WorldWideScience

Sample records for monte desert electronic

  1. Adjoint electron Monte Carlo calculations

    International Nuclear Information System (INIS)

    Jordan, T.M.

    1986-01-01

    Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment

  2. Biodiversity of Myxomycetes from the Monte Desert of Argentina

    Directory of Open Access Journals (Sweden)

    Lado, C.

    2011-06-01

    Full Text Available A biodiversity survey for myxomycetes was carried out in the Monte Desert (Argentina and surrounding areas in November 2006 and late February and March 2007. Specimens were collected in seven different provinces (Catamarca, Jujuy, La Rioja, Salta, San Juan, San Luis and Tucumán, between 23º and 33º S latitude, and a total of 105 localities were sampled. Cacti and succulent plants were the most common type of substrate investigated, but shrubs and herbs characteristic of this biome were also included in the survey. Almost six hundred specimens of myxomycetes from 72 different species in 22 genera were collected either in the field, or from moist chamber cultures prepared with samples of plant material obtained from the same collecting sites. The results include 1 species new to science, Macbrideola andina three more species recently described based on material from this survey, 5 species cited for the first time for the Neotropics, 11 new records for South America and 38 new records for Argentina. Taxonomic comments on rare or unusual species are included and illustrated with photographs by LM and SEM. Data are presented on the development of some species and microenvironmental factors are discussed. An analysis of the biodiversity of myxomycetes in this area, and a comparison with other desert areas, are included.

    Con el objetivo de estudiar la biodiversidad de Myxomycetes en el Desierto de Monte (Argentina y áreas circundantes, se realizó un muestreo en los meses de noviembre de 2006 y febrero y marzo de 2007. Se recolectaron especímenes en un total de 105 localidades pertenecientes a siete provincias (Catamarca, Jujuy, La Rioja, Salta, San Juan, San Luis y Tucumán, situadas entre los paralelos 23º y 33º de latitud sur. Los cactus y plantas suculentas fueron los tipos de sustratos más estudiados, pero también se analizaron arbustos y plantas herbáceas características de este bioma. Casi 600 especímenes de mixomicetes

  3. Monte Carlo electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.; Morel, J.E.; Hughes, H.G.

    1985-01-01

    A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs

  4. Monte Carlo Transport for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  5. Assessing degradation of abandoned farmlands for conservation of the Monte Desert biome in Argentina.

    Science.gov (United States)

    Yannelli, Florencia A; Tabeni, Solana; Mastrantonio, Leandro E; Vezzani, Nazareth

    2014-01-01

    Land abandonment is a major issue worldwide. In Argentina, the Monte Desert is the most arid rangeland, where the traditional conservation practices are based on successional management of areas excluded to disturbances or abandoned. Some areas subjected to this kind of management may be too degraded, and thus require active restoration. Therefore, the aim of this study was to assess whether passive succession-based management is a suitable approach by evaluating the status of land degradation in a protected area after 17-41 years of farming abandonment. Soil traits and plant growth forms were quantified and compared between sites according to time since abandonment and former land use (cultivation and grazing). Two variables were calculated using the CORINE-CEC method, i.e., potential (PSER) and actual (ASER) soil erosion risk. PSER indicates the erosion risk when no vegetation is present, while ASER includes the protective role of vegetation cover. Results showed that land use history had no significant effect on plant growth forms or soil traits (p > 0.05). After more than 25 years since abandonment of farming activities, soil conditions and vegetation cover had improved, thus having a lower ASER. Nevertheless, the present soil physical crusts may have delayed the full development of vegetation, enhancing erosion processes. Overall, this study indicates that succession-based management may not be the best practice in terms of conservation. Therefore, any effort for conservation in the Monte Desert should contemplate the current status of land degradation and potential vegetation recovery.

  6. Deserts

    Science.gov (United States)

    Belnap, Jayne; Webb, Robert H.; Esque, Todd; Brooks, Matthew L.; DeFalco, Lesley; MacMahon, James A.

    2016-01-01

    The deserts of California (Lead photo, Fig. 1) occupy approximately 38% of California’s landscape (Table 1) and consist of three distinct deserts: the Great Basin Desert, Mojave Desert, and Colorado Desert, the latter of which is a subdivision of the Sonoran Desert (Brown and Lowe 1980). The wide range of climates and geology found within each of these deserts result in very different vegetative communities and ecosystem processes and therefore different ecosystem services. In deserts, extreme conditions such as very high and low temperatures and very low rainfall result in abiotic factors (climate, geology, geomorphology, and soils) controlling the composition and function of ecosystems, including plant and animal distributions. This is in contrast to wetter and milder temperatures found in other ecosystems, where biotic interactions are the dominant driving force. However, despite the harsh conditions in deserts, they are home to a surprisingly large number of plants and animals. Deserts are also places where organisms display a wide array of adaptations to the extremes they encounter, providing some of the best examples of Darwinian selection (MacMahon and Wagner 1985, Ward 2009). Humans have utilized these regions for thousands of years, despite the relatively low productivity and harsh climates of these landscapes. Unlike much of California, most of these desert lands have received little high-intensity use since European settlement, leaving large areas relatively undisturbed. Desert landscapes are being altered, however, by the introduction of fire following the recent invasion of Mediterranean annual grasses. As most native plants are not fire-adapted, they Many do not recover, whereas the non-native grasses flourish. Because desert lands are slow to recover from disturbances, energy exploration and development, recreational use, and urban development will alter these landscapes for many years to come. This chapter provides a brief description of where the

  7. A computer code package for electron transport Monte Carlo simulation

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    1999-01-01

    A computer code package was developed for solving various electron transport problems by Monte Carlo simulation. It is based on condensed history Monte Carlo algorithm. In order to get reliable results over wide ranges of electron energies and target atomic numbers, specific techniques of electron transport were implemented such as: Moliere multiscatter angular distributions, Blunck-Leisegang multiscatter energy distribution, sampling of electron-electron and Bremsstrahlung individual interactions. Path-length and lateral displacement corrections algorithms and the module for computing collision, radiative and total restricted stopping powers and ranges of electrons are also included. Comparisons of simulation results with experimental measurements are finally presented. (author)

  8. Monte Carlo calculations of electron diffusion in materials

    International Nuclear Information System (INIS)

    Schroeder, U.G.

    1976-01-01

    By means of simulated experiments, various transport problems for 10 Mev electrons are investigated. For this purpose, a special Monte-Carlo programme is developed, and with this programme calculations are made for several material arrangements. (orig./LN) [de

  9. A new species of Aplectana (Nematoda: Cosmocercidae) parasite of Pleurodema nebulosum (Anura: Leptodactylidae) from the Monte desert, Argentina, with a key to Neotropical species of the genus Aplectana.

    Science.gov (United States)

    Gomez, Mauricio D Piñeiro; González, Cynthya E; Sanabria, Eduardo A

    2017-03-27

    Here we describe a new cosmocercid nematode, Aplectana nebulosa sp. nov., from the small and large intestines of Pleurodema nebulosum (Anura: Leptodactylidae), from the Monte desert of San Juan, Argentina. The new species belongs to the Aplectana group that possesses a gubernaculum and unpaired adcloacal papilla anteriorly to cloaca. It resembles A. membranosa, A. paraelenae and A. travassosi by the presence of four adcloacal papillae, but differs from those species by the following characters: number and arrangement of precloacal papillae; number and arrangement of postcloacal papillae; shape and size of spicules and gubernaculum, and by the presence of lateral alae in caudal region of males. The description of the new species is based on light microscopy and scanning electron microscopy (SEM) and we also provide a key to Neotropical species of Aplectana.

  10. Discrete Diffusion Monte Carlo for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory

    2014-10-01

    The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

  11. Clinical considerations of Monte Carlo for electron radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Faddegon, Bruce; Balogh, Judith; Mackenzie, Robert; Scora, Daryl

    1998-01-01

    Technical requirements for Monte Carlo based electron radiotherapy treatment planning are outlined. The targeted overall accuracy for estimate of the delivered dose is the least restrictive of 5% in dose, 5 mm in isodose position. A system based on EGS4 and capable of achieving this accuracy is described. Experience gained in system design and commissioning is summarized. The key obstacle to widespread clinical use of Monte Carlo is lack of clinically acceptable measurement based methodology for accurate commissioning

  12. Monte Carlo simulation and experimental verification of radiotherapy electron beams

    International Nuclear Information System (INIS)

    Griffin, J.; Deloar, H. M.

    2007-01-01

    Full text: Based on fundamental physics and statistics, the Monte Carlo technique is generally accepted as the accurate method for modelling radiation therapy treatments. A Monte Carlo simulation system has been installed, and models of linear accelerators in the more commonly used electron beam modes have been built and commissioned. A novel technique for radiation dosimetry is also being investigated. Combining the advantages of both water tank and solid phantom dosimetry, a hollow, thin walled shell or mask is filled with water and then raised above the natural water surface to produce a volume of water with the desired irregular shape.

  13. Detailed Monte Carlo simulation of electron elastic scattering

    International Nuclear Information System (INIS)

    Chakarova, R.

    1994-04-01

    A detailed Monte Carlo model is described which simulates the transport of electrons penetrating a medium without energy loss. The trajectory of each electron is constructed as a series of successive interaction events - elastic or inelastic scattering. Differential elastic scattering cross sections, elastic and inelastic mean free paths are used to describe the interaction process. It is presumed that the cross sections data are available and the Monte Carlo algorithm does not include their evaluation. Electrons suffering successive elastic collisions are followed until they escape from the medium or (if the absorption is negligible) their path length exceeds a certain value. The inelastic events are thus treated as absorption. The medium geometry is a layered infinite slab. The electron source could be an incident electron beam or electrons created inside the material. The objective is to obtain the angular distribution, the path length and depth distribution and the collision number distribution of electrons emitted through the surface of the medium. The model is applied successfully to electrons with energy between 0.4 and 20 keV reflected from semi-infinite homogeneous materials with different scattering properties. 16 refs, 9 figs

  14. EGS4, Electron Photon Shower Simulation by Monte-Carlo

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of program or function: The EGS code system is one of a chain of three codes designed to solve the electromagnetic shower problem by Monte Carlo simulation. This chain makes possible simulation of almost any electron-photon transport problem conceivable. The structure of the system, with its global features, modular form, and structured programming, is readily adaptable to virtually any interfacing scheme that is desired on the part of the user. EGS4 is a package of subroutines plus block data with a flexible user interface. This allows for greater flexibility without requiring the user to be overly familiar with the internal details of the code. Combining this with the macro facility capabilities of the Mortran3 language, this reduces the likelihood that user edits will introduce bugs into the code. EGS4 uses material cross section and branching ratio data created and fit by the companion code, PEGS4. EGS4 allows for the implementation of importance sampling and other variance reduction techniques such as leading particle biasing, splitting, path length biasing, Russian roulette, etc. 2 - Method of solution: EGS employs the Monte Carlo method of solution. It allows all of the fundamental processes to be included and arbitrary geometries can be treated, also. Other minor processes, such as photoneutron production, can be added as a further generalization. Since showers develop randomly according to the quantum laws of probability, each shower is different. We again are led to the Monte Carlo method. 3 - Restrictions on the complexity of the problem: None noted

  15. Monte Carlo methods in electron transport problems. Pt. 1

    International Nuclear Information System (INIS)

    Cleri, F.

    1989-01-01

    The condensed-history Monte Carlo method for charged particles transport is reviewed and discussed starting from a general form of the Boltzmann equation (Part I). The physics of the electronic interactions, together with some pedagogic example will be introduced in the part II. The lecture is directed to potential users of the method, for which it can be a useful introduction to the subject matter, and wants to establish the basis of the work on the computer code RECORD, which is at present in a developing stage

  16. Livestock grazing, habitat protection and diversity of bees and wasps in the Central Monte desert

    Directory of Open Access Journals (Sweden)

    Diego P. VÁZQUEZ

    2008-01-01

    Full Text Available El principal objetivo de las reservas es prevenir o mitigar los impactos humanos sobre los ecosistemas naturales. Es importante evaluar cuán bien las reservas alcanzan este objetivo. Evaluamos si la protección del hábitat que brinda la Reserva de la Biósfera de Ñacuñán (Monte Central, Argentina resulta en cambios detectables en la estructura del hábitat, y en la riqueza y la composición de especies de abejas y avispas. Realizamos muestreos con trampas bandeja y observaciones de visitantes florales en seis pares de sitios dentro y fuera de la reserva. Nuestros resultados sugieren que los treinta y cinco años de exclusión del ganado vacuno en Ñacuñán han tenido efectos detectables sobre la estructura del hábitat. Sin embargo, estos cambios en el hábitat se tradujeron sólo en efectos parciales y conflictivos sobre la riqueza de himenópteros, y no tuvieron efectos detectables sobre la composición de himenópteros. Nuestro estudio debería repetirse en el futuro, con un mayor esfuerzo de muestreo y a lo largo de varios años antes que estos resultados puedan ser aplicados como guía de decisiones de manejo.

  17. Monte Carlo simulation of electron swarms in H2

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1977-01-01

    A Monte Carlo simulation of the motion of an electron swarm in molecular hydrogen has been studied in the range E/N 1.4-170 Td. The simulation was performed for 400-600 electrons at several values of E/N for two different sets of inelastic collision cross sections at high E/N. Results were obtained for the longitudinal diffusion coefficient Dsub(L), lateral diffusion coefficient D, swarm drift velocity W, average swarm energy and ionization and excitation production coefficients, and these were compared with experimental data where available. It is found that the results differ significantly from the experimental values and this is attributed to the isotropic scattering model used in this work. However, the results lend support to the experimental technique used recently by Blevin et al. to determine these transport parameters, and in particular confirm their results that Dsub(L) > D at high values of E/N. (Author)

  18. Quantum Monte Carlo for electronic structure: Recent developments and applications

    International Nuclear Information System (INIS)

    Rodriguez, M.M.S.; Lawrence Berkeley Lab., CA

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function's nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2 H and C 2 H 2 . The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included

  19. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  20. Monte Carlo transport of electrons and positrons through thin foils

    International Nuclear Information System (INIS)

    Legarda, F.; Idoeta, R.

    2000-01-01

    In the different measurements made with electrons traversing matter it becomes useful the knowledge of its transmission through that medium, their paths and their angular distribution through matter so as to process and get information about the traversed medium and to improve and innovate the techniques that employ electrons, as medical applications or materials irradiation. This work presents a simulation of the transport of beams of electrons and positrons through thin foils using an analog Monte Carlo code that simulates in a detailed way every electron movement or interaction in matter. As those particles penetrate thin absorbers it has been assumed that they interact with matter only through elastic scattering, with negligible energy loss. This type of interaction has been described quite precisely because its angular form influences very much the angular distribution of electrons and positrons in matter. With this code it has been calculated the number of particles, with energies between 100 and 3000 keV, that are transmitted through different media of various thicknesses as well as its angular distribution, showing a good agreement with experimental data. The discrepancies are less than 5% for thicknesses lower than about 30% of the corresponding range in the tested material. As elastic scattering is very anisotropic, angular distributions resemble a collimated incident beam for very thin foils becoming slowly more isotropic when absorber thickness is increased. (author)

  1. Thermal ecology of the post-metamorphic Andean toad (Rhinella spinulosa) at elevation in the monte desert, Argentina.

    Science.gov (United States)

    Sanabria, Eduardo A; Rodríguez, César Y; Vergara, Cristina; Ontivero, Emanuel; Banchig, Mariana; Navas, Ana L; Herrera-Morata, Mario A; Quiroga, Lorena B

    2015-08-01

    Rhinella spinulosa is an anuran toad species distributed latitudinal and altitudinal (1200-5000m) from Peru to Argentina, inhabiting mountain valleys in the Andes. Considering the broad range of habitats where they live, it is important to understand the thermal physiological mechanisms, thermal tolerances and physiological adaptations for surviving in rigorous environments. We investigated the thermal parameters (field body temperature, selected body temperature, locomotor performance in field and laboratory conditions, and thermal extremes) during diurnal activity for a population of juvenile, post-metamorphosed toads (Rhinella spinulosa) from the Monte Desert of San Juan, Argentina. Post-metamorphic toads are active from approximately 1100-1900 (in contrast to nocturnal adult toads). Our findings show that these toads have a wide thermal tolerance range, ranging from a critical thermal maximum of 36.9°C to crystallization temperatures below 0°C. During their active period, toads always showed suboptimal thermal conditions for locomotion. Despite the suboptimal condition for the locomotion, diurnal activity is likely to confer thermal advantages, allowing them to search for food and increase digestion and growth rates. We also found that the toads are capable of super-cooling, which prevents mortality from freezing when the environmental temperatures drop below 0°C. The environmental temperatures are below zero at night, when toads are inactive and take refuge under rocks. In summary, this toad population demonstrates high thermal plasticity, as shown by a relatively high level of activity sustained over a wide range of ambient temperature (~35°C). These thermal adaptations allow this species of juvenile toads to inhabit a wide range of altitudes and latitudes. Copyright © 2015. Published by Elsevier Ltd.

  2. Quantum Monte Carlo for electronic structure: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriquez, Maria Milagos Soto [Lawrence Berkeley Lab. and Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C2H and C2H2. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is

  3. Monte Carlo simulation of Tabata's electron backscattering experiments

    International Nuclear Information System (INIS)

    Kirihara, Y.; Namito, Y.; Iwase, H.; Hirayama, H.

    2010-01-01

    Electron backscattering coefficients, η, obtained from several targets in the MeV range were calculated by using electron-photon Monte Carlo transport calculation codes, i.e., EGS5 and ITS 3.0. These calculated values were compared with those obtained from the electron backscattering experiment performed by Tabata using an ionization chamber . We found that Tabata's estimation of the multiplication factor of the ionization chamber, f, had a non-negligible error. Then, we calculated the ionization chamber output, I, which is a product of η and f. The ratios of I between the experimental and the calculated values were within 1.5 and 1.3 for the EGS5 code and the ITS 3.0 code, respectively. The ratios of η between the experimental and the calculated values were within 2.4 and 1.5 for the EGS5 code and the ITS 3.0 code, respectively. The differences between the experimental and the calculated values of I and η are large for low-Z targets (Be and C). Here, the ratios obtained by using the ITS 3.0 code are closer to unity than those obtained by using the EGS5 code. The reason of this is the fact that the calculated value obtained by using the ITS 3.0 code is underestimated for low-Z targets; this underestimation can, in turn, be attributed to the use of the default value of the number of steps in the electron transport algorithm in the ITS 3.0 code.

  4. Monte Carlo simulation of electron swarms in H2

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1976-05-01

    A Monte-Carlo simulation of the motion of an electron swarm in molecular hydrogen was studied in the range E/N = 1.4-170 Td (1 Td = 10 -17 V/cms 2 ). The simulation was performed for 400-600 electrons at several values of E/N for two different sets of inelastic collision cross sections at high values of E/N. The longitudinal diffusion coefficient Dsub(L), lateral diffusion coefficient D, swarm drift velocity W, average swarm energy epsilon, and the ionization and excitation production coefficients were obtained and compared with experimental results where these are available. It was found that the results obtained differ significantly from the experimental values and this is attributed to the isotopic scattering model used in this work. However, the results lend support to the experimental technique reported by Blevin et al used to determine these transport parameters, and in particular confirm their result that Dsub(L) > D at high values of E/N. (author)

  5. The eco-epidemiology of Triatoma infestans in the temperate Monte Desert ecoregion of mid-western Argentina

    Directory of Open Access Journals (Sweden)

    Ana Laura Carbajal-de-la-Fuente

    Full Text Available BACKGROUND The eco-epidemiological status of Chagas disease in the Monte Desert ecoregion of western Argentina is largely unknown. We investigated the environmental and socio-demographic determinants of house infestation with Triatoma infestans, bug abundance, vector infection with Trypanosoma cruzi and host-feeding sources in a well-defined rural area of Lavalle Department in the Mendoza province. METHODS Technical personnel inspected 198 houses for evidence of infestation with T. infestans, and the 76 houses included in the current study were re-inspected. In parallel with the vector survey, an environmental and socio-demographic survey was also conducted. Univariate risk factor analysis for domiciliary infestation was carried out using Firth penalised logistic regression. We fitted generalised linear models for house infestation and bug abundance. Blood meals were tested with a direct ELISA assay, and T. cruzi infection was determined using a hot-start polymerase chain reaction (PCR targeting the kinetoplast minicircle (kDNA-PCR. FINDINGS The households studied included an aged population living in precarious houses whose main economic activities included goat husbandry. T. infestans was found in 21.2% of 198 houses and in 55.3% of the 76 re-inspected houses. Peridomestic habitats exhibited higher infestation rates and bug abundances than did domiciles, and goat corrals showed high levels of infestation. The main host-feeding sources were goats. Vector infection was present in 10.2% of domiciles and 3.2% of peridomiciles. Generalised linear models showed that peridomestic infestation was positively and significantly associated with the presence of mud walls and the abundance of chickens and goats, and bug abundance increased with the number of all hosts except rabbits. MAIN CONCLUSIONS We highlight the relative importance of specific peridomestic structures (i.e., goat corrals and chicken coops associated with construction materials and host

  6. Automated Monte Carlo biasing for photon-generated electrons near surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Crawford, Martin James; Kensek, Ronald Patrick

    2009-09-01

    This report describes efforts to automate the biasing of coupled electron-photon Monte Carlo particle transport calculations. The approach was based on weight-windows biasing. Weight-window settings were determined using adjoint-flux Monte Carlo calculations. A variety of algorithms were investigated for adaptivity of the Monte Carlo tallies. Tree data structures were used to investigate spatial partitioning. Functional-expansion tallies were used to investigate higher-order spatial representations.

  7. Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES Campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean basin

    Science.gov (United States)

    MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Wester...

  8. Intensive measurements of gas, water, and energy exchange between vegetation and troposhere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin

    NARCIS (Netherlands)

    Penuelas, J.; Guenther, A.; Rapparini, F.; Llusia, J.; Vilà-Guerau De Arellano, J.

    2013-01-01

    MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean

  9. Monte Carlo Studies of Electron Transport In Semiconductor Nanostructures

    Science.gov (United States)

    Tierney, Brian David

    An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrodinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrodinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for

  10. Monte Carlo study of electron relaxation in graphene with spin polarized, degenerate electron gas in presence of electron-electron scattering

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-12-01

    The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.

  11. Response matrix Monte Carlo based on a general geometry local calculation for electron transport

    International Nuclear Information System (INIS)

    Ballinger, C.T.; Rathkopf, J.A.; Martin, W.R.

    1991-01-01

    A Response Matrix Monte Carlo (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts to combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. Like condensed history, the RMMC method uses probability distributions functions (PDFs) to describe the energy and direction of the electron after several collisions. However, unlike the condensed history method the PDFs are based on an analog Monte Carlo simulation over a small region. Condensed history theories require assumptions about the electron scattering to derive the PDFs for direction and energy. Thus the RMMC method samples from PDFs which more accurately represent the electron random walk. Results show good agreement between the RMMC method and analog Monte Carlo. 13 refs., 8 figs

  12. Monte Carlo study of electron irradiation effect on YBCO dpa profiles

    International Nuclear Information System (INIS)

    Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, A.; Van Espen, P.

    2011-01-01

    The Monte Carlo assisted Classical Method (MCCM) consists on a calculation procedure for determining the displacements per atom (dpa) distribution in solid materials. This algorithm allows studying the gamma and electron irradiation damage in different materials. It is based on the electrons elastic scattering classic theories and the use of Monte Carlo simulation for the physical processes involved. The present study deals with the Monte Carlo simulation of electron irradiation effects on YBa 2 Cu 3 O 7-x (YBCO) slabs using the MCNPX code system. Displacements per atom distributions are obtained through the MCCM for electron irradiation up to 10 MeV. In-depth dpa profiles for electrons and positrons are obtained and analyzed. Also, for each atomic species in the material, the dpa distributions are calculated. All the results are discussed in the present contribution. (Author)

  13. Monte Carlo calculations of electron transport on microcomputers

    International Nuclear Information System (INIS)

    Chung, Manho; Jester, W.A.; Levine, S.H.; Foderaro, A.H.

    1990-01-01

    In the work described in this paper, the Monte Carlo program ZEBRA, developed by Berber and Buxton, was converted to run on the Macintosh computer using Microsoft BASIC to reduce the cost of Monte Carlo calculations using microcomputers. Then the Eltran2 program was transferred to an IBM-compatible computer. Turbo BASIC and Microsoft Quick BASIC have been used on the IBM-compatible Tandy 4000SX computer. The paper shows the running speed of the Monte Carlo programs on the different computers, normalized to one for Eltran2 on the Macintosh-SE or Macintosh-Plus computer. Higher values refer to faster running times proportionally. Since Eltran2 is a one-dimensional program, it calculates energy deposited in a semi-infinite multilayer slab. Eltran2 has been modified to a two-dimensional program called Eltran3 to computer more accurately the case with a point source, a small detector, and a short source-to-detector distance. The running time of Eltran3 is about twice as long as that of Eltran2 for a similar case

  14. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation

    International Nuclear Information System (INIS)

    Yang, J; Li, J S; Qin, L; Xiong, W; Ma, C-M

    2004-01-01

    The purpose of this work is to model electron contamination in clinical photon beams and to commission the source model using measured data for Monte Carlo treatment planning. In this work, a planar source is used to represent the contaminant electrons at a plane above the upper jaws. The source size depends on the dimensions of the field size at the isocentre. The energy spectra of the contaminant electrons are predetermined using Monte Carlo simulations for photon beams from different clinical accelerators. A 'random creep' method is employed to derive the weight of the electron contamination source by matching Monte Carlo calculated monoenergetic photon and electron percent depth-dose (PDD) curves with measured PDD curves. We have integrated this electron contamination source into a previously developed multiple source model and validated the model for photon beams from Siemens PRIMUS accelerators. The EGS4 based Monte Carlo user code BEAM and MCSIM were used for linac head simulation and dose calculation. The Monte Carlo calculated dose distributions were compared with measured data. Our results showed good agreement (less than 2% or 2 mm) for 6, 10 and 18 MV photon beams

  15. Comparison of ONETRAN calculations of electron beam dose profiles with Monte Carlo and experiment

    International Nuclear Information System (INIS)

    Garth, J.C.; Woolf, S.

    1987-01-01

    Electron beam dose profiles have been calculated using a multigroup, discrete ordinates solution of the Spencer-Lewis electron transport equation. This was accomplished by introducing electron transport cross-sections into the ONETRAN code in a simple manner. The authors' purpose is to ''benchmark'' this electron transport model and to demonstrate its accuracy and capabilities over the energy range from 30 keV to 20 MeV. Many of their results are compared with the extensive measurements and TIGER Monte Carlo data. In general the ONETRAN results are smoother, agree with TIGER within the statistical error of the Monte Carlo histograms and require about one tenth the running time of Monte Carlo

  16. Monte Carlo study of electron-plasmon scattering effects on hot electron transport in GaAs

    International Nuclear Information System (INIS)

    Popov, V.V.; Bagaeva, T.Yu.; Solodkaya, T.I.

    1994-07-01

    It is shown using Monte Carlo simulation that electron-plasmon scattering affects substantially the hot-electron energy distribution function and transport properties in bulk GaAs. However, this effect is found to be much less than that predicted in earlier paper of other authors. (author). 5 refs, 7 figs

  17. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS

    International Nuclear Information System (INIS)

    Vilches, Manuel; Garcia-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M.

    2008-01-01

    Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSnrc, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed

  18. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  19. Application of Macro Response Monte Carlo method for electron spectrum simulation

    International Nuclear Information System (INIS)

    Perles, L.A.; Almeida, A. de

    2007-01-01

    During the past years several variance reduction techniques for Monte Carlo electron transport have been developed in order to reduce the electron computation time transport for absorbed dose distribution. We have implemented the Macro Response Monte Carlo (MRMC) method to evaluate the electron spectrum which can be used as a phase space input for others simulation programs. Such technique uses probability distributions for electron histories previously simulated in spheres (called kugels). These probabilities are used to sample the primary electron final state, as well as the creation secondary electrons and photons. We have compared the MRMC electron spectra simulated in homogeneous phantom against the Geant4 spectra. The results showed an agreement better than 6% in the spectra peak energies and that MRMC code is up to 12 time faster than Geant4 simulations

  20. The application of Monte Carlo method to electron and photon beams transport; Zastosowanie metody Monte Carlo do analizy transportu elektronow i fotonow

    Energy Technology Data Exchange (ETDEWEB)

    Zychor, I. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    The application of a Monte Carlo method to study a transport in matter of electron and photon beams is presented, especially for electrons with energies up to 18 MeV. The SHOWME Monte Carlo code, a modified version of GEANT3 code, was used on the CONVEX C3210 computer at Swierk. It was assumed that an electron beam is mono directional and monoenergetic. Arbitrary user-defined, complex geometries made of any element or material can be used in calculation. All principal phenomena occurring when electron beam penetrates the matter are taken into account. The use of calculation for a therapeutic electron beam collimation is presented. (author). 20 refs, 29 figs.

  1. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.

    Science.gov (United States)

    Chow, James C L; Leung, Michael K K

    2008-06-01

    The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger

  2. Monte Carlo simulation of heavy ion induced kinetic electron emission from an Al surface

    CERN Document Server

    Ohya, K

    2002-01-01

    A Monte Carlo simulation is performed in order to study heavy ion induced kinetic electron emission from an Al surface. In the simulation, excitation of conduction band electrons by the projectile ion and recoiling target atoms is treated on the basis of the partial wave expansion method, and the cascade multiplication process of the excited electrons is simulated as well as collision cascade of the recoiling target atoms. Experimental electron yields near conventional threshold energies of heavy ions are simulated by an assumption of a lowering in the apparent surface barrier for the electrons. The present calculation derives components for electron excitations by the projectile ion, the recoiling target atoms and the electron cascades, from the calculated total electron yield. The component from the recoiling target atoms increases with increasing projectile mass, whereas the component from the electron cascade decreases. Although the components from the projectile ion and the electron cascade increase with...

  3. Monte-Carlo study of electron noise in compensated InSb

    International Nuclear Information System (INIS)

    Ašmontas, S; Raguotis, R; Bumelienė, S

    2015-01-01

    The results of Monte Carlo simulations of the electron noise in lightly doped and strongly compensated n-type InSb are presented. The strong electron scattering by ionized impurities is established to change essentially the electron distribution function, spectral density of velocity fluctuations and the dependence of noise temperature on the electric field strength. It is found that the electron noise temperature in strongly compensated InSb with low electron density at liquid nitrogen temperature is close to the lattice temperature in a wide range of electric field strength in which the electron gas cooling effect takes place. The increase of electron density is shown to weaken the electron gas cooling effect due to more intensive electron–electron collisions stimulating delocalization of electrons from the bottom of the conduction band. A satisfactory agreement between calculations and available experimental data is obtained. (paper)

  4. Monte Carlo investigation of minority electron transport in InP

    International Nuclear Information System (INIS)

    Osman, M.A.; Grubin, H.L.

    1989-01-01

    This paper discusses the investigation of the transport of minority electrons in p-type InP for acceptor doping level of 10 18 cm 3 using Monte Carlo procedures. It is found that the velocity of minority electrons are significantly lower than that of majority electrons for fields below 15 kV/cm and slightly higher at higher fields. The study shows that the interaction between the electrons and majority holes leads to reducing the mobility of electrons from 2000 cm 2 /Vs to 1500 cm 2 /Vs

  5. Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo

    International Nuclear Information System (INIS)

    Evans, T.M.; Densmore, J.D.

    2007-01-01

    We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the standard IMC radiation-transport process. The second method recasts the IMC equations such that part of the coupling is treated during the Monte Carlo calculation. The third method treats all of the coupling and conduction in the Monte Carlo simulation. We apply modified equation analysis (MEA) to simplified forms of each method that neglects the errors in the conduction terms. Through MEA we show that the third method is theoretically the most accurate. We demonstrate the effectiveness of each method on a series of 0-dimensional, nonlinear benchmark problems where the accuracy of the third method is shown to be up to ten times greater than the other coupling methods for selected calculations

  6. Effects of physics change in Monte Carlo code on electron pencil beam dose distributions

    International Nuclear Information System (INIS)

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2012-01-01

    Pencil beam algorithms used in computerized electron beam dose planning are usually described using the small angle multiple scattering theory. Alternatively, the pencil beams can be generated by Monte Carlo simulation of electron transport. In a previous work, the 4th version of the Electron Gamma Shower (EGS) Monte Carlo code was used to obtain dose distributions from monoenergetic electron pencil beam, with incident energy between 1 MeV and 50 MeV, interacting at the surface of a large cylindrical homogeneous water phantom. In 2000, a new version of this Monte Carlo code has been made available by the National Research Council of Canada (NRC), which includes various improvements in its electron-transport algorithms. In the present work, we were interested to see if the new physics in this version produces pencil beam dose distributions very different from those calculated with oldest one. The purpose of this study is to quantify as well as to understand these differences. We have compared a series of pencil beam dose distributions scored in cylindrical geometry, for electron energies between 1 MeV and 50 MeV calculated with two versions of the Electron Gamma Shower Monte Carlo Code. Data calculated and compared include isodose distributions, radial dose distributions and fractions of energy deposition. Our results for radial dose distributions show agreement within 10% between doses calculated by the two codes for voxels closer to the pencil beam central axis, while the differences are up to 30% for longer distances. For fractions of energy deposition, the results of the EGS4 are in good agreement (within 2%) with those calculated by EGSnrc at shallow depths for all energies, whereas a slightly worse agreement (15%) is observed at deeper distances. These differences may be mainly attributed to the different multiple scattering for electron transport adopted in these two codes and the inclusion of spin effect, which produces an increase of the effective range of

  7. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron-electron interactions, application to graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-07-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  8. Monte Carlo modeling of ion beam induced secondary electrons

    Energy Technology Data Exchange (ETDEWEB)

    Huh, U., E-mail: uhuh@vols.utk.edu [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Cho, W. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Joy, D.C. [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10–100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. - Highlights: • The Universal ASTAR Yield Curve was derived from data recently published by NIST. • IONiSE incorporated with the Curve will predict iSE yield for elements and compounds. • This approach can also handle other ion beams by changing basic scattering profile.

  9. A Monte Carlo method using octree structure in photon and electron transport

    International Nuclear Information System (INIS)

    Ogawa, K.; Maeda, S.

    1995-01-01

    Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that with electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting

  10. Monte Carlo method for calculating the radiation skyshine produced by electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kong Chaocheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China)]. E-mail: kongchaocheng@tsinghua.org.cn; Li Quanfeng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Chen Huaibi [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Du Taibin [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Cheng Cheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Tang Chuanxiang [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Zhu Li [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Zhang Hui [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Pei Zhigang [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Ming Shenjin [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China)

    2005-06-01

    Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.

  11. Electron transport in radiotherapy using local-to-global Monte Carlo

    International Nuclear Information System (INIS)

    Svatos, M.M.; Chandler, W.P.; Siantar, C.L.H.; Rathkopf, J.A.; Ballinger, C.T.

    1994-09-01

    Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ''steps'' to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given

  12. SPHERE: a spherical-geometry multimaterial electron/photon Monte Carlo transport code

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.

    1977-06-01

    SPHERE provides experimenters and theorists with a method for the routine solution of coupled electron/photon transport through multimaterial configurations possessing spherical symmetry. Emphasis is placed upon operational simplicity without sacrificing the rigor of the model. SPHERE combines condensed-history electron Monte Carlo with conventional single-scattering photon Monte Carlo in order to describe the transport of all generations of particles from several MeV down to 1.0 and 10.0 keV for electrons and photons, respectively. The model is more accurate at the higher energies, with a less rigorous description of the particle cascade at energies where the shell structure of the transport media becomes important. Flexibility of construction permits the user to tailor the model to specific applications and to extend the capabilities of the model to more sophisticated applications through relatively simple update procedures. 8 figs., 3 tables

  13. PENELOPE, and algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-10-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from similar{sub t}o 1 KeV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.

  14. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F; Fernandez-Varea, J M; Baro, J; Sempau, J

    1996-07-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.

  15. A computer code package for Monte Carlo photon-electron transport simulation Comparisons with experimental benchmarks

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    2000-01-01

    A computer code package (PTSIM) for particle transport Monte Carlo simulation was developed using object oriented techniques of design and programming. A flexible system for simulation of coupled photon, electron transport, facilitating development of efficient simulation applications, was obtained. For photons: Compton and photo-electric effects, pair production and Rayleigh interactions are simulated, while for electrons, a class II condensed history scheme was considered, in which catastrophic interactions (Moeller electron-electron interaction, bremsstrahlung, etc.) are treated in detail and all other interactions with reduced individual effect on electron history are grouped together using continuous slowing down approximation and energy straggling theories. Electron angular straggling is simulated using Moliere theory or a mixed model in which scatters at large angles are treated as distinct events. Comparisons with experimentally benchmarks for electron transmission and bremsstrahlung emissions energy and angular spectra, and for dose calculations are presented

  16. Lateral electron transport in monolayers of short chains at interfaces: A Monte Carlo study

    International Nuclear Information System (INIS)

    George, Christopher B.; Szleifer, Igal; Ratner, Mark A.

    2010-01-01

    Graphical abstract: Electron hopping between electroactive sites in a monolayer composed of redox-active and redox-passive molecules. - Abstract: Using Monte Carlo simulations, we study lateral electronic diffusion in dense monolayers composed of a mixture of redox-active and redox-passive chains tethered to a surface. Two charge transport mechanisms are considered: the physical diffusion of electroactive chains and electron hopping between redox-active sites. Results indicate that by varying the monolayer density, the mole fraction of electroactive chains, and the electron hopping range, the dominant charge transport mechanism can be changed. For high density monolayers in a semi-crystalline phase, electron diffusion proceeds via electron hopping almost exclusively, leading to static percolation behavior. In fluid monolayers, the diffusion of chains may contribute more to the overall electronic diffusion, reducing the observed static percolation effects.

  17. Monte Carlo simulation of positron induced secondary electrons in thin carbon foils

    International Nuclear Information System (INIS)

    Cai, L H; Yang, B; Ling, C C; Beling, C D; Fung, S

    2011-01-01

    Emission of secondary electrons induced by the passage of low energy positrons through thin carbon foils was studied by the Monte Carlo method. The positron and electron elastic cross sections were calculated by partial wave analysis. The inelastic positron-valence-electron was described by the energy loss function obtained from dielectric theory. The positron-core-electron interaction was modelled by the Gryzinski's excitation function. Positron transport inside the carbon foil was simulated in detail. Secondary electrons created by positrons and high energy secondary electrons through inelastic interactions were tracked through the foil. The positron transmission coefficient and secondary electron yielded in forward and backward geometry are calculated and dependences on positron energy and carbon foil thickness are discussed.

  18. Monte Carlo simulations of secondary electron emission due to ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mahady, Kyle [Univ. of Tennessee, Knoxville, TN (United States); Tan, Shida [Intel Corp., Santa Clara, CA (United States); Greenzweig, Yuval [Intel Israel Ltd., Haifa (Israel); Livengood, Richard [Intel Corp., Santa Clara, CA (United States); Raveh, Amir [Intel Israel Ltd., Haifa (Israel); Fowlkes, Jason D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rack, Philip [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes this study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.

  19. Monte Carlo based electron treatment planning and cutout output factor calculations

    Science.gov (United States)

    Mitrou, Ellis

    Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.

  20. Monte Carlo Simulation of a Linear Accelerator and Electron Beam Parameters Used in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2009-06-01

    Full Text Available Introduction: In recent decades, several Monte Carlo codes have been introduced for research and medical applications. These methods provide both accurate and detailed calculation of particle transport from linear accelerators. The main drawback of Monte Carlo techniques is the extremely long computing time that is required in order to obtain a dose distribution with good statistical accuracy. Material and Methods: In this study, the MCNP-4C Monte Carlo code was used to simulate the electron beams generated by a Neptun 10 PC linear accelerator. The depth dose curves and related parameters to depth dose and beam profiles were calculated for 6, 8 and 10 MeV electron beams with different field sizes and these data were compared with the corresponding measured values. The actual dosimetry was performed by employing a Welhofer-Scanditronix dose scanning system, semiconductor detectors and ionization chambers. Results: The result showed good agreement (better than 2% between calculated and measured depth doses and lateral dose profiles for all energies in different field sizes. Also good agreements were achieved between calculated and measured related electron beam parameters such as E0, Rq, Rp and R50. Conclusion: The simulated model of the linac developed in this study is capable of computing electron beam data in a water phantom for different field sizes and the resulting data can be used to predict the dose distributions in other complex geometries.

  1. Monte Carlo calculation of secondary electron emission from carbon-surface by obliquely incident particles

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1990-01-01

    Incidence angle dependences of secondary electron emission from a carbon surface by low energy electron and hydrogen atom are calculated using Monte Carlo simulations on the kinetic emission model. The calculation shows very small increase or rather decrease of the secondary electron yield with oblique incidence. It is explained in terms of not only multiple elastic collisions of incident particles with the carbon atoms but also small penetration depth of the particles comparable with the escape depth of secondary electrons. In addition, the two types of secondary electron emission are distinguished by using the secondary electron yield statistics; one is the emission due to trapped particles in the carbon, and the other is that due to backscattered particles. The high-yield component of the statistics on oblique incidence is more suppressed than those on normal incidence. (author)

  2. METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas

    Science.gov (United States)

    Rabie, M.; Franck, C. M.

    2016-06-01

    We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.

  3. Monte Carlo based treatment planning for modulated electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michael C. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: mclee@reyes.stanford.edu; Deng Jun; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2001-08-01

    A Monte Carlo based treatment planning system for modulated electron radiation therapy (MERT) is presented. This new variation of intensity modulated radiation therapy (IMRT) utilizes an electron multileaf collimator (eMLC) to deliver non-uniform intensity maps at several electron energies. In this way, conformal dose distributions are delivered to irregular targets located a few centimetres below the surface while sparing deeper-lying normal anatomy. Planning for MERT begins with Monte Carlo generation of electron beamlets. Electrons are transported with proper in-air scattering and the dose is tallied in the phantom for each beamlet. An optimized beamlet plan may be calculated using inverse-planning methods. Step-and-shoot leaf sequences are generated for the intensity maps and dose distributions recalculated using Monte Carlo simulations. Here, scatter and leakage from the leaves are properly accounted for by transporting electrons through the eMLC geometry. The weights for the segments of the plan are re-optimized with the leaf positions fixed and bremsstrahlung leakage and electron scatter doses included. This optimization gives the final optimized plan. It is shown that a significant portion of the calculation time is spent transporting particles in the leaves. However, this is necessary since optimizing segment weights based on a model in which leaf transport is ignored results in an improperly optimized plan with overdosing of target and critical structures. A method of rapidly calculating the bremsstrahlung contribution is presented and shown to be an efficient solution to this problem. A homogeneous model target and a 2D breast plan are presented. The potential use of this tool in clinical planning is discussed. (author)

  4. Monte Carlo simulation of electron behavior in an electron cyclotron resonance microwave discharge sustained by circular TM11 mode fields

    International Nuclear Information System (INIS)

    Kuo, S.C.; Kuo, S.P.

    1996-01-01

    Electron behavior in an electron cyclotron resonance microwave discharge sustained by TM 11 mode fields of a cylindrical waveguide has been investigated via a Monte Carlo simulation. The time averaged, spatially dependent electron energy distribution is computed self-consistently. At low pressures (∼0.5 mTorr), the temperature of the tail portion of the electron energy distribution exceeds 40 eV, and the sheath potential is about -250 V. These results, which are about twice as high as the previous results for TM 01 mode fields [S. C. Kuo, E. E. Kunhardt, and S. P. Kuo, J. Appl. Phys. 73, 4197 (1993)], suggest that TM 11 mode fields have a stronger electron cyclotron resonance effect than TM 01 mode fields in a cylindrical waveguide. copyright 1996 American Institute of Physics

  5. Experimental validation of the DPM Monte Carlo code using minimally scattered electron beams in heterogeneous media

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Moran, Jean M.; Nurushev, Teamor S.; McShan, Daniel L.; Fraass, Benedick A.; Wilderman, Scott J.; Bielajew, Alex F.

    2002-01-01

    A comprehensive set of measurements and calculations has been conducted to investigate the accuracy of the Dose Planning Method (DPM) Monte Carlo code for electron beam dose calculations in heterogeneous media. Measurements were made using 10 MeV and 50 MeV minimally scattered, uncollimated electron beams from a racetrack microtron. Source distributions for the Monte Carlo calculations were reconstructed from in-air ion chamber scans and then benchmarked against measurements in a homogeneous water phantom. The in-air spatial distributions were found to have FWHM of 4.7 cm and 1.3 cm, at 100 cm from the source, for the 10 MeV and 50 MeV beams respectively. Energy spectra for the electron beams were determined by simulating the components of the microtron treatment head using the code MCNP4B. Profile measurements were made using an ion chamber in a water phantom with slabs of lung or bone-equivalent materials submerged at various depths. DPM calculations are, on average, within 2% agreement with measurement for all geometries except for the 50 MeV incident on a 6 cm lung-equivalent slab. Measurements using approximately monoenergetic, 50 MeV, 'pencil-beam'-type electrons in heterogeneous media provide conditions for maximum electronic disequilibrium and hence present a stringent test of the code's electron transport physics; the agreement noted between calculation and measurement illustrates that the DPM code is capable of accurate dose calculation even under such conditions. (author)

  6. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    Science.gov (United States)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  7. Monte Carlo electron-transport calculations for clinical beams using energy grouping

    Energy Technology Data Exchange (ETDEWEB)

    Teng, S P; Anderson, D W; Lindstrom, D G

    1986-01-01

    A Monte Carlo program has been utilized to study the penetration of broad electron beams into a water phantom. The MORSE-E code, originally developed for neutron and photon transport, was chosen for adaptation to electrons because of its versatility. The electron energy degradation model employed logarithmic spacing of electron energy groups and included effects of elastic scattering, inelastic-moderate-energy-loss-processes and inelastic-large-energy-loss-processes (catastrophic). Energy straggling and angular deflections were modeled from group to group, using the Moeller cross section for energy loss, and Goudsmit-Saunderson theory to describe angular deflections. The resulting energy- and electron-deposition distributions in depth were obtained at 10 and 20 MeV and are compared with ETRAN results and broad beam experimental data from clinical accelerators.

  8. Monte Carlo study of the effective Sherman function for electron polarimetry

    International Nuclear Information System (INIS)

    Drągowski, M.; Włodarczyk, M.; Weber, G.; Ciborowski, J.; Enders, J.; Fritzsche, Y.; Poliszczuk, A.

    2016-01-01

    The PEBSI Monte Carlo simulation was upgraded towards usefulness for electron Mott polarimetry. The description of Mott scattering was improved and polarisation transfer in Møller scattering was included in the code. An improved agreement was achieved between the simulation and available experimental data for a 100 keV polarised electron beam scattering off gold foils of various thicknesses. The dependence of the effective Sherman function on scattering angle and target thickness, as well as the method of finding optimal conditions for Mott polarimetry measurements were analysed.

  9. Energy-depth relation of electrons in bulk targets by Monte-Carlo calculations

    International Nuclear Information System (INIS)

    Gaber, M.; Fitting, H.J.

    1984-01-01

    Monte-Carlo calculations are used to calculate the energy of penetrating electrons as a function of the depth in thick targets of Ti, Fe, Cu, As, In, and Au. It is shown that the mean energy ratio anti E(z)/E 0 decays exponentially with depth z and depends on the backscattering coefficient eta/sub B/ of the bulk material and the maximum range R(E 0 ) of the primary electrons with initial energy E 0 . Thereby a normalized plot anti E/E 0 as a function of the reduced depth z/R becomes possible. (author)

  10. Timesaving techniques for decision of electron-molecule collisions in Monte Carlo simulation of electrical discharges

    International Nuclear Information System (INIS)

    Sugawara, Hirotake; Mori, Naoki; Sakai, Yosuke; Suda, Yoshiyuki

    2007-01-01

    Techniques to reduce the computational load for determination of electron-molecule collisions in Monte Carlo simulations of electrical discharges have been presented. By enhancing the detection efficiency of the no-collision case in the decision scheme of the collisional events, we can decrease the frequency of access to time-consuming subroutines to calculate the electron collision cross sections of the gas molecules for obtaining the collision probability. A benchmark test and an estimation to evaluate the present techniques have shown a practical timesaving efficiency

  11. DNA strand breaks induced by electrons simulated with nanodosimetry Monte Carlo simulation code: NASIC

    International Nuclear Information System (INIS)

    Li, Junli; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Zeng, Zhi; Li, Chunyan; Wu, Zhen; Tung, Chuanjong

    2015-01-01

    The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway (authors)

  12. A computationally efficient moment-preserving Monte Carlo electron transport method with implementation in Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A., E-mail: ddixon@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, MS P365, Los Alamos, NM 87545 (United States); Prinja, A.K., E-mail: prinja@unm.edu [Department of Nuclear Engineering, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001 (United States); Franke, B.C., E-mail: bcfrank@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87123 (United States)

    2015-09-15

    This paper presents the theoretical development and numerical demonstration of a moment-preserving Monte Carlo electron transport method. Foremost, a full implementation of the moment-preserving (MP) method within the Geant4 particle simulation toolkit is demonstrated. Beyond implementation details, it is shown that the MP method is a viable alternative to the condensed history (CH) method for inclusion in current and future generation transport codes through demonstration of the key features of the method including: systematically controllable accuracy, computational efficiency, mathematical robustness, and versatility. A wide variety of results common to electron transport are presented illustrating the key features of the MP method. In particular, it is possible to achieve accuracy that is statistically indistinguishable from analog Monte Carlo, while remaining up to three orders of magnitude more efficient than analog Monte Carlo simulations. Finally, it is shown that the MP method can be generalized to any applicable analog scattering DCS model by extending previous work on the MP method beyond analytical DCSs to the partial-wave (PW) elastic tabulated DCS data.

  13. Non-relativistic electron transport in metals: a Monte Carlo approach

    International Nuclear Information System (INIS)

    Rahimi, F.; Ghal eh, N.

    2001-01-01

    A simple Monte Carlo procedure is described for simulating the multiple scattering and absorption of electrons with the incident energy in the range 1-50 keV moving through a slab of uniformly distributed material of given atomic number, density and thickness. The simulation is based on a screened Rutherford cross-section and Bethe continuous energy-loss equation. A FORTRAN program is written to determine backscattering, transmission and absorption coefficients, providing the user with a graphical output of the electron trajectories. The results of several simulations are presented by using various numbers of electrons, showing a good agreement with the experiment. The program is used to analyze the relation between the energy and the range of electron in the slab, the backscattering, absorption, transmission coefficients and the angular distribution

  14. Monte Carlo Simulation of Electron Transport in 4H- and 6H-SiC

    International Nuclear Information System (INIS)

    Sun, C. C.; You, A. H.; Wong, E. K.

    2010-01-01

    The Monte Carlo (MC) simulation of electron transport properties at high electric field region in 4H- and 6H-SiC are presented. This MC model includes two non-parabolic conduction bands. Based on the material parameters, the electron scattering rates included polar optical phonon scattering, optical phonon scattering and acoustic phonon scattering are evaluated. The electron drift velocity, energy and free flight time are simulated as a function of applied electric field at an impurity concentration of 1x10 18 cm 3 in room temperature. The simulated drift velocity with electric field dependencies is in a good agreement with experimental results found in literature. The saturation velocities for both polytypes are close, but the scattering rates are much more pronounced for 6H-SiC. Our simulation model clearly shows complete electron transport properties in 4H- and 6H-SiC.

  15. Investigation of electronic and magnetic properties of FeS: First principle and Monte Carlo simulations

    Science.gov (United States)

    Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim

    2018-06-01

    Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.

  16. On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kawrakow, I.; Bielajew, A.F.

    1998-01-01

    A new representation of elastic electron-nucleus (Coulomb) multiple-scattering distributions is developed. Using the screened Rutherford cross section with the Moliere screening parameter as an example, a simple analytic angular transformation of the Goudsmit-Saunderson multiple-scattering distribution accounts for most of the structure of the angular distribution leaving a residual 3-parameter (path-length, transformed angle and screening parameter) function that is reasonably slowly varying and suitable for rapid, accurate interpolation in a computer-intensive algorithm. The residual function is calculated numerically for a wide range of Moliere screening parameters and path-lengths suitable for use in a general-purpose condensed-history Monte Carlo code. Additionally, techniques are developed that allow the distributions to be scaled to account for energy loss. This new representation allows ''''on-the-fly'''' sampling of Goudsmit-Saunderson angular distributions in a screened Rutherford approximation suitable for class II condensed-history Monte Carlo codes. (orig.)

  17. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    International Nuclear Information System (INIS)

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali

    2014-01-01

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems

  18. Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional

    Directory of Open Access Journals (Sweden)

    Seshaditya A.

    2017-06-01

    Full Text Available We consider a gas of interacting electrons in the limit of nearly uniform density and treat the one dimensional (1D, two dimensional (2D and three dimensional (3D cases. We focus on the determination of the correlation part of the kinetic functional by employing a Monte Carlo sampling technique of electrons in space based on an analytic derivation via the Levy-Lieb constrained search principle. Of particular interest is the question of the behaviour of the functional as one passes from 1D to 3D; according to the basic principles of Density Functional Theory (DFT the form of the universal functional should be independent of the dimensionality. However, in practice the straightforward use of current approximate functionals in different dimensions is problematic. Here, we show that going from the 3D to the 2D case the functional form is consistent (concave function but in 1D becomes convex; such a drastic difference is peculiar of 1D electron systems as it is for other quantities. Given the interesting behaviour of the functional, this study represents a basic first-principle approach to the problem and suggests further investigations using highly accurate (though expensive many-electron computational techniques, such as Quantum Monte Carlo.

  19. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Xie, YuLong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA; Kerisit, Sebastien [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  20. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Siegbahn, E A; Nilsson, B; Fernandez-Varea, J M; Andreo, P

    2003-01-01

    In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor φ water plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water TM and Solid water TM (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with φ water plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of φ water plastic may then be explained considering the different depth-scaling rules used

  1. The electron transport problem sampling by Monte Carlo individual collision technique

    International Nuclear Information System (INIS)

    Androsenko, P.A.; Belousov, V.I.

    2005-01-01

    The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)

  2. The electron transport problem sampling by Monte Carlo individual collision technique

    Energy Technology Data Exchange (ETDEWEB)

    Androsenko, P.A.; Belousov, V.I. [Obninsk State Technical Univ. of Nuclear Power Engineering, Kaluga region (Russian Federation)

    2005-07-01

    The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)

  3. Space applications of the MITS electron-photon Monte Carlo transport code system

    International Nuclear Information System (INIS)

    Kensek, R.P.; Lorence, L.J.; Halbleib, J.A.; Morel, J.E.

    1996-01-01

    The MITS multigroup/continuous-energy electron-photon Monte Carlo transport code system has matured to the point that it is capable of addressing more realistic three-dimensional adjoint applications. It is first employed to efficiently predict point doses as a function of source energy for simple three-dimensional experimental geometries exposed to simulated uniform isotropic planar sources of monoenergetic electrons up to 4.0 MeV. Results are in very good agreement with experimental data. It is then used to efficiently simulate dose to a detector in a subsystem of a GPS satellite due to its natural electron environment, employing a relatively complex model of the satellite. The capability for survivability analysis of space systems is demonstrated, and results are obtained with and without variance reduction

  4. Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method

    International Nuclear Information System (INIS)

    Pilla, R.P.; Shaham, J.

    1997-01-01

    A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons. These are coupled nonlinear integro-differential equations. The collision kernels for the photons as well as pairs are evaluated for Compton scattering, pair annihilation and creation, bremsstrahlung, and Coulomb collisions. They are given as multidimensional integrals which are valid for all energies. For an homogeneous and isotropic plasma with no particle escape, the equilibrium solution is expressed analytically in terms of the initial conditions. For two specific cases, for which the photon and the pair spectra are initially constant or have a power-law distribution within the given limits, the time evolution of the plasma is analyzed using the new method. The final spectra are found to be in a good agreement with the analytical solutions. The new algorithm is faster than the Monte Carlo scheme based on uniform sampling and more flexible than the numerical methods used in the past, which do not involve Monte Carlo sampling. It is also found to be very stable. Some astrophysical applications of this technique are discussed. copyright 1997 The American Astronomical Society

  5. Penelope-2006: a code system for Monte Carlo simulation of electron and photon transport

    International Nuclear Information System (INIS)

    2006-01-01

    The computer code system PENELOPE (version 2006) performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A geometry package called PENGEOM permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. These proceedings contain the corresponding manual and teaching notes of the PENELOPE-2006 workshop and training course, held on 4-7 July 2006 in Barcelona, Spain. (author)

  6. Plasma excitation processes in flue gas simulated with Monte Carlo electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tas, M.A.; Veldhuizen, E.M. van; Rutgers, W.R. [Eindhoven University of Technology (Netherlands). Div. of Electrical Energy Systems

    1997-06-07

    The excitation of gas molecules in flue gas by electron impact is calculated with a Monte Carlo (MC) algorithm for electron dynamics in partially ionized gases. The MC algorithm is straightforward for any mixture of molecules for which cross sections are available. Electron drift is simulated in the first case for homogeneous electric fields and in the second case for secondary electrons which are produced by electron-beam irradiation. The electron energy distribution function {epsilon}-bar{sub {theta}}, V-bar{sub d}, {lambda}-bar, the energy branching and the rate of excitation are calculated for standard gas mixtures of Ar-N{sub 2}, O{sub 2} and H{sub 2}O. These fundamental process parameters are needed for the study of reactions to remove NO{sub x} from flue gas. The calculated results indicate that the production of highly excited molecules in the high electric field of a streamer corona discharge has an efficiency similar to that of electron-beam irradiation. (author)

  7. Monte Carlo simulation of kinetic electron emission from metal due to impact of heavy ions

    International Nuclear Information System (INIS)

    Kawata, J.; Ohya, K.

    1999-01-01

    A Monte Carlo simulation is performed for study of the dependence of kinetic electron emission on nuclear charge of projectile Z 1 , using the nonlinear response theory with the density-functional (DF) formalism to calculate electron excitation cross section. The kinetic yield, energy distribution, excitation depth distribution and emission statistics of emitted electrons showed clear Z 1 oscillations, however, the Z 1 oscillations of them are different from that of the inelastic stopping power, in particular for high Z 1 , due to large elastic energy loss of the ions and secondary cascade process of primary excited electrons within the solid. For high Z 1 , the linear relationship does not exist between them and the inelastic stopping power, although they are closely related to it. The emission of high-energy primary electrons excited by the ion within shallow depth without experiencing the secondary cascade process, results in the Z 1 dependence in the energy distribution, excitation depth distribution and emission statistics of emitted electrons

  8. Monte Carlo Simulation for Neptun 10 PC medical linear accelerator and calculations of electron beam parameters

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Hashemi, S.M.; Momen Nezhad, M.

    2008-01-01

    In recent decades, cancer has been one of the main ever increasing causes of death in developed countries. In order to fulfill the aforementioned considerations different techniques have been used, one of which is Monte Carlo simulation technique. High accuracy of the Monte Carlo simulation has been one of the main reason for its wide spread application. In this study, MCNP-4C code was employed to simulate electron mode of the Neptun 10 PC Linac, dosimetric quantities for conventional fields have also been both measured and calculated. Although Neptun 10 PC Linac is no longer licensed for installation in European and some other countries but regrettably nearly 10 of them have been installed in different centers around the country and are in operation. Therefore, in this circumstance, to improve the accuracy of treatment planning, Monte Carlo simulation for Neptun 10 PC was recognized as a necessity. Simulated and measured values of depth dose curves, off axis dose distributions for 6 , 8 and 10 MeV electrons applied for four different size fields, 6 x 6 cm 2 , 10 x 10 cm 2 , 15 x 15 cm 2 and 20 x 20 cm 2 were obtained. The measurements were carried out by a Welhofer-Scanditronix dose scanning system, Semiconductor Detector and Ionization Chamber. The results of this study have revealed that the values of two main dosimetric quantities depth dose curves and off axis dose distributions, acquired by MCNP-4C simulation and the corresponding values achieved by direct measurements are in a very good agreement (within 1% to 2% difference). In general, very good consistency of simulated and measured results, is a good proof that the goal of this work has been accomplished. In other word where measurements of some parameters are not practically achievable, MCNP-4C simulation can be implemented confidently. (author)

  9. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    Science.gov (United States)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  10. penORNL: a parallel Monte Carlo photon and electron transport package using PENELOPE

    International Nuclear Information System (INIS)

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.

    2015-01-01

    The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high-performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.

  11. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  12. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron–electron interactions, application to graphene

    International Nuclear Information System (INIS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-01-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  13. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron–electron interactions, application to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Piotr, E-mail: pborow@poczta.onet.pl [Warsaw University of Technology, Faculty of Physics, ul. Koszykowa 75, 00-662 Warszawa (Poland); Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr [Institut d' Electronique, de Microélectronique et de Nanotechnologies, UMR CNRS 8520, Université Lille 1, Avenue Poincaré, CS 60069, 59652 Villeneuve d' Ascq Cédex (France); Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl [Warsaw University of Technology, Faculty of Physics, ul. Koszykowa 75, 00-662 Warszawa (Poland)

    2017-07-15

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  14. Monte Carlo Simulation of Complete X-Ray Spectra for Use in Scanning Electron Microscopy Analysis

    International Nuclear Information System (INIS)

    Roet, David; Van Espen, Piet

    2003-01-01

    Full Text: The interactions of keV electrons and photons with matter can be simulated accurately with the aid of the Monte Carlo (MC) technique. In scanning electron microscopy x-ray analysis (SEM-EDX) such simulations can be used to perform quantitative analysis using a Reverse Monte Carlo method even if the samples have irregular geometry. Alternatively the MC technique can generate spectra of standards for use in quantization with partial least squares regression. The feasibility of these alternatives to the more classical ZAF or phi-rho-Z quantification methods has been proven already. In order to be applicable for these purposes the MC-code needs to generate accurately only the characteristic K and L x-ray lines, but also the Bremsstrahlung continuum, i.e. the complete x-ray spectrum need to be simulated. Currently two types of MC simulation codes are available. Programs like Electron Flight Simulator and CASINO simulate characteristic x-rays due to electron interaction in a fast and efficient way but lack provision for the simulation of the continuum. On the other hand, programs like EGS4, MCNP4 and PENELOPE, originally developed for high energy (MeV- GeV) applications, are more complete but difficult to use and still slow, even on todays fastest computers. We therefore started the development of a dedicated MC simulation code for use in quantitative SEM-EDX work. The selection of the most appropriate cross section for the different interactions will be discussed and the results obtained will be compared with those obtained with existing MC programs. Examples of the application of MC simulations for quantitative analysis of samples with various composition will be given

  15. ETRAN, Electron Transport and Gamma Transport with Secondary Radiation in Slab by Monte-Carlo

    International Nuclear Information System (INIS)

    1992-01-01

    A - Nature of physical problem solved: ETRAN computes the transport of electrons and photons through plane-parallel slab targets that have a finite thickness in one dimension and are unbound in the other two-dimensions. The incident radiation can consist of a beam of either electrons or photons with specified spectral and directional distribution. Options are available by which all orders of the electron-photon cascade can be included in the calculation. Thus electrons are allowed to give rise to secondary knock-on electrons, continuous Bremsstrahlung and characteristic x-rays; and photons are allowed to produce photo-electrons, Compton electrons, and electron- positron pairs. Annihilation quanta, fluorescence radiation, and Auger electrons are also taken into account. If desired, the Monte- Carlo histories of all generations of secondary radiations are followed. The information produced by ETRAN includes the following items: 1) reflection and transmission of electrons or photons, differential in energy and direction; 2) the production of continuous Bremsstrahlung and characteristic x-rays by electrons and the emergence of such radiations from the target (differential in photon energy and direction); 3) the spectrum of the amounts of energy left behind in a thick target by an incident electron beam; 4) the deposition of energy and charge by an electron beam as function of the depth in the target; 5) the flux of electrons, differential in energy, as function of the depth in the target. B - Method of solution: A programme called DATAPAC-4 takes data for a particular material from a library tape and further processes them. The function of DATAPAC-4 is to produce single-scattering and multiple-scattering data in the form of tabular arrays (again stored on magnetic tape) which facilitate the rapid sampling of electron and photon Monte Carlo histories in ETRAN. The photon component of the electron-photon cascade is calculated by conventional random sampling that imitates

  16. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  17. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  18. Refinement of Monte Carlo simulations of electron-specimen interaction in low-voltage SEM

    International Nuclear Information System (INIS)

    Kieft, Erik; Bosch, Eric

    2008-01-01

    A Monte Carlo tool is presented for the simulation of secondary electron (SE) emission in a scanning electron microscope (SEM). The tool is based on the Geant4 platform of CERN. The modularity of this platform makes it comparatively easy to add and test individual physical models. Our aim has been to develop a flexible and generally applicable tool, while at the same time including a good description of low-energy (<50 eV) interactions of electrons with matter. To this end we have combined Mott cross-sections with phonon-scattering based cross-sections for the elastic scattering of electrons, and we have adopted a dielectric function theory approach for inelastic scattering and generation of SEs. A detailed model of the electromagnetic fields from an actual SEM column has been included in the tool for ray tracing of secondary and backscattered electrons. Our models have been validated against experimental results through comparison of the simulation results with experimental yields, SE spectra and SEM images. It is demonstrated that the resulting simulation package is capable of quantitatively predicting experimental SEM images and is an important tool in building a deeper understanding of SEM imaging.

  19. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  20. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector

    International Nuclear Information System (INIS)

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-01-01

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle 3 dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the

  1. Monte Carlo Simulation of Electron Beams for Radiotherapy - EGS4, MCNP4b and GEANT3 Intercomparison

    CERN Document Server

    Trindade, A; Alves, C M; Chaves, A; Lopes, C; Oliveira, C; Peralta, L

    2000-01-01

    In medical radiation physics, an increasing number of Monte Carlo codes are being used, which requires intercomparison between them to evaluated the accuracy of the simulated results against benchmark experiments. The Monte Carlo code EGS4, commonly used to simulate electron beams from medical linear accelerators, was compared with GEANT3 and MCNP4b. Intercomparison of electron energy spectra, angular and spatial distribution were carried out for the Siemens KD2 linear accelerator, at beam energies of 10 and 15 MeV for a field size of 10x10 cm2. Indirect validation was performed against electron depth doses curves and beam profiles measured in a MP3-PTW water phantom using a Markus planar chamber. Monte Carlo isodose lines were reconstructed and compared to those from commercial treatment planning systems (TPS's) and with experimental data.

  2. The effective differential cross section for elastic scattering of electrons by atoms and its use for Monte Carlo simulation of electron passage through matter

    International Nuclear Information System (INIS)

    Sheikin, E G

    2010-01-01

    The effective differential cross section (DCS) for elastic scattering of electrons by atoms is proposed that reproduces known energy dependences for the first and second transport cross sections but provides a total elastic cross section that is significantly small compared with the known energy dependences. The number of elastic collisions of electrons in matter when using the effective DCS in Monte Carlo simulations is significantly lower than that when using the real DCS. The results of our Monte Carlo simulation of electron propagation in aluminium using the proposed DCS are in good agreement with experimental data.

  3. Monte Carlo characterization of clinical electron beams in transverse magnetic fields

    International Nuclear Information System (INIS)

    Lee, Michael C.; Ma, Chang-Ming

    2000-01-01

    Monte Carlo simulations were employed to study the characteristics of the electron beams of a clinical linear accelerator in the presence of 1.5 and 3.0 T transverse magnetic fields and to assess the possibility of using magnetic fields in conjunction with modulated electron radiation therapy (MERT). The starting depth of the magnetic field was varied over several centimetres. It was found that peak doses of as much as 2.7 times the surface dose could be achieved with a 1.5 T magnetic field. The magnetic field was shown to reduce the 80% and 20% dose drop-off distance by 50% to 80%. The distance between the 80% dose levels of the pseudo-Bragg peak induced by the magnetic field was found to be extremely narrow, generally less than 1 cm. However, by modulating the energy and intensity of the electron fields while simultaneously moving the magnetic field, a homogeneous dose distribution with low surface dose and a sharp dose fall-off was generated. Heterogeneities are shown to change the effective range of the electron beams, but not eliminate the advantages of a sharp depth-dose drop-off or high peak-to-surface dose ratio. This suggests the applicability of MERT with magnetic fields in heterogeneous media. The results of this study demonstrate the ability to use magnetic fields in MERT to produce highly desirable dose distributions. (author)

  4. Penelope - a code system for Monte Carlo simulation of electron and photon transport

    International Nuclear Information System (INIS)

    2003-01-01

    Radiation is used in many applications of modern technology. Its proper handling requires competent knowledge of the basic physical laws governing its interaction with matter. To ensure its safe use, appropriate tools for predicting radiation fields and doses, as well as pertinent regulations, are required. One area of radiation physics that has received much attention concerns electron-photon transport in matter. PENELOPE is a modern, general-purpose Monte Carlo tool for simulating the transport of electrons and photons, which is applicable for arbitrary materials and in a wide energy range. PENELOPE provides quantitative guidance for many practical situations and techniques, including electron and X-ray spectroscopies, electron microscopy and microanalysis, biophysics, dosimetry, medical diagnostics and radiotherapy, as well as radiation damage and shielding. These proceedings contain the extensively revised teaching notes of the second workshop/training course on PENELOPE held in 2003, along with a detailed description of the improved physic models, numerical algorithms and structure of the code system. (author)

  5. Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L

    2008-10-01

    Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.

  6. ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.

    1985-01-01

    The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence

  7. Resistivity recovery simulations of electron-irradiated iron: Kinetic Monte Carlo versus cluster dynamics

    International Nuclear Information System (INIS)

    Dalla Torre, J.; Fu, C.-C.; Willaime, F.; Barbu, A.; Bocquet, J.-L.

    2006-01-01

    The isochronal resistivity recovery in high purity α-iron irradiated by electrons was successfully reproduced by a multiscale modelling approach. The stability and mobility of small self-defect clusters determined by ab initio methods were used as input data for an event based Kinetic Monte Carlo (KMC) model, used to explore the defect population evolution during the annealing and to extract the resistivity recovery peaks. In this paper, we investigate the possibility of using an efficient mesoscale model, the Cluster Dynamics (CD), instead of KMC in this approach. The comparison between the two methods for various CD initial conditions shows the importance of spatial correlations between defects, which are neglected in the CD model. However, using appropriate initial conditions, e.g. starting from the concentration of Frenkel pairs after the uncorrelated stage I E , the CD model captures the main characteristics of subsequent defect population evolution, and it can therefore be used for fast and semi-quantitative investigations

  8. SU-E-T-277: Raystation Electron Monte Carlo Commissioning and Clinical Implementation

    International Nuclear Information System (INIS)

    Allen, C; Sansourekidou, P; Pavord, D

    2014-01-01

    Purpose: To evaluate the Raystation v4.0 Electron Monte Carlo algorithm for an Elekta Infinity linear accelerator and commission for clinical use. Methods: A total of 199 tests were performed (75 Export and Documentation, 20 PDD, 30 Profiles, 4 Obliquity, 10 Inhomogeneity, 55 MU Accuracy, and 5 Grid and Particle History). Export and documentation tests were performed with respect to MOSAIQ (Elekta AB) and RadCalc (Lifeline Software Inc). Mechanical jaw parameters and cutout magnifications were verified. PDD and profiles for open cones and cutouts were extracted and compared with water tank measurements. Obliquity and inhomogeneity for bone and air calculations were compared to film dosimetry. MU calculations for open cones and cutouts were performed and compared to both RadCalc and simple hand calculations. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Acceptability was categorized as follows: performs as expected, negligible impact on workflow, marginal impact, critical impact or safety concern, and catastrophic impact of safety concern. Results: Overall results are: 88.8% perform as expected, 10.2% negligible, 2.0% marginal, 0% critical and 0% catastrophic. Results per test category are as follows: Export and Documentation: 100% perform as expected, PDD: 100% perform as expected, Profiles: 66.7% perform as expected, 33.3% negligible, Obliquity: 100% marginal, Inhomogeneity 50% perform as expected, 50% negligible, MU Accuracy: 100% perform as expected, Grid and particle histories: 100% negligible. To achieve distributions with satisfactory smoothness level, 5,000,000 particle histories were used. Calculation time was approximately 1 hour. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use. All of the issues encountered have acceptable workarounds. Known issues were reported to Raysearch and will be resolved in upcoming releases

  9. SU-F-T-656: Monte Carlo Study On Air Activation Around a Medical Electron Linac

    International Nuclear Information System (INIS)

    Horst, F; Fehrenbacher, G; Zink, K

    2016-01-01

    Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeled and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.

  10. SU-F-T-656: Monte Carlo Study On Air Activation Around a Medical Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Horst, F [Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen (Germany); GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Fehrenbacher, G [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Zink, K [Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen (Germany); University Hospital Giessen-Marburg, Marburg (Germany)

    2016-06-15

    Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeled and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.

  11. SU-E-T-277: Raystation Electron Monte Carlo Commissioning and Clinical Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C; Sansourekidou, P; Pavord, D [Health-quest, Poughkeepsie, NY (United States)

    2014-06-01

    Purpose: To evaluate the Raystation v4.0 Electron Monte Carlo algorithm for an Elekta Infinity linear accelerator and commission for clinical use. Methods: A total of 199 tests were performed (75 Export and Documentation, 20 PDD, 30 Profiles, 4 Obliquity, 10 Inhomogeneity, 55 MU Accuracy, and 5 Grid and Particle History). Export and documentation tests were performed with respect to MOSAIQ (Elekta AB) and RadCalc (Lifeline Software Inc). Mechanical jaw parameters and cutout magnifications were verified. PDD and profiles for open cones and cutouts were extracted and compared with water tank measurements. Obliquity and inhomogeneity for bone and air calculations were compared to film dosimetry. MU calculations for open cones and cutouts were performed and compared to both RadCalc and simple hand calculations. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Acceptability was categorized as follows: performs as expected, negligible impact on workflow, marginal impact, critical impact or safety concern, and catastrophic impact of safety concern. Results: Overall results are: 88.8% perform as expected, 10.2% negligible, 2.0% marginal, 0% critical and 0% catastrophic. Results per test category are as follows: Export and Documentation: 100% perform as expected, PDD: 100% perform as expected, Profiles: 66.7% perform as expected, 33.3% negligible, Obliquity: 100% marginal, Inhomogeneity 50% perform as expected, 50% negligible, MU Accuracy: 100% perform as expected, Grid and particle histories: 100% negligible. To achieve distributions with satisfactory smoothness level, 5,000,000 particle histories were used. Calculation time was approximately 1 hour. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use. All of the issues encountered have acceptable workarounds. Known issues were reported to Raysearch and will be resolved in upcoming releases.

  12. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams.

    Science.gov (United States)

    Vandervoort, Eric J; Tchistiakova, Ekaterina; La Russa, Daniel J; Cygler, Joanna E

    2014-02-01

    In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm(2). Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  13. Monte-Carlo simulations of secondary electron emission from CsI, induced by 1-10 keV X-rays and electrons

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Breskin, A.; Chechik, R.

    1992-05-01

    A model for electron transport and emission in CsI is proposed. It is based on theoretically calculated microscopic cross-sections for electron interaction with the nuclear and the electronic components of the solid. A Monte Carlo program based on this model was developed to simulate secondary electron emission induced by X-rays and electrons in the energy range of 1 to 10 keV. The calculated secondary emission yields agree with existing experimental data. The model provides all necessary characteristics for the design of radiation detectors based on secondary electron emission. It can be expanded to higher incident energies and other alkali halides. (author)

  14. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    International Nuclear Information System (INIS)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  15. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  16. Comparison of analytical and Monte Carlo calculations of multi-photon effects in bremsstrahlung emission by high-energy electrons

    DEFF Research Database (Denmark)

    Mangiarotti, Alessio; Sona, Pietro; Ballestrero, Sergio

    2012-01-01

    Approximate analytical calculations of multi-photon effects in the spectrum of total radiated energy by high-energy electrons crossing thin targets are compared to the results of Monte Carlo type simulations. The limits of validity of the analytical expressions found in the literature are establi...

  17. A Monte Carlo Code (PHOEL) for generating initial energies of photoelectrons and compton electrons produced by photons in water

    International Nuclear Information System (INIS)

    Turner, J.E.; Modolo, J.T.; Sordi, G.M.A.A.; Hamm, R.N.; Wright, H.A.

    1979-01-01

    PHOEL provides a source term for a Monte Carlo code which calculates the electron transport and energy degradation in liquid water. This code is used to study the relative biological effectiveness (RBE) of low-LET radiation at low doses. The basic numerical data used and their mathematical treatment are described as well as the operation of the code [pt

  18. Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study.

    Science.gov (United States)

    Sharma, Rajesh O; Saini, L K; Bahuguna, Bhagwati Prasad

    2018-05-10

    We study the phase diagram of a symmetric electron-hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater-Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at [Formula: see text] and the ferromagnetic fluid phase being particularly stable at [Formula: see text]. As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s   =  20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s   Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.

  19. Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals

    Science.gov (United States)

    Rillo, Giovanni; Morales, Miguel A.; Ceperley, David M.; Pierleoni, Carlo

    2018-03-01

    We performed simulations for solid molecular hydrogen at high pressures (250 GPa ≤ P ≤ 500 GPa) along two isotherms at T = 200 K (phase III) and at T = 414 K (phase IV). At T = 200 K, we considered likely candidates for phase III, the C2c and Cmca12 structures, while at T = 414 K in phase IV, we studied the Pc48 structure. We employed both Coupled Electron-Ion Monte Carlo (CEIMC) and Path Integral Molecular Dynamics (PIMD). The latter is based on Density Functional Theory (DFT) with the van der Waals approximation (vdW-DF). The comparison between the two methods allows us to address the question of the accuracy of the exchange-correlation approximation of DFT for thermal and quantum protons without recurring to perturbation theories. In general, we find that atomic and molecular fluctuations in PIMD are larger than in CEIMC which suggests that the potential energy surface from vdW-DF is less structured than the one from quantum Monte Carlo. We find qualitatively different behaviors for systems prepared in the C2c structure for increasing pressure. Within PIMD, the C2c structure is dynamically partially stable for P ≤ 250 GPa only: it retains the symmetry of the molecular centers but not the molecular orientation; at intermediate pressures, it develops layered structures like Pbcn or Ibam and transforms to the metallic Cmca-4 structure at P ≥ 450 GPa. Instead, within CEIMC, the C2c structure is found to be dynamically stable at least up to 450 GPa; at increasing pressure, the molecular bond length increases and the nuclear correlation decreases. For the other two structures, the two methods are in qualitative agreement although quantitative differences remain. We discuss various structural properties and the electrical conductivity. We find that these structures become conducting around 350 GPa but the metallic Drude-like behavior is reached only at around 500 GPa, consistent with recent experimental claims.

  20. Monte Carlo simulation of secondary electron images for gold nanorods on the silicon substrate

    Science.gov (United States)

    Zhang, P.

    2018-06-01

    Recently, gold nanorods (Au NRs) have attracted much attention because at a particular photoelectricity the gold nanorods present a characteristic which is different from other types of Au nanomaterials with various shapes. Accurate measurement of aspect ratios does provide very high value of optical property for Au NRs. Monte Carlo (MC) simulation is thought of as the most accurate tool to perform size measurement through extracting structure parameters from the simulated scanning electron microscopy (SEM) image which best matches the experimental one. In this article, a series of MC-simulated secondary electron (SE) images have been taken for Au NRs on a silicon substrate. However, it has already been observed that the two ends of Au NRs in the experimental SEM image is brighter than that of the middle part. It seriously affects the accuracy of size measurement for Au NRs. The purpose of this work is to understand the mechanism underlying this phenomenon through a series of systematical analysis. It was found that the cetyltrimethylammonium bromide (CTAB) which covers the Au NRs indeed can alter the contrast of Au NRs compared to that without CTAB covering. However, SEs emitting from CTAB are not the reason for the abnormal brightness at the two ends of NRs. This work reveals that the charging effect might be the leading cause for this phenomenon.

  1. ITS, TIGER System of Coupled Electron Photon Transport by Monte-Carlo

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.; Young, M.F.

    1996-01-01

    1 - Description of program or function: ITS permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/ photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. 2 - Method of solution: Through a machine-portable utility that emulates the basic features of the CDC UPDATE processor, the user selects one of eight codes for running on a machine of one of four (at least) major vendors. With the ITS-3.0 release the PSR-0245/UPEML package is included to perform these functions. The ease with which this utility is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is maximized by employing the best available cross sections and sampling distributions, and the most complete physical model for describing the production and transport of the electron/ photon cascade from 1.0 GeV down to 1.0 keV. Flexibility of construction permits the codes to be tailored to specific applications and the capabilities of the codes to be extended to more complex applications through update procedures. 3 - Restrictions on the complexity of the problem: - Restrictions and/or limitations for ITS depend upon the local operating system

  2. Specific absorbed fractions of electrons and photons for Rad-HUMAN phantom using Monte Carlo method

    International Nuclear Information System (INIS)

    Wang Wen; Hu Liqin; Cheng Mengyun; Long Pengcheng

    2015-01-01

    The specific absorbed fractions (SAF) for self- and cross-irradiation are effective tools for the internal dose estimation of inhalation and ingestion intakes of radionuclides. A set of SAFs of photons and electrons were calculated using the Rad-HUMAN phantom, which is a computational voxel phantom of a Chinese adult female that was created using the color photographic image of the Chinese Visible Human (CVH) data set by the FDS Team. The model can represent most Chinese adult female anatomical characteristics and can be taken as an individual phantom to investigate the difference of internal dose with Caucasians. In this study, the emission of mono-energetic photons and electrons of 10 keV to 4 MeV energy were calculated using the Monte Carlo particle transport calculation code MCNP. Results were compared with the values from ICRP reference and ORNL models. The results showed that SAF from the Rad-HUMAN have similar trends but are larger than those from the other two models. The differences were due to the racial and anatomical differences in organ mass and inter-organ distance. The SAFs based on the Rad-HUMAN phantom provide an accurate and reliable data for internal radiation dose calculations for Chinese females. (authors)

  3. Monte Carlo simulation of electron beams from an accelerator head using PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Sempau, J. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain). E-mail: josep.sempau@upc.es; Sanchez-Reyes, A. [Servei d' Oncologia Radioterapica, Hospital Clinic de Barcelona, Villarroel 170, 08036 Barcelona (Spain); Institut d' Investigaciones Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (Spain); Salvat, F.; Oulad ben Tahar, H.; Fernandez-Varea, J.M. [Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain); Jiang, S.B. [Department of Radiation Oncology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5304 (United States)

    2001-04-01

    The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the 'latent' variance in the phase-space file, are discussed in detail. (author)

  4. Poster - 20: Detector selection for commissioning of a Monte Carlo based electron dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Anusionwu, Princess [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Department of Physics & Astronomy, University of Manitoba, Winnipeg Canada (Canada); Alpuche Aviles, Jorge E. [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Pistorius, Stephen [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Department of Physics & Astronomy, University of Manitoba, Winnipeg Canada (Canada); Department of Radiology, University of Manitoba, Winnipeg (Canada)

    2016-08-15

    Objective: Commissioning of a Monte Carlo based electron dose calculation algorithm requires percentage depth doses (PDDs) and beam profiles which can be measured with multiple detectors. Electron dosimetry is commonly performed with cylindrical chambers but parallel plate chambers and diodes can also be used. The purpose of this study was to determine the most appropriate detector to perform the commissioning measurements. Methods: PDDs and beam profiles were measured for beams with energies ranging from 6 MeV to 15 MeV and field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Detectors used included diodes, cylindrical and parallel plate ionization chambers. Beam profiles were measured in water (100 cm source to surface distance) and in air (95 cm source to detector distance). Results: PDDs for the cylindrical chambers were shallower (1.3 mm averaged over all energies and field sizes) than those measured with the parallel plate chambers and diodes. Surface doses measured with the diode and cylindrical chamber were on average larger by 1.6 % and 3% respectively than those of the parallel plate chamber. Profiles measured with a diode resulted in penumbra values smaller than those measured with the cylindrical chamber by 2 mm. Conclusion: The diode was selected as the most appropriate detector since PDDs agreed with those measured with parallel plate chambers (typically recommended for low energies) and results in sharper profiles. Unlike ion chambers, no corrections are needed to measure PDDs, making it more convenient to use.

  5. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  6. Monte Carlo simulation of small field electron beams for small animal irradiation

    International Nuclear Information System (INIS)

    Lee, Chung-Chi; Chen, Ai-Mei; Tung, Chuan-Jong; Chao, Tsi-Chian

    2011-01-01

    The volume effect of detectors in the dosimetry of small fields for photon beams has been well studied due to interests in radiosurgery and small beamlets used in IMRT treatments; but there is still an unexplored research field for small electron beams used in small animal irradiation. This study proposes to use the BEAM Monte Carlo (MC) simulation to assess characteristics of small electron beams (4, 6, 14, 30 mm in diameter) with the kinetic energies of 6 and 18 MeV. Three factors influencing beam characteristics were studied (1) AE and ECUT settings, (2) photon jaw settings and (3) simulation pixel sizes. Study results reveal that AE/ECUT settings at 0.7 MeV are adequate for linear accelerator treatment head simulation, while 0.521 MeV is more favorable to be used for the phantom study. It is also demonstrated that voxel size setting at 1/4 of the simulation field width in all directions is sufficient to achieve accurate results. As for the photon jaw setting, it has great impact on the absolute output of different field size setting (i.e. output factor) but with minimum effect on the relative lateral distribution.

  7. A Monte-Carlo simulation of the behaviour of electron swarms in hydrogen using an anisotropic scattering model

    International Nuclear Information System (INIS)

    Blevin, H.A.; Fletcher, J.; Hunter, S.R.

    1978-05-01

    In a recent paper, a Monte-Carlo simulation of electron swarms in hydrogen using an isotropic scattering model was reported. In this previous work discrepancies between the predicted and measured electron transport parameters were observed. In this paper a far more realistic anisotropic scattering model is used. Good agreement between predicted and experimental data is observed and the simulation code has been used to calculate various parameters which are not directly measurable

  8. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    Energy Technology Data Exchange (ETDEWEB)

    Floris, Franca Maria, E-mail: floris@dcci.unipi.it; Amovilli, Claudio [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy); Filippi, Claudia [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2014-01-21

    We investigate here the vertical n → π{sup *} and π → π{sup *} transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π{sup *} case and also improve considerably the shift for the π → π{sup *} transition.

  9. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    International Nuclear Information System (INIS)

    Floris, Franca Maria; Amovilli, Claudio; Filippi, Claudia

    2014-01-01

    We investigate here the vertical n → π * and π → π * transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π * case and also improve considerably the shift for the π → π * transition

  10. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    Science.gov (United States)

    Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio

    2014-01-01

    We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π* case and also improve considerably the shift for the π → π* transition.

  11. Correlation of electron transport and photocatalysis of nanocrystalline clusters studied by Monte-Carlo continuity random walking.

    Science.gov (United States)

    Liu, Baoshun; Li, Ziqiang; Zhao, Xiujian

    2015-02-21

    In this research, Monte-Carlo Continuity Random Walking (MC-RW) model was used to study the relation between electron transport and photocatalysis of nano-crystalline (nc) clusters. The effects of defect energy disorder, spatial disorder of material structure, electron density, and interfacial transfer/recombination on the electron transport and the photocatalysis were studied. Photocatalytic activity is defined as 1/τ from a statistical viewpoint with τ being the electron average lifetime. Based on the MC-RW simulation, a clear physical and chemical "picture" was given for the photocatalytic kinetic analysis of nc-clusters. It is shown that the increase of defect energy disorder and material spatial structural disorder, such as the decrease of defect trap number, the increase of crystallinity, the increase of particle size, and the increase of inter-particle connection, can enhance photocatalytic activity through increasing electron transport ability. The increase of electron density increases the electron Fermi level, which decreases the activation energy for electron de-trapping from traps to extending states, and correspondingly increases electron transport ability and photocatalytic activity. Reducing recombination of electrons and holes can increase electron transport through the increase of electron density and then increases the photocatalytic activity. In addition to the electron transport, the increase of probability for electrons to undergo photocatalysis can increase photocatalytic activity through the increase of the electron interfacial transfer speed.

  12. Thyroid cell irradiation by radioiodines: a new Monte Carlo electron track-structure code

    International Nuclear Information System (INIS)

    Champion, Christophe; Elbast, Mouhamad; Colas-Linhart, Nicole; Ting-Di Wu

    2007-01-01

    The most significant impact of the Chernobyl accident is the increased incidence of thyroid cancer among children who were exposed to short-lived radioiodines and 131-iodine. In order to accurately estimate the radiation dose provided by these radioiodines, it is necessary to know where iodine is incorporated. To do that, the distribution at the cellular level of newly organified iodine in the immature rat thyroid was performed using secondary ion mass microscopy (NanoSIMS 50 ). Actual dosimetric models take only into account the averaged energy and range of beta particles of the radio-elements and may, therefore, imperfectly describe the real distribution of dose deposit at the microscopic level around the point sources. Our approach is radically different since based on a track-structure Monte Carlo code allowing following-up of electrons down to low energies (∼= 10 eV) what permits a nanometric description of the irradiation physics. The numerical simulations were then performed by modelling the complete disintegrations of the short-lived iodine isotopes as well as of 131 I in new born rat thyroids in order to take into account accurate histological and biological data for the thyroid gland. (author)

  13. A Monte Carlo simulation of the microdosimetric response for thick gas electron multiplier

    International Nuclear Information System (INIS)

    Hanu, A.; Byun, S.H.; Prestwich, W.V.

    2010-01-01

    The neutron microdosimetric responses of the thick gas electron multiplier (THGEM) detector were simulated. The THGEM is a promising device for microdosimetry, particularly for measuring the dose spectra of intense radiation fields and for collecting two-dimensional microdosimetric distributions. To investigate the response of the prototype THGEM microdosimetric detector, a simulation was developed using the Geant4 Monte Carlo code. The simulation calculates the deposited energy in the detector sensitive volume for an incident neutron beam. Both neutron energy and angular responses were computed for various neutron beam conditions. The energy response was compared with the reported experimental microdosimetric spectra as well as the evaluated fluence-to-kerma conversion coefficients. The effects of using non-tissue equivalent materials were also investigated by comparing the THGEM detector response with the response of an ideal detector in identical neutron field conditions. The result of the angular response simulations revealed severe angular dependencies for neutron energies above 100 keV. The simulation of a modified detector design gave an angular response pattern close to the ideal case, showing a fluctuation of less than 10% over the entire angular range.

  14. Electron energy and charge albedos - calorimetric measurement vs Monte Carlo theory

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Ruggles, L.E.; Miller, G.H.; Halbleib, J.A.

    1981-11-01

    A new calorimetric method has been employed to obtain saturated electron energy albedos for Be, C, Al, Ti, Mo, Ta, U, and UO 2 over the range of incident energies from 0.1 to 1.0 MeV. The technique was so designed to permit the simultaneous measurement of saturated charge albedos. In the cases of C, Al, Ta, and U the measurements were extended down to about 0.025 MeV. The angle of incidence was varied from 0 0 (normal) to 75 0 in steps of 15 0 , with selected measurements at 82.5 0 in Be and C. In each case, state-of-the-art predictions were obtained from a Monte Carlo model. The generally good agreement between theory and experiment over this extensive parameter space represents a strong validation of both the theoretical model and the new experimental method. Nevertheless, certain discrepancies at low incident energies, especially in high-atomic-number materials, and at all energies in the case of the U energy albedos are not completely understood

  15. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  16. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    Science.gov (United States)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  17. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.

    Science.gov (United States)

    Wu, J; Liu, Y L; Chang, S J; Chao, M M; Tsai, S Y; Huang, D E

    2012-11-01

    Monte Carlo (MC) simulation has been commonly used in the dose evaluation of radiation accidents and for medical purposes. The accuracy of simulated results is affected by the particle-tracking algorithm, cross-sectional database, random number generator and statistical error. The differences among MC simulation software packages must be validated. This study simulated the dose point kernel (DPK) and the cellular S-values of monoenergetic electrons ranging from 0.01 to 2 MeV and the radionuclides of (90)Y, (177)Lu and (103 m)Rh, using Fluktuierende Kaskade (FLUKA) and MC N-Particle Transport Code Version 5 (MCNP5). A 6-μm-radius cell model consisting of the cell surface, cytoplasm and cell nucleus was constructed for cellular S-value calculation. The mean absolute percentage errors (MAPEs) of the scaled DPKs, simulated using FLUKA and MCNP5, were 7.92, 9.64, 4.62, 3.71 and 3.84 % for 0.01, 0.1, 0.5, 1 and 2 MeV, respectively. For the three radionuclides, the MAPEs of the scaled DPKs were within 5 %. The maximum deviations of S(N←N), S(N←Cy) and S(N←CS) for the electron energy larger than 10 keV were 6.63, 6.77 and 5.24 %, respectively. The deviations for the self-absorbed S-values and cross-dose S-values of the three radionuclides were within 4 %. On the basis of the results of this study, it was concluded that the simulation results are consistent between FLUKA and MCNP5. However, there is a minor inconsistency for low energy range. The DPK and the cellular S-value should be used as the quality assurance tools before the MC simulation results are adopted as the gold standard.

  18. SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check

    Energy Technology Data Exchange (ETDEWEB)

    Haywood, J [Mercy Health Partners, Muskegon, MI (United States)

    2016-06-15

    Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. I then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.

  19. Comparison of Monte Carlo simulations of photon/electron dosimetry in microscale applications

    International Nuclear Information System (INIS)

    Poneja, O.P.; Chawla, R.; Negreanu, C.; Stepanek, J.

    2003-01-01

    It is important to establish reliable calculational tools to plan and analyse representative microdosimetry experiments in the context of microbeam radiation therapy development. In this paper, an attempt has been made to investigate the suitability of the MCNP4C Monte Carlo code to adequately model photon/electron transport over micron distances. The case of a single cylindrical microbeam of 25-micron diameter incident on a water phantom has been simulated in detail with both MCNP4C and the code PSI-GEANT, for different incident photon energies, to get absorbed dose distributions at various depths, with and without electron transport being considered. In addition, dose distributions calculated for a single microbeam with a photon spectrum representative of the European Synchrotron Radiation Facility (ESRF) have been compared. Finally, a large number of cylindrical microbeams ( a total of 2601 beams, placed on a 200-micron square pitch, covering an area of lcm 2 ) incident on a water phantom have been considered to study cumulative radial dose distributions at different depths. From these distributions, ratios of peak (within the microbeam) to valley (mid-point along the diagonal connecting two microbeams) dose values have been determined. The various comparisons with PSI-GEANT results have shown that MCNP4C, with its high flexibility in terms of its numerous source and geometry description options, variance reduction methods, detailed error analysis, statistical checks and different tally types, can be a valuable tool for the analysis of microbeam experiments. Copyright (2003) Australasian College of Physical Scientists and Engineers in Medicine

  20. Monte Carlo Investigation of Photon Beam Characteristics and its Variation with Incident Electron Beam Parameters for Indigenous Medical Linear Accelerator.

    Science.gov (United States)

    Mishra, Subhalaxmi; Dixit, P K; Selvam, T Palani; Yavalkar, Sanket S; Deshpande, D D

    2018-01-01

    A Monte Carlo model of a 6 MV medical linear accelerator (linac) unit built indigenously was developed using the BEAMnrc user code of the EGSnrc code system. The model was benchmarked against the measurements. Monte Carlo simulations were carried out for different incident electron beam parameters in the study. Simulation of indigenously developed linac unit has been carried out using the Monte Carlo based BEAMnrc user-code of the EGSnrc code system. Using the model, percentage depth dose (PDD), and lateral dose profiles were studied using the DOSXYZnrc user code. To identify appropriate electron parameters, three different distributions of electron beam intensity were investigated. For each case, the kinetic energy of the incident electron was varied from 6 to 6.5 MeV (0.1 MeV increment). The calculated dose data were compared against the measurements using the PTW, Germany make RFA dosimetric system (water tank MP3-M and 0.125 cm 3 ion chamber). The best fit of incident electron beam parameter was found for the combination of beam energy of 6.2 MeV and circular Gaussian distributed source in X and Y with FWHM of 1.0 mm. PDD and beam profiles (along both X and Y directions) were calculated for the field sizes from 5 cm × 5 cm to 25 cm × 25 cm. The dose difference between the calculated and measured PDD and profile values were under 1%, except for the penumbra region where the maximum deviation was found to be around 2%. A Monte Carlo model of indigenous linac (6 MV) has been developed and benchmarked against the measured data.

  1. Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.

    2010-12-22

    In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientific questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to

  2. Total skin electron therapy treatment verification: Monte Carlo simulation and beam characteristics of large non-standard electron fields

    International Nuclear Information System (INIS)

    Pavon, Ester Carrasco; Sanchez-Doblado, Francisco; Leal, Antonio; Capote, Roberto; Lagares, Juan Ignacio; Perucha, Maria; Arrans, Rafael

    2003-01-01

    Total skin electron therapy (TSET) is a complex technique which requires non-standard measurements and dosimetric procedures. This paper investigates an essential first step towards TSET Monte Carlo (MC) verification. The non-standard 6 MeV 40 x 40 cm 2 electron beam at a source to surface distance (SSD) of 100 cm as well as its horizontal projection behind a polymethylmethacrylate (PMMA) screen to SSD = 380 cm were evaluated. The EGS4 OMEGA-BEAM code package running on a Linux home made 47 PCs cluster was used for the MC simulations. Percentage depth-dose curves and profiles were calculated and measured experimentally for the 40 x 40 cm 2 field at both SSD = 100 cm and patient surface SSD = 380 cm. The output factor (OF) between the reference 40 x 40 cm 2 open field and its horizontal projection as TSET beam at SSD = 380 cm was also measured for comparison with MC results. The accuracy of the simulated beam was validated by the good agreement to within 2% between measured relative dose distributions, including the beam characteristic parameters (R 50 , R 80 , R 100 , R p , E 0 ) and the MC calculated results. The energy spectrum, fluence and angular distribution at different stages of the beam (at SSD = 100 cm, at SSD = 364.2 cm, behind the PMMA beam spoiler screen and at treatment surface SSD = 380 cm) were derived from MC simulations. Results showed a final decrease in mean energy of almost 56% from the exit window to the treatment surface. A broader angular distribution (FWHM of the angular distribution increased from 13deg at SSD 100 cm to more than 30deg at the treatment surface) was fully attributable to the PMMA beam spoiler screen. OF calculations and measurements agreed to less than 1%. The effect of changing the electron energy cut-off from 0.7 MeV to 0.521 MeV and air density fluctuations in the bunker which could affect the MC results were shown to have a negligible impact on the beam fluence distributions. Results proved the applicability of using MC

  3. Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning.

    Science.gov (United States)

    Chamberland, Eve; Beaulieu, Luc; Lachance, Bernard

    2015-05-08

    The purpose of this study is to evaluate the accuracy of the electron Monte Carlo (eMC) dose calculation algorithm included in a commercial treatment planning system and compare its performance against an electron pencil beam algorithm. Several tests were performed to explore the system's behavior in simple geometries and in configurations encountered in clinical practice. The first series of tests were executed in a homogeneous water phantom, where experimental measurements and eMC-calculated dose distributions were compared for various combinations of energy and applicator. More specifically, we compared beam profiles and depth-dose curves at different source-to-surface distances (SSDs) and gantry angles, by using dose difference and distance to agreement. Also, we compared output factors, we studied the effects of algorithm input parameters, which are the random number generator seed, as well as the calculation grid size, and we performed a calculation time evaluation. Three different inhomogeneous solid phantoms were built, using high- and low-density materials inserts, to clinically simulate relevant heterogeneity conditions: a small air cylinder within a homogeneous phantom, a lung phantom, and a chest wall phantom. We also used an anthropomorphic phantom to perform comparison of eMC calculations to measurements. Finally, we proceeded with an evaluation of the eMC algorithm on a clinical case of nose cancer. In all mentioned cases, measurements, carried out by means of XV-2 films, radiographic films or EBT2 Gafchromic films. were used to compare eMC calculations with dose distributions obtained from an electron pencil beam algorithm. eMC calculations in the water phantom were accurate. Discrepancies for depth-dose curves and beam profiles were under 2.5% and 2 mm. Dose calculations with eMC for the small air cylinder and the lung phantom agreed within 2% and 4%, respectively. eMC calculations for the chest wall phantom and the anthropomorphic phantom also

  4. TU-F-CAMPUS-T-05: A Cloud-Based Monte Carlo Dose Calculation for Electron Cutout Factors

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T; Bush, K [Stanford School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: For electron cutouts of smaller sizes, it is necessary to verify electron cutout factors due to perturbations in electron scattering. Often, this requires a physical measurement using a small ion chamber, diode, or film. The purpose of this study is to develop a fast Monte Carlo based dose calculation framework that requires only a smart phone photograph of the cutout and specification of the SSD and energy to determine the electron cutout factor, with the ultimate goal of making this cloud-based calculation widely available to the medical physics community. Methods: The algorithm uses a pattern recognition technique to identify the corners of the cutout in the photograph as shown in Figure 1. It then corrects for variations in perspective, scaling, and translation of the photograph introduced by the user’s positioning of the camera. Blob detection is used to identify the portions of the cutout which comprise the aperture and the portions which are cutout material. This information is then used define physical densities of the voxels used in the Monte Carlo dose calculation algorithm as shown in Figure 2, and select a particle source from a pre-computed library of phase-spaces scored above the cutout. The electron cutout factor is obtained by taking a ratio of the maximum dose delivered with the cutout in place to the dose delivered under calibration/reference conditions. Results: The algorithm has been shown to successfully identify all necessary features of the electron cutout to perform the calculation. Subsequent testing will be performed to compare the Monte Carlo results with a physical measurement. Conclusion: A simple, cloud-based method of calculating electron cutout factors could eliminate the need for physical measurements and substantially reduce the time required to properly assure accurate dose delivery.

  5. A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-05-15

    Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate the model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously

  6. Description of the artificial parameters in EGS4-Monte Carlo simulation and their influence on the absorbed depth dose from electrons in water

    International Nuclear Information System (INIS)

    Sandborg, M.; Alm Carlsson, G.

    1990-01-01

    This report described the background of the EGS4-Monte Carlo code. It gives a short description of the interaction between electrons and materia and a description of the artificial parameters used for EGS4-Monte Carlo simulating. It also gives advice to choose the right artificial parameters. (K.A.E)

  7. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    Science.gov (United States)

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated

  8. CELLDOSE: A Monte Carlo code to assess electron dose distribution - S values for 131I in spheres of various sizes

    International Nuclear Information System (INIS)

    Champion, C.; Zanotti-Fregonara, P.; Hindie, E; Hindie, E.

    2008-01-01

    Monte Carlo simulation can be particularly suitable for modeling the microscopic distribution of energy received by normal tissues or cancer cells and for evaluating the relative merits of different radiopharmaceuticals. We used a new code, CELLDOSE, to assess electron dose for isolated spheres with radii varying from 2,500 μm down to 0.05 μm, in which 131 I is homogeneously distributed. Methods: All electron emissions of 131 I were considered,including the whole β - 131 I spectrum, 108 internal conversion electrons, and 21 Auger electrons. The Monte Carlo track-structure code used follows all electrons down to an energy threshold E-cutoff 7.4 eV. Results: Calculated S values were in good agreement with published analytic methods, lying in between reported results for all experimental points. Our S values were also close to other published data using a Monte Carlo code. Contrary to the latter published results, our results show that dose distribution inside spheres is not homogeneous, with the dose at the outmost layer being approximately half that at the center. The fraction of electron energy retained within the spheres decreased with decreasing radius (r): 87.1 % for r 2,500 μm, 8.73% for r 50 μm, and 1.18% for r 5 μm. Thus, a radioiodine concentration that delivers a dose of 100 Gy to a micro-metastasis of 2,500 μm radius would deliver 10 Gy in a cluster of 50 μm and only 1.4 Gy in an isolated cell. The specific contribution from Auger electrons varied from 0.25% for the largest sphere up to 76.8% for the smallest sphere. Conclusion: The dose to a tumor cell will depend on its position in a metastasis. For the treatment of very small metastases, 131 I may not be the isotope of choice. When trying to kill isolated cells or a small cluster of cells with 131 I, it is important to get the iodine as close as possible to the nucleus to get the enhancement factor from Auger electrons. The Monte Carlo code CELLDOSE can be used to assess the electron map deposit

  9. A Monte Carlo based development of a cavity theory for solid state detectors irradiated in electron beams

    International Nuclear Information System (INIS)

    Mobit, P.

    2002-01-01

    Recent Monte Carlo simulations have shown that the assumption in the small cavity theory (and the extension of the small cavity theory by Spencer-Attix) that the cavity does not perturb the electron fluence is seriously flawed. For depths beyond d max not only is there a significant difference between the energy spectra in the medium and in the solid cavity materials but there is also a significant difference in the number of low-energy electrons which cannot travel across the solid cavity and hence deposit their dose in it (i.e. stopper electrons whose residual range is less than the cavity thickness). The number of these low-energy electrons that are not able to travel across the solid state cavity increases with depth and effective thickness of the detector. This also invalidates the assumption in the small cavity theory that most of the dose deposited in a small cavity is delivered by crossers. Based on Monte Carlo simulations, a new cavity theory for solid state detectors irradiated in electron beams has been proposed as: D med (p)=D det (p) x s S-A med.det x gamma(p) e x S T , where D med (p) is the dose to the medium at point, p, D det (p) is the average detector dose to the same point, s S-A med.det is the Spencer-Attix mass collision stopping power ratio of the medium to the detector material, gamma(p) e is the electron fluence perturbation correction factor and S T is a stopper-to-crosser correction factor to correct for the dependence of the stopper-to-crosser ratio on depth and the effective cavity size. Monte Carlo simulations have been computed for all the terms in this equation. The new cavity theory has been tested against the Spencer-Attix cavity equation as the small cavity limiting case and also Monte Carlo simulations. The agreement between this new cavity theory and Monte Carlo simulations is within 0.3%. (author)

  10. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function {Phi}(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  11. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2011-01-01

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function Φ(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  12. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2012-01-01

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  13. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  14. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  15. SANDYL, 3-D Time-Dependent and Space-Dependent Gamma Electron Cascade Transport by Monte-Carlo

    International Nuclear Information System (INIS)

    Haggmark, L.G.

    1980-01-01

    1 - Description of problem or function: SANDYL performs three- dimensional, time and space dependent Monte Carlo transport calculations for photon-electron cascades in complex systems. 2 - Method of solution: The problem geometry is divided into zones of homogeneous atomic composition bounded by sections of planes and quadrics. The material of each zone is a specified element or combination of elements. For a photon history, the trajectory is generated by following the photon from scattering to scattering using the various probability distributions to find distances between collisions, types of collisions, types of secondaries, and their energies and scattering angles. The photon interactions are photoelectric absorption (atomic ionization), coherent scattering, incoherent scattering, and pair production. The secondary photons which are followed include Bremsstrahlung, fluorescence photons, and positron-electron annihilation radiation. The condensed-history Monte Carlo method is used for the electron transport. In a history, the spatial steps taken by an electron are pre-computed and may include the effects of a number of collisions. The corresponding scattering angle and energy loss in the step are found from the multiple scattering distributions of these quantities. Atomic ionization and secondary particles are generated with the step according to the probabilities for their occurrence. Electron energy loss is through inelastic electron-electron collisions, Bremsstrahlung generation, and polarization of the medium (density effect). Included in the loss is the fluctuation due to the variation in the number of energy-loss collisions in a given Monte Carlo step (straggling). Scattering angular distributions are determined from elastic nuclear-collision cross sections corrected for electron-electron interactions. The secondary electrons which are followed included knock-on, pair, Auger (through atomic ionizations), Compton, and photoelectric electrons. 3

  16. Monte Carlo Simulations of Electron Energy-Loss Spectra with the Addition of Fine Structure from Density Functional Theory Calculations.

    Science.gov (United States)

    Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald

    2016-02-01

    A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.

  17. Monte Carlo study of correction factors for the use of plastic phantoms in clinical electron dosimetry

    International Nuclear Information System (INIS)

    Araki, Fujio

    2007-01-01

    In some recent dosimetry protocols, plastic is allowed as a phantom material for the determination of an absorbed dose to water in electron beams, especially for low energy with beam qualities R 50 2 . In electron dosimetry with plastic, a depth-scaling factor, c pl , and a chamber-dependent fluence correction factor, h pl , are needed to convert the dose measured at a water-equivalent reference depth in plastic to a dose at a reference depth in water. The purpose of this study is to calculate correction factors for the use of plastic phantoms for clinical electron dosimetry using the EGSnrc Monte Carlo code system. RMI-457 and WE-211 were investigated as phantom materials. First the c pl values for plastic materials were calculated as a function of a half-value depth of maximum ionization, I 50 , in plastic. The c pl values for RMI-457 and WE-211 varied from 0.992 to 1.002 and from 0.971 to 0.979, respectively, in a range of nominal energies from 4 MeV to 18 MeV, and varied slightly as a function of I 50 in plastic. Since h pl values depend on the wall correction factor, P wall , of the chamber used, they are evaluated using a pure electron fluence correction factor, φ pl w , and P wall w and P wall pl for a combination of water or plastic phantoms and plane-parallel ionization chambers (NACP-02, Markus and Roos). The φ pl w and P wall (P wall w and P wall pl ) values were calculated as a function of the water-equivalent depth in plastic materials and at a reference depth as a function of R 50 in water, respectively. The φ pl w values varied from 1.024 at 4 MeV to 1.013 at 18 MeV for RMI-457, and from 1.025 to 1.016 for WE-211. P wall w values for plane-parallel chambers showed values in the order of 1.5% to 2% larger than unity at 4 MeV, consistent with earlier results. The P wall pl values of RMI-457 and WE-211 were close to unity for all the energy beams. Finally, calculated h pl values of RMI-457 ranged from 1.009 to 1.005, from 1.010 to 1.003 and from 1

  18. Thyroid cell irradiation by radioiodines: a new Monte Carlo electron track-structure code

    Directory of Open Access Journals (Sweden)

    Christophe Champion

    2007-09-01

    Full Text Available The most significant impact of the Chernobyl accident is the increased incidence of thyroid cancer among children who were exposed to short-lived radioiodines and 131-iodine. In order to accurately estimate the radiation dose provided by these radioiodines, it is necessary to know where iodine is incorporated. To do that, the distribution at the cellular level of newly organified iodine in the immature rat thyroid was performed using secondary ion mass microscopy (NanoSIMS50. Actual dosimetric models take only into account the averaged energy and range of beta particles of the radio-elements and may, therefore, imperfectly describe the real distribution of dose deposit at the microscopic level around the point sources. Our approach is radically different since based on a track-structure Monte Carlo code allowing following-up of electrons down to low energies (~ 10eV what permits a nanometric description of the irradiation physics. The numerical simulations were then performed by modelling the complete disintegrations of the short-lived iodine isotopes as well as of 131I in new born rat thyroids in order to take into account accurate histological and biological data for the thyroid gland.O impacto mais significante do acidente de Chernobyl é o crescimento da incidência de câncer de tireóide em crianças que foram expostas a radioiodos de vida curta e ao Iodo-131. Na estimativa precisa da dose de radiação fornecida por esses radioiodos, é necessário conhecer onde o iodo está incorporado. Para obtermos esse resultado, a distribuição em nível celular de iodo recentemente organificado na tireóde de ratos imaturos foi realizada usando microscopia de massa iônica secundária (NanoSIMS50. Modelos dosimétricos atuais consideram apenas a energia média das partículas beta dos radioelementos e pode, imperfeitamente descrever a distribuição real de dose ao nível microscópico em torno dos pontos pesquisados. Nossa abordagem

  19. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy

    CERN Document Server

    Mairani, A; Valente, M; Battistoni, G; Botta, F; Pedroli, G; Ferrari, A; Cremonesi, M; Di Dia, A; Ferrari, M; Fasso, A

    2011-01-01

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy ((89)Sr, (90)Y, (131)I, (153)Sm, (177)Lu, (186)Re, and (188)Re). Point isotropic...

  20. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  1. Monte Carlo design, dosimetry and radiation protection studies for a new mobile electron accelerator for intraoperative radiation therapy (IORT)

    International Nuclear Information System (INIS)

    Wysocka-Rabin, A.

    2013-01-01

    Intraoperative radiation therapy (IORT) delivers a large, single fraction dose of radiation to a surgically exposed tumor or tumor bed. This presentation reviews the design concept and dosimetry characteristics of an electron beam forming system for an IORT accelerator, with special emphasis on beam flatness, X-ray contamination and protecting personnel from dose delivered outside the treatment field. The Monte Carlo code, BEAMnrc/EGSnrc, was used to design, verify and optimize the electron beam forming system for two different docking methods with circular metallic applicators. Calculations of therapeutic beam characteristics were performed at the patient surface. Findings were obtained for initially mono-energetic electron beams with an energy range from 4 to 12 MeV, SSD equal to 60 cm, and circular applicators with diameters from 3 to 12 cm. The aim was to build an electron beam forming system (collimators, scattering-flattening foils, applicators) that is universal for all beam energy and field diameters described above

  2. Computational Model of D-Region Ion Production Caused by Energetic Electron Precipitations Based on General Monte Carlo Transport Calculations

    Science.gov (United States)

    Kouznetsov, A.; Cully, C. M.

    2017-12-01

    During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.

  3. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    NARCIS (Netherlands)

    Floris, F.M.; Filippi, Claudia; Amovilli, C.

    2014-01-01

    We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to

  4. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations.

    Science.gov (United States)

    De Vries, Rowen J; Marsh, Steven

    2015-11-08

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.

  5. SU-E-T-405: Evaluation of the Raystation Electron Monte Carlo Algorithm for Varian Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sansourekidou, P; Allen, C [Health Quest, Poughkeepsie, NY (United States)

    2015-06-15

    Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared to water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.

  6. Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin

    Science.gov (United States)

    Peñuelas, J.; Guenther, A.; Rapparini, F.; Llusia, J.; Filella, I.; Seco, R.; Estiarte, M.; Mejia-Chang, M.; Ogaya, R.; Ibañez, J.; Sardans, J.; Castaño, L. M.; Turnipseed, A.; Duhl, T.; Harley, P.; Vila, J.; Estavillo, J. M.; Menéndez, S.; Facini, O.; Baraldi, R.; Geron, C.; Mak, J.; Patton, E. G.; Jiang, X.; Greenberg, J.

    2013-08-01

    MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean Basin (WMB). The measurements were performed at a semidesertic area (Monegros), at a coastal Mediterranean shrubland area (Garraf), at a typical Mediterranean holm oak forest area (Prades) and at a wet temperate beech forest (Montseny) during spring (April 2010) under optimal plant physiological conditions in driest-warmest sites and during summer (July 2010) with drought and heat stresses in the driest-warmest sites and optimal conditions in the wettest-coolest site. The objective of this campaign was to study the differences in gas, water and energy exchange occurring at different vegetation coverages and biomasses. Particular attention was devoted to quantitatively understand the exchange of biogenic volatile organic compounds (BVOCs) because of their biological and environmental effects in the WMB. A wide range of instruments (GC-MS, PTR-MS, meteorological sensors, O3 monitors,…) and vertical platforms such as masts, tethered balloons and aircraft were used to characterize the gas, water and energy exchange at increasing footprint areas by measuring vertical profiles. In this paper we provide an overview of the MONTES campaign: the objectives, the characterization of the biomass and gas, water and energy exchange in the 4 sites-areas using satellite data, the estimation of isoprene and monoterpene emissions using MEGAN model, the measurements performed and the first results. The isoprene and monoterpene emission rates estimated with MEGAN and emission factors measured at the foliar level for the dominant species ranged from about 0 to 0.2 mg m-2 h-1 in April. The warmer temperature in July resulted in higher model estimates from about 0 to ca. 1.6 mg m-2 h-1 for

  7. ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A.; Seltzer, S.M.; Berger, M.J.

    1993-01-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures

  8. Tests of the Monte Carlo simulation of the photon-tagger focal-plane electronics at the MAX IV Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, M.F. [Lund University, SE-221 00 Lund (Sweden); Myers, L.S. [Duke University, Durham, NC 27708 (United States); Annand, J.R.M. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Fissum, K.G., E-mail: kevin.fissum@nuclear.lu.se [Lund University, SE-221 00 Lund (Sweden); Hansen, K.; Isaksson, L. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Jebali, R. [Arktis Radiation Detectors Limited, 8045 Zürich (Switzerland); Lundin, M. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden)

    2014-04-21

    Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acquired with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system.

  9. Tests of the Monte Carlo simulation of the photon-tagger focal-plane electronics at the MAX IV Laboratory

    International Nuclear Information System (INIS)

    Preston, M.F.; Myers, L.S.; Annand, J.R.M.; Fissum, K.G.; Hansen, K.; Isaksson, L.; Jebali, R.; Lundin, M.

    2014-01-01

    Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acquired with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system

  10. An assessment of the feasibility of using Monte Carlo calculations to model a combined neutron/gamma electronic personal dosemeter

    International Nuclear Information System (INIS)

    Tanner, J.E.; Witts, D.; Tanner, R.J.; Bartlett, D.T.; Burgess, P.H.; Edwards, A.A.; More, B.R.

    1995-01-01

    A Monte Carlo facility has been developed for modelling the response of semiconductor devices to mixed neutron-photon fields. This utilises the code MCNP for neutron and photon transport and a new code, STRUGGLE, which has been developed to model the secondary charged particle transport. It is thus possible to predict the pulse height distribution expected from prototype electronic personal detectors, given the detector efficiency factor. Initial calculations have been performed on a simple passivated implanted planar silicon detector. This device has also been irradiated in neutron, gamma and X ray fields to verify the accuracy of the predictions. Good agreement was found between experiment and calculation. (author)

  11. ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A. [Sandia National Labs., Albuquerque, NM (United States); Seltzer, S.M.; Berger, M.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Ionizing Radiation Div.

    1993-06-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures.

  12. Quantum Monte Carlo calculation of the Fermi-liquid parameters in the two-dimensional electron gas

    International Nuclear Information System (INIS)

    Kwon, Y.; Ceperley, D.M.; Martin, R.M.

    1994-01-01

    Excitations of the two-dimensional electron gas, including many-body effects, are calculated with a variational Monte Carlo method. Correlated sampling is introduced to calculate small energy differences between different excitations. The usual pair-product (Slater-Jastrow) trial wave function is found to lack certain correlations entirely so that backflow correlation is crucial. From the excitation energies calculated here, we determine Fermi-liquid parameters and related physical quantities such as the effective mass and the Lande g factor of the system. Our results for the effective mass are compared with previous analytic calculations

  13. Monte-Carlo simulation of primary electrons in the matter for the generation of x-rays

    International Nuclear Information System (INIS)

    Bendjama, H.; Laib, Y.; Allag, A.; Drai, R.

    2006-01-01

    The x-rays imagining chains components from the source to the detector, rest on the first part of simulation to the energy production of x-rays emission (source), which suggest us to identified the losses energies result from interaction between the fast electrons and the particles of metal : the energies losses due to 'collisional losses' (ionization, excitation) and radiative losses. For the medium and the primary electron energy which interests us, the electrons slowing down in the matter results primarily from the inelastic collisions; whose interest is to have to simulate the x-rays characteristic spectrum. We used a Monte-Carlo method to simulate the energy loss and the transport of primary electrons. This type of method requires only the knowledge of the cross sections attached to the description of all the elementary events. In this work, we adopted the differential cross section of Mott and the total cross section of inner-shell ionization according to the formulation of Gryzinski, to simulate the energy loss and the transport of primary electrons respectively. The simulation allows to follow the electrons until their energy reaches the atomic ionization potential of the irradiated matter. The differential cross section of Mott gives us a very good representation of the pace of the distribution of the energy losses. The transport of primary electron is approximately reproduced

  14. Monte-Carlo calculations of forward directed bremsstrahlung produced by 20 and 45 MeV electrons on tungsten

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1983-01-01

    The SANDYL Monte-Carlo code has been used to calculate the Bremsstrahlung photon production from beams of parallel electrons incident upon three target geometries. These are 20 MeV electrons onto 1 mm of tungsten + 59 mm of Be, which simulates the operating parameters of the FXR electron accelerator at LLNL Bldg. 801, 45 MeV electrons onto 1 mm of tungsten, and finally 45 MeV electrons onto 1 mm of tungsten and 147 mm of Be. The latter two situations simulate possible future modifications to the FXR accelerator. Graphs of the spectral shape of the Bremsstrahlung photons emitted with angles between 0 0 and 1 0 to the electron direction, the angular distribution of photon-MeV, and the dose reduction curves for each of the three geometries are given. The latter dose reduction curves allow one to calculate forward-directed photon fluxes in real-life situations where the electron beam has non-zero angular divergence

  15. Validation of Varian TrueBeam electron phase–spaces for Monte Carlo simulation of MLC-shaped fields

    International Nuclear Information System (INIS)

    Lloyd, Samantha A. M.; Gagne, Isabelle M.; Zavgorodni, Sergei; Bazalova-Carter, Magdalena

    2016-01-01

    Purpose: This work evaluates Varian’s electron phase–space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. Methods: Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and PENELOPE-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm 2 MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm 2 ). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm 2 and jaw positions that range from the MLC-field size to 40 × 40 cm 2 . Results: Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO’s 12 MeV, 20 × 20 cm 2 field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm 2 field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm 2 fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. Conclusions: TrueBeam electron phase–spaces available from Varian have been

  16. Validation of Varian TrueBeam electron phase–spaces for Monte Carlo simulation of MLC-shaped fields

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Samantha A. M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 3P6 5C2 (Canada); Gagne, Isabelle M., E-mail: imgagne@bccancer.bc.ca; Zavgorodni, Sergei [Department of Medical Physics, BC Cancer Agency–Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2 (Canada); Bazalova-Carter, Magdalena [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2 (Canada)

    2016-06-15

    Purpose: This work evaluates Varian’s electron phase–space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. Methods: Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and PENELOPE-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm{sup 2} MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm{sup 2}). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm{sup 2} and jaw positions that range from the MLC-field size to 40 × 40 cm{sup 2}. Results: Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO’s 12 MeV, 20 × 20 cm{sup 2} field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm{sup 2} field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm{sup 2} fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. Conclusions: TrueBeam electron phase

  17. Abiotic gradients drive floristic composition and structure of plant communities in the Monte Desert Gradientes abióticos dirigen la composición florística y la estructura de las comunidades de plantas en el Desierto del Monte

    Directory of Open Access Journals (Sweden)

    PABLO ACEBES

    2010-01-01

    Full Text Available Defining plant communities in desert zones is difficult due to large scale homogeneity and small scale heterogeneity, thus making provision of systematic information for conservation decisions problematic. We analysed plant communities of the most arid sector of Monte Desert for structure, plant composition and environmental variables. Small-scale variables such as slope, rock cover, bare ground and litter, as well as large-scale ones such as species diversity, composition and similarity within and between sites were included. Analyses of floristic composition showed the difficulty of segregating distinct communities due to high internal heterogeneity and overlap between the different sites. Only mesquite woodlands, a community situated at the extreme of the soil moisture-gradient was segregated. Ordination on structural variables was somewhat more successful in segregating communities on the basis of substrate type and of tree and shrub cover. Our results showed the difficulty distinguishing plant communities in temperate deserts, suggesting the existence of relatively stable assemblages of species at the extremes of the gradients and of great heterogeneity within and between sites. They cannot be defined by floristic variables solely, but require environmental information also.La definición de comunidades discretas de plantas en zonas desérticas es complejo debido tanto a su homogeneidad a gran escala como a su heterogeneidad a pequeña escala, lo que acaba generando dificultades para la toma de decisiones de conservación. En este trabajo analizamos las comunidades de plantas del sector más árido del Desierto del Monte en función de su estructura y composición florística. Se han utilizado también variables ambientales estimadas a pequeña escala como la pendiente o la superficie de roca, suelo desnudo y hojarasca, así como variables que operan a mayor escala como la diversidad de especies, la composición florística y la similitud

  18. Investigation on electronic and magnetic properties of Mn2NiAl by ab initio calculations and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Hourmatallah, A.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N.

    2017-01-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn 2 NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn 2 NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn 2 NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn I , Mn II and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn 2 NiX. • The transition temperature of Mn 2 NiX is established. • The magnetic hysteresis cycle of M n2 NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn 2 NiX (X = Al, Ga, In, Sn) is given.

  19. Evaluation of Monte Carlo electron-Transport algorithms in the integrated Tiger series codes for stochastic-media simulations

    International Nuclear Information System (INIS)

    Franke, B.C.; Kensek, R.P.; Prinja, A.K.

    2013-01-01

    Stochastic-media simulations require numerous boundary crossings. We consider two Monte Carlo electron transport approaches and evaluate accuracy with numerous material boundaries. In the condensed-history method, approximations are made based on infinite-medium solutions for multiple scattering over some track length. Typically, further approximations are employed for material-boundary crossings where infinite-medium solutions become invalid. We have previously explored an alternative 'condensed transport' formulation, a Generalized Boltzmann-Fokker-Planck (GBFP) method, which requires no special boundary treatment but instead uses approximations to the electron-scattering cross sections. Some limited capabilities for analog transport and a GBFP method have been implemented in the Integrated Tiger Series (ITS) codes. Improvements have been made to the condensed history algorithm. The performance of the ITS condensed-history and condensed-transport algorithms are assessed for material-boundary crossings. These assessments are made both by introducing artificial material boundaries and by comparison to analog Monte Carlo simulations. (authors)

  20. Monte Carlo simulation of radiative processes in electron-positron scattering

    International Nuclear Information System (INIS)

    Kleiss, R.H.P.

    1982-01-01

    The Monte Carlo simulation of scattering processes has turned out to be one of the most successful methods of translating theoretical predictions into experimentally meaningful quantities. It is the purpose of this thesis to describe how this approach can be applied to higher-order QED corrections to several fundamental processes. In chapter II a very brief overview of the currently interesting phenomena in e +- scattering is given. It is argued that accurate information on higher-order QED corrections is very important and that the Monte Carlo approach is one of the most flexible and general methods to obtain this information. In chapter III the author describes various techniques which are useful in this context, and makes a few remarks on the numerical aspects of the proposed method. In the following three chapters he applies this to the processes e + e - → μ + μ - (γ) and e + e - → qanti q(sigma). In chapter IV he motivates his choice of these processes in view of their experimental and theoretical relevance. The formulae necessary for a computer simulation of all quantities of interest, up to order α 3 , is given. Chapters V and VI describe how this simulation can be performed using the techniques mentioned in chapter III. In chapter VII it is shown how additional dynamical quantities, namely the polarization of the incoming and outgoing particles, can be incorporated in our treatment, and the relevant formulae for the example processes mentioned above are given. Finally, in chapter VIII the author presents some examples of the comparison between theoretical predictions based on Monte Carlo simulations as outlined here, and the results from actual experiments. (Auth.)

  1. Monte Carlo benchmark calculations of energy deposition by electron/photon showers up to 1 GeV

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Halbleib, J.A.

    1983-01-01

    Over the past several years the TIGER series of coupled electron/photon Monte Carlo transport codes has been applied to a variety of problems involving nuclear and space radiations, electron accelerators, and radioactive sources. In particular, they have been used at Sandia to simulate the interaction of electron beams, generated by pulsed-power accelerators, with various target materials for weapons effect simulation, and electron beam fusion. These codes are based on the ETRAN system which was developed for an energy range from about 10 keV up to a few tens of MeV. In this paper we will discuss the modifications that were made to the TIGER series of codes in order to extend their applicability to energies of interest to the high energy physics community (up to 1 GeV). We report the results of a series of benchmark calculations of the energy deposition by high energy electron beams in various materials using the modified codes. These results are then compared with the published results of various experimental measurements and other computational models

  2. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    International Nuclear Information System (INIS)

    Adorno, Dominique Persano; Pizzolato, Nicola; Fazio, Claudio

    2015-01-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations. (paper)

  3. GPU - Accelerated Monte Carlo electron transport methods: development and application for radiation dose calculations using 6 GPU cards

    International Nuclear Information System (INIS)

    Su, L.; Du, X.; Liu, T.; Xu, X. G.

    2013-01-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software test-bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs (Graphics Processing Units). This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. As for photon part, photoelectric effect, Compton scattering and pair production were simulated. Voxelized geometry was supported. A serial CPU (Central Processing Unit)code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6*10 6 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy. (authors)

  4. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  5. SU-E-T-20: Removal of Electron Contamination in Longitudinal Field MRI-Linac Systems: A Monte Carlo Study.

    Science.gov (United States)

    Oborn, B M; Metcalfe, P; Butson, M; Crozier, S; Keall, P

    2012-06-01

    The prototype inline MRI-linac system has some advantages over perpendicular models including avoiding the electron return effect. One of the disadvantages of the inline approach is the increased skin dose, estimated to be 400-1000% of the dmax dose. The purpose of this work was to design a feasible method to reduce this skin dose to acceptable levels. Magnetic modeling of proposed MRI-linac designs have been simulated with the inclusion of an optimized permanent magnet system to purge/deflect the electron contamination. The region of air above the phantom was also replaced with a helium bag (region of helium gas) and a beam scrapper below the deflector was added to collect deflected off-axis contamination. Monte Carlo simulations were then performed including the accurate 3D magnetic field maps. Surface dosimetry was recorded to verify the changes to the skin doses. Magnetic modelling showed that an optimized NdFeB permanent magnet system located outside the MRI coils (below the MLC's) can provide a strong enough region to purge/deflect a significant portion of the electron contamination from the x-ray beam. The impact on the MRI uniformity is around 100 ppm and hence is correctable via active/passive shimming of the MRI. The helium region also significantly limits the production of contamination traveling towards the phantom surface. Entry doses near CAX are predicted to be similar to the 0 T case. Magnetic and Monte Carlo modeling were performed to estimate the effect that a permanent magnet purging system, beam scrapper, and helium bag would have on lowering the skin doses in an inline MRI-Linac system. MRI non-uniformities introduced by the deflector could be corrected, contamination is mostly purged or blocked, and the helium bag minimizes air-generated contamination. As a result skin doses are comparable to having zero magnetic field. © 2012 American Association of Physicists in Medicine.

  6. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types.

    Science.gov (United States)

    Fix, Michael K; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2013-05-07

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  7. New Advancements in the Study of the Uniform Electron Gas with Full Configuration Interaction Quantum Monte Carlo

    Science.gov (United States)

    Ruggeri, Michele; Luo, Hongjun; Alavi, Ali

    Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is able to give remarkably accurate results in the study of atoms and molecules. The study of the uniform electron gas (UEG) on the other hand has proven to be much harder, particularly in the low density regime. The source of this difficulty comes from the strong interparticle correlations that arise at low density, and essentially forbid the study of the electron gas in proximity of Wigner crystallization. We extend a previous study on the three dimensional electron gas computing the energy of a fully polarized gas for N=27 electrons at high and medium density (rS = 0 . 5 to 5 . 0). We show that even when dealing with a polarized UEG the computational cost of the study of systems with rS > 5 . 0 is prohibitive; in order to deal with correlations and to extend the density range that to be studied we introduce a basis of localized states and an effective transcorrelated Hamiltonian.

  8. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    Science.gov (United States)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  9. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' ' Carlos Haya' ' , Avda. Carlos Haya s/n, E-29010 Malaga (Spain); Unidad de Radiofisica Hospitalaria, Hospital Xanit Internacional, Avda. de los Argonautas s/n, E-29630 Benalmadena (Malaga) (Spain); NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Hufelandstr. 55, D-45122 Essen (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2010-07-15

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within {approx}3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  10. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    International Nuclear Information System (INIS)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M.

    2010-01-01

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within ∼3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  11. Ant colony algorithm implementation in electron and photon Monte Carlo transport: application to the commissioning of radiosurgery photon beams.

    Science.gov (United States)

    García-Pareja, S; Galán, P; Manzano, F; Brualla, L; Lallena, A M

    2010-07-01

    In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within approximately 3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  12. Monte Carlo application based on GEANT4 toolkit to simulate a laser–plasma electron beam line for radiobiological studies

    Energy Technology Data Exchange (ETDEWEB)

    Lamia, D., E-mail: debora.lamia@ibfm.cnr.it [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Russo, G., E-mail: giorgio.russo@ibfm.cnr.it [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Casarino, C.; Gagliano, L.; Candiano, G.C. [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Labate, L. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); National Institute for Nuclear Physics INFN, Pisa Section and Frascati National Laboratories LNF (Italy); Baffigi, F.; Fulgentini, L.; Giulietti, A.; Koester, P.; Palla, D. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); Gizzi, L.A. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); National Institute for Nuclear Physics INFN, Pisa Section and Frascati National Laboratories LNF (Italy); Gilardi, M.C. [Institute of Molecular Bioimaging and Physiology IBFM CNR, Segrate (Italy); University of Milano-Bicocca, Milano (Italy)

    2015-06-21

    We report on the development of a Monte Carlo application, based on the GEANT4 toolkit, for the characterization and optimization of electron beams for clinical applications produced by a laser-driven plasma source. The GEANT4 application is conceived so as to represent in the most general way the physical and geometrical features of a typical laser-driven accelerator. It is designed to provide standard dosimetric figures such as percentage dose depth curves, two-dimensional dose distributions and 3D dose profiles at different positions both inside and outside the interaction chamber. The application was validated by comparing its predictions to experimental measurements carried out on a real laser-driven accelerator. The work is aimed at optimizing the source, by using this novel application, for radiobiological studies and, in perspective, for medical applications. - Highlights: • Development of a Monte Carlo application based on GEANT4 toolkit. • Experimental measurements carried out with a laser-driven acceleration system. • Validation of Geant4 application comparing experimental data with the simulated ones. • Dosimetric characterization of the acceleration system.

  13. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.

    Science.gov (United States)

    Botta, F; Mairani, A; Battistoni, G; Cremonesi, M; Di Dia, A; Fassò, A; Ferrari, A; Ferrari, M; Paganelli, G; Pedroli, G; Valente, M

    2011-07-01

    The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. FLUKA outcomes have been compared to PENELOPE v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (ETRAN, GEANT4, MCNPX) has been done. Maximum percentage differences within 0.8.RCSDA and 0.9.RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8.X90 and 0.9.X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9.RCSDA and 0.9.X90 for electrons and isotopes, respectively. Concerning monoenergetic electrons, within 0.8.RCSDA (where 90%-97% of the particle energy is deposed), FLUKA and PENELOPE agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The

  14. Computational details of the Monte Carlo simulation of proton and electron tracks

    International Nuclear Information System (INIS)

    Zaider, M.; Brenner, D.J.

    1983-01-01

    The code PROTON simulates the elastic and nonelastic interactions of protons and electrons in water vapor. In this paper, the treatment of elastic angular scattering of electrons as utilized in PROTON is described and compared with alternate formalisms. The sensitivity of the calculation to different treatments of this process is examined in terms of proximity functions of energy deposition. 5 figures

  15. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    International Nuclear Information System (INIS)

    Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.

    2000-01-01

    A new Monte Carlo (MC) algorithm, the 'dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm 3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 128 3 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a 'mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels. (author)

  16. Optimal Allocation of Power-Electronic Interfaced Wind Turbines Using a Genetic Algorithm - Monte Carlo Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe

    2010-01-01

    determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....

  17. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study.

    Science.gov (United States)

    White, Shane A; Reniers, Brigitte; de Jong, Evelyn E C; Rusch, Thomas; Verhaegen, Frank

    2016-01-07

    Electronic brachytherapy sources use low energy photons to treat the tumor bed during or after breast-conserving surgery. The relative biological effectiveness of two electronic brachytherapy sources was explored to determine if spectral differences due to source design influenced radiation quality and if radiation quality decreased with distance in the breast. The RBE was calculated through the number of DNA double strand breaks (RBEDSB) using the Monte Carlo damage simulator (MCDS) in combination with other Monte Carlo electron/photon spectrum calculations. 50kVp photons from the Intrabeam (Carl Zeiss Surgical) and Axxent (Xoft) through 40-mm spherical applicators were simulated to account for applicator and tissue attenuation in a variety of breast tissue compositions. 40kVp Axxent photons were also simulated. Secondary electrons (known to be responsible for most DNA damage) spectra at different distance were inputted into MCDS to calculate the RBEDSB. All RBEDSB used a cobalt-60 reference. RBEDSB data was combined with corresponding average photon spectrum energy for the Axxent and applied to model-based average photon energy distributions to produce an RBEDSB map of an accelerated partial breast irradiation (APBI) patient. Both Axxent and Intrabeam 50kVp spectra were shown to have a comparable RBEDSB of between 1.4 and 1.6 at all distances in spite of progressive beam hardening. The Axxent 40kVp also demonstrated a similar RBEDSB at distances. Most RBEDSB variability was dependent on the tissue type as was seen in rib (RBEDSB  ≈  1.4), gland (≈1.55), adipose (≈1.59), skin (≈1.52) and lung (≈1.50). RBEDSB variability between both sources was within 2%. A correlation was shown between RBEDSB and average photon energy and used to produce an RBEDSB map of a dose distribution in an APBI patient dataset. Radiation quality is very similar between electronic brachytherapy sources studied. No significant reductions in RBEDSB were observed with

  18. Electron Irradiation of Conjunctival Lymphoma-Monte Carlo Simulation of the Minute Dose Distribution and Technique Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany); Zaragoza, Francisco J.; Sempau, Josep [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Barcelona (Spain); Wittig, Andrea [Department of Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg (Germany); Sauerwein, Wolfgang [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany)

    2012-07-15

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.

  19. Highly accurate nuclear and electronic stopping cross sections derived using Monte Carlo simulations to reproduce measured range data

    Science.gov (United States)

    Wittmaack, Klaus; Mutzke, Andreas

    2017-03-01

    We have examined and confirmed the previously unexplored concept of using Monte Carlo calculations in combination with measured projected ranges of ions implanted in solids to derive a quantitative description of nuclear interaction and electronic stopping. The study involved 98 ranges of 11B in Si between 1 keV and 8 MeV, contained in 12 sets of 10 different groups. Systematic errors by up to ±8% were removed to establish a refined data base with 93 ranges featuring only statistical uncertainties (±1.8%). The Monte Carlo calculations could be set up to reproduce the refined ranges with a mean ratio 1.002 ± 1.7%. The input parameters required for this very high level of agreement are as follows. Nuclear interaction is best described by the Kr-C potential, but in obligatory combination with the Lindhard-Scharff (LS) screening length. Up to 300 keV, the electronic stopping cross section is proportional to the projectile velocity, Se = kSe,LS, with k = 1.46 ± 0.01. At higher energies, Se falls progressively short of kSe,LS. Around the Bragg peak, i.e., between 0.8 and 10 MeV, Se is modeled by an adjustable function serving to tailor the peak shape properly. Calculated and measured isotope effects for ranges of 10B and 11B in Si agree within the experimental uncertainty (±0.25%). The range-based Se,R(E) reported here predicts the scarce experimental data derived from the energy loss in projectile transmission through thin Si foils to within 2% or better. By contrast, Se(E) data of available stopping power tables exhibit deviations from Se,R(E) between -40% and +14%.

  20. Monte Carlo modeling of electron density in hypersonic rarefied gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jin; Zhang, Yuhuai; Jiang, Jianzheng [State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-09

    The electron density distribution around a vehicle employed in the RAM-C II flight test is calculated with the DSMC method. To resolve the mole fraction of electrons which is several orders lower than those of the primary species in the free stream, an algorithm named as trace species separation (TSS) is utilized. The TSS algorithm solves the primary and trace species separately, which is similar to the DSMC overlay techniques; however it generates new simulated molecules of trace species, such as ions and electrons in each cell, basing on the ionization and recombination rates directly, which differs from the DSMC overlay techniques based on probabilistic models. The electron density distributions computed by TSS agree well with the flight data measured in the RAM-C II test along a decent trajectory at three altitudes 81km, 76km, and 71km.

  1. SU-F-T-79: Monte Carlo Investigation of Optimizing Parameters for Modulated Electron Arc Therapy

    International Nuclear Information System (INIS)

    Al Ashkar, E; Eraba, K; Imam, M; Eldib, A; Ma, C

    2016-01-01

    Purpose: Electron arc therapy provides excellent dose distributions for treating superficial tumors along curved surfaces. However this modality has not received widespread application due to the lack of needed advancement in electron beam delivery, accurate electron dose calculation and treatment plan optimization. The aim of the current work is to investigate possible parameters that can be optimized for electron arc (eARC) therapy. Methods: The MCBEAM code was used to generate phase space files for 6 and 12MeV electron beam energies from a Varian trilogy machine. An Electron Multi-leaf collimator eMLC of 2cm thickness positioned at 82 cm source collimated distance was used in the study. Dose distributions for electron arcs were calculated inside a cylindrical phantom using the MCSIM code. The Cylindrical phantom was constructed with 0.2cm voxels and a 15cm diameter. Electron arcs were delivered with two different approaches. The first approach was to deliver the arc as segments of very small field widths. In this approach we also tested the impact of the segment size and the arc increment angle. The second approach is to deliver the arc as a sum of large fields each covering the whole target as seen from the beam eye view. Results: In considering 90 % as the prescription isodose line, the first approach showed a region of buildup proceeding before the prescription zone. This build up is minimizing with the second approach neglecting need for bolus. The second approach also showed less x-ray contamination. In both approaches the variation of the segment size changed the size and location of the prescription isodose line. The optimization process for eARC could involve interplay between small and large segments to achieve desired coverage. Conclusion: An advanced modulation of eARCs will allow for tailored dose distribution for superficial curved target as with challenging scalp cases

  2. SU-F-T-79: Monte Carlo Investigation of Optimizing Parameters for Modulated Electron Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Al Ashkar, E; Eraba, K; Imam, M [Azhar university, Nasr City, Cairo (Egypt); Eldib, A; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Electron arc therapy provides excellent dose distributions for treating superficial tumors along curved surfaces. However this modality has not received widespread application due to the lack of needed advancement in electron beam delivery, accurate electron dose calculation and treatment plan optimization. The aim of the current work is to investigate possible parameters that can be optimized for electron arc (eARC) therapy. Methods: The MCBEAM code was used to generate phase space files for 6 and 12MeV electron beam energies from a Varian trilogy machine. An Electron Multi-leaf collimator eMLC of 2cm thickness positioned at 82 cm source collimated distance was used in the study. Dose distributions for electron arcs were calculated inside a cylindrical phantom using the MCSIM code. The Cylindrical phantom was constructed with 0.2cm voxels and a 15cm diameter. Electron arcs were delivered with two different approaches. The first approach was to deliver the arc as segments of very small field widths. In this approach we also tested the impact of the segment size and the arc increment angle. The second approach is to deliver the arc as a sum of large fields each covering the whole target as seen from the beam eye view. Results: In considering 90 % as the prescription isodose line, the first approach showed a region of buildup proceeding before the prescription zone. This build up is minimizing with the second approach neglecting need for bolus. The second approach also showed less x-ray contamination. In both approaches the variation of the segment size changed the size and location of the prescription isodose line. The optimization process for eARC could involve interplay between small and large segments to achieve desired coverage. Conclusion: An advanced modulation of eARCs will allow for tailored dose distribution for superficial curved target as with challenging scalp cases.

  3. On the use of Gafchromic EBT3 films for validating a commercial electron Monte Carlo dose calculation algorithm.

    Science.gov (United States)

    Chan, EuJin; Lydon, Jenny; Kron, Tomas

    2015-03-07

    This study aims to investigate the effects of oblique incidence, small field size and inhomogeneous media on the electron dose distribution, and to compare calculated (Elekta/CMS XiO) and measured results. All comparisons were done in terms of absolute dose. A new measuring method was developed for high resolution, absolute dose measurement of non-standard beams using Gafchromic® EBT3 film. A portable U-shaped holder was designed and constructed to hold EBT3 films vertically in a reproducible setup submerged in a water phantom. The experimental film method was verified with ionisation chamber measurements and agreed to within 2% or 1 mm. Agreement between XiO electron Monte Carlo (eMC) and EBT3 was within 2% or 2 mm for most standard fields and 3% or 3 mm for the non-standard fields. Larger differences were seen in the build-up region where XiO eMC overestimates dose by up to 10% for obliquely incident fields and underestimates the dose for small circular fields by up to 5% when compared to measurement. Calculations with inhomogeneous media mimicking ribs, lung and skull tissue placed at the side of the film in water agreed with measurement to within 3% or 3 mm. Gafchromic film in water proved to be a convenient high spatial resolution method to verify dose distributions from electrons in non-standard conditions including irradiation in inhomogeneous media.

  4. A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter

    International Nuclear Information System (INIS)

    Emfietzoglou, D.; Papamichael, G.; Karava, K.; Androulidakis, I.; Pathak, A.; Phillips, G. W.; Moscovitch, M.; Kostarelos, K.

    2006-01-01

    In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nano-meter scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics. (authors)

  5. Monte Carlo simulation of fast electrons and heavy particles in the CDS of nitrogen dc glow discharge

    International Nuclear Information System (INIS)

    Yu, W.; Zhang, L.Z.; Wang, J.L.; Han, L.; Fu, G.S.

    2001-01-01

    The characteristics of fast electrons (e - ) and heavy particles (N 2 + , N + , N 2f , N f ) in the cathode dark space (CDS) of nitrogen dc glow discharge are simultaneously studied by Monte Carlo simulation. The calculated energy and angular distributions of these particles at different positions from the cathode provide a clear picture of their transport behaviours within the CDS. The density and mean energy of these particles indicate that the electrons and the atomic ions (N + ) are the main high-energy species and the molecular ions (N 2 + ) are the major ions in the CDS. It can be seen from the energy distributions of the bombarding particles at the cathode surface that the molecular ions and the fast atoms (N f ) are the main active species participating in the cathode nitride material synthesis process. The influence of the backscattering of the electrons from the negative glow to the CDS is also investigated. All the calculated results provide good information on the spatial characteristics of the particles considered in this paper and also their internal connections in the CDS of nitrogen dc glow discharge. (author)

  6. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.

    Directory of Open Access Journals (Sweden)

    Wonmo Sung

    Full Text Available This study investigated the potential of a newly proposed scattering foil free (SFF electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1° vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.

  7. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.

    Science.gov (United States)

    Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min

    2017-01-01

    This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.

  8. A backward Monte Carlo method for efficient computation of runaway probabilities in runaway electron simulation

    Science.gov (United States)

    Zhang, Guannan; Del-Castillo-Negrete, Diego

    2017-10-01

    Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.

  9. On the relationships between electron spot size, focal spot size, and virtual source position in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Sterpin, E.; Chen, Y.; Lu, W.; Mackie, T. R.; Olivera, G. H.; Vynckier, S.

    2011-01-01

    Purpose: Every year, new radiotherapy techniques including stereotactic radiosurgery using linear accelerators give rise to new applications of Monte Carlo (MC) modeling. Accurate modeling requires knowing the size of the electron spot, one of the few parameters to tune in MC models. The resolution of integrated megavoltage imaging systems, such as the tomotherapy system, strongly depends on the photon spot size which is closely related to the electron spot. The aim of this article is to clarify the relationship between the electron spot size and the photon spot size (i.e., the focal spot size) for typical incident electron beam energies and target thicknesses. Methods: Three electron energies (3, 5.5, and 18 MeV), four electron spot sizes (FWHM=0, 0.5, 1, and 1.5 mm), and two tungsten target thicknesses (0.15 and 1 cm) were considered. The formation of the photon beam within the target was analyzed through electron energy deposition with depth, as well as photon production at several phase-space planes placed perpendicular to the beam axis, where only photons recorded for the first time were accounted for. Photon production was considered for ''newborn'' photons intersecting a 45x45 cm 2 plane at the isocenter (85 cm from source). Finally, virtual source position and ''effective'' focal spot size were computed by backprojecting all the photons from the bottom of the target intersecting a 45x45 cm 2 plane. The virtual source position and focal spot size were estimated at the plane position where the latter is minimal. Results: In the relevant case of considering only photons intersecting the 45x45 cm 2 plane, the results unambiguously showed that the effective photon spot is created within the first 0.25 mm of the target and that electron and focal spots may be assumed to be equal within 3-4%. Conclusions: In a good approximation photon spot size equals electron spot size for high energy X-ray treatments delivered by linear accelerators.

  10. Monte Carlo electron-photon transport using GPUs as an accelerator: Results for a water-aluminum-water phantom

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.; Du, X.; Liu, T.; Xu, X. G. [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2013-07-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - is being developed at Rensselaer Polytechnic Institute as a software test bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. In this paper, the preliminary results of code development and testing are presented. The electron transport in media was modeled using the class-II condensed history method. The electron energy considered ranges from a few hundred keV to 30 MeV. Moller scattering and bremsstrahlung processes above a preset energy were explicitly modeled. Energy loss below that threshold was accounted for using the Continuously Slowing Down Approximation (CSDA). Photon transport was dealt with using the delta tracking method. Photoelectric effect, Compton scattering and pair production were modeled. Voxelised geometry was supported. A serial ARHCHER-CPU was first written in C++. The code was then ported to the GPU platform using CUDA C. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. ARHCHER was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and lateral dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x10{sup 6} histories of electrons were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively, on a CPU with a single core used. (authors)

  11. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    International Nuclear Information System (INIS)

    Varadhan; Way, S; Arentsen, L; Gerbi, B

    2016-01-01

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R_8_0_–_2_0 electron distal falloff distance and number of particle histories was set at 500,000 per cm"2. Percent depth dose scans and beam profiles at dmax, d_9_0 and d_8_0 depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom"2 scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d_9_0 and d_8_0 depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.

  12. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    Energy Technology Data Exchange (ETDEWEB)

    Varadhan [Minneapolis Radiation Oncology, Fridley, MN (United States); Way, S [Minneapolis Radiation Oncology, Robbinsdale, MN (United States); Arentsen, L; Gerbi, B [University of Minnesota, Minneapolis, MN (United States)

    2016-06-15

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distance and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.

  13. Calibration of Monte Carlo simulation code to low voltage electron beams through radiachromic dosimetry

    International Nuclear Information System (INIS)

    Weiss, D.E.; Kalweit, H.W.; Kensek, R.P.

    1994-01-01

    A simple multilayer slab model of an electron beam using the ITS/TIGER code can consistently account for about 80% of the actual dose delivered by a low voltage electron beam. The difference in calculated values is principally due to the 3D hibachi structure which blocks 22% of the beam. A 3D model was constructed using the ITS/ACCEPT code to improve upon the TIGER simulations. A rectangular source description update to the code and reproduction of all key geometric elements involved, including the hibachi, accounted for 90-95% of the dose received by routine dosimetry

  14. Parallelizing an electron transport Monte Carlo simulator (MOCASIN 2.0)

    International Nuclear Information System (INIS)

    Schwetman, H.; Burdick, S.

    1988-01-01

    Electron transport simulators are tools for studying electrical properties of semiconducting materials and devices. As demands for modeling more complex devices and new materials have emerged, so have demands for more processing power. This paper documents a project to convert an electron transport simulator (MOCASIN 2.0) to a parallel processing environment. In addition to describing the conversion, the paper presents PPL, a parallel programming version of C running on a Sequent multiprocessor system. In timing tests, models that simulated the movement of 2,000 particles for 100 time steps were executed on ten processors, with a parallel efficiency of over 97%

  15. Monte Carlo calculation of collisions of directionally-incident electrons on highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Kawakami, Kazuki; Fujimoto, Takasi

    2001-01-01

    We treat classically the n-, l- and m r -changing transitions and ionization. Excitation cross sections against the final state energy continue smoothly to the 'ionization cross sections'. The steady state populations determined by elastic collisions among the degenerate states in the same n level show higher populations in the m 1 =0 states, suggesting positive polarizations of Lyman lines emitted from plasmas having directional electrons. For ionization, the two outgoing electrons have large relative angles, suggesting reduced three body recombination rates for these plasmas. (author)

  16. Estimation of the dose deposited by electron beams in radiotherapy in voxelised phantoms using the Monte Carlo simulation platform GATE based on GEANT4 in a grid environment

    International Nuclear Information System (INIS)

    Perrot, Y.

    2011-01-01

    Radiation therapy treatment planning requires accurate determination of absorbed dose in the patient. Monte Carlo simulation is the most accurate method for solving the transport problem of particles in matter. This thesis is the first study dealing with the validation of the Monte Carlo simulation platform GATE (GEANT4 Application for Tomographic Emission), based on GEANT4 (Geometry And Tracking) libraries, for the computation of absorbed dose deposited by electron beams. This thesis aims at demonstrating that GATE/GEANT4 calculations are able to reach treatment planning requirements in situations where analytical algorithms are not satisfactory. The goal is to prove that GATE/GEANT4 is useful for treatment planning using electrons and competes with well validated Monte Carlo codes. This is demonstrated by the simulations with GATE/GEANT4 of realistic electron beams and electron sources used for external radiation therapy or targeted radiation therapy. The computed absorbed dose distributions are in agreement with experimental measurements and/or calculations from other Monte Carlo codes. Furthermore, guidelines are proposed to fix the physics parameters of the GATE/GEANT4 simulations in order to ensure the accuracy of absorbed dose calculations according to radiation therapy requirements. (author)

  17. Single electron ionization and electron capture cross sections for (C{sup 6+}, H{sub 2}O) interaction within the Classical Trajectory Monte Carlo (CTMC) approach

    Energy Technology Data Exchange (ETDEWEB)

    Tran, H.N., E-mail: tranngochoang@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Dao, D.D. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Incerti, S. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université de Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Karamitros, M. [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université de Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); Nhan Hao, T.V. [Center of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Dang, T.M. [VNUHCM-University of Science (Viet Nam); Francis, Z. [Saint Joseph University, Beyrouth (Lebanon)

    2016-01-01

    In this work, we present a derivation of cross sections for single ionization and electron capture processes within the Classical Trajectory Monte Carlo (CTMC) approach. Specifically, we have used a potential stemming from an ab initio calculation in Green et al.’s framework to describe the dynamics of the water molecule system. Proposing a modified version of the Classical Over-Barrier (COB) potential, we have found that a cut-off of roughly 28 a.u. on the initial distance of the projectile produced a reasonable accuracy. A global agreement has been obtained in our calculations compared to experimental and other theoretical results for C{sup 6+} ion energies ranging from 10 keV/u to 10 MeV/u.

  18. Temporal behavior of hydrated electron studied up to 400 deg. C by ultrafast pulse radiolysis and Monte Carlo calculation

    International Nuclear Information System (INIS)

    Katsumura, Yosuke; Muroya, Yusa; Lin, Mingzhang; Yu, Yan; Mehran, Mostafavi; Sanguanmith, Sunuchakan; Meesungnoen, Jintana; Jay-Gerin, Jean-Paul

    2012-09-01

    Pulse radiolysis is a very powerful and unique method to observe the transient species and to determine their yields and has been widely used up to now. Since the radiation-induced reactions at elevated temperatures are accelerated, precise measurement becomes difficult by the conventional pulse radiolysis systems. Then, a higher time resolved pulse radiolysis system is highly expected. Recently, an ultrafast pulse radiolysis system has been developed in the University of Tokyo and applied to water radiolysis at elevated temperatures [1]. Temporal behavior of the hydrated electron at elevated temperatures up to 400 deg C has been detected. The time dependent behavior of hydrated electron at elevated temperatures were detected and the latest version of the Monte Carlo simulation code developed at University of Sherbrooke was applied to reproduce the experimental results. From the simulation, it was made clear that the thermalization distance becomes smaller with increasing temperature. In addition, in supercritical water, the initial yield is significantly dependent on density (pressure), which is consistent with our previous evaluation. (authors)

  19. Electron absorbed dose comparison between MCNP5 and Penelope Monte Carlo code for microdosimetry

    International Nuclear Information System (INIS)

    Cintra, Felipe B. de; Yoriyaz, Helio

    2009-01-01

    The objective of the present work was to compare electron absorbed dose results between two widespread used codes in international scientific community: MCNP5 and Penelope-2003. Individual water spheres with masses between 10 -9 g up to 10 -3 g immersed in an infinite water medium (density of 1g/cm 3 ) and monoenergetic electron sources with energy from 0.002 MeV to 0.1 MeV have been considered. The absorbed dose in the spheres was evaluated by both codes and the relative differences have been quantified. The results shown that Penelope gives, in general, higher results that, in some cases saturate or reach a maximum point and then rapidly drops. Particularly, for the 40 keV electron source we have done additional tests in three different scenarios: more points in the region of lower masses to a better definition of the curve behavior; MCNP used 200 substeps and Penelope was set to a full detail history methodology, and almost same parameters of case B but with the density of exterior medium increased to 10 g/cm 3 . The three cases show the influence of the backscattering that contribute with an important fraction of absorbed dose, finally we can infer a range of reliability to use the codes in this kind of simulations: both codes can calculate close results for up to 10 -4 g.Even though MCNP5 uses the condensed history method, if simulation parameters are chosen carefully it can reproduce results very close to those obtained using detailed history mode. In some cases, the use of higher number of electron substeps causes significant differences in the result. (author)

  20. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    International Nuclear Information System (INIS)

    Carver, R; Popple, R; Benhabib, S; Antolak, J; Sprunger, C; Hogstrom, K

    2014-01-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10 9 ), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT

  1. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Popple, R; Benhabib, S [UniversityAlabama Birmingham, Birmingham, AL (United Kingdom); Antolak, J [Mayo Clinic, Rochester, MN (United States); Sprunger, C [Louisiana State University, Baton Rouge, LA (United States); Hogstrom, K [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Louisiana State University, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.

  2. SU-F-T-84: Measurement and Monte-Carlo Simulation of Electron Phase Spaces Using a Wide Angle Magnetic Electron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Englbrecht, F; Lindner, F; Bin, J; Wislsperger, A; Reiner, M; Kamp, F; Belka, C; Dedes, G; Schreiber, J; Parodi, K [LMU Munich, Munich, Bavaria (Germany)

    2016-06-15

    Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by an online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser

  3. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  4. Effect of the electron transport through thin slabs on the simulation of linear electron accelerators of use in therapy: A comparative study of various Monte Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain)], E-mail: mvilches@ugr.es; Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain); Guerrero, R. [Servicio de Radiofisica, Hospital Universitario ' San Cecilio' , Avda. Dr. Oloriz, 16, E-18012 Granada (Spain); Anguiano, M.; Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    When a therapeutic electron linear accelerator is simulated using a Monte Carlo (MC) code, the tuning of the initial spectra and the renormalization of dose (e.g., to maximum axial dose) constitute a common practice. As a result, very similar depth dose curves are obtained for different MC codes. However, if renormalization is turned off, the results obtained with the various codes disagree noticeably. The aim of this work is to investigate in detail the reasons of this disagreement. We have found that the observed differences are due to non-negligible differences in the angular scattering of the electron beam in very thin slabs of dense material (primary foil) and thick slabs of very low density material (air). To gain insight, the effects of the angular scattering models considered in various MC codes on the dose distribution in a water phantom are discussed using very simple geometrical configurations for the LINAC. The MC codes PENELOPE 2003, PENELOPE 2005, GEANT4, GEANT3, EGSnrc and MCNPX have been used.

  5. Effect of the electron transport through thin slabs on the simulation of linear electron accelerators of use in therapy: A comparative study of various Monte Carlo codes

    International Nuclear Information System (INIS)

    Vilches, M.; Garcia-Pareja, S.; Guerrero, R.; Anguiano, M.; Lallena, A.M.

    2007-01-01

    When a therapeutic electron linear accelerator is simulated using a Monte Carlo (MC) code, the tuning of the initial spectra and the renormalization of dose (e.g., to maximum axial dose) constitute a common practice. As a result, very similar depth dose curves are obtained for different MC codes. However, if renormalization is turned off, the results obtained with the various codes disagree noticeably. The aim of this work is to investigate in detail the reasons of this disagreement. We have found that the observed differences are due to non-negligible differences in the angular scattering of the electron beam in very thin slabs of dense material (primary foil) and thick slabs of very low density material (air). To gain insight, the effects of the angular scattering models considered in various MC codes on the dose distribution in a water phantom are discussed using very simple geometrical configurations for the LINAC. The MC codes PENELOPE 2003, PENELOPE 2005, GEANT4, GEANT3, EGSnrc and MCNPX have been used

  6. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  7. Kinetic Monte Carlo Study of Ambipolar Lithium Ion and Electron-Polaron Diffusion into Nanostructured TiO2

    International Nuclear Information System (INIS)

    Yu, Jianguo; Sushko, Maria L.; Kerisit, Sebastien N.; Rosso, Kevin M.; Liu, Jun

    2012-01-01

    Nanostructured titania (TiO2) polymorphs have proved to be promising electrode materials for next generation lithium-ion batteries. However, there is still a lack of understanding of the fundamental microscopic processes that control charge transport in these materials. Here we present microscopic simulations of the collective dynamics of lithium-ion (Li+) and charge compensating electron polarons (e-) in rutile TiO2 nanoparticles in contact with idealized conductive matrix and electrolyte. Kinetic Monte Carlo simulations are used, parameterized by molecular dynamics-based predictions of activation energy barriers for Li+ and e- diffusion. Simulations reveal the central role of electrostatic coupling between Li+ and e- on their collective drift diffusion at the nanoscale. They also demonstrate that high contact area between conductive matrix and rutile nanoparticles leads to undesirable coupling-induced surface saturation effects during Li+ insertion, which limits the overall capacity and conductivity of the material. These results help provide guidelines for design of nanostructured electrode materials with improved electrochemical performance.

  8. Atomic structure of Mg-based metallic glass investigated with neutron diffraction, reverse Monte Carlo modeling and electron microscopy

    Directory of Open Access Journals (Sweden)

    Rafał Babilas

    2017-05-01

    Full Text Available The structure of a multicomponent metallic glass, Mg65Cu20Y10Ni5, was investigated by the combined methods of neutron diffraction (ND, reverse Monte Carlo modeling (RMC and high-resolution transmission electron microscopy (HRTEM. The RMC method, based on the results of ND measurements, was used to develop a realistic structure model of a quaternary alloy in a glassy state. The calculated model consists of a random packing structure of atoms in which some ordered regions can be indicated. The amorphous structure was also described by peak values of partial pair correlation functions and coordination numbers, which illustrated some types of cluster packing. The N = 9 clusters correspond to the tri-capped trigonal prisms, which are one of Bernal’s canonical clusters, and atomic clusters with N = 6 and N = 12 are suitable for octahedral and icosahedral atomic configurations. The nanocrystalline character of the alloy after annealing was also studied by HRTEM. The selected HRTEM images of the nanocrystalline regions were also processed by inverse Fourier transform analysis. The high-angle annular dark-field (HAADF technique was used to determine phase separation in the studied glass after heat treatment. The HAADF mode allows for the observation of randomly distributed, dark contrast regions of about 4–6 nm. The interplanar spacing identified for the orthorhombic Mg2Cu crystalline phase is similar to the value of the first coordination shell radius from the short-range order.

  9. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    CERN Document Server

    Mainardi, E; Donahue, R J

    2002-01-01

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using ...

  10. Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error

    KAUST Repository

    Li, Haoyuan

    2017-05-18

    Kinetic Monte Carlo (KMC) simulations have emerged as an important tool to help improve the efficiency of organic electronic devices by providing a better understanding of their device physics. In the KMC simulation of an organic device, the reliability of the results depends critically on the accuracy of the chosen charge-transfer rates, which are themselves strongly influenced by the site-energy differences. These site-energy differences include components coming from the electrostatic forces present in the system, which are often evaluated through electric potentials described by the Poisson equation. Here we show that the charge-carrier self-interaction errors that appear when evaluating the site-energy differences can lead to unreliable simulation results. To eliminate these errors, we propose two approaches that are also found to reduce the impact of finite-size effects. As a consequence, reliable results can be obtained at reduced computational costs. The proposed methodologies can be extended to other device simulation techniques as well.

  11. STRONG CORRELATIONS AND ELECTRON-PHONON COUPLING IN HIGH-TEMPERATURE SUPERCONDUCTORS - A QUANTUM MONTE-CARLO STUDY

    NARCIS (Netherlands)

    MORGENSTERN, [No Value; FRICK, M; VONDERLINDEN, W

    We present quantum simulation studies for a system of strongly correlated fermions coupled to local anharmonic phonons. The Monte Carlo calculations are based on a generalized version of the Projector Quantum Monte Carlo Method allowing a simultaneous treatment of fermions and dynamical phonons. The

  12. MCNP4C2, Coupled Neutron, Electron Gamma 3-D Time-Dependent Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent, coupled neutron-photon-electron Monte Carlo transport code system. MCNP4C2 is an interim release of MCNP4C with distribution restricted to the Criticality Safety community and attendees of the LANL MCNP workshops. The major new features of MCNP4C2 include: - Photonuclear physics; - Interactive plotting; - Plot superimposed weight window mesh; - Implement remaining macro-body surfaces; - Upgrade macro-bodies to surface sources and other capabilities; - Revised summary tables; - Weight window improvements. See the MCNP home page more information http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP with a link to the MCNP Forum. See the Electronic Notebook at http://www-rsicc.ornl.gov/rsic.html for information on user experiences with MCNP. 2 - Methods:MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces. Pointwise continuous-energy cross section data are used, although multigroup data may also be used. Fixed-source adjoint calculations may be made with the multigroup data option. For neutrons, all reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha, beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are available. For photons, the code takes account of incoherent and coherent scattering with and without electron binding effects, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. A very general source and tally structure is available. The tallies have extensive statistical analysis of convergence. Rapid convergence is enabled by a wide variety of variance reduction methods. Energy ranges are 0-60 MeV for neutrons (data generally only available up to

  13. Tamaño y composición de la colonia de tres especies de hormigas del género Pogonomyrmex (Hymenoptera: Formicidae en la porción central del desierto del Monte, Argentina Colony size and composition in three Pogonomyrmex ant species (Hymenoptera: Formicidae in the central Monte desert, Argentina

    Directory of Open Access Journals (Sweden)

    Beatriz E. Nobua Behrmann

    2010-06-01

    Full Text Available El tamaño de la colonia es un atributo fundamental en la biología de las hormigas ya que está asociado a características ecológicamente relevantes, como sus estrategias de alimentación. Mientras que el tamaño de la colonia de varias especies de hormigas granívoras del género Pogonomyrmex de América del Norte se ha estudiado en detalle, no existe tal información para las especies de América del Sur. En este trabajo, se determinó el tamaño y la composición de la colonia y se describió la estructura del nido de tres especies de Pogonomyrmex que habitan la porción central del desierto del Monte en Argentina: P. mendozanus Cuezzo & Claver, P. inermis Forel y P. rastratus Mayr. Para ello, se excavaron dos nidos de cada especie y se recolectaron todos los individuos encontrados. Las tres especies tienen colonias pequeñas, compuestas por 300-1.100 individuos, de los cuales aproximadamente el 70% son obreras adultas. La estructura de sus nidos es relativamente simple, similar a la de la mayoría de las especies norteamericanas estudiadas, pero con un menor desarrollo en profundidad y un número menor de cámaras; probablemente se deba al menor número de obreras que poseen. Estas características (colonias pequeñas y nidos poco desarrollados son consideradas típicas para las especies del género Pogonomyrmex de América del Sur, lo que las diferencia de la mayoría de sus congéneres estudiados en América del Norte.Colony size in ants is associated with important ecological characteristics such as foraging strategy. Though colony size has been studied with some detail for several North American species of Pogonomyrmex harvester ants, it remains unknown for South American species. We studied colony size, composition, and nest structure of three species of Pogonomyrmex harvester ants inhabiting the central Monte desert in Argentina: P. mendozanus Cuezzo & Claver, P. inermis Forel and P. rastratus Mayr. We excavated two nests of each

  14. An improved energy-range relationship for high-energy electron beams based on multiple accurate experimental and Monte Carlo data sets

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Andreo, P.; Hyoedynmaa, S.; Brahme, A.; Bielajew, A.F.

    1995-01-01

    A theoretically based analytical energy-range relationship has been developed and calibrated against well established experimental and Monte Carlo calculated energy-range data. Only published experimental data with a clear statement of accuracy and method of evaluation have been used. Besides published experimental range data for different uniform media, new accurate experimental data on the practical range of high-energy electron beams in water for the energy range 10-50 MeV from accurately calibrated racetrack microtrons have been used. Largely due to the simultaneous pooling of accurate experimental and Monte Carlo data for different materials, the fit has resulted in an increased accuracy of the resultant energy-range relationship, particularly at high energies. Up to date Monte Carlo data from the latest versions of the codes ITS3 and EGS4 for absorbers of atomic numbers between four and 92 (Be, C, H 2 O, PMMA, Al, Cu, Ag, Pb and U) and incident electron energies between 1 and 100 MeV have been used as a complement where experimental data are sparse or missing. The standard deviation of the experimental data relative to the new relation is slightly larger than that of the Monte Carlo data. This is partly due to the fact that theoretically based stopping and scattering cross-sections are used both to account for the material dependence of the analytical energy-range formula and to calculate ranges with the Monte Carlo programs. For water the deviation from the traditional energy-range relation of ICRU Report 35 is only 0.5% at 20 MeV but as high as - 2.2% at 50 MeV. An improved method for divergence and ionization correction in high-energy electron beams has also been developed to enable use of a wider range of experimental results. (Author)

  15. A Monte Carlo simulation code for calculating damage and particle transport in solids: The case for electron-bombarded solids for electron energies up to 900 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-03-15

    Current popular Monte Carlo simulation codes for simulating electron bombardment in solids focus primarily on electron trajectories, instead of electron-induced displacements. Here we report a Monte Carol simulation code, DEEPER (damage creation and particle transport in matter), developed for calculating 3-D distributions of displacements produced by electrons of incident energies up to 900 MeV. Electron elastic scattering is calculated by using full-Mott cross sections for high accuracy, and primary-knock-on-atoms (PKAs)-induced damage cascades are modeled using ZBL potential. We compare and show large differences in 3-D distributions of displacements and electrons in electron-irradiated Fe. The distributions of total displacements are similar to that of PKAs at low electron energies. But they are substantially different for higher energy electrons due to the shifting of PKA energy spectra towards higher energies. The study is important to evaluate electron-induced radiation damage, for the applications using high flux electron beams to intentionally introduce defects and using an electron analysis beam for microstructural characterization of nuclear materials.

  16. Monte Carlo simulation of the electron transport through thin slabs: A comparative study of PENELOPE, GEANT3, GEANT4, EGSnrc and MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain)]. E-mail: mvilches@ugr.es; Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain)]. E-mail: garciapareja@gmail.com; Guerrero, R. [Servicio de Radiofisica, Hospital Universitario ' San Cecilio' , Avda. Dr. Oloriz, 16, E-18012 Granada (Spain)]. E-mail: rafael.guerrero.alcalde.sspa@juntadeandalucia.es; Anguiano, M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)]. E-mail: mangui@ugr.es; Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)]. E-mail: lallena@ugr.es

    2007-01-15

    The Monte Carlo simulation of the electron transport through thin slabs is studied with five general purpose codes: PENELOPE, GEANT3, GEANT4, EGSnrc and MCNPX. The different material foils analyzed in the old experiments of Kulchitsky and Latyshev [L.A. Kulchitsky, G.D. Latyshev, Phys. Rev. 61 (1942) 254] and Hanson et al. [A.O. Hanson, L.H. Lanzl, E.M. Lyman, M.B. Scott, Phys. Rev. 84 (1951) 634] are used to perform the comparison between the Monte Carlo codes. Non-negligible differences are observed in the angular distributions of the transmitted electrons obtained with the some of the codes. The experimental data are reasonably well described by EGSnrc, PENELOPE (v.2005) and GEANT4. A general good agreement is found for EGSnrc and PENELOPE (v.2005) in all the cases analyzed.

  17. Monte Carlo simulation of the electron transport through thin slabs: A comparative study of PENELOPE, GEANT3, GEANT4, EGSnrc and MCNPX

    International Nuclear Information System (INIS)

    Vilches, M.; Garcia-Pareja, S.; Guerrero, R.; Anguiano, M.; Lallena, A.M.

    2007-01-01

    The Monte Carlo simulation of the electron transport through thin slabs is studied with five general purpose codes: PENELOPE, GEANT3, GEANT4, EGSnrc and MCNPX. The different material foils analyzed in the old experiments of Kulchitsky and Latyshev [L.A. Kulchitsky, G.D. Latyshev, Phys. Rev. 61 (1942) 254] and Hanson et al. [A.O. Hanson, L.H. Lanzl, E.M. Lyman, M.B. Scott, Phys. Rev. 84 (1951) 634] are used to perform the comparison between the Monte Carlo codes. Non-negligible differences are observed in the angular distributions of the transmitted electrons obtained with the some of the codes. The experimental data are reasonably well described by EGSnrc, PENELOPE (v.2005) and GEANT4. A general good agreement is found for EGSnrc and PENELOPE (v.2005) in all the cases analyzed

  18. Liquid argon as an electron/photon detector in the energy range of 50 MeV to 2 GeV: a Monte Carlo investigation

    International Nuclear Information System (INIS)

    Goodman, M.S.; Denis, G.; Hall, M.; Karpovsky, A.; Wilson, R.; Gabriel, T.A.; Bishop, B.L.

    1980-12-01

    Monte Carlo techniques which have been used to study the characteristics of a proposed electron/photon detector based on the total absorption of electromagnetic showers in liquid argon have been investigated. The energy range studied was 50 MeV to 2 GeV. Results are presented on the energy and angular resolution predicted for the device, along with the detailed predictions of the transverse and longitudinal shower distributions. Comparisons are made with other photon detectors, and possible applications are discussed

  19. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms.

    Science.gov (United States)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2015-01-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung, E-mail: kjkim@hallym.or.kr; Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  1. Monte Carlo simulation of electron depth distribution and backscattering for carbon films deposited on aluminium as a function of incidence angle and primary energy

    Science.gov (United States)

    Dapor, Maurizio

    2005-01-01

    Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient.

  2. Calculation of equivalent dose index for electrons from 5,0 to 22,0 MeV by the Monte Carlo method

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1979-01-01

    The index of equivalent dose in depth and in a sphere surface of a soft tissue equivalent material were determined by Monte Carlo method for electron irradiations from 5,0 to 22.00 MeV. The effect of different irradiation geometries which simulate the incidence of onedirectional opposite rotational and isotropic beams was studied. It is also shown that the detector of wall thickness with 0.5g/cm 2 and isotropic response com be used to measure index of equivalent dose for fast electrons. The alternative concept of average equivalent dose for radiation protection is discussed. (M.C.K.) [pt

  3. Study of the applicability of Markov chain Monte Carlo methods to the statistical separation of electron sources via the impact parameter for ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Wittner, Manuel [Physikalisches Institut, Universitaet Heidelberg, Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    One particularly interesting measurement detected by the ALICE set-up at the LHC are electrons from charm and beauty hadron decays. Heavy quarks originate from initial hard scattering processes and thus experience the whole history of a heavy ion collision. Therefore, they are valuable probes to study the mechanisms of energy loss and hadronization in the hot and dense state of matter, that is expected to be formed in a heavy-ion collision at LHC. One important task is the distinction of the different electron sources, for which a method was developed. Hereby, the impact parameter distribution of the measurement data is compared with impact parameter distributions for the individual sources, which are created through Monte Carlo simulations. Afterwards, a maximum likelihood fit is applied. However, creating a posterior distribution of the likelihood according to Bayes' theorem and sampling it with Markov Chain Monte Carlo algorithms provides several advantages, e.g. a mathematically correct estimation of the uncertainties or the usage of prior knowledge. Hence for the first time in this particular problem, a Markov Chain Monte Carlo algorithm, namely the Metropolis algorithm, was implemented and investigated for its applicability in heavy flavor physics. First studies indicate its great usefulness in this field of physics.

  4. New developments on Monte Carlo simulation code for the calculation of Atom Displacements Induced rates by High Energy Electrons in Solid Materials

    International Nuclear Information System (INIS)

    Damiani, Daniela D.; Cruz, Carlos M.; Pinnera, Ibrahin; Abreu, Yamiel; Leyva, Antonio

    2015-01-01

    New developments and simulations on regard to the interactions of incident gamma radiation over solids materials using the MCSAD (Monte Carlo Simulation of Atom Displacement) code are presented. In this code Monte Carlo algorithms are applied in order to sample all electrons and gamma interaction processes occurring during their transport through a solid target, especially those connected to the output of atom displacements events. Particularly, it is calculated the limit angle to elastic scattering for the electrons on a new approach, which allows correctly the splitting of the electron single processes at higher scattering angles. On this way, the probability of single electron scattering processes transferring high recoil atomic energy leading to atom displacement effects is calculated and consequently sampled in the MCSAD code. In addition, it is considered some other new theoretical aspects in order to improve previous versions, like the one concerning the selection of threshold energy for displacements at a given atom site in dependence of the atom recoil direction. (Author)

  5. Monte Carlo investigation of the effect of small cutouts on beam profile parameters of 12 and 14 MeV electron beams

    International Nuclear Information System (INIS)

    Khaledi, Navid; Arbabi, Azim; Sardari, Dariush; Rabie Mahdavi, Seied; Aslian, Hossein; Dabaghi, Moloud; Sheibani, Kourosh

    2013-01-01

    Cutouts, which are used as field-shaping shield, affect several electron beam parameters. These effects are more observable for small field sizes and high energy electron beams. Owing to the fact that small fields prevent the lateral scatter equilibrium, at higher energies larger field radius is required for the establishment of lateral equilibrium. The profile curves are derived from circular, triangular, and square cutout shapes and size placed in a 10 × 10 cm 2 electron applicator. These profile curves are obtained using parallel plane type ion chamber at the R 100 , R 90 , R 80 and R 50 depths. Correspondingly, the source surface distance is 100 cm. In this study MCNP Monte Carlo (MC) simulation was used to compare Percentage Depth Dose (PDD) and Profile of electron beams. Monte Carlo and measured results showed a good compliance for PDD and beam profile. The measurements and calculations showed that as the field width decreases, the Flatness and Penumbra Ratio also decreases. In other words, flatter plateau was available for larger fields. Also the Coverage Ratio for each of the profiles is presented. The flatness and symmetry values for triangle shapes were greater than the two other shapes. Knowledge of these changes are significant in radiation therapy. Accordingly, a comparison between the Monte Carlo data and the measured results can be beneficial for treatment simulation and development of treatment planning systems. - Highlights: ► Mesh Tally 1 and pedep keyword were used to calculate the PDD and profile values. ► In measurement the coverage for larger fields and fewer doses are better. ► By increasing the depth, the flatness and symmetry values were increased. ► The worst flatness and symmetry (between 3 compared shapes) belonged to triangle. ► The given Penumbra and Coverage Ratio can be helpful for PTV margin and coverage

  6. Structures and Electronic Properties of Cu{sub 3}O{sub n} (n =1-6) Clusters using ab initio Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Gyun-Tack [Chungbuk National University, Cheongju (Korea, Republic of)

    2016-05-15

    We studied the structures and electronic properties of copper oxide clusters, Cu{sub 3}O{sub n} (n =1-6), using ab initio Monte Carlo simulations and density functional theory calculations. All lowest energy structures of neutral and charged Cu{sub 3}O{sub n} clusters with n =1-6 are optimized with the B3LYP functional and LANL2DZ basis set. We found that the lowest energy structures of neutral and charged Cu{sub 3}O{sub n} (n =1-6) clusters are planar or near-planar. Selected electronic properties including atomization energies, ionization energies, electron affinities, second difference in energies, HOMO - LUMO gaps, and Bader charges are calculated and examined for each n. We concluded that the Cu{sub 3}O{sub 3} cluster is the first ring structure and the most stable structure.

  7. Sampling procedures using optical-data and partial wave cross sections in a Monte Carlo code for simulating kilovolt electron and positron transport in solids

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Salvat, F.; Liljequist, D.

    1994-09-01

    The details of a Monte Carlo code for computing the penetration and energy loss of electrons and positrons in solids are described. The code, intended for electrons and positrons with energies from ∼ 100 eV to ∼ 100 keV, is based on the simulation of individual elastic and inelastic collisions. Elastic collisions are simulated using differential cross sections computed by the relativistic partial wave method applied to a muffin-tin Dirac-Hartree-Fock-Slater potential. Inelastic collisions are simulated by means of a model based on optical and photoelectric data, which are extended to the non-zero momentum transfer region by means of somewhat different algorithms for valence electron excitations and inner-shell excitations. This report focuses on the description of detailed formulae and sampling methods. 10 refs, 3 figs, 8 tabs

  8. Monte Carlo computation of Bremsstrahlung intensity and energy spectrum from a 15 MV linear electron accelerator tungsten target to optimise LINAC head shielding

    International Nuclear Information System (INIS)

    Biju, K.; Sharma, Amiya; Yadav, R.K.; Kannan, R.; Bhatt, B.C.

    2003-01-01

    The knowledge of exact photon intensity and energy distributions from the target of an electron target is necessary while designing the shielding for the accelerator head from radiation safety point of view. The computations were carried out for the intensity and energy distribution of photon spectrum from a 0.4 cm thick tungsten target in different angular directions for 15 MeV electrons using a validated Monte Carlo code MCNP4A. Similar results were computed for 30 MeV electrons and found agreeing with the data available in literature. These graphs and the TVT values in lead help to suggest an optimum shielding thickness for 15 MV Linac head. (author)

  9. SU-E-T-556: Monte Carlo Generated Dose Distributions for Orbital Irradiation Using a Single Anterior-Posterior Electron Beam and a Hanging Lens Shield

    International Nuclear Information System (INIS)

    Duwel, D; Lamba, M; Elson, H; Kumar, N

    2015-01-01

    Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations. Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens

  10. [Study of the influence of uniform transverse magnetic field on the dose distribution of high energy electron beam using Monte Carlo method].

    Science.gov (United States)

    You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun

    2014-12-01

    In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.

  11. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, L; Fan, J; Eldib, A; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.

  12. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    Science.gov (United States)

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  13. Structural, electronic, magnetic and thermodynamic properties of Ni1-xTixO alloys an ab initio calculation and Monte Carlo study

    Science.gov (United States)

    Klaa, K.; Labidi, S.; Masrour, R.; Jabar, A.; Labidi, M.; Amara, A.; Drici, A.; Hlil, E. K.; Ellouze, M.

    2018-06-01

    Structural, electronic, magnetic and thermodynamic main features for Ni1-xTixO ternary alloys in rock-salt structure with Ti content in the range ? were studied using the full potential Linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential was calculated by the generalized gradient approximation. The analysis of the electronic density of states curves allowed the computation of the magnetic moments which are considered to lie along (010) axes. The thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ? as well as the phase diagram. In addition, the Monte Carlo simulations have been exploited to calculate the transition temperature and magnetic coercive field in the alloy.

  14. Ensemble Monte Carlo particle investigation of hot electron induced source-drain burnout characteristics of GaAs field-effect transistors

    Science.gov (United States)

    Moglestue, C.; Buot, F. A.; Anderson, W. T.

    1995-08-01

    The lattice heating rate has been calculated for GaAs field-effect transistors of different source-drain channel design by means of the ensemble Monte Carlo particle model. Transport of carriers in the substrate and the presence of free surface charges are also included in our simulation. The actual heat generation was obtained by accounting for the energy exchanged with the lattice of the semiconductor during phonon scattering. It was found that the maximum heating rate takes place below the surface near the drain end of the gate. The results correlate well with a previous hydrodynamic energy transport estimate of the electronic energy density, but shifted slightly more towards the drain. These results further emphasize the adverse effects of hot electrons on the Ohmic contacts.

  15. Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S., E-mail: sebastien.incerti@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Suerfu, B.; Xu, J. [Department of Physics, Princeton University, Princeton, NJ (United States); Ivantchenko, V. [Ecoanalytica, Moscow (Russian Federation); Geant4 Associates International Ltd, Hebden Bridge (United Kingdom); Mantero, A. [SWHARD srl, via Greto di Cornigliano 6r, 16152 Genova (Italy); Brown, J.M.C. [School of Mathematics and Physics, Queen’s University Belfast, Belfast, Northern Ireland (United Kingdom); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Francis, Z. [Université Saint Joseph, Faculty of Sciences, Department of Physics, Beirut (Lebanon); Karamitros, M. [Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN (United States); Tran, H.N. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-04-01

    A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.

  16. Lut Desert, Iran

    Science.gov (United States)

    1981-01-01

    Iran is a large country with several desert regions. In the Dasht-E-Lut (Lut Desert) (30.5N, 58.5E) an area known as Namak-Zar, about 100 miles east of the city of Kerman, is at the center of this photograph. Some of the world's most prominent Yardangs (very long, parallel ridges and depressions) have been wind eroded in these desert dry lake bed sediments. At the left of the photo is a large field of sand dunes at right angles to the wind.

  17. Integrated Tiger Series of electron/photon Monte Carlo transport codes: a user's guide for use on IBM mainframes

    International Nuclear Information System (INIS)

    Kirk, B.L.

    1985-12-01

    The ITS (Integrated Tiger Series) Monte Carlo code package developed at Sandia National Laboratories and distributed as CCC-467/ITS by the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory (ORNL) consists of eight codes - the standard codes, TIGER, CYLTRAN, ACCEPT; the P-codes, TIGERP, CYLTRANP, ACCEPTP; and the M-codes ACCEPTM, CYLTRANM. The codes have been adapted to run on the IBM 3081, VAX 11/780, CDC-7600, and Cray 1 with the use of the update emulator UPEML. This manual should serve as a guide to a user running the codes on IBM computers having 370 architecture. The cases listed were tested on the IBM 3033, under the MVS operating system using the VS Fortran Level 1.3.1 compiler

  18. Structural, electronic and magnetic properties of LaCr2Si2C: Ab initio calculation, mean field approximation and Monte-Carlo simulation

    Science.gov (United States)

    Endichi, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.

    2018-06-01

    The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system.

  19. Desert Pavement Studies

    National Research Council Canada - National Science Library

    Haff, Peter

    2003-01-01

    Combining plan view information from aerial photography showing details of stream channels on desert pavement surfaces with process-based erosion models, a high-resolution, synthetic topography DEM...

  20. Desert Pavement Studies

    National Research Council Canada - National Science Library

    Haff, P

    2003-01-01

    Combining plan view information from aerial photography showing details of stream channels on desert pavement surfaces with process-based erosion models, a high-resolution, "synthetic topography" DEM...

  1. Procedures for the selection of stopping power ratios for electron beams: Comparison of IAEA TRS procedures and of DIN procedures with Monte Carlo results

    International Nuclear Information System (INIS)

    Roos, M.; Christ, G.

    2000-01-01

    In the International Code of Practice IAEA TRS-381 the stopping power ratios water/air are selected according to the half-value depth and the depth of measurement. In the German Standard DIN 6800-2 a different procedure is recommended, which, in addition, takes the practical electron range into account; the stopping power data for monoenergetic beams from IAEA TRS-381 are used. Both procedures are compared with recent Monte Carlo calculations carried out for various beams of clinical accelerators. It is found that the DIN procedure shows a slightly better agreement. In addition, the stopping power ratios in IAEA TRS-381 are compared with those in DIN 6800-2 for the reference conditions of the beams from the PTB linac; the maximum deviation is not larger than 0.6%. (author)

  2. Monte-Carlo investigation of in-plane electron transport in tensile strained Si and Si{_{1-y}}C{_y} (y {leq 0.03})

    Science.gov (United States)

    Dollfus, Ph.; Galdin, S.; Hesto, P.

    1999-07-01

    Electron transport properties in tensile strained Si-based materials are theoretically analyzed using Monte-Carlo calculation. We focus our interest on in-plane transport in Si and Si{1-y}Cy (yleq 0.03), grown respectively on Effect-Transistor application. In comparison with unstrained Si, the tensile strain effect is shown to be very attractive in Si: drift mobilities greater than 3000 cm^2/Vs are obtained at 300 K for a Ge fraction mole of 0.2 in the pseudo-substrate. In the Si{1-y}Cy/Si system, that does not need any pseudo-substrate, the beneficial strain effect on transport is counterbalanced by the alloy scattering whose influence on mobility is studied. If the alloy potential is greater than about 1 eV, the advantage of strain-induced reduction of effective mass is lost in terms of stationary transport performance at 300 K.

  3. Investigation on electronic and magnetic properties of Mn{sub 2}NiAl by ab initio calculations and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hourmatallah, A. [Equipe de Physique du Solide, Laboratoire LIPI, Ecole Normale Supérieure, BP 5206, Bensouda, Fes (Morocco); Rezzouk, A.; Bouslykhane, K.; Benzakour, N. [Laboratoire de Physique du Solide, Université Sidi Mohammed Ben Abdellah, Faculté des sciences DharMahraz, BP 1796, Fes (Morocco)

    2017-04-15

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn{sub 2}NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn{sub 2}NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn{sub 2}NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn{sub I}, Mn{sub II} and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn{sub 2}NiX. • The transition temperature of Mn{sub 2}NiX is established. • The magnetic hysteresis cycle of M{sub n2}NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn{sub 2}NiX (X = Al, Ga, In, Sn) is given.

  4. Radiolysis of liquid water: an attempt to reconcile Monte-Carlo calculations with new experimental hydrated electron yield data at early times

    International Nuclear Information System (INIS)

    Muroya, Y.; Meesungnoen, J.; Jay-Gerin, J.-P.; Filali-Mouhim, A.; Goulet, T.; Katsumura, Y.; Mankhetkorn, S.

    2002-01-01

    A re-examination of our Monte-Carlo modeling of the radiolysis of liquid water by low linear-energy-transfer (LET ∼ 0.3 keV μm -1 ) radiation is undertaken herein in an attempt to reconcile the results of our simulation code with recently revised experimental hydrated electron (e aq - ) yield data at early times. The thermalization distance of subexcitation electrons, the recombination cross section of the electrons with their water parent cations prior to thermalization, and the branching ratios of the different competing mechanisms in the dissociative decay of vibrationally excited states of water molecules were taken as adjustable parameters in our simulations. Using a global-fit procedure, we have been unable to find a set of values for those parameters to simultaneously reproduce (i) the revised e aq - yield of 4.0 ± 0.2 molecules per 100 eV at 'time zero' (that is, a reduction of ∼20% over the hitherto accepted value of 4.8 molecules per 100 eV), (ii) the newly measured e aq - decay kinetic profile from 100 ps to 10 ns, and (iii) the time-dependent yields of the other radiolytic species H . , . OH, H 2 , and H 2 O 2 (up to ∼1 μs). The lowest possible limiting 'time-zero' yield of e aq - that we could in fact obtain, while ensuring an acceptable agreement between all computed and experimental yields, was ∼4.4 to 4.5 molecules per 100 eV. Under these conditions, the mean values of the electron thermalization distance and of the geminate electron-cation recombination probability, averaged over the subexcitation electron 'entry spectrum,' are found to be equal to ∼139 A and ∼18%, respectively. These values are to be compared with those obtained in our previous simulations of liquid water radiolysis, namely ∼88 A and ∼5.5%, respectively. Our average electron thermalization distance is also to be compared with the typical size (∼64-80 A) of the initial hydrated electron distributions estimated in current deterministic models of 'spur' chemistry

  5. Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: a two-step dissociation mechanism

    International Nuclear Information System (INIS)

    Offermans, Ton; Meskers, Stefan C.J.; Janssen, Rene A.J.

    2005-01-01

    The Monte-Carlo simulations are used to investigate the dissociation of a Coulomb correlated charge pair at an idealized interface between an electron accepting and an electron donating molecular material. In the simulations the materials are represented by cubic lattices of sites, with site the energies spread according to Gaussian distributions. The influence of temperature, applied external fields, and the width of the Gaussian densities of states distribution for both the electron and the hole transporting material are investigated. The results show that the dissociation of geminate charge pairs is assisted by disorder and the results can be understood in terms of a two-step model. In the first step, the slow carrier in the most disordered material jumps away from the interface. In the following, second step, the reduced Coulombic attraction allows the faster carrier in the less disordered material to escape from the interface by thermally activated hopping. When the rate for geminate recombination at the interface is very low ( -1 ) the simulations predict a high yield for carrier collection, as observed experimentally. Comparison of the simulated and experimentally observed temperature dependence of the collection efficiency indicates that at low temperature dissociation of the geminate charge pairs may be one of the factors limiting the device performance

  6. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhe, E-mail: zhe.duan@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Bai, Mei [Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Barber, Desmond P. [Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg (Germany); Qin, Qing [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)

    2015-09-01

    With the recently emerging global interest in building a next generation of circular electron–positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code (PTC) (Schmidt et al., 2002 [1]) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1979 [2]) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called “correlated” crossing of spin resonances during synchrotron oscillations at current energies evolves into “uncorrelated” crossing of spin resonances at ultra-high energies.

  7. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production.

    Science.gov (United States)

    Leung, Michael K K; Chow, James C L; Chithrani, B Devika; Lee, Martin J G; Oms, Barbara; Jaffray, David A

    2011-02-01

    The aim of this study is to understand the characteristics of secondary electrons generated from the interaction of gold nanoparticles (GNPs) with x-rays as a function of nanoparticle size and beam energy and thereby further the understanding of GNP-enhanced radiotherapy. The effective range, deflection angle, dose deposition, energy, and interaction processes of electrons produced from the interaction of x-rays with a GNP were calculated by Monte Carlo simulations. The GEANT4 code was used to simulate and track electrons generated from a 2, 50, and 100 nm diameter GNP when it is irradiated with a 50 kVp, 250 kVp, cobalt-60, and 6 MV photon beam in water. When a GNP was present, depending on the beam energies used, secondary electron production was increased by 10- to 2000-fold compared to an absence of a GNP. Low-energy photon beams were much more efficient at interacting with the GNP by two to three orders of magnitude compared to MV energies and increased the deflection angle. GNPs with larger diameters also contributed more dose. The majority of the energy deposition was outside the GNP, rather than self-absorbed by the nanoparticle. The mean effective range of electron tracks for the beams tested ranged from approximately 3 microm to 1 mm. These simulated results yield important insights concerning the spatial distributions and elevated dose in GNP-enhanced radiotherapy. The authors conclude that the irradiation of GNP at lower photon energies will be more efficient for cell killing. This conclusion is consistent with published studies.

  8. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, A.A.; Hohmann-Marriott, M.F.; Zhang, G. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766 (United States); Leapman, R.D. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766 (United States)], E-mail: leapmanr@mail.nih.gov

    2009-02-15

    A Monte Carlo electron-trajectory calculation has been implemented to assess the optimal detector configuration for scanning transmission electron microscopy (STEM) tomography of thick biological sections. By modeling specimens containing 2 and 3 at% osmium in a carbon matrix, it was found that for 1-{mu}m-thick samples the bright-field (BF) and annular dark-field (ADF) signals give similar contrast and signal-to-noise ratio provided the ADF inner angle and BF outer angle are chosen optimally. Spatial resolution in STEM imaging of thick sections is compromised by multiple elastic scattering which results in a spread of scattering angles and thus a spread in lateral distances of the electrons leaving the bottom surface. However, the simulations reveal that a large fraction of these multiply scattered electrons are excluded from the BF detector, which results in higher spatial resolution in BF than in high-angle ADF images for objects situated towards the bottom of the sample. The calculations imply that STEM electron tomography of thick sections should be performed using a BF rather than an ADF detector. This advantage was verified by recording simultaneous BF and high-angle ADF STEM tomographic tilt series from a stained 600-nm-thick section of C. elegans. It was found that loss of spatial resolution occurred markedly at the bottom surface of the specimen in the ADF STEM but significantly less in the BF STEM tomographic reconstruction. Our results indicate that it might be feasible to use BF STEM tomography to determine the 3D structure of whole eukaryotic microorganisms prepared by freeze-substitution, embedding, and sectioning.

  9. A model and computer code for the Monte Carlo simulation of relativistic electron and positron penetration through matter

    International Nuclear Information System (INIS)

    Ismail, M.; Liljequist, D.

    1986-10-01

    In the present model, the treatment of elastic scattering is based on the similarity of multiple scattering processes with equal transport mean free path /LAMBDA/sub(tr). Elastic scattering events are separated by an artificially enlarged mean free path. In such events, scattering is optionally performed either by means of a single, energy-dependent scattering angle, or by means of a scattering angle distribution of the same form as the screened Rutherford cross section, but with an artificial screening factor. The physically correct /LAMBDA/sub(tr) value is obtained by appropriate choice of scattering angle or screening factor, respectively. We find good agreement with experimental transmission and with energy loss distributions. The Rutherford-like model gives good agreement with experimental angular distribution even for the penetration of very thin layers. Treatment of electron energy loss is based on the partial CSDA method: energy losses W WMINSE are treated as discrete electron-electron or positron-electron scattering events. Similarly, for bremsstrahlung photon energies W WMINR are treated at discrete events. The sensitivity of the model to the parameters WMINSE and WMINR is studied. WMINR can, in practise, be made negligibly small, and WMINSE can without any excessive computer time be made as small as to give results in good agreement with experiment and with computations based on Landau theory of straggling. Using this model, we study some of the characteristic features of relativistic electron transmission, energy loss distributions, straggling, angular distributions and trajectories. (authors)

  10. Characteristics of miniature electronic brachytherapy x-ray sources based on TG-43U1 formalism using Monte Carlo simulation techniques

    International Nuclear Information System (INIS)

    Safigholi, Habib; Faghihi, Reza; Jashni, Somaye Karimi; Meigooni, Ali S.

    2012-01-01

    Purpose: The goal of this study is to determine a method for Monte Carlo (MC) characterization of the miniature electronic brachytherapy x-ray sources (MEBXS) and to set dosimetric parameters according to TG-43U1 formalism. TG-43U1 parameters were used to get optimal designs of MEBXS. Parameters that affect the dose distribution such as anode shapes, target thickness, target angles, and electron beam source characteristics were evaluated. Optimized MEBXS designs were obtained and used to determine radial dose functions and 2D anisotropy functions in the electron energy range of 25-80 keV. Methods: Tungsten anode material was considered in two different geometries, hemispherical and conical-hemisphere. These configurations were analyzed by the 4C MC code with several different optimization techniques. The first optimization compared target thickness layers versus electron energy. These optimized thicknesses were compared with published results by Ihsan et al.[Nucl. Instrum. Methods Phys. Res. B 264, 371-377 (2007)]. The second optimization evaluated electron source characteristics by changing the cathode shapes and electron energies. Electron sources studied included; (1) point sources, (2) uniform cylinders, and (3) nonuniform cylindrical shell geometries. The third optimization was used to assess the apex angle of the conical-hemisphere target. The goal of these optimizations was to produce 2D-dose anisotropy functions closer to unity. An overall optimized MEBXS was developed from this analysis. The results obtained from this model were compared to known characteristics of HDR 125 I, LDR 103 Pd, and Xoft Axxent electronic brachytherapy source (XAEBS) [Med. Phys. 33, 4020-4032 (2006)]. Results: The optimized anode thicknesses as a function of electron energy is fitted by the linear equation Y (μm) = 0.0459X (keV)-0.7342. The optimized electron source geometry is obtained for a disk-shaped parallel beam (uniform cylinder) with 0.9 mm radius. The TG-43 distribution

  11. Characteristics of miniature electronic brachytherapy x-ray sources based on TG-43U1 formalism using Monte Carlo simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, Habib; Faghihi, Reza; Jashni, Somaye Karimi; Meigooni, Ali S. [Faculty of Engineering, Science and Research Branch, Islamic Azad University, Fars, 73481-13111, Persepolis (Iran, Islamic Republic of); Department of Nuclear Engineering and Radiation Research Center, Shiraz University, 71936-16548, Shiraz (Iran, Islamic Republic of); Shiraz University of Medical Sciences, 71348-14336, Shiraz (Iran, Islamic Republic of); Department of Radiation therapy, Comprehensive Cancer Center of Nevada, 3730 South Eastern Avenue, Las Vegas, Nevada 89169 (United States)

    2012-04-15

    Purpose: The goal of this study is to determine a method for Monte Carlo (MC) characterization of the miniature electronic brachytherapy x-ray sources (MEBXS) and to set dosimetric parameters according to TG-43U1 formalism. TG-43U1 parameters were used to get optimal designs of MEBXS. Parameters that affect the dose distribution such as anode shapes, target thickness, target angles, and electron beam source characteristics were evaluated. Optimized MEBXS designs were obtained and used to determine radial dose functions and 2D anisotropy functions in the electron energy range of 25-80 keV. Methods: Tungsten anode material was considered in two different geometries, hemispherical and conical-hemisphere. These configurations were analyzed by the 4C MC code with several different optimization techniques. The first optimization compared target thickness layers versus electron energy. These optimized thicknesses were compared with published results by Ihsan et al.[Nucl. Instrum. Methods Phys. Res. B 264, 371-377 (2007)]. The second optimization evaluated electron source characteristics by changing the cathode shapes and electron energies. Electron sources studied included; (1) point sources, (2) uniform cylinders, and (3) nonuniform cylindrical shell geometries. The third optimization was used to assess the apex angle of the conical-hemisphere target. The goal of these optimizations was to produce 2D-dose anisotropy functions closer to unity. An overall optimized MEBXS was developed from this analysis. The results obtained from this model were compared to known characteristics of HDR {sup 125}I, LDR {sup 103}Pd, and Xoft Axxent electronic brachytherapy source (XAEBS) [Med. Phys. 33, 4020-4032 (2006)]. Results: The optimized anode thicknesses as a function of electron energy is fitted by the linear equation Y ({mu}m) = 0.0459X (keV)-0.7342. The optimized electron source geometry is obtained for a disk-shaped parallel beam (uniform cylinder) with 0.9 mm radius. The TG-43

  12. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.

    Science.gov (United States)

    Uusijärvi, Helena; Chouin, Nicolas; Bernhardt, Peter; Ferrer, Ludovic; Bardiès, Manuel; Forssell-Aronsson, Eva

    2009-08-01

    Point kernels describe the energy deposited at a certain distance from an isotropic point source and are useful for nuclear medicine dosimetry. They can be used for absorbed-dose calculations for sources of various shapes and are also a useful tool when comparing different Monte Carlo (MC) codes. The aim of this study was to compare point kernels calculated by using the mixed MC code, PENELOPE (v. 2006), with point kernels calculated by using the condensed-history MC codes, ETRAN, GEANT4 (v. 8.2), and MCNPX (v. 2.5.0). Point kernels for electrons with initial energies of 10, 100, 500, and 1 MeV were simulated with PENELOPE. Spherical shells were placed around an isotropic point source at distances from 0 to 1.2 times the continuous-slowing-down-approximation range (R(CSDA)). Detailed (event-by-event) simulations were performed for electrons with initial energies of less than 1 MeV. For 1-MeV electrons, multiple scattering was included for energy losses less than 10 keV. Energy losses greater than 10 keV were simulated in a detailed way. The point kernels generated were used to calculate cellular S-values for monoenergetic electron sources. The point kernels obtained by using PENELOPE and ETRAN were also used to calculate cellular S-values for the high-energy beta-emitter, 90Y, the medium-energy beta-emitter, 177Lu, and the low-energy electron emitter, 103mRh. These S-values were also compared with the Medical Internal Radiation Dose (MIRD) cellular S-values. The greatest differences between the point kernels (mean difference calculated for distances, electrons was 1.4%, 2.5%, and 6.9% for ETRAN, GEANT4, and MCNPX, respectively, compared to PENELOPE, if omitting the S-values when the activity was distributed on the cell surface for 10-keV electrons. The largest difference between the cellular S-values for the radionuclides, between PENELOPE and ETRAN, was seen for 177Lu (1.2%). There were large differences between the MIRD cellular S-values and those obtained from

  13. Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Bleyen, N.; Smets, S. [Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium); Small, J. [National Nuclear Laboratory NLL, Warrington (United Kingdom); and others

    2017-04-15

    At the Mont Terri rock laboratory (Switzerland), an in situ experiment is being carried out to examine the fate of nitrate leaching from nitrate-containing bituminized radioactive waste, in a clay host rock for geological disposal. Such a release of nitrate may cause a geochemical perturbation of the clay, possibly affecting some of the favorable characteristics of the host rock. In this in situ experiment, combined transport and reactivity of nitrate is studied inside anoxic and water-saturated chambers in a borehole in the Opalinus Clay. Continuous circulation of the solution from the borehole to the surface equipment allows a regular sampling and online monitoring of its chemical composition. In this paper, in situ microbial nitrate reduction in the Opalinus Clay is discussed, in the presence or absence of additional electron donors relevant for the disposal concept and likely to be released from nitrate-containing bituminized radioactive waste: acetate (simulating bitumen degradation products) and H{sub 2} (originating from radiolysis and corrosion in the repository). The results of these tests indicate that - in case microorganisms would be active in the repository or the surrounding clay - microbial nitrate reduction can occur using electron donors naturally present in the clay (e.g. pyrite, dissolved organic matter). Nevertheless, non-reactive transport of nitrate in the clay is expected to be the main process. In contrast, when easily oxidizable electron donors would be available (e.g. acetate and H{sub 2}), the microbial activity will be strongly stimulated. Both in the presence of H{sub 2} and acetate, nitrite and nitrogenous gases are predominantly produced, although some ammonium can also be formed when H{sub 2} is present. The reduction of nitrate in the clay could have an impact on the redox conditions in the pore-water and might also lead to a gas-related perturbation of the host rock, depending on the electron donor used during denitrification

  14. Minerals in deserts

    International Nuclear Information System (INIS)

    Smith, G.I.

    1982-01-01

    Almost any kind of mineral deposit can occur in desert areas, and the lack of vegetation and soil cover makes finding them easier. Some kinds of deposits, though, are more likely to occur in deserts than elsewhere. Some of these result from processes genetically related to the present desert climate that improved lower grade deposits of ore. One such process, termed secondary enrichment, is most effective in areas with deep water tables, and many low-grade copper, silver, and uranium deposits have been converted into mineable ore by the downward migration and redeposition of soluble metals. In a desert terrane, placer processes are effective whenever running water flowing over steep slopes erodes outcropping ore bodies and transports and concentrates the heavier ore minerals at lower levels, thus converting low-grade or hard-to-mine bedrock deposits into economically workable concentrations. Other kinds of deposits are better preserved in deserts because the lower rainfall at the surface, and the lower volume of flow and the greater depths to groundwater, result in less destruction of soluble ores; deposits of salines and phosphates are the most notable ores affected by these factors. Still other ore deposits are created as a consequence of the arid climate, mostly because the high evaporation rates operating on standing bodies of water produce brines that can lead directly to concentrations of salts and indirectly to secondary minerals, such as zeolites, that are produced by reaction of silicate minerals with saline waters

  15. Monte Carlo based investigations of electron contamination from telecobalt unit head in build up region and its impact on surface dose.

    Science.gov (United States)

    Jagtap, A S; Palani Selvam, T; Patil, B J; Chavan, S T; Pethe, S N; Kulkarni, Gauri; Dahiwale, S S; Bhoraskar, V N; Dhole, S D

    2016-12-01

    A Telecobalt unit has wide range of applications in cancer treatments and is used widely in many countries all around the world. Estimation of surface dose in Cobalt-60 teletherapy machine becomes important since clinically useful photon beam consist of contaminated electrons during the patient treatment. EGSnrc along with the BEAMnrc user code was used to model the Theratron 780E telecobalt unit. Central axis depth dose profiles including surface doses have been estimated for the field sizes of 0×0, 6×6, 10×10, 15×15, 20×20, 25×25, 30×30cm 2 and at Source-to-surface distance (SSD) of 60 and 80cm. Surface dose was measured experimentally by the Gafchromic RTQA2 films and are in good agreement with the simulation results. The central axis depth dose data are compared with the data available from the British Journal of Radiology report no. 25. Contribution of contaminated electrons has also been calculated using Monte Carlo simulation by the different parts of the Cobalt-60 head for different field size and SSD's. Moreover, depth dose curve in zero area field size is calculated by extrapolation method and compared with the already published data. They are found in good agreement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams

    International Nuclear Information System (INIS)

    Bjoerk, Peter; Knoeoes, Tommy; Nilsson, Per

    2004-01-01

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm 2 ), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber

  17. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    International Nuclear Information System (INIS)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X

    2015-01-01

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  18. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2015-06-15

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  19. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams.

    Science.gov (United States)

    Björk, Peter; Knöös, Tommy; Nilsson, Per

    2004-10-07

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm2), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber hampers

  20. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain)], E-mail: garciapareja@gmail.com; Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain); Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool.

  1. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    International Nuclear Information System (INIS)

    Garcia-Pareja, S.; Vilches, M.; Lallena, A.M.

    2007-01-01

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool

  2. Comparing Monte Carlo acceptance/efficiency for tt-bar single lepton events with central and plug electrons

    International Nuclear Information System (INIS)

    Rotaru, M.

    2005-01-01

    The tt-bar production using MC events with one charged lepton (electron), neutrino and jets from pp-bar collisions at a center-of-mass energy of 1.96 TeV was investigated. The aim of this work was to compare the rate of events in central (|η|<1.1) and plug (1.1<|η|<2.8) region. (author)

  3. Oxalosis in wild desert tortoises, Gopherus agassizii

    Science.gov (United States)

    Jacobson, Elliott R.; Berry, Kristin H.; Stacy, Brian; Huzella, Louis M.; Kalasinsky, Victor F.; Fleetwood, Michelle L.; Mense, Mark G.

    2009-01-01

    We necropsied a moribund, wild adult male desert tortoise (Gopherus agassizii) with clinical signs of respiratory disease and elevated plasma biochemical analytes indicative of renal disease (blood urea nitrogen [415 mg/dl], uric acid [11.8 mg/dl], sodium >180 mmol/l] and chloride [139 mmol/l]). Moderate numbers of birefringent oxalate crystals, based on infrared and electron microscopy, were present within renal tubules; small numbers were seen in colloid within thyroid follicles. A retrospective analysis of 66 additional cases of wild desert tortoises was conducted to determine whether similar crystals were present in thyroid and kidney. The tortoises, from the Mojave and Sonoran deserts, were necropsied between 1992 and 2003 and included juveniles and adults. Tortoises were classified as healthy (those that died due to trauma and where no disease was identified after necropsy and evaluation by standard laboratory tests used for other tortoises) or not healthy (having one or more diseases or lesions). For all 67 necropsied tortoises, small numbers of crystals of similar appearance were present in thyroid glands from 44 of 54 cases (81%) and in kidneys from three of 65 cases (5%). Presence of oxalates did not differ significantly between healthy and unhealthy tortoises, between age classes, or between desert region, and their presence was considered an incidental finding. Small numbers of oxalate crystals seen within the kidney of two additional tortoises also were considered an incidental finding. Although the source of the calcium oxalate could not be determined, desert tortoises are herbivores, and a plant origin seems most likely. Studies are needed to evaluate the oxalate content of plants consumed by desert tortoises, and particularly those in the area where the tortoise in renal failure was found.

  4. Gopherus agassizii: Desert tortoise

    Science.gov (United States)

    Berry, Kristen H.; Swingland, Ian Richard; Klemens, Michael W.

    1989-01-01

    The desert tortoise is one of four allopatric North American tortoises. It occurs in the Mojave and Sonoran deserts of the southwestern United States and Mexico.Auffenberg (1976) divided the genus Gopherus (consisting of four species, G. agassizi, G. berlandieri, G.flavomarginatus, and G. polyphemus) in two osteological groups. Bramble (1982), using morphological and palaeontological data, divided the genus Gopherus into two separate complexes, each with two species. He established a new genus, Scaptochelys, for agassizi and berlandieri, retaining Gopherus for polyphemus and flavomarginatus. Bour and Dubois (1984) noted that Xerobates Agassiz had priority over Scaptochelys Bramble. Using mitochondrial DNA (mtDNA), Lamb et al. (1989) evaluated the evolutionary relationships of the North American tortoises, particularly the desert tortoise. They concluded that the mtDNA analysis provides strong support for generic recognition of the two distinct species groups described by Bramble (1982).Until a few decades ago, the desert tortoise was widespread at lower elevations throughout the Mojave and Sonoran deserts of the U.S.A. In the northern and western parts of the geographic range, large and relatively homogeneous populations with densities exceeding 1,000/sq km extended throughout parts of California, and probably into Nevada and Utah. In terms of biomass, the tortoise played an important role in the ecosystems. In most areas, numbers have declined dramatically and the extent of populations has been reduced. Most populations are now isolated and low in numbers. Conservation of the desert tortoise is a highly visible and political issue in the U.S.A., but not in Mexico.

  5. Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code

    International Nuclear Information System (INIS)

    Peri, E.; Orion, I.

    2014-01-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D 3 ,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions

  6. Monte-Carlo study of the influence of backscattered electrons on the transmission of a mini-orange β spectrometer

    Science.gov (United States)

    Detistov, Pavel; Balabanski, Dimiter L.

    2015-04-01

    This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made.

  7. Monte-Carlo study of the influence of backscattered electrons on the transmission of a mini-orange β spectrometer

    International Nuclear Information System (INIS)

    Detistov, Pavel; Balabanski, Dimiter L

    2015-01-01

    This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made. (paper)

  8. A comparison of Monte Carlo and Fermi-Eyges-Hogstrom estimates of heart and lung dose from breast electron boost treatment

    International Nuclear Information System (INIS)

    Coleman, Joy; Park, Catherine; Villarreal-Barajas, J. Eduardo; Petti, Paula; Faddegon, Bruce

    2005-01-01

    Purpose: Electrons are commonly used in the treatment of breast cancer primarily to deliver a tumor bed boost. We compared the use of the Monte Carlo (MC) method and the Fermi-Eyges-Hogstrom (FEH) algorithm to calculate the dose distribution of electron treatment to normal tissues. Methods and materials: Ten patients with left-sided breast cancer treated with breast-conservation therapy at the University of California, San Francisco, were included in this study. Each patient received an electron boost to the surgical bed to a dose of 1,600 cGy in 200 cGy fractions prescribed to 80% of the maximum. Doses to the left ventricle (LV) and the ipsilateral lung (IL) were calculated using the EGS4 MC system and the FEH algorithm implemented on the commercially available Pinnacle treatment planning system. An anthromorphic phantom was irradiated with radiochromic film in place to verify the accuracy of the MC system. Results: Dose distributions calculated with the MC algorithm agreed with the film measurements within 3% or 3 mm. For all patients in the study, the dose to the LV and IL was relatively low as calculated by MC. That is, the maximum dose received by up to 98% of the LV volume was 30 cGy and differences in maximum dose of < 35 cGy/day to the LV and 80 cGy/day to the IL. Conclusions: From our series, using clinical judgment to prescribe the boost to the surgical bed after breast-conserving treatment results in low doses to the underlying LV and IL. When calculated dose distributions are desired, MC is the most accurate, but FEH can still be used

  9. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Jin, L; Eldib, A; Li, J; Price, R; Ma, C

    2015-01-01

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin

  10. The electronic, magnetic and optical properties of ZnO doped with doubles impurities (Cr, Fe): An LDA-SIC and Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Salmani, El Mehdi, E-mail: elmehdisalmani@gmail.com [LMPHE, Faculté des Sciences, Université Mohammed V, Rabat (Morocco); Laghrissi, Ayoub; Lamouri, Rachida; Ez-Zahraouy, Hamid [LMPHE, Faculté des Sciences, Université Mohammed V, Rabat (Morocco); Benyoussef, Abdelilah [Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Académie Hassan II des Sciences et Techniques, Rabat (Morocco)

    2017-01-15

    Electronic structure, magnetic and optical properties of ZnO doped with single and double impurities Zn{sub 1−x}Cr{sub x}O, Zn{sub 1−x}Fe{sub x}O, and Zn{sub 1−2x}Cr{sub x}Fe{sub x}O (x=0.03 and 0.06) are investigated using first-principles calculations. Based on the Korringa–Kohn–Rostoker method combined with the coherent potential approximation, we investigated the half-metallic ferromagnetic behavior of doubles impurities (Cr, Fe) doped ZnO. To support our results, we apply the self-interaction-corrected local density approximation (SIC-LDA) to study the electronic structure, optical and magnetic properties of Co-doped ZnO with doubles impurities (Cr, Fe) showing that the half-metallic ferromagnetic state still persists. The stability of the ferromagnetic state compared with the spin-glass state is investigated by comparing their total energies. The exchange interactions obtained from first principle calculations and used in a classical Ising model by a Monte Carlo approach resulted in ferromagnetic states with high Neel temperature. - Highlights: • The electronic structure calculations for ZnO doped with doubles impurities (Cr, Fe) have been discussed. • The half-metallic aspect was proven to take place for doubles impurities (Cr, Fe) codoped ZnO. • The doubles impurities (Cr, Fe)impurities are shown to introduce the necessary magnetic moment that makes ZnO good candidates for spintronic applications.

  11. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Koong, Albert C; Tantawi, Sami; Dolgashev, Valery; Maxim, Peter G; Loo, Billy W

    2015-04-01

    To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0-6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4-6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0-4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. The authors demonstrate that relative dose distributions for VHEE beams of 50-70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  12. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  13. How desert varnish forms?

    Science.gov (United States)

    Perry, Randall S.; Kolb, Vera M.; Lynne, Bridget Y.; Sephton, Mark A.; Mcloughlin, Nicola; Engel, Michael H.; Olendzenski, Lorraine; Brasier, Martin; Staley, James T., Jr.

    2005-09-01

    Desert varnish is a black, manganese-rich rock coating that is widespread on Earth. The mechanism underlying its formation, however, has remained unresolved. We present here new data and an associated model for how desert varnish forms, which substantively challenges previously accepted models. We tested both inorganic processes (e.g. clays and oxides cementing coatings) and microbial methods of formation. Techniques used in this preliminary study include SEM-EDAX with backscatter, HRTEM of focused ion beam prepared (FIB) wafers and several other methods including XRPD, Raman spectroscopy, XPS and Tof-SIMS. The only hypothesis capable of explaining a high water content, the presence of organic compounds, an amorphous silica phase (opal-A) and lesser quantities of clays than previously reported, is a mechanism involving the mobilization and redistribution of silica. The discovery of silica in desert varnish suggests labile organics are preserved by interaction with condensing silicic acid. Organisms are not needed for desert varnish formation but Bacteria, Archaea, Eukarya, and other organic compounds are passively incorporated and preserved as organominerals. The rock coatings thus provide useful records of past environments on Earth and possibly other planets. Additionally this model also helps to explain the origin of key varnish and rock glaze features, including their hardness, the nature of the "glue" that binds heterogeneous components together, its layered botryoidal morphology, and its slow rate of formation.

  14. Electronic, magnetic properties and phase diagrams of system with Fe4N compound: An ab initio calculations and Monte Carlo study

    Science.gov (United States)

    Masrour, R.; Jabar, A.; Hlil, E. K.

    2018-05-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate the electronic and magnetic properties of the Fe4N compound. Polarized spin and spin-orbit coupling are included in calculations within the framework of the ferromagnetic state between Fe(I) and Fe(II) in Fe4N compound. We have used the obtained data from abinitio calculations as an input in Monte Carlo simulation to calculate the magnetic properties of this compounds such as the ground state phase diagrams, total and partial magnetization of Fe(I) and Fe(II) as well as the transition temperatures are computed. The variation of magnetization with the crystal field are also studied. The magnetic hysteresis cycle of the same Fe4N compound are determined for different values of temperatures and crystal field values. The two-step hysteresis loop are evidenced, which is typical for Fe4N structure. The ferromagnetic and superparamagnetic phase is observed as well.

  15. Effects of internal and external scatter on the build-up characteristics of Monte Carlo calculated absorbed dose for electron irradiation

    International Nuclear Information System (INIS)

    Lin, H.; Wu, DS.; Wu, AD.

    2005-01-01

    The effects of internal and external scatter on surface, build-up and depth dose characteristics simulated by Monte Carlo code EGSnrc for varying field size and SSD for a 10 MeV monoenergetic electron beam with and without an accelerator model are extensively studied in this paper. In particular, sub-millimetre surface PDD was investigated. The percentage depth doses affected significantly by the external scatter show a larger build-up dose. A forward shifted Dmax depth and a sharper fall-off region compared to PDDs with only internal scatter considered. The surface dose with both internal and external scatter shows a marked decrease at 110 cm SSD, and then slight further changes with the increasing SSD since few external scattered particles from accelerator model can reach the phantom for large SSDs. The sharp PDD increase for the 5 cm x 5 cm field compared to other fields seen when only internal scatter is considered is significantly less when external scatter is also present. The effect of external scatter on surface PDD is more pronounced for large fields than small fields (5 cm x 5 cm field)

  16. Optimisation of the imaging and dosimetric characteristics of an electronic portal imaging device employing plastic scintillating fibres using Monte Carlo simulations.

    Science.gov (United States)

    Blake, S J; McNamara, A L; Vial, P; Holloway, L; Kuncic, Z

    2014-11-21

    A Monte Carlo model of a novel electronic portal imaging device (EPID) has been developed using Geant4 and its performance for imaging and dosimetry applications in radiotherapy has been characterised. The EPID geometry is based on a physical prototype under ongoing investigation and comprises an array of plastic scintillating fibres in place of the metal plate/phosphor screen in standard EPIDs. Geometrical and optical transport parameters were varied to investigate their impact on imaging and dosimetry performance. Detection efficiency was most sensitive to variations in fibre length, achieving a peak value of 36% at 50 mm using 400 keV x-rays for the lengths considered. Increases in efficiency for longer fibres were partially offset by reductions in sensitivity. Removing the extra-mural absorber surrounding individual fibres severely decreased the modulation transfer function (MTF), highlighting its importance in maximising spatial resolution. Field size response and relative dose profile simulations demonstrated a water-equivalent dose response and thus the prototype's suitability for dosimetry applications. Element-to-element mismatch between scintillating fibres and underlying photodiode pixels resulted in a reduced MTF for high spatial frequencies and quasi-periodic variations in dose profile response. This effect is eliminated when fibres are precisely matched to underlying pixels. Simulations strongly suggest that with further optimisation, this prototype EPID may be capable of simultaneous imaging and dosimetry in radiotherapy.

  17. Optimisation of the imaging and dosimetric characteristics of an electronic portal imaging device employing plastic scintillating fibres using Monte Carlo simulations

    Science.gov (United States)

    Blake, S. J.; McNamara, A. L.; Vial, P.; Holloway, L.; Kuncic, Z.

    2014-11-01

    A Monte Carlo model of a novel electronic portal imaging device (EPID) has been developed using Geant4 and its performance for imaging and dosimetry applications in radiotherapy has been characterised. The EPID geometry is based on a physical prototype under ongoing investigation and comprises an array of plastic scintillating fibres in place of the metal plate/phosphor screen in standard EPIDs. Geometrical and optical transport parameters were varied to investigate their impact on imaging and dosimetry performance. Detection efficiency was most sensitive to variations in fibre length, achieving a peak value of 36% at 50 mm using 400 keV x-rays for the lengths considered. Increases in efficiency for longer fibres were partially offset by reductions in sensitivity. Removing the extra-mural absorber surrounding individual fibres severely decreased the modulation transfer function (MTF), highlighting its importance in maximising spatial resolution. Field size response and relative dose profile simulations demonstrated a water-equivalent dose response and thus the prototype’s suitability for dosimetry applications. Element-to-element mismatch between scintillating fibres and underlying photodiode pixels resulted in a reduced MTF for high spatial frequencies and quasi-periodic variations in dose profile response. This effect is eliminated when fibres are precisely matched to underlying pixels. Simulations strongly suggest that with further optimisation, this prototype EPID may be capable of simultaneous imaging and dosimetry in radiotherapy.

  18. A virtual-accelerator-based verification of a Monte Carlo dose calculation algorithm for electron beam treatment planning in homogeneous phantoms

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2006-01-01

    By introducing Monte Carlo (MC) techniques to the verification procedure of dose calculation algorithms in treatment planning systems (TPSs), problems associated with conventional measurements can be avoided and properties that are considered unmeasurable can be studied. The aim of the study is to implement a virtual accelerator, based on MC simulations, to evaluate the performance of a dose calculation algorithm for electron beams in a commercial TPS. The TPS algorithm is MC based and the virtual accelerator is used to study the accuracy of the algorithm in water phantoms. The basic test of the implementation of the virtual accelerator is successful for 6 and 12 MeV (γ < 1.0, 0.02 Gy/2 mm). For 18 MeV, there are problems in the profile data for some of the applicators, where the TPS underestimates the dose. For fields equipped with patient-specific inserts, the agreement is generally good. The exception is 6 MeV where there are slightly larger deviations. The concept of the virtual accelerator is shown to be feasible and has the potential to be a powerful tool for vendors and users

  19. GOPHERUS AGASSIZII (Desert Tortoise)

    International Nuclear Information System (INIS)

    JAMES L. BOONE, DANNY L. RAKESTRAW, AND KURT R. RAUTENSTRAUCH

    1997-01-01

    GOPHERLTS AGAISSIZII (Desert Tortoise). Predation. A variety of predators, most notably coyotes (Canis Iatrans) and Common Ravens (Corvis corau) have been reported to prey on hatchling desert tortoises (Emst et al. 1994). Turtles of the United States and Canada (Smithsonian Institution Press, Washington, D.C. 578 pp.). Here, we report an observation of a hatchling tortoise, fitted with a radiotransmitter, that was preyed upon by native fire ants (Solenopsis sp.) in the eastern Mojave Desert at Yucca Mountain, Nevada (36 degrees 50 minutes N, 116 degree 25 minutes E). On 8/27/94, tortoise No.9315 (carapace length = 45 mm, age = 5 d) was found alive with eyes, chin, and parts of the head and legs being eaten by ants. The tortoise was alive, but lethargic, and responded little when touched. Eight of 74 other radiomarked hatchlings monitored at Yucca Mountain during 1992-1994 were found dead with fire ants on their carcass 3-7 days after the hatchlings emerged from their nests. It is not known whether those tortoises were killed by ants or were being scavenged when found. While imported fire ants (S. invicta) have long been known to kill hatchling gopher tortoises (G. polyphemus; Mount 1981. J. Alabama Acad. Sci. 52: 71-78), native fire ants have previously not been implicated as predators of desert tortoises. However, only 1 of 75 (or at worst 9 of 75) was killed by fire ants, suggesting that although fire ants do kill hatchlings, they were not important predators on desert tortoises during this study. Tortoise specimens were deposited at the University of California at Berkeley

  20. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  1. Performance of two commercial electron beam algorithms over regions close to the lung-mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms.

    Science.gov (United States)

    Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R

    2014-03-01

    Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Effect of battery longevity on costs and health outcomes associated with cardiac implantable electronic devices: a Markov model-based Monte Carlo simulation.

    Science.gov (United States)

    Schmier, Jordana K; Lau, Edmund C; Patel, Jasmine D; Klenk, Juergen A; Greenspon, Arnold J

    2017-11-01

    The effects of device and patient characteristics on health and economic outcomes in patients with cardiac implantable electronic devices (CIEDs) are unclear. Modeling can estimate costs and outcomes for patients with CIEDs under a variety of scenarios, varying battery longevity, comorbidities, and care settings. The objective of this analysis was to compare changes in patient outcomes and payer costs attributable to increases in battery life of implantable cardiac defibrillators (ICDs) and cardiac resynchronization therapy defibrillators (CRT-D). We developed a Monte Carlo Markov model simulation to follow patients through primary implant, postoperative maintenance, generator replacement, and revision states. Patients were simulated in 3-month increments for 15 years or until death. Key variables included Charlson Comorbidity Index, CIED type, legacy versus extended battery longevity, mortality rates (procedure and all-cause), infection and non-infectious complication rates, and care settings. Costs included procedure-related (facility and professional), maintenance, and infections and non-infectious complications, all derived from Medicare data (2004-2014, 5% sample). Outcomes included counts of battery replacements, revisions, infections and non-infectious complications, and discounted (3%) costs and life years. An increase in battery longevity in ICDs yielded reductions in numbers of revisions (by 23%), battery changes (by 44%), infections (by 23%), non-infectious complications (by 10%), and total costs per patient (by 9%). Analogous reductions for CRT-Ds were 23% (revisions), 32% (battery changes), 22% (infections), 8% (complications), and 10% (costs). Based on modeling results, as battery longevity increases, patients experience fewer adverse outcomes and healthcare costs are reduced. Understanding the magnitude of the cost benefit of extended battery life can inform budgeting and planning decisions by healthcare providers and insurers.

  3. Experimental determination of the radial dose distribution in high gradient regions around 192Ir wires: Comparison of electron paramagnetic resonance imaging, films, and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Kolbun, N.; Leveque, Ph.; Abboud, F.; Bol, A.; Vynckier, S.; Gallez, B.

    2010-01-01

    Purpose: The experimental determination of doses at proximal distances from radioactive sources is difficult because of the steepness of the dose gradient. The goal of this study was to determine the relative radial dose distribution for a low dose rate 192 Ir wire source using electron paramagnetic resonance imaging (EPRI) and to compare the results to those obtained using Gafchromic EBT film dosimetry and Monte Carlo (MC) simulations. Methods: Lithium formate and ammonium formate were chosen as the EPR dosimetric materials and were used to form cylindrical phantoms. The dose distribution of the stable radiation-induced free radicals in the lithium formate and ammonium formate phantoms was assessed by EPRI. EBT films were also inserted inside in ammonium formate phantoms for comparison. MC simulation was performed using the MCNP4C2 software code. Results: The radical signal in irradiated ammonium formate is contained in a single narrow EPR line, with an EPR peak-to-peak linewidth narrower than that of lithium formate (∼0.64 and 1.4 mT, respectively). The spatial resolution of EPR images was enhanced by a factor of 2.3 using ammonium formate compared to lithium formate because its linewidth is about 0.75 mT narrower than that of lithium formate. The EPRI results were consistent to within 1% with those of Gafchromic EBT films and MC simulations at distances from 1.0 to 2.9 mm. The radial dose values obtained by EPRI were about 4% lower at distances from 2.9 to 4.0 mm than those determined by MC simulation and EBT film dosimetry. Conclusions: Ammonium formate is a suitable material under certain conditions for use in brachytherapy dosimetry using EPRI. In this study, the authors demonstrated that the EPRI technique allows the estimation of the relative radial dose distribution at short distances for a 192 Ir wire source.

  4. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Curran, Bruce; Cygler, Joanna E.; DeMarco, John J.; Ezzell, Gary; Faddegon, Bruce A.; Kawrakow, Iwan; Keall, Paul J.; Liu, Helen; Ma, C.-M. Charlie; Rogers, D. W. O.; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V.

    2007-01-01

    The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and

  5. The Converging Inflow Spectrum Is an Intrinsic Signature for a Black Hole: Monte Carlo Simulations of Comptonization on Free-falling Electrons

    Science.gov (United States)

    Laurent, Philippe; Titarchuk, Lev

    1999-01-01

    An accreting black hole is, by definition, characterized by the drain. Namely, matter falls into a black hole much the same way as water disappears down a drain: matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole,'' a unique observational signature of black holes. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we calculate (by using Monte Carlo simulations) the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) within about 3 Schwarzschild radii of the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Green's) function. The latter boosted photon component is seen as an extended power law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index (α=1.8+/-0.1) over a wide range of the plasma temperature, 0-10 keV, and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high-energy cutoff occurs at energies of 200-400 keV, which are related to the average energy of electrons mec2 impinging on the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum (Hua & Titarchuk) when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies, where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore, we demonstrate that the change of spectral shapes from

  6. Population, desert expanding.

    Science.gov (United States)

    1992-01-01

    The conditions of desert expansion in the Sahara are highlighted. On the southern border the desert is growing at a rate of 3-6 miles/year. This growth is encroaching on arable land in Ethiopia and Mauritania. The region loses up to 28,000 sq miles/year of farmland. 33% of Africa's fertile land is threatened. Land-use patterns are responsible for the deterioration of the soil. Traditional practices are not effective because the practices are not suitable for permanent farming. Farmers also have stopped environmentally sound practices such as letting the fields remain fallow in order to renew soil fertility. Nomads overgraze areas before moving on. A recent study by the World Bank's Africa Region Office was released; the report details some of the links between rapid population growth, poor agricultural performance, and environmental degradation. Soil conditions are such that valuable topsoil is blow away by the wind because the layer is too thin. Vegetation at the desert's edge is used for cooking purposes or for heating fuel. Tropical and savannah areas are depleted when tree replacement is inadequate. Only 9 trees are planted for every 100 removed. The report emphasized the role of women and children in contributing to population pressure by increased fertility. Women's work load is heavy and children are a help in alleviating some of the burden of domestic and agricultural work. There is hope in meeting demographic, agricultural, food security, and environmental objectives over the next 30 years if the needs of women are met. The needs include access to education for young women, lessening the work loads of women, and decreasing child mortality through improved health care and access to safe water.

  7. Physiological adaptation in desert birds

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Williams, Joseph B.

    We call into question the idea that birds have not evolved unique physiological adaptations to desert environments. The rate at which desert larks metabolize energy is lower than in mesic species within the same family, and this lower rate of living translates into a lower overall energy requirement

  8. 3-D topological signatures and a new discrimination method for single-electron events and 0νββ events in CdZnTe: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ming; Li, Teng-Lin; Cang, Ji-Rong [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zeng, Zhi, E-mail: zengzhi@tsinghua.edu.cn [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Fu, Jian-Qiang; Zeng, Wei-He; Cheng, Jian-Ping; Ma, Hao; Liu, Yi-Nong [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2017-06-21

    In neutrinoless double beta (0νββ) decay experiments, the diversity of topological signatures of different particles provides an important tool to distinguish double beta events from background events and reduce background rates. Aiming at suppressing the single-electron backgrounds which are most challenging, several groups have established Monte Carlo simulation packages to study the topological characteristics of single-electron events and 0νββ events and develop methods to differentiate them. In this paper, applying the knowledge of graph theory, a new topological signature called REF track (Refined Energy-Filtered track) is proposed and proven to be an accurate approximation of the real particle trajectory. Based on the analysis of the energy depositions along the REF track of single-electron events and 0νββ events, the REF energy deposition models for both events are proposed to indicate the significant differences between them. With these differences, this paper presents a new discrimination method, which, in the Monte Carlo simulation, achieved a single-electron rejection factor of 93.8±0.3 (stat.)% as well as a 0νββ efficiency of 85.6±0.4 (stat.)% with optimized parameters in CdZnTe.

  9. Supersymmetry without the Desert

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Poland, David

    2006-01-01

    Naturalness of electroweak symmetry breaking in weak scale supersymmetric theories may suggest the absence of the conventional supersymmetric desert. We present a simple, realistic framework for supersymmetry in which (most of) the virtues of the supersymmetric desert are naturally reproduced without having a large energy interval above the weak scale. The successful supersymmetric prediction for the low-energy gauge couplings is reproduced due to a gauged R symmetry present in the effective theory at the weak scale. The observable sector superpotential naturally takes the form of the next-to-minimal supersymmetric standard model, but without being subject to the Landau pole constraints up to the conventional unification scale. Supersymmetry breaking masses are generated by the F-term and D-term VEVs of singlet and U(1) R gauge fields, as well as by anomaly mediation, at a scale not far above the weak scale. We study the resulting pattern of supersymmetry breaking masses in detail, and find that it can be quite distinct. We construct classes of explicit models within this framework, based on higher dimensional unified theories with TeV-sized extra dimensions. A similar model based on a non-R symmetry is also presented. These models have a rich phenomenology at the TeV scale, and allow for detailed analyses of, e.g., electroweak symmetry breaking

  10. Livestock grazing and the desert tortoise in the Mojave Desert

    Science.gov (United States)

    Oldemeyer, John L.

    1994-01-01

    A large part of the Mojave Desert is not in pristine condition, and some current conditions can be related to past grazing-management practices. No information could be found on densities of the desert tortoise (Gopherus agassizii) or on vegetative conditions of areas that had not been grazed to allow managers a comparison of range conditions with data on tortoises. Experimental information to assess the effect of livestock grazing on tortoises is lacking, and researchers have not yet examined whether the forage that remains after grazing is sufficient to meet the nutritional needs of desert tortoises.

  11. Monte Carlo code development in Los Alamos

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.; Everett, C.J.; Forest, C.A.; Schrandt, R.G.; Taylor, W.M.; Thompson, W.L.; Turner, G.D.

    1974-01-01

    The present status of Monte Carlo code development at Los Alamos Scientific Laboratory is discussed. A brief summary is given of several of the most important neutron, photon, and electron transport codes. 17 references. (U.S.)

  12. Ab initio and Monte Carlo investigations of structural, electronic and magnetic properties of new ferromagnetic Heusler alloys with high Curie temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje

    2011-08-30

    The mechanism which causes many of the unusual thermomechanical properties of martensitic alloys, as for example, superelasticity and the shape-memory effect, is the martensitic transformation. The prototype ferromagnetic shape memory alloy (FSMA) is Ni{sub 2}MnGa. But a technological breakthrough is missing due to its poor ductility and low operation temperatures. The goal of this thesis is the proposal of new FSMA appropriate for future technological applications. I focus on X{sub 2}YZ Heusler alloys which are mainly based on Mn, Fe, Co, and Ni for the X and Y sites and Z=Ga or Zn. The big challenge of this work is to find material classes which combine the unique magnetomechanical properties of FSMA which are large recoverable magnetostrictive strains, high magnetocrystalline anisotropy energy, and highly mobile twin boundaries with transformation temperatures clearly above room temperature and a reduced brittleness. Such a study, providing material classes which from a theoretical point of view are promising candidates for future FSMA, will help the experimental physicists to select interesting subgroups in the vast number of possible chemical compositions of X{sub 2}YZ Heusler alloys. I have systematically varied the composition in the new Heusler alloys in order to find trends indicating generic tendencies of the material properties, for instance, as a function of the valence electron concentration e/a. A main feature of this thesis is the attempt to find the origin of the competing structural ordering tendencies between conventional X{sub 2}YZ and inverse (XY)XZ Heusler structures which are observed for all systems investigated. In the first part of this work the accuracy and predictive power of ab initio and Monte Carlo simulations is demonstrated by reproducing the experimental phase diagram of Ni-Mn-(Ga,In,Sn,Sb). The linear increasing and decreasing slopes of T{sub M} and T{sub C} can be reproduced by total and free energy calculations and the analysis

  13. Electronic Commerce and Electronic Business

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This special issue is motivated by the recent upsurge of research activity in the areas of electronic commerce and electronic business both in India and all over the world. The current ... Monte Carlo methods for pricing financial options are then.

  14. TRIPOLI-4.3.3 and 4.4, Coupled Neutron, Photon, Electron, Positron 3-D, Time Dependent Monte-Carlo, Transport Calculation

    International Nuclear Information System (INIS)

    Both, J.P.; Mazzolo, A.; Petit, O.; Peneliau, Y.; Roesslinger, B.

    2008-01-01

    1 - Description of program or function: TRIPOLI-4 is a general purpose radiation transport code. It uses the Monte Carlo method to simulate neutron and photon behaviour in three-dimensional geometries. The main areas of applications include but are not restricted to: radiation protection and shielding, nuclear criticality safety, fission and fusion reactor design, nuclear instrumentation. In addition, it can simulate electron-photon cascade showers. It computes particle fluxes and currents and several related physical quantities such as, reaction rates, dose rates, heating, energy deposition, effective multiplication factor, perturbation effects due to density, concentration or partial cross-section variations. The summary precises the types of particles, the nuclear data format and cross sections, the energy ranges, the geometry, the sources, the calculated physical quantities and estimators, the biasing, the time-dependant transport for neutrons, the perturbation, the coupled particle transport and the qualification benchmarks. Data libraries distributed with the TRIPOLI-4: ENDFB6R4, ENDL, JEF2, Mott-Rutherford and Qfission. NEA-1716/04: TRIPOLI-4.4 does not contain the source programs. New features available in TRIPOLI-4 version 4 concern the following points: New biasing features, neutron collision in multigroup homogenized mode, display of the collision sites, ENDF format evaluations, computation of the gamma source produced by neutrons, output format for all results, Verbose level for output warnings, photons reactions rates, XML format output, ENDF format evaluations, combinatorial geometry checks, Green's functions files, and neutronics-shielding coupling. 2 - Methods: The geometry package allows the user to describe a three dimensional configuration by means of surfaces (as in the MCNP code) and also through predefined shapes combine with operators (union, intersection, subtraction...). It is also possible to repeat a pattern to built a network of networks

  15. Remote Sensing Field Guide - Desert

    Science.gov (United States)

    1991-09-01

    experienced boatmen. Most river water, even in deserts, contains Giardia micro -organisms that can cause serious diarrhea. Sich water should be boiled...water. The solutes and suspended micro -matter can be moved up and down by an oscillating water table and redeposited or precipitated at differ- ent...McCauley, U.S. Geological Survey, Desert Studies Group, Flagstaff, AZ, Nov 1973. B. Servicio Aerofotografia Nacional del Peru (on back). / ...... CONN:MFI

  16. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double-strand breaks: a Monte Carlo study using Geant4 toolkit.

    Science.gov (United States)

    Piroozfar, Behnaz; Raisali, Gholamreza; Alirezapour, Behrouz; Mirzaii, Mohammad

    2018-04-01

    In this study, the effect of 111 In position and Auger electron energy on direct induction of DSBs was investigated. The Geant4-DNA simulation toolkit was applied using a simple B-DNA form extracted from PDBlib library. First, the simulation was performed for electrons with energies of 111 In and equal emission probabilities to find the most effective electron energies. Then, 111 In Auger electrons' actual spectrum was considered and their contribution in DSB induction analysed. The results showed that the most effective electron energy is 183 eV, but due to the higher emission probability of 350 eV electrons, most of the DSBs were induced by the latter electrons. Also, it was observed that most of the DSBs are induced by electrons emitted within 4 nm of the central axis of the DNA and were mainly due to breaks with <4 base pairs distance in opposing strands. Whilst, when 111 In atoms are very close to the DNA, 1.3 DSBs have been obtained per decay of 111 In atoms. The results show that the most effective Auger electrons are the 350 eV electrons from 111 In atoms with <4 nm distance from the central axis of the DNA which induce ∼1.3 DSBs per decay when bound to the DNA. This value seems reasonable when compared with the reported experimental data.

  17. Monte Carlo simulation for low-energy electron lithography%低能电子光刻的蒙特卡罗模拟

    Institute of Scientific and Technical Information of China (English)

    张增明; 肖沛; 陈套; 孙霞; 丁泽军

    2006-01-01

    @@ Electron beam lithography(EBL)has been playing an important role in the fabrication of large-scale integrated semiconductor devices because of its high resolution.Although high-energy electrons are widely employed in the present EBL system,high-energy electrons can penetrate through the resist layer,lose most of their energies in the substrate and,thus,cause damage to the underlying substrate.

  18. Study by AES, EELS Spectroscopy of electron Irradiation on InP and InPO4/InP in comparison with Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lounis, Z; Bouslama, M; Hamaida, K; Abdellaoui, A; Ouerdane, A; Ghaffour, M; Berrouachedi, N; Jardin, C

    2012-01-01

    We give the great interest to characterise the InP and InPO 4 /InP submitted to electron beam irradiation owing to the Auger Electron Spectroscopy (AES) associated to both methods Electron Energy Loss Spectroscopy (EELS). The incident electron produces breaking of (In-P) chemical bonds. The electron beam even acts to stimulate oxidation of InP surface involving on the top layers. Other, the oxide InPO 4 developed on InP does appear very sensitive to the irradiation due to electron beam shown by the monitoring of EELS spectra recorded versus the irradiated times of the surface. There appears a new oxide thought to be In 2 O 3 . We give the simulation methods Casino (Carlo simulation of electron trajectory in solids) for determination with accuracy the loss energy of backscattered electrons and compared with reports results have been obtained with EELS Spectroscopy. These techniques of spectroscopy alone do not be able to verify the affected depth during interaction process. So, using this simulation method, we determine the interaction of electrons in the matter.

  19. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    Science.gov (United States)

    Javadi, M.; Abdi, Y.

    2015-08-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO2. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ˜1 μm2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  20. Monte Carlo random walk simulation of electron transport in confined porous TiO{sub 2} as a promising candidate for photo-electrode of nano-crystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Javadi, M.; Abdi, Y., E-mail: y.abdi@ut.ac.ir [Nanophysics Research Laboratory, Department of Physics, University of Tehran, North Kargar, Tehran (Iran, Islamic Republic of)

    2015-08-14

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO{sub 2}. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO{sub 2} used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm{sup 2} and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  1. Semiclassical three-valley Monte Carlo simulation analysis of steady-state and transient electron transport within bulk InAsxP1-x, InAs and InP

    Directory of Open Access Journals (Sweden)

    Hadi Arabshahi

    2010-04-01

    Full Text Available We have studied how electrons, initially in thermal equilibrium, drift under the action of an applied electric field within bulk zincblende InAsxP1-x, InAs and InP. Calculations are made using a non-parabolic effective-mass energy band model. Monte Carlo simulation includes all of the major scattering mechanisms. The band parameters used in the simulation are extracted from optimised pseudo-potential band calculations to ensure excellent agreement with experimental information and ab-initio band models. The effects of alloy scattering on the electron transport physics are examined. For all materials, it is found that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material parameters. Transient velocity overshoot has also been simulated, with the sudden application of fields up to 1600 kVm-1, appropriate to the gate-drain fields expected within an operational field-effect transistor. The electron drift velocity relaxes to the saturation value of about 1.5105 ms-1 within 4 pico-seconds for all crystal structures. The steady-state and transient velocity overshoot characteristics are in fair agreement with other recent calculations.

  2. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    International Nuclear Information System (INIS)

    Javadi, M.; Abdi, Y.

    2015-01-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO 2 . In this work, we have introduced a columnar structure instead of the thick layer of porous TiO 2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm 2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure

  3. Simplified models for the Monte Carlo simulation of energy distributions of keV electrons transmitted or back-scattered in various solids

    International Nuclear Information System (INIS)

    Liljequist, D.

    1978-01-01

    Simplified models, based on stopping power, transport mean free path and classical straggling, are shown to give results in rather good agreement with experiment and comparable with the results of more detailed, direct Monte Carlo procedure hitherto constructed. The small effects of features such as large-angle scattering and the interaction between straggling and scattering are studied. A description based on the near linearity of the transport mean free path is used to obtain empirical corrections in some cases of the total transmission and back-scattering simulation and empirical estimates of the (Bethe) range and the transport mean free path. The estimates of the range are consistent with a rough calculation of the effect of large binding energies. (author)

  4. Aborigines of the nuclear desert

    International Nuclear Information System (INIS)

    Rujula, A. de

    1985-01-01

    The chart of 'stable nuclides' extends from Hydrogen, to Z proportional 98, A proportional 263. It contains another island of stability - neutron stars - in a narrow range around Z proportional 10 56 , A proportional 10 57 . In between lies a supposedly barren region encompassing more than 50 orders of magnitude. This desert may be populated by strange quark balls: Stable single bags containing similar proportions of u, d and s quarks. These balls are candidates for the constituency of the 'dark mass' in galaxies and in the Universe. We describe seven ways to search for these possible inhabitants of the nuclear desert. (orig.)

  5. Neutron and photon measurements through concrete from a 15 GeV electron beam on a target-comparison with models and calculations. [Intermediate energy source term, Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, T M [Stanford Linear Accelerator Center, CA (USA)

    1979-02-15

    Measurements of neutron and photon dose equivalents from a 15 GeV electron beam striking an iron target inside a scale model of a PEP IR hall are described, and compared with analytic-empirical calculations and with the Monte Carlo code, MORSE. The MORSE code is able to predict both absolute neutron and photon dose equivalents for geometries where the shield is relatively thin, but fails as the shield thickness is increased. An intermediate energy source term is postulated for analytic-empirical neutron shielding calculations to go along with the giant resonance and high energy terms, and a new source term due to neutron capture is postulated for analytic-empirical photon shielding calculations. The source strengths for each energy source term, and each type, are given from analysis of the measurements.

  6. Russian deserters of World War I

    OpenAIRE

    Os'kin Maksim

    2014-01-01

    Desertion is one of the most active forms of ordinary resistance of the people to the state pressure during the low-popular war which is conducting for the purposes unclear for the people. At the same time, mass desertion is a manifestation of «total» war in the world conflicts of the XX century. During World War I in all armies of the world there was the desertion often accepting mass character. In the Russian army, as well as in other, deserters appeared from the war beginning. Desertion sca...

  7. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mille, M; Bergstrom, P [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  8. Monte Carlo - Advances and Challenges

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Mosteller, Russell D.; Martin, William R.

    2008-01-01

    Abstract only, full text follows: With ever-faster computers and mature Monte Carlo production codes, there has been tremendous growth in the application of Monte Carlo methods to the analysis of reactor physics and reactor systems. In the past, Monte Carlo methods were used primarily for calculating k eff of a critical system. More recently, Monte Carlo methods have been increasingly used for determining reactor power distributions and many design parameters, such as β eff , l eff , τ, reactivity coefficients, Doppler defect, dominance ratio, etc. These advanced applications of Monte Carlo methods are now becoming common, not just feasible, but bring new challenges to both developers and users: Convergence of 3D power distributions must be assured; confidence interval bias must be eliminated; iterated fission probabilities are required, rather than single-generation probabilities; temperature effects including Doppler and feedback must be represented; isotopic depletion and fission product buildup must be modeled. This workshop focuses on recent advances in Monte Carlo methods and their application to reactor physics problems, and on the resulting challenges faced by code developers and users. The workshop is partly tutorial, partly a review of the current state-of-the-art, and partly a discussion of future work that is needed. It should benefit both novice and expert Monte Carlo developers and users. In each of the topic areas, we provide an overview of needs, perspective on past and current methods, a review of recent work, and discussion of further research and capabilities that are required. Electronic copies of all workshop presentations and material will be available. The workshop is structured as 2 morning and 2 afternoon segments: - Criticality Calculations I - convergence diagnostics, acceleration methods, confidence intervals, and the iterated fission probability, - Criticality Calculations II - reactor kinetics parameters, dominance ratio, temperature

  9. Monte Carlo Methods in ICF

    Science.gov (United States)

    Zimmerman, George B.

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  10. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics

  11. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, George B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials

  12. Exploring Monte Carlo methods

    CERN Document Server

    Dunn, William L

    2012-01-01

    Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble

  13. Monte Carlo methods

    Directory of Open Access Journals (Sweden)

    Bardenet Rémi

    2013-07-01

    Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.

  14. The Importance of Electron Correlation on Stacking Interaction of Adenine-Thymine Base-Pair Step in B-DNA: A Quantum Monte Carlo Study.

    Science.gov (United States)

    Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo

    2013-02-12

    We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.

  15. Desert Pathfinder at Work

    Science.gov (United States)

    2005-09-01

    The Atacama Pathfinder Experiment (APEX) project celebrates the inauguration of its outstanding 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, passed successfully its Science Verification phase in July, and since then is performing regular science observations. This new front-line facility provides access to the "Cold Universe" with unprecedented sensitivity and image quality. After months of careful efforts to set up the telescope to work at the best possible technical level, those involved in the project are looking with satisfaction at the fruit of their labour: APEX is not only fully operational, it has already provided important scientific results. "The superb sensitivity of our detectors together with the excellence of the site allow fantastic observations that would not be possible with any other telescope in the world," said Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project. ESO PR Photo 30/05 ESO PR Photo 30/05 Sub-Millimetre Image of a Stellar Cradle [Preview - JPEG: 400 x 627 pix - 200k] [Normal - JPEG: 800 x 1254 pix - 503k] [Full Res - JPEG: 1539 x 2413 pix - 1.3M] Caption: ESO PR Photo 30/05 is an image of the giant molecular cloud G327 taken with APEX. More than 5000 spectra were taken in the J=3-2 line of the carbon monoxide molecule (CO), one of the best tracers of molecular clouds, in which star formation takes place. The bright peak in the north of the cloud is an evolved star forming region, where the gas is heated by a cluster of new stars. The most interesting region in the image is totally inconspicuous in CO: the G327 hot core, as seen in methanol contours. It is a truly exceptional source, and is one of the richest sources of emission from complex organic molecules in the

  16. SU-E-T-219: Comprehensive Validation of the Electron Monte Carlo Dose Calculation Algorithm in RayStation Treatment Planning System for An Elekta Linear Accelerator with AgilityTM Treatment Head

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Park, Yang-Kyun; Doppke, Karen P. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: This study evaluated the performance of the electron Monte Carlo dose calculation algorithm in RayStation v4.0 for an Elekta machine with Agility™ treatment head. Methods: The machine has five electron energies (6–8 MeV) and five applicators (6×6 to 25×25 cm {sup 2}). The dose (cGy/MU at d{sub max}), depth dose and profiles were measured in water using an electron diode at 100 cm SSD for nine square fields ≥2×2 cm{sup 2} and four complex fields at normal incidence, and a 14×14 cm{sup 2} field at 15° and 30° incidence. The dose was also measured for three square fields ≥4×4 cm{sup 2} at 98, 105 and 110 cm SSD. Using selected energies, the EBT3 radiochromic film was used for dose measurements in slab-shaped inhomogeneous phantoms and a breast phantom with surface curvature. The measured and calculated doses were analyzed using a gamma criterion of 3%/3 mm. Results: The calculated and measured doses varied by <3% for 116 of the 120 points, and <5% for the 4×4 cm{sup 2} field at 110 cm SSD at 9–18 MeV. The gamma analysis comparing the 105 pairs of in-water isodoses passed by >98.1%. The planar doses measured from films placed at 0.5 cm below a lung/tissue layer (12 MeV) and 1.0 cm below a bone/air layer (15 MeV) showed excellent agreement with calculations, with gamma passing by 99.9% and 98.5%, respectively. At the breast-tissue interface, the gamma passing rate is >98.8% at 12–18 MeV. The film results directly validated the accuracy of MU calculation and spatial dose distribution in presence of tissue inhomogeneity and surface curvature - situations challenging for simpler pencil-beam algorithms. Conclusion: The electron Monte Carlo algorithm in RayStation v4.0 is fully validated for clinical use for the Elekta Agility™ machine. The comprehensive validation included small fields, complex fields, oblique beams, extended distance, tissue inhomogeneity and surface curvature.

  17. Monte Carlo simulations for plasma physics

    International Nuclear Information System (INIS)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  18. TH-C-12A-10: Surface Dose Enhancement Using Novel Hybrid Electron and Photon Low-Z Therapy Beams: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C; Parsons, D [Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Robar, J; Kelly, R [Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Dept of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Nova Scotia Cancer Centre, Halifax, NS (Canada)

    2014-06-15

    Purpose: The introduction of the TrueBeam linac platform provides access to an in-air target assembly making it possible to apply novel treatments using multiple target designs. One such novel treatment uses multiple low-Z targets to enhance surface dose replacing the use of synthetic tissue equivalent material (bolus). This treatment technique will decrease the common dosimetric and set up errors prevalent in using physical treatment accessories like bolus. The groundwork for a novel treatment beam used to enhance surface dose to within 80-100% of the dose at dmax by utilizing low-Z (Carbon) targets of various percent CSDA range thickness operated at 2.5–4 MeV used in conjunction with a clinical 6 MV beam is presented herein. Methods: A standard Monte Carlo model of a Varian Clinac accelerator was developed to manufacturers specifications. Simulations were performed using Be, C, AL, and C, as potential low-Z targets, placed in the secondary target position. The results determined C to be the target material of choice. Simulations of 15, 30 and 60% CSDA range C beams were propagated through slab phantoms. The resulting PDDs were weighted and combined with a standard 6 MV treatment beam. Versions of the experimental targets were installed into a 2100C Clinac and the models were validated. Results: Carbon was shown to be the low-Z material of choice for this project. Using combinations of 15, 30, 60% CSDA beams operated at 2.5 and 4 MeV in combination with a standard 6 MV treatment beam the surface dose was shown to be enhanced to within 80–100% the dose at dmax. Conclusion: The modeled low-Z beams were successfully validated using machined versions of the targets. Water phantom measurements and slab phantom simulations show excellent correlation. Patient simulations are now underway to compare the use of bolus with the proposed novel beams. NSERC.

  19. TH-C-12A-10: Surface Dose Enhancement Using Novel Hybrid Electron and Photon Low-Z Therapy Beams: Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Parsons, C; Parsons, D; Robar, J; Kelly, R

    2014-01-01

    Purpose: The introduction of the TrueBeam linac platform provides access to an in-air target assembly making it possible to apply novel treatments using multiple target designs. One such novel treatment uses multiple low-Z targets to enhance surface dose replacing the use of synthetic tissue equivalent material (bolus). This treatment technique will decrease the common dosimetric and set up errors prevalent in using physical treatment accessories like bolus. The groundwork for a novel treatment beam used to enhance surface dose to within 80-100% of the dose at dmax by utilizing low-Z (Carbon) targets of various percent CSDA range thickness operated at 2.5–4 MeV used in conjunction with a clinical 6 MV beam is presented herein. Methods: A standard Monte Carlo model of a Varian Clinac accelerator was developed to manufacturers specifications. Simulations were performed using Be, C, AL, and C, as potential low-Z targets, placed in the secondary target position. The results determined C to be the target material of choice. Simulations of 15, 30 and 60% CSDA range C beams were propagated through slab phantoms. The resulting PDDs were weighted and combined with a standard 6 MV treatment beam. Versions of the experimental targets were installed into a 2100C Clinac and the models were validated. Results: Carbon was shown to be the low-Z material of choice for this project. Using combinations of 15, 30, 60% CSDA beams operated at 2.5 and 4 MeV in combination with a standard 6 MV treatment beam the surface dose was shown to be enhanced to within 80–100% the dose at dmax. Conclusion: The modeled low-Z beams were successfully validated using machined versions of the targets. Water phantom measurements and slab phantom simulations show excellent correlation. Patient simulations are now underway to compare the use of bolus with the proposed novel beams. NSERC

  20. Monte Carlo: Basics

    OpenAIRE

    Murthy, K. P. N.

    2001-01-01

    An introduction to the basics of Monte Carlo is given. The topics covered include, sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, central limit theorem (stable distribution, Levy distribution), random numbers (generation and testing), random sampling techniques (inversion, rejection, sampling from a Gaussian, Metropolis sampling), analogue Monte Carlo and Importance sampling (exponential b...

  1. Measurements of inner-shell characteristic X-ray yields of thick W, Mo and Zr targets by low-energy electron impact and comparison with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, X.L.; Zhao, J.L.; Tian, L.X.; An, Z.; Zhu, J.J.; Liu, M.T.

    2014-01-01

    Highlights: •We measured characteristic X-ray yields of thick W, Mo, Zr by 5–29 keV electrons. •Our measured data are in general in good agreement with the MC results with ∼10%. •Error of 10% of characteristic X-ray yields will produce errors of 2–7% for BIXS. -- Abstract: Inner-shell characteristic X-ray yields are one of the important ingredients in the β-ray induced X-ray spectrometry (BIXS) technique which can be used to perform tritium content and depth distribution analyses in plasma facing materials (PLMs) and other tritium-containing materials, such as W, Mo, Zr. In this paper, the measurements of K, L, M-shell X-ray yields Y(E) of pure thick W (Z = 74), Mo (Z = 42) and Zr (Z = 40) element targets produced by electron impact in the energy range of 5–29 keV are presented. The experimental data for Y(E) are compared with the corresponding predictions from Monte Carlo (MC) calculations using the general purpose MC code PENELOPE. In general, a good agreement is obtained between the experiment and the MC calculations for the variation of Y(E) with the impact energy both in shape and in magnitude with ∼10%. The effect of uncertainty of inner-shell characteristic X-ray yields on the BIXS technique is also discussed

  2. SU-G-BRC-10: Feasibility of a Web-Based Monte Carlo Simulation Tool for Dynamic Electron Arc Radiotherapy (DEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A; Wu, Q [Duke University Medical Center, Durham, NC (United States); Sawkey, D [Varian Medical Systems, Palo Alto, CA (United States)

    2016-06-15

    Purpose: DEAR is a radiation therapy technique utilizing synchronized motion of gantry and couch during delivery to optimize dose distribution homogeneity and penumbra for treatment of superficial disease. Dose calculation for DEAR is not yet supported by commercial TPSs. The purpose of this study is to demonstrate the feasibility of using a web-based Monte Carlo (MC) simulation tool (VirtuaLinac) to calculate dose distributions for a DEAR delivery. Methods: MC simulations were run through VirtuaLinac, which is based on the GEANT4 platform. VirtuaLinac utilizes detailed linac head geometry and material models, validated phase space files, and a voxelized phantom. The input was expanded to include an XML file for simulation of varying mechanical axes as a function of MU. A DEAR XML plan was generated and used in the MC simulation and delivered on a TrueBeam in Developer Mode. Radiographic film wrapped on a cylindrical phantom (12.5 cm radius) measured dose at a depth of 1.5 cm and compared to the simulation results. Results: A DEAR plan was simulated using an energy of 6 MeV and a 3×10 cm{sup 2} cut-out in a 15×15 cm{sup 2} applicator for a delivery of a 90° arc. The resulting data were found to provide qualitative and quantitative evidence that the simulation platform could be used as the basis for DEAR dose calculations. The resulting unwrapped 2D dose distributions agreed well in the cross-plane direction along the arc, with field sizes of 18.4 and 18.2 cm and penumbrae of 1.9 and 2.0 cm for measurements and simulations, respectively. Conclusion: Preliminary feasibility of a DEAR delivery using a web-based MC simulation platform has been demonstrated. This tool will benefit treatment planning for DEAR as a benchmark for developing other model based algorithms, allowing efficient optimization of trajectories, and quality assurance of plans without the need for extensive measurements.

  3. SU-G-BRC-10: Feasibility of a Web-Based Monte Carlo Simulation Tool for Dynamic Electron Arc Radiotherapy (DEAR)

    International Nuclear Information System (INIS)

    Rodrigues, A; Wu, Q; Sawkey, D

    2016-01-01

    Purpose: DEAR is a radiation therapy technique utilizing synchronized motion of gantry and couch during delivery to optimize dose distribution homogeneity and penumbra for treatment of superficial disease. Dose calculation for DEAR is not yet supported by commercial TPSs. The purpose of this study is to demonstrate the feasibility of using a web-based Monte Carlo (MC) simulation tool (VirtuaLinac) to calculate dose distributions for a DEAR delivery. Methods: MC simulations were run through VirtuaLinac, which is based on the GEANT4 platform. VirtuaLinac utilizes detailed linac head geometry and material models, validated phase space files, and a voxelized phantom. The input was expanded to include an XML file for simulation of varying mechanical axes as a function of MU. A DEAR XML plan was generated and used in the MC simulation and delivered on a TrueBeam in Developer Mode. Radiographic film wrapped on a cylindrical phantom (12.5 cm radius) measured dose at a depth of 1.5 cm and compared to the simulation results. Results: A DEAR plan was simulated using an energy of 6 MeV and a 3×10 cm 2 cut-out in a 15×15 cm 2 applicator for a delivery of a 90° arc. The resulting data were found to provide qualitative and quantitative evidence that the simulation platform could be used as the basis for DEAR dose calculations. The resulting unwrapped 2D dose distributions agreed well in the cross-plane direction along the arc, with field sizes of 18.4 and 18.2 cm and penumbrae of 1.9 and 2.0 cm for measurements and simulations, respectively. Conclusion: Preliminary feasibility of a DEAR delivery using a web-based MC simulation platform has been demonstrated. This tool will benefit treatment planning for DEAR as a benchmark for developing other model based algorithms, allowing efficient optimization of trajectories, and quality assurance of plans without the need for extensive measurements.

  4. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.

    Science.gov (United States)

    Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X George

    2014-07-01

    Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm

  5. ARCHERRT – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    Science.gov (United States)

    Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George

    2014-01-01

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified

  6. Self-healing diffusion quantum Monte Carlo algorithms: methods for direct reduction of the fermion sign error in electronic structure calculations

    International Nuclear Information System (INIS)

    Reboredo, F.A.; Hood, R.Q.; Kent, P.C.

    2009-01-01

    We develop a formalism and present an algorithm for optimization of the trial wave-function used in fixed-node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator of the ground state probability density. We take advantage of a basic property of the walker configuration distribution generated in a DMC calculation, to (i) project-out a multi-determinant expansion of the fixed node ground state wave function and (ii) to define a cost function that relates the interacting-ground-state-fixed-node and the non-interacting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node ground-state wave function at the node generates a new trial wave function with better nodal structure and (b) we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role, allowing the nodes to adjust towards the ones of the exact many-body ground state in a simulated annealing-like process. Based on these principles, we propose a method to improve both single determinant and multi-determinant expansions of the trial wave function. The method can be generalized to other wave function forms such as pfaffians. We test the method in a model system where benchmark configuration interaction calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved. The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to the exact solutions for the model. In the optimization process we find an optimal non-interacting nodal potential of density-functional-like form whose existence was predicted in a previous publication (Phys. Rev. B 77 245110 (2008)). Tests of the method are

  7. Influence of surface roughness of a desert

    Science.gov (United States)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    A numerical simulation study, using the current GLAS climate GCM, was carried out to examine the influence of low bulk aerodynamic drag parameter in the deserts. The results illustrate the importance of yet another feedback effect of a desert on itself, that is produced by the reduction in surface roughness height of land once the vegetation dies and desert forms. Apart from affecting the moisture convergence, low bulk transport coefficients of a desert lead to enhanced longwave cooling and sinking which together reduce precipitation by Charney's (1975) mechanism. Thus, this effect, together with albedo and soil moisture influence, perpetuate a desert condition through its geophysical feedback effect. The study further suggests that man made deserts is a viable hypothesis.

  8. PEPSI: a Monte Carlo generator for polarized leptoproduction

    International Nuclear Information System (INIS)

    Mankiewicz, L.

    1992-01-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for the polarized deep inelastic leptoproduction mediated by electromagnetic interaction. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering and requires the standard polarization-independent JETSET routines to perform fragmentation into final hadrons. (orig.)

  9. MORSE Monte Carlo code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described

  10. ARCHERRT – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    International Nuclear Information System (INIS)

    Su, Lin; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond

    2014-01-01

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHER RT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head and neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHER RT . Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHER RT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHER RT agree well with DOSXYZnrc. For clinical cases, results from ARCHER RT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head and neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU

  11. Variational Monte Carlo Technique

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...

  12. Monte Carlo simulation of Touschek effect

    Directory of Open Access Journals (Sweden)

    Aimin Xiao

    2010-07-01

    Full Text Available We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.

  13. Dose enhancement in the neighborhood of foreign bodies of the skin due to electron irradiation. A Monte-Carlo study using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Bernd [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (DE). Inst. of Radiation Research (ISF)

    2011-07-01

    Foreign bodies penetrate into the skin in the region of the hand very frequently. If they are amicrobic, they can get stuck in the skin and do no harm to the body in normal case. However, when handling with a radioactive material, like an Sr-90/Y-90 syringe for example, a stuck foreign body in a finger can lead to an enhanced absorbed dose in the neighbourhood of a few hundredths of millimetre of a foreign body, which just is in magnitude of a body cell. In the following, we shall investigate the dose enhancement effect of graphite, lead, and gold when embedded in soft tissue and irradiated with electrons. This case study focusses on the region close to the piece of metal (foreign body) without consideration for the depth in which the foreign body is located. It holds some other idealised assumptions (concerning vacuum, shape and size of foreign bodies, tissue composition, and direction of the radiation field) but still is near to real situations. Among others, this case study served to estimate the dose enhancement in the neighbourhood of a pike of lead located at the right forefinger of a member of our Institute of Radiation Research after an Sr-90/Y-90 irradiation. (orig.)

  14. Dosimetric measurements and Monte Carlo simulation for achieving ...

    Indian Academy of Sciences (India)

    Research Articles Volume 74 Issue 3 March 2010 pp 457-468 ... Food irradiation; electron accelerator; Monte Carlo; dose uniformity. ... for radiation processing of food and medical products is being commissioned at our centre in Indore, India.

  15. The Monte Carlo simulation of the Ladon photon beam facility

    International Nuclear Information System (INIS)

    Strangio, C.

    1976-01-01

    The backward compton scattering of laser light against high energy electrons has been simulated with a Monte Carlo method. The main features of the produced photon beam are reported as well as a careful description of the numerical calculation

  16. Simplified monte carlo simulation for Beijing spectrometer

    International Nuclear Information System (INIS)

    Wang Taijie; Wang Shuqin; Yan Wuguang; Huang Yinzhi; Huang Deqiang; Lang Pengfei

    1986-01-01

    The Monte Carlo method based on the functionization of the performance of detectors and the transformation of values of kinematical variables into ''measured'' ones by means of smearing has been used to program the Monte Carlo simulation of the performance of the Beijing Spectrometer (BES) in FORTRAN language named BESMC. It can be used to investigate the multiplicity, the particle type, and the distribution of four-momentum of the final states of electron-positron collision, and also the response of the BES to these final states. Thus, it provides a measure to examine whether the overall design of the BES is reasonable and to decide the physical topics of the BES

  17. The Riparianness of a Desert Herpetofauna

    Science.gov (United States)

    Charles H. Lowe

    1989-01-01

    Within the Mojave, Sonoran, and Chihuahuan Desert subdivisions of the North American Desert in the U.S., more than half of 143 total amphibian and reptilian species perform as riparian and/or wetland taxa. For the reptiles, but not the amphibians, there is a significant inverse relationship between riparianness (obligate through preferential and facultative to...

  18. Measuring the top anti-t Production Cross-Section in the Electron + Jets Channel in Proton - Anti-proton Collisions at s**(1/2) = 1.96-TeV with the D0 Detector at the Tevatron: A Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su-Jung; /Bonn U.

    2004-02-01

    The measurement of the t{bar t} production cross section at {radical}s = 1.96 TeV using the final state with an electron and jets is studied with Monte Carlo event samples. All methods used in the real data analysis to measure efficiencies and to estimate the background contributions are examined. The studies focus on measuring the electron reconstruction efficiencies as well as on improving the electron identification and background suppression. With a generated input cross section of 7 pb the following result is obtained: {sigma}{sub t{bar t}} = (7 {+-} 1.63(stat){sub -1.14}{sup +0.94} (syst)) pb.

  19. Rural childhoods in Egypt's desert lands

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine

    Based on fieldwork in Egypt’s desert lands, this paper discusses rural childhoods in an area experiencing rapid social and cultural change. Since 1987, the Egyptian Government has made new villages in the desert as a means to increase agricultural production and solving problems of unemployment....... Many settlers move to the Mubarak villages in order to give their children a good start in life. The desert villages are associated with a type of ‘rural idyll’. The process of settling in the desert impacts upon the children’s possible pathways to adulthood and their identities and social......’s new roles impact upon the children’s lives. The social contexts shaping the desert childhoods are in some ways more similar to contexts in ‘developed’ countries than in other parts of rural Egypt. The paper ends up by contrasting ideas of rural childhoods in Egypt with those found in ‘developed...

  20. Monte Carlo codes and Monte Carlo simulator program

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.

    1990-03-01

    Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)

  1. Russian deserters of World War I

    Directory of Open Access Journals (Sweden)

    Os'kin Maksim

    2014-10-01

    Full Text Available Desertion is one of the most active forms of ordinary resistance of the people to the state pressure during the low-popular war which is conducting for the purposes unclear for the people. At the same time, mass desertion is a manifestation of «total» war in the world conflicts of the XX century. During World War I in all armies of the world there was the desertion often accepting mass character. In the Russian army, as well as in other, deserters appeared from the war beginning. Desertion scales in the Russian army explained as objective factors - diffi cult fights, shortage of supply, defeat at the front, and subjective - unwillingness to participate in war, melancholy for the house, desire to help a family the work. Desertion in different years of war had various forms. If at the beginning of war there were mainly «self-arrows», in 1915, during defeats at the front - evasion from entrenchments. By the end of 1916, because of the general fatigue from war, desertion takes the real form - flight from the front to the back. After February revolution desertion becomes mass in which hundreds thousands military personnel take part already. Disorder of army and development of revolutionary process extremely strengthen desertion scales that is explained by the actual lack of punishment for this crime. Destruction of the Russian state during revolution became the main reason of coming to power of Bolsheviks, an exit of Russia from war and the army demobilization which essential part in 1917 already deserted from the front.

  2. Vectorized Monte Carlo

    International Nuclear Information System (INIS)

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes

  3. Monte Carlo simulation of gas Cerenkov detectors

    International Nuclear Information System (INIS)

    Mack, J.M.; Jain, M.; Jordan, T.M.

    1984-01-01

    Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier

  4. The impact of desert solar power utilization on sustainable development

    International Nuclear Information System (INIS)

    Sadiq Ali Shah; Yang Zhang

    2011-01-01

    This paper evaluates the prospects of developing a solar based desert economy in the deserts of solar-rich countries. The potential deserts are analysed to study their positive impact on the sustainable development processes in these regions. The sustainability of the processes is established on the basis of self-contained nature of energy generation, environmental emission reduction and desert land reclamation. (authors)

  5. Deserts

    DEFF Research Database (Denmark)

    Graulund, Rune

    2016-01-01

    , comic sketches and lyrical reveries; travel writing is now a crucial focus for discussion across many subjects within the humanities and social sciences. An ideal starting point for beginners, but also offering new perspectives for those familiar with the field, The Routledge Companion to Travel Writing...

  6. Effects of desert wildfires on desert tortoise (Gopherus agassizii) and other small vertebrates

    Science.gov (United States)

    Esque, T.C.; Schwalbe, C.R.; DeFalco, L.A.; Duncan, R.B.; Hughes, T.J.

    2003-01-01

    We report the results of standardized surveys to determine the effects of wildfires on desert tortoises (Gopherus agassizii) and their habitats in the northeastern Mojave Desert and northeastern Sonoran Desert. Portions of 6 burned areas (118 to 1,750 ha) were examined for signs of mortality of vertebrates. Direct effects of fire in desert habitats included animal mortality and loss of vegetation cover. A range of 0 to 7 tortoises was encountered during surveys, and live tortoises were found on all transects. In addition to desert tortoises, only small (reptiles (11 taxa) were found dead on the study areas. We hypothesize that indirect effects of fire on desert habitats might result in changes in the composition of diets and loss of vegetation cover, resulting in an increase in predation and loss of protection from temperature extremes. These changes in habitat also might cause changes in vertebrate communities in burned areas.

  7. Desertions in nineteenth-century shipping: modelling quit behaviour

    OpenAIRE

    Jari Ojala; Jaakko Pehkonen; Jari Eloranta

    2013-01-01

    Ship jumping in foreign ports was widespread throughout the age of sail. Desertion by seamen was illegal, it occurred abroad, and men who deserted only seldom returned home. We analyse desertion quantitatively and link it to the broader question of quit behaviour and labour turnover. Though the better wages paid at the foreign ports were the main reason for desertion, the regression model of the determinants of desertion indicates that outside opportunities, such as migration, and monetary in...

  8. Markov Chain Monte Carlo

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.

  9. Monte Carlo and Quasi-Monte Carlo Sampling

    CERN Document Server

    Lemieux, Christiane

    2009-01-01

    Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.

  10. Desert potholes: Ephemeral aquatic microsystems

    Science.gov (United States)

    Chan, M.A.; Moser, K.; Davis, J.M.; Southam, G.; Hughes, K.; Graham, T.

    2005-01-01

    An enigma of the Colorado Plateau high desert is the "pothole", which ranges from shallow ephemeral puddles to deeply carved pools. The existence of prokaryotic to eukaryotic organisms within these pools is largely controlled by the presence of collected rainwater. Multivariate statistical analysis of physical and chemical limnologic data variables measured from potholes indicates spatial and temporal variations, particularly in water depth, manganese, iron, nitrate and sulfate concentrations and salinity. Variation in water depth and salinity are likely related to the amount of time since the last precipitation, whereas the other variables may be related to redox potential. The spatial and temporal variations in water chemistry affect the distribution of organisms, which must adapt to daily and seasonal extremes of fluctuating temperature (0-60 ??C), pH changes of as much as 5 units over 12 days, and desiccation. For example, many species become dormant when potholes dry, in order to endure intense heat, UV radiation, desiccation and freezing, only to flourish again upon rehydration. But the pothole organisms also have a profound impact on the potholes. Through photosynthesis and respiration, pothole organisms affect redox potential, and indirectly alter the water chemistry. Laboratory examination of dried biofilm from the potholes revealed that within 2 weeks of hydration, the surface of the desiccated, black biofilm became green from cyanobacterial growth, which supported significant growth in heterotrophic bacterial populations. This complex biofilm is persumably responsible for dissolving the cement between the sandstone grains, allowing the potholes to enlarge, and for sealing the potholes, enabling them to retain water longer than the surrounding sandstone. Despite the remarkable ability of life in potholes to persist, desert potholes may be extremely sensitive to anthropogenic effects. The unique limnology and ecology of Utah potholes holds great scientific

  11. Vegetation - Central Mojave Desert [ds166

    Data.gov (United States)

    California Natural Resource Agency — The Department of Defense and the other desert managers are developing and organizing scientific information needed to better manage the natural resources of the...

  12. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  14. Monte Carlo method for array criticality calculations

    International Nuclear Information System (INIS)

    Dickinson, D.; Whitesides, G.E.

    1976-01-01

    The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced

  15. In vitro germination of desert rose varieties(

    OpenAIRE

    Tatiane Lemos Varella; Gizelly Mendes Silva; Kaliane Zaira Camacho Maximiliano da Cruz; Andréia Izabel Mikovski; Josué Ribeiro da Silva Nunes; Ilio Fealho Carvalho; Maurecilne Lemes Silva

    2015-01-01

    The drought stress resistance is a characteristic of the desert rose and its estimable beauty flowers, which gave it great relevance in the ornamental market. However, the desert rose production and germination is hampered by possible sterility of their male and female flowers and frequent problems in pollination, so the tissue culture is a promising alternative to the propagation of these plants. This study aimed to evaluate the effect of gibberellic acid on four commercial varieties of dese...

  16. Monte-Carlo simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Amatuni, Ts.A.

    1984-01-01

    The universal ELSS-1 program for Monte Carlo simulation of high energy electromagnetic showers in homogeneous absorbers of arbitrary geometry is written. The major processes and effects of electron and photon interaction with matter, particularly the Landau-Pomeranchuk-Migdal effect, are taken into account in the simulation procedures. The simulation results are compared with experimental data. Some characteristics of shower detectors and electromagnetic showers for energies up 1 TeV are calculated

  17. Late Quaternary history of the Atacama Desert

    Science.gov (United States)

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.; Smith, Mike; Hesse, Paul

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  18. Monte Carlo principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center

    1976-03-01

    The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.

  19. Bayesian Monte Carlo method

    International Nuclear Information System (INIS)

    Rajabalinejad, M.

    2010-01-01

    To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.

  20. Contributon Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Gerstl, S.A.W.

    1979-05-01

    The contributon Monte Carlo method is based on a new recipe to calculate target responses by means of volume integral of the contributon current in a region between the source and the detector. A comprehensive description of the method, its implementation in the general-purpose MCNP code, and results of the method for realistic nonhomogeneous, energy-dependent problems are presented. 23 figures, 10 tables

  1. Fundamentals of Monte Carlo

    International Nuclear Information System (INIS)

    Wollaber, Allan Benton

    2016-01-01

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  2. Microcanonical Monte Carlo

    International Nuclear Information System (INIS)

    Creutz, M.

    1986-01-01

    The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena

  3. Fundamentals of Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  4. Monte Carlo alpha calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, D.; Soran, P.; Whalen, P.

    1985-01-01

    A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.

  5. HIGH FOLIAR NITROGEN IN DESERT SHRUBS: AN IMPORTANT ECOSYSTEM TRAIT OR DEFECTIVE DESERT DOCTRINE?

    Science.gov (United States)

    Nitrogen concentrations in green and senesced leaves of perennial desert shrubs were compiled from a worldwide literature search to test the validity of the doctrine that desert shrubs produce foliage and leaf litter much richer in nitrogen than that in the foliage of plants from...

  6. Monte Carlo applications to radiation shielding problems

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2009-01-01

    Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation

  7. GEANT Monte Carlo simulations for the GREAT spectrometer

    International Nuclear Information System (INIS)

    Andreyev, A.N.; Butler, P.A.; Page, R.D.; Appelbe, D.E.; Jones, G.D.; Joss, D.T.; Herzberg, R.-D.; Regan, P.H.; Simpson, J.; Wadsworth, R.

    2004-01-01

    GEANT Monte Carlo simulations for the recently developed GREAT spectrometer are presented. Some novel applications of the spectrometer for γ-ray, conversion-electron and β-decay spectroscopy are discussed. The conversion-electron spectroscopy of heavy nuclei with strongly converted transitions and the extension of the recoil decay tagging method to β-decaying nuclei are considered in detail

  8. Monts Jura Jazz Festival

    CERN Multimedia

    Jazz Club

    2012-01-01

    The 5th edition of the "Monts Jura Jazz Festival" that will take place on September 21st and 22nd 2012 at the Esplanade du Lac in Divonne-les-Bains. This festival is organized by the "CERN Jazz Club" with the support of the "CERN Staff Association". This festival is a major musical event in the French/Swiss area and proposes a world class program with jazz artists such as D.Lockwood and D.Reinhardt. More information on http://www.jurajazz.com.

  9. Monts Jura Jazz Festival

    CERN Document Server

    2012-01-01

    The 5th edition of the "Monts Jura Jazz Festival" will take place at the Esplanade du Lac in Divonne-les-Bains, France on September 21 and 22. This festival organized by the CERN Jazz Club and supported by the CERN Staff Association is becoming a major musical event in the Geneva region. International Jazz artists like Didier Lockwood and David Reinhardt are part of this year outstanding program. Full program and e-tickets are available on the festival website. Don't miss this great festival!

  10. Desert basins of the Southwest

    Science.gov (United States)

    Leake, Stanley A.; Konieczki, Alice D.; Rees, Julie A.H.

    2000-01-01

    Ground water is among the Nation’s most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from overuse and contamination. Because ground-water systems typically respond slowly to human actions, a long-term perspective is needed to manage this valuable resource. This publication is one in a series of fact sheets that describe ground-water-resource issues across the United States, as well as some of the activities of the U.S. Geological Survey that provide information to help others develop, manage, and protect ground-water resources in a sustainable manner. Ground-water resources in the Southwest are among the most overused in the United States. Natural recharge to aquifers is low and pumping in many areas has resulted in lowering of water tables. The consequences of large-scale removal of water from storage are becoming increasingly evident. These consequences include land subsidence; loss of springs, streams, wetlands and associated habitat; and degradation of water quality. Water managers are now seeking better ways of managing ground-water resources while looking for supplemental sources of water. This fact sheet reviews basic information on ground water in the desert basins of the Southwest. Also described are some activities of the U.S. Geological Survey (USGS) that are providing scientific information for sustainable management of ground-water resources in the Southwest. Ground-water sustainability is defined as developing and using ground water in a way that can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences.

  11. Jojoba could stop the desert creep

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-25

    The Sahara desert is estimated to be expanding at a rate of 5km a year. The Sudanese government is experimenting with jojoba in six different regions as the bush has the potential to stop this ''desert creep''. The plant, a native to Mexico, is long known for its resistance to drought and for the versatile liquid wax that can be extracted from its seeds. It is estimated that one hectare of mature plants could produce 3000 kg of oil, currently selling at $50 per litre, and so earn valuable foreign currency.

  12. CAMEL REARING IN CHOLISTAN DESERT OF PAKISTAN

    OpenAIRE

    I. ALI, M. SHAFIQ CHAUDHRY1 AND U. FAROOQ

    2009-01-01

    The camel is one of the typical and the best adopted animals of the desert, capable of enduring thirst and hunger for days and is the most patient of land animals. For desert nomads of Pakistani Cholistan, it is a beloved companion, a source of milk and meat, transport facility provider and a racing/dancing animal, thus, playing an important role in the socioeconomic uplift of the local community. Camels of Marrecha or Mahra breed are mainly used for riding and load carrying but may be traine...

  13. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  14. MONTE and ANAL1

    International Nuclear Information System (INIS)

    Lupton, L.R.; Keller, N.A.

    1982-09-01

    The design of a positron emission tomography (PET) ring camera involves trade-offs between such things as sensitivity, resolution and cost. As a design aid, a Monte Carlo simulation of a single-ring camera system has been developed. The model includes a source-filled phantom, collimators, detectors, and optional shadow shields and inter-crystal septa. Individual gamma rays are tracked within the system materials until they escape, are absorbed, or are detected. Compton and photelectric interactions are modelled. All system dimensions are variable within the computation. Coincidence and singles data are recorded according to type (true or scattered), annihilation origin, and detected energy. Photon fluxes at various points of interest, such as the edge of the phantom and the collimator, are available. This report reviews the basics of PET, describes the physics involved in the simulation, and provides detailed outlines of the routines

  15. Frost in Charitum Montes

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-387, 10 June 2003This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view of the Charitum Montes, south of Argyre Planitia, in early June 2003. The seasonal south polar frost cap, composed of carbon dioxide, has been retreating southward through this area since spring began a month ago. The bright features toward the bottom of this picture are surfaces covered by frost. The picture is located near 57oS, 43oW. North is at the top, south is at the bottom. Sunlight illuminates the scene from the upper left. The area shown is about 217 km (135 miles) wide.

  16. Monte Carlo Methods in Physics

    International Nuclear Information System (INIS)

    Santoso, B.

    1997-01-01

    Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained

  17. Divining Jordan's desert waters | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... in the area have a long history of being water-conservers, and the idea of using the ... Dr Abu-Jaber examined is covered by an ancient, volcanic rock called basalt. ... When a desert cloudburst drops rain on the area, the raindrops quickly roll ...

  18. Liquid Water Restricts Habitability in Extreme Deserts.

    Science.gov (United States)

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  19. Preventing desert locust plagues: optimizing management interventions

    NARCIS (Netherlands)

    Huis, van A.; Cressman, K.; Magor, J.I.

    2007-01-01

    Solitarious desert locusts, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), inhabit the central, arid, and semi-arid parts of the species¿ invasion area in Africa, the Middle East, and South-West Asia. Their annual migration circuit takes them downwind to breed sequentially where winter,

  20. Abiotic drivers of Chihuahuan Desert plant communities

    Science.gov (United States)

    Laura Marie Ladwig

    2014-01-01

    Within grasslands, precipitation, fire, nitrogen (N) addition, and extreme temperatures influence community composition and ecosystem function. The differential influences of these abiotic factors on Chihuahuan Desert grassland communities was examined within the Sevilleta National Wildlife Refuge, located in central New Mexico, U.S.A. Although fire is a natural...

  1. Reclaiming freshwater sustainability in the Cadillac Desert

    Science.gov (United States)

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H.W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  2. Quantum Monte Carlo for vibrating molecules

    International Nuclear Information System (INIS)

    Brown, W.R.; Lawrence Berkeley National Lab., CA

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies

  3. Monte Carlo simulation for radiographic applications

    International Nuclear Information System (INIS)

    Tillack, G.R.; Bellon, C.

    2003-01-01

    Standard radiography simulators are based on the attenuation law complemented by built-up-factors (BUF) to describe the interaction of radiation with material. The assumption of BUF implies that scattered radiation reduces only the contrast in radiographic images. This simplification holds for a wide range of applications like weld inspection as known from practical experience. But only a detailed description of the different underlying interaction mechanisms is capable to explain effects like mottling or others that every radiographer has experienced in practice. The application of Monte Carlo models is capable to handle primary and secondary interaction mechanisms contributing to the image formation process like photon interactions (absorption, incoherent and coherent scattering including electron-binding effects, pair production) and electron interactions (electron tracing including X-Ray fluorescence and Bremsstrahlung production). It opens up possibilities like the separation of influencing factors and the understanding of the functioning of intensifying screen used in film radiography. The paper discusses the opportunities in applying the Monte Carlo method to investigate special features in radiography in terms of selected examples. (orig.) [de

  4. Geology and geochemistry of the Atacama Desert.

    Science.gov (United States)

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  5. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  6. Review of quantum Monte Carlo methods and results for Coulombic systems

    International Nuclear Information System (INIS)

    Ceperley, D.

    1983-01-01

    The various Monte Carlo methods for calculating ground state energies are briefly reviewed. Then a summary of the charged systems that have been studied with Monte Carlo is given. These include the electron gas, small molecules, a metal slab and many-body hydrogen

  7. Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.

    Science.gov (United States)

    Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A

    2005-01-01

    The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.

  8. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. II. Homo-arrays of LH2 complexes reconstituted into phospholipid model membranes.

    Science.gov (United States)

    Pflock, Tobias J; Oellerich, Silke; Krapf, Lisa; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We performed time-resolved spectroscopy on homoarrays of LH2 complexes from the photosynthetic purple bacterium Rhodopseudomonas acidophila. Variations of the fluorescence transients were monitored as a function of the excitation fluence and the repetition rate of the excitation. These parameters are directly related to the excitation density within the array and to the number of LH2 complexes that still carry a triplet state prior to the next excitation. Comparison of the experimental observations with results from dynamic Monte Carlo simulations for a model cluster of LH2 complexes yields qualitative agreement without the need for any free parameter and reveals the mutual relationship between energy transfer and annihilation processes.

  9. Lectures on Monte Carlo methods

    CERN Document Server

    Madras, Neal

    2001-01-01

    Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati

  10. Monte Carlo method for magnetic impurities in metals

    Science.gov (United States)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  11. TRIPOLI-4: Monte Carlo transport code functionalities and applications

    International Nuclear Information System (INIS)

    Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B.

    2003-01-01

    Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)

  12. Monte Carlo Transverse Emittance Study on Cs2Te

    CERN Document Server

    Banfi, F; Galimberti, P G; Giannetti, C; Pagliara, S; Parmigiani, F; Pedersoli, E

    2005-01-01

    A Monte Carlo study of electron transport in Cs2Te films is performed to investigate the transverse emittance epsilon at the cathode surface. We find the photoemitted electron angular distribution and explain the physical mechanism involved in the process, a mechanism hindered by the statistical nature of the Monte Carlo method. The effects of electron-phonon scattering are discussed. The transverse emittance is calculated for different radiation wavelengths and a laser spot size of 1.5*10(-3) m. For a laser radiation at 265 nm we find epsilon = 0.56 mm-mrad. The dependence of epsilon and the quantum yield on the electron affinity Ea is also investigated. The data shows the importance of aging/contamination on the material.

  13. Advanced Multilevel Monte Carlo Methods

    KAUST Repository

    Jasra, Ajay; Law, Kody; Suciu, Carina

    2017-01-01

    This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.

  14. Advanced Multilevel Monte Carlo Methods

    KAUST Repository

    Jasra, Ajay

    2017-04-24

    This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.

  15. Monte Carlo simulation for IRRMA

    International Nuclear Information System (INIS)

    Gardner, R.P.; Liu Lianyan

    2000-01-01

    Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors

  16. Geology of Maxwell Montes, Venus

    Science.gov (United States)

    Head, J. W.; Campbell, D. B.; Peterfreund, A. R.; Zisk, S. A.

    1984-01-01

    Maxwell Montes represent the most distinctive topography on the surface of Venus, rising some 11 km above mean planetary radius. The multiple data sets of the Pioneer missing and Earth based radar observations to characterize Maxwell Montes are analyzed. Maxwell Montes is a porkchop shaped feature located at the eastern end of Lakshmi Planum. The main massif trends about North 20 deg West for approximately 1000 km and the narrow handle extends several hundred km West South-West WSW from the north end of the main massif, descending down toward Lakshmi Planum. The main massif is rectilinear and approximately 500 km wide. The southern and northern edges of Maxwell Montes coincide with major topographic boundaries defining the edge of Ishtar Terra.

  17. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte

  18. TRIPOLI-4: Monte Carlo transport code functionalities and applications; TRIPOLI-4: code de transport Monte Carlo fonctionnalites et applications

    Energy Technology Data Exchange (ETDEWEB)

    Both, J P; Lee, Y K; Mazzolo, A; Peneliau, Y; Petit, O; Roesslinger, B [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), Service d' Etudes de Reacteurs et de Modelisation Avancee, 91 - Gif sur Yvette (France)

    2003-07-01

    Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)

  19. Monte Carlo theory and practice

    International Nuclear Information System (INIS)

    James, F.

    1987-01-01

    Historically, the first large-scale calculations to make use of the Monte Carlo method were studies of neutron scattering and absorption, random processes for which it is quite natural to employ random numbers. Such calculations, a subset of Monte Carlo calculations, are known as direct simulation, since the 'hypothetical population' of the narrower definition above corresponds directly to the real population being studied. The Monte Carlo method may be applied wherever it is possible to establish equivalence between the desired result and the expected behaviour of a stochastic system. The problem to be solved may already be of a probabilistic or statistical nature, in which case its Monte Carlo formulation will usually be a straightforward simulation, or it may be of a deterministic or analytic nature, in which case an appropriate Monte Carlo formulation may require some imagination and may appear contrived or artificial. In any case, the suitability of the method chosen will depend on its mathematical properties and not on its superficial resemblance to the problem to be solved. The authors show how Monte Carlo techniques may be compared with other methods of solution of the same physical problem

  20. Desert wetlands in the geologic record

    Science.gov (United States)

    Pigati, Jeff S.; Rech, Jason A.; Quade, Jay; Bright, Jordon; Edwards, L.; Springer, A.

    2014-01-01

    Desert wetlands support flora and fauna in a variety of hydrologic settings, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Over time, eolian, alluvial, and fluvial sediments become trapped in these settings by a combination of wet ground conditions and dense plant cover. The result is a unique combination of clastic sediments, chemical precipitates, and organic matter that is preserved in the geologic record as ground-water discharge (GWD) deposits. GWD deposits contain information on the timing and magnitude of past changes in water-table levels and, therefore, are a potential source of paleohydrologic and paleoclimatic information. In addition, they can be important archeological and paleontological archives because desert wetlands provide reliable sources of fresh water, and thus act as focal points for human and faunal activities, in some of the world's harshest and driest lands. Here, we review some of the physical, sedimentological, and geochemical characteristics common to GWD deposits, and provide a contextual framework that researchers can use to identify and interpret geologic deposits associated with desert wetlands. We discuss several lines of evidence used to differentiate GWD deposits from lake deposits (they are commonly confused), and examine how various types of microbiota and depositional facies aid in reconstructing past environmental and hydrologic conditions. We also review how late Quaternary GWD deposits are dated, as well as methods used to investigate desert wetlands deeper in geologic time. We end by evaluating the strengths and limitations of hydrologic and climatic records derived from GWD deposits, and suggest several avenues of potential future research to further develop and utilize these unique and complex systems.

  1. Biology of the Central Desert of Oman

    OpenAIRE

    GHAZANFAR, Shahina A

    2004-01-01

    A biological survey of the central desert of Oman was done using long distance transects. Vegetation was sparse and consisted of 200+ plant species, 22 species of mammals, 17 species of reptiles and amphibians, and more than 50 species of birds (migratory and resident). Three main vegetation types were identified based on ground substrate and the dominance of species. These were communities with Acacia Willd., Zygophyllum L., and open woodlands of Prosopis cineraria (L.) Druce. Over-grazing a...

  2. Joint by Design: The Western Desert Campaign

    Science.gov (United States)

    2015-05-21

    Introduction Seated in a dusty tent, finally cooling in the Egyptian night, the “Desert Fox” had a serious problem. German Lieutenant General Erwin...Complexity: A Platform for Designing Business Architecture , 2nd ed. (Amsterdam: Elsevier, 2006), 30-32. 65 Lewin, Montgomery, 121. 29 Allies...Benghazi and Tobruk, and the Egyptian port of Matruh were operating at 60 percent of their potential capacity. By the end of August, the Axis loss rate of

  3. Extrafloral nectar fuels ant life in deserts

    OpenAIRE

    Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte

    2014-01-01

    Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal dese...

  4. Liquid Water Restricts Habitability in Extreme Deserts

    Science.gov (United States)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  5. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  6. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-05-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  7. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-01-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  8. CAMEL REARING IN CHOLISTAN DESERT OF PAKISTAN

    Directory of Open Access Journals (Sweden)

    I. ALI, M. SHAFIQ CHAUDHRY1 AND U. FAROOQ

    2009-05-01

    Full Text Available The camel is one of the typical and the best adopted animals of the desert, capable of enduring thirst and hunger for days and is the most patient of land animals. For desert nomads of Pakistani Cholistan, it is a beloved companion, a source of milk and meat, transport facility provider and a racing/dancing animal, thus, playing an important role in the socioeconomic uplift of the local community. Camels of Marrecha or Mahra breed are mainly used for riding and load carrying but may be trained for dancing or racing. Berella is another heavy and milch breed of camel famous for milk production and can produce upto 10-15 liters of milk per day. This breed is also suitable for draught purpose, though comparatively slow due to heavy body. The present paper also describes the traditional camel rearing system used by nomads of Cholistan desert. Some aspects of camel health, production, feeding, socio-economic values, marketing and some constraints and suggestions are also given so that the policy makers may consider them for the welfare of this animal.

  9. Low field Monte-Carlo calculations in heterojunctions and quantum wells

    NARCIS (Netherlands)

    Hall, van P.J.; Rooij, de R.; Wolter, J.H.

    1990-01-01

    We present results of low-field Monte-Carlo calculations and compare them with experimental results. The negative absolute mobility of minority electrons in p-type quantum wells, as found in recent experiments, is described quite well.

  10. 77 FR 65133 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2012-10-25

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... limited disapproval of revisions to the Mojave Desert Air Quality Management District (MDAQMD) portion of.... * * * * * (c) * * * (379) * * * (i) * * * (E) Mojave Desert Air Quality Management District. (1) Rule 1159...

  11. Proceedings of the conference on frontiers of Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1986-01-01

    This journal of conference proceedings includes papers on topics such as: computers and science; Quantum Monte Carlo; condensed matter physics (with papers including the statistical error of Green's Function Monte Carlo, a study of Trotter-like approximations, simulations of the Hubbard model, and stochastic simulation of fermions); chemistry (including papers on quantum simulations of aqueous systems, fourier path integral methods, and a study of electron solvation in polar solvents using path integral calculations); atomic molecular and nuclear physics; high-energy physics, and advanced computer designs

  12. PEPSI — a Monte Carlo generator for polarized leptoproduction

    Science.gov (United States)

    Mankiewicz, L.; Schäfer, A.; Veltri, M.

    1992-09-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.

  13. PEPSI - a Monte Carlo generator for polarized leptoproduction

    International Nuclear Information System (INIS)

    Mankiewicz, L.

    1992-01-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the Lepto 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S . PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons. (orig.)

  14. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. I. Isolated, non-interacting LH2 complexes.

    Science.gov (United States)

    Pflock, Tobias J; Oellerich, Silke; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We have employed time-resolved spectroscopy on the picosecond time scale in combination with dynamic Monte Carlo simulations to investigate the photophysical properties of light-harvesting 2 (LH2) complexes from the purple photosynthetic bacterium Rhodopseudomonas acidophila. The variations of the fluorescence transients were studied as a function of the excitation fluence, the repetition rate of the excitation and the sample preparation conditions. Here we present the results obtained on detergent solubilized LH2 complexes, i.e., avoiding intercomplex interactions, and show that a simple four-state model is sufficient to grasp the experimental observations quantitatively without the need for any free parameters. This approach allows us to obtain a quantitative measure for the singlet-triplet annihilation rate in isolated, noninteracting LH2 complexes.

  15. Nationwide desert highway assessment: a case study in China.

    Science.gov (United States)

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-07-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert's comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection.

  16. The provenance of Taklamakan desert sand

    Science.gov (United States)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  17. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  18. Cost estimates for Operation Desert Shield/Desert Storm: a budgetary analysis

    OpenAIRE

    Johnson, J. Andrew.

    1991-01-01

    Operation Desert Shield/Desert Storm (DS/DS) presented unique challenges for estimating the cost of that conflict. This analysis reviews the cost estimates and methodologies developed for that purpose by DoD, CBO and GAO. It considers the budget climate and the role of foreign cash and in-kind contributions. Finally, it reviews the budgeting innovations used to provide and monitor DS/DS defense spending. At the outset of the crisis, costs were estimated to determine the defense funding requir...

  19. Are Wildlife Detector Dogs or People Better at Finding Desert Tortoises (Gopherus Agassizii)?

    National Research Council Canada - National Science Library

    Nussear, Kenneth E; Esque, Todd C; Heaton, Jill S; Cablk, Mary E; Drake, Kristina K; Valentin, Cindee; Yee, Julie L; Medica, Philip A

    2008-01-01

    .... Recent studies highlight the effectiveness of trained detector dogs to locate wildlife during field surveys, including Desert Tortoises in a semi-natural setting. Desert Tortoises (Gopherus agassizii...

  20. Multilevel sequential Monte Carlo samplers

    KAUST Repository

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan

    2016-01-01

    In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . ∞>h0>h1⋯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. © 2016 Elsevier B.V.

  1. Multilevel sequential Monte Carlo samplers

    KAUST Repository

    Beskos, Alexandros

    2016-08-29

    In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . ∞>h0>h1⋯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. © 2016 Elsevier B.V.

  2. Monte Carlo simulations of the Galileo energetic particle detector

    International Nuclear Information System (INIS)

    Jun, I.; Ratliff, J.M.; Garrett, H.B.; McEntire, R.W.

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study

  3. Monte Carlo simulations of the Galileo energetic particle detector

    CERN Document Server

    Jun, I; Garrett, H B; McEntire, R W

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.

  4. Monte Carlo simulation of experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1977-07-01

    An outline of the technique of computer simulation of particle physics experiments by the Monte Carlo method is presented. Useful special purpose subprograms are listed and described. At each stage the discussion is made concrete by direct reference to the programs SIMUL8 and its variant MONTE-PION, written to assist in the analysis of the radiative decay experiments μ + → e + ν sub(e) antiνγ and π + → e + ν sub(e)γ, respectively. These experiments were based on the use of two large sodium iodide crystals, TINA and MINA, as e and γ detectors. Instructions for the use of SIMUL8 and MONTE-PION are given. (author)

  5. Strategije drevesnega preiskovanja Monte Carlo

    OpenAIRE

    VODOPIVEC, TOM

    2018-01-01

    Po preboju pri igri go so metode drevesnega preiskovanja Monte Carlo (ang. Monte Carlo tree search – MCTS) sprožile bliskovit napredek agentov za igranje iger: raziskovalna skupnost je od takrat razvila veliko variant in izboljšav algoritma MCTS ter s tem zagotovila napredek umetne inteligence ne samo pri igrah, ampak tudi v številnih drugih domenah. Čeprav metode MCTS združujejo splošnost naključnega vzorčenja z natančnostjo drevesnega preiskovanja, imajo lahko v praksi težave s počasno konv...

  6. Quantum Monte Carlo for atoms and molecules

    International Nuclear Information System (INIS)

    Barnett, R.N.

    1989-11-01

    The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H 2 , LiH, Li 2 , and H 2 O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li 2 , and H 2 O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions

  7. Physiological conjunction of allelochemicals and desert plants.

    Science.gov (United States)

    Yosef Friedjung, Avital; Choudhary, Sikander Pal; Dudai, Nativ; Rachmilevitch, Shimon

    2013-01-01

    Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  8. Physiological conjunction of allelochemicals and desert plants.

    Directory of Open Access Journals (Sweden)

    Avital Yosef Friedjung

    Full Text Available Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  9. Birds and conservation significance of the Namib Desert's least ...

    African Journals Online (AJOL)

    -long Namib Desert and it remains the least known coastal wetland on a desert coast rich in shorebirds. Two surveys of the Baia dos Tigres region in 1999 and 2001 indicated a rich wetland bird diversity consisting of 25 species, with a total of ...

  10. Screening the Egyptian desert actinomycetes as candidates for new ...

    African Journals Online (AJOL)

    In a screening program to study the antimicrobial activities of desert actinomycetes as potential producers of active metabolites, 75 actinomycete strains were isolated from the Egyptian desert habitats and tested. Out of the isolated 75 organisms, 32 (42.67%) showed activity against the used test organisms.

  11. Pastoralist rock art in the Black Desert of Jordan

    NARCIS (Netherlands)

    Brusgaard, N.O.

    2015-01-01

    This paper discusses the current problems that exist with the rock art research of the Black Desert in Jordan and presents some preliminary field results of the author’s research on the petroglyphs. It also explore the possibilities that the rock art affords to learn more about the elusive desert

  12. Pastoralist rock art in the Black Desert of Jordan

    OpenAIRE

    Brusgaard, N.O.

    2015-01-01

    This paper discusses the current problems that exist with the rock art research of the Black Desert in Jordan and presents some preliminary field results of the author’s research on the petroglyphs. It also explore the possibilities that the rock art affords to learn more about the elusive desert societies and the limitations about studying rock art in archaeologically unfamiliar territories.

  13. The politics of accessing desert land in Jordan

    NARCIS (Netherlands)

    Naber, Al Majd; Molle, Francois

    2016-01-01

    With the dramatic increase of the population in Jordan, the value of land has rocketed up. Urban sprawl into semi-desert or desert areas, initially not surveyed or settled by the British and considered as state land, has brought to the surface the problematic status of those lands. Likewise, the

  14. Aeromycobiota of Western Desert of Egypt | Ismail | African Journal ...

    African Journals Online (AJOL)

    The prevalence of airborne mycobiota at six different regions of Western desert (5 regions) and Eastern desert (1) of Egypt was determined using the exposed-plate method. A total of 44 genera, 102 species and one variety in addition to some unidentified yeasts and dark sterile mycelia were collected. Of the above, only 5 ...

  15. The Desert and the Sown Project in Northern Jordan

    DEFF Research Database (Denmark)

    Kerner, Susanne

    2014-01-01

    The desert and sown project, which started in 1999 and continued in 2008-2009, studied the region between the settled areas east of Irbid and Ramtha and the surrounding desert at Mafraq (northern Jordan). Large parts of the material comes from the Palaeolithic period, while some smaller tells date...

  16. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  17. Speed-up of ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo simulations by using an auxiliary potential energy surface

    International Nuclear Information System (INIS)

    Nakayama, Akira; Taketsugu, Tetsuya; Shiga, Motoyuki

    2009-01-01

    Efficiency of the ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo methods is enhanced by employing an auxiliary potential energy surface that is used to update the system configuration via molecular dynamics scheme. As a simple illustration of this method, a dual-level approach is introduced where potential energy gradients are evaluated by computationally less expensive ab initio electronic structure methods. (author)

  18. Algae-production in the desert

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, H.

    1988-11-01

    The company Koor Food Ltd. (Israel) developed in co-operation with the Weizmann-Institute (Israel) a production-plant for the industrial cultivation of algae in the desert area of Elat. For almost a year now, they succeed in harvesting large amounts of algae material with the help of the intensive sun and the Red Sea water. The alga Dunaliella with the natural US -carotine, as well as the alga Spirulina with the high content of protein find their market in the food-, cosmetic- and pharma-industry. This article will give a survey of a yet here unusual project.

  19. Background aerosol composition in the Namib desert

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Sellschop, J.P.F.; Van Grieken, R.E.; Winchester, J.W.

    The sulfur content of atmospheric particulate matter in non-urban areas is apparently rising above natural levels in the Northern Hemisphere. Sulfur emissions to the atmosphere are also increasing with increasing combustion of fossil fuels. Current research is being focussed not only on gaseous sulfur dioxide, but also on particulate forms, including sulfates and sulfuric acid. A global network of non urban studies using proton induced X-ray emission (PIXE) of which the sampling site at Gobabeb in the Namib desert is one, are developing a data base on which questions of natural levels of sulfur can be answered

  20. Monte Carlo simulation of radiation treatment machine heads

    International Nuclear Information System (INIS)

    Mohan, R.

    1988-01-01

    Monte Carlo simulations of radiation treatment machine heads provide practical means for obtaining energy spectra and angular distributions of photons and electrons. So far, most of the work published in the literature has been limited to photons and the contaminant electrons knocked out by photons. This chapter will be confined to megavoltage photon beams produced by medical linear accelerators and 60 Co teletherapy units. The knowledge of energy spectra and angular distributions of photons and contaminant electrons emerging from such machines is important for a variety of applications in radiation dosimetry

  1. Monte Carlo methods to calculate impact probabilities

    Science.gov (United States)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    infinity, while the Hill sphere method results in a severely underestimated probability. We provide a discussion of the reasons for these differences, and we finally present the results of the MOID method in the form of probability maps for the Earth and Mars on their current orbits. These maps show a relatively flat probability distribution, except for the occurrence of two ridges found at small inclinations and for coinciding projectile/target perihelion distances. Conclusions: Our results verify the standard formulae in the general case, away from the singularities. In fact, severe shortcomings are limited to the immediate vicinity of those extreme orbits. On the other hand, the new Monte Carlo methods can be used without excessive consumption of computer time, and the MOID method avoids the problems associated with the other methods. Appendices are available in electronic form at http://www.aanda.org

  2. Fog water chemistry in the Namib desert, Namibia

    Science.gov (United States)

    Eckardt, Frank D.; Schemenauer, Robert S.

    This study documents the ion concentrations and ion enrichment relative to sea water, in Namib Desert fog water, with the purpose of establishing its suitability for future fogwater collection schemes, while also examining claims that Namib Desert fog water carries exceptionally high concentrations of sulphate, which may be responsible for the formation of gypsum deposits in the desert. The work suggests that Namibian fog water is at least as clean as has been reported from other coastal deserts in South America and Arabia, and provides a source of very clean water for the coastal desert region of south-western Africa. It does not appear that fog is an efficient sulphur source for the formation of the gypsum deposits, unless rare events with high concentrations of marine sulphur compounds occur.

  3. Revisiting dirt cracking as a physical weathering process in warm deserts

    Science.gov (United States)

    Dorn, Ronald I.

    2011-12-01

    A half century ago C.D. Ollier proposed that insolation-driven temperature changes expand and contract fill in fissures enough to widen cracks, a process that would permit progressively deeper penetration of fissure fills, that would in turn generate a positive feedback of greater and greater strain until desert boulders and bedrock shatters. Although desert physical weathering by "dirt cracking" has occasionally been cited, this hypothesized process remains without support from subsequent research. Here, field observations, electron microscopy, X-ray powder diffraction, particle-size analysis, and laboratory experiments shed new light on dirt cracking. Little clear evidence supports the original notion of expansive pressures from thermal fluctuations. However, mineralogical, high resolution transmission electron microscopy, back-scattered electron microscopy, and experimental evidence support two alternative processes of widening fractures: wetting and drying of fills inside fissures; and the precipitation and remobilization of calcium carbonate. A re-envisioned dirt-cracking wedging process starts with calcium carbonate precipitating in fissures less than 5 μm wide. First precipitation, and then ongoing dissolution of this laminar calcrete, opens enough space for dust to penetrate into these narrow fractures. Wetting of expansive clays in the fissure fill exerts enough pressure to widen and deepen the fissure, allowing the carbonate precipitation process to penetrate even deeper and allowing even more dust to move into a fracture. As the dust infiltrates, its texture changes from a chaotic mix of particles to an alignment of clays parallel to fissure sides. This parallel alignment could increase the efficiency of fill wedging. Ollier's concept of a positive feedback remains supported; each increment of fracture deepening and widening permits more, even deeper infiltration of laminar calcrete and dust. Field and electron microscope observations of rock spalling

  4. Plant responses to an edaphic gradient across an active sand dune/desert boundary in the great basin desert.

    NARCIS (Netherlands)

    Rosenthal, D.M.; Ludwig, F.; Donovan, L.A.

    2005-01-01

    In arid ecosystems, variation in precipitation causes broad-scale spatial heterogeneity in soil moisture, but differences in soil texture, development, and plant cover can also create substantial local soil moisture heterogeneity. The boundary between inland desert sand dunes and adjacent desert

  5. Is Monte Carlo embarrassingly parallel?

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)

    2012-07-01

    Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)

  6. Is Monte Carlo embarrassingly parallel?

    International Nuclear Information System (INIS)

    Hoogenboom, J. E.

    2012-01-01

    Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)

  7. Exact Monte Carlo for molecules

    International Nuclear Information System (INIS)

    Lester, W.A. Jr.; Reynolds, P.J.

    1985-03-01

    A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H 2 , and the singlet-triplet splitting in methylene are presented and discussed. 17 refs

  8. Monte Carlo simulations of low background detectors

    International Nuclear Information System (INIS)

    Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H.

    1995-01-01

    An implementation of the Electron Gamma Shower 4 code (EGS4) has been developed to allow convenient simulation of typical gamma ray measurement systems. Coincidence gamma rays, beta spectra, and angular correlations have been added to adequately simulate a complete nuclear decay and provide corrections to experimentally determined detector efficiencies. This code has been used to strip certain low-background spectra for the purpose of extremely low-level assay. Monte Carlo calculations of this sort can be extremely successful since low background detectors are usually free of significant contributions from poorly localized radiation sources, such as cosmic muons, secondary cosmic neutrons, and radioactive construction or shielding materials. Previously, validation of this code has been obtained from a series of comparisons between measurements and blind calculations. An example of the application of this code to an exceedingly low background spectrum stripping will be presented. (author) 5 refs.; 3 figs.; 1 tab

  9. Radiation Modeling with Direct Simulation Monte Carlo

    Science.gov (United States)

    Carlson, Ann B.; Hassan, H. A.

    1991-01-01

    Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.

  10. Evolutionary hotspots in the Mojave Desert

    Science.gov (United States)

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  11. Landscape Sustainability in a Sonoran Desert City

    Directory of Open Access Journals (Sweden)

    Chris A. Martin

    2008-01-01

    Full Text Available The objective of this paper is to discuss concepts of landscape sustainability in the Phoenix metropolitan area. Phoenix is situated in the greater Salt River Valley of the lower Sonoran Desert in the southwest United States. In this paper I use the ecological frameworks of ecosystem services and resiliency as a metric for understanding landscape sustainability. An assessment of landscape sustainability performance benchmarks were made by surveying research findings of scientists affiliated with the Central Arizona Phoenix Long Term Ecological Research Project (CAP LTER. In Phoenix, present day emphases on cultural, aesthetic, and habitat formation ecosystem services within an arid ecoregion of low natural resilience coupled to a complex matrix of socioeconomic stratification, excessive landscape water use and pruning practices has had the undesired effect of degrading landscape sustainability. This has been measured as mixed patterns of plant diversity and human-altered patterns of carbon regulation, microclimate control, and trophic dynamics. In the future, sustainable residential landscaping in desert cities such as Phoenix may be fostered through use of water-conserving irrigation technologies, oasis-style landscape design motifs, recycling of landscape green waste, and conservative plant pruning strategies.

  12. Airborne particle accumulation and composition at different locations in the northern Negev desert.

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2001-01-01

    Atmospheric desert dust was collected over 36 months in ground-level collectors at four stations in the northern Negev desert, Israel. Three stations (Shivta, Sede Boqer and Avdat) are located in the desert itself whereas the fourth station (Sayeret Shaked) is situated at the desert fringe, in the

  13. Testing results of Monte Carlo sampling processes in MCSAD

    International Nuclear Information System (INIS)

    Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, A.; Correa, C.; Demydenko, C.

    2009-01-01

    The Monte Carlo Simulation of Atom Displacements (MCSAD) is a code implemented by the authors to simulate the complete process of atom displacement (AD) formation. This code makes use of the Monte Carlo (MC) method to sample all the processes involved in the gamma and electronic radiation transport through matter. The kernel of the calculations applied to this code relies on a model based on an algorithm developed by the authors, which firstly splits out multiple electron elastic scattering events from those single ones at higher scattering angles and then, from the last one, sampling those leading to AD at high transferred atomic recoil energies. Some tests have been developed to check the sampling algorithms with the help of the corresponding theoretical distribution functions. Satisfactory results have been obtained, which indicate the strength of the methods and subroutines used in the code. (Author)

  14. Molecular physics and chemistry applications of quantum Monte Carlo

    International Nuclear Information System (INIS)

    Reynolds, P.J.; Barnett, R.N.; Hammond, B.L.; Lester, W.A. Jr.

    1985-09-01

    We discuss recent work with the diffusion quantum Monte Carlo (QMC) method in its application to molecular systems. The formal correspondence of the imaginary time Schroedinger equation to a diffusion equation allows one to calculate quantum mechanical expectation values as Monte Carlo averages over an ensemble of random walks. We report work on atomic and molecular total energies, as well as properties including electron affinities, binding energies, reaction barriers, and moments of the electronic charge distribution. A brief discussion is given on how standard QMC must be modified for calculating properties. Calculated energies and properties are presented for a number of molecular systems, including He, F, F - , H 2 , N, and N 2 . Recent progress in extending the basic QMC approach to the calculation of ''analytic'' (as opposed to finite-difference) derivatives of the energy is presented, together with an H 2 potential-energy curve obtained using analytic derivatives. 39 refs., 1 fig., 2 tabs

  15. (U) Introduction to Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-20

    Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.

  16. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    Science.gov (United States)

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  17. Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust

    International Nuclear Information System (INIS)

    Heerden, P.D.R. van; Krueger, G.H.J.; Kilbourn Louw, M.

    2007-01-01

    The effects of limestone dust deposition on vegetation in desert ecosystems have not yet been reported. We investigated these effects in a succulent shrub from the Namib Desert at a limestone quarry near Skorpion Zinc mine (Namibia). Effects of limestone dust were determined in Zygophyllum prismatocarpum (dollar bush) plants with heavy, moderate and no visible foliar dust cover by means of chlorophyll a fluorescence measurements. Limestone dust deposition decreased overall plant performance through loss of chlorophyll content, inhibition of CO 2 assimilation, uncoupling of the oxygen-evolving complex and decreased electron transport. Importantly, dynamic recovery occurred after termination of limestone extraction at the quarry. Recovery was accelerated by rainfall, mainly because of dust removal from leaves and stimulation of new growth. These results indicate that limestone dust has severe effects on photosynthesis in desert shrubs, but that recovery is possible and that, in arid environments, this process is modulated by rainfall. - Limestone dust deposition reduced photosynthetic capacity in the Namib Desert shrub, Zygophyllum prismatocarpum

  18. Monte Carlo physical dosimetry for small photon beams

    International Nuclear Information System (INIS)

    Perucha, M.; Rincon, M.; Leal, A.; Carrasco, E.; Sanchez-Doblado, F.; Hospital Univ. Virgen Macarena, Sevilla; Nunez, L.; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L.

    2001-01-01

    Small field dosimetry is complicated due to the lack of electronic equilibrium and to the high steep dose gradients. This works compares PDD curves, profiles and output factors measured with conventional detectors (film, diode, TLD and ionisation chamber) and calculated with Monte Carlo. The 6 MV nominal energy from a Philips SL-18 linac has been simulated by using the OMEGA code. MC calculation reveals itself as a convenient method to validate OF and profiles in special conditions, such as small fields. (orig.)

  19. Evaluation of equivalent doses in 18F PET/CT using the Monte Carlo method with MCNPX code

    International Nuclear Information System (INIS)

    Belinato, Walmir; Santos, William Souza; Perini, Ana Paula; Neves, Lucio Pereira; Souza, Divanizia N.

    2017-01-01

    The present work used the Monte Carlo method (MMC), specifically the Monte Carlo NParticle - MCNPX, to simulate the interaction of radiation involving photons and particles, such as positrons and electrons, with virtual adult anthropomorphic simulators on PET / CT scans and to determine absorbed and equivalent doses in adult male and female patients

  20. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation

    DEFF Research Database (Denmark)

    Nathan, R.P.; Thomas, P.J.; Jain, M.

    2003-01-01

    and identify the likely size of these effects on D-e distributions. The study employs the MCNP 4C Monte Carlo electron/photon transport model, supported by an experimental validation of the code in several case studies. We find good agreement between the experimental measurements and the Monte Carlo...

  1. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    OpenAIRE

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks ...

  2. Integrating Army Aviation into the Combined Arms Team: Operational Art in Desert Shield and Desert Storm

    Science.gov (United States)

    2017-05-25

    King of Saudi Arabia. The conversation took place prior to an Organization of the Petroleum Exporting Countries (OPEC) meeting of Arab Gulf members...Blumberg and Christopher C. French, eds., The Persian Gulf War: Views from the Social and Behavioral Sciences (Lanham, MD: University Press of America...1994), 17. 72 Blumberg and French, The Persian Gulf War, 29. 20 building up forces in northeast Saudi Arabia during Operation Desert Shield, in

  3. In vitro germination of desert rose varieties(

    Directory of Open Access Journals (Sweden)

    Tatiane Lemos Varella

    2015-08-01

    Full Text Available The drought stress resistance is a characteristic of the desert rose and its estimable beauty flowers, which gave it great relevance in the ornamental market. However, the desert rose production and germination is hampered by possible sterility of their male and female flowers and frequent problems in pollination, so the tissue culture is a promising alternative to the propagation of these plants. This study aimed to evaluate the effect of gibberellic acid on four commercial varieties of desert rose (Adenium obesum cultivated in vitro. The seeds of the varieties ‘Orange Pallet’, ‘Carnation violet’, ‘Diamond ring’ and ‘Vermiliont’ were sterilized and inoculated on Water + Agar (T0, medium MS (T1, ½ MS (T2, MS + 0.25 mg L-1 GA3 (T3, MS + 0.5 mg L-1 GA3 (T4, ½ MS + 0.25 mg L-1 GA3 (T5, ½ MS 0.5 mg L-1 GA3 (T6. The seeds germination of A. obesum was initiated on the fourth day of cultivation and on the tenth day was possible to observe the expansion of the cotyledons and leaf expansion with subsequent development of early secondary root. The ‘Orange pallet’ variety germinated 100% of seeds on water + agar and MS ½ + 0.5 mg L-1 of GA3. For ‘Diamond Ring’ and ‘Carnation violet’ the highest rate of germination occurred in treatments MS ½; 0.25 mg L-1 GA3; MS + 0.5 mg L-1 GA3 MS ½ + 0.5 mg L-1 GA3 averaging 80% and 70%, respectively. For ‘Vermiliont’ the best response was in MS and MS ½ + 0.5 mg L-1 GA3 ranging between 70-90% germinated embryos. It was registered different malformations in all treatments like absence of roots and apexes during seedling development. The concentrations of GA3 did not affect significantly the seed germination.

  4. Properties of Desert Sand and CMAS Glass

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2014-01-01

    As-received desert sand from a Middle East country has been characterized for its phase composition and thermal stability. X-ray diffraction analysis showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H2O), and NaAlSi3O8 phases in as-received desert sand and showed weight loss of approx. 35 percent due to decomposition of CaCO3 and CaSO4.2H2O when heated to 1400 C. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at approx. 1500 C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al2O3-61.6SiO2-0.6Fe2O3-1K2O (mole percent). Various physical, thermal and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cc, Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (T (sub g)) 706 C, softening point (T (sub d)) 764 C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m (sup 1/2), and coefficient of thermal expansion (CTE) 9.8 x 10 (exp -6)/degC in the temperature range 25 to 700 C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-Fulcher-Tamman (VFT) equation. The glass remained amorphous after heat treating at 850 C for 10 hr but crystallized into CaSiO3 and Ca-Mg-Al silicate phases at 900 C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Activation energies for the crystallization of two different phases in the glass were calculated to be 403 and 483 kJ/mol, respectively.

  5. Chemical constituents of Cenchrus ciliaris L. from the Cholistan desert, Pakistan

    OpenAIRE

    Ashraf Muhammad Aqeel; Mahmood Karamat; Yusoff Ismail; Qureshi Ahmad Kaleem

    2013-01-01

    The Cholistan Desert is an extension of the Great Indian Desert, covering an area of 26,330 km2. The desert can be divided into two main geomorphic regions: the northern region, known as Lesser Cholistan, constituting the desert margin and consisting of a series of saline alluvial flats alternating with low sand ridges/dunes; and the southern region, known as Greater Cholistan, a wind-resorted sandy desert comprised of a number of old Hakra River terraces w...

  6. Isotopic depletion with Monte Carlo

    International Nuclear Information System (INIS)

    Martin, W.R.; Rathkopf, J.A.

    1996-06-01

    This work considers a method to deplete isotopes during a time- dependent Monte Carlo simulation of an evolving system. The method is based on explicitly combining a conventional estimator for the scalar flux with the analytical solutions to the isotopic depletion equations. There are no auxiliary calculations; the method is an integral part of the Monte Carlo calculation. The method eliminates negative densities and reduces the variance in the estimates for the isotope densities, compared to existing methods. Moreover, existing methods are shown to be special cases of the general method described in this work, as they can be derived by combining a high variance estimator for the scalar flux with a low-order approximation to the analytical solution to the depletion equation

  7. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  8. A contribution Monte Carlo method

    International Nuclear Information System (INIS)

    Aboughantous, C.H.

    1994-01-01

    A Contribution Monte Carlo method is developed and successfully applied to a sample deep-penetration shielding problem. The random walk is simulated in most of its parts as in conventional Monte Carlo methods. The probability density functions (pdf's) are expressed in terms of spherical harmonics and are continuous functions in direction cosine and azimuthal angle variables as well as in position coordinates; the energy is discretized in the multigroup approximation. The transport pdf is an unusual exponential kernel strongly dependent on the incident and emergent directions and energies and on the position of the collision site. The method produces the same results obtained with the deterministic method with a very small standard deviation, with as little as 1,000 Contribution particles in both analog and nonabsorption biasing modes and with only a few minutes CPU time

  9. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  10. Parallel Monte Carlo reactor neutronics

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Brown, F.B.

    1994-01-01

    The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved

  11. Elements of Monte Carlo techniques

    International Nuclear Information System (INIS)

    Nagarajan, P.S.

    2000-01-01

    The Monte Carlo method is essentially mimicking the real world physical processes at the microscopic level. With the incredible increase in computing speeds and ever decreasing computing costs, there is widespread use of the method for practical problems. The method is used in calculating algorithm-generated sequences known as pseudo random sequence (prs)., probability density function (pdf), test for randomness, extension to multidimensional integration etc

  12. Adaptive Multilevel Monte Carlo Simulation

    KAUST Repository

    Hoel, H

    2011-08-23

    This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).

  13. Geometrical splitting in Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Elperin, T.; Dudziak, D.J.

    1982-01-01

    A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs

  14. Extending canonical Monte Carlo methods

    International Nuclear Information System (INIS)

    Velazquez, L; Curilef, S

    2010-01-01

    In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model

  15. ARCHER{sub RT} – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lin; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George, E-mail: xug2@rpi.edu [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Yang, Youming; Bednarz, Bryan [Medical Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Sterpin, Edmond [Molecular Imaging, Radiotherapy and Oncology, Université catholique de Louvain, Brussels, Belgium 1348 (Belgium)

    2014-07-15

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHER{sub RT} is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head and neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHER{sub RT}. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHER{sub RT} and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHER{sub RT} agree well with DOSXYZnrc. For clinical cases, results from ARCHER{sub RT} are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head and neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to

  16. Non statistical Monte-Carlo

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-04-01

    We have shown that the transport equation can be solved with particles, like the Monte-Carlo method, but without random numbers. In the Monte-Carlo method, particles are created from the source, and are followed from collision to collision until either they are absorbed or they leave the spatial domain. In our method, particles are created from the original source, with a variable weight taking into account both collision and absorption. These particles are followed until they leave the spatial domain, and we use them to determine a first collision source. Another set of particles is then created from this first collision source, and tracked to determine a second collision source, and so on. This process introduces an approximation which does not exist in the Monte-Carlo method. However, we have analyzed the effect of this approximation, and shown that it can be limited. Our method is deterministic, gives reproducible results. Furthermore, when extra accuracy is needed in some region, it is easier to get more particles to go there. It has the same kind of applications: rather problems where streaming is dominant than collision dominated problems

  17. BREM5 electroweak Monte Carlo

    International Nuclear Information System (INIS)

    Kennedy, D.C. II.

    1987-01-01

    This is an update on the progress of the BREMMUS Monte Carlo simulator, particularly in its current incarnation, BREM5. The present report is intended only as a follow-up to the Mark II/Granlibakken proceedings, and those proceedings should be consulted for a complete description of the capabilities and goals of the BREMMUS program. The new BREM5 program improves on the previous version of BREMMUS, BREM2, in a number of important ways. In BREM2, the internal loop (oblique) corrections were not treated in consistent fashion, a deficiency that led to renormalization scheme-dependence; i.e., physical results, such as cross sections, were dependent on the method used to eliminate infinities from the theory. Of course, this problem cannot be tolerated in a Monte Carlo designed for experimental use. BREM5 incorporates a new way of treating the oblique corrections, as explained in the Granlibakken proceedings, that guarantees renormalization scheme-independence and dramatically simplifies the organizatio