, small size military equipment and space industry. However, there is not enough data for beta particle fluence from radioisotope source using nuclear battery. Beta particle fluence directly influences on battery efficiency and it is seriously affected by radioisotope source thickness because of self-absorption effect. Therefore, in this article, we present a basic design of Ni-63 nuclear battery and simulation data of beta particle fluence with various thickness of radioisotope source and design of battery.

  14. 3D VMAT Verification Based on Monte Carlo Log File Simulation with Experimental Feedback from Film Dosimetry

    Science.gov (United States)

    Barbeiro, A. R.; Ureba, A.; Baeza, J. A.; Linares, R.; Perucha, M.; Jiménez-Ortega, E.; Velázquez, S.; Mateos, J. C.

    2016-01-01

    A model based on a specific phantom, called QuAArC, has been designed for the evaluation of planning and verification systems of complex radiotherapy treatments, such as volumetric modulated arc therapy (VMAT). This model uses the high accuracy provided by the Monte Carlo (MC) simulation of log files and allows the experimental feedback from the high spatial resolution of films hosted in QuAArC. This cylindrical phantom was specifically designed to host films rolled at different radial distances able to take into account the entrance fluence and the 3D dose distribution. Ionization chamber measurements are also included in the feedback process for absolute dose considerations. In this way, automated MC simulation of treatment log files is implemented to calculate the actual delivery geometries, while the monitor units are experimentally adjusted to reconstruct the dose-volume histogram (DVH) on the patient CT. Prostate and head and neck clinical cases, previously planned with Monaco and Pinnacle treatment planning systems and verified with two different commercial systems (Delta4 and COMPASS), were selected in order to test operational feasibility of the proposed model. The proper operation of the feedback procedure was proved through the achieved high agreement between reconstructed dose distributions and the film measurements (global gamma passing rates > 90% for the 2%/2 mm criteria). The necessary discretization level of the log file for dose calculation and the potential mismatching between calculated control points and detection grid in the verification process were discussed. Besides the effect of dose calculation accuracy of the analytic algorithm implemented in treatment planning systems for a dynamic technique, it was discussed the importance of the detection density level and its location in VMAT specific phantom to obtain a more reliable DVH in the patient CT. The proposed model also showed enough robustness and efficiency to be considered as a pre

  15. Monte Carlo simulations based on phase 1 studies predict target attainment of ceftobiprole in nosocomial pneumonia patients: a validation study.

    Science.gov (United States)

    Muller, Anouk E; Schmitt-Hoffmann, Anne H; Punt, Nieko; Mouton, Johan W

    2013-05-01

    Monte Carlo simulation (MCS) of antimicrobial dosage regimens during drug development to derive predicted target attainment values is frequently used to choose the optimal dose for the treatment of patients in phase 2 and 3 studies. A criticism is that pharmacokinetic (PK) parameter estimates and variability in healthy volunteers are smaller than those in patients. In this study, the initial estimates of exposure from MCS were compared with actual exposure data in patients treated with ceftobiprole in a phase 3 nosocomial-pneumonia (NP) study (NTC00210964). Results of MCS using population PK data from ceftobiprole derived from 12 healthy volunteers were used (J. W. Mouton, A. Schmitt-Hoffmann, S. Shapiro, N. Nashed, N. C. Punt, Antimicrob. Agents Chemother. 48:1713-1718, 2004). Actual individual exposures in patients were derived after building a population pharmacokinetic model and were used to calculate the individual exposure to ceftobiprole (the percentage of time the unbound concentration exceeds the MIC [percent fT > MIC]) for a range of MIC values. For the ranges of percent fT > MIC used to determine the dosage schedule in the phase 3 NP study, the MCS using data from a single phase 1 study in healthy volunteers accurately predicted the actual clinical exposure to ceftobiprole. The difference at 50% fT > MIC at an MIC of 4 mg/liter was 3.5% for PK-sampled patients. For higher values of percent fT > MIC and MICs, the MCS slightly underestimated the target attainment, probably due to extreme values in the PK profile distribution used in the simulations. The probability of target attainment based on MCS in healthy volunteers adequately predicted the actual exposures in a patient population, including severely ill patients.

  16. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    Science.gov (United States)

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer.

  17. Establishing an Initial Electron Beam Model with Monte Carlo Simulation for a Single 6 MV X-ray Medical Linac Based on Particle Dynamics Characteristics

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-bin; KONG Xiao-xiao; LI Quan-feng; LIN Xiao-qi; BAO Shang-lian

    2009-01-01

    Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation (TRSV) for the single 6 MV X-ray accelerating waveguide of BJ- 6 medical linac. Methods and Materials:1. We adapted the treatment head configuration of BJ- 6 medical linac made by Beijing Medical Equipment Institute (BMEI) as the radiation system for this study. 2. Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum, the spatial intensity distribution, and the beam incidence angle. 3. Analyze the 6 MV X-ray beam characteristics of PDDc, OARc in a water phantom by using Monte Carlo simulation (BEAMnrc,DOSXYZnrc) for a preset of the initial electron beam parameters which have been determined by TRSV, do the comparisons of the measured results of PDDm, OARm in a real water phantom, and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%. Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%. Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ- 6, modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results.

  18. Monte Carlo simulation of AB-copolymers with saturating bonds

    DEFF Research Database (Denmark)

    Chertovich, A.C.; Ivanov, V.A.; Khokhlov, A.R.

    2003-01-01

    Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A- and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending...... to those of diblock sequences than to the properties of random sequences. The model (although quite rough) is expected to represent some basic features of real RNA molecules, i.e. the formation of secondary structure of RNA due to hydrogen bonding of corresponding bases and stacking interactions...

  19. Monte carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. II. Comparisons of model predictions to measured data.

    Science.gov (United States)

    Semenenko, V A; Stewart, R D

    2005-08-01

    Clustered damage sites other than double-strand breaks (DSBs) have the potential to contribute to deleterious effects of ionizing radiation, such as cell killing and mutagenesis. In the companion article (Semenenko et al., Radiat. Res. 164, 180-193, 2005), a general Monte Carlo framework to simulate key steps in the base and nucleotide excision repair of DNA damage other than DSBs is proposed. In this article, model predictions are compared to measured data for selected low-and high-LET radiations. The Monte Carlo model reproduces experimental observations for the formation of enzymatic DSBs in Escherichia coli and cells of two Chinese hamster cell lines (V79 and xrs5). Comparisons of model predictions with experimental values for low-LET radiation suggest that an inhibition of DNA backbone incision at the sites of base damage by opposing strand breaks is active over longer distances between the damaged base and the strand break in hamster cells (8 bp) compared to E. coli (3 bp). Model estimates for the induction of point mutations in the human hypoxanthine guanine phosphoribosyl transferase (HPRT) gene by ionizing radiation are of the same order of magnitude as the measured mutation frequencies. Trends in the mutation frequency for low- and high-LET radiation are predicted correctly by the model. The agreement between selected experimental data sets and simulation results provides some confidence in postulated mechanisms for excision repair of DNA damage other than DSBs and suggests that the proposed Monte Carlo scheme is useful for predicting repair outcomes.

  20. Optimization of ISOL targets based on Monte-Carlo simulations of ion release curves

    CERN Document Server

    Mustapha, B

    2003-01-01

    A detailed model for simulating release curves from ISOL targets has been developed. The full 3D geometry is implemented using Geant-4. Produced particles are followed individually from production to release. The delay time is computed event by event. All processes involved: diffusion, effusion and decay are included to obtain the overall release curve. By fitting to the experimental data, important parameters of the release process (diffusion coefficient, sticking time, ...) are extracted. They can be used to improve the efficiency of existing targets and design new ones more suitable to produce beams of rare isotopes.

  1. Reply to "Comment on 'A study on tetrahedron-based inhomogeneous Monte-Carlo optical simulation'".

    Science.gov (United States)

    Shen, Haiou; Wang, Ge

    2011-04-19

    We compare the accuracy of TIM-OS and MMCM in response to the recent analysis made by Fang [Biomed. Opt. Express 2, 1258 (2011)]. Our results show that the tetrahedron-based energy deposition algorithm used in TIM-OS is more accurate than the node-based energy deposition algorithm used in MMCM.

  2. CERN Summer Student Report 2016 Monte Carlo Data Base Improvement

    CERN Document Server

    Caciulescu, Alexandru Razvan

    2016-01-01

    During my Summer Student project I worked on improving the Monte Carlo Data Base and MonALISA services for the ALICE Collaboration. The project included learning the infrastructure for tracking and monitoring of the Monte Carlo productions as well as developing a new RESTful API for seamless integration with the JIRA issue tracking framework.

  3. Monte Carlo simulation experiments on box-type radon dosimeter

    Science.gov (United States)

    Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-11-01

    Epidemiological studies show that inhalation of radon gas (222Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222Rn concentrations (Bq/m3) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter's dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (ηint) and alpha hit efficiency (ηhit). The ηint depends upon only on the dimensions of the dosimeter and ηhit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon concentration from the

  4. Monte Carlo simulation experiments on box-type radon dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-11-11

    Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper

  5. Understanding for convergence monitoring for probabilistic risk assessment based on Markov Chain Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Yeon; Jang, Han Ki; Jang, Sol Ah; Park, Tae Jin [Korean Association for Radiation Application, Seoul (Korea, Republic of)

    2014-04-15

    There is a question that the simulation actually leads to draws from its target distribution and the most basic one is whether such Markov chains can always be constructed and all chain values sampled from them. The problem to be solved is the determination of how large this iteration should be to achieve the target distribution. This problem can be answered as convergence monitoring. In this paper, two widely used methods, such as autocorrelation and potential scale reduction factor (PSRF) in MCMC are characterized. There is no general agreement on the subject of the convergence. Although it is generally agreed that running n parallel chains in practice is computationally inefficient and unnecessary, running multiple parallel chains is generally applied for the convergence monitoring due to easy implementation. The main debate is the number of parallel chains needed. If the convergence properties of the chain are well understood then clearly a single chain suffices. Therefore, autocorrelation using single chain and multiple parallel ones are tried and their results then compared with each other in this study. And, the following question is answered from the two convergence results: Have the Markov chain realizations for achieved the target distribution?.

  6. Monte Carlo simulation on kinetic behavior of one-pot hyperbranched polymerization based on AA*+CB2

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Monte Carlo simulation was applied to investigate the kinetic behavior of AA*+CB2 system.The algorithm consisted of two procedures to simulate the in-situ synthesis of AB2-like intermediate and the subsequent polymerization,respectively.In order to improve the accuracy of the prediction,the mobility distinction between different scale molecules in polymerization was taken into account by relating the reaction rate constants to the collision possibility of each pair of species.The feed ratio of initial monomers and the activity difference between the two functional groups within AA* were studied systematically to catch the essential features of the reaction.Simulation results have revealed that the achievable maximum conversion primarily depends on the extent of the reactivity difference between A and A*-groups,and it is suggested that A*-group should be at least 10 times more active than A-group to achieve high number-average degree of polymerization.

  7. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  8. Pattern-oriented Agent-based Monte Carlo simulation of Cellular Redox Environment

    DEFF Research Database (Denmark)

    Tang, Jiaowei; Holcombe, Mike; Boonen, Harrie C.M.

    Research suggests that cellular redox environment could affect the phenotype and function of cells through a complex reaction network[1]. In cells, redox status is mainly regulated by several redox couples, such as Glutathione/glutathione disulfide (GSH/GSSG), Cysteine/ Cystine (CYS/CYSS) and mit......Research suggests that cellular redox environment could affect the phenotype and function of cells through a complex reaction network[1]. In cells, redox status is mainly regulated by several redox couples, such as Glutathione/glutathione disulfide (GSH/GSSG), Cysteine/ Cystine (CYS....../CYSS) and mitochondrial redox couples. Evidence suggests that both intracellular and extracellular redox can affect overall cell redox state. How redox is communicated between extracellular and intracellular environments is still a matter of debate. Some researchers conclude based on experimental data...... redox is well understand. Reference: 1. Moriarty-Craige, S.E. and D.P. Jones, Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr, 2004. 24: p. 481-509. 2. Banerjee, R., Redox outside the box: linking extracellular redox remodeling with intracellular redox metabolism. J Biol Chem...

  9. A GPU-based large-scale Monte Carlo simulation method for systems with long-range interactions

    Science.gov (United States)

    Liang, Yihao; Xing, Xiangjun; Li, Yaohang

    2017-06-01

    In this work we present an efficient implementation of Canonical Monte Carlo simulation for Coulomb many body systems on graphics processing units (GPU). Our method takes advantage of the GPU Single Instruction, Multiple Data (SIMD) architectures, and adopts the sequential updating scheme of Metropolis algorithm. It makes no approximation in the computation of energy, and reaches a remarkable 440-fold speedup, compared with the serial implementation on CPU. We further use this method to simulate primitive model electrolytes, and measure very precisely all ion-ion pair correlation functions at high concentrations. From these data, we extract the renormalized Debye length, renormalized valences of constituent ions, and renormalized dielectric constants. These results demonstrate unequivocally physics beyond the classical Poisson-Boltzmann theory.

  10. A GPU-based Large-scale Monte Carlo Simulation Method for Systems with Long-range Interactions

    CERN Document Server

    Liang, Yihao; Li, Yaohang

    2016-01-01

    In this work we present an efficient implementation of Canonical Monte Carlo simulation for Coulomb many body systems on graphics processing units (GPU). Our method takes advantage of the GPU Single Instruction, Multiple Data (SIMD) architectures. It adopts the sequential updating scheme of Metropolis algorithm, and makes no approximation in the computation of energy. It reaches a remarkable 440-fold speedup, compared with the serial implementation on CPU. We use this method to simulate primitive model electrolytes. We measure very precisely all ion-ion pair correlation functions at high concentrations, and extract renormalized Debye length, renormalized valences of constituent ions, and renormalized dielectric constants. These results demonstrate unequivocally physics beyond the classical Poisson-Boltzmann theory.

  11. Monte Carlo simulation for simultaneous particle coagulation and deposition

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Haibo; ZHENG; Chuguang

    2006-01-01

    The process of dynamic evolution in dispersed systems due to simultaneous particle coagulation and deposition is described mathematically by general dynamic equation (GDE). Monte Carlo (MC) method is an important approach of numerical solutions of GDE. However, constant-volume MC method exhibits the contradictory of low computation cost and high computation precision owing to the fluctuation of the number of simulation particles; constant-number MC method can hardly be applied to engineering application and general scientific quantitative analysis due to the continual contraction or expansion of computation domain. In addition, the two MC methods depend closely on the "subsystem" hypothesis, which constraints their expansibility and the scope of application. A new multi-Monte Carlo (MMC) method is promoted to take account of GDE for simultaneous particle coagulation and deposition. MMC method introduces the concept of "weighted fictitious particle" and is based on the "time-driven" technique. Furthermore MMC method maintains synchronously the computational domain and the total number of fictitious particles, which results in the latent expansibility of simulation for boundary condition, the space evolution of particle size distribution and even particle dynamics. The simulation results of MMC method for two special cases in which analytical solutions exist agree with analytical solutions well, which proves that MMC method has high and stable computational precision and low computation cost because of the constant and limited number of fictitious particles. Lastly the source of numerical error and the relative error of MMC method are analyzed, respectively.

  12. Assessment study for multi-barrier system used in radioactive borate waste isolation based on Monte Carlo simulations.

    Science.gov (United States)

    Bayoumi, T A; Reda, S M; Saleh, H M

    2012-01-01

    Radioactive waste generated from the nuclear applications should be properly isolated by a suitable containment system such as, multi-barrier container. The present study aims to evaluate the isolation capacity of a new multi-barrier container made from cement and clay and including borate waste materials. These wastes were spiked by (137)Cs and (60)Co radionuclides to simulate that waste generated from the primary cooling circuit of pressurized water reactors. Leaching of both radionuclides in ground water was followed and calculated during ten years. Monte Carlo (MCNP5) simulations computed the photon flux distribution of the multi-barrier container, including radioactive borate waste of specific activity 11.22KBq/g and 4.18KBq/g for (137)Cs and (60)Co, respectively, at different periods of 0, 15.1, 30.2 and 302 years. The average total flux for 100cm radius of spherical cell was 0.192photon/cm(2) at initial time and 2.73×10(-4)photon/cm(2) after 302 years. Maximum waste activity keeping the surface radiation dose within the permissible level was calculated and found to be 56KBq/g with attenuation factors of 0.73cm(-1) and 0.6cm(-1) for cement and clay, respectively. The average total flux was 1.37×10(-3)photon/cm(2) after 302 years. Monte Carlo simulations revealed that the proposed multi-barrier container is safe enough during transportation, evacuation or rearrangement in the disposal site for more than 300 years. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Monte Carlo simulations of biaxial structure in thin hybrid nematic film based upon spatially anisotropic pair potential

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi-Dong; Chang Chun-Rui; Ma Dong-Lai

    2009-01-01

    Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model,in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals.We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structarc transition from the biaxial to the bent-director structure,which is similar to the result obtained using the Lebwohl-Lasher model.However,the step-like director's profile,characteristic for the biaxial structure,is spatially asymmetric in the film because the pair potential leads to K1≠K3.We estimate the upper cell thickness to be 69 spin layers,in which the biaxial structure can be found.

  14. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    Science.gov (United States)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  15. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  16. Non-Boltzmann Ensembles and Monte Carlo Simulations

    Science.gov (United States)

    Murthy, K. P. N.

    2016-10-01

    Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc. This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g(E, M), as a function of both energy E, and order parameter M. This is carried out in two stages. We estimate g(E) in the first stage. Employing g

  17. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr [Bio Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Taewon; Cho, Seungryong [Medical Imaging and Radiotherapeutics Laboratory, Department of Nuclear and Quantum Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Seong, Younghun; Lee, Jongha; Jang, Kwang Eun [Samsung Advanced Institute of Technology, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803 (Korea, Republic of); Choi, Jaegu; Choi, Young Wook [Korea Electrotechnology Research Institute (KERI), 111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-170 (Korea, Republic of); Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736 (Korea, Republic of)

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue composition for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite

  18. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update.

    Science.gov (United States)

    Kim, Kyungsang; Lee, Taewon; Seong, Younghun; Lee, Jongha; Jang, Kwang Eun; Choi, Jaegu; Choi, Young Wook; Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee; Cho, Seungryong; Ye, Jong Chul

    2015-09-01

    In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue composition for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10-50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite accurate under a variety of

  19. Probabilistic fire simulator - Monte Carlo simulation tool for fire scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, S.; Keski-Rahkonen, O. [VTT Building and Transport, Espoo (Finland)

    2002-11-01

    Risk analysis tool is developed for computing of the distributions of fire model output variables. The tool, called Probabilistic Fire Simulator, combines Monte Carlo simulation and CFAST two-zone fire model. In this work, it is used to calculate failure probability of redundant cables and fire detector activation times in a cable tunnel fire. Sensitivity of the output variables to the input variables is calculated in terms of the rank order correlations. (orig.)

  20. Would increasing centre volumes improve patient outcomes in peritoneal dialysis? A registry-based cohort and Monte Carlo simulation study

    Science.gov (United States)

    Evans, David; Lobbedez, Thierry; Verger, Christian; Flahault, Antoine

    2013-01-01

    Objective To estimate the association between centre volume and patient outcomes in peritoneal dialysis, explore robustness to residual confounding and predict the impact of policies to increase centre volumes. Design Registry-based cohort study with probabilistic sensitivity analysis and Monte Carlo simulation of (hypothetical) intervention effects. Setting 112 secondary-care centres in France. Participants 9602 adult patients initiating peritoneal dialysis. Main outcome measures Technique failure (ie, permanent transfer to haemodialysis), renal transplantation and death while on peritoneal dialysis within 5 years of initiating treatment. Associations with underlying risk measured by cause-specific HRs (cs-HRs) and with cumulative incidence by subdistribution HRs (sd-HRs). Intervention effects measured by predicted mean change in cumulative incidences. Results Higher volume centres had more patients with diabetes and were more frequently academic centres or associative groupings of private physicians. Patients in higher volume centres had a reduced risk of technique failure (>60 patients vs 0–10 patients: adjusted cs-HR 0.46; 95% CI 0.43 to 0.69), with no changed risk of death or transplantation. Sensitivity analyses mitigated the cs-HRs without changing the findings. In higher volume centres, the cumulative incidence was reduced for technique failure (>60 patients vs 0–10 patients: adjusted sd-HR 0.49; 95% CI 0.29 to 0.85) but was increased for transplantation and death (>60 patients vs 0–10 patients: transplantation—adjusted sd-HR 1.53; 95% CI 1.04 to 2.24; death—adjusted sd-HR 1.28; 95% CI 1.00 to 1.63). The predicted reduction in cumulative incidence of technique failure was largest under a scenario of shifting all patients to the two highest volume centre groups (0.091 reduction) but lower for three more realistic interventions (around 0.06 reduction). Conclusions Patients initiating peritoneal dialysis in high-volume centres had a considerably

  1. Comparison Between Linear and Nonlinear Models of Mixed Pixels in Remote Sensing Satellite Images Based on Cierniewski Surface BRDF Model by Means of Monte Carlo Ray Tracing Simulation

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-04-01

    Full Text Available Comparative study on linear and nonlinear mixed pixel models of which pixels in remote sensing satellite images is composed with plural ground cover materials mixed together, is conducted for remote sensing satellite image analysis. The mixed pixel models are based on Cierniewski of ground surface reflectance model. The comparative study is conducted by using of Monte Carlo Ray Tracing: MCRT simulations. Through simulation study, the difference between linear and nonlinear mixed pixel models is clarified. Also it is found that the simulation model is validated.

  2. Accuracy Analysis of Assembly Success Rate with Monte Carlo Simulations

    Institute of Scientific and Technical Information of China (English)

    仲昕; 杨汝清; 周兵

    2003-01-01

    Monte Carlo simulation was applied to Assembly Success Rate (ASR) analyses.ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes,manufacturing tolerances and robot repeatability into account.A statistic arithmetic expression was proposed and deduced in this paper,which offers an alternative method of estimating the accuracy of ASR,without having to repeat the simulations.This statistic method also helps to choose a suitable sample size,if error reduction is desired.Monte Carlo simulation results demonstrated the feasibility of the method.

  3. Monte Carlo Simulation in Statistical Physics An Introduction

    CERN Document Server

    Binder, Kurt

    2010-01-01

    Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. The fifth edition covers Classical as well as Quantum Monte Carlo methods. Furthermore a new chapter on the sampling of free-energy landscapes has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was awarded the Berni J. Alder CECAM Award for Computational Physics 2001 as well ...

  4. Accelerating particle-in-cell simulations using multilevel Monte Carlo

    Science.gov (United States)

    Ricketson, Lee

    2015-11-01

    Particle-in-cell (PIC) simulations have been an important tool in understanding plasmas since the dawn of the digital computer. Much more recently, the multilevel Monte Carlo (MLMC) method has accelerated particle-based simulations of a variety of systems described by stochastic differential equations (SDEs), from financial portfolios to porous media flow. The fundamental idea of MLMC is to perform correlated particle simulations using a hierarchy of different time steps, and to use these correlations for variance reduction on the fine-step result. This framework is directly applicable to the Langevin formulation of Coulomb collisions, as demonstrated in previous work, but in order to apply to PIC simulations of realistic scenarios, MLMC must be generalized to incorporate self-consistent evolution of the electromagnetic fields. We present such a generalization, with rigorous results concerning its accuracy and efficiency. We present examples of the method in the collisionless, electrostatic context, and discuss applications and extensions for the future.

  5. Stochastic simulation and Monte-Carlo methods; Simulation stochastique et methodes de Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Graham, C. [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France); Ecole Polytechnique, 91 - Palaiseau (France); Talay, D. [Institut National de Recherche en Informatique et en Automatique (INRIA), 78 - Le Chesnay (France); Ecole Polytechnique, 91 - Palaiseau (France)

    2011-07-01

    This book presents some numerical probabilistic methods of simulation with their convergence speed. It combines mathematical precision and numerical developments, each proposed method belonging to a precise theoretical context developed in a rigorous and self-sufficient manner. After some recalls about the big numbers law and the basics of probabilistic simulation, the authors introduce the martingales and their main properties. Then, they develop a chapter on non-asymptotic estimations of Monte-Carlo method errors. This chapter gives a recall of the central limit theorem and precises its convergence speed. It introduces the Log-Sobolev and concentration inequalities, about which the study has greatly developed during the last years. This chapter ends with some variance reduction techniques. In order to demonstrate in a rigorous way the simulation results of stochastic processes, the authors introduce the basic notions of probabilities and of stochastic calculus, in particular the essential basics of Ito calculus, adapted to each numerical method proposed. They successively study the construction and important properties of the Poisson process, of the jump and deterministic Markov processes (linked to transport equations), and of the solutions of stochastic differential equations. Numerical methods are then developed and the convergence speed results of algorithms are rigorously demonstrated. In passing, the authors describe the probabilistic interpretation basics of the parabolic partial derivative equations. Non-trivial applications to real applied problems are also developed. (J.S.)

  6. Monte Carlo simulation of electron slowing down in indium

    Energy Technology Data Exchange (ETDEWEB)

    Rouabah, Z.; Hannachi, M. [Materials and Electronic Systems Laboratory (LMSE), University of Bordj Bou Arreridj, Bordj Bou Arreridj (Algeria); Champion, C. [Université de Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux-Gradignan, (CENBG), Gradignan (France); Bouarissa, N., E-mail: n_bouarissa@yahoo.fr [Laboratory of Materials Physics and its Applications, University of M' sila, 28000 M' sila (Algeria)

    2015-07-15

    Highlights: • Electron scattering in indium targets. • Modeling of elastic cross-sections. • Monte Carlo simulation of low energy electrons. - Abstract: In the current study, we aim at simulating via a detailed Monte Carlo code, the electron penetration in a semi-infinite indium medium for incident energies ranging from 0.5 to 5 keV. Electron range, backscattering coefficients, mean penetration depths as well as stopping profiles are then reported. The results may be seen as the first predictions for low-energy electron penetration in indium target.

  7. Utilising Monte Carlo Simulation for the Valuation of Mining Concessions

    Directory of Open Access Journals (Sweden)

    Rosli Said

    2005-12-01

    Full Text Available Valuation involves the analyses of various input data to produce an estimated value. Since each input is itself often an estimate, there is an element of uncertainty in the input. This leads to uncertainty in the resultant output value. It is argued that a valuation must also convey information on the uncertainty, so as to be more meaningful and informative to the user. The Monte Carlo simulation technique can generate the information on uncertainty and is therefore potentially useful to valuation. This paper reports on the investigation that has been conducted to apply Monte Carlo simulation technique in mineral valuation, more specifically, in the valuation of a quarry concession.

  8. THE APPLICATION OF MONTE CARLO SIMULATION FOR A DECISION PROBLEM

    Directory of Open Access Journals (Sweden)

    Çiğdem ALABAŞ

    2001-01-01

    Full Text Available The ultimate goal of the standard decision tree approach is to calculate the expected value of a selected performance measure. In the real-world situations, the decision problems become very complex as the uncertainty factors increase. In such cases, decision analysis using standard decision tree approach is not useful. One way of overcoming this difficulty is the Monte Carlo simulation. In this study, a Monte Carlo simulation model is developed for a complex problem and statistical analysis is performed to make the best decision.

  9. Monte Carlo simulation of electrons in dense gases

    Science.gov (United States)

    Tattersall, Wade; Boyle, Greg; Cocks, Daniel; Buckman, Stephen; White, Ron

    2014-10-01

    We implement a Monte-Carlo simulation modelling the transport of electrons and positrons in dense gases and liquids, by using a dynamic structure factor that allows us to construct structure-modified effective cross sections. These account for the coherent effects caused by interactions with the relatively dense medium. The dynamic structure factor also allows us to model thermal gases in the same manner, without needing to directly sample the velocities of the neutral particles. We present the results of a series of Monte Carlo simulations that verify and apply this new technique, and make comparisons with macroscopic predictions and Boltzmann equation solutions. Financial support of the Australian Research Council.

  10. Optical coherence tomography: Monte Carlo simulation and improvement by optical amplification

    DEFF Research Database (Denmark)

    Tycho, Andreas

    2002-01-01

    An advanced novel Monte Carlo simulation model of the detection process of an optical coherence tomography (OCT) system is presented. For the first time it is shown analytically that the applicability of the incoherent Monte Carlo approach to model the heterodyne detection process of an OCT system...... model of the OCT signal. The OCT signal from a scattering medium are obtained for several beam and sample geometries using the new Monte Carlo model, and when comparing to results of an analytical model based on the extended Huygens-Fresnel principle excellent agreement is obtained. With the greater...... flexibility of Monte Carlo simulations, this new model is demonstrated to be excellent as a numerical phantom, i.e., as a substitute for otherwise difficult experiments. Finally, a new model of the signal-to-noise ratio (SNR) of an OCT system with optical amplification of the light reflected from the sample...

  11. Benchmarking of Proton Transport in Super Monte Carlo Simulation Program

    Science.gov (United States)

    Wang, Yongfeng; Li, Gui; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Wu, Yican

    2014-06-01

    The Monte Carlo (MC) method has been traditionally applied in nuclear design and analysis due to its capability of dealing with complicated geometries and multi-dimensional physics problems as well as obtaining accurate results. The Super Monte Carlo Simulation Program (SuperMC) is developed by FDS Team in China for fusion, fission, and other nuclear applications. The simulations of radiation transport, isotope burn-up, material activation, radiation dose, and biology damage could be performed using SuperMC. Complicated geometries and the whole physical process of various types of particles in broad energy scale can be well handled. Bi-directional automatic conversion between general CAD models and full-formed input files of SuperMC is supported by MCAM, which is a CAD/image-based automatic modeling program for neutronics and radiation transport simulation. Mixed visualization of dynamical 3D dataset and geometry model is supported by RVIS, which is a nuclear radiation virtual simulation and assessment system. Continuous-energy cross section data from hybrid evaluated nuclear data library HENDL are utilized to support simulation. Neutronic fixed source and critical design parameters calculates for reactors of complex geometry and material distribution based on the transport of neutron and photon have been achieved in our former version of SuperMC. Recently, the proton transport has also been intergrated in SuperMC in the energy region up to 10 GeV. The physical processes considered for proton transport include electromagnetic processes and hadronic processes. The electromagnetic processes include ionization, multiple scattering, bremsstrahlung, and pair production processes. Public evaluated data from HENDL are used in some electromagnetic processes. In hadronic physics, the Bertini intra-nuclear cascade model with exitons, preequilibrium model, nucleus explosion model, fission model, and evaporation model are incorporated to treat the intermediate energy nuclear

  12. Kinetic Monte Carlo simulation of the classical nucleation process

    Science.gov (United States)

    Filipponi, A.; Giammatteo, P.

    2016-12-01

    We implemented a kinetic Monte Carlo computer simulation of the nucleation process in the framework of the coarse grained scenario of the Classical Nucleation Theory (CNT). The computational approach is efficient for a wide range of temperatures and sample sizes and provides a reliable simulation of the stochastic process. The results for the nucleation rate are in agreement with the CNT predictions based on the stationary solution of the set of differential equations for the continuous variables representing the average population distribution of nuclei size. Time dependent nucleation behavior can also be simulated with results in agreement with previous approaches. The method, here established for the case in which the excess free-energy of a crystalline nucleus is a smooth-function of the size, can be particularly useful when more complex descriptions are required.

  13. Monte Carlo simulations for design of the KFUPM PGNAA facility

    CERN Document Server

    Naqvi, A A; Maslehuddin, M; Kidwai, S

    2003-01-01

    Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement samp...

  14. A Monte Carlo Simulation Framework for Testing Cosmological Models

    Directory of Open Access Journals (Sweden)

    Heymann Y.

    2014-10-01

    Full Text Available We tested alternative cosmologies using Monte Carlo simulations based on the sam- pling method of the zCosmos galactic survey. The survey encompasses a collection of observable galaxies with respective redshifts that have been obtained for a given spec- troscopic area of the sky. Using a cosmological model, we can convert the redshifts into light-travel times and, by slicing the survey into small redshift buckets, compute a curve of galactic density over time. Because foreground galaxies obstruct the images of more distant galaxies, we simulated the theoretical galactic density curve using an average galactic radius. By comparing the galactic density curves of the simulations with that of the survey, we could assess the cosmologies. We applied the test to the expanding-universe cosmology of de Sitter and to a dichotomous cosmology.

  15. Monte Carlo Simulation Tool Installation and Operation Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.

    2013-09-02

    This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.

  16. Meaningful timescales from Monte Carlo simulations of molecular systems

    CERN Document Server

    Costa, Liborio I

    2016-01-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of molecular systems with atomistic detail is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  17. Direct determination of liquid phase coexistence by Monte Carlo simulations

    NARCIS (Netherlands)

    Zweistra, H.J.A.; Besseling, N.A.M.

    2006-01-01

    A formalism to determine coexistence points by means of Monte Carlo simulations is presented. The general idea of the method is to perform a simulation simultaneously in several unconnected boxes which can exchange particles. At equilibrium, most of the boxes will be occupied by a homogeneous phase.

  18. Research of Monte Carlo Simulation in Commercial Bank Risk Management

    Institute of Scientific and Technical Information of China (English)

    BeimingXiao

    2004-01-01

    Simulation method is an important-tool in financial risk management. It can simulate financial variable or economic wriable and deal with non-linear or non-nominal issue. This paper analyzes the usage of "Monte Carlo" approach in commercial bank risk management.

  19. Fission source sampling in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Boerge; Dufek, Jan [KTH Royal Inst. of Technology, Stockholm (Sweden). Div. of Nuclear Research Technology

    2017-05-15

    We study fission source sampling methods suitable for the iterative way of solving coupled Monte Carlo neutronics problems. Specifically, we address the question as to how the initial Monte Carlo fission source should be optimally sampled at the beginning of each iteration step. We compare numerically two approaches of sampling the initial fission source; the tested techniques are derived from well-known methods for iterating the neutron flux in coupled simulations. The first technique samples the initial fission source using the source from the previous iteration step, while the other technique uses a combination of all previous steps for this purpose. We observe that the previous-step approach performs the best.

  20. Cosmological Markov Chain Monte Carlo simulation with Cmbeasy

    CERN Document Server

    Müller, C M

    2004-01-01

    We introduce a Markov Chain Monte Carlo simulation and data analysis package for the cosmological computation package Cmbeasy. We have taken special care in implementing an adaptive step algorithm for the Markov Chain Monte Carlo in order to improve convergence. Data analysis routines are provided which allow to test models of the Universe against up-to-date measurements of the Cosmic Microwave Background, Supernovae Ia and Large Scale Structure. The observational data is provided with the software for convenient usage. The package is publicly available as part of the Cmbeasy software at www.cmbeasy.org.

  1. GATE Monte Carlo simulation in a cloud computing environment

    Science.gov (United States)

    Rowedder, Blake Austin

    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.

  2. Markov chain Monte Carlo simulation for Bayesian Hidden Markov Models

    Science.gov (United States)

    Chan, Lay Guat; Ibrahim, Adriana Irawati Nur Binti

    2016-10-01

    A hidden Markov model (HMM) is a mixture model which has a Markov chain with finite states as its mixing distribution. HMMs have been applied to a variety of fields, such as speech and face recognitions. The main purpose of this study is to investigate the Bayesian approach to HMMs. Using this approach, we can simulate from the parameters' posterior distribution using some Markov chain Monte Carlo (MCMC) sampling methods. HMMs seem to be useful, but there are some limitations. Therefore, by using the Mixture of Dirichlet processes Hidden Markov Model (MDPHMM) based on Yau et. al (2011), we hope to overcome these limitations. We shall conduct a simulation study using MCMC methods to investigate the performance of this model.

  3. Monte Carlo Simulation of Magnetization Behaviour of Co Nanowires

    Institute of Scientific and Technical Information of China (English)

    ZHONG Ke-Hua; HUANG Zhi-Gao; FENG Qian; JIANG Li-Qin; YANG Yan-Min; CHEN Zhi-Gao

    2006-01-01

    Based on the Monte Carlo method, we simulate the magnetization curves with various magnetic field orientations for various single Co nanowires at room temperature. The simulated switching field as a function of angle θ between the field and the wire axis is consistent well with the experimental data. Correspondingly, the coercivity as a function of angle θ is presented, which together with the switching field plays an important role on explaining the magnetic reversal mechanism. It is found that the angular dependence of coercivity depends on the diameter of nanowires, and the coercivity and switching field versus θ deviate markedly from the prediction from the classical uniform rotation mode in the chain-of-sphere model. Furthermore, the magnetic reversal configurations display that magnetization reversal in the wires with small diameters is a nucleation-propagation process, and it is similar to the curling spread process in the larger wires.

  4. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  5. Reducing quasi-ergodicity in a double well potential by Tsallis Monte Carlo simulation

    OpenAIRE

    Iwamatsu, Masao; Okabe, Yutaka

    2000-01-01

    A new Monte Carlo scheme based on the system of Tsallis's generalized statistical mechanics is applied to a simple double well potential to calculate the canonical thermal average of potential energy. Although we observed serious quasi-ergodicity when using the standard Metropolis Monte Carlo algorithm, this problem is largely reduced by the use of the new Monte Carlo algorithm. Therefore the ergodicity is guaranteed even for short Monte Carlo steps if we use this new canonical Monte Carlo sc...

  6. Sequence-based Parameter Estimation for an Epidemiological Temporal Aftershock Forecasting Model using Markov Chain Monte Carlo Simulation

    Science.gov (United States)

    Jalayer, Fatemeh; Ebrahimian, Hossein

    2014-05-01

    Introduction The first few days elapsed after the occurrence of a strong earthquake and in the presence of an ongoing aftershock sequence are quite critical for emergency decision-making purposes. Epidemic Type Aftershock Sequence (ETAS) models are used frequently for forecasting the spatio-temporal evolution of seismicity in the short-term (Ogata, 1988). The ETAS models are epidemic stochastic point process models in which every earthquake is a potential triggering event for subsequent earthquakes. The ETAS model parameters are usually calibrated a priori and based on a set of events that do not belong to the on-going seismic sequence (Marzocchi and Lombardi 2009). However, adaptive model parameter estimation, based on the events in the on-going sequence, may have several advantages such as, tuning the model to the specific sequence characteristics, and capturing possible variations in time of the model parameters. Simulation-based methods can be employed in order to provide a robust estimate for the spatio-temporal seismicity forecasts in a prescribed forecasting time interval (i.e., a day) within a post-main shock environment. This robust estimate takes into account the uncertainty in the model parameters expressed as the posterior joint probability distribution for the model parameters conditioned on the events that have already occurred (i.e., before the beginning of the forecasting interval) in the on-going seismic sequence. The Markov Chain Monte Carlo simulation scheme is used herein in order to sample directly from the posterior probability distribution for ETAS model parameters. Moreover, the sequence of events that is going to occur during the forecasting interval (and hence affecting the seismicity in an epidemic type model like ETAS) is also generated through a stochastic procedure. The procedure leads to two spatio-temporal outcomes: (1) the probability distribution for the forecasted number of events, and (2) the uncertainty in estimating the

  7. Monte Carlo simulation of quantum statistical lattice models

    NARCIS (Netherlands)

    Raedt, Hans De; Lagendijk, Ad

    1985-01-01

    In this article we review recent developments in computational methods for quantum statistical lattice problems. We begin by giving the necessary mathematical basis, the generalized Trotter formula, and discuss the computational tools, exact summations and Monte Carlo simulation, that will be used t

  8. Monte Carlo Simulation of Partially Confined Flexible Polymers

    NARCIS (Netherlands)

    Hermsen, G.F.; de Geeter, B.A.; van der Vegt, N.F.A.; Wessling, Matthias

    2002-01-01

    We have studied conformational properties of flexible polymers partially confined to narrow pores of different size using configurational biased Monte Carlo simulations under athermal conditions. The asphericity of the chain has been studied as a function of its center of mass position along the por

  9. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  10. Quantum Monte Carlo simulation of topological phase transitions

    Science.gov (United States)

    Yamamoto, Arata; Kimura, Taro

    2016-12-01

    We study the electron-electron interaction effects on topological phase transitions by the ab initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.

  11. Testing Dependent Correlations with Nonoverlapping Variables: A Monte Carlo Simulation

    Science.gov (United States)

    Silver, N. Clayton; Hittner, James B.; May, Kim

    2004-01-01

    The authors conducted a Monte Carlo simulation of 4 test statistics or comparing dependent correlations with no variables in common. Empirical Type 1 error rates and power estimates were determined for K. Pearson and L. N. G. Filon's (1898) z, O. J. Dunn and V. A. Clark's (1969) z, J. H. Steiger's (1980) original modification of Dunn and Clark's…

  12. Play It Again: Teaching Statistics with Monte Carlo Simulation

    Science.gov (United States)

    Sigal, Matthew J.; Chalmers, R. Philip

    2016-01-01

    Monte Carlo simulations (MCSs) provide important information about statistical phenomena that would be impossible to assess otherwise. This article introduces MCS methods and their applications to research and statistical pedagogy using a novel software package for the R Project for Statistical Computing constructed to lessen the often steep…

  13. Simulating Strongly Correlated Electron Systems with Hybrid Monte Carlo

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan

    2000-01-01

    Using the path integral representation, the Hubbard and the periodic Anderson model on D-dimensional cubic lattice are transformed into field theories of fermions in D + 1 dimensions. These theories at half-filling possess a positive definite real symmetry fermion matrix and can be simulated using the hybrid Monte Carlo method.

  14. Quantum Monte Carlo simulation of topological phase transitions

    CERN Document Server

    Yamamoto, Arata

    2016-01-01

    We study the electron-electron interaction effects on topological phase transitions by the ab-initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.

  15. Monte Carlo Simulation of Partially Confined Flexible Polymers

    NARCIS (Netherlands)

    Hermsen, G.F.; de Geeter, B.A.; van der Vegt, N.F.A.; Wessling, Matthias

    2002-01-01

    We have studied conformational properties of flexible polymers partially confined to narrow pores of different size using configurational biased Monte Carlo simulations under athermal conditions. The asphericity of the chain has been studied as a function of its center of mass position along the

  16. Virtual detector characterisation with Monte-Carlo simulations

    Science.gov (United States)

    Sukowski, F.; Yaneu Yaneu, J. F.; Salamon, M.; Ebert, S.; Uhlmann, N.

    2009-08-01

    In the field of X-ray imaging flat-panel detectors which convert X-rays into electrical signals, are widely used. For different applications, detectors differ in several specific parameters that can be used for characterizing the detector. At the Development Center X-ray Technology EZRT we studied the question how well these characteristics can be determined by only knowing the layer composition of a detector. In order to determine the required parameters, the Monte-Carlo (MC) simulation program ROSI [J. Giersch et al., Nucl. Instr. and Meth. A 509 (2003) 151] was used while taking into account all primary and secondary particle interactions as well as the focal spot size of the X-ray tube. For the study, the Hamamatsu C9311DK [Technical Datasheet Hamamatsu C9311DK flat panel sensor, Hamamatsu Photonics, ( www.hamamatsu.com)], a scintillator-based detector, and the Ajat DIC 100TL [Technical description of Ajat DIC 100TL, Ajat Oy Ltd., ( www.ajat.fi)], a direct converting semiconductor detector, were used. The layer compositions of the two detectors were implemented into the MC simulation program. The following characteristics were measured [N. Uhlmann et al., Nucl. Instr. and Meth. A 591 (2008) 46] and compared to simulation results: The basic spatial resolution (BSR), the modulation transfer function (MTF), the contrast sensitivity (CS) and the specific material thickness range (SMTR). To take scattering of optical photons into account DETECT2000 [C. Moisan et al., DETECT2000—A Program for Modeling Optical Properties of Scintillators, Department of Electrical and Computer Engineering, Laval University, Quebec City, 2000], another Monte-Carlo simulation was used.

  17. Complete Monte Carlo Simulation of Neutron Scattering Experiments

    Science.gov (United States)

    Drosg, M.

    2011-12-01

    In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of 3He(n,n)3He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the

  18. 基于GPU的蒙特卡洛放疗剂量并行计算%GPU-based Parallel Monte Carlo Simulation for Radiotherapy Dose Calculation

    Institute of Scientific and Technical Information of China (English)

    甘旸谷; 黄斐增

    2012-01-01

    目的:蒙特卡洛模拟在放疗剂量计算领域被广泛视为最精确的计算方法,但对于日常的临床应用,其效率仍有较大提升需求和空间.方法:本文会呈现放疗剂量计算领域的最新成果-维持相同的粒子输运原理的同时,使用CUDA语言,利用显卡的GPU(Graphic Processing Unit)并行处理蒙特卡洛计算中的主要过程,计算光子剂量沉积.这样既可以保证不失去蒙卡模拟的精度,又可以极大地提高运算速度.结果:实践表明在使用NVIDIA GTX460 1G DDR5 plus INTEL i52300的硬件设备,在GPU上并行计算蒙特卡洛放疗剂量沉积时,计算100万个光子剂量沉积时加速因子达到116.6,处理1000万光子入射,加速因子可达127.5.结论:本文中利用显卡GPU运行CUDA语言对放疗剂量计算进行模拟,是一种可以大幅有效提高剂量计算效率方法.%Objective: Monte Carlo simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications.Methods: This paper will present recent progresses in GPU-based Monte Carlo dose calculation. We utilizes the parallel computation ability of a GPU to achieve high efficiency, while maintaining the same particle transport physics as in the original Monte Carlo simulation code and therefore obtains the same level of simulation accuracy. Results: Our research results show that using an NVIDIA GTX460 GPU card against an INTEL i5 2300 in computing a one-million sample with all 336 processor cores working together,speed-up factors can be as high as 116.6,as for a ten-million situation,even obtain a result as high as 127.5. Conclusions:Using GPU and CUDA to process a Monte Carlo simulation can highly improve the efficiency of dose calculation.

  19. The sensitivity studies of a landmine explosive detection system based on neutron backscattering using Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Khan Hamda

    2017-01-01

    Full Text Available This paper carries out a Monte Carlo simulation of a landmine detection system, using the MCNP5 code, for the detection of concealed explosives such as trinitrotoluene and cyclonite. In portable field detectors, the signal strength of backscattered neutrons and gamma rays from thermal neutron activation is sensitive to a number of parameters such as the mass of explosive, depth of concealment, neutron moderation, background soil composition, soil porosity, soil moisture, multiple scattering in the background material, and configuration of the detection system. In this work, a detection system, with BF3 detectors for neutrons and sodium iodide scintillator for g-rays, is modeled to investigate the neutron signal-to-noise ratio and to obtain an empirical formula for the photon production rate Ri(n,γ= SfGfMf(d,m from radiative capture reactions in constituent nuclides of trinitrotoluene. This formula can be used for the efficient landmine detection of explosives in quantities as small as ~200 g of trinitrotoluene concealed at depths down to about 15 cm. The empirical formula can be embedded in a field programmable gate array on a field-portable explosives' sensor for efficient online detection.

  20. Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas

    CERN Document Server

    Dimarco, Giacomo; Pareschi, Lorenzo

    2010-01-01

    We consider the development of Monte Carlo schemes for molecules with Coulomb interactions. We generalize the classic algorithms of Bird and Nanbu-Babovsky for rarefied gas dynamics to the Coulomb case thanks to the approximation introduced by Bobylev and Nanbu (Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Physical Review E, Vol. 61, 2000). Thus, instead of considering the original Boltzmann collision operator, the schemes are constructed through the use of an approximated Boltzmann operator. With the above choice larger time steps are possible in simulations; moreover the expensive acceptance-rejection procedure for collisions is avoided and every particle collides. Error analysis and comparisons with the original Bobylev-Nanbu (BN) scheme are performed. The numerical results show agreement with the theoretical convergence rate of the approximated Boltzmann operator and the better performance of Bird-type schemes with respect to t...

  1. Monte Carlo modelling of Schottky diode for rectenna simulation

    Science.gov (United States)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  2. Monte Carlo simulations of landmine detection using neutron backscattering imaging

    Energy Technology Data Exchange (ETDEWEB)

    Datema, Cor P. E-mail: c.datema@iri.tudelft.nl; Bom, Victor R.; Eijk, Carel W.E. van

    2003-11-01

    Neutron backscattering is a technique that has successfully been applied to the detection of non-metallic landmines. Most of the effort in this field has concentrated on single detectors that are scanned across the soil. Here, two new approaches are presented in which a two-dimensional image of the hydrogen distribution in the soil is made. The first method uses an array of position-sensitive {sup 3}He-tubes that is placed in close proximity of the soil. The second method is based on coded aperture imaging. Here, thermal neutrons from the soil are projected onto a detector which is typically placed one to several meters above the soil. Both methods use a pulsed D/D neutron source. The Monte Carlo simulation package GEANT 4 was used to investigate the performance of both imaging systems.

  3. Hybrid Multilevel Monte Carlo Simulation of Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Stochastic reaction networks (SRNs) is a class of continuous-time Markov chains intended to describe, from the kinetic point of view, the time-evolution of chemical systems in which molecules of different chemical species undergo a finite set of reaction channels. This talk is based on articles [4, 5, 6], where we are interested in the following problem: given a SRN, X, defined though its set of reaction channels, and its initial state, x0, estimate E (g(X(T))); that is, the expected value of a scalar observable, g, of the process, X, at a fixed time, T. This problem lead us to define a series of Monte Carlo estimators, M, such that, with high probability can produce values close to the quantity of interest, E (g(X(T))). More specifically, given a user-selected tolerance, TOL, and a small confidence level, η, find an estimator, M, based on approximate sampled paths of X, such that, P (|E (g(X(T))) − M| ≤ TOL) ≥ 1 − η; even more, we want to achieve this objective with near optimal computational work. We first introduce a hybrid path-simulation scheme based on the well-known stochastic simulation algorithm (SSA)[3] and the tau-leap method [2]. Then, we introduce a Multilevel Monte Carlo strategy that allows us to achieve a computational complexity of order O(T OL−2), this is the same computational complexity as in an exact method but with a smaller constant. We provide numerical examples to show our results.

  4. Nonequilibrium Candidate Monte Carlo Simulations with Configurational Freezing Schemes.

    Science.gov (United States)

    Giovannelli, Edoardo; Gellini, Cristina; Pietraperzia, Giangaetano; Cardini, Gianni; Chelli, Riccardo

    2014-10-14

    Nonequilibrium Candidate Monte Carlo simulation [Nilmeier et al., Proc. Natl. Acad. Sci. U.S.A. 2011, 108, E1009-E1018] is a tool devised to design Monte Carlo moves with high acceptance probabilities that connect uncorrelated configurations. Such moves are generated through nonequilibrium driven dynamics, producing candidate configurations accepted with a Monte Carlo-like criterion that preserves the equilibrium distribution. The probability of accepting a candidate configuration as the next sample in the Markov chain basically depends on the work performed on the system during the nonequilibrium trajectory and increases with decreasing such a work. It is thus strategically relevant to find ways of producing nonequilibrium moves with low work, namely moves where dissipation is as low as possible. This is the goal of our methodology, in which we combine Nonequilibrium Candidate Monte Carlo with Configurational Freezing schemes developed by Nicolini et al. (J. Chem. Theory Comput. 2011, 7, 582-593). The idea is to limit the configurational sampling to particles of a well-established region of the simulation sample, namely the region where dissipation occurs, while leaving fixed the other particles. This allows to make the system relaxation faster around the region perturbed by the finite-time switching move and hence to reduce the dissipated work, eventually enhancing the probability of accepting the generated move. Our combined approach enhances significantly configurational sampling, as shown by the case of a bistable dimer immersed in a dense fluid.

  5. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Han; Sharma, Diksha; Badano, Aldo, E-mail: aldo.badano@fda.hhs.gov [Division of Imaging, Diagnostics, and Software Reliability, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2014-12-15

    Purpose: Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridMANTIS, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webMANTIS and visualMANTIS to facilitate the setup of computational experiments via hybridMANTIS. Methods: The visualization tools visualMANTIS and webMANTIS enable the user to control simulation properties through a user interface. In the case of webMANTIS, control via a web browser allows access through mobile devices such as smartphones or tablets. webMANTIS acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. Results: The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridMANTIS. The users can download the output images and statistics through a zip file for future reference. In addition, webMANTIS provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. Conclusions: The visualization tools visualMANTIS and webMANTIS provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying

  6. Probabilistic uncertainty analysis based on Monte Carlo simulations of co-combustion of hazelnut hull and coal blends: Data-driven modeling and response surface optimization.

    Science.gov (United States)

    Buyukada, Musa

    2017-02-01

    The aim of present study is to investigate the thermogravimetric behaviour of the co-combustion of hazelnut hull (HH) and coal blends using three approaches: multi non-linear regression (MNLR) modeling based on Box-Behnken design (BBD) (1), optimization based on response surface methodology (RSM) (2), and probabilistic uncertainty analysis based on Monte Carlo simulation as a function of blend ratio, heating rate, and temperature (3). The response variable was predicted by the best-fit MNLR model with a predicted regression coefficient (R(2)pred) of 99.5%. Blend ratio of 90/10 (HH to coal, %wt), temperature of 405°C, and heating rate of 44°Cmin(-1) were determined as RSM-optimized conditions with a mass loss of 87.4%. The validation experiments with three replications were performed for justifying the predicted-mass loss percentage and 87.5%±0.2 of mass loss were obtained under RSM-optimized conditions. The probabilistic uncertainty analysis were performed by using Monte Carlo simulations.

  7. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F. [Departments of Biomedical Physics and Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States); Mueller, Jonathon W. [United States Air Force, Keesler Air Force Base, Biloxi, Mississippi 39534 (United States); Cody, Dianna D. [University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); DeMarco, John J. [Departments of Biomedical Physics and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States)

    2015-02-15

    Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.

  8. Monte Carlo simulation: tool for the calibration in analytical determination of radionuclides; Simulacion Monte Carlo: herramienta para la calibracion en determinaciones analiticas de radionucleidos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jorge A. Carrazana; Ferrera, Eduardo A. Capote; Gomez, Isis M. Fernandez; Castro, Gloria V. Rodriguez; Ricardo, Niury Martinez, E-mail: cphr@cphr.edu.cu [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba)

    2013-07-01

    This work shows how is established the traceability of the analytical determinations using this calibration method. Highlights the advantages offered by Monte Carlo simulation for the application of corrections by differences in chemical composition, density and height of the samples analyzed. Likewise, the results obtained by the LVRA in two exercises organized by the International Agency for Atomic Energy (IAEA) are presented. In these exercises (an intercomparison and a proficiency test) all reported analytical results were obtained based on calibrations in efficiency by Monte Carlo simulation using the DETEFF program.

  9. Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...

  10. Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls).xml

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...

  11. Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls).

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...

  12. Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...

  13. Monte Carlo Simulation of Argon in Nano-Space

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; YANG Chun; GUO Zeng-Yuan

    2000-01-01

    Monte Carlo simulations are performed to investigate the thermodynamic properties of argon confined in nano-scale cubes constructed of graphite walls. A remarkable depression of the system pressures is observed. The simulations reveal that the length-scale of the cube, the magnitude of the interaction between the fluid and the graphite wall and the density of the fluid exhibit reasonable effects on the thermodynamic property shifts of the luid.

  14. Monte Carlo simulation of photon migration path in turbid media

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new method of Monte Carlo simulation is developed to simulate the photon migration path in a scattering medium after an ultrashort-pulse laser beam comes into the medium.The most probable trajectory of photons at an instant can be obtained with this method.How the photon migration paths are affected by the optical parameters of the scattering medium is analyzed.It is also concluded that the absorption coefficient has no effect on the most probable trajectory of photons.

  15. Assessing Excel VBA Suitability for Monte Carlo Simulation

    OpenAIRE

    2015-01-01

    Monte Carlo (MC) simulation includes a wide range of stochastic techniques used to quantitatively evaluate the behavior of complex systems or processes. Microsoft Excel spreadsheets with Visual Basic for Applications (VBA) software is, arguably, the most commonly employed general purpose tool for MC simulation. Despite the popularity of the Excel in many industries and educational institutions, it has been repeatedly criticized for its flaws and often described as questionable, if not complet...

  16. Monte Carlo simulation of quantum Zeno effect in the brain

    CERN Document Server

    Georgiev, Danko

    2014-01-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved ...

  17. Monte Carlo Simulations of Neutron Oil well Logging Tools

    CERN Document Server

    Azcurra, M

    2002-01-01

    Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition

  18. Application of Monte Carlo Simulations to Improve Basketball Shooting Strategy

    CERN Document Server

    Min, Byeong June

    2016-01-01

    The underlying physics of basketball shooting seems to be a straightforward example of the Newtonian mechanics that can easily be traced by numerical methods. However, a human basketball player does not make use of all the possible basketball trajectories. Instead, a basketball player will build up a database of successful shots and select the trajectory that has the greatest tolerance to small variations of the real world. We simulate the basketball player's shooting training as a Monte Carlo sequence to build optimal shooting strategies, such as the launch speed and angle of the basketball, and whether to take a direct shot or a bank shot, as a function of the player's court positions and height. The phase space volume that belongs to the successful launch velocities generated by Monte Carlo simulations are then used as the criterion to optimize a shooting strategy that incorporates not only mechanical, but human factors as well.

  19. Towards offline PET monitoring at a cyclotron-based proton therapy facility. Experiments and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wuerl, Matthias

    2016-08-01

    Matthias Wuerl presents two essential steps to implement offline PET monitoring of proton dose delivery at a clinical facility, namely the setting up of an accurate Monte Carlo model of the clinical beamline and the experimental validation of positron emitter production cross-sections. In the first part, the field size dependence of the dose output is described for scanned proton beams. Both the Monte Carlo and an analytical computational beam model were able to accurately predict target dose, while the latter tends to overestimate dose in normal tissue. In the second part, the author presents PET measurements of different phantom materials, which were activated by the proton beam. The results indicate that for an irradiation with a high number of protons for the sake of good statistics, dead time losses of the PET scanner may become important and lead to an underestimation of positron-emitter production yields.

  20. Stabilization effect of fission source in coupled Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Börge Olsen

    2017-08-01

    Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  1. Monte Carlo simulation on teaching of luminescence and excited states decay kinetics; Simulacao Monte Carlo no ensino de luminescencia e cinetica de decaimento de estado excitado

    Energy Technology Data Exchange (ETDEWEB)

    Winnischofer, Herbert; Araujo, Marcio Peres de; Dias Junior, Lauro Camargo; Novo, Joao Batista Marques [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2010-07-01

    A software based in the Monte Carlo method have been developed aiming the teaching of important cases of mechanisms found in luminescence and in excited states decay kinetics, including: multiple decays, consecutive decays and coupled systems decays. The Monte Carlo Method allows the student to easily simulate and visualize the luminescence mechanisms, focusing on the probabilities of the related steps. The software CINESTEX was written for FreeBASIC compiler; it assumes first-order kinetics and any number of excited states, where the pathways are allowed with probabilities assigned by the user. (author)

  2. Cassandra: An open source Monte Carlo package for molecular simulation.

    Science.gov (United States)

    Shah, Jindal K; Marin-Rimoldi, Eliseo; Mullen, Ryan Gotchy; Keene, Brian P; Khan, Sandip; Paluch, Andrew S; Rai, Neeraj; Romanielo, Lucienne L; Rosch, Thomas W; Yoo, Brian; Maginn, Edward J

    2017-07-15

    Cassandra is an open source atomistic Monte Carlo software package that is effective in simulating the thermodynamic properties of fluids and solids. The different features and algorithms used in Cassandra are described, along with implementation details and theoretical underpinnings to various methods used. Benchmark and example calculations are shown, and information on how users can obtain the package and contribute to it are provided. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. An Introduction to Monte Carlo Simulation of Statistical physics Problem

    OpenAIRE

    Murthy, K. P. N.

    2001-01-01

    A brief introduction to the technique of Monte Carlo simulations in statistical physics is presented. The topics covered include statistical ensembles random and pseudo random numbers, random sampling techniques, importance sampling, Markov chain, Metropolis algorithm, continuous phase transition, statistical errors from correlated and uncorrelated data, finite size scaling, n-fold way, critical slowing down, blocking technique,percolation, cluster algorithms, cluster counting, histogram tech...

  4. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  5. Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P.; Estabrook, K.; Everett, M.; London, R.A.; Maitland, D.; Zimmerman, G.; Colston, B.; da Silva, L.; Sathyam, U.

    2000-02-01

    The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of spherical dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.

  6. Accelerated Monte Carlo simulations with restricted Boltzmann machines

    Science.gov (United States)

    Huang, Li; Wang, Lei

    2017-01-01

    Despite their exceptional flexibility and popularity, Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feed-forward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine to propose efficient Monte Carlo updates to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate an improved acceptance ratio and autocorrelation time near the phase transition point.

  7. Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines

    CERN Document Server

    Huang, Li

    2016-01-01

    Despite their exceptional flexibility and popularity, the Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feedforward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine for efficient Monte Carlo updates and to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate improved acceptance ratio and autocorrelation time near the phase transition point.

  8. The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature

    CERN Document Server

    Pia, Maria Grazia; Bell, Zane W; Dressendorfer, Paul V

    2010-01-01

    A scientometric analysis of Monte Carlo simulation and Monte Carlo codes has been performed over a set of representative scholarly journals related to radiation physics. The results of this study are reported and discussed. They document and quantitatively appraise the role of Monte Carlo methods and codes in scientific research and engineering applications.

  9. Data decomposition of Monte Carlo particle transport simulations via tally servers

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Paul K., E-mail: paul.k.romano@gmail.com [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegala@mcs.anl.gov [Argonne National Laboratory, Theory and Computing Sciences, 9700 S Cass Ave., Argonne, IL 60439 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Smith, Kord, E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2013-11-01

    An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.

  10. A New Approach to Monte Carlo Simulations in Statistical Physics

    Science.gov (United States)

    Landau, David P.

    2002-08-01

    Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  11. A generic algorithm for Monte Carlo simulation of proton transport

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, Francesc, E-mail: francesc.salvat@ub.edu

    2013-12-01

    A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron–photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane–wave Born approximation (PWBA), making use of the Sternheimer–Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.

  12. A generic algorithm for Monte Carlo simulation of proton transport

    Science.gov (United States)

    Salvat, Francesc

    2013-12-01

    A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron-photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane-wave Born approximation (PWBA), making use of the Sternheimer-Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.

  13. Errors associated with metabolic control analysis. Application Of Monte-Carlo simulation of experimental data.

    Science.gov (United States)

    Ainscow, E K; Brand, M D

    1998-09-21

    The errors associated with experimental application of metabolic control analysis are difficult to assess. In this paper, we give examples where Monte-Carlo simulations of published experimental data are used in error analysis. Data was simulated according to the mean and error obtained from experimental measurements and the simulated data was used to calculate control coefficients. Repeating the simulation 500 times allowed an estimate to be made of the error implicit in the calculated control coefficients. In the first example, state 4 respiration of isolated mitochondria, Monte-Carlo simulations based on the system elasticities were performed. The simulations gave error estimates similar to the values reported within the original paper and those derived from a sensitivity analysis of the elasticities. This demonstrated the validity of the method. In the second example, state 3 respiration of isolated mitochondria, Monte-Carlo simulations were based on measurements of intermediates and fluxes. A key feature of this simulation was that the distribution of the simulated control coefficients did not follow a normal distribution, despite simulation of the original data being based on normal distributions. Consequently, the error calculated using simulation was greater and more realistic than the error calculated directly by averaging the original results. The Monte-Carlo simulations are also demonstrated to be useful in experimental design. The individual data points that should be repeated in order to reduce the error in the control coefficients can be highlighted.

  14. Monte Carlo simulations to replace film dosimetry in IMRT verification

    OpenAIRE

    Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assu...

  15. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  16. Monte Carlo Simulation for LINAC Standoff Interrogation of Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Shaun D [ORNL; Flaska, Marek [ORNL; Miller, Thomas Martin [ORNL; Protopopescu, Vladimir A [ORNL; Pozzi, Sara A [ORNL

    2007-06-01

    The development of new techniques for the interrogation of shielded nuclear materials relies on the use of Monte Carlo codes to accurately simulate the entire system, including the interrogation source, the fissile target and the detection environment. The objective of this modeling effort is to develop analysis tools and methods-based on a relevant scenario-which may be applied to the design of future systems for active interrogation at a standoff. For the specific scenario considered here, the analysis will focus on providing the information needed to determine the type and optimum position of the detectors. This report describes the results of simulations for a detection system employing gamma rays to interrogate fissile and nonfissile targets. The simulations were performed using specialized versions of the codes MCNPX and MCNP-PoliMi. Both prompt neutron and gamma ray and delayed neutron fluxes have been mapped in three dimensions. The time dependence of the prompt neutrons in the system has also been characterized For this particular scenario, the flux maps generated with the Monte Carlo model indicate that the detectors should be placed approximately 50 cm behind the exit of the accelerator, 40 cm away from the vehicle, and 150 cm above the ground. This position minimizes the number of neutrons coming from the accelerator structure and also receives the maximum flux of prompt neutrons coming from the source. The lead shielding around the accelerator minimizes the gamma-ray background from the accelerator in this area. The number of delayed neutrons emitted from the target is approximately seven orders of magnitude less than the prompt neutrons emitted from the system. Therefore, in order to possibly detect the delayed neutrons, the detectors should be active only after all prompt neutrons have scattered out of the system. Preliminary results have shown this time to be greater than 5 ?s after the accelerator pulse. This type of system is illustrative of a

  17. Kinetic Monte Carlo simulation of thin film growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Peifeng(张佩峰); ZHENG; Xiaoping(郑小平); HE; Deyan(贺德衍)

    2003-01-01

    A three-dimensional kinetic Monte Carlo technique has been developed for simulating growth of thin Cu films. The model involves incident atom attachment, diffusion of the atoms on the growing surface, and detachment of the atoms from the growing surface. The related effect by surface atom diffusion was taken into account. A great improvement was made on calculation of the activation energy for atom diffusion based on a reasonable assumption of interaction potential between atoms. The surface roughness and the relative density of the films were simulated as the functions of growth substrate temperature and film thickness. The results showed that there exists an optimum growth temperature Topt at a given deposition rate. When the substrate temperature approaches to Topt, the growing surface becomes smoothing and the relative density of the films increases. The surface roughness minimizes and the relative density saturates at Topt. The surface roughness increases with an increment of substrate temperature when the temperature is higher than Topt. Topt iS a function of the deposition rate and the influence of the deposition rate on the surface roughness depends on the substrate temperatures. The simulation results also showed that the relative density decreases with the increasing of the deposition rate and the average thickness of the film.

  18. Monte Carlo simulation of proton track structure in biological matter

    Science.gov (United States)

    Quinto, Michele A.; Monti, Juan M.; Weck, Philippe F.; Fojón, Omar A.; Hanssen, Jocelyn; Rivarola, Roberto D.; Senot, Philippe; Champion, Christophe

    2017-05-01

    Understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V - devoted to the modeling of the slowing-down of 10 keV-100 MeV protons in both water and DNA - where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  19. Monte Carlo Simulation of HERD Calorimeter

    CERN Document Server

    Xu, M; Dong, Y W; Lu, J G; Quan, Z; Wang, L; Wang, Z G; Wu, B B; Zhang, S N

    2014-01-01

    The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measure...

  20. Monte Carlo simulations of parapatric speciation

    Science.gov (United States)

    Schwämmle, V.; Sousa, A. O.; de Oliveira, S. M.

    2006-06-01

    Parapatric speciation is studied using an individual-based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.

  1. Using standard calibrated geometries to characterize a coaxial high purity germanium gamma detector for Monte Carlo simulations

    NARCIS (Netherlands)

    van der Graaf, E. R.; Dendooven, P.; Brandenburg, S.

    2014-01-01

    A detector model optimization procedure based on matching Monte Carlo simulations with measurements for two experimentally calibrated sample geometries which are frequently used in radioactivity measurement laboratories results in relative agreement within 5% between simulated and measured efficienc

  2. Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis

    NARCIS (Netherlands)

    Maucec, M.; Rigollet, C.

    2004-01-01

    The performance of a detection system based on the pulsed fast/thermal neutron analysis technique was assessed using Monte Carlo simulations. The aim was to develop and implement simulation methods, to support and advance the data analysis techniques of the characteristic gamma-ray spectra, potentia

  3. 基于蒙特卡洛法的弹着点散布仿真%Simulation of Impact Position Based on Monte-Carlo Method

    Institute of Scientific and Technical Information of China (English)

    路航; 石全; 胡起伟; 朱战飞

    2011-01-01

    Simulation of impact position is an important step of the damage simulation. The impact position model is set up by Monte-Carlo method based on analyzing the components and calculating methods of firing error, and the visual simulation of impact position which is codetermined by concentrated fire, optimum width fire and three-distance fire is realized. The results accord with tactics of artillery, therefore the model can be used in damage simulatioa The case of artillery battalion to position of towed gun company is analyzed, the results of which shows that it is facility, credible and general to calculate damage probability of any point targets using the impact model.%弹着点散布仿真是对敌火力打击目标毁伤仿真的重要环节.在分析地面炮兵射击误差构成与计算方法的基础上,研究建立了炮兵射击的弹着点散布蒙特卡洛(Monte-Carlo)仿真模型,实现了对集火射向、适宽射向、三距离射击等多种火力打击方式共同作用下的弹着点散布的可视化仿真,仿真结果符合相关战术数据,为目标毁伤仿真研究提供了模型支持.以炮兵营对牵引炮兵连阵地射击为例进行了算例分析,结果表明,采用弹着点散布的蒙特卡洛仿真模型计算对任意形状点目标群的毁伤效能方便可靠且通用性强.

  4. Monte Carlo simulation of virus introduction into the Netherlands.

    Science.gov (United States)

    Horst, H S; Dijkhuizen, A A; Huirne, R B; Meuwissen, M P

    1999-07-20

    In order to improve the understanding of the risk of introducing classical swine fever (CSF) and foot-and-mouth disease (FMD) into the Netherlands, a Monte Carlo simulation model was developed. The model, VIRiS (Virus Introduction Risk Simulation model) describes virus introduction into the Netherlands from outbreaks in other European countries. VIRiS is aimed at supporting decision makers involved in disease prevention. The model is based on historical and experimental data, supplemented with expert judgement, and provides the expected number, location and cause of primary outbreaks in the Netherlands. The paper gives a detailed description of the design and behaviour of VIRiS. The default outcomes of VIRiS show that in the current situation, the western and northern regions of the Netherlands are most prone to outbreaks of CSF and FMD. Most outbreaks originate from the countries neighbouring the Netherlands and the countries of southern Europe. Several alternative prevention strategies were evaluated using a combination of the VIRiS model and models describing the spread and economic consequences of outbreaks. A considerable financial window is available for measures aimed at speeding up the detection of epidemics in countries from which a Dutch outbreak may originate. Complete elimination of the risk associated with the risk factor 'returning trucks' reduces the annual losses due to FMD and CSF epidemics by approximately US$ 9 million. The approach is general and could also be applied to other diseases and countries.

  5. Monte Carlo simulation of the PEMFC catalyst layer

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxing; CAO Pengzhen; WANG Yuxin

    2007-01-01

    The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer.Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC.In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization,it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC.In this work,the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation.The model can predict the effects of some catalyst layer components,such as Pt/C catalyst,electrolyte and gas pores,on the utilization of the catalyst and the cell performance.The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization.The better the dispersion of the conduction grains,the larger the total effective area of the catalyst is.To achieve higher utilization,catalyst layer components must be distributed by means of engineered design,which can prevent aggregation.

  6. Computed radiography simulation using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.

  7. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Viergever, Max A. [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  8. Monte Carlo simulation of electron beam air plasma characteristics

    Institute of Scientific and Technical Information of China (English)

    Deng Yong-Feng; Han Xian-Wei; Tan Chang

    2009-01-01

    A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.

  9. A Monte Carlo simulation approach for flood risk assessment

    Science.gov (United States)

    Agili, Hachem; Chokmani, Karem; Oubennaceur, Khalid; Poulin, Jimmy; Marceau, Pascal

    2016-04-01

    Floods are the most frequent natural disaster and the most damaging in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which hit the region in 2011 causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects of buildings has been developed. This approach integrates three main components namely hydrological modeling through flow-probability functions, hydraulic modeling using flow-submersion height functions and the study of buildings damage based on damage functions adapted to the Quebec habitat. The application of this approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for local authorities to support their decisions on risk management and prevention against this disaster.

  10. MULTILEVEL MONTE CARLO (MLMC) SIMULATIONS: PERFORMANCE RESULTS FOR SPE10 (XY SLICES)

    Energy Technology Data Exchange (ETDEWEB)

    Kalchev, Delyan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-26

    In this report we first describe a generic multilevel Monte Carlo method and then illustrate its superior performance over a traditional single-level Monte Carlo method for second order elliptic PDEs corresponding to two-dimensional layers in (x, y)-direction of the Tenth SPE Comparative Solution project (SPE 10) which gives high-contrast permeability coefficients. The SPE10 data set is used as a coarse level in the Monte Carlo method and the respective permeability coefficient k (provided in the SPE10 dataset) is used as a mean in the simulation. The actual coefficients are drawn based on a KL-expansion assuming that the log-mean is perturbed by a log-normal distributed samples.

  11. Pipeline integrity management using Monte Carlo simulation; A aplicacao do metodo de Monte Carlo no gerenciamento da integridade de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Claudio; Costa, Artur; Bittencourt, Euclides [TRANSPETRO - PETROBRAS Transporte, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Due to the growing relevance of safety and environmental protection policies in PETROBRAS and its subsidiaries, as well as official regulatory agencies and population requirements, integrity management of oil and gas pipelines became a priority activity in TRANSPETRO, involving several sectors of the company's Support Management Department. Inspection activities using intelligent PIGs, field correlations and replacement of pipeline segments are known as high cost operations and request complex logistics. Thus, it is imperative the adoption of management tools that optimize the available resources. This study presents Monte Carlo simulation method as an additional tool for evaluation and management of pipeline structural integrity. The method consists in foreseeing future physical conditions of most significant defects found in intelligent PIG In Line Inspections based on a probabilistic approach. Through Monte Carlo simulation, probability functions of failure for each defect are produced, helping managers to decide which repairs should be executed in order to reach the desired or accepted risk level. The case that illustrates this study refers to the reconditioning of ORSOL 14'' (35,56 mm) pipeline. This pipeline was constructed to transfer petroleum from Urucu's production fields to Solimoes port, in Coari, city in Brazilian Amazon Region. The result of this analysis indicated critical points for repair, in addition to the results obtained by the conventional evaluation (deterministic ASME B-31G method). Due to the difficulties to mobilize staff and execute necessary repairs in remote areas like Amazon forest, the probabilistic tool was extremely useful, improving pipeline integrity level and avoiding future additional costs. (author)

  12. Investigating Transmission Efficiency of Light Guide by Monte Carlo Simulation

    Institute of Scientific and Technical Information of China (English)

    LiChen; XiaoGuoqing; GuoZhongyan; ZhanWenlongt; SunZhiyu; WangMeng; ChenZhiqiang; MaoRuishi; BaiJie; HuZhengguo; ChenLixin

    2003-01-01

    A large area neutron detector to detect the energy of about 1 GeV neutron by time-of flight method will be installed at RIBLL II of CSR. To obtain good energy resolution, the time resolution of the detector is a crucial parameter. For this purpose, the transmission efficiency of the light guide to transport the photons from detec-tor unit to light sensitive detector has been investigated by Monte-Carlo simulation. Here, the simulations were done mainly with two types of the light guides, namely type A and type B as shown in Figs.1 and 2 respectively.

  13. Monte Carlo Simulation of Kinesin Movement with a Lattice Model

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; DOU Shuo-Xing; WANG Peng-Ye

    2005-01-01

    @@ Kinesin is a processive double-headed molecular motor that moves along a microtubule by taking about 8nm steps. It generally hydrolyzes one ATP molecule for taking each forward step. The processive movement of the kinesin molecular motors is numerically simulated with a lattice model. The motors are considered as Brownian particles and the ATPase processes of both heads are taken into account. The Monte Carlo simulation results agree well with recent experimental observations, especially on the relation of velocity versus ATP and ADP concentrations.

  14. More about Zener drag studies with Monte Carlo simulations

    Science.gov (United States)

    Di Prinzio, Carlos L.; Druetta, Esteban; Nasello, Olga Beatriz

    2013-03-01

    Grain growth (GG) processes in the presence of second-phase and stationary particles have been widely studied but the results found are inconsistent. We present new GG simulations in two- and three-dimensional (2D and 3D) polycrystalline samples with second phase stationary particles, using the Monte Carlo technique. Simulations using values of particle concentration greater than 15% and particle radii different from 1 or 3 are performed, thus covering a range of particle radii and concentrations not previously studied. It is shown that only the results for 3D samples follow Zener's law.

  15. High-pressure high-temperature equation of state of graphite from Monte Carlo simulations

    NARCIS (Netherlands)

    Colonna, F.; Fasolino, A.; Meijer, E.J.

    2011-01-01

    The thermoelastic behavior of graphite is experimentally accessible in a limited range of pressures and temperatures. Here we perform Monte Carlo simulations based on the accurate long range carbon bond-order potential (LCBOPII) in order to study graphite in a wider range of thermodynamic

  16. CloudMC: a cloud computing application for Monte Carlo simulation.

    Science.gov (United States)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  17. Monte Carlo simulation on backward steps of single kinesin molecule

    Institute of Scientific and Technical Information of China (English)

    Wang Hong; Zhang Yong; Dou Shuo-Xing; Wang Peng-Ye

    2008-01-01

    Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward steps of kinesin under different loads and temperatures start to attract interests, and the relations among them are revealed. This paper aims to theoretically understand these relations observed in experiments. After introducing a backward pathway into the previous model of the ATPase cycle of kinesin movement, the dependence of the backward movement on the load and the temperature is explored through Monte Carlo simulation. Our results agree well with previous experiments.

  18. Monte-Carlo Simulation on Neutron Instruments at CARR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The design of high resolution neutron powder diffractometer(HRPD) and two cold neutron guides(CNGs) to be built at China advanced research reactor(CARR) are studied by Monte-Carlo simulation technique.The HRPD instrument is desiged to have a minimum resolution of 0.2% and neutron fluence rate of greater than 106 cm-2 ·s-1 at sample position. The resolution curves, neutron fluence rate and effective neutron beam size at sample position are given. Differences in resolutions and intensity between the

  19. Monte Carlo Simulation for the MAGIC-II System

    CERN Document Server

    Carmona, E; Moralejo, A; Vitale, V; Sobczynska, D; Haffke, M; Bigongiari, C; Otte, N; Cabras, G; De Maria, M; De Sabata, F

    2007-01-01

    Within the year 2007, MAGIC will be upgraded to a two telescope system at La Palma. Its main goal is to improve the sensitivity in the stereoscopic/coincident operational mode. At the same time it will lower the analysis threshold of the currently running single MAGIC telescope. Results from the Monte Carlo simulations of this system will be discussed. A comparison of the two telescope system with the performance of one single telescope will be shown in terms of sensitivity, angular resolution and energy resolution.

  20. Cluster Monte Carlo simulations of the nematic-isotropic transition

    Science.gov (United States)

    Priezjev, N. V.; Pelcovits, Robert A.

    2001-06-01

    We report the results of simulations of the three-dimensional Lebwohl-Lasher model of the nematic-isotropic transition using a single cluster Monte Carlo algorithm. The algorithm, first introduced by Kunz and Zumbach to study two-dimensional nematics, is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size. We thus obtain an upper estimate of the value of the transition temperature in the thermodynamic limit.

  1. A generalized hard-sphere model for Monte Carlo simulation

    Science.gov (United States)

    Hassan, H. A.; Hash, David B.

    1993-01-01

    A new molecular model, called the generalized hard-sphere, or GHS model, is introduced. This model contains, as a special case, the variable hard-sphere model of Bird (1981) and is capable of reproducing all of the analytic viscosity coefficients available in the literature that are derived for a variety of interaction potentials incorporating attraction and repulsion. In addition, a new procedure for determining interaction potentials in a gas mixture is outlined. Expressions needed for implementing the new model in the direct simulation Monte Carlo methods are derived. This development makes it possible to employ interaction models that have the same level of complexity as used in Navier-Stokes calculations.

  2. Implict Monte Carlo Radiation Transport Simulations of Four Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, N

    2007-08-01

    Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.

  3. Proceedings of the first symposium on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)

  4. Probabilistic Assessments of the Plate Using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A E [Department of Mechanical Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400 Johor (Malaysia); Ariffin, A K; Abdullah, S; Ghazali, M J, E-mail: kamal@eng.ukm.my, E-mail: shahrum@eng.ukm.my, E-mail: maryam@eng.ukm.my, E-mail: emran@uthm.edu.my [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-02-15

    This paper presents the probabilistic analysis of the plate with a hole using several multiaxial high cycle fatigue criteria (MHFC). Dang Van, Sines, Crossland criteria were used and von Mises criterion was also considered for comparison purpose. Parametric finite element model of the plate was developed and several important random variable parameters were selected and Latin Hypercube Sampling Monte-Carlo Simulation (LHS-MCS) was used for probabilistic analysis tool. It was found that, different structural reliability and sensitivity factors were obtained using different failure criteria. According to the results multiaxial fatigue criteria are the most significant criteria need to be considered in assessing all the structural behavior especially under complex loadings.

  5. Probabilistic Assessments of the Plate Using Monte Carlo Simulation

    Science.gov (United States)

    Ismail, A. E.; Ariffin, A. K.; Abdullah, S.; Ghazali, M. J.

    2011-02-01

    This paper presents the probabilistic analysis of the plate with a hole using several multiaxial high cycle fatigue criteria (MHFC). Dang Van, Sines, Crossland criteria were used and von Mises criterion was also considered for comparison purpose. Parametric finite element model of the plate was developed and several important random variable parameters were selected and Latin Hypercube Sampling Monte-Carlo Simulation (LHS-MCS) was used for probabilistic analysis tool. It was found that, different structural reliability and sensitivity factors were obtained using different failure criteria. According to the results multiaxial fatigue criteria are the most significant criteria need to be considered in assessing all the structural behavior especially under complex loadings.

  6. Monte Carlo simulations of charge transport in heterogeneous organic semiconductors

    Science.gov (United States)

    Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta

    2015-03-01

    The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.

  7. New electron multiple scattering distributions for Monte Carlo transport simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))

    1994-10-01

    New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))

  8. Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations

    CERN Document Server

    Fiorentini, G; Sarkar, S; Villante, F L

    1998-01-01

    We present a simple method for determining the (correlated) uncertainties of the light element abundances expected from big bang nucleosynthesis, which avoids the need for lengthy Monte Carlo simulations. Our approach helps to clarify the role of the different nuclear reactions contributing to a particular elemental abundance and makes it easy to implement energy-independent changes in the measured reaction rates. As an application, we demonstrate how this method simplifies the statistical estimation of the nucleon-to-photon ratio through comparison of the standard BBN predictions with the observationally inferred abundances.

  9. Application of Photon Transport Monte Carlo Module with GPU-based Parallel System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je [Sejong University, Seoul (Korea, Republic of); Shon, Heejeong [Golden Eng. Co. LTD, Seoul (Korea, Republic of); Lee, Donghak [CoCo Link Inc., Seoul (Korea, Republic of)

    2015-05-15

    In general, it takes lots of computing time to get reliable results in Monte Carlo simulations especially in deep penetration problems with a thick shielding medium. To mitigate such a weakness of Monte Carlo methods, lots of variance reduction algorithms are proposed including geometry splitting and Russian roulette, weight windows, exponential transform, and forced collision, etc. Simultaneously, advanced computing hardware systems such as GPU(Graphics Processing Units)-based parallel machines are used to get a better performance of the Monte Carlo simulation. The GPU is much easier to access and to manage when comparing a CPU cluster system. It also becomes less expensive these days due to enhanced computer technology. There, lots of engineering areas adapt GPU-bases massive parallel computation technique. based photon transport Monte Carlo method. It provides almost 30 times speedup without any optimization and it is expected almost 200 times with fully supported GPU system. It is expected that GPU system with advanced parallelization algorithm will contribute successfully for development of the Monte Carlo module which requires quick and accurate simulations.

  10. Monte Carlo simulations to replace film dosimetry in IMRT verification.

    Science.gov (United States)

    Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.

  11. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods.

    Science.gov (United States)

    Lee, Anthony; Yau, Christopher; Giles, Michael B; Doucet, Arnaud; Holmes, Christopher C

    2010-12-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design.

  12. Sampling uncertainty evaluation for data acquisition board based on Monte Carlo method

    Science.gov (United States)

    Ge, Leyi; Wang, Zhongyu

    2008-10-01

    Evaluating the data acquisition board sampling uncertainty is a difficult problem in the field of signal sampling. This paper analyzes the sources of dada acquisition board sampling uncertainty in the first, then introduces a simulation theory of dada acquisition board sampling uncertainty evaluation based on Monte Carlo method and puts forward a relation model of sampling uncertainty results, sampling numbers and simulation times. In the case of different sample numbers and different signal scopes, the author establishes a random sampling uncertainty evaluation program of a PCI-6024E data acquisition board to execute the simulation. The results of the proposed Monte Carlo simulation method are in a good agreement with the GUM ones, and the validities of Monte Carlo method are represented.

  13. Calculation of size specific dose estimates (SSDE) value at cylindrical phantom from CBCT Varian OBI v1.4 X-ray tube EGSnrc Monte Carlo simulation based

    Science.gov (United States)

    Nasir, M.; Pratama, D.; Anam, C.; Haryanto, F.

    2016-03-01

    The aim of this research was to calculate Size Specific Dose Estimates (SSDE) generated by the varian OBI CBCT v1.4 X-ray tube working at 100 kV using EGSnrc Monte Carlo simulations. The EGSnrc Monte Carlo code used in this simulation was divided into two parts. Phase space file data resulted by the first part simulation became an input to the second part. This research was performed with varying phantom diameters of 5 to 35 cm and varying phantom lengths of 10 to 25 cm. Dose distribution data were used to calculate SSDE values using trapezoidal rule (trapz) function in a Matlab program. SSDE obtained from this calculation was compared to that in AAPM report and experimental data. It was obtained that the normalization of SSDE value for each phantom diameter was between 1.00 and 3.19. The normalization of SSDE value for each phantom length was between 0.96 and 1.07. The statistical error in this simulation was 4.98% for varying phantom diameters and 5.20% for varying phantom lengths. This study demonstrated the accuracy of the Monte Carlo technique in simulating the dose calculation. In the future, the influence of cylindrical phantom material to SSDE would be studied.

  14. Monte Carlo simulation of quantum Zeno effect in the brain

    Science.gov (United States)

    Georgiev, Danko

    2015-12-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  15. On the time scale associated with Monte Carlo simulations.

    Science.gov (United States)

    Bal, Kristof M; Neyts, Erik C

    2014-11-28

    Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.

  16. On the time scale associated with Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bal, Kristof M., E-mail: kristof.bal@uantwerpen.be; Neyts, Erik C. [Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium)

    2014-11-28

    Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.

  17. Monte-Carlo Tree Search for Simulated Car Racing

    DEFF Research Database (Denmark)

    Fischer, Jacob; Falsted, Nikolaj; Vielwerth, Mathias

    2015-01-01

    Monte Carlo Tree Search (MCTS) has recently seen considerable success in playing certain types of games, most of which are discrete, fully observable zero-sum games. Consequently there is currently considerable interest within the research community in investigating what other games this algorithm...... of the action space. This combination allows the controller to effectively search the tree of potential future states. Results show that it is indeed possible to implement a competent MCTS-based racing controller. The controller generalizes to most road tracks as long as a warm-up period is provided....

  18. Monte-Carlo Tree Search for Simulated Car Racing

    DEFF Research Database (Denmark)

    Fischer, Jacob; Falsted, Nikolaj; Vielwerth, Mathias

    2015-01-01

    Monte Carlo Tree Search (MCTS) has recently seen considerable success in playing certain types of games, most of which are discrete, fully observable zero-sum games. Consequently there is currently considerable interest within the research community in investigating what other games this algorithm...... of the action space. This combination allows the controller to effectively search the tree of potential future states. Results show that it is indeed possible to implement a competent MCTS-based racing controller. The controller generalizes to most road tracks as long as a warm-up period is provided....

  19. Monte Carlo simulations of single and coupled synthetic molecular motors.

    Science.gov (United States)

    Chen, C-M; Zuckermann, M

    2012-11-01

    We use a minimal model to study the processive motion of coupled synthetic molecular motors along a DNA track and we present data from Monte Carlo (MC) computer simulations based on this model. The model was originally proposed by Bromley et al. [HFSP J. 3, 204 (2009)] for studying the properties of a synthetic protein motor, the "Tumbleweed" (TW), and involves rigid Y-shaped motors diffusively rotating along the track while controlled by a series of periodically injected ligand pulses into the solution. The advantage of the model is that it mimics the mechanical properties of the TW motor in detail. Both the average first passage time which measures the diffusive motion of the motors, and the average dwell time on the track which measures their processivity are investigated by varying the parameters of the model. The latter includes ligand concentration and the range and strength of the binding interaction between motors and the track. In particular, it is of experimental interest to study the dependence of these dynamic time scales of the motors on the ligand concentration. Single rigid TW motors were first studied since no previous MC simulations of these motors have been performed. We first studied single motors for which we found a logarithmic decrease of the average first passage time and a logarithmic increase of the average dwell time with increasing ligand concentration. For two coupled motors, the dependence on ligand concentration is still logarithmic for the average first passage time but becomes linear for the average dwell time. This suggests a much greater stability in the processive motion of coupled motors as compared to single motors in the limit of large ligand concentration. By increasing the number of coupled motors, m, it was found that the average first passage time of the coupled motors only increases slowly with m while the average dwell time increases exponentially with m. Thus the stability of coupled motors on the track can be

  20. Monte Carlo simulation of the neutron monitor yield function

    Science.gov (United States)

    Mangeard, P.-S.; Ruffolo, D.; Sáiz, A.; Madlee, S.; Nutaro, T.

    2016-08-01

    Neutron monitors (NMs) are ground-based detectors that measure variations of the Galactic cosmic ray flux at GV range rigidities. Differences in configuration, electronics, surroundings, and location induce systematic effects on the calculation of the yield functions of NMs worldwide. Different estimates of NM yield functions can differ by a factor of 2 or more. In this work, we present new Monte Carlo simulations to calculate NM yield functions and perform an absolute (not relative) comparison with the count rate of the Princess Sirindhorn Neutron Monitor (PSNM) at Doi Inthanon, Thailand, both for the entire monitor and for individual counter tubes. We model the atmosphere using profiles from the Global Data Assimilation System database and the Naval Research Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended model. Using FLUKA software and the detailed geometry of PSNM, we calculated the PSNM yield functions for protons and alpha particles. An agreement better than 9% was achieved between the PSNM observations and the simulated count rate during the solar minimum of December 2009. The systematic effect from the electronic dead time was studied as a function of primary cosmic ray rigidity at the top of the atmosphere up to 1 TV. We show that the effect is not negligible and can reach 35% at high rigidity for a dead time >1 ms. We analyzed the response function of each counter tube at PSNM using its actual dead time, and we provide normalization coefficients between count rates for various tube configurations in the standard NM64 design that are valid to within ˜1% for such stations worldwide.

  1. Monte Carlo simulation of zinc protoporphyrin fluorescence in the retina

    Science.gov (United States)

    Chen, Xiaoyan; Lane, Stephen

    2010-02-01

    We have used Monte Carlo simulation of autofluorescence in the retina to determine that noninvasive detection of nutritional iron deficiency is possible. Nutritional iron deficiency (which leads to iron deficiency anemia) affects more than 2 billion people worldwide, and there is an urgent need for a simple, noninvasive diagnostic test. Zinc protoporphyrin (ZPP) is a fluorescent compound that accumulates in red blood cells and is used as a biomarker for nutritional iron deficiency. We developed a computational model of the eye, using parameters that were identified either by literature search, or by direct experimental measurement to test the possibility of detecting ZPP non-invasively in retina. By incorporating fluorescence into Steven Jacques' original code for multi-layered tissue, we performed Monte Carlo simulation of fluorescence in the retina and determined that if the beam is not focused on a blood vessel in a neural retina layer or if part of light is hitting the vessel, ZPP fluorescence will be 10-200 times higher than background lipofuscin fluorescence coming from the retinal pigment epithelium (RPE) layer directly below. In addition we found that if the light can be focused entirely onto a blood vessel in the neural retina layer, the fluorescence signal comes only from ZPP. The fluorescence from layers below in this second situation does not contribute to the signal. Therefore, the possibility that a device could potentially be built and detect ZPP fluorescence in retina looks very promising.

  2. Utilizing Monte Carlo Simulations to Optimize Institutional Empiric Antipseudomonal Therapy

    Directory of Open Access Journals (Sweden)

    Sarah J. Tennant

    2015-12-01

    Full Text Available Pseudomonas aeruginosa is a common pathogen implicated in nosocomial infections with increasing resistance to a limited arsenal of antibiotics. Monte Carlo simulation provides antimicrobial stewardship teams with an additional tool to guide empiric therapy. We modeled empiric therapies with antipseudomonal β-lactam antibiotic regimens to determine which were most likely to achieve probability of target attainment (PTA of ≥90%. Microbiological data for P. aeruginosa was reviewed for 2012. Antibiotics modeled for intermittent and prolonged infusion were aztreonam, cefepime, meropenem, and piperacillin/tazobactam. Using minimum inhibitory concentrations (MICs from institution-specific isolates, and pharmacokinetic and pharmacodynamic parameters from previously published studies, a 10,000-subject Monte Carlo simulation was performed for each regimen to determine PTA. MICs from 272 isolates were included in this analysis. No intermittent infusion regimens achieved PTA ≥90%. Prolonged infusions of cefepime 2000 mg Q8 h, meropenem 1000 mg Q8 h, and meropenem 2000 mg Q8 h demonstrated PTA of 93%, 92%, and 100%, respectively. Prolonged infusions of piperacillin/tazobactam 4.5 g Q6 h and aztreonam 2 g Q8 h failed to achieved PTA ≥90% but demonstrated PTA of 81% and 73%, respectively. Standard doses of β-lactam antibiotics as intermittent infusion did not achieve 90% PTA against P. aeruginosa isolated at our institution; however, some prolonged infusions were able to achieve these targets.

  3. Multi-pass Monte Carlo simulation method in nuclear transmutations.

    Science.gov (United States)

    Mateescu, Liviu; Kadambi, N Prasad; Ravindra, Nuggehalli M

    2016-12-01

    Monte Carlo methods, in their direct brute simulation incarnation, bring realistic results if the involved probabilities, be they geometrical or otherwise, remain constant for the duration of the simulation. However, there are physical setups where the evolution of the simulation represents a modification of the simulated system itself. Chief among such evolving simulated systems are the activation/transmutation setups. That is, the simulation starts with a given set of probabilities, which are determined by the geometry of the system, the components and by the microscopic interaction cross-sections. However, the relative weight of the components of the system changes along with the steps of the simulation. A natural measure would be adjusting probabilities after every step of the simulation. On the other hand, the physical system has typically a number of components of the order of Avogadro's number, usually 10(25) or 10(26) members. A simulation step changes the characteristics for just a few of these members; a probability will therefore shift by a quantity of 1/10(25). Such a change cannot be accounted for within a simulation, because then the simulation should have then a number of at least 10(28) steps in order to have some significance. This is not feasible, of course. For our computing devices, a simulation of one million steps is comfortable, but a further order of magnitude becomes too big a stretch for the computing resources. We propose here a method of dealing with the changing probabilities, leading to the increasing of the precision. This method is intended as a fast approximating approach, and also as a simple introduction (for the benefit of students) in the very branched subject of Monte Carlo simulations vis-à-vis nuclear reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, Keita [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Moskvin, Vadim P., E-mail: vadim.p.moskvin@gmail.com [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2014-10-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.

  5. Spatial distribution sampling and Monte Carlo simulation of radioactive isotopes

    CERN Document Server

    Krainer, Alexander Michael

    2015-01-01

    This work focuses on the implementation of a program for random sampling of uniformly spatially distributed isotopes for Monte Carlo particle simulations and in specific FLUKA. With FLUKA it is possible to calculate the radio nuclide production in high energy fields. The decay of these nuclide, and therefore the resulting radiation field, however can only be simulated in the same geometry. This works gives the tool to simulate the decay of the produced nuclide in other geometries. With that the radiation field from an irradiated object can be simulated in arbitrary environments. The sampling of isotope mixtures was tested by simulating a 50/50 mixture of $Cs^{137}$ and $Co^{60}$. These isotopes are both well known and provide therefore a first reliable benchmark in that respect. The sampling of uniformly distributed coordinates was tested using the histogram test for various spatial distributions. The advantages and disadvantages of the program compared to standard methods are demonstrated in the real life ca...

  6. Use of Monte Carlo simulations in the assessment of calibration strategies-Part I: an introduction to Monte Carlo mathematics.

    Science.gov (United States)

    Burrows, John

    2013-04-01

    An introduction to the use of the mathematical technique of Monte Carlo simulations to evaluate least squares regression calibration is described. Monte Carlo techniques involve the repeated sampling of data from a population that may be derived from real (experimental) data, but is more conveniently generated by a computer using a model of the analytical system and a randomization process to produce a large database. Datasets are selected from this population and fed into the calibration algorithms under test, thus providing a facile way of producing a sufficiently large number of assessments of the algorithm to enable a statically valid appraisal of the calibration process to be made. This communication provides a description of the technique that forms the basis of the results presented in Parts II and III of this series, which follow in this issue, and also highlights the issues arising from the use of small data populations in bioanalysis.

  7. SIMIND Monte Carlo simulation of a single photon emission CT

    Directory of Open Access Journals (Sweden)

    Bahreyni Toossi M

    2010-01-01

    Full Text Available In this study, we simulated a Siemens E.CAM SPECT system using SIMIND Monte Carlo program to acquire its experimental characterization in terms of energy resolution, sensitivity, spatial resolution and imaging of phantoms using 99m Tc. The experimental and simulation data for SPECT imaging was acquired from a point source and Jaszczak phantom . Verification of the simulation was done by comparing two sets of images and related data obtained from the actual and simulated systems. Image quality was assessed by comparing image contrast and resolution. Simulated and measured energy spectra (with or without a collimator and spatial resolution from point sources in air were compared. The resulted energy spectra present similar peaks for the gamma energy of 99m Tc at 140 KeV. FWHM for the simulation calculated to14.01 KeV and 13.80 KeV for experimental data, corresponding to energy resolution of 10.01and 9.86% compared to defined 9.9% for both systems, respectively. Sensitivities of the real and virtual gamma cameras were calculated to 85.11 and 85.39 cps/MBq, respectively. The energy spectra of both simulated and real gamma cameras were matched. Images obtained from Jaszczak phantom, experimentally and by simulation, showed similarity in contrast and resolution. SIMIND Monte Carlo could successfully simulate the Siemens E.CAM gamma camera. The results validate the use of the simulated system for further investigation, including modification, planning, and developing a SPECT system to improve the quality of images.

  8. Reaction Ensemble Monte Carlo Simulation of Complex Molecular Systems.

    Science.gov (United States)

    Rosch, Thomas W; Maginn, Edward J

    2011-02-08

    Acceptance rules for reaction ensemble Monte Carlo (RxMC) simulations containing classically modeled atomistic degrees of freedom are derived for complex molecular systems where insertions and deletions are achieved gradually by utilizing the continuous fractional component (CFC) method. A self-consistent manner in which to utilize statistical mechanical data contained in ideal gas free energy parameters during RxMC moves is presented. The method is tested by applying it to two previously studied systems containing intramolecular degrees of freedom: the propene metathesis reaction and methyl-tert-butyl-ether (MTBE) synthesis. Quantitative agreement is found between the current results and those of Keil et al. (J. Chem. Phys. 2005, 122, 164705) for the propene metathesis reaction. Differences are observed between the equilibrium concentrations of the present study and those of Lísal et al. (AIChE J. 2000, 46, 866-875) for the MTBE reaction. It is shown that most of this difference can be attributed to an incorrect formulation of the Monte Carlo acceptance rule. Efficiency gains using CFC MC as opposed to single stage molecule insertions are presented.

  9. Monte Carlo Simulation Of Emission Tomography And Other Medical Imaging Techniques.

    Science.gov (United States)

    Harrison, Robert L

    2010-01-05

    An introduction to Monte Carlo simulation of emission tomography. This paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations.

  10. Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors: Saturation Effects in DC and Pulsed Modes and Detector Dynamic Range

    Energy Technology Data Exchange (ETDEWEB)

    Craig Kruschwitz, Ming Wu, Ken Moy, Greg Rochau

    2008-10-31

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)–based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. We have developed a new model of charge buildup on the walls of the MCP channels and measured its effect on MCP gain. The results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser; these results clearly demonstrate MCP saturation behavior in both DC and pulsed modes. The simulations compare favorably to the experimental results. The dynamic range of the detectors in pulsed operation is of particular interest when fielding an MCP–based camera. By adjusting the laser flux we study the linear range of the camera. These results, too, are compared to our simulations.

  11. Study on efficiency of time computation in x-ray imaging simulation base on Monte Carlo algorithm using graphics processing unit

    Science.gov (United States)

    Setiani, Tia Dwi; Suprijadi, Haryanto, Freddy

    2016-03-01

    Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic images and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 - 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 108 and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.

  12. Synchrotron stereotactic radiotherapy: dosimetry by Fricke gel and Monte Carlo simulations.

    Science.gov (United States)

    Boudou, Caroline; Biston, Marie-Claude; Corde, Stéphanie; Adam, Jean-François; Ferrero, Claudio; Estève, François; Elleaume, Hélène

    2004-11-21

    Synchrotron stereotactic radiotherapy (SSR) consists in loading the tumour with a high atomic number element (Z), and exposing it to monochromatic x-rays from a synchrotron source (50-100 keV), in stereotactic conditions. The dose distribution results from both the stereotactic monochromatic x-ray irradiation and the presence of the high Z element. The purpose of this preliminary study was to evaluate the two-dimensional dose distribution resulting solely from the irradiation geometry, using Monte Carlo simulations and a Fricke gel dosimeter. The verification of a Monte Carlo-based dosimetry was first assessed by depth dose measurements in a water tank. We thereafter used a Fricke dosimeter to compare Monte Carlo simulations with dose measurements. The Fricke dosimeter is a solution containing ferrous ions which are oxidized to ferric ions under ionizing radiation, proportionally to the absorbed dose. A cylindrical phantom filled with Fricke gel was irradiated in stereotactic conditions over several slices with a continuous beam (beam section = 0.1 x 1 cm2). The phantom and calibration vessels were then imaged by nuclear magnetic resonance. The measured doses were fairly consistent with those predicted by Monte Carlo simulations. However, the measured maximum absolute dose was 10% underestimated regarding calculation. The loss of information in the higher region of dose is explained by the diffusion of ferric ions. Monte Carlo simulation is the most accurate tool for dosimetry including complex geometries made of heterogeneous materials. Although the technique requires improvements, gel dosimetry remains an essential tool for the experimental verification of dose distribution in SSR with millimetre precision.

  13. An NPT Monte Carlo Molecular Simulation-Based Approach to Investigate Solid-Vapor Equilibrium: Application to Elemental Sulfur-H2S System

    KAUST Repository

    Kadoura, Ahmad Salim

    2013-06-01

    In this work, a method to estimate solid elemental sulfur solubility in pure and gas mixtures using Monte Carlo (MC) molecular simulation is proposed. This method is based on Isobaric-Isothermal (NPT) ensemble and the Widom insertion technique for the gas phase and a continuum model for the solid phase. This method avoids the difficulty of having to deal with high rejection rates that are usually encountered when simulating using Gibbs ensemble. The application of this method is tested with a system made of pure hydrogen sulfide gas (H2S) and solid elemental sulfur. However, this technique may be used for other solid-vapor systems provided the fugacity of the solid phase is known (e.g., through experimental work). Given solid fugacity at the desired pressure and temperature, the mole fraction of the solid dissolved in gas that would be in chemical equilibrium with the solid phase might be obtained. In other words a set of MC molecular simulation experiments is conducted on a single box given the pressure and temperature and for different mole fractions of the solute. The fugacity of the gas mixture is determined using the Widom insertion method and is compared with that predetermined for the solid phase until one finds the mole fraction which achieves the required fugacity. In this work, several examples of MC have been conducted and compared with experimental data. The Lennard-Jones parameters related to the sulfur molecule model (ɛ, σ) have been optimized to achieve better match with the experimental work.

  14. Scintillating fiber based in-vivo dose monitoring system to the rectum in proton therapy of prostate cancer: A Geant4 Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Biniam Yohannes Tesfamicael

    2014-03-01

    Full Text Available Purpose: To construct a dose monitoring system based on an endorectal balloon coupled to thin scintillating fibers to study the dose to the rectum in proton therapy of prostate cancer.Method: A Geant4 Monte Carlo toolkit was used to simulate the proton therapy of prostate cancer, with an endorectal balloon and a set of scintillating fibers for immobilization and dosimetry measurements, respectively.Results: A linear response of the fibers to the dose delivered was observed to within less than 2%. Results obtained show that fibers close to the prostate recorded higher dose, with the closest fiber recording about one-third of the dose to the target. A 1/r2 (r is defined as center-to-center distance between the prostate and the fibers decrease was observed as one goes toward the frontal and distal regions. A very low dose was recorded by the fibers beneath the balloon which is a clear indication that the overall volume of the rectal wall that is exposed to a higher dose is relatively minimized. Further analysis showed a relatively linear relationship between the dose to the target and the dose to the top fibers (total 17, with a slope of (-0.07 ± 0.07 at large number of events per degree of rotation of the modulator wheel (i.e., dose.Conclusion: Thin (1 mm × 1 mm, long (1 m scintillating fibers were found to be ideal for real time in-vivo dose measurement to the rectum during proton therapy of prostate cancer. The linear response of the fibers to the dose delivered makes them good candidates as dosimeters. With thorough calibration and the ability to define a good correlation between the dose to the target and the dose to the fibers, such dosimeters can be used for real time dose verification to the target.-----------------------------------Cite this article as: Tesfamicael BY, Avery S, Gueye P, Lyons D, Mahesh M. Scintillating fiber based in-vivo dose monitoring system to the rectum in proton therapy of prostate cancer: A Geant4 Monte Carlo

  15. A Monte Carlo-based model of gold nanoparticle radiosensitization

    Science.gov (United States)

    Lechtman, Eli Solomon

    The goal of radiotherapy is to operate within the therapeutic window - delivering doses of ionizing radiation to achieve locoregional tumour control, while minimizing normal tissue toxicity. A greater therapeutic ratio can be achieved by utilizing radiosensitizing agents designed to enhance the effects of radiation at the tumour. Gold nanoparticles (AuNP) represent a novel radiosensitizer with unique and attractive properties. AuNPs enhance local photon interactions, thereby converting photons into localized damaging electrons. Experimental reports of AuNP radiosensitization reveal this enhancement effect to be highly sensitive to irradiation source energy, cell line, and AuNP size, concentration and intracellular localization. This thesis explored the physics and some of the underlying mechanisms behind AuNP radiosensitization. A Monte Carlo simulation approach was developed to investigate the enhanced photoelectric absorption within AuNPs, and to characterize the escaping energy and range of the photoelectric products. Simulations revealed a 10 3 fold increase in the rate of photoelectric absorption using low-energy brachytherapy sources compared to megavolt sources. For low-energy sources, AuNPs released electrons with ranges of only a few microns in the surrounding tissue. For higher energy sources, longer ranged photoelectric products travelled orders of magnitude farther. A novel radiobiological model called the AuNP radiosensitization predictive (ARP) model was developed based on the unique nanoscale energy deposition pattern around AuNPs. The ARP model incorporated detailed Monte Carlo simulations with experimentally determined parameters to predict AuNP radiosensitization. This model compared well to in vitro experiments involving two cancer cell lines (PC-3 and SK-BR-3), two AuNP sizes (5 and 30 nm) and two source energies (100 and 300 kVp). The ARP model was then used to explore the effects of AuNP intracellular localization using 1.9 and 100 nm Au

  16. A method based on Monte Carlo simulations and voxelized anatomical atlases to evaluate and correct uncertainties on radiotracer accumulation quantitation in beta microprobe studies in the rat brain

    Science.gov (United States)

    Pain, F.; Dhenain, M.; Gurden, H.; Routier, A. L.; Lefebvre, F.; Mastrippolito, R.; Lanièce, P.

    2008-10-01

    The β-microprobe is a simple and versatile technique complementary to small animal positron emission tomography (PET). It relies on local measurements of the concentration of positron-labeled molecules. So far, it has been successfully used in anesthetized rats for pharmacokinetics experiments and for the study of brain energetic metabolism. However, the ability of the technique to provide accurate quantitative measurements using 18F, 11C and 15O tracers is likely to suffer from the contribution of 511 keV gamma rays background to the signal and from the contribution of positrons from brain loci surrounding the locus of interest. The aim of the present paper is to provide a method of evaluating several parameters, which are supposed to affect the quantification of recordings performed in vivo with this methodology. We have developed realistic voxelized phantoms of the rat whole body and brain, and used them as input geometries for Monte Carlo simulations of previous β-microprobe reports. In the context of realistic experiments (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; local glucose metabolic rate measurement with 18F-FDG and H2O15 blood flow measurements in the somatosensory cortex), we have calculated the detection efficiencies and corresponding contribution of 511 keV gammas from peripheral organs accumulation. We confirmed that the 511 keV gammas background does not impair quantification. To evaluate the contribution of positrons from adjacent structures, we have developed β-Assistant, a program based on a rat brain voxelized atlas and matrices of local detection efficiencies calculated by Monte Carlo simulations for several probe geometries. This program was used to calculate the 'apparent sensitivity' of the probe for each brain structure included in the detection volume. For a given localization of a probe within the brain, this allows us to quantify the different sources of beta signal. Finally, since stereotaxic accuracy is

  17. GPU-Monte Carlo based fast IMRT plan optimization

    Directory of Open Access Journals (Sweden)

    Yongbao Li

    2014-03-01

    Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z

  18. Monte Carlo evaluation of derivative-based global sensitivity measures

    Energy Technology Data Exchange (ETDEWEB)

    Kucherenko, S. [Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)], E-mail: s.kucherenko@ic.ac.uk; Rodriguez-Fernandez, M. [Process Engineering Group, Instituto de Investigaciones Marinas, Spanish Council for Scientific Research (C.S.I.C.), C/ Eduardo Cabello, 6, 36208 Vigo (Spain); Pantelides, C.; Shah, N. [Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2009-07-15

    A novel approach for evaluation of derivative-based global sensitivity measures (DGSM) is presented. It is compared with the Morris and the Sobol' sensitivity indices methods. It is shown that there is a link between DGSM and Sobol' sensitivity indices. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is many orders of magnitude lower than that for estimation of the Sobol' sensitivity indices. It is also lower than that for the Morris method. Efficiencies of Monte Carlo (MC) and quasi-Monte Carlo (QMC) sampling methods for calculation of DGSM are compared. It is shown that the superiority of QMC over MC depends on the problem's effective dimension, which can also be estimated using DGSM.

  19. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)

    2017-04-01

    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)

  20. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    Science.gov (United States)

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  1. Multidiscontinuity algorithm for world-line Monte Carlo simulations.

    Science.gov (United States)

    Kato, Yasuyuki

    2013-01-01

    We introduce a multidiscontinuity algorithm for the efficient global update of world-line configurations in Monte Carlo simulations of interacting quantum systems. This algorithm is a generalization of the two-discontinuity algorithms introduced in Refs. [N. Prokof'ev, B. Svistunov, and I. Tupitsyn, Phys. Lett. A 238, 253 (1998)] and [O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66, 046701 (2002)]. This generalization is particularly effective for studying Bose-Einstein condensates (BECs) of composite particles. In particular, we demonstrate the utility of the generalized algorithm by simulating a Hamiltonian for an S=1 antiferromagnet with strong uniaxial single-ion anisotropy. The multidiscontinuity algorithm not only solves the freezing problem that arises in this limit, but also allows the efficient computing of the off-diagonal correlator that characterizes a BEC of composite particles.

  2. Treatment planning in radiosurgery: parallel Monte Carlo simulation software

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, G. [Galliera Hospitals, Genova (Italy). Dept. of Hospital Physics; Grillo Ruggieri, F. [Galliera Hospitals, Genova (Italy) Dept. for Radiation Therapy; Modesti, M.; Felici, R. [Electronic Data System, Rome (Italy); Surridge, M. [University of South Hampton (United Kingdom). Parallel Apllication Centre

    1995-12-01

    The main objective of this research was to evaluate the possibility of direct Monte Carlo simulation for accurate dosimetry with short computation time. We made us of: graphics workstation, linear accelerator, water, PMMA and anthropomorphic phantoms, for validation purposes; ionometric, film and thermo-luminescent techniques, for dosimetry; treatment planning system for comparison. Benchmarking results suggest that short computing times can be obtained with use of the parallel version of EGS4 that was developed. Parallelism was obtained assigning simulation incident photons to separate processors, and the development of a parallel random number generator was necessary. Validation consisted in: phantom irradiation, comparison of predicted and measured values good agreement in PDD and dose profiles. Experiments on anthropomorphic phantoms (with inhomogeneities) were carried out, and these values are being compared with results obtained with the conventional treatment planning system.

  3. Quantitative application of Monte Carlo simulation in Fire-PSA

    Energy Technology Data Exchange (ETDEWEB)

    Mangs, J.; Hostikka, S.; Korhonen, T. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland); Keski-Rahkonen, O.

    2007-05-15

    In a power plant a fire cell forms the basic subunit. Since the fire is initially located there, the full-scale time dependent fire simulation and estimation of target response must be performed within the fire cell. Conditional, time dependent damage probabilities in a fire cell can now be calculated for arbitrary targets (component or a subsystem) combining probabilistic (Monte Carlo) and deterministic simulation. For the latter a spectrum from simple correlations up to latest computational fluid dynamics models is available. Selection of the code is made according to the requirements form the target cell. Although calculations are numerically heavy, it is now economically possible and feasible to carry out quantitative fire-PSA for a complete plant iteratively with the main PSA. From real applications examples are shown on assessment of fire spread possibility in a relay room, and potential of fire spread on cables in a tunnel. (orig.)

  4. Monte Carlo simulation of electrical corona discharge in air

    Energy Technology Data Exchange (ETDEWEB)

    Settaouti, A.; Settaouti, L. [Electrotechnic Department, University of Sciences and Technology, P.O. Box 1505, El-M' naouar, Oran (Algeria)

    2011-01-15

    Electrical discharges play a key role in technologies; there are many industrial applications where the corona discharge is used. Air as insulator is probably the best compromise solution for many applications. All of this reflects on the great importance of the evaluation of the corona performance characteristics. Numerical simulation of the corona discharge helps to better understand the involved phenomena and optimize the corona devices. This paper is aimed at calculating the corona discharge in negative point-plane air gaps. To describe the non-equilibrium behavior of the electronic avalanches and to simulate the development of corona discharge the method of Monte Carlo has been used. This model provides the spatial-temporal local field and particles charged densities variations as well as the ionization front velocity. (author)

  5. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    Science.gov (United States)

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  6. Simulation of a nuclear densimeter using the Monte Carlo MCNP-4C code; Simulacao de um densimetro nuclear utilizando o codigo Monte Carlo MCNP-4C

    Energy Technology Data Exchange (ETDEWEB)

    Penna, Rodrigo [UNI-BH, Belo Horizonte, MG (Brazil). Dept. de Ciencias Biologicas, Ambientais e da Saude (DCBAS/DCET); Silva, Clemente Jose Gusmao Carneiro da [Universidade Estadual de Santa Cruz, UESC, Ilheus, BA (Brazil); Gomes, Paulo Mauricio Costa [Universidade FUMEC, Belo Horizonte, MG (Brazil)

    2008-07-01

    Viability of building a nuclear wood densimeter based on low energy photons Compton scattering was done using Monte Carlo code (MCNP- 4C). It is simulated a collimated 60 keV beam of gamma rays emitted by {sup 241}Am source reaching wood blocks. Backscattered radiation by these blocks was calculated. Photons scattered were correlated with blocks of different wood densities. Results showed a linear relationship on wood density and scattered photons, therefore the viability of this wood densimeter. (author)

  7. RSW-MCFP: A Resource-Oriented Solid Waste Management System for a Mixed Rural-Urban Area through Monte Carlo Simulation-Based Fuzzy Programming

    Directory of Open Access Journals (Sweden)

    P. Li

    2013-01-01

    Full Text Available The growth of global population and economy continually increases the waste volumes and consequently creates challenges to handle and dispose solid wastes. It becomes more challenging in mixed rural-urban areas (i.e., areas of mixed land use for rural and urban purposes where both agricultural waste (e.g., manure and municipal solid waste are generated. The efficiency and confidence of decisions in current management practices significantly rely on the accurate information and subjective judgments, which are usually compromised by uncertainties. This study proposed a resource-oriented solid waste management system for mixed rural-urban areas. The system is featured by a novel Monte Carlo simulation-based fuzzy programming approach. The developed system was tested by a real-world case with consideration of various resource-oriented treatment technologies and the associated uncertainties. The modeling results indicated that the community-based bio-coal and household-based CH4 facilities were necessary and would become predominant in the waste management system. The 95% confidence intervals of waste loadings to the CH4 and bio-coal facilities were 387, 450 and 178, 215 tonne/day (mixed flow, respectively. In general, the developed system has high capability in supporting solid waste management for mixed rural-urban areas in a cost-efficient and sustainable manner under uncertainty.

  8. Fast simulated annealing and adaptive Monte Carlo sampling based parameter optimization for dense optical-flow deformable image registration of 4DCT lung anatomy

    Science.gov (United States)

    Dou, Tai H.; Min, Yugang; Neylon, John; Thomas, David; Kupelian, Patrick; Santhanam, Anand P.

    2016-03-01

    Deformable image registration (DIR) is an important step in radiotherapy treatment planning. An optimal input registration parameter set is critical to achieve the best registration performance with the specific algorithm. Methods In this paper, we investigated a parameter optimization strategy for Optical-flow based DIR of the 4DCT lung anatomy. A novel fast simulated annealing with adaptive Monte Carlo sampling algorithm (FSA-AMC) was investigated for solving the complex non-convex parameter optimization problem. The metric for registration error for a given parameter set was computed using landmark-based mean target registration error (mTRE) between a given volumetric image pair. To reduce the computational time in the parameter optimization process, a GPU based 3D dense optical-flow algorithm was employed for registering the lung volumes. Numerical analyses on the parameter optimization for the DIR were performed using 4DCT datasets generated with breathing motion models and open-source 4DCT datasets. Results showed that the proposed method efficiently estimated the optimum parameters for optical-flow and closely matched the best registration parameters obtained using an exhaustive parameter search method.

  9. Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels.

    Science.gov (United States)

    Zhang, Rong; Verkruysse, Wim; Aguilar, Guillermo; Nelson, J Stuart

    2005-09-07

    Both diffusion approximation (DA) and Monte Carlo (MC) models have been used to simulate light distribution in multilayered human skin with or without discrete blood vessels. However, no detailed comparison of the light distribution, heat generation and induced thermal damage between these two models has been done for discrete vessels. Three models were constructed: (1) MC-based finite element method (FEM) model, referred to as MC-FEM; (2) DA-based FEM with simple scaling factors according to chromophore concentrations (SFCC) in the epidermis and vessels, referred to as DA-FEM-SFCC; and (3) DA-FEM with improved scaling factors (ISF) obtained by equalizing the total light energy depositions that are solved from the DA and MC models in the epidermis and vessels, respectively, referred to as DA-FEM-ISF. The results show that DA-FEM-SFCC underestimates the light energy deposition in the epidermis and vessels when compared to MC-FEM. The difference is nonlinearly dependent on wavelength, dermal blood volume fraction, vessel size and depth, etc. Thus, the temperature and damage profiles are also dramatically different. DA-FEM-ISF achieves much better results in calculating heat generation and induced thermal damage when compared to MC-FEM, and has the advantages of both calculation speed and accuracy. The disadvantage is that a multidimensional ISF table is needed for DA-FEM-ISF to be a practical modelling tool.

  10. Measuring Renyi entanglement entropy in quantum Monte Carlo simulations.

    Science.gov (United States)

    Hastings, Matthew B; González, Iván; Kallin, Ann B; Melko, Roger G

    2010-04-16

    We develop a quantum Monte Carlo procedure, in the valence bond basis, to measure the Renyi entanglement entropy of a many-body ground state as the expectation value of a unitary Swap operator acting on two copies of the system. An improved estimator involving the ratio of Swap operators for different subregions enables convergence of the entropy in a simulation time polynomial in the system size. We demonstrate convergence of the Renyi entropy to exact results for a Heisenberg chain. Finally, we calculate the scaling of the Renyi entropy in the two-dimensional Heisenberg model and confirm that the Néel ground state obeys the expected area law for systems up to linear size L=32.

  11. Monte Carlo Simulation of Diamond Deposition at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    董丽芳; 张玉红

    2001-01-01

    Diamond deposition at low temperatures is investigated and the relationship between substrate temperature for diamond growth and the energy of the carbonaceous species is given. The electron energy distribution and velocity distribution during the electron assisted chemical vapour deposition have been obtained by using Monte Carlo simulation. The main results obtained are as follows. (1) The substrate temperature for diamond growth will be lower than 800 C when the carbonaceous species on the substrate have mobility energy. For example, if the energy of the carbonaceous species is 0. 75 eV, the substrate temperature will be 380℃-600℃. (2) The greatnumber of atomic H on the substrate is of importance to the growth of diamond films.

  12. Residual entropy of ice III from Monte Carlo simulation.

    Science.gov (United States)

    Kolafa, Jiří

    2016-03-28

    We calculated the residual entropy of ice III as a function of the occupation probabilities of hydrogen positions α and β assuming equal energies of all configurations. To do this, a discrete ice model with Bjerrum defect energy penalty and harmonic terms to constrain the occupation probabilities was simulated by the Metropolis Monte Carlo method for a range of temperatures and sizes followed by thermodynamic integration and extrapolation to N = ∞. Similarly as for other ices, the residual entropies are slightly higher than the mean-field (no-loop) approximation. However, the corrections caused by fluctuation of energies of ice samples calculated using molecular models of water are too large for accurate determination of the chemical potential and phase equilibria.

  13. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations

    DEFF Research Database (Denmark)

    Kamran, Faisal; Andersen, Peter E.

    2015-01-01

    Oblique incidence reflectometry has developed into an effective, noncontact, and noninvasive measurement technology for the quantification of both the reduced scattering and absorption coefficients of a sample. The optical properties are deduced by analyzing only the shape of the reflectance...... profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical...... properties in which system demands vary to be able to detect subtle changes in the structure of the medium, translated as measured optical properties. Effects of variation in anisotropy are discussed and results presented. Finally, experimental data of milk products with different fat content are considered...

  14. Monte Carlo simulations of ABC stacked kagome lattice films.

    Science.gov (United States)

    Yerzhakov, H V; Plumer, M L; Whitehead, J P

    2016-05-18

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  15. Monte Carlo simulations and benchmark studies at CERN's accelerator chain

    CERN Document Server

    AUTHOR|(CDS)2083190; Brugger, Markus

    2016-01-01

    Mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its accelerator chain are responsible for failures on electronic devices located in the vicinity of the accelerator beam lines. These radiation effects on electronics and, more generally, the overall radiation damage issues have a direct impact on component and system lifetimes, as well as on maintenance requirements and radiation exposure to personnel who have to intervene and fix existing faults. The radiation environments and respective radiation damage issues along the CERN’s accelerator chain were studied in the framework of the CERN Radiation to Electronics (R2E) project and are hereby presented. The important interplay between Monte Carlo simulations and radiation monitoring is also highlighted.

  16. Monte Carlo simulations of ABC stacked kagome lattice films

    Science.gov (United States)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  17. Monte Carlo simulations of systems with complex energy landscapes

    Science.gov (United States)

    Wüst, T.; Landau, D. P.; Gervais, C.; Xu, Y.

    2009-04-01

    Non-traditional Monte Carlo simulations are a powerful approach to the study of systems with complex energy landscapes. After reviewing several of these specialized algorithms we shall describe the behavior of typical systems including spin glasses, lattice proteins, and models for "real" proteins. In the Edwards-Anderson spin glass it is now possible to produce probability distributions in the canonical ensemble and thermodynamic results of high numerical quality. In the hydrophobic-polar (HP) lattice protein model Wang-Landau sampling with an improved move set (pull-moves) produces results of very high quality. These can be compared with the results of other methods of statistical physics. A more realistic membrane protein model for Glycophorin A is also examined. Wang-Landau sampling allows the study of the dimerization process including an elucidation of the nature of the process.

  18. MONTE CARLO SIMULATION OF MULTIFOCAL STOCHASTIC SCANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    LIXIN LIU

    2014-01-01

    Full Text Available Multifocal multiphoton microscopy (MMM has greatly improved the utilization of excitation light and imaging speed due to parallel multiphoton excitation of the samples and simultaneous detection of the signals, which allows it to perform three-dimensional fast fluorescence imaging. Stochastic scanning can provide continuous, uniform and high-speed excitation of the sample, which makes it a suitable scanning scheme for MMM. In this paper, the graphical programming language — LabVIEW is used to achieve stochastic scanning of the two-dimensional galvo scanners by using white noise signals to control the x and y mirrors independently. Moreover, the stochastic scanning process is simulated by using Monte Carlo method. Our results show that MMM can avoid oversampling or subsampling in the scanning area and meet the requirements of uniform sampling by stochastically scanning the individual units of the N × N foci array. Therefore, continuous and uniform scanning in the whole field of view is implemented.

  19. Effect of doping of graphene structure: A Monte Carlo simulations

    Science.gov (United States)

    Masrour, R.; Jabar, A.

    2016-10-01

    In this work, we have studied the effect of magnetic atom doping of graphene structure using Monte Carlo simulation. The reduced critical temperature with the magnetic atom doping x has been deduced from the thermal variation of magnetization and magnetic susceptibility. The variation of magnetization versus the crystal field of grapheme structure for different x and for different reduced temperatures has been established. We also have measured the coercive field (hC) as a function x in grapheme structure, finding that hC increases with increasing x concentration as predicted experimentally. The doping-induced magnetism in graphene. Magnetically atom doping in graphene systems are potential candidates for application in future spintronic devices, magnetometry requires macroscopic quantities of graphene to detect magnetic moments directly.

  20. Monte Carlo simulation of ICRF discharge initiation in ITER

    Science.gov (United States)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Křivská, A.; Louche, F.; Van Schoor, M.; Noterdaeme, J.-M.

    2015-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC). The here presented simulations aim at ensuring that the ITER ICRH&CD system can be safely employed for ICWC and at finding optimal parameters to initiate the plasma. The 1D Monte Carlo code RFdinity1D3V was developed to simulate ICRF discharge initiation. The code traces the electron motion along one toroidal magnetic field line, accelerated by the RF field in front of the ICRF antenna. Electron collisions in the calculations are handled by a Monte Carlo procedure taking into account their energies and the related electron collision cross sections for collisions with H2, H2+ and H+. The code also includes Coulomb collisions between electrons and ions (e - e, e - H2+ , e - H+). We study the electron multiplication rate as a function of the RF discharge parameters (i) antenna input power (0.1-5MW), and (ii) the neutral pressure (H2) for two antenna phasing (monopole [0000]-phasing and small dipole [0π0π]-phasing). Furthermore, we investigate the electron multiplication rate dependency on the distance from the antenna straps. This radial dependency results from the decreasing electric amplitude and field smoothening with increasing distance from the antenna straps. The numerical plasma breakdown definition used in the code corresponds to the moment when a critical electron density nec for the low hybrid resonance (ω = ωLHR) is reached. This numerical definition was previously found in qualitative agreement with experimental breakdown times obtained from the literature and from experiments on the ASDEX Upgrade and TEXTOR.

  1. Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Frisson, T. [Universite de Lyon, F-69622 Lyon (France); CREATIS-LRMN, INSA, Batiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France)], E-mail: frisson@creatis.insa-lyon.fr; Zahra, N. [Universite de Lyon, F-69622 Lyon (France); IPNL - CNRS/IN2P3 UMR 5822, Universite Lyon 1, Batiment Paul Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France); Lautesse, P. [Universite de Lyon, F-69622 Lyon (France); IPNL - CNRS/IN2P3 UMR 5822, Universite Lyon 1, Batiment Paul Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Sarrut, D. [Universite de Lyon, F-69622 Lyon (France); CREATIS-LRMN, INSA, Batiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France)

    2009-07-21

    A model has been developed to calculate MD-55-V2 radiochromic film response to ion irradiation. This model is based on photon film response and film saturation by high local energy deposition computed by Monte-Carlo simulation. We have studied the response of the film to photon irradiation and we proposed a calculation method for hadron beams.

  2. Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry

    Science.gov (United States)

    Frisson, T.; Zahra, N.; Lautesse, P.; Sarrut, D.

    2009-07-01

    A model has been developed to calculate MD-55-V2 radiochromic film response to ion irradiation. This model is based on photon film response and film saturation by high local energy deposition computed by Monte-Carlo simulation. We have studied the response of the film to photon irradiation and we proposed a calculation method for hadron beams.

  3. Monte-Carlo Simulation on the Failure of Fiber in a Single Filament Composite

    Institute of Scientific and Technical Information of China (English)

    邢孟秋; 严灏景

    2001-01-01

    A Monte-Carlo method is used to simulate gradual fracture of fiber in a single filament composite with the increase of virtual stress. A simple computational algorithm is developed to judge where breaking point will happen in the composite and a probability model based on Weibull- distribution is designed to calculate the average fragment length by producing stable and uniform random number in (0, 1). Compared to the published experiment results, the simulating average fragment length is quite perfect.

  4. Colloidal nanoparticles trapped by liquid-crystal defect lines: A lattice Monte Carlo simulation

    Science.gov (United States)

    Jose, Regina; Skačej, Gregor; Sastry, V. S. S.; Žumer, Slobodan

    2014-09-01

    Lattice-based Monte Carlo simulations are performed to study a confined liquid crystal system with a topological disclination line entangling a colloidal nanoparticle. In our microscopic study the disclination line is stretched by moving the colloid, as in laser tweezing experiments, which results in a restoring force attempting to minimize the disclination length. From constant-force simulations we extract the corresponding disclination line tension, estimated as ˜50 pN, and observe its decrease with increasing temperature.

  5. Monte Carlo Simulation and Experimental Characterization of a Dual Head Gamma Camera

    CERN Document Server

    Rodrigues, S; Abreu, M C; Santos, N; Rato-Mendes, P; Peralta, L

    2007-01-01

    The GEANT4 Monte Carlo simulation and experimental characterization of the Siemens E.Cam Dual Head gamma camera hosted in the Particular Hospital of Algarve have been done. Imaging tests of thyroid and other phantoms have been made "in situ" and compared with the results obtained with the Monte Carlo simulation.

  6. CONDENSED MONTE-CARLO SIMULATIONS FOR THE DESCRIPTION OF LIGHT TRANSPORT

    NARCIS (Netherlands)

    GRAAFF, R; KOELINK, MH; DEMUL, FFM; ZIJLSTRA, WG; DASSEL, ACM; AARNOUDSE, JG

    1993-01-01

    A novel method, condensed Monte Carlo simulation, is presented that applies the results of a single Monte Carlo simulation for a given albedo mu(s)/(mu(a) + mu(s)) to obtaining results for other albedos; mu(s) and mu(a) are the scattering and absorption coefficients, respectively. The method require

  7. Using Monte Carlo Simulation Technology to Improve Intuitive Effect of Teaching Probability and Mathematical Statistics Course

    Institute of Scientific and Technical Information of China (English)

    万文应; 夏庆

    2015-01-01

    With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors’ effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.

  8. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  9. MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package

    CERN Document Server

    Lin, Jiao Y Y; Granroth, Garrett E; Abernathy, Douglas L; Lumsden, Mark D; Winn, Barry; Aczel, Adam A; Aivazis, Michael; Fultz, Brent

    2015-01-01

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adopting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scatteri...

  10. Massive Parallelism of Monte-Carlo Simulation on Low-End Hardware using Graphic Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Mburu, Joe Mwangi; Hah, Chang Joo Hah [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    Within the past decade, research has been done on utilizing GPU massive parallelization in core simulation with impressive results but unfortunately, not much commercial application has been done in the nuclear field especially in reactor core simulation. The purpose of this paper is to give an introductory concept on the topic and illustrate the potential of exploiting the massive parallel nature of GPU computing on a simple monte-carlo simulation with very minimal hardware specifications. To do a comparative analysis, a simple two dimension monte-carlo simulation is implemented for both the CPU and GPU in order to evaluate performance gain based on the computing devices. The heterogeneous platform utilized in this analysis is done on a slow notebook with only 1GHz processor. The end results are quite surprising whereby high speedups obtained are almost a factor of 10. In this work, we have utilized heterogeneous computing in a GPU-based approach in applying potential high arithmetic intensive calculation. By applying a complex monte-carlo simulation on GPU platform, we have speed up the computational process by almost a factor of 10 based on one million neutrons. This shows how easy, cheap and efficient it is in using GPU in accelerating scientific computing and the results should encourage in exploring further this avenue especially in nuclear reactor physics simulation where deterministic and stochastic calculations are quite favourable in parallelization.

  11. An Efficient Approach to Ab Initio Monte Carlo Simulation

    CERN Document Server

    Leiding, Jeff

    2013-01-01

    We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...

  12. Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE

    CERN Document Server

    Camarasu-Pop, S; Benoit-Cattin, Hugues; Glatard, Tristan; Sarrut, David; Camarasu-Pop, Sorina

    2010-01-01

    The EGEE Grid offers the necessary infrastructure and resources for reducing the running time of particle tracking Monte-Carlo applications like GATE. However, efforts are required to achieve reliable and efficient execution and to provide execution frameworks to end-users. This paper presents results obtained with porting the GATE software on the EGEE Grid, our ultimate goal being to provide reliable, user-friendly and fast execution of GATE to radiation therapy researchers. To address these requirements, we propose a new parallelization scheme based on a dynamic partitioning and its implementation in two different frameworks using pilot jobs and workflows. Results show that pilot jobs bring strong improvement w.r.t. regular gLite submission, that the proposed dynamic partitioning algorithm further reduces execution time by a factor of two and that the genericity and user-friendliness offered by the workflow implementation do not introduce significant overhead.

  13. The Monte Carlo Simulation Method for System Reliability and Risk Analysis

    CERN Document Server

    Zio, Enrico

    2013-01-01

    Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling.   Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques.   This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...

  14. Large-scale Monte Carlo simulations for the depinning transition in Ising-type lattice models

    Science.gov (United States)

    Si, Lisha; Liao, Xiaoyun; Zhou, Nengji

    2016-12-01

    With the developed "extended Monte Carlo" (EMC) algorithm, we have studied the depinning transition in Ising-type lattice models by extensive numerical simulations, taking the random-field Ising model with a driving field and the driven bond-diluted Ising model as examples. In comparison with the usual Monte Carlo method, the EMC algorithm exhibits greater efficiency of the simulations. Based on the short-time dynamic scaling form, both the transition field and critical exponents of the depinning transition are determined accurately via the large-scale simulations with the lattice size up to L = 8912, significantly refining the results in earlier literature. In the strong-disorder regime, a new universality class of the Ising-type lattice model is unveiled with the exponents β = 0.304(5) , ν = 1.32(3) , z = 1.12(1) , and ζ = 0.90(1) , quite different from that of the quenched Edwards-Wilkinson equation.

  15. Quantum Monte Carlo simulations of bosons with complex interactions

    Science.gov (United States)

    Rousseau, Valery

    2015-03-01

    Many of the most exciting materials and phenomena being studied today, from oxide heterostructures to topological insulators or iron-based superconductors, are the ones in which an understanding of how quantum particles interact with each other is essential. In the last decade, the development and the improvement of quantum Monte Carlo algorithms combined with the increased power of computers has opened the way to the exact simulation of Hamiltonians that include various types of interactions, such as inter-species conversion terms or ring-exchange terms. Simultaneously, developments made in the field of optical lattices, laser cooling and magneto/optical trapping techniques have led to ideal realizations of such Hamiltonians. A wide variety of phases can be present, including Mott insulators and superfluids, as well as more exotic phases such as Haldane insulators, supersolids, counter-superfluids, or the recently proposed Feshbach insulator. These experimental realizations of the various forms of the Hubbard model can have interesting applications, in particular they provide a possible way of performing quantum computing, and have also given rise to a new field known as Atomtronics, the equivalent of Electronics where the carriers are replaced by atoms. I will illustrate these ideas with examples of Hamiltonians that have been studied and some results. In order to study these systems, it is crucial to identify the various phases that are present, which can be characterized by a set of order parameters. Of particular importance in this task is the superfluid density. It is well known that the superfluid density can be related to the response of the free energy to a boundary phase twist, or to the fluctuations of the winding number. However, these relationships break down when complex interactions are involved. To address this problem, I will propose a general expression of the superfluid density, derived from real and thought experiments. I will discuss two

  16. Rapid Monte Carlo simulation of detector DQE(f)

    Energy Technology Data Exchange (ETDEWEB)

    Star-Lack, Josh, E-mail: josh.starlack@varian.com; Sun, Mingshan; Abel, Eric [Varian Medical Systems, Palo Alto, California 94304-1030 (United States); Meyer, Andre; Morf, Daniel [Varian Medical Systems, CH-5405, Baden-Dattwil (Switzerland); Constantin, Dragos; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2014-03-15

    Purpose: Performance optimization of indirect x-ray detectors requires proper characterization of both ionizing (gamma) and optical photon transport in a heterogeneous medium. As the tool of choice for modeling detector physics, Monte Carlo methods have failed to gain traction as a design utility, due mostly to excessive simulation times and a lack of convenient simulation packages. The most important figure-of-merit in assessing detector performance is the detective quantum efficiency (DQE), for which most of the computational burden has traditionally been associated with the determination of the noise power spectrum (NPS) from an ensemble of flood images, each conventionally having 10{sup 7} − 10{sup 9} detected gamma photons. In this work, the authors show that the idealized conditions inherent in a numerical simulation allow for a dramatic reduction in the number of gamma and optical photons required to accurately predict the NPS. Methods: The authors derived an expression for the mean squared error (MSE) of a simulated NPS when computed using the International Electrotechnical Commission-recommended technique based on taking the 2D Fourier transform of flood images. It is shown that the MSE is inversely proportional to the number of flood images, and is independent of the input fluence provided that the input fluence is above a minimal value that avoids biasing the estimate. The authors then propose to further lower the input fluence so that each event creates a point-spread function rather than a flood field. The authors use this finding as the foundation for a novel algorithm in which the characteristic MTF(f), NPS(f), and DQE(f) curves are simultaneously generated from the results of a single run. The authors also investigate lowering the number of optical photons used in a scintillator simulation to further increase efficiency. Simulation results are compared with measurements performed on a Varian AS1000 portal imager, and with a previously published

  17. Application of a pelvic phantom in brachytherapy dosimetry for high-dose-rate (HDR) 192Ir source based on Monte Carlo simulations

    Science.gov (United States)

    Ahn, Woo Sang; Choi, Wonsik; Shin, Seong Soo; Jung, Jinhong

    2014-08-01

    In this study, we evaluate how the radial dose function is influenced by the source position as well as the phantom size and shape. A pelvic water phantom similar to the pelvic shape of a human body was designed by averaging dimensions obtained from computed tomography (CT) images of patients treated with brachytherapy for cervical cancer. Furthermore, for the study of the effects of source position on the dose distribution, the position of the source in the water phantom was determined by using the center of mass of the gross target volume (GTV) in the CT images. To obtain the dosimetric parameter of a high-dose-rate (HDR) 192Ir source, we performed Monte Carlo simulations by using the Monte Carlo n-particle extended code (MCNPX). The radial dose functions obtained using the pelvic water phantom were compared with those of spherical phantom with different sizes, including the Monte Carlo (MC) results of Williamson and Li. Differences between the radial dose functions from this study and the data in the literature increased with the radial distances. The largest differences appeared for spherical phantom with the smallest size. In contrast to the published MC results, the radial dose function of the pelvic water phantom significantly decreased with radial distance in the vertical direction because full scattering was not possible. When the source was located in posterior position 2 cm from the center in the pelvic water phantom, the differences between the radial dose functions rapidly decreased with the radial distance in the lower vertical direction. If the International Commission on Radiation Units and Measurements bladder and rectum points are considered, doses to these reference points could be underestimated by up to 1%-2% at a distance of 3 to 6 cm. Our simulation results provide a valid clinical reference data and can used to improve the accuracy of the doses delivered during brachytherapy applied to patients with cervical cancer.

  18. Monte Carlo Simulation of the Potts Model on a Dodecagonal Quasiperiodic Structure

    Institute of Scientific and Technical Information of China (English)

    WEN Zhang-Bin; HOU Zhi-Lin; FU Xiu-Jun

    2011-01-01

    By means of a Monte Carlo simulation, we study the three-state Potts model on a two-dimensional quasiperiodic structure based on a dodecagonal cluster covering pattern. The critical temperature and exponents are obtained from finite-size scaling analysis. It is shown that the Potts model on the quasiperiodic lattice belongs to the same universal class as those on periodic ones.%@@ By means of a Monte Carlo simulation, we study the three-state Potts model on a two-dimensional quasiperiodic structure based on a dodecagonal cluster covering pattern.The critical temperature and exponents are obtained from finite-size scaling analysis.It is shown that the Potts model on the quasiperiodic lattice belongs to the same universal class as those on periodic ones.

  19. Lattice Monte Carlo simulation of Galilei variant anomalous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Gang, E-mail: hndzgg@aliyun.com [School of Information System and Management, National University of Defense Technology, Changsha, 410073 (China); Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany); Bittig, Arne, E-mail: arne.bittig@uni-rostock.de [Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany); Uhrmacher, Adelinde, E-mail: lin@informatik.uni-rostock.de [Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany)

    2015-05-01

    The observation of an increasing number of anomalous diffusion phenomena motivates the study to reveal the actual reason for such stochastic processes. When it is difficult to get analytical solutions or necessary to track the trajectory of particles, lattice Monte Carlo (LMC) simulation has been shown to be particularly useful. To develop such an LMC simulation algorithm for the Galilei variant anomalous diffusion, we derive explicit solutions for the conditional and unconditional first passage time (FPT) distributions with double absorbing barriers. According to the theory of random walks on lattices and the FPT distributions, we propose an LMC simulation algorithm and prove that such LMC simulation can reproduce both the mean and the mean square displacement exactly in the long-time limit. However, the error introduced in the second moment of the displacement diverges according to a power law as the simulation time progresses. We give an explicit criterion for choosing a small enough lattice step to limit the error within the specified tolerance. We further validate the LMC simulation algorithm and confirm the theoretical error analysis through numerical simulations. The numerical results agree with our theoretical predictions very well.

  20. MCNPX Monte Carlo burnup simulations of the isotope correlation experiments in the NPP Obrigheim

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yan, E-mail: ycao@anl.go [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Broeders, Cornelis H.M. [Forschungszentrum Karlsruhe, Institute for Neutron Physics and Reactor Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2010-10-15

    This paper describes the simulation work of the Isotope Correlation Experiment (ICE) using the MCNPX Monte Carlo computer code package. The Monte Carlo simulation results are compared with the ICE-Experimental measurements for burnup up to 30 GWD/t. The comparison shows the good capabilities of the MCNPX computer code package for predicting the depletion of the uranium fuel and the buildup of the plutonium isotopes in a PWR thermal reactor. The Monte Carlo simulation results show also good agreements with the experimental data for calculating several long-lived and stable fission products. However, for the americium and curium actinides, it is difficult to judge the predication capabilities for these actinides due to the large uncertainties in the ICE-Experimental data. In the MCNPX numerical simulations, a pin cell model is utilized to simulate the fuel lattice of the nuclear power reactor. Temperature dependent libraries based on JEFF3.1 nuclear data files are utilized for the calculations. In addition, temperature dependent libraries based ENDF/B-VII nuclear data files are utilized and the obtained results are very close to the JEFF3.1 results, except for {approx}10% differences in the prediction of the minor actinide isotopes buildup.

  1. Analysis and design of photobioreactors for microalgae production II: experimental validation of a radiation field simulator based on a Monte Carlo algorithm.

    Science.gov (United States)

    Heinrich, Josué Miguel; Niizawa, Ignacio; Botta, Fausto Adrián; Trombert, Alejandro Raúl; Irazoqui, Horacio Antonio

    2012-01-01

    In a previous study, we developed a methodology to assess the intrinsic optical properties governing the radiation field in algae suspensions. With these properties at our disposal, a Monte Carlo simulation program is developed and used in this study as a predictive autonomous program applied to the simulation of experiments that reproduce the common illumination conditions that are found in processes of large scale production of microalgae, especially when using open ponds such as raceway ponds. The simulation module is validated by comparing the results of experimental measurements made on artificially illuminated algal suspension with those predicted by the Monte Carlo program. This experiment deals with a situation that resembles that of an open pond or that of a raceway pond, except for the fact that for convenience, the experimental arrangement appears as if those reactors were turned upside down. It serves the purpose of assessing to what extent the scattering phenomena are important for the prediction of the spatial distribution of the radiant energy density. The simulation module developed can be applied to compute the local energy density inside photobioreactors with the goal to optimize its design and their operating conditions.

  2. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moradmand Jalali, Hamed; Bashiri, Hadis, E-mail: hbashiri@kashanu.ac.ir; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO{sub 2}, ZnO and ZrO{sub 2}) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO{sub 2} (rutile and anatase), ZnO and ZrO{sub 2}. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained.

  3. Monte Carlo simulations: Hidden errors from ``good'' random number generators

    Science.gov (United States)

    Ferrenberg, Alan M.; Landau, D. P.; Wong, Y. Joanna

    1992-12-01

    The Wolff algorithm is now accepted as the best cluster-flipping Monte Carlo algorithm for beating ``critical slowing down.'' We show how this method can yield incorrect answers due to subtle correlations in ``high quality'' random number generators.

  4. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).

    Science.gov (United States)

    Yang, Owen; Choi, Bernard

    2013-01-01

    To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.

  5. Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    CERN Document Server

    Bromberger, B; Brandis, M; Dangendorf, V; Goldberg, M B; Kaufmann, F; Mor, I; Nolte, R; Schmiedel, M; Tittelmeier, K; Vartsky, D; Wershofen, H

    2012-01-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. T...

  6. Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems

    CERN Document Server

    Flenner, Elijah; Barz, Bogdan; Neagu, Adrian; Forgacs, Gabor; Kosztin, Ioan

    2011-01-01

    Computer modeling of multicellular systems has been a valuable tool for interpreting and guiding in vitro experiments relevant to embryonic morphogenesis, tumor growth, angiogenesis and, lately, structure formation following the printing of cell aggregates as bioink particles. Computer simulations based on Metropolis Monte Carlo (MMC) algorithms were successful in explaining and predicting the resulting stationary structures (corresponding to the lowest adhesion energy state). Here we introduce two alternatives to the MMC approach for modeling cellular motion and self-assembly: (1) a kinetic Monte Carlo (KMC), and (2) a cellular particle dynamics (CPD) method. Unlike MMC, both KMC and CPD methods are capable of simulating the dynamics of the cellular system in real time. In the KMC approach a transition rate is associated with possible rearrangements of the cellular system, and the corresponding time evolution is expressed in terms of these rates. In the CPD approach cells are modeled as interacting cellular ...

  7. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Dirgayussa, I. Gde Eka; Yani, Sitti; Rhani, M. Fahdillah; Haryanto, Freddy

    2015-09-01

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose

  8. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id [Institut Teknologi Bandung, Jl. Ganesha 10, 40132 (Indonesia); Rhani, M. Fahdillah [Tang Tock Seng Hospital (Singapore)

    2015-09-30

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good

  9. Monte Carlo simulation of gamma ray tomography for image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)

    2015-07-01

    The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)

  10. Kinetic Monte Carlo simulations of void lattice formation during irradiation

    Science.gov (United States)

    Heinisch, H. L.; Singh, B. N.

    2003-11-01

    Over the last decade, molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades and that they migrate one-dimensionally along close-packed directions with extremely low activation energies. Occasionally, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. The recently developed production bias model (PBM) of microstructure evolution under irradiation has been structured specifically to take into account the unique properties of the vacancy and interstitial clusters produced in the cascades. Atomic-scale kinetic Monte Carlo (KMC) simulations have played a useful role in understanding the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes. This has made it possible to incorporate the migration properties of crowdion clusters and changes in reaction kinetics into the PBM. In the present paper we utilize similar KMC simulations to investigate the significant role that crowdion clusters can play in the formation and stability of void lattices. The creation of stable void lattices, starting from a random distribution of voids, is simulated by a KMC model in which vacancies migrate three-dimensionally and self-interstitial atom (SIA) clusters migrate one-dimensionally, interrupted by directional changes. The necessity of both one-dimensional migration and Burgers vectors changes of SIA clusters for the production of stable void lattices is demonstrated, and the effects of the frequency of Burgers vector changes are described.

  11. Learning About Ares I from Monte Carlo Simulation

    Science.gov (United States)

    Hanson, John M.; Hall, Charlie E.

    2008-01-01

    This paper addresses Monte Carlo simulation analyses that are being conducted to understand the behavior of the Ares I launch vehicle, and to assist with its design. After describing the simulation and modeling of Ares I, the paper addresses the process used to determine what simulations are necessary, and the parameters that are varied in order to understand how the Ares I vehicle will behave in flight. Outputs of these simulations furnish a significant group of design customers with data needed for the development of Ares I and of the Orion spacecraft that will ride atop Ares I. After listing the customers, examples of many of the outputs are described. Products discussed in this paper include those that support structural loads analysis, aerothermal analysis, flight control design, failure/abort analysis, determination of flight performance reserve, examination of orbit insertion accuracy, determination of the Upper Stage impact footprint, analysis of stage separation, analysis of launch probability, analysis of first stage recovery, thrust vector control and reaction control system design, liftoff drift analysis, communications analysis, umbilical release, acoustics, and design of jettison systems.

  12. Monte Carlo simulation of the spear reflectometer at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.S. [Los Alamos National Laboratory, NM (United States)

    1995-12-31

    The Monte Carlo instrument simulation code, MCLIB, contains elements to represent several components found in neutron spectrometers including slits, choppers, detectors, sources and various samples. Using these elements to represent the components of a neutron scattering instrument, one can simulate, for example, an inelastic spectrometer, a small angle scattering machine, or a reflectometer. In order to benchmark the code, we chose to compare simulated data from the MCLIB code with an actual experiment performed on the SPEAR reflectometer at LANSCE. This was done by first fitting an actual SPEAR data set to obtain the model scattering-length-density profile, {Beta}(z), for the sample and the substrate. Then these parameters were used as input values for the sample scattering function. A simplified model of SPEAR was chosen which contained all of the essential components of the instrument. A code containing the MCLIB subroutines was then written to simulate this simplified instrument. The resulting data was then fit and compared to the actual data set in terms of the statistics, resolution and accuracy.

  13. An analysis on changes in reservoir fluid based on numerical simulation of neutron log using a Monte Carlo N-Particle algorithm

    Science.gov (United States)

    Ku, B.; Nam, M.

    2012-12-01

    Neutron logging has been widely used to estimate neutron porosity to evaluate formation properties in oil industry. More recently, neutron logging has been highlighted for monitoring the behavior of CO2 injected into reservoir for geological CO2 sequestration. For a better understanding of neutron log interpretation, Monte Carlo N-Particle (MCNP) algorithm is used to illustrate the response of a neutron tool. In order to obtain calibration curves for the neutron tool, neutron responses are simulated in water-filled limestone, sandstone and dolomite formations of various porosities. Since the salinities (concentration of NaCl) of borehole fluid and formation water are important factors for estimating formation porosity, we first compute and analyze neutron responses for brine-filled formations with different porosities. Further, we consider changes in brine saturation of a reservoir due to hydrocarbon production or geological CO2 sequestration to simulate corresponding neutron logging data. As gas saturation decreases, measured neutron porosity confirms gas effects on neutron logging, which is attributed to the fact that gas has slightly smaller number of hydrogen than brine water. In the meantime, increase in CO2 saturation due to CO2 injection reduces measured neutron porosity giving a clue to estimation the CO2 saturation, since the injected CO2 substitute for the brine water. A further analysis on the reduction gives a strategy for estimating CO2 saturation based on time-lapse neutron logging. This strategy can help monitoring not only geological CO2 sequestration but also CO2 flood for enhanced-oil-recovery. Acknowledgements: This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2012T100201588). Myung Jin Nam was partially supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

  14. Efficient Implementation of the Barnes-Hut Octree Algorithm for Monte Carlo Simulations of Charged Systems

    CERN Document Server

    Gan, Zecheng

    2013-01-01

    Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many systems with biological and soft matter materials solvable in solvents. The appropriate treatment of long-range electrostatic interaction is essential for these charged systems, but remains a challenging problem for large-scale simulations. We have developed an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems. The algorithm is based on a divide-and-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure. We test the accuracy of the tree algorithm, and use it to computer simulations of electric double layer near a spherical interface. It has been shown that the computational cost of the Monte Carlo method with treecode acceleration scales as $\\log N$ in each move. For a typical system with ten thousand particles, by using the new algorithm, the speed has b...

  15. Number of iterations needed in Monte Carlo Simulation using reliability analysis for tunnel supports

    Directory of Open Access Journals (Sweden)

    E. Bukaçi

    2016-06-01

    Full Text Available There are many methods in geotechnical engineering which could take advantage of Monte Carlo Simulation to establish probability of failure, since closed form solutions are almost impossible to use in most cases. The problem that arises with using Monte Carlo Simulation is the number of iterations needed for a particular simulation.This article will show why it’s important to calculate number of iterations needed for Monte Carlo Simulation used in reliability analysis for tunnel supports using convergence – confinement method. Number if iterations needed will be calculated with two methods. In the first method, the analyst has to accept a distribution function for the performance function. The other method suggested by this article is to calculate number of iterations based on the convergence of the factor the analyst is interested in the calculation. Reliability analysis will be performed for the diversion tunnel in Rrëshen, Albania, by using both methods mentioned and results will be confronted

  16. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2016-10-15

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use. (orig.)

  17. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  18. Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations

    Science.gov (United States)

    Radak, Brian K.; Roux, Benoît

    2016-10-01

    Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Finally, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.

  19. Scalable Metropolis Monte Carlo for simulation of hard shapes

    Science.gov (United States)

    Anderson, Joshua A.; Eric Irrgang, M.; Glotzer, Sharon C.

    2016-07-01

    We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, and optimize inner loops with SIMD vector intrinsics on the CPU. Our GPU kernel proposes many trial moves in parallel on a checkerboard and uses a block-level queue to redistribute work among threads and avoid divergence. HPMC supports a wide variety of shape classes, including spheres/disks, unions of spheres, convex polygons, convex spheropolygons, concave polygons, ellipsoids/ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and concave polyhedra. NVT and NPT ensembles can be run in 2D or 3D triclinic boxes. Additional integration schemes permit Frenkel-Ladd free energy computations and implicit depletant simulations. In a benchmark system of a fluid of 4096 pentagons, HPMC performs 10 million sweeps in 10 min on 96 CPU cores on XSEDE Comet. The same simulation would take 7.6 h in serial. HPMC also scales to large system sizes, and the same benchmark with 16.8 million particles runs in 1.4 h on 2048 GPUs on OLCF Titan.

  20. Monte Carlo simulation of electron back diffusion in argon

    Science.gov (United States)

    Radmilović, M.; Stojanović, V.; Petrović, Z. Lj.

    1999-10-01

    Monte Carlo simulation was applied to study the back-diffusion of electrons in argon at low and moderate values of E/N from 10Td to 10 kTd. Simulations were performed for gaps of 1 cm and for pressures corresponding to the breakdown voltages taken from experimental Paschen curves. Effects of inelastic collisions, ionization, reflection of electrons and anisotropic scattering as well as anisotropic initial and reflected angular distributions of electrons were included. A complete and detailed set of electron scattering cross sections that describes well electron transport in argon was used. We found a very good agreement of the results of simulations with the experimental data for well defined initial conditions, and with several models available in the literature.(A.V. Phelps and Z.LJ. Petrović), Plasma Sources Sci. Tehnol. 8, R21 (1999). While effect of reflection may be large, for realistic values of reflection coefficient and for realistic secondary electron productions the effect may be neglected for the accuracy required in gas discharge modeling.

  1. Evaluation of a commercial VMC++ Monte Carlo based treatment planning system for electron beams using EGSnrc/BEAMnrc simulations and measurements.

    Science.gov (United States)

    Edimo, P; Clermont, C; Kwato, M G; Vynckier, S

    2009-09-01

    In the present work, Monte Carlo (MC) models of electron beams (energies 4, 12 and 18MeV) from an Elekta SL25 medical linear accelerator were simulated using EGSnrc/BEAMnrc user code. The calculated dose distributions were benchmarked by comparison with measurements made in a water phantom for a wide range of open field sizes and insert combinations, at a single source-to-surface distance (SSD) of 100cm. These BEAMnrc models were used to evaluate the accuracy of a commercial MC dose calculation engine for electron beam treatment planning (Oncentra MasterPlan Treament Planning System (OMTPS) version 1.4, Nucletron) for two energies, 4 and 12MeV. Output factors were furthermore measured in the water phantom and compared to BEAMnrc and OMTPS. The overall agreement between predicted and measured output factors was comparable for both BEAMnrc and OMTPS, except for a few asymmetric and/or small insert cutouts, where larger deviations between measurements and the values predicted from BEAMnrc as well as OMTPS computations were recorded. However, in the heterogeneous phantom, differences between BEAMnrc and measurements ranged from 0.5 to 2.0% between two ribs and 0.6-1.0% below the ribs, whereas the range difference between OMTPS and measurements was the same (0.5-4.0%) in both areas. With respect to output factors, the overall agreement between BEAMnrc and measurements was usually within 1.0% whereas differences up to nearly 3.0% were observed for OMTPS. This paper focuses on a comparison for clinical cases, including the effects of electron beam attenuations in a heterogeneous phantom. It, therefore, complements previously reported data (only based on measurements) in one other paper on commissioning of the VMC++ dose calculation engine. These results demonstrate that the VMC++ algorithm is more robust in predicting dose distribution than Pencil beam based algorithms for the electron beams investigated.

  2. Power-feedwater temperature operating domain for Sbwr applying Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, L. A.; Quezada G, S.; Espinosa M, E. G.; Vazquez R, A.; Varela H, J. R.; Cazares R, R. I.; Espinosa P, G., E-mail: sequega@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2014-10-15

    In this work the analyses of the feedwater temperature effects on reactor power in a simplified boiling water reactor (Sbwr) applying a methodology based on Monte Carlo simulation is presented. The Monte Carlo methodology was applied systematically to establish operating domain, due that the Sbwr are not yet in operation, the analysis of the nuclear and thermal-hydraulic processes must rely on numerical modeling, with the purpose of developing or confirming the design basis and qualifying the existing or new computer codes to enable reliable analyses. The results show that the reactor power is inversely proportional to the temperature of the feedwater, reactor power changes at 8% when the feed water temperature changes in 8%. (Author)

  3. Implementation of 3D Lattice Monte Carlo Simulation on a Cluster of Symmetric Multiprocessors

    Institute of Scientific and Technical Information of China (English)

    雷咏梅; 蒋英; 等

    2002-01-01

    This paper presents a new approach to parallelize 3D lattice Monte Carlo algorithms used in the numerical simulation of polymer on ZiQiang 2000-a cluster of symmetric multiprocessors(SMPs).The combined load for cell and energy calculations over the time step is balanced together to form a single spatial decomposition.Basic aspects and strategies of running Monte Carlo calculations on parallel computers are studied.Different steps involved in porting the software on a parallel architecture based on ZiQiang 2000 running under Linux and MPI are described briefly.It is found that parallelization becomes more advantageous when either the lattice is very large or the model contains many cells and chains.

  4. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morales, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-10

    We propose a method of implementing projected wave functions for second-quantized auxiliary- field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. AS such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.

  5. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions

    Science.gov (United States)

    Velazquez, L.; Castro-Palacio, J. C.

    2013-07-01

    Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.

  6. Optimizing the HLT Buffer Strategy with Monte Carlo Simulations

    CERN Document Server

    AUTHOR|(CDS)2266763

    2017-01-01

    This project aims to optimize the strategy of utilizing the disk buffer for the High Level Trigger (HLT) of the LHCb experiment with the help of Monte-Carlo simulations. A method is developed, which simulates the Event Filter Farm (EFF) -- a computing cluster for the High Level Trigger -- as a compound of nodes with different performance properties. In this way, the behavior of the computing farm can be analyzed at a deeper level than before. It is demonstrated that the current operating strategy might be improved when data taking is reaching a mid-year scheduled stop or the year-end technical stop. The processing time of the buffered data can be lowered by distributing the detector data according to the processing power of the nodes instead of the relative disk size as long as the occupancy level of the buffer is low enough. Moreover, this ensures that data taken and stored on the buffer at the same time is processed by different nodes nearly simultaneously, which reduces load on the infrastructure.

  7. Parallelization of a Monte Carlo particle transport simulation code

    Science.gov (United States)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  8. Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations

    Science.gov (United States)

    Hanson, Andrea; Reed, Erik; Cavanagh, Peter

    2011-01-01

    Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.

  9. Direct determination of liquid phase coexistence by Monte Carlo simulations.

    Science.gov (United States)

    Zweistra, Henk J A; Besseling, N A M

    2006-07-01

    A formalism to determine coexistence points by means of Monte Carlo simulations is presented. The general idea of the method is to perform a simulation simultaneously in several unconnected boxes which can exchange particles. At equilibrium, most of the boxes will be occupied by a homogeneous phase. The compositions of these boxes yield coexisting points on the binodal. However, since the overall composition is fixed, at least one of the boxes will contain an interface. We show that this does not affect the results, provided that the interface has no net curvature. We coin the name "Helmholtz-ensemble method," because the method is related to the well-known Gibbs-ensemble method, but the volume of the boxes is constant. Since the box volumes are constant, we expect that this method will be particularly useful for lattice models. The accuracy of the Helmholtz-ensemble method is benchmarked against known coexistence curves of the three-dimensional Ising model with excellent results.

  10. Parallel cluster labeling for large-scale Monte Carlo simulations

    CERN Document Server

    Flanigan, M; Flanigan, M; Tamayo, P

    1995-01-01

    We present an optimized version of a cluster labeling algorithm previously introduced by the authors. This algorithm is well suited for large-scale Monte Carlo simulations of spin models using cluster dynamics on parallel computers with large numbers of processors. The algorithm divides physical space into rectangular cells which are assigned to processors and combines a serial local labeling procedure with a relaxation process across nearest-neighbor processors. By controlling overhead and reducing inter-processor communication this method attains good computational speed-up and efficiency. Large systems of up to 65536 X 65536 spins have been simulated at updating speeds of 11 nanosecs/site (90.7 million spin updates/sec) using state-of-the-art supercomputers. In the second part of the article we use the cluster algorithm to study the relaxation of magnetization and energy on large Ising models using Swendsen-Wang dynamics. We found evidence that exponential and power law factors are present in the relaxatio...

  11. Monte Carlo Simulations of Cosmic Rays Hadronic Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.

    2011-04-01

    This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.

  12. Extended Ensemble Monte Carlo

    OpenAIRE

    Iba, Yukito

    2000-01-01

    ``Extended Ensemble Monte Carlo''is a generic term that indicates a set of algorithms which are now popular in a variety of fields in physics and statistical information processing. Exchange Monte Carlo (Metropolis-Coupled Chain, Parallel Tempering), Simulated Tempering (Expanded Ensemble Monte Carlo), and Multicanonical Monte Carlo (Adaptive Umbrella Sampling) are typical members of this family. Here we give a cross-disciplinary survey of these algorithms with special emphasis on the great f...

  13. Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nilmeier, J. P.; Crooks, G. E.; Minh, D. D. L.; Chodera, J. D.

    2011-10-24

    Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.

  14. Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations.

    Science.gov (United States)

    Morales, Miguel A; Pierleoni, Carlo; Ceperley, D M

    2010-02-01

    We present a study of hydrogen at pressures higher than molecular dissociation using the coupled electron-ion Monte Carlo method. These calculations use the accurate reptation quantum Monte Carlo method to estimate the electronic energy and pressure while doing a Monte Carlo simulation of the protons. In addition to presenting simulation results for the equation of state over a large region of the phase diagram, we report the free energy obtained by thermodynamic integration. We find very good agreement with density-functional theory based molecular-dynamics calculations for pressures beyond 600 GPa and densities above rho=1.4 g/cm(3) , both for thermodynamic and structural properties. This agreement provides a strong support to the different approximations employed in the density-functional treatment of the system, specifically the approximate exchange-correlation potential and the use of pseudopotentials for the range of densities considered. We find disagreement with chemical models, which suggests that a reinvestigation of planetary models--previously constructed using the Saumon-Chabrier-Van Horn equations of state--might be needed.

  15. Monte Carlo simulations of Photospheric emission in relativistic outflows

    CERN Document Server

    Bhattacharya, Mukul; Santana, Rodolfo; Kumar, Pawan

    2016-01-01

    We study the spectra of photospheric emission from highly relativistic gamma-ray burst outflows using a Monte Carlo (MC) code. We consider the Comptonization of photons with a fast cooled synchrotron spectrum in a relativistic jet with photon to electron number ratio $N_{\\gamma}/N_e = 10^5$. For all our simulations, we use mono-energetic protons which interact with thermalised electrons through the Coulomb interaction. The photons, electrons and protons are cooled adiabatically as the jet expands outwards. We find that the initial energy distribution of the protons and electrons do not have any appreciable effect on the photon peak energy and the power-law spectrum above the peak energy. We also find that the Coulomb interaction between the electrons and the protons does not affect the output photon spectrum significantly as the energy of the electrons is elevated only marginally. The peak energy and the spectral indices for the low and high energy power-law tails of the photon spectrum remain practically unc...

  16. Patchy sticky hard spheres: analytical study and Monte Carlo simulations.

    Science.gov (United States)

    Fantoni, Riccardo; Gazzillo, Domenico; Giacometti, Achille; Miller, Mark A; Pastore, Giorgio

    2007-12-21

    We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches, distributed so as not to overlap. Two spheres interact via a "sticky" Baxter potential if the line joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line as a function of the size of the patch (the fractional coverage of the sphere's surface) and of the number of patches within a virial expansion up to third order and within the first two terms (C0 and C1) of a class of closures Cn hinging on a density expansion of the direct correlation function. We find that the locations of the two lines depend sensitively on both the total adhesive coverage and its distribution. The treatment is almost fully analytical within the chosen approximate theory. We test our findings by means of specialized Monte Carlo simulations and find the main qualitative features of the critical behavior to be well captured in spite of the low density perturbative nature of the closure. The introduction of anisotropic attractions into a model suspension of spherical particles is a first step toward a more realistic description of globular proteins in solution.

  17. Monte Carlo Simulation of SATs in 2D

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    In this paper we use Monte Carlo simulation method to deal with SATs on a square lattice and a triangular lattice in two dimensions in the T→∞ limit.Besides that,the SAT model has been generalized in the coordination number q→∞ limit.The characteristics of SATs in the two limits q=3 and q→∞ have been qualitatively discussed.The obtained results reveal that the SATs have intermediate behaviors between that of SAWs and RWs.The critical exponents of SATs have intermediate behaviors between that of SAWs and RWs.The critical exponents of SATs are monotonous functions of q.With different q,SATs correspondingly belong to different universality classes.For example,on a hexagonal lattice,SATs and SAWs belong to the same universality class;in the limiting situation q→∞,SATs and RWs belong to the same universality class;when q=4 or q=6,SATs and SAWs or RWs belong to the different universality class.

  18. Hopping electron model with geometrical frustration: kinetic Monte Carlo simulations

    Science.gov (United States)

    Terao, Takamichi

    2016-09-01

    The hopping electron model on the Kagome lattice was investigated by kinetic Monte Carlo simulations, and the non-equilibrium nature of the system was studied. We have numerically confirmed that aging phenomena are present in the autocorrelation function C ({t,tW )} of the electron system on the Kagome lattice, which is a geometrically frustrated lattice without any disorder. The waiting-time distributions p(τ ) of hopping electrons of the system on Kagome lattice has been also studied. It is confirmed that the profile of p (τ ) obtained at lower temperatures obeys the power-law behavior, which is a characteristic feature of continuous time random walk of electrons. These features were also compared with the characteristics of the Coulomb glass model, used as a model of disordered thin films and doped semiconductors. This work represents an advance in the understanding of the dynamics of geometrically frustrated systems and will serve as a basis for further studies of these physical systems.

  19. Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    彭昌军; 李健康; 刘洪来; 胡英

    2004-01-01

    The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.

  20. Monte Carlo simulations of the SANS instrument in Petten

    Energy Technology Data Exchange (ETDEWEB)

    Uca, O. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755 LE, Petten (Netherlands)], E-mail: oktay.uca@jrc.nl; Ohms, C. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755 LE, Petten (Netherlands)], E-mail: carsten.ohms@jrc.nl

    2008-11-30

    The small-angle neutron-scattering facility at the 45 MW high-flux reactor in Petten, The Netherlands, was constructed in the late 1980s. It has a q-range of 5x10{sup -3} to 0.4 A{sup -1}, operating at a fixed wavelength of 4.75 A, which is realized by six pairs of double pyrolytic graphite monochromators. In this paper, we study the flux gain for the instrument installed at a neutron guide by Monte Carlo simulations using the program packages McStas [L. Lefmann, K. Nielsen, Neutron News 10 (1999) 320; P. Willendrup, E. Farhi and K. Lefmann, Physica B 350 (2004) 735] and Vitess [G. Zsigmond et al., Nucl. Instrum. Methods A 529 (2004) 218; (http://www.hmi.de/projects/ess/vitess/)]. In doing so, the instrument is relocated from its current position to the HB10 radial beam tube, the double monochromator is replaced by a velocity selector and neutron guides are used for transporting the neutrons.

  1. Monte Carlo simulations of the SANS instrument in Petten

    Science.gov (United States)

    Uca, O.; Ohms, C.

    2008-11-01

    The small-angle neutron-scattering facility at the 45 MW high-flux reactor in Petten, The Netherlands, was constructed in the late 1980s. It has a q-range of 5×10 -3 to 0.4 Å -1, operating at a fixed wavelength of 4.75 Å, which is realized by six pairs of double pyrolytic graphite monochromators. In this paper, we study the flux gain for the instrument installed at a neutron guide by Monte Carlo simulations using the program packages McStas [L. Lefmann, K. Nielsen, Neutron News 10 (1999) 320; P. Willendrup, E. Farhi and K. Lefmann, Physica B 350 (2004) 735] and Vitess [G. Zsigmond et al., Nucl. Instrum. Methods A 529 (2004) 218; http://www.hmi.de/projects/ess/vitess/]. In doing so, the instrument is relocated from its current position to the HB10 radial beam tube, the double monochromator is replaced by a velocity selector and neutron guides are used for transporting the neutrons.

  2. Monte Carlo simulations of ionization potential depression in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stransky, M., E-mail: stransky@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2016-01-15

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.

  3. A Monte Carlo simulation technique to determine the optimal portfolio

    Directory of Open Access Journals (Sweden)

    Hassan Ghodrati

    2014-03-01

    Full Text Available During the past few years, there have been several studies for portfolio management. One of the primary concerns on any stock market is to detect the risk associated with various assets. One of the recognized methods in order to measure, to forecast, and to manage the existing risk is associated with Value at Risk (VaR, which draws much attention by financial institutions in recent years. VaR is a method for recognizing and evaluating of risk, which uses the standard statistical techniques and the method has been used in other fields, increasingly. The present study has measured the value at risk of 26 companies from chemical industry in Tehran Stock Exchange over the period 2009-2011 using the simulation technique of Monte Carlo with 95% confidence level. The used variability in the present study has been the daily return resulted from the stock daily price change. Moreover, the weight of optimal investment has been determined using a hybrid model called Markowitz and Winker model in each determined stocks. The results showed that the maximum loss would not exceed from 1259432 Rials at 95% confidence level in future day.

  4. Monte Carlo Simulations for Likelihood Analysis of the PEN experiment

    Science.gov (United States)

    Glaser, Charles; PEN Collaboration

    2017-01-01

    The PEN collaboration performed a precision measurement of the π+ ->e+νe(γ) branching ratio with the goal of obtaining a relative uncertainty of 5 ×10-4 or better at the Paul Scherrer Institute. A precision measurement of the branching ratio Γ(π -> e ν (γ)) / Γ(π -> μ ν (γ)) can be used to give mass bounds on ``new'', or non V -A, particles and interactions. This ratio also proves to be one of the most sensitive tests for lepton universality. The PEN detector consists of beam counters, an active target, a mini-time projection chamber, multi-wire proportional chamber, a plastic scintillating hodoscope, and a CsI electromagnetic calorimeter. The Geant4 Monte Carlo simulation is used to construct ultra-realistic events by digitizing energies and times, creating synthetic target waveforms, and fully accounting for photo-electron statistics. We focus on the detailed detector response to specific decay and background processes in order to sharpen the discrimination between them in the data analysis. Work supported by NSF grants PHY-0970013, 1307328, and others.

  5. Monte Carlo simulation of terahertz generation in nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Starikov, E.; Shiktorov, P.; Gruzinskis, V. [Semiconductor Physics Institute, Vilnius (Lithuania); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione, Istituto Nazionale di Fisica della Materia, Universite di Lecce, Lecce (Italy); Varani, L.; Vaissiere, J.C. [Centre d' Electronique et de Micro-Optoelectronique de Montpellier (CNRS UMR 5507), Universite Montpellier II, Montpellier (France); Zhao, Jian H. [SiCLAB, Department of Electrical and Computer Engineering and CAIP Center, Rutgers University, Piscataway, NJ (United States)

    2001-08-13

    The conditions for microwave power generation under the quasi-periodic motion of carriers caused by the combined action of carrier acceleration in a constant electric field and optical phonon emission at low temperatures are analysed by means of Monte Carlo simulations of both small- and large-signal responses in bulk nitrides such as GaN and InN. It is shown that, as a consequence of the high value of the optical phonon energy and the strong electron-phonon interaction, a dynamic negative differential mobility caused by transit-time resonance occurs over a wide frequency range which covers practically the whole submillimetre range and persists in the THz frequency range up to liquid nitrogen temperature. The efficiency of the amplification and generation is found to depend nonmonotonically on: (i) the static and microwave electric field amplitudes, (ii) the generation frequency, and (iii) the carrier concentration. Accordingly, for each generation frequency there exists an optimal range of parameter values. Under optimal conditions we predict a generation efficiency of about 1-2% in the 0.5-1.5 THz frequency range. (author)

  6. Monte Carlo Simulation Of Emission Tomography And Other Medical Imaging Techniques

    Science.gov (United States)

    Harrison, Robert L.

    2010-01-01

    An introduction to Monte Carlo simulation of emission tomography. This paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations. PMID:20733931

  7. Monte Carlo simulation of secondary electron images for real sample structures in scanning electron microscopy.

    Science.gov (United States)

    Zhang, P; Wang, H Y; Li, Y G; Mao, S F; Ding, Z J

    2012-01-01

    Monte Carlo simulation methods for the study of electron beam interaction with solids have been mostly concerned with specimens of simple geometry. In this article, we propose a simulation algorithm for treating arbitrary complex structures in a real sample. The method is based on a finite element triangular mesh modeling of sample geometry and a space subdivision for accelerating simulation. Simulation of secondary electron image in scanning electron microscopy has been performed for gold particles on a carbon substrate. Comparison of the simulation result with an experiment image confirms that this method is effective to model complex morphology of a real sample.

  8. SU-E-T-254: Optimization of GATE and PHITS Monte Carlo Code Parameters for Uniform Scanning Proton Beam Based On Simulation with FLUKA General-Purpose Code

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, K [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Takashina, M; Koizumi, M [Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Das, I; Moskvin, V [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2014-06-01

    Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximum step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health

  9. Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. I. Model properties and predicted trends

    Energy Technology Data Exchange (ETDEWEB)

    Semenenko, Vladimir; Stewart, Robert D.; Ackerman, Eric J.

    2005-12-31

    Single-cell irradiators and new experimental assays are rapidly expanding our ability to quantify the molecular mechanisms responsible for phenomena such as toxicant-induced adaptations in DNA repair and signal-mediated changes to the genome stability of cells not directly damaged by radiation (i.e., bystander cells). To advance our understanding of, and ability to predict and mitigate, the potentially harmful effects of radiological agents, effective strategies must be devised to incorporate information from molecular and cellular studies into mechanism-based, hierarchical models. A key advantage of the hierarchical modeling approach is that information from DNA repair and other in vitro assays can be systematically integrated into higher-level cell transformation and, eventually, carcinogenesis models. This presentation will outline the hierarchical modeling strategy used to integrate information from in vitro studies into the Virtual Cell (VC) radiobiology software (see Endnote). A new multi-path genomic instability model will be introduced and used to link biochemical processing of double strand breaks (DSBs) to neoplastic cell transformation. Bystander and directly damaged cells are treated explicitly in the model using a microdosimetric approach, although many of the details of the bystander response model are of a necessarily preliminary nature. The new model will be tested against several published radiobiological datasets. Results illustrating how hypothesized bystander mechanisms affect the shape of dose-response curves for neoplastic transformation as a function of Linear Energy Transfer (LET) will be presented. EndNote: R.D. Stewart, Virtual Cell (VC) Radiobiology Software. PNNL-13579, July 2001. Available at http://www.pnl.gov/berc/kbem/vc/ The DNA repair model used in the VC computer program is based on the Two-Lesion Kinetic (TLK) model [Radiat. Res. 156(4), 365-378 October 2001].

  10. Comparison of interatomic potentials of water via structure factors reconstructed from simulated partial radial distribution functions: a reverse Monte Carlo based approach

    Science.gov (United States)

    Steinczinger, Zsuzsanna; Jóvári, Pál; Pusztai, László

    2017-01-01

    Neutron- and x-ray weighted total structure factors of liquid water have been calculated on the basis of the intermolecular parts of partial radial distribution functions resulting from various computer simulations. The approach includes reverse Monte Carlo (RMC) modelling of these partials, using realistic flexible molecules, and the calculation of experimental diffraction data, including the intramolecular contributions, from the RMC particle configurations. The procedure has been applied to ten sets of intermolecular partial radial distribution functions obtained from various computer simulations, including one set from an ab initio molecular dynamics, of water. It is found that modern polarizable water potentials, such as SWM4-DP and BK3 are the most successful in reproducing measured diffraction data.

  11. The Virtual Monte Carlo

    CERN Document Server

    Hrivnacova, I; Berejnov, V V; Brun, R; Carminati, F; Fassò, A; Futo, E; Gheata, A; Caballero, I G; Morsch, Andreas

    2003-01-01

    The concept of Virtual Monte Carlo (VMC) has been developed by the ALICE Software Project to allow different Monte Carlo simulation programs to run without changing the user code, such as the geometry definition, the detector response simulation or input and output formats. Recently, the VMC classes have been integrated into the ROOT framework, and the other relevant packages have been separated from the AliRoot framework and can be used individually by any other HEP project. The general concept of the VMC and its set of base classes provided in ROOT will be presented. Existing implementations for Geant3, Geant4 and FLUKA and simple examples of usage will be described.

  12. An efficient approach to ab initio Monte Carlo simulation.

    Science.gov (United States)

    Leiding, Jeff; Coe, Joshua D

    2014-01-21

    We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.

  13. Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations

    Science.gov (United States)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias

    2015-01-01

    Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.

  14. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2015-06-15

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical

  15. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    Science.gov (United States)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-01-01

    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  16. Phase equilibria of molecular fluids via hybrid Monte Carlo Wang-Landau simulations: applications to benzene and n-alkanes.

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2009-06-28

    In recent years, powerful and accurate methods, based on a Wang-Landau sampling, have been developed to determine phase equilibria. However, while these methods have been extensively applied to study the phase behavior of model fluids, they have yet to be applied to molecular systems. In this work, we show how, by combining hybrid Monte Carlo simulations in the isothermal-isobaric ensemble with the Wang-Landau sampling method, we determine the vapor-liquid equilibria of various molecular fluids. More specifically, we present results obtained on rigid molecules, such as benzene, as well as on flexible chains of n-alkanes. The reliability of the method introduced in this work is assessed by demonstrating that our results are in excellent agreement with the results obtained in previous work on simple fluids, using either transition matrix or conventional Monte Carlo simulations with a Wang-Landau sampling, and on molecular fluids, using histogram reweighting or Gibbs ensemble Monte Carlo simulations.

  17. Monte Carlo Simulation of Aqueous Dilute Solutions of Polyhydric Alcohols

    Science.gov (United States)

    Lilly, Arnys Clifton, Jr.

    In order to investigate the details of hydrogen bonding and solution molecular conformation of complex alcohols in water, isobaric-isothermal Monte Carlo simulations were carried out on several systems. The solutes investigated were ethanol, ethylene glycol, 1,2-propylene glycol, 1,3 -propylene glycol and glycerol. In addition, propane, which does not hydrogen bond but does form water hydrates, was simulated in aqueous solution. The complex alcohol-water systems are very nonideal in their behavior as a function of solute concentration down to very dilute solutions. The water model employed was TIP4P water^1 and the intermolecular potentials employed are of the Jorgensen type^2 in which the interactions between the molecules are represented by interaction sites usually located on nuclei. The interactions are represented by a sum of Coulomb and Lennard-Jones terms between all intermolecular pairs of sites. Intramolecular rotations in the solute are modeled by torsional potential energy functions taken from ethanol, 1-propanol and 2-propanol for C-O and C-C bond rotations. Quasi-component pair correlation functions were used to analyze the hydrogen bonding. Hydrogen bonds were classified as proton acceptor and proton donor bonds by analyzing the nearest neighbor pair correlation function between hydroxyl oxygen and hydrogen and between solvent-water hydrogen and oxygen. The results obtained for partial molar heats of solution are more negative than experimental values by 3.0 to 14 kcal/mol. In solution, all solutes reached a contracted molecular geometry with the OH groups generally on one side of the molecule. There is a tendency for the solute OH groups to hydrogen bond with water, with more proton acceptor bonds than proton donor bonds. The water -solute binding energies correlate with experimental measurements of the water-binding properties of the solute. ftn ^1Jorgensen, W. L. et al, J. Chem. Phys., 79, 926 (1983). ^2Jorgensen, W. L., J. Phys Chem., 87, 5304

  18. Review of Monte Carlo simulations for backgrounds from radioactivity

    Science.gov (United States)

    Selvi, Marco

    2013-08-01

    For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.

  19. Study of the effect of usual heterogeneities in brachytherapy using Monte Carlo simulation; Estudio del efecto de heterogeneidades usuales en braquiterapia mediante simulacion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Vera Sanchez, J. A.; Ruiz Morales, C.; Tobarra Gonzalez, B. M.

    2013-07-01

    The majority of current planning in brachytherapy systems don't count the composition of materials they form applicators, or the characteristics of the main interfaces present in the treatments. The objective of this study It is to compare the dosimetry distributions obtained by Monte Carlo simulations in geometric mannequins that they represent general features of the treatments that we find in our clinical practice, with results calculated according to the TG-43 formalism based on the existing consensus data for Ir-192 mHDR-v2 source. (Author)

  20. Monte Carlo simulation of Prussian blue analogs described by Heisenberg ternary alloy model

    Science.gov (United States)

    Yüksel, Yusuf

    2015-11-01

    Within the framework of Monte Carlo simulation technique, we simulate magnetic behavior of Prussian blue analogs based on Heisenberg ternary alloy model. We present phase diagrams in various parameter spaces, and we compare some of our results with those based on Ising counterparts. We clarify the variations of transition temperature and compensation phenomenon with mixing ratio of magnetic ions, exchange interactions, and exchange anisotropy in the present ferro-ferrimagnetic Heisenberg system. According to our results, thermal variation of the total magnetization curves may exhibit N, L, P, Q, R type behaviors based on the Néel classification scheme.

  1. SU-E-T-673: Recent Developments and Comprehensive Validations of a GPU-Based Proton Monte Carlo Simulation Package, GPMC

    Energy Technology Data Exchange (ETDEWEB)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Giantsoudi, D; Schuemann, J; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: A GPU-based Monte Carlo (MC) simulation package gPMC has been previously developed and high computational efficiency was achieved. This abstract reports our recent improvements on this package in terms of accuracy, functionality, and code portability. Methods: In the latest version of gPMC, nuclear interaction cross section database was updated to include data from TOPAS/Geant4. Inelastic interaction model, particularly the proton scattering angle distribution, was updated to improve overall simulation accuracy. Calculation of dose averaged LET (LETd) was implemented. gPMC was ported onto an OpenCL environment to enable portability across different computing devices (GPUs from different vendors and CPUs). We also performed comprehensive tests of the code accuracy. Dose from electro-magnetic (EM) interaction channel, primary and secondary proton doses and fluences were scored and compared with those computed by TOPAS. Results: In a homogeneous water phantom with 100 and 200 MeV beams, mean dose differences in EM channel computed by gPMC and by TOPAS were 0.28% and 0.65% of the corresponding maximum dose, respectively. With the Geant4 nuclear interaction cross section data, mean difference of primary proton dose was 0.84% for the 200 MeV case and 0.78% for the 100 MeV case. After updating inelastic interaction model, maximum difference of secondary proton fluence and dose were 0.08% and 0.5% for the 200 MeV beam, and 0.04% and 0.2% for the 100 MeV beam. In a test case with a 150MeV proton beam, the mean difference between LETd computed by gPMC and TOPAS was 0.96% within the proton range. With the OpenCL implementation, gPMC is executable on AMD and Nvidia GPUs, as well as on Intel CPU in single or multiple threads. Results on different platforms agreed within statistical uncertainty. Conclusion: Several improvements have been implemented in the latest version of gPMC, which enhanced its accuracy, functionality, and code portability.

  2. SU-E-T-401: Evaluation of TG-43 Dose Calculation Accuracy for SAVI-Based Accelerated Partial Breast Irradiation (APBI) Via Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou, Guangdong (China); Tian, Z; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Scanderbeg, D; Yashar, C [UCSD Medical Center, La Jolla, CA (United States); Zhang, M [Rutgers University, New Brunswick, NJ (United States)

    2015-06-15

    Purpose: The current standard TG-43 dose calculation method for SAVI-based Accelerated Partial Breast Irradiation (APBI) assumes an ideal geometry of infinite homogeneous water. However, in SAVI treatments, the air cavity inside the device and the short source-to-skin distance raise concerns about the dose accuracy of the TG-43 method. This study is to evaluate TG-43 dose calculation accuracy in SAVI treatments using Monte Carlo (MC) simulations. Methods: We recalculated the dose distributions of 15 APBI patients treated with SAVI devices, including five cases with a size of 6–1, five with 8−1 and five with 10−1, using our in-house developed fast MC dose package for HDR brachytherapy (gBMC). A phase-space file was used to model the Ir-192 HDR source. For each case, the patient CT was converted into a voxelized phantom and the dwell positions and times were extracted from treatment plans for MC dose calculations. Clinically relevant dosimetric parameters of the recalculated dose were compared to those computed via the TG-43 approach. Results: A systematic overestimation of doses was found for the 15 cases in TG-43 results, with D90, V150, and V200 for PTV-eval 2.8±1.8%, 2.0±2.2%, and 1.8±3.5% higher than MC results. TG-43 also overestimated the dose to skin with the maximum dose 4.4±8.4% higher on average. The relatively large standard deviation seen in the difference of maximum skin dose is partially ascribed to the statistical uncertainty of MC simulations when computing the maximum dose. It took gBMC ∼1 minute to compute dose for a SAVI plan. Conclusion: The high efficiency of our gBMC package facilitated the studies with a relatively large number of cases. An overestimation of TG-43 doses was found when using this MC package to recompute doses in SAVI cases. Clinical utilization of TG-43 dose calculation method in this scenario should be aware of this fact.

  3. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy

    Directory of Open Access Journals (Sweden)

    Paro AD

    2016-09-01

    Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray 

  4. Monte Carlo simulation of the standardization of {sup 22}Na using scintillation detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y., E-mail: yss.sato@aist.go.j [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Murayama, H. [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage, Chiba 263-8555 (Japan); Yamada, T. [Japan Radioisotope Association, 2-28-45, Hon-komagome, Bunkyo, Tokyo 113-8941 (Japan); National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Tohoku University, 6-6, Aoba, Aramaki, Aoba, Sendai 980-8579 (Japan); Hasegawa, T. [Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Oda, K. [Tokyo Metropolitan Institute of Gerontology, 1-1 Nakacho, Itabashi-ku, Tokyo 173-0022 (Japan); Unno, Y.; Yunoki, A. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2010-07-15

    In order to calibrate PET devices by a sealed point source, we contrived an absolute activity measurement method for the sealed point source using scintillation detector arrays. This new method was verified by EGS5 Monte Carlo simulation.

  5. Monte Carlo Simulation Calculation of Critical Coupling Constant for Continuum \\phi^4_2

    OpenAIRE

    Loinaz, Will; Willey, R. S.

    1997-01-01

    We perform a Monte Carlo simulation calculation of the critical coupling constant for the continuum {\\lambda \\over 4} \\phi^4_2 theory. The critical coupling constant we obtain is [{\\lambda \\over \\mu^2}]_crit=10.24(3).

  6. Monte Carlo simulation of diffuse attenuation coefficient in presence of non uniform profiles

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desai, R.G.P.; Desa, B.A.E.

    This paper presents a Monte Carlo simulation of the vertical depth structure of the downward attenuation coefficient (K sub(d)), and the irradiance reflectance (R) for a given profile of chlorophyll. The results are in quantitaive agreement...

  7. On-the-fly nuclear data processing methods for Monte Carlo simulations of fast spectrum systems

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-31

    The presentation summarizes work performed over summer 2015 related to Monte Carlo simulations. A flexible probability table interpolation scheme has been implemented and tested with results comparing favorably to the continuous phase-space on-the-fly approach.

  8. High Fidelity Imaging Algorithm for the Undique Imaging Monte Carlo Simulator

    Directory of Open Access Journals (Sweden)

    Tremblay Grégoire

    2016-01-01

    Full Text Available The Undique imaging Monte Carlo simulator (Undique hereafter was developed to reproduce the behavior of 3D imaging devices. This paper describes its high fidelity imaging algorithm.

  9. Monte Carlo Simulation on Coordinated Movement of Kinesin and Dynein Motors

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; DOU Shuo-Xing; WANG Peng-Ye

    2008-01-01

    Kinesin and dynein are two important classes of molecular motors which are responsible for active organelle trafficking and cell division.They call work together to carry a cargo,moving along the microtubule in a coordinated way.We use Monte Carlo method to simulate the dynamics of this coordinated movement.Based on four essential assumptions,our simulations reproduce some features of the recent in vivo experiments.The fast moving speed of the cargo js simulated and the speed distribution is presented.

  10. Monte Carlo simulations of SOHO/EPHIN instrument response to hydrogen and helium isotopes

    CERN Document Server

    Gómez-Herrero, R; Rodríguez-Friás, M D; Gutíerrez, J; Hernández-Encinas, L; Yetim, F

    2002-01-01

    Numerical simulations are a valuable tool when designing and characterizing particle telescopes. Simulation results can be used to improve the quality of experimental data analysis. In this work a Monte Carlo simulation code based on CERN tool GEANT 3.21 has been used to follow the SOHO/EPHIN instrument response to the detection of hydrogen and helium nuclei. Energy-dependent geometric factors and energy intervals of effective detection have been obtained separately for each isotope (/sup 1/H, /sup 2/H, /sup 3/He, and /sup 4/He). Energy measurement exactitude and incident directions have also been studied. (5 refs).

  11. Exact special twist method for quantum Monte Carlo simulations

    Science.gov (United States)

    Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro

    2016-12-01

    We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.

  12. Dosimetry in radiotherapy and brachytherapy by Monte-Carlo GATE simulation on computing grid; Dosimetrie en radiotherapie et curietherapie par simulation Monte-Carlo GATE sur grille informatique

    Energy Technology Data Exchange (ETDEWEB)

    Thiam, Ch.O

    2007-10-15

    Accurate radiotherapy treatment requires the delivery of a precise dose to the tumour volume and a good knowledge of the dose deposit to the neighbouring zones. Computation of the treatments is usually carried out by a Treatment Planning System (T.P.S.) which needs to be precise and fast. The G.A.T.E. platform for Monte-Carlo simulation based on G.E.A.N.T.4 is an emerging tool for nuclear medicine application that provides functionalities for fast and reliable dosimetric calculations. In this thesis, we studied in parallel a validation of the G.A.T.E. platform for the modelling of electrons and photons low energy sources and the optimized use of grid infrastructures to reduce simulations computing time. G.A.T.E. was validated for the dose calculation of point kernels for mono-energetic electrons and compared with the results of other Monte-Carlo studies. A detailed study was made on the energy deposit during electrons transport in G.E.A.N.T.4. In order to validate G.A.T.E. for very low energy photons (<35 keV), three models of radioactive sources used in brachytherapy and containing iodine 125 (2301 of Best Medical International; Symmetra of Uro- Med/Bebig and 6711 of Amersham) were simulated. Our results were analyzed according to the recommendations of task group No43 of American Association of Physicists in Medicine (A.A.P.M.). They show a good agreement between G.A.T.E., the reference studies and A.A.P.M. recommended values. The use of Monte-Carlo simulations for a better definition of the dose deposited in the tumour volumes requires long computing time. In order to reduce it, we exploited E.G.E.E. grid infrastructure where simulations are distributed using innovative technologies taking into account the grid status. Time necessary for the computing of a radiotherapy planning simulation using electrons was reduced by a factor 30. A Web platform based on G.E.N.I.U.S. portal was developed to make easily available all the methods to submit and manage G

  13. Optical Fiber Turbidity Sensor Based on Monte Carlo Simulations%基于蒙特卡罗模拟的光纤浊度传感器

    Institute of Scientific and Technical Information of China (English)

    吴刚; 刘月明; 许宏志; 陈飞华; 黄杰

    2014-01-01

    在后向散射式浊度测量方法的基础上,采用光纤传感技术,设计了一种 Y形光纤束探头结构的浊度传感器,并在光纤束探头前端配置平面镜作为光反射配合目标。根据朗伯比尔定律通过实验研究了消光系数与浊度的线性关系,基于蒙特卡罗法建立了待测液中的光子散射模型,模拟不同检测情形下的传感器接收光强,优化得到光纤束到平面镜的最佳距离。标定接收光强与消光系数的关系曲线用于测量。此法简单高效,能检测消光系数低至0.059 cm-1的水质,平面镜的有效使用将传感器灵敏度提高10倍以上。此传感器可用于便携式检测,结合空分和时分复用技术可实现在线监测。%Based on the backscattering turbidity measurement method,a turbidity sensor with Y-shaped optical fiber bundle probe structure in conj unction with a plane mirror is designed by using the optical fiber sensor technolo-gy.Turbidity is estimated in terms of total interaction coefficient,a parameter that contains strong signature of the turbidity of a solution.A scattered light model based on Monte Carlo simulations is applied to estimate the power collected by the fiber optic probe.The turbidity sensor is simple,and it′s useful for detecting suspended impurities even in small quantities within a liquid,the total interaction coefficient of which is as low as 0.059 cm-1 .With the reasonable use of the mirror,the sensitivity of the sensor is improved more than 10 times.The proposed sensor can be used for the portable measurements and the on-line monitoring can be realized by combining the space-division multiplexing technology and time-division multiplexing technology.

  14. Grand Canonical Ensemble Monte Carlo Simulation of Depletion Interactions in Colloidal Suspensions

    Institute of Scientific and Technical Information of China (English)

    GUO Ji-Yuan; XIAO Chang-Ming

    2008-01-01

    Depletion interactions in colloidal suspensions confined between two parallel plates are investigated by using acceptance ratio method with grand canonical ensemble Monte Carlo simulation.The numerical results show that both the depletion potential and depletion force are affected by the confinement from the two parallel plates.Furthermore,it is found that in the grand canonical ensemble Monte Carlo simulation,the depletion interactions are strongly affected by the generalized chemical potential.

  15. Monte Carlo Methods in Materials Science Based on FLUKA and ROOT

    Science.gov (United States)

    Pinsky, Lawrence; Wilson, Thomas; Empl, Anton; Andersen, Victor

    2003-01-01

    A comprehensive understanding of mitigation measures for space radiation protection necessarily involves the relevant fields of nuclear physics and particle transport modeling. One method of modeling the interaction of radiation traversing matter is Monte Carlo analysis, a subject that has been evolving since the very advent of nuclear reactors and particle accelerators in experimental physics. Countermeasures for radiation protection from neutrons near nuclear reactors, for example, were an early application and Monte Carlo methods were quickly adapted to this general field of investigation. The project discussed here is concerned with taking the latest tools and technology in Monte Carlo analysis and adapting them to space applications such as radiation shielding design for spacecraft, as well as investigating how next-generation Monte Carlos can complement the existing analytical methods currently used by NASA. We have chosen to employ the Monte Carlo program known as FLUKA (A legacy acronym based on the German for FLUctuating KAscade) used to simulate all of the particle transport, and the CERN developed graphical-interface object-oriented analysis software called ROOT. One aspect of space radiation analysis for which the Monte Carlo s are particularly suited is the study of secondary radiation produced as albedoes in the vicinity of the structural geometry involved. This broad goal of simulating space radiation transport through the relevant materials employing the FLUKA code necessarily requires the addition of the capability to simulate all heavy-ion interactions from 10 MeV/A up to the highest conceivable energies. For all energies above 3 GeV/A the Dual Parton Model (DPM) is currently used, although the possible improvement of the DPMJET event generator for energies 3-30 GeV/A is being considered. One of the major tasks still facing us is the provision for heavy ion interactions below 3 GeV/A. The ROOT interface is being developed in conjunction with the

  16. Monte Carlo simulation of a single detector unit for the neutron detector array NEDA

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, G. [Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Palacz, M., E-mail: palacz@slcj.uw.edu.pl [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Nyberg, J. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Angelis, G. de [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); France, G. de [GANIL, Caen (France); Di Nitto, A. [INFN Sezione di Napoli, Napoli (Italy); Egea, J. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); IFIC-CSIC, University of Valencia, Valencia (Spain); Erduran, M.N. [Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University Istanbul (Turkey); Ertuerk, S. [Nigde Universitesi, Fen-Edebiyat Falkueltesi, Fizik Boeluemue, Nigde (Turkey); Farnea, E. [INFN Sezione di Padova, Padua (Italy); Gadea, A. [IFIC-CSIC, University of Valencia, Valencia (Spain); Gonzalez, V. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); Gottardo, A. [Padova University, Padua (Italy); Hueyuek, T. [IFIC-CSIC, University of Valencia, Valencia (Spain); Kownacki, J. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Pipidis, A. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Roeder, B. [LPC-Caen, ENSICAEN, IN2P3/CNRS et Universite de Caen, Caen (France); Soederstroem, P.-A. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Sanchis, E. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); Tarnowski, R. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); and others

    2012-05-01

    A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.

  17. Deterministic sensitivity analysis for first-order Monte Carlo simulations: a technical note.

    Science.gov (United States)

    Geisler, Benjamin P; Siebert, Uwe; Gazelle, G Scott; Cohen, David J; Göhler, Alexander

    2009-01-01

    Monte Carlo microsimulations have gained increasing popularity in decision-analytic modeling because they can incorporate discrete events. Although deterministic sensitivity analyses are essential for interpretation of results, it remains difficult to combine these alongside Monte Carlo simulations in standard modeling packages without enormous time investment. Our purpose was to facilitate one-way deterministic sensitivity analysis of TreeAge Markov state-transition models requiring first-order Monte Carlo simulations. Using TreeAge Pro Suite 2007 and Microsoft Visual Basic for EXCEL, we constructed a generic script that enables one to perform automated deterministic one-way sensitivity analyses in EXCEL employing microsimulation models. In addition, we constructed a generic EXCEL-worksheet that allows for use of the script with little programming knowledge. Linking TreeAge Pro Suite 2007 and Visual Basic enables the performance of deterministic sensitivity analyses of first-order Monte Carlo simulations. There are other potentially interesting applications for automated analysis.

  18. Monte Carlo Simulation of X-rays Multiple Refractive Scattering from Fine Structure Objects imaged with the DEI Technique

    CERN Document Server

    Khromova, A N; Arfelli, F; Menk, R H; Besch, H J; Plothow-Besch, H; 10.1109/NSSMIC.2004.1466758

    2010-01-01

    In this work we present a novel 3D Monte Carlo photon transport program for simulation of multiple refractive scattering based on the refractive properties of X-rays in highly scattering media, like lung tissue. Multiple scattering reduces not only the quality of the image, but contains also information on the internal structure of the object. This information can be exploited utilizing image modalities such as Diffraction Enhanced Imaging (DEI). To study the effect of multiple scattering a Monte Carlo program was developed that simulates multiple refractive scattering of X-ray photons on monodisperse PMMA (poly-methyl-methacrylate) microspheres representing alveoli in lung tissue. Eventually, the results of the Monte Carlo program were compared to the measurements taken at the SYRMEP beamline at Elettra (Trieste, Italy) on special phantoms showing a good agreement between both data.

  19. Efficient Monte Carlo evaluation of resampling-based hypothesis tests with applications to genetic epidemiology.

    Science.gov (United States)

    Fung, Wing K; Yu, Kexin; Yang, Yingrui; Zhou, Ji-Yuan

    2016-08-08

    Monte Carlo evaluation of resampling-based tests is often conducted in statistical analysis. However, this procedure is generally computationally intensive. The pooling resampling-based method has been developed to reduce the computational burden but the validity of the method has not been studied before. In this article, we first investigate the asymptotic properties of the pooling resampling-based method and then propose a novel Monte Carlo evaluation procedure namely the n-times pooling resampling-based method. Theorems as well as simulations show that the proposed method can give smaller or comparable root mean squared errors and bias with much less computing time, thus can be strongly recommended especially for evaluating highly computationally intensive hypothesis testing procedures in genetic epidemiology.

  20. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.

    Science.gov (United States)

    Martinov, Martin P; Thomson, Rowan M

    2017-02-01

    To introduce the heterogeneous multiscale (HetMS) model for Monte Carlo simulations of gold nanoparticle dose-enhanced radiation therapy (GNPT), a model characterized by its varying levels of detail on different length scales within a single phantom; to apply the HetMS model in two different scenarios relevant for GNPT and to compare computed results with others published. The HetMS model is implemented using an extended version of the EGSnrc user-code egs_chamber; the extended code is tested and verified via comparisons with recently published data from independent GNP simulations. Two distinct scenarios for the HetMS model are then considered: (a) monoenergetic photon beams (20 keV to 1 MeV) incident on a cylinder (1 cm radius, 3 cm length); (b) isotropic point source (brachytherapy source spectra) at the center of a 2.5 cm radius sphere with gold nanoparticles (GNPs) diffusing outwards from the center. Dose enhancement factors (DEFs) are compared for different source energies, depths in phantom, gold concentrations, GNP sizes, and modeling assumptions, as well as with independently published values. Simulation efficiencies are investigated. The HetMS MC simulations account for the competing effects of photon fluence perturbation (due to gold in the scatter media) coupled with enhanced local energy deposition (due to modeling discrete GNPs within subvolumes). DEFs are most sensitive to these effects for the lower source energies, varying with distance from the source; DEFs below unity (i.e., dose decreases, not enhancements) can occur at energies relevant for brachytherapy. For example, in the cylinder scenario, the 20 keV photon source has a DEF of 3.1 near the phantom's surface, decreasing to less than unity by 0.7 cm depth (for 20 mg/g). Compared to discrete modeling of GNPs throughout the gold-containing (treatment) volume, efficiencies are enhanced by up to a factor of 122 with the HetMS approach. For the spherical phantom, DEFs vary with time for diffusion

  1. ERSN-OpenMC, a Java-based GUI for OpenMC Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Jaafar EL Bakkali

    2016-07-01

    Full Text Available OpenMC is a new Monte Carlo transport particle simulation code focused on solving two types of neutronic problems mainly the k-eigenvalue criticality fission source problems and external fixed fission source problems. OpenMC does not have any Graphical User Interface and the creation of one is provided by our java-based application named ERSN-OpenMC. The main feature of this application is to provide to the users an easy-to-use and flexible graphical interface to build better and faster simulations, with less effort and great reliability. Additionally, this graphical tool was developed with several features, as the ability to automate the building process of OpenMC code and related libraries as well as the users are given the freedom to customize their installation of this Monte Carlo code. A full description of the ERSN-OpenMC application is presented in this paper.

  2. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  3. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    Institute of Scientific and Technical Information of China (English)

    Chen Chaobin; Huang Qunying; Wu Yican

    2005-01-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of X-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  4. Comparative evaluation of photon cross section libraries for materials of interest in PET Monte Carlo simulations

    CERN Document Server

    Zaidi, H

    1999-01-01

    the many applications of Monte Carlo modelling in nuclear medicine imaging make it desirable to increase the accuracy and computational speed of Monte Carlo codes. The accuracy of Monte Carlo simulations strongly depends on the accuracy in the probability functions and thus on the cross section libraries used for photon transport calculations. A comparison between different photon cross section libraries and parametrizations implemented in Monte Carlo simulation packages developed for positron emission tomography and the most recent Evaluated Photon Data Library (EPDL97) developed by the Lawrence Livermore National Laboratory was performed for several human tissues and common detector materials for energies from 1 keV to 1 MeV. Different photon cross section libraries and parametrizations show quite large variations as compared to the EPDL97 coefficients. This latter library is more accurate and was carefully designed in the form of look-up tables providing efficient data storage, access, and management. Toge...

  5. Algorithm and application of Monte Carlo simulation for multi-dispersive copolymerization system

    Institute of Scientific and Technical Information of China (English)

    凌君; 沈之荃; 陈万里

    2002-01-01

    A Monte Carlo algorithm has been established for multi-dispersive copolymerization system, based on the experimental data of copolymer molecular weight and dispersion via GPC measurement. The program simulates the insertion of every monomer unit and records the structure and microscopical sequence of every chain in various lengths. It has been applied successfully for the ring-opening copolymerization of 2,2-dimethyltrimethylene carbonate (DTC) with (-caprolactone (ε-CL). The simulation coincides with the experimental results and provides microscopical data of triad fractions, lengths of homopolymer segments, etc., which are difficult to obtain by experiments. The algorithm presents also a uniform frame for copolymerization studies under other complicated mechanisms.

  6. Testing Homogeneity of Mixture of Skew-normal Distributions Via Markov Chain Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Rahman Farnoosh Morteza Ebrahimi

    2015-05-01

    Full Text Available The main purpose of this study is to intoduce an optimal penalty function for testing homogeneity of finite mixture of skew-normal distribution based on Markov Chain Monte Carlo (MCMC simulation. In the present study the penalty function is considered as a parametric function in term of parameter of mixture models and a Baysian approach is employed to estimating the parameters of model. In order to examine the efficiency of the present study in comparison with the previous approaches, some simulation studies are presented.

  7. Corsika+Herwig Monte Carlo Simulation of Neutrino Induced Atmospheric Air Showers

    CERN Document Server

    Ambrosio, M; Selva, A D; Miele, G; Pastor, S; Pisanti, O; Rosa, L

    2003-01-01

    High-energy neutrino astronomy represents an open window both on astrophysical mechanisms of particle acceleration and on fundamental interactions. The possibility of detecting them in large earth-based apparatus, like AUGER, AMANDA, ANTARES, is quite challenging. In view of this, the capability of generating reliable simulations of air showers induced by neutrinos is mandatory in the analysis of experimental data. In this paper we describe preliminary results towards the development of a new version of the Monte Carlo CORSIKA, capable of handling neutrinos too as primary particles. In our approach the first interaction of the primary neutrino is simulated in CORSIKA with a call to the HERWIG event generator.

  8. Semiconductor phonon and charge transport Monte Carlo simulation using Geant4

    CERN Document Server

    Brandt, D; Redl, P; Schneck, K; Asai, M; Kelsey, M; Faiez, D; Bagli, E; Cabrera, B; Partridge, R; Saab, T; Sadoulet, B

    2014-01-01

    A phonon and charge transport simulation based on the Geant4 Monte Carlo toolkit is presented. The transport code is capable of propagating acoustic phonons, electrons and holes in cryogenic crystals. Anisotropic phonon propagation, oblique carrier propagation and phonon emission by accelerated carriers are all taken into account. The simulation successfully reproduces theoretical predictions and experimental observations such as phonon caustics, heat pulse propagation times and mean carrier drift velocities. Implementation of the transport code using the Geant4 toolkit ensures availability to the wider scientific community.

  9. A Monte Carlo algorithm for simulating fermions on Lefschetz thimbles

    CERN Document Server

    Alexandru, Andrei; Bedaque, Paulo

    2016-01-01

    A possible solution of the notorious sign problem preventing direct Monte Carlo calculations for systems with non-zero chemical potential is to deform the integration region in the complex plane to a Lefschetz thimble. We investigate this approach for a simple fermionic model. We introduce an easy to implement Monte Carlo algorithm to sample the dominant thimble. Our algorithm relies only on the integration of the gradient flow in the numerically stable direction, which gives it a distinct advantage over the other proposed algorithms. We demonstrate the stability and efficiency of the algorithm by applying it to an exactly solvable fermionic model and compare our results with the analytical ones. We report a very good agreement for a certain region in the parameter space where the dominant contribution comes from a single thimble, including a region where standard methods suffer from a severe sign problem. However, we find that there are also regions in the parameter space where the contribution from multiple...

  10. Monte Carlo simulations of the Galileo energetic particle detector

    CERN Document Server

    Jun, I; Garrett, H B; McEntire, R W

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.

  11. Monte Carlo simulation of magnetization switching in a Heisenberg model for small ferromagnetic particles

    OpenAIRE

    Hinzke, Denise; Nowak, Ulrich

    1999-01-01

    Using Monte Carlo methods we investigate the thermally activated magnetization switching of small ferromagnetic particles driven by an external magnetic field. For low uniaxial anisotropy one expects that the spins rotate coherently while for sufficiently large anisotropy the reversal should be due to nucleation. The latter case has been investigated extensively by Monte Carlo simulation of corresponding Ising models. In order to study the crossover from coherent rotation to nucleation we use...

  12. Catfish: A Monte Carlo simulator for black holes at the LHC

    CERN Document Server

    Cavaglià, M; Cremaldi, L; Summers, D

    2006-01-01

    We present a new Fortran Monte Carlo generator to simulate black hole events at CERN's Large Hadron Collider. The generator interfaces to the PYTHIA Monte Carlo fragmentation code. The physics of the BH generator includes, but not limited to, inelasticity effects, exact field emissivities, corrections to semiclassical black hole evaporation and gravitational energy loss at formation. These features are essential to realistically reconstruct the detector response and test different models of black hole formation and decay at the LHC.

  13. Catfish: A Monte Carlo simulator for black holes at the LHC

    Science.gov (United States)

    Cavaglià, M.; Godang, R.; Cremaldi, L.; Summers, D.

    2007-09-01

    We present a new Fortran Monte Carlo generator to simulate black hole events at CERN's Large Hadron Collider. The generator interfaces to the PYTHIA Monte Carlo fragmentation code. The physics of the BH generator includes, but not limited to, inelasticity effects, exact field emissivities, corrections to semiclassical black hole evaporation and gravitational energy loss at formation. These features are essential to realistically reconstruct the detector response and test different models of black hole formation and decay at the LHC.

  14. Monte Carlo simulation of nuclear energy study (II). Annual report on Nuclear Code Evaluation Committee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    In the report, research results discussed in 1999 fiscal year at Nuclear Code Evaluation Committee of Nuclear Code Research Committee were summarized. Present status of Monte Carlo simulation on nuclear energy study was described. Especially, besides of criticality, shielding and core analyses, present status of applications to risk and radiation damage analyses, high energy transport and nuclear theory calculations of Monte Carlo Method was described. The 18 papers are indexed individually. (J.P.N.)

  15. Monte Carlo simulation of NSE at reactor and spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Zsigmond, G.; Wechsler, D.; Mezei, F. [Hahn-Meitner-Institut Berlin, Berlin (Germany)

    2001-03-01

    A MC (Monte Carlo) computation study of NSE (Neutron Spin Echo) has been performed by means of VITESS investigating the classic and TOF-NSE options at spallation sources. The use of white beams in TOF-NSE makes the flipper efficiency in function of the neutron wavelength an important issue. The emphasis was put on exact evaluation of flipper efficiencies for wide wavelength-band instruments. (author)

  16. Continuous Time Quantum Monte Carlo simulation of Kondo shuttling

    Science.gov (United States)

    Zhang, Peng; Assaad, Fakher; Jarrell, Mark

    2010-03-01

    The Kondo shuttling problem is investigated by using the Continuous Time Quantum Monte Carlo method in both the anti-adiabatic limit φTK and the intermediate regime φ˜TK, where φ is the phonon modulation frequency and TK is the Kondo temperature. We investigate the potential emergence of Kondo effect or Kondo breakdown as a function of the phonon modulation frequency and electron-phonon coupling. This research is supported by grant OISE-0952300.

  17. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering

    Science.gov (United States)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.

    2015-07-01

    Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of population-annealing Monte Carlo by computing ground states of the three-dimensional Ising spin glass with Gaussian disorder, while comparing to simulated-annealing and parallel-tempering Monte Carlo. Our results suggest that population annealing Monte Carlo is significantly more efficient than simulated annealing but comparable to parallel-tempering Monte Carlo for finding spin-glass ground states.

  18. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering.

    Science.gov (United States)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G

    2015-07-01

    Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of population-annealing Monte Carlo by computing ground states of the three-dimensional Ising spin glass with Gaussian disorder, while comparing to simulated-annealing and parallel-tempering Monte Carlo. Our results suggest that population annealing Monte Carlo is significantly more efficient than simulated annealing but comparable to parallel-tempering Monte Carlo for finding spin-glass ground states.

  19. Three dimensional Monte Carlo simulations of ionized nebulae

    Science.gov (United States)

    Ercolano, Barbara

    2002-12-01

    The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitrary geometries and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of treating one or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations. This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this thesis. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot, 1986; Ferland et al., 1995; Pequignot et al., 2001). The results obtained for the benchmark cases are satisfactory and are presented in this work. A performance analysis has also been carried out and is discussed here. The code has been applied to construct a realistic model of the planetary nebula NGC 3918. Three different geometric models were tried, the first being the biconical density distribution already used by Clegg et al. (1987). In this model the nebula is approximated

  20. Monte Carlo computer simulation of sedimentation of charged hard spherocylinders

    Energy Technology Data Exchange (ETDEWEB)

    Viveros-Méndez, P. X., E-mail: xviveros@fisica.uaz.edu.mx; Aranda-Espinoza, S. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo, La Bufa s/n, 98060 Zacatecas, Zacatecas, México (Mexico); Gil-Villegas, Alejandro [Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, México (Mexico)

    2014-07-28

    In this article we present a NVT Monte Carlo computer simulation study of sedimentation of an electroneutral mixture of oppositely charged hard spherocylinders (CHSC) with aspect ratio L/σ = 5, where L and σ are the length and diameter of the cylinder and hemispherical caps, respectively, for each particle. This system is an extension of the restricted primitive model for spherical particles, where L/σ = 0, and it is assumed that the ions are immersed in an structureless solvent, i.e., a continuum with dielectric constant D. The system consisted of N = 2000 particles and the Wolf method was implemented to handle the coulombic interactions of the inhomogeneous system. Results are presented for different values of the strength ratio between the gravitational and electrostatic interactions, Γ = (mgσ)/(e{sup 2}/Dσ), where m is the mass per particle, e is the electron's charge and g is the gravitational acceleration value. A semi-infinite simulation cell was used with dimensions L{sub x} ≈ L{sub y} and L{sub z} = 5L{sub x}, where L{sub x}, L{sub y}, and L{sub z} are the box dimensions in Cartesian coordinates, and the gravitational force acts along the z-direction. Sedimentation effects were studied by looking at every layer formed by the CHSC along the gravitational field. By increasing Γ, particles tend to get more packed at each layer and to arrange in local domains with an orientational ordering along two perpendicular axis, a feature not observed in the uncharged system with the same hard-body geometry. This type of arrangement, known as tetratic phase, has been observed in two-dimensional systems of hard-rectangles and rounded hard-squares. In this way, the coupling of gravitational and electric interactions in the CHSC system induces the arrangement of particles in layers, with the formation of quasi-two dimensional tetratic phases near the surface.

  1. Monte Carlo simulations of tungsten redeposition at the divertor target

    Science.gov (United States)

    Chankin, A. V.; Coster, D. P.; Dux, R.

    2014-02-01

    Recent modeling of controlled edge-localized modes (ELMs) in ITER with tungsten (W) divertor target plates by the SOLPS code package predicted high electron temperatures (>100 eV) and densities (>1 × 1021 m-3) at the outer target. Under certain scenarios W sputtered during ELMs can penetrate into the core in quantities large enough to cause deterioration of the discharge performance, as was shown by coupled SOLPS5.0/STRAHL/ASTRA runs. The net sputtering yield, however, was expected to be dramatically reduced by the ‘prompt redeposition’ during the first Larmor gyration of W1+ (Fussman et al 1995 Proc. 15th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research (Vienna: IAEA) vol 2, p 143). Under high ne/Te conditions at the target during ITER ELMs, prompt redeposition would reduce W sputtering by factor p-2 ˜ 104 (with p ≡ τionωgyro ˜ 0.01). However, this relation does not include the effects of multiple ionizations of sputtered W atoms and the electric field in the magnetic pre-sheath (MPS, or ‘Chodura sheath’) and Debye sheath (DS). Monte Carlo simulations of W redeposition with the inclusion of these effects are described in the paper. It is shown that for p ≪ 1, the inclusion of multiple W ionizations and the electric field in the MPS and DS changes the physics of W redeposition from geometrical effects of circular gyro-orbits hitting the target surface, to mainly energy considerations; the key effect is the electric potential barrier for ions trying to escape into the main plasma. The overwhelming majority of ions are drawn back to the target by a strong attracting electric field. It is also shown that the possibility of a W self-sputtering avalanche by ions circulating in the MPS can be ruled out due to the smallness of the sputtered W neutral energies, which means that they do not penetrate very far into the MPS before ionizing; thus the W ions do not gain a large kinetic energy as they are accelerated back to the surface by the

  2. CARMEN: a system Monte Carlo based on linear programming from direct openings; CARMEN: Un sistema de planficiacion Monte Carlo basado en programacion lineal a partir de aberturas directas

    Energy Technology Data Exchange (ETDEWEB)

    Ureba, A.; Pereira-Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Salguero, F. J.; Leal, A.

    2013-07-01

    The use of Monte Carlo (MC) has shown an improvement in the accuracy of the calculation of the dose compared to other analytics algorithms installed on the systems of business planning, especially in the case of non-standard situations typical of complex techniques such as IMRT and VMAT. Our treatment planning system called CARMEN, is based on the complete simulation, both the beam transport in the head of the accelerator and the patient, and simulation designed for efficient operation in terms of the accuracy of the estimate and the required computation times. (Author)

  3. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqing

    2011-12-22

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  4. SU-E-T-761: TOMOMC, A Monte Carlo-Based Planning VerificationTool for Helical Tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Present a new Monte Carlo code (TOMOMC) to calculate 3D dose distributions for patients undergoing helical tomotherapy treatments. TOMOMC performs CT-based dose calculations using the actual dynamic variables of the machine (couch motion, gantry rotation, and MLC sequences). Methods: TOMOMC is based on the GEPTS (Gama Electron and Positron Transport System) general-purpose Monte Carlo system (Chibani and Li, Med. Phys. 29, 2002, 835). First, beam models for the Hi-Art Tomotherpy machine were developed for the different beam widths (1, 2.5 and 5 cm). The beam model accounts for the exact geometry and composition of the different components of the linac head (target, primary collimator, jaws and MLCs). The beams models were benchmarked by comparing calculated Pdds and lateral/transversal dose profiles with ionization chamber measurements in water. See figures 1–3. The MLC model was tuned in such a way that tongue and groove effect, inter-leaf and intra-leaf transmission are modeled correctly. See figure 4. Results: By simulating the exact patient anatomy and the actual treatment delivery conditions (couch motion, gantry rotation and MLC sinogram), TOMOMC is able to calculate the 3D patient dose distribution which is in principal more accurate than the one from the treatment planning system (TPS) since it relies on the Monte Carlo method (gold standard). Dose volume parameters based on the Monte Carlo dose distribution can also be compared to those produced by the TPS. Attached figures show isodose lines for a H&N patient calculated by TOMOMC (transverse and sagittal views). Analysis of differences between TOMOMC and TPS is an ongoing work for different anatomic sites. Conclusion: A new Monte Carlo code (TOMOMC) was developed for Tomotherapy patient-specific QA. The next step in this project is implementing GPU computing to speed up Monte Carlo simulation and make Monte Carlo-based treatment verification a practical solution.

  5. Intrinsic fluorescence of protein in turbid media using empirical relation based on Monte Carlo lookup table

    Science.gov (United States)

    Einstein, Gnanatheepam; Udayakumar, Kanniyappan; Aruna, Prakasarao; Ganesan, Singaravelu

    2017-03-01

    Fluorescence of Protein has been widely used in diagnostic oncology for characterizing cellular metabolism. However, the intensity of fluorescence emission is affected due to the absorbers and scatterers in tissue, which may lead to error in estimating exact protein content in tissue. Extraction of intrinsic fluorescence from measured fluorescence has been achieved by different methods. Among them, Monte Carlo based method yields the highest accuracy for extracting intrinsic fluorescence. In this work, we have attempted to generate a lookup table for Monte Carlo simulation of fluorescence emission by protein. Furthermore, we fitted the generated lookup table using an empirical relation. The empirical relation between measured and intrinsic fluorescence is validated using tissue phantom experiments. The proposed relation can be used for estimating intrinsic fluorescence of protein for real-time diagnostic applications and thereby improving the clinical interpretation of fluorescence spectroscopic data.

  6. Electron density of states of Fe-based superconductors: Quantum trajectory Monte Carlo method

    Science.gov (United States)

    Kashurnikov, V. A.; Krasavin, A. V.; Zhumagulov, Ya. V.

    2016-03-01

    The spectral and total electron densities of states in two-dimensional FeAs clusters, which simulate iron-based superconductors, have been calculated using the generalized quantum Monte Carlo algorithm within the full two-orbital model. Spectra have been reconstructed by solving the integral equation relating the Matsubara Green's function and spectral density by the method combining the gradient descent and Monte Carlo algorithms. The calculations have been performed for clusters with dimensions up to 10 × 10 FeAs cells. The profiles of the Fermi surface for the entire Brillouin zone have been presented in the quasiparticle approximation. Data for the total density of states near the Fermi level have been obtained. The effect of the interaction parameter, size of the cluster, and temperature on the spectrum of excitations has been studied.

  7. OPTIMIZATION OF THE HYSPEC DESIGN USING MONTE CARLO SIMULATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    GHOSH, V.J.; HAGEN, M.E.; LEONHARDT, W.J.; ZALIZNYAK, I.; SHAPIRO, S.M.; PASSELL, L.

    2005-04-25

    HYSPEC is a direct geometry spectrometer to be installed at the SNS [1] on beamline 14B where it will view a cryogenic coupled hydrogen moderator, The ''hybrid'' design combines time-of-flight spectroscopy with focusing Bragg optics to provide a high monochromatic flux on small single crystal samples, with a very low background at an extended detector bank. The instrument is optimized for an incident energy range of 3-90meV. It will have a medium energy resolution (2-10%) and will provide a flux on sample of the order of 10{sup 6}-10{sup 7} neutrons/s-cm{sup 2}. The spectrometer will be located in a satellite building outside the SNS experimental hall at the end of a 35m curved supermirror guide. A straight-slotted Fermi chopper will be used to monochromate the neutron beam and to determine the burst width. The 15cm high, 4cm wide beam will be focused onto a 2cm by 2cm area at the sample position using Bragg reflection from one of two crystal arrays. For unpolarized neutron studies these will be Highly Oriented Pyrolitic graphite crystals while for polarized neutron studies these will be replaced with Heusler alloy crystals. These focusing crystal arrays will be placed in a drum shield similar to those used for triple axis spectrometers. Hyspec will have a movable detector bank housing 160 position sensitive detectors. This detector bank will pivot about the sample axis. It will have a radius of 4.5m, a horizontal range of 60{sup o}, and a vertical range of {+-} 7.5{sup o}. In order to reduce background at the detector bank both a curved guide and a T0 chopper will be used. A bank of 20 supermirror bender polarization analyzers [2] will be used to spatially separate the polarized neutrons in the scattered beam so that both scattered neutron spin states can be measured simultaneously. The results of Monte Carlo simulations performed to optimize the instrument design will be discussed.

  8. Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation

    Science.gov (United States)

    Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.

  9. Method for converting in-situ gamma ray spectra of a portable Ge detector to an incident photon flux energy distribution based on Monte Carlo simulation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A matrix stripping method for the conversion of in-situ gamma ray spectrum, obtained with portable Ge detector, to photon flux energy distribution is proposed. The detector response is fully described by its stripping matrix and full absorption efficiency curve. A charge collection efficiency function is introduced in the simulation to take into account the existence of a transition zone of increasing charge collection after the inactive Ge layer. Good agreement is obtained between simulated and experimental full absorption efficiencies. The characteristic stripping matrix is determined by Monte Carlo simulation for different incident photon energies using the Geant4 toolkit system. The photon flux energy distribution is deduced by stripping the measured spectrum of the partial absorption and cosmic ray events and then applying the full absorption efficiency curve. The stripping method is applied to a measured in-situ spectrum. The value of the absorbed dose rate in air deduced from the corresponding flux energy distribution agrees well with the value measured directly in-situ.

  10. Monte Carlo simulations of the radiation environment for the CMS Experiment

    CERN Document Server

    Mallows, Sophie

    2015-01-01

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarised, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  11. Monte Carlo simulation with aspect-ratio optimization: anomalous anisotropic scaling in dimerized antiferromagnets.

    Science.gov (United States)

    Yasuda, Shinya; Todo, Synge

    2013-12-01

    We present a method that optimizes the aspect ratio of a spatially anisotropic quantum lattice model during the quantum Monte Carlo simulation, and realizes the virtually isotropic lattice automatically. The anisotropy is removed by using the Robbins-Monro algorithm based on the correlation length in each direction. The method allows for comparing directly the value of the critical amplitude among different anisotropic models, and identifying the universality more precisely. We apply our method to the staggered dimer antiferromagnetic Heisenberg model and demonstrate that the apparent nonuniversal behavior is attributed mainly to the strong size correction of the effective aspect ratio due to the existence of the cubic interaction.

  12. Integrated logistic support studies using behavioral Monte Carlo simulation, supported by Generalized Stochastic Petri Nets

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, Robert; Chevalier, Marcel [Schneider Electric (France)

    2000-07-01

    Studying large and complex industrial sites, requires more and more accuracy in modeling. In particular, when considering Spares, Maintenance and Repair / Replacement processes, determining optimal Integrated Logistic Support policies requires a high level modeling formalism, in order to make the model as close as possible to the real considered processes. Generally, numerical methods are used to process this kind of study. In this paper, we propose an alternate way to process optimal Integrated Logistic Support policy determination when dealing with large, complex and distributed multi-policies industrial sites. This method is based on the use of behavioral Monte Carlo simulation, supported by Generalized Stochastic Petri Nets. (author)

  13. Tests of General relativity with planetary orbits and Monte Carlo simulations

    CERN Document Server

    Fienga, A; Exertier, P; Manche, H; Gastineau, M

    2014-01-01

    Based on the new developped planetary ephemerides INPOP13c, determinations of acceptable intervals of General Relativity violation in considering simultaneously the PPN parameters $\\beta$, PPN $\\gamma$, the flattening of the sun $J_{2}^\\odot$ and time variation of the gravitational mass of the sun $\\mu$ are obtained in using Monte Carlo simulation coupled with basic genetic algorithm. Possible time variations of the gravitational constant G are also deduced. Discussions are lead about the better choice of indicators for the goodness-of-fit for each run and limits consistent with general relativity are obtained simultaneously.

  14. Open-source direct simulation Monte Carlo chemistry modeling for hypersonic flows

    OpenAIRE

    Scanlon, Thomas J.; White, Craig; Borg, Matthew K.; Palharini, Rodrigo C.; Farbar, Erin; Boyd, Iain D.; Reese, Jason M.; Brown, Richard E

    2015-01-01

    An open source implementation of chemistry modelling for the direct simulationMonte Carlo (DSMC) method is presented. Following the recent work of Bird [1] an approach known as the quantum kinetic (Q-K) method has been adopted to describe chemical reactions in a 5-species air model using DSMC procedures based on microscopic gas information. The Q-K technique has been implemented within the framework of the dsmcFoam code, a derivative of the open source CFD code OpenFOAM. Results for vibration...

  15. Monte Carlo simulations of the radiation environment for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mallows, S., E-mail: sophie.mallows@cern.ch [KIT, Karlsruhe (Germany); Azhgirey, I.; Bayshev, I. [IHEP, Protvino (Russian Federation); Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M. [CERN, Geneva (Switzerland); Kurochkin, I. [IHEP, Protvino (Russian Federation); Vincke, H.; Tajeda, S. [CERN, Geneva (Switzerland)

    2016-07-11

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton–proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarized, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  16. Monte Carlo simulations for the optimisation of low-background Ge detector designs

    Energy Technology Data Exchange (ETDEWEB)

    Hakenmueller, Janina; Heusser, Gerd; Maneschg, Werner; Schreiner, Jochen; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert; Weber, Marc; Westernmann, Jonas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Laubenstein, Matthias [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi L' Aquila (Italy)

    2015-07-01

    Monte Carlo simulations for the low-background Ge spectrometer Giove at the underground laboratory of MPI-K, Heidelberg, are presented. In order to reduce the cosmogenic background at the present shallow depth (15 m w.e.) the shielding of the spectrometer includes an active muon veto and a passive shielding (lead and borated PE layers). The achieved background suppression is comparable to Ge spectrometers operated in much greater depth. The geometry of the detector and the shielding were implemented using the Geant4-based toolkit MaGe. The simulations were successfully optimised by determining the correct diode position and active volume. With the help of the validated Monte Carlo simulation the contribution of the single components to the overall background can be examined. This includes a comparison between simulated results and measurements with different fillings of the sample chamber. Having reproduced the measured detector background in the simulation provides the possibility to improve the background by reverse engineering of the passive and active shield layers in the simulation.

  17. Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations

    Science.gov (United States)

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.

    2014-07-01

    Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.

  18. Hydration structure in concentrated aqueous lithium chloride solutions: A reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data

    Science.gov (United States)

    Harsányi, I.; Pusztai, L.

    2012-11-01

    We report on a comparison of three interaction potential models of water (SPC/E, TIP4P-2005, and SWM4-DP) for describing the structure of concentrated aqueous lithium chloride solutions. Classical molecular dynamics simulations have been carried out and total scattering structure factors, calculated from the particle configurations, were compared with experimental diffraction data. Later, reverse Monte Carlo structural modelling was applied for refining molecular dynamics results, so that particle configurations consistent with neutron and X-ray diffraction data could be prepared that, at the same time, were as close as possible to the final stage of the molecular dynamics simulations. Partial radial distribution functions, first neighbors, and angular correlations were analysed further from the best fitting particle configurations. It was found that none of the water potential models describe the structure perfectly; overall, the SWM4-DP model seems to be the most promising. At the highest concentrations the SPC/E model appears to provide the best approximation of the water structure, whereas the TIP4P-2005 model proved to be the most successful for estimating the lithium-oxygen partial radial distribution function at each concentration.

  19. Monte Carlo simulations as a feasibility tool for non-metallic land-mine detection by thermal-neutron backscattering

    NARCIS (Netherlands)

    Maucec, M; de Meijer, RJ

    2002-01-01

    The use of Monte Carlo simulations is presented for modelling a simplified land-mine detector system with thermal neutron backscattering (TNB) analysis based on a Cf-252-neutron source. Different aspects and a variety of external conditions, related to localisation and identification of a buried obj

  20. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    Science.gov (United States)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  1. MCViNE - An object oriented Monte Carlo neutron ray tracing simulation package

    Science.gov (United States)

    Lin, Jiao Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2016-02-01

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  2. Monte-Carlo simulations of neutron shielding for the ATLAS forward region

    CERN Document Server

    Stekl, I; Kovalenko, V E; Vorobel, V; Leroy, C; Piquemal, F; Eschbach, R; Marquet, C

    2000-01-01

    The effectiveness of different types of neutron shielding for the ATLAS forward region has been studied by means of Monte-Carlo simulations and compared with the results of an experiment performed at the CERN PS. The simulation code is based on GEANT, FLUKA, MICAP and GAMLIB. GAMLIB is a new library including processes with gamma-rays produced in (n, gamma), (n, n'gamma) neutron reactions and is interfaced to the MICAP code. The effectiveness of different types of shielding against neutrons and gamma-rays, composed from different types of material, such as pure polyethylene, borated polyethylene, lithium-filled polyethylene, lead and iron, were compared. The results from Monte-Carlo simulations were compared to the results obtained from the experiment. The simulation results reproduce the experimental data well. This agreement supports the correctness of the simulation code used to describe the generation, spreading and absorption of neutrons (up to thermal energies) and gamma-rays in the shielding materials....

  3. Monte Carlo simulations of the stability of delta-Pu

    DEFF Research Database (Denmark)

    Landa, A.; Soderlind, P.; Ruban, Andrei

    2003-01-01

    The transition temperature (T-c) for delta-Pu has been calculated for the first time. A Monte Carlo method is employed for this purpose and the effective cluster interactions are obtained from first-principles calculations incorporated with the Connolly-Williams and generalized perturbation methods....... It is found that at T-c similar to 548 K, delta-Pu undergoes transformation from a disordered magnetic state to a structure with an anti ferromagnetic spin alignment that is mechanically unstable with respect to tetragonal distortion. The calculated transition temperature is in good agreement...

  4. Monte Carlo simulations of the stability of delta-Pu

    CERN Document Server

    Landa, A; Ruban, A

    2003-01-01

    The transition temperature (T sub c) for delta-Pu has been calculated for the first time. A Monte Carlo method is employed for this purpose and the effective cluster interactions are obtained from first-principles calculations incorporated with the Connolly-Williams and generalized perturbation methods. It is found that at T sub c approx 548 K, delta-Pu undergoes transformation from a disordered magnetic state to a structure with an antiferromagnetic spin alignment that is mechanically unstable with respect to tetragonal distortion. The calculated transition temperature is in good agreement with the temperature measured at the gamma -> delta transition (593 K). (letter to the editor)

  5. Characterization of Siemens Bio graph 6 PET by Monte Carlo simulation; Caracterizacion del escaner PET Biograph 6 de Siemens mediante simulacion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Gallego Franco, P.; Garcia Marcos, R.

    2015-07-01

    GAMOS simulation code based on Geant4 is a very powerful tool for the design and modeling optimization on Positron Emission Tomography (PET) systems. In order to obtain a proper image quality, it results to be extremely important determine the optimal activity which is going to be delivered. For this reason a study about the internal system parameters that affects image quality, such as scatter fraction (SF) and the count rate equivalent noise (NEC), has been carried out. The study involves the comparison of experimental measures on both parameters, with those obtained by Monte Carlo simulation of Siemens Pet Biograph 6 True Point with True V option. Based on simulations results, a paralizable dead-time model that adjusts, depending on the activity provided, the proper dead-time for scanner detectors. Also a study about the variation of this proper dead-time with the activity has been carried out. (Author)

  6. Comparing analytical and Monte Carlo optical diffusion models in phosphor-based X-ray detectors

    Science.gov (United States)

    Kalyvas, N.; Liaparinos, P.

    2014-03-01

    Luminescent materials are employed as radiation to light converters in detectors of medical imaging systems, often referred to as phosphor screens. Several processes affect the light transfer properties of phosphors. Amongst the most important is the interaction of light. Light attenuation (absorption and scattering) can be described either through "diffusion" theory in theoretical models or "quantum" theory in Monte Carlo methods. Although analytical methods, based on photon diffusion equations, have been preferentially employed to investigate optical diffusion in the past, Monte Carlo simulation models can overcome several of the analytical modelling assumptions. The present study aimed to compare both methodologies and investigate the dependence of the analytical model optical parameters as a function of particle size. It was found that the optical photon attenuation coefficients calculated by analytical modeling are decreased with respect to the particle size (in the region 1- 12 μm). In addition, for particles sizes smaller than 6μm there is no simultaneous agreement between the theoretical modulation transfer function and light escape values with respect to the Monte Carlo data.

  7. Monte Carlo simulation for radiation dose in children radiology; Simulacao Monte Carlo da dose para radiologia pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Hitalo R.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    The dosimetry in pediatric radiology is essential due to the higher risk that children have in comparison to adults. The focus of this study is to present how the dose varies depending on the depth in a 10 year old and a newborn, for this purpose simulations are made using the Monte Carlo method. Potential differences were considered 70 and 90 kVp for the 10 year old and 70 and 80 kVp for the newborn. The results show that in both cases, the dose at the skin surface is larger for smaller potential value, however, it decreases faster for larger potential values. Another observation made is that because the newborn is less thick the ratio between the initial dose and the final is lower compared to the case of a 10 year old, showing that it is possible to make an image using a smaller entrance dose in the skin, keeping the same level of exposure at the detector. (author)

  8. Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2002-01-01

    Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.

  9. Modeling and Design of GaN High Electron Mobility Transistors and Hot Electron Transistors through Monte Carlo Particle-based Device Simulations

    Science.gov (United States)

    Soligo, Riccardo

    In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the

  10. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units.

    Science.gov (United States)

    Fang, Qianqian; Boas, David A

    2009-10-26

    We report a parallel Monte Carlo algorithm accelerated by graphics processing units (GPU) for modeling time-resolved photon migration in arbitrary 3D turbid media. By taking advantage of the massively parallel threads and low-memory latency, this algorithm allows many photons to be simulated simultaneously in a GPU. To further improve the computational efficiency, we explored two parallel random number generators (RNG), including a floating-point-only RNG based on a chaotic lattice. An efficient scheme for boundary reflection was implemented, along with the functions for time-resolved imaging. For a homogeneous semi-infinite medium, good agreement was observed between the simulation output and the analytical solution from the diffusion theory. The code was implemented with CUDA programming language, and benchmarked under various parameters, such as thread number, selection of RNG and memory access pattern. With a low-cost graphics card, this algorithm has demonstrated an acceleration ratio above 300 when using 1792 parallel threads over conventional CPU computation. The acceleration ratio drops to 75 when using atomic operations. These results render the GPU-based Monte Carlo simulation a practical solution for data analysis in a wide range of diffuse optical imaging applications, such as human brain or small-animal imaging.

  11. Monte Carlo simulation of classical spin models with chaotic billiards.

    Science.gov (United States)

    Suzuki, Hideyuki

    2013-11-01

    It has recently been shown that the computing abilities of Boltzmann machines, or Ising spin-glass models, can be implemented by chaotic billiard dynamics without any use of random numbers. In this paper, we further numerically investigate the capabilities of the chaotic billiard dynamics as a deterministic alternative to random Monte Carlo methods by applying it to classical spin models in statistical physics. First, we verify that the billiard dynamics can yield samples that converge to the true distribution of the Ising model on a small lattice, and we show that it appears to have the same convergence rate as random Monte Carlo sampling. Second, we apply the billiard dynamics to finite-size scaling analysis of the critical behavior of the Ising model and show that the phase-transition point and the critical exponents are correctly obtained. Third, we extend the billiard dynamics to spins that take more than two states and show that it can be applied successfully to the Potts model. We also discuss the possibility of extensions to continuous-valued models such as the XY model.

  12. Monte Carlo molecular simulation of phase-coexistence for oil production and processing

    KAUST Repository

    Li, Jun

    2011-01-01

    The Gibbs-NVT ensemble Monte Carlo method is used to simulate the liquid-vapor coexistence diagram and the simulation results of methane agree well with the experimental data in a wide range of temperatures. For systems with two components, the Gibbs-NPT ensemble Monte Carlo method is employed in the simulation while the mole fraction of each component in each phase is modeled as a Leonard-Jones fluid. As the results of Monte Carlo simulations usually contain huge statistical error, the blocking method is used to estimate the variance of the simulation results. Additionally, in order to improve the simulation efficiency, the step sizes of different trial moves is adjusted automatically so that their acceptance probabilities can approach to the preset values.

  13. Comprehensive Evaluations of Cone-beam CT dose in Image-guided Radiation Therapy via GPU-based Monte Carlo simulations

    CERN Document Server

    Montanari, Davide; Silvestri, Chiara; Graves, Yan J; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B; Jia, Xun

    2013-01-01

    Cone beam CT (CBCT) has been widely used for patient setup in image guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are 1) to commission a GPU-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and 2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. 25 brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is fo...

  14. The exchange bias phenomenon in uncompensated interfaces: theory and Monte Carlo simulations.

    Science.gov (United States)

    Billoni, O V; Cannas, S A; Tamarit, F A

    2011-09-28

    We performed Monte Carlo simulations of a bilayer system composed of two thin films, one ferromagnetic (FM) and the other antiferromagnetic (AFM). Two lattice structures for the films were considered: simple cubic and body centered cubic (bcc). We imposed an uncompensated interfacial spin structure in both lattice structures; in particular we emulated an FeF2-FM system in the case of the bcc lattice. Our analysis focused on the incidence of the interfacial strength interactions between the films, J(eb), and the effect of thermal fluctuations on the bias field, H(EB). We first performed Monte Carlo simulations on a microscopic model based on classical Heisenberg spin variables. To analyze the simulation results we also introduced a simplified model that assumes coherent rotation of spins located on the same layer parallel to the interface. We found that, depending on the AFM film anisotropy to exchange ratio, the bias field is controlled either by the intrinsic pinning of a domain wall parallel to the interface or by the stability of the first AFM layer (quasi-domain wall) near the interface.

  15. Study of magnetic properties for co double-nanorings: Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingying, E-mail: qyye@fjnu.edu.cn [College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350007 (China); Chen, Shuiyuan [College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350007 (China); Electrical and Computer Engineering, Northeastern University, Boston, 02115 (United States); Liu, Jingyao; Huang, Chao; Huang, Shengkai [College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350007 (China); Huang, Zhigao, E-mail: zghuang@fjnu.edu.cn [College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350007 (China)

    2016-06-15

    In this paper, cobalt double-nanorings (Co D-N-rings) structure model was constructed. Based on Monte-Carlo simulation (MC) method combining with Fast Fourier Transformation and Micromagnetism (FFTM) method, the magnetic properties of Co D-N-rings with different geometric dimensions have been studied. The simulated results indicate that, the magnetization steps in hysteresis loops is the result of the special spin configurations (SCs), i.e., onion-type state and vortex-type state, which are very different from that in many other nanostructures, such as nanometer thin-films, nanotubes, etc. Besides, Co D-N-rings with different geometric dimensions present interesting magnetization behavior, which is determined by the change of both SCs and exchange interaction in Co D-N-rings. - Highlights: • A double-nanorings structure (named as D-N-rings) was proposed to construct cobalt nanometer thin film. • Monte Carlo method combining with FFTM method was used to simulate magnetic properties of the Co D-N-rings. • Magnetization dynamic processes of the Co D-N-rings were obtained and interpreted through the evolutionary process of spin configurations. • Geometric dimensions deeply influence the magnetization behavior of the Co D-N-rings, which is determined by the change of both SCs and exchange interaction.

  16. The Geometric Cluster Algorithm: Rejection-Free Monte Carlo Simulation of Complex Fluids

    Science.gov (United States)

    Luijten, Erik

    2005-03-01

    The study of complex fluids is an area of intense research activity, in which exciting and counter-intuitive behavior continue to be uncovered. Ironically, one of the very factors responsible for such interesting properties, namely the presence of multiple relevant time and length scales, often greatly complicates accurate theoretical calculations and computer simulations that could explain the observations. We have recently developed a new Monte Carlo simulation methodootnotetextJ. Liu and E. Luijten, Phys. Rev. Lett.92, 035504 (2004); see also Physics Today, March 2004, pp. 25--27. that overcomes this problem for several classes of complex fluids. Our approach can accelerate simulations by orders of magnitude by introducing nonlocal, collective moves of the constituents. Strikingly, these cluster Monte Carlo moves are proposed in such a manner that the algorithm is rejection-free. The identification of the clusters is based upon geometric symmetries and can be considered as the off-latice generalization of the widely-used Swendsen--Wang and Wolff algorithms for lattice spin models. While phrased originally for complex fluids that are governed by the Boltzmann distribution, the geometric cluster algorithm can be used to efficiently sample configurations from an arbitrary underlying distribution function and may thus be applied in a variety of other areas. In addition, I will briefly discuss various extensions of the original algorithm, including methods to influence the size of the clusters that are generated and ways to introduce density fluctuations.

  17. Optimization studies of a Compton suppression spectrometer using experimentally validated Monte Carlo simulations

    Science.gov (United States)

    Scates, W.; Hartwell, J. K.; Aryaeinejad, R.; McIlwain, M. E.

    2006-01-01

    Recent developments associated with room temperature semiconductor detectors and inorganic scintillators suggest that these detectors may be viable alternatives for the primary detector in a Compton suppression spectrometer (CSS). The room temperature operation of these detectors allows removal of a substantial amount of material from between primary and secondary detectors, if properly designed and should afford substantially better suppression factors than can be achieved by germanium-based spectrometers. We have chosen to study the optimum properties of a CSS with a LaX 3:Ce scintillator (where X is chloride or bromide) as the primary gamma-ray detector. A Monte Carlo photon transport model is used to determine the optimum geometric properties of this spectrometer. To validate the assumptions and basic design of the Monte Carlo simulations, the energy distribution of a 137Cs point source is measured and simulated for two experimental systems. Comparison of the suppression factors for the measured and simulated data validates the model accuracy. A range of CSS physical parameters are studied to determine optimal detector geometry and to maximize the Compton suppression factor. These physical parameters and their optimum values are discussed.

  18. Hierarchical Acceleration of Multilevel Monte Carlo Methods for Computationally Expensive Simulations in Reservoir Modeling

    Science.gov (United States)

    Zhang, G.; Lu, D.; Webster, C.

    2014-12-01

    The rational management of oil and gas reservoir requires an understanding of its response to existing and planned schemes of exploitation and operation. Such understanding requires analyzing and quantifying the influence of the subsurface uncertainties on predictions of oil and gas production. As the subsurface properties are typically heterogeneous causing a large number of model parameters, the dimension independent Monte Carlo (MC) method is usually used for uncertainty quantification (UQ). Recently, multilevel Monte Carlo (MLMC) methods were proposed, as a variance reduction technique, in order to improve computational efficiency of MC methods in UQ. In this effort, we propose a new acceleration approach for MLMC method to further reduce the total computational cost by exploiting model hierarchies. Specifically, for each model simulation on a new added level of MLMC, we take advantage of the approximation of the model outputs constructed based on simulations on previous levels to provide better initial states of new simulations, which will help improve efficiency by, e.g. reducing the number of iterations in linear system solving or the number of needed time-steps. This is achieved by using mesh-free interpolation methods, such as Shepard interpolation and radial basis approximation. Our approach is applied to a highly heterogeneous reservoir model from the tenth SPE project. The results indicate that the accelerated MLMC can achieve the same accuracy as standard MLMC with a significantly reduced cost.

  19. Dynamic Monte Carlo simulation of chain growth polymerization and its concentration effect

    Institute of Scientific and Technical Information of China (English)

    LüWenqi

    2005-01-01

    [1]He, J., Zhang, H., Chen, J. et al., Monte Carlo simulation of kinetics and chain length distributions in living free-radical polymerization, Macromolecules, 1997, 30: 8010-8018.[2]Li, L., He, J., Yang, Y., Monte Carlo simulation on living radical polymerization with RAFT process, Chem. J. Chinese Univ. (in Chinese), 2000, 21(7): 1146-1148.[3]Ling, J., Shen, Z., Chen W., Algorithm and application of Monte Carlo simulation for multi-dispersive copolymerization system, Science in China, Series B, 2002, 45(3): 243-250.[4]Butte, A., Storti, G., Morbidelli, M., Evaluation of the chain length distribution in free-radical polymerization, 1. Bulk polymerization, Macromol. Theory Simul., 2002, 11: 22-36.[5]Smith, G. B., Russell, G. T., Heuts, J. P. A., Termination in dilute-solution free-radical polymerization: A composite model, Macromol. Theory Simul., 2003, 12: 299-314.[6]Zetterlund, P. B., Yamazoe, H., Yamada, B., Free radical bulk po- lymerization of styrene: Simulation of molecular weight distribu- tions to high conversion using experimentally obtained rate coef- ficients, Macromol. Theory Simul., 2003, 12: 379-385.[7]Binder, K., Paul, W., Monte Carlo simulations of polymer dy- namics: Recent advances, J. Polym. Sci., Polym. Phys. Ed., 1997, 35(1): 1-31.[8]Rouault, Y., Milchev, A., Monte Carlo study of living polymers with the bond-fluctuation method, Phys. Rev. E, 1995, 51(6): 5905-5910.[9]Jo, W. H., Lee, J. W., Lee, M. S. et al., Effect of interchange reactions on the molecular weight distribution of poly(ethylene terephthalate): A Monte Carlo simulation, J. Polym. Sci., Polym. Phys. Ed., 1996, 34: 725-729.[10]Jang, S. S., Ha, W. S., Jo, W. H. et al., Monte Carlo simulation of copolymerization by ester interchange reaction in miscible polyester blends, J. Polym. Sci., Polym. Phys. Ed., 1998, 36: 1637-1645.[11]Lee, Y. U., Jang, S. S., Jo, W. H., Off-lattice Monte Carlo simulation of hyperbranched p